

Lecture Notes in Computer Science 4595
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dragan Bošnački
Stefan Edelkamp (Eds.)

Model Checking
Software

14th International SPIN Workshop
Berlin, Germany, July 1-3, 2007
Proceedings

13

Volume Editors

Dragan Bošnački
Department of Biomedical Engineering
WH 3.101 Eindhoven University of Technology
513 5600 MB Eindhoven, The Netherlands
E-mail: dbosnack@yahoo.com

Stefan Edelkamp
Computer Science Department
University of Dortmund
Otto Hahn Straße 14
44227 Dortmund, Germany
E-mail: stefan.edelkamp@cs.uni-dortmund.de

Library of Congress Control Number: 2007929430

CR Subject Classification (1998): F.3, D.2.4, D.3.1, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73369-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73369-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12084210 06/3180 5 4 3 2 1 0

Preface

The SPIN workshops focus on techniques for the validation and analysis of soft-
ware systems based on explicit representations of state spaces, or combination of
the latter with other representations. One of the main goals of the workshops is
to encourage the interaction of researchers and practitioners in this area and the
exchange of ideas with scientists working in related areas in software engineering.

The evolution and success of the SPIN workshops reflects the maturing of
model checking into a dominant technology for the formal verification of soft-
ware systems. The first SPIN workshop was held in Montreal in 1995. In its
first instances the workshop was intended as a forum for presenting extensions
and applications of the model checker SPIN, to which the workshop owes its the
name. As from the year 2000, the scope of the event clearly broadened to more
general topics on software verification. To promote the interaction with other
areas, since 1996, SPIN workshops have been organized as more or less closely
affiliated events with bigger conferences. Since 1999, the proceedings of the SPIN
workshops have appeared in Springer Verlag’s Lecture Notes in Computer Sci-
ence series.

This volume contains the proceedings of the 14th SPIN workshop, held
in Berlin, Germany, on July 1–3, 2007, collocated with CAV 2007, the 19th
Computer-Aided Verification Conference. The topics of interest that were listed
in the call for papers for SPIN 2007 were: algorithms for state space-based ver-
ification; innovative implementation techniques; manual or automatic modeling
of systems for state space tools; manual or automatic derivation of properties
that are to be checked of the systems; techniques for alleviating state explosion;
techniques for dealing with infinite state spaces and infinite families of systems;
techniques for dealing with timed or probabilistic systems; derivation of code,
test cases, or other useful material from state spaces; innovative or otherwise
particularly significant case studies; theoretical results on the limits and pos-
sibilities of state space methods; unpublished, insightful surveys or historical
accounts on topics of relevance to SPIN workshops; directed model checking and
accelerated error detection; as well as short tool presentations.

The submitted papers covered a vast majority of these topics. We received
39 submissions of which 31 were full technical papers and 8 short tool papers. Of
those the Program Committee finally selected 14 technical and 4 tool papers to
be presented during the workshop and included in the proceedings. papers was
withdrawn afterwords, which reduced the final The competition was particularly
strong this year. As a result, regrettably, a substantial number of good papers
had to be rejected.

Each paper was rigorously reviewed by at least three reviewers. One paper
for which both PC co-chairs had a possible conflict of interests was handled
by a sub-committee chaired by Willem Visser. For most of the submissions the

VI Preface

decision on acceptance was reached by consensus. In a couple of cases, where
this was not possible, the opinion of the majority prevailed.

In addition to the selected papers we had an invited talk that was given by
Dennis Dams, an invited tutorial held by Luboš Brim, and a seeded discussion
on the end of reduction techniques in software model checking.

Apart from the high quality, this year’s presentations were characterized also
by the broad spectrum of topics in software model checking that they featured.
These ranged from emerging techniques, e.g., directed model checking, model
checking with multi-core systems via more established ones, e.g., abstraction
and partial-order reduction, to interesting case studies and tool demonstrations.

We would like to thank the PC committee members as well as their sub-
reviewers for their reviews and for their help in composing a strong program for
SPIN 2007. Also, we are indebted to all members of the Steering Committee for
their advice and tremendous help with the organizational questions. Springer
allowed us to use the OCS on-line conference service free of charge for which we
are very grateful. The system was maintained by Martin Karusseit and Holger
Willebrandt whose prompt reactions to all technical problems were invaluable.
Also we would like to thank our universities in Eindhoven and Dortmund, re-
spectively, for their support. Last but not least, we would like to thank the CAV
organizers for giving us the opportunity to hold SPIN together with CAV, as
well as for their organizational help.

May 2007 Dragan Bošnački
Stefan Edelkamp

Organization

Program Committee

Dragan Bošnački (Eindhoven, Netherlands) (co-chair)
Matthew Dwyer (U. Nebraska, USA)
Stefan Edelkamp (Dortmund, Germany) (co-chair)
Jaco Geldenhuys (Stellenbosch, South Africa)
Patrice Godefroid (Microsoft, USA)
Susanne Graf (Verimag, France)
Alex Groce (NASA/JPL, USA)
Jörg Hoffmann (DERI, Austria)
Gerard Holzmann (NASA/JPL, USA)
Radu Iosif (Verimag, France)
Marta Kwiatkowska (Birmingham, UK)
Stefan Leue (Konstanz, Germany)
Alberto Lluch Lafuente (Pisa, Italy)
Pedro Merino (Malaga, Spain)
Kedar Namjoshi (Bell Labs, USA)
Corina Păsăreanu (NASA Ames, USA)
Doron Peled (Warwick, UK and Bar Ilan, Israel)
Paul Pettersson (Mälardalen, Sweden)
Theo Ruys (Twente, Netherlands)
Antti Valmari (Tampere, Finland)
Willem Visser (SEVEN Networks, USA)
Pierre Wolper (Liege, Belgium)

Steering Committee

Patrice Godefroid (Microsoft, USA)
Susanne Graf (Verimag, France)
Stefan Leue (Konstanz, Germany)
Antti Valmari (Tempere, Finland)
Moshe Vardi (Rice U., USA)
Pierre Wolper (Liege, Belgium)

Advisory Board

Gerard Holzmann (NASA/JPL, USA)
Amir Pnueli (Weizmann Inst., Israel)

VIII Organization

Additional Referees

Husain Aljazzar
Markus Bauhan
Marius Bozga
Vincenzo Ciancia
Bob Coecke
Dennis Dams
Alexandre David
Dejan Nickovic
Ann-Marie Ericsson
Blaise Genest
John H̊akansson
Henri Hansen
Corné Inggs
Shahid Jabbar
Mark Kattenbelt
Timo Kellomäki
Masud Khokhar
Birgitta Lindström
Johannes Leitner
Jesús Mart́ınez
Laurent Mounier
Adam Rogalewicz
Cristina Seceleanu
Sarah Thompson
Xu Wang
Wei Wei

Table of Contents

Invited Contributions

StackSnuffer: Curing Orion’s Unsoundness . 1
Dennis Dams

Tutorial: Parallel Model Checking (Extended Abstract) 2
Luboš Brim and Jǐŕı Barnat

Directed Model Checking

Local Abstraction-Refinement for the mu-Calculus 4
Harald Fecher and Sharon Shoham

Minimal Counterexample Generation for SPIN . 24
Paul Gastin and Pierre Moro

Generating Counter-Examples Through Randomized Guided Search 39
Neha Rungta and Eric G. Mercer

Partial Order Reduction

Distributed Dynamic Partial Order Reduction Based Verification of
Threaded Software . 58

Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and
Robert M. Kirby

Some Solutions to the Ignoring Problem . 76
Sami Evangelista and Christophe Pajault

Cartesian Partial-Order Reduction . 95
Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv

Program Analysis

On-the-Fly Dynamic Dead Variable Analysis . 113
Joel P. Self and Eric G. Mercer

SAT-Based Summarization for Boolean Programs . 131
Gérard Basler, Daniel Kroening, and Georg Weissenbacher

Exploration Advances

LTL Satisfiability Checking . 149
Kristin Y. Rozier and Moshe Y. Vardi

X Table of Contents

An Embeddable Virtual Machine for State Space Generation 168
Michael Weber

Scalable Multi-core LTL Model-Checking . 187
Jǐŕı Barnat, Luboš Brim, and Petr Ročkai

Modeling and Cases

A SystemC/TLM Semantics in Promela and Its Possible
Applications . 204

Claus Traulsen, Jérôme Cornet, Matthieu Moy, and
Florence Maraninchi

Towards Model Checking Spatial Properties with SPIN 223
Alberto Lluch Lafuente

Model Extraction for ARINC 653 Based Avionics Software 243
Pedro de la Cámara, Maŕıa del Mar Gallardo, and Pedro Merino

Tools

BEEM: Benchmarks for Explicit Model Checkers . 263
Radek Pelánek

C.OPEN and ANNOTATOR: Tools for On-the-Fly Model Checking C
Programs . 268

Maŕıa del Mar Gallardo, Christophe Joubert, Pedro Merino, and
David Sańan

ACSAR: Software Model Checking with Transfinite Refinement 274
Mohamed Nassim Seghir and Andreas Podelski

Instrumenting C Programs with Nested Word Monitors 279
Swarat Chaudhuri and Rajeev Alur

Author Index . 285

StackSnuffer: Curing Orion’s Unsoundness�

Dennis Dams

Bell Laboratories, Murray Hill, NJ 07974, USA

Software analysis and verification require abstraction of the program under con-
sideration. As a result, many reported errors may in fact be false alarms. The
Orion static analyzer reduces the ratio of false alarms by performing a state space
exploration at two levels of precision. At the first level, a conservative analysis is
performed. This detects all errors of a certain kind, but with a potentially high
number of superfluous warnings. At the second level, each potential-error trace
that is produced at the first level, is subjected to a feasibility analysis using
symbolic reasoning - typically by invoking third-party decision procedures. If a
trace cannot be shown to be infeasible, it is reported. Orion’s precision can be
tuned by varying the resources spent in the second level.

This approach results in an excellent signal-to-noise ratio. Orion has uncovered
many errors in well-tested open source code, with only little human processing
required to separate the wheat from the chaff. However, the interaction between
the two levels causes Orion to miss certain errors, and when used to prove absence
of bugs, it therefore needs to be run with the second level switched off.

In this talk, we present an adaptation of the depth-first search algorithm,
called StackSnuffer, aimed at finding all errors without sacrificing Orion’s signal-
to-noise ratio. We formalize correctness and discuss the condition under which
StackSnuffer is correct. This condition turns out to be equivalent to reducibility
of the analyzed program’s flow graph.

Experiments with StackSnuffer confirm that previously missed errors are now
found. Furthermore, another small adaptation to the algorithm results in an
intriguing new approach to deal with loops.

� This work is supported in part by NSF grant CCR-0341658.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tutorial: Parallel Model Checking�

(Extended Abstract)

Luboš Brim and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic

With the increase in the complexity of computer systems, it becomes even
more important to develop formal methods for ensuring their quality. Various
techniques for automated and semi-automated analysis and verification have been
proposed. In particular, model-checking has become a very practical technique
due to its push-button character. The basic principle behind model-checking is to
build a model of the system under consideration together with a formal descrip-
tion of the verified property in a suitable temporal logic. The model-checking al-
gorithm is a decision procedure which in addition to the yes/no answer returns
a trace of a faulty behaviour in case the checked property is not satisfied by the
model. One of the additional advantages of this approach is that verification can be
performed against partial specifications, by considering only a subset of all speci-
fication requirements. This allows for increased efficiency by checking correctness
with respect to only the most relevant requirements that should be fulfilled.

Conventional model checking techniques have high memory requirements and
are very computationally intensive; they are thus unsuitable for handling real-
world systems that exhibit complex behaviours which cannot be captured by
simple models having a small or regular state space. Various authors have pro-
posed ways of solving this problem by either using powerful shared-memory
multiprocessors (e.g. multi-core machines) or by distributing the memory re-
quirements over several machines (e.g. on a cluster of workstations).

The work on parallel verification is quite extensive, growing in recent years.
There are attempts to consider both the symbolic as well as the enumerative
techniques, theorem-provers as well as sat-solvers, etc. In this tutorial we focus
on basic elements of enumerative parallel model-checking of temporal properties
formulated in linear time temporal logic (LTL).

Model checking traditionally terms the task of verifying an implementation
with respect to its specification. However, model checking could and probably
should also be considered as a flexible analysis tool—as long as the object to anal-
yse is representable as a finite-state system and the analysis can be formulated in
a suitable temporal logic. In consequence, model checkers are at the heart of many
modelling and analysis tools and will be in the future. We will briefly introduce
some technical aspects related to the design of a parallel model-checker.
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 2–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tutorial: Parallel Model Checking 3

Parallel verification is a new emerging field. Extending the techniques as
known from the sequential world adds significant complications. Efficient parallel
solution of many problems often requires invention of original, novel approaches
radically different from those used to solve the same problems sequentially. Sev-
eral methods for parallel model-checking did succeed in making its way into
industrial tools. Performance results on either parallel machines or on a cluster
of workstations show significant improvements with respect to sequential tech-
niques, both in extension of the size of the problem and in computational times,
along with adequate scalability with the number of processors.

References

1. Barnat, J., Brim, L., Černá, I.: Cluster-Based LTL Model Checking of Large Sys-
tems. In: FMCO, November 2005. LNCS, vol. 4111, pp. 259–279. Springer, Heidel-
berg (2005)

2. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE –
A Tool for Distributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.)
CAV. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

3. Behrmann, G., Hune, T.S., Vaandrager, F.W.: Distributed Timed Model Checking
– How the Search Order Matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV.
LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)

4. Bollig, B., Leucker, M., Weber, M.: Parallel Model Checking for the Alternation
Free μ-Calculus. In: Margaria, T., Yi, W. (eds.) TACAS. LNCS, vol. 2031, p. 543.
Springer, Heidelberg (2001)

5. Garavel, H., Mateescu, R., Smarandache, I.: Parallel State Space Construction for
Model-Checking. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057,
pp. 216–234. Springer, Heidelberg (2001)

6. Grumberg, O., Heyman, T., Schuster, A.: Distributed Model Checking for μ-
calculus. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV. LNCS, vol. 2102, pp.
350–362. Springer, Heidelberg (2001)

7. Haverkort, B.R., Bell, A., Bohnenkamp, H.C.: On the Efficient Sequential and
Distributed Generation of Very Large Markov Chains From Stochastic Petri Nets.
In: Proc. 8th Int. Workshop on Petri Net and Performance Models, pp. 12–21.
IEEE Computer Society Press, Los Alamitos (1999)

8. Holzmann, G., Bosnacki, D.: The Design of a multi-core extension of the Spin
Model Checker. In: Presented at FMCAD’06 (journal version submitted, January
2007) (2006)

9. Inggs, C., Barringer, H.: CTL* Model Checking on a Shared Memory Architecture.
Formal Methods in System Design 29(2), 135–155 (2006)

10. Jabbar, S., Edelkamp, S.: Parallel External Directed Model Checking with Linear
I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
237–251. Springer, Heidelberg (2005)

11. Lerda, F., Sisto, R.: Distributed-memory model checking with SPIN. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) Theoretical and Practical Aspects of
SPIN Model Checking. LNCS, vol. 1680, Springer, Heidelberg (1999)

12. Stern, U., Dill, D.L.: Parallelizing the Murϕ Verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–267. Springer, Heidelberg (1997)

Local Abstraction-Refinement for the mu-Calculus�

Harald Fecher1 and Sharon Shoham2

1 Christian-Albrechts-University Kiel, Germany
hf@informatik.uni-kiel.de

2 The Technion, Haifa, Israel
sharonsh@cs.technion.ac.il

Abstract. Counterexample-guided abstraction refinement (CEGAR) is a key
technique for the verification of computer programs. Grumberg et al. developed a
CEGAR-based algorithm for the modal μ-calculus. There, every abstract state is
split in a refinement step. In this paper, the work of Grumberg et al. is generalized
by presenting a new CEGAR-based algorithm for the μ-calculus. It is based on
a more expressive abstract model and applies refinement only locally (at a single
abstract state), i.e., the lazy abstraction technique for safety properties is adapted
to the μ-calculus. Furthermore, it separates refinement determination from the
(3-valued based) model checking. Three different heuristics for refinement deter-
mination are presented and illustrated.

1 Introduction

One of the most successful techniques to checking correctness of large or even infinite
programs is predicate abstraction [8] with counterexample-guided abstraction refine-
ment (CEGAR) [3]. This approach consists of three phases: abstraction, model check-
ing, and refinement. A typical tool based on that technique is SLAM [2], where an effi-
cient approximation of the post-transitions of a concrete system is calculated by using
cartesian approximation, and where a spurious counterexample found during the model
checking phase is used for determining the refinement. Another prominent tool based
on CEGAR is BLAST [14], where, contrary to SLAM, refinement is applied locally
(called lazy abstraction), i.e., only the relevant abstract states of a trace being a spu-
rious counterexample are refined. Both tools mentioned are only capable of verifying
safety properties.

Grumberg et al. [9,10] present CEGAR-based algorithms for the verification of the
μ-calculus [19], which is a powerful formalism for expressing branching time1 and
reachability properties by using fixpoint constructions. These approaches have as un-
derlying abstract models Kripke modal transition systems [15], which have may and
must transitions (over, resp., under approximation of the concrete transitions), as in
modal transition systems [20]. Two transition relations are essential in order to preserve
branching time properties. They also allow to preserve both validity and invalidity from
the abstract model to the concrete model, at the cost of introducing a third truth value

� This work is in part financially supported by the DFG project Refism (FE 942/1-1).
1 Branching time is relevant whenever nondeterminism occurs from external factors (e.g., user

input), from random behavior, or from the modeling of faulty systems or channels.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 4–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

hf@informatik.uni-kiel.de
sharonsh@cs.technion.ac.il

Local Abstraction-Refinement for the mu-Calculus 5

unknown, which means that the truth value in the concrete model is unknown. This leads
to a 3-valued semantics. In this setting, refinement is no longer needed when the result
is invalid, as in traditional CEGAR approaches. Instead, refinement is needed when the
result is unknown. As such, the role of a counterexample as guiding the refinement is
taken by some cause of the indefinite result.

In [9], a 3-valued satisfaction game is defined, where the Verifier tries to obtain va-
lidity, and the Falsifier tries to obtain invalidity. In order to win, a player must not use
may transitions. The third truth value is captured by the possibility that none of the
players wins. Furthermore, their model checking algorithm, which is a generalization
of the parity game algorithm of Zielonka [28], determines an abstract state z and a pred-
icate p such that the splitting of z with respect to p leads to less spurious behavior. This
approach is generalized in [10] by making the approach independent from the Zielonka
algorithm, i.e., allowing more efficient algorithms [18]. There, the model checking is
performed via a reduction of the 3-valued satisfaction game into two games: one for
validity and one for invalidity. The predicate determining the splitting is derived from
the trace obtained after playing the non-losing strategies of the players in these games
against each other. In both approaches, every configuration (abstract states combined
with subproperties) where the (in)validity is not yet shown is split, i.e., only a weak
form of lazy abstraction is made.

Contribution. A new CEGAR-based model checking algorithm for the μ-calculus is
presented. This algorithm improves the approaches of [9,10] in the following way:

– A more expressive underlying abstract model is used, namely generalized Kripke
modal transition systems [26], where must hypertransitions, as in disjunctive modal
transition systems [21], are used, i.e., a must transition points to a set of states rather
than to a singleton. Consequently, a smoother refinement determination can be ob-
tained [26] and more properties can in principle be shown [6].

– A stronger notion of lazy abstraction is used: only a single abstract state is split.
Even better, some but not all configurations having the same underlying abstract
state are split. Thus the state space remains smaller and verification is sped up.

– The algorithm provides a separation of the refinement determination from the model
checking. This is done by providing a structure that encodes all possible causes for
the indefinite result. On this structure, heuristics for determining the local refine-
ment step can be defined. In particular, three different heuristics are presented and
illustrated. The most promising one can only be defined in a local refinement setting.

Further related work. A CEGAR-approach to branching time properties is given in
[24], where, contrary to our approach, only the transition relation is under, resp., over
approximated (the state space remains equal). In [12], the techniques used in SLAM are
generalized to branching time properties, where the underlying abstract model is equiv-
alent to Kripke modal transition systems. In [23] models are abstracted by alternating
transitions systems with focus predicates. These resemble game-graphs with must hy-
pertransitions. Refinement is not discussed in this paper. A CEGAR-approach for the
more general alternating μ-calculus is given in [1], which is a generalization of [5].
In [1] the underlying abstract model has must as well as may hypertransitions. Refine-
ment is made globally (not locally) and the refinement determination depends on the

6 H. Fecher and S. Shoham

α)
∨̃ ��� ∧̃�� �

��
��

� = 1
��

�
��

��
��

q0 q1 q2 q3

q4q5

β)
�������	�=0 �������	�=1

x:=0 ��
x:=x+1 ��

x:=x+1

��

[x=1] x:=x−1
��

[x>1] x:=x−1

��

Fig. 1. A μ-calculus formula (α) in terms of automata (see Section 3.3), and a system (β).
α): The property at the initial state q0 holds if (i) there is a transition such that � = 1 holds
on every possible path or (ii) there is a transition such that q0 holds again (consequently, if there
is an infinite path then q0 holds). β): The range of � is {0, 1} and of x is IN, both initialized with
0. The actions of the transitions can be executed, including the modification of �, whenever the
guard, depicted in rectangular brackets, is valid. When the guard is true, it is simply omitted.

model checking algorithm, i.e., no separation is used. Must and may hypertransitions
are also used in [7], where finite-state abstractions can be computed (for any μ-calculus
formula) by a generalization of predicate abstraction. No CEGAR-based algorithm is
presented there. In [25] a different kind of may hypertransitions is used in order to
improve precision for non-partitioning abstraction functions. Our approach does not
need these may hypertransitions for precision, since our abstraction function locally
corresponds to partitions. [25] also suggests a CEGAR-based algorithm, however they
consider only the alternation-free fragment of the μ-calculus. Moreover, their refine-
ment follows [9], resulting in a weak form of lazy abstraction. In [11] the techniques
of testing and verification interact with each other, improving the refinement heuristic.
Similar improvements can be obtained by using 3-valued abstract models, which we do.

Outline. The new CEGAR-based algorithm is illustrated by an example in Section 2,
made precise in Section 4, and is improved in Section 6. Section 3 presents the underly-
ing concrete/abstract models, game structures, and the μ-calculus in terms of alternating
tree automata. The heuristics for refinement determination are developed in Section 5
and Section 7 concludes the paper. An appendix contains pseudo codes of less important
procedures. Proofs are omitted due to space constraints.

2 Example

Our model checking algorithm is illustrated by checking the μ-calculus formula, pre-
sented via a tree automaton description in Figure 1 (α), at the system depicted in Fig-
ure 1 (β). Note that both the formula and the system are used for illustration purposes
and do not claim practical relevance.

The model checking is based on a configuration structure, where each configuration
consists of a subproperty and a (possibly abstract) state of the system. The outgoing
transitions of a configuration define ‘subgoals’ for determining the value (valid, invalid
or unknown) of the subproperty in the (abstract) state of the system. Subproperties are
given by the automaton states, which are labeled either by a predicate (e.g. � = 1)
or by ∧̃, ∨̃, �, �. Intuitively, ∧̃ and ∨̃ stand for the logical connectives ∧ and ∨ resp.
Similarly, � stands for “exists a successor”, while � stands for “all successors”.

The first configuration structure is obtained by combining all subproperties (automa-
ton states) with the single abstract-state true, which abstracts any concrete system-state.

Local Abstraction-Refinement for the mu-Calculus 7

true
∨

true
�

true
∧

true
�

true
�=1

true
�

���
�

��
�� ���� ��

��� �

����

a) true
∨

true
�

�=1
∧

�=1
�

�=1
�=1

� �=1
∧

� �=1
�=1

� �=1
�

true
�

��
�� ���� ����

��� � � � � � 	
 ���
��� �

��

����� ���
�� �
	������		

����

���
�

tt

ff ff

ff

b)

true
∨

true
�

�=1
∧

�=1
�

� �=1
∧

true
�

��
�� ���� ������

��� �

��

���
� ff

c) true
∨

true
�

�=1∧x=1
∧

�=1∧x=1
�

�=1∧x �=1
∧

�=1∧x �=1
�

� �=1
∧

true
�

��
�� ����

�
�

�
��
����

��
��

��

��� �
��

���
� ff

d)

true
∨

true
�

�=1∧x=1
∧

�=1∧x �=1
∧

�=1∧x �=1
�

true
�

��
��

���
� ���

�
��

��� �
��

���
� ff

e) true
∨

true
�

�=1∧x∈{0,2}
∧

�=1∧x∈{0,2}
�

�=1∧x>2
∧

�=1∧x>2
�

�=1∧x=1
∧

true
�

��
��

���
�

��

 ���
�

��

��

���
�

��

���
�

� � � � � � � � � �•����

�����

��������������
fff)

�=1∧x=0
∨

�=1∧x=0
�

�=1∧x=0
�

�=0∨x �=0
∨

�=0∨x �=0
�

�=0∨x �=0
�

�=1∧x∈{0,2}
∧

�=1∧x∈{0,2}
�

�=1∧x>2
∧

�=1∧x>2
�

�=1∧x=1
∧

��
����

��

���
�

��

�� ���
�

��

 ���
�

��

��

���
�

� � � � � � � � � �•����
�����

��������������

ffg)

Fig. 2. Example of a property check via local refinement. May transitions are depicted as dashed
arrows and must, as well as junction, transitions as solid arrows.

In addition, the transition relation of the system is overapproximated by a may transi-
tion from true to itself. No must transition (underapproximation) is used in the initial
abstraction. The obtained configuration structure is presented in Figure 2 (a). For read-
ability, the figure uses the labels of the automaton-states, rather than their names. May
and must transitions leave �- or �-configurations and the other transitions, which imi-
tate the automaton transitions, are called junction transitions.

In general, the algorithm iterates four phases: (in)validity determination, simplifi-
cation of the configuration structure, refinement determination by some heuristic, and
local refinement. The validity of the configurations is determined via a parity game al-
gorithm, where the Verifier moves in ∨̃- and �-configurations, and the Falsifier moves
in ∧̃- and �-configurations. In the validity game the Verifier can only use must and junc-
tion transitions, whereas the Falsifier can additionally use may transitions. The valid
configurations become labeled with tt. Thereafter, the same is done via an invalidity
check where the Falsifier can only use must and junction transitions, whereas the Ver-
ifier can additionally use may transitions. The invalid configurations become labeled
with ff . No validity or invalidity can be determined in (a). As a result no simplification
is possible in this case. The unknown values in (a) result from four possible causes.
One is the configuration (true, � = 1), where the validity of the predicate � = 1 in the
state true is unknown, thus neither the Verifier nor the Falsifier can win. The others
are the three may transitions in the configuration structure, which result from the may
transition from the true state to itself. For example, the fact that the may transition
from (true, �) to (true,∨) is not a must transition prevents the Verifier from winning
the validity game, and on the other hand, its existence interferes with the winning of

8 H. Fecher and S. Shoham

the Falsifier in the invalidity game. These causes represent all the possible causes for
an indefinite result. Consequently, in order to refine the system, a heuristic determines
either (i) a configuration where the property is a predicate and the validity is unknown
or (ii) a may transition for which no corresponding must transition exists.

Assuming the heuristic yields the configuration (true, � = 1), whose validity is un-
known, then all configurations forwardly/backwardly reachable from (true, � = 1) via
junction transitions are split by the predicate � = 1 during the local refinement phase.
The may and must (hyper)transitions incoming and leaving the new configurations are
recalculated via suitable satisfiability checks solved by a theorem prover. As in [26],
a may transition from an abstract state z1 to another z2 exists iff there is a transition
from a concrete state abstracted by z1 to a concrete state abstracted by z2. A must
(hyper)transition from z1 to a set of abstract states ˜Z exists iff every concrete state ab-
stracted by z1 has a transition with a target that is abstracted by an element from ˜Z .
Thereby, (b) is obtained. Note that we do not split the state true in all the configura-
tions. Instead, it is split only in the configurations forwardly/backwardly reachable from
(true, � = 1) via junction transitions. This makes our abstraction lazy.

The next iteration starts from (b). The tt and ff labels describe the result after mak-
ing the (in)validity-determinations as described before. Unlike the initial configuration
structure, in this case, some of the configurations are determined as (in)valid. There-
after, configurations and transitions having no further influence on the (in)validity-
determinations, are removed in the simplification phase, yielding (c). For example, the
junction transition from (� = 1,∧) to (� = 1, � = 1) along with the target configuration,
which is labeled tt, are removed, since knowing that one conjunct has value tt, makes
the value of ∧ depend on the value of the other conjunct. The algorithm continues with
the simplified structure. Assuming the heuristic determines the may transition point-
ing to (� �= 1,∧), then the source (and all configurations connected to it via junction
transitions) are split by the weakest precondition to reach � �= 1 in the concrete system,
which is � = 0∨x = 1. Thus we obtain (d). Proceeding with (in)validity-determinations
and simplifications, we obtain (e). Assuming the heuristic yields the may transition into
(� = 1 ∧ x �= 1,∧), then the source (and all configurations connected to it via junction
transitions) are split by the weakest precondition to reach � = 1∧x �= 1 in the concrete
system, which is (� = 0 ∧ x �= 0) ∨ (� = 1 ∧ x > 2). Thus we obtain (f), where a
must hypertransition arises. No further validity or invalidity can be determined in (f),
thus no simplification takes place. Assuming the heuristic yields the may transition into
(true,∨), then the source (and all configurations connected to it via junction transi-
tions) are split by the weakest precondition to reach true, which is � = 0 ∨ x �= 0.
Thus we obtain (g), where the initial configuration is also recalculated. Now the initial
configuration becomes valid and thus the property is verified.

3 Preliminaries

Throughout, P(B) denotes the power set of a set B. Functional composition is de-
noted by ◦. Given a relation ρ ⊆ B × D with subsets X ⊆ B and Y ⊆ D we write
X.ρ for {d ∈ D | ∃b ∈ X : (b, d) ∈ ρ} and ρ.Y for {b ∈ B | ∃d ∈ Y : (b, d) ∈ ρ}.

Local Abstraction-Refinement for the mu-Calculus 9

The projection to the i-th coordinate is denoted by πi. Let map(f, Φ) be the sequence
obtained from the sequence Φ by applying function f to all elements of Φ pointwise.

3.1 System

Without loss of generality, we will not consider action labels on models in this paper.
A rooted transition system T = (S, si,→,L) consists of a (possibly infinite) set S
of states, an initial state si ∈ S, a transition relation →⊆ S × S, and a predicate
language L, which is a set of predicates that are interpreted over the states in S (i.e.,
each predicate p ∈ L denotes a set [[p]] ⊆ S of states), such that the following three
conditions are satisfied. (i) There exists pi ∈ L with [[pi]] = {si}. (ii) The boolean
closure of L, denoted by L, is a decidable theory (i.e., satisfiability is decidable). (iii)
L is effectively closed under exact predecessor operations; that is, for every formula
ψ in L we can compute the boolean combination pre(ψ) of predicates from L such
that [[pre(ψ)]] =→ .[[ψ]]. In the following we assume a fixed rooted transition system
T = (S, si,→,L).

3.2 Strong-Weak-Parity-Game

Here, three valued parity games having under/over approximated transitions are pre-
sented. These games will be used to encode the satisfaction of a property in a system.
They generalize the three-valued parity games of [10] by adding a validity function.

Definition 1. A strong-weak-parity-game G = (C, C1, C2, c
i, R−, R+, θ, ω) has

– a set of game states C divided (not necessarily completely) by two players; C1 ⊆ C
for Player 1 and C2 ⊆ C \ C1 for Player 2,

– an initial game state ci ∈ C,
– a set of strong and a set of weak game transitions R−, R+ ⊆ C × C,
– a parity function θ : C → IN with finite image, and
– a validity function ω : C → {tt, ff,⊥}, into the values true, false, and unknown.

The source (target) of a transition t in G is denoted by sor(t), resp. tar(t).

Definition 2
– Finite validity plays for strong-weak-parity-game G have the rules and winning

conditions as stated in Table 1. An infinite play Φ is a win for Player 1
iff sup(map(θ, Φ)) is even; otherwise it is won by Player 2.

– Finite invalidity plays for G have the rules and winning conditions as stated in Ta-
ble 2. An infinite play Φ is a win for Player 2 iff sup(map(θ, Φ)) is odd; otherwise
it is won by Player 1.

– G is valid (is invalid) in c ∈ C iff Player 1 (resp. Player 2) has a strategy for the
corresponding validity (resp. invalidity) game such that Player 1 (resp. Player 2)
wins all validity (resp. invalidity) plays started at c with her strategy. G is valid (is
invalid) iff G is valid (resp. is invalid) in ci.

Remark 1. The validity, as well as the invalidity, game obviously corresponds to a parity
game. Therefore, decidability of validity, resp. invalidity, is in UP ∩ coUP [17].

10 H. Fecher and S. Shoham

Table 1. Moves of validity game at game state c, specified through a case analysis. If a Player
is unable to move at his turn, the other Player wins. Validity plays are sequences of game-states
generated thus

ω(c) �= ⊥∨ c /∈ C1 ∪ C2: Player 1 wins iff ω(c) = tt
c ∈ C1 ∧ ω(c) = ⊥: Player 1 picks as next configuration c′ ∈ {c}.R−;
c ∈ C2 ∧ ω(c) = ⊥: Player 2 picks as next configuration c′ ∈ {c}.(R− ∪ R+);

Table 2. Moves of invalidity game at game state c, specified through a case analysis. If a Player
is unable to move at his turn, the other Player wins. Invalidity plays are sequences of game-states
generated thus

ω(c) �= ⊥∨ c /∈ C1 ∪ C2: Player 2 wins iff ω(c) = ff
c ∈ C1 ∧ ω(c) = ⊥: Player 1 picks as next configuration c′ ∈ {c}.(R− ∪ R+);
c ∈ C2 ∧ ω(c) = ⊥: Player 2 picks as next configuration c′ ∈ {c}.R−;

Proposition 1. Validation over strong-weak-parity-game is 3-valued, i.e., a strong-
weak-parity-game is either valid, invalid, or neither of them.

Definition 3. A strong-weak-parity-game G is simplified if (i) it is valid or invalid in
c ∈ C iff ω(c) �= ⊥ and (ii) there are no transitions (a) leaving (in)valid game-states,
(b) leaving game-states from C1 and point to invalid ones, or (c) leaving game-states
from C2 and point to valid ones, i.e., ∀t ∈ R+∪R− : ω(sor(t)) = ⊥∧(sor(t) ∈ C1 ⇒
ω(tar(t)) �= ff) ∧ (sor(t) ∈ C2 ⇒ ω(tar(t)) �= tt).

Intuitively, G is simplified if the validity function encodes correctly all the (in)valid
game-states, and in addition, only transitions that “explain” an unknown value exist.

Theorem 1. For any strong-weak-parity-game G there is an equivalent simplified one
G′ in the sense that C = C′ and for all c ∈ C we have: G is valid (is invalid) in c
iff G′ is valid (resp. is invalid) in c. Moreover, the algorithm from Table 3 calculates a
corresponding G′.

3.3 Property Language

We will present the modal μ-calculus [19] in its equivalent form of automata [27].

Definition 4 (Tree automata). An alternating tree automaton A = (Q, qi, δ, Θ) has

– a finite, nonempty set of states (q ∈)Q with the initial element qi ∈ Q
– a transition relation δ mapping automaton states to one of the following forms,

where q, q1, q2 are automaton states and p ∈ L: p | q | q1∧̃q2 | q1∨̃q2 | �q | �q
– an acceptance condition Θ : Q → IN with finite image.

An alternating tree automaton is depicted in Figure 1 (α), where all automaton-states
have acceptance value 0. The labels of the automaton states and their outgoing transi-
tions encode the transition relation δ. In the following, we assume a fixed alternating
tree automaton A = (Q, qi, δ, Θ). Set Qqua consists of those automaton-states of the
form � or �, i.e., Qqua = {q ∈ Q | ∃q′ : δ(q) ∈ {�q′, �q′}}. The successor state of

Local Abstraction-Refinement for the mu-Calculus 11

Table 3. Algorithm for the determination of equivalent, simplified strong-weak-parity-games,
where G = (C,C1, C2, c

i, R−, R+, θ, ω)

Algorithm Simplify (G : a strong-weak-parity-game)

1: Use a parity-game algorithm to determine the valid game-states and adapt ω accordingly.

2: Use a parity-game algorithm to determine the invalid game-states and adapt ω accordingly.

3: Remove in G all weak/strong transitions that (i) leave (in)valid game-state, (ii) leave elements
from C1 and point to invalid game states, or (iii) leave elements from C2 and point to valid
game states.

q ∈ Qqua is denoted by succ(q), i.e., succ(q) = q′ if δ(q) ∈ {�q′, �q′}. Furthermore,
Q1 = {q ∈ Q | δ(q) ∈ ⋃

q1,q2∈Q{q1, q1∨̃q2, �q1}} denotes the automaton-states un-
der control of Player 1 and Q2 = {q ∈ Q | δ(q) ∈ ⋃

q1,q2∈Q{q1∧̃q2, �q1}} those under
control of Player 2. Satisfaction of a rooted transition system with respect to an alter-
nating tree automata is obtained via transformation into a strong-weak-parity-game:

Definition 5. The property-game for T and A, denoted PT,A, is the strong-weak-parity-
game (S × Q, S × Q1, S × Q2, (si, qi), R−, {}, Θ ◦ π2, ω), where

R− = {((s, q), (s, q′)) | ∃q′′ : δ(q) ∈ {q′, q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}} ∪
{((s, q), (s′, q′)) | δ(q) ∈ {�q′, �q′} ∧ (s, s′) ∈→}

ω(s, q) =

⎧

⎨

⎩

tt if δ(q) ∈ L ∧ s ∈ [[δ(q)]]
ff if δ(q) ∈ L ∧ s /∈ [[δ(q)]]
⊥ otherwise.

Furthermore, we write T |= q, whenever PT,A is valid, and otherwise, we write T �|= q
(which is equivalent to PT,A is invalid).

All the transitions in PT,A are strong. The transitions that leave game-states whose au-
tomaton component q is in Qqua correspond to the transitions in the underlying system.
In all other cases, the transitions reflect the automaton transitions, and the system com-
ponent remains unchanged. The parity conditions also reflect the acceptance conditions
of the automaton. ω evaluates game-states whose automaton component q is such that
δ(q) ∈ L. In this case, the evaluation is determined by the value of the predicate δ(q) in
s. The (in)validity of such game-states provides the basis of the (in)validity evaluation
of the game. Note that our definition of T |= q coincides with the standard definition
of satisfaction, and T �|= q coincides with the satisfaction of the dual formula, i.e.,
corresponds to negation.

Next, special strong-weak-parity-games derived for alternating tree automata satis-
faction on abstracted systems, in terms of generalized Kripke modal transition systems
[26], are introduced. These are called abstract property-games. Unlike previous works,
we do not define the abstract system separately. Instead, its description is intertwined
with the property in the game structure. This is most convenient to enable a lazy ab-
straction where the same part of the system can be abstracted differently in different
contexts. The abstract property-games are obtained by combining the abstract-states

12 H. Fecher and S. Shoham

z ∈ Z with the property-states and encoding hypertransitions via additional game-
states (hyper-points) where subsets of abstract-states ˜Z ∈ P(Z) are combined with
Qqua. The hyper-points are used to model hypertransitions. The classification of game-
states to players is based on the property-states as before, except that in hyper-points
the responsibility of the players switches. Furthermore, an abstract state z has a formula
describing the concrete states that are abstracted by z. In particular, the same concrete
state can be abstracted by multiple abstract states. However, it will only be abstracted
by a single abstract state in each context (property-state). Formally:

Definition 6. An abstract property-game P is a tuple (Z,
, G), where Z is a set of
abstract states,
 : Z → L is an abstraction function, and G is a strong-weak-parity-
game such that

– C ⊆ (Z × Q) ∪ (P(Z) × Qqua),
– Ci = C ∩ ((Z × Qi) ∪ (P(Z) × (Qqua \ Qi))) for i ∈ {1, 2},
– an element (˜Z, q) ∈ P(Z) × Qqua encodes an hyper-point connecting (z, q) ∈

Z ×Qqua to (a subset of) the elements of ˜Z combined with the next automaton state,
succ(q), i.e., ∀(˜Z, q) ∈ C ∩ (P(Z) × Qqua) : R−.{(˜Z, q)} ⊆ {(z, q) | z ∈ Z} and
{(˜Z, q)}.R− ⊆ {(z′, succ(q)) | z′ ∈ ˜Z}.

P is simplified if G is.

To simplify the presentation of the paper, we refrain from formalizing the additional
constraints of an abstract property-game. Instead, we describe them informally. Sim-
ilarly to the property-game, the abstract property-game maintains the structure of the
property automaton. In particular, whenever the automaton component is not in Qqua,
the outgoing game transitions are strong-transitions that reflect the automaton transi-
tions, thus the system component does not change. When the automaton component is
in Qqua, the outgoing transitions reflect the transitions of the underlying system, except
that they can now either overapproximate the system transitions, via weak-transitions,
or underapproximate the system transitions, via strong-transitions that point to hyper-
points. In analogy to generalized Kripke modal transition system, the weak transitions
of an abstract property-game are also called may transitions, since they are used to rep-
resent may transitions of the underlying abstract model. The strong transitions of an
abstract property-game that point to hyper-points are called must transitions (they rep-
resent must hypertransitions of the underlying model) and the other strong transitions
are called junction transitions.

Recall that the may and must transitions leave game-states whose automaton state
q is in Qqua. In principle, if some concrete state abstracted by z has a transition to
some concrete state abstracted by z′, i.e.
(z) ∧ pre(
(z′)) is satisfiable, then there
exists a may transition from (z, q) to (z′, succ(q)). This is called the may condition.
A must transition from (z, q) to the hyper-point (˜Z, q) exists only if the must condi-
tion holds, namely every concrete state abstracted by z has a transition whose target
state is abstracted by some state in ˜Z , i.e. the implication
(z) ⇒ pre(

∨

z′∈ ˜Z
(z′)))
holds. The hyper-point (˜Z, q) is connected via junction transitions to the game-states in
{(z′, succ(q)) | z′ ∈ ˜Z}. However, simplification can damage these rules. Including
additional may transitions that do not fulfill the may condition, or not including some

Local Abstraction-Refinement for the mu-Calculus 13

of the must transitions although they do fulfill the must condition, is sound. However,
a smaller set of may transitions, resp. a bigger set of must transitions makes the over,
resp. under, approximation tighter and hence more precise. Similarly, the smaller the
set ˜Z in a hyper-point is, the more precise the must transition is.

The validity function ω is used as in the concrete property-game, except that now the
evaluation of the predicate p = δ(q) ∈ L in an abstract state z depends on the value of
the predicate in all the concrete states abstracted by z. Namely, ω(z, q) = tt , resp. ff ,
if
(z) ⇒ p, resp.
(z) ⇒ ¬p, holds. Otherwise, ω(z, q) = ⊥. The parity function is
defined as in the concrete property-game (since it only depends on the automaton).

The initial abstraction for T , which contains only a single abstract state z abstracting
everything (i.e.,
(z) = true), corresponds to the following abstract property-game:

Definition 7. The initial abstract property-game P I
T,A for T and A is ({z},{(z, true)},

({z} × Q, {z} × Q1, {z} × Q2, (z, qi), R−, R+, Θ ◦ π2, ω)), where z is an arbitrary
element and

R− = {((z, q), (z, q′)) | ∃q′′ : δ(q) ∈ {q′, q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}}
R+ = {((z, q), (z, q′)) | δ(q) ∈ {�q′, �q′}}

ω(z, q) = ⊥ for q ∈ Q .

Note that the initial abstract property-game does not depend on T . This reflects the fact
that we start with a fully abstracted system. In particular, no must transitions exist, and
the may transitions correspond to a may transition from z to z in the underlying abstract
system. The validity function interprets all the predicates as ⊥ in z.

Examples of abstract property-games for the system from Figure 1 (β) and the tree
automaton from Figure 1 (α) appear in Figure 2. In particular, Figure 2 (a) presents the
initial abstract property-game. In the figure, a game-state (z, q) ∈ Z × Q is labeled by

(z), which is the predicate describing the concrete states abstracted by z, and by the
label of the automaton-state q, which reflects δ(q). To simplify the figure, hyper-points
are omitted. Namely, instead of including a must transition from (z, q) to the hyper-
point (˜Z, q) and junction transitions from the hyper-point to {(z′, succ(q)) | z′ ∈ ˜Z},
Figure 2 directly connects (z, q) to {(z′, succ(q)) | z′ ∈ ˜Z} using a must transition, or,
if necessary, a hypertransition.

4 CEGAR Locally Applied on Configurations

In the verification algorithm, a simplified abstract property-game is calculated, starting
from the initial abstract property-game. If the validity of the initial game-state remains
unknown, a refinement heuristic is applied on the simplified abstract property-game.

Definition 8. A refinement heuristic is a function mapping an abstract property-game
to a game-state c in Z × Q combined with an element p from L.

Suppose the refinement heuristic Heuristic yields (c, p). Then c as well as the game
states c̃ forwardly/backwardly reachable from c via junction transitions are split by p

14 H. Fecher and S. Shoham

Table 4. A model checking algorithm for μ-calculus properties, where refinement is made locally
on configurations, i.e., on abstract-states combined with properties. Here, the components of P
and G are denoted as in Definition 6, resp. 1. Procedure Simplify is given in Table 3, Refine in
Table 5, Add is explained in Section 4, and Heuristic is discussed in Section 5.

Algorithm PropertyCheck (A : pointed automata, T : rooted transition system)
Local variables P : an abstract property-game, initialized with P I

T,A

1: Simplify (G)

2: while (ω(ci) = ⊥) do

3: Redirect every transition t pointing to a hyper-point (˜Z, q) ∈ P(Z) × Qqua such that
it points to (π1({(˜Z, q)}.R−), q), where this hyper point (together with their maximal
allowed outgoing transitions) is added to C (for example by using procedure Add).
% This step updates ˜Z in case that some of the outgoing junction transitions of the hyper-point were removed during

simplification. Note that the newly added game-states cannot be (in)valid.

4: Remove from G every game-state c ∈ C that is unreachable (from the initial game-state
ci), unless c = (z, q) ∈ Z × Q and there exists some reachable game-state c′ = (z′, q′)
such that ω(c′) = ⊥ and in addition, either δ(q′) = �q ∧ ω(c) = tt, or δ(q′) =
�q ∧ ω(c) = ff . % Game-states that have no influence on (in)validity are removed. States fullfilling the last

constraint are not removed, since they are needed for the computation of precise must hypertransitions in Refine.

5: Refine (P,Heuristic (P)) % Heuristic(P) yields a game-state combined with an element from L
6: Simplify (G)

7: return ω(ci)

in the abstract property-game. The transitions incoming/leaving such a new game-state
c̃′ split from c̃ are calculated by taking the transitions incoming/leaving c̃ into account.
This procedure of simplification and local refinement is repeated until the property for
the initial game-state is verified or falsified. The verification algorithm PropertyCheck
is presented in Table 4 and its used Refine-procedure, which calculates the local refine-
ment, is presented in Table 5. Note that the initial abstraction in PropertyCheck can
be imprecise (if every concrete state has an outgoing transition or if none of them has
one), but this imprecision will be eliminated after refinement steps.

In the following, the Refine-procedure is described in more detail. Its used proce-
dures are informally described below, with the pseudo codes of OutgoingMayCalcula-
tion and OutgoingMustCalculation given in Appendix A. Let (c, p), where c = (z, q),
be the game-state and predicate returned by Heuristic. In Line 1, the new abstract-states
z1 and z2 are determined, as the result of splitting z based on p. Here the abstract states
and
 are encoded as in cartesian predicate abstraction, i.e., an abstract-state is a func-
tion from a set of predicates into a three valued domain, indicating whether the corre-
sponding predicate is used, its negation is used, or is not considered. Consequently, if
suitable refinement heuristics (e.g., those presented in Section 5) are used, the resulting
substates z1 and z2 can effectively be calculated.

Q′ is used to collect the states that have to be split, i.e., are connected via junction
transitions to c. It is sufficient to collect in Q′ only automaton-states, since it is an in-
variant that the first component of game-states connected to c via junction transitions
is always z. Set Q′ is initialized to q, representing c. Every state q̃ in Q′, representing

Local Abstraction-Refinement for the mu-Calculus 15

Table 5. An algorithm for local refinement calculation, where the components of P are denoted
as in Definition 6, resp. 1. The occurring procedures are explained in Section 4.

Algorithm Refine (P: an abstract property-game, ((z, q), p): (Z × Q) × L)
Local variables Q′: P(Q) initialized with {q}
1: Determine z1, z2 ∈ Z (and possibly add those elements to Z and adapt) such that [[(z1)]] =

[[(z) ∧ p]] and [[(z2)]] = [[(z) ∧ ¬p]]

2: while Q′ �= {} do

3: remove an element q̃ from Q′

4: Add (P, (z1, q̃)) ; Add (P, (z2, q̃)) % Adding of the game-states obtained from splitting.

5: if ci = (z, q̃) then (if Satisfiable (pi ∧ 	[z1]) then ci := (z1, q̃) else
ci := (z2, q̃)) % Relocation of the initial game-state.

6: if q̃ /∈ Qqua then

7: while {(z, q̃)}.R− �= {} do % Calculation of the outgoing junction transitions

8: remove an element (z′, q̃′) from {(z, q̃)}.R− % By an invariant z′ = z

9: Q′ := Q′ ∪ {q̃′} \ {q̃} ; R− := R− ∪ {((z1, q̃), (z1, q̃
′)), ((z2, q̃), (z2, q̃

′))}
10: else % q̃ ∈ Qqua

11: OutgoingMayCalculation (P, z, z1, z2, q̃)

12: OutgoingMustCalculation (P, z, z1, z2, q̃)

13: while (R−.{(z, q̃)}) ∩ (Z × Q) �= {} do % Calculation of the incoming junction transitions

14: remove an element (z′, q̃′) from (R−.{(z, q̃)}) ∩ (Z × Q) % By an invariant z′ = z

15: Q′ := Q′ ∪ {q̃′} \ {q̃} ; R− := R− ∪ {((z1, q̃
′), (z1, q̃)), ((z2, q̃

′), (z2, q̃))}
16: IncomingMayCalculation (P, z, z1, z2, q̃)

17: IncomingMustCalculation (P, z, z1, z2, q̃)

18: C := C \ {(z, q̃)} ; C1 := C1 \ {(z, q̃)} ; C2 := C2 \ {(z, q̃)}

the game-state c̃ = (z, q̃), is split by splitting z to z1 and z2. The resulting game-states
are added to the abstract property-game, using Add (Line 4). If necessary, the initial
game-state is recalculated via a satisfiability check that checks which of the substates
of z abstracts si, characterized by pi (Line 5).

After the substates of c̃ are added as game-states, the transitions incoming/leaving
c̃ are recalculated, as ingoing/outgoing transitions of the new game states. Consider
first the outgoing transitions (Lines 6-12). In case when q̃ /∈ Qqua, the junction tran-
sitions leaving the game-state c̃ being split are removed and correspondingly added to
the two new game-states. Q′ is extended with the target states (Line 9). In case when
q̃ ∈ Qqua the may as well as the must transitions leaving the new states are calculated by
OutgoingMayCalculation and OutgoingMustCalculation resp. In this case the target
game-states are not split (i.e., they are not added to Q′). This captures the laziness of the
abstraction. In general, this step removes may-transitions that become redundant after
refinement, as they do not represent any concrete transition. It also adds must transitions
that did not exist before. It therefore makes the over and under approximations tighter.

More specifically, OutgoingMayCalculation checks if the may transition leaving
c̃ = (z, q̃) into c̃′ = (z̃′, succ(q̃)) also exists for the new states (zi, q̃). This is done by
using a theorem prover to check if zi and z̃′ fulfill the may condition.

16 H. Fecher and S. Shoham

In OutgoingMustCalculation, hypertransitions leaving (z, q̃) are taken for the new
states without calculation. This is because when the must condition holds for z and
some ˜Z, it is guaranteed to also hold for any substate of z, representing a subset of
concrete states. In addition, a must transition from the new game-state (zi, q̃) into the
hyper point (˜Z, q̃) is ‘added’ if zi andUG(q̃)∪ ˜Z fulfill the must condition, whereUG(q̃)
denotes the game-states that (depending on the type of q̃) are valid, resp. invalid, at the
succeeding state of q̃ (i.e., at succ(q̃)). Formally, for q̃ ∈ Qqua,

UG(q̃) =
{{z | ω(z, q̃′) = tt} if δ(q̃) = �q̃′

{z | ω(z, q̃′) = ff} if δ(q̃) = �q̃′ .

The consideration of UG(q̃) when checking the must condition, although it is not part
of the hyper-point, is sound and is made for maintaining precision. It can be viewed
as a shortcut for first including UG(q̃) in the hyper-point, and then removing it during
simplification. Checking the must condition involves checking implication. Implication
a ⇒ b is checked by checking unsatisfiability of a ∧ ¬b. In order to reduce the number
of theorem prover calls, only those ˜Z are considered that are subsets of the targets
of the may transitions leaving the corresponding new game-state. Furthermore, ˜Z is
automatically not considered if a superset is already determined to not fulfill the must
condition. Similarly, once ˜Z is determined to be a hypertransition, none of its supersets
is checked. This is justified by the fact that including only minimal sets ˜Z as hyper-
points does not damage precision [26].

Consider now the incoming transitions (Lines 13-17). The incoming junction transi-
tions of c̃ originating in game-states that are not hyper-points are calculated similarly
to the outgoing junction transitions, where also Q′ is extended (Line 15). The incom-
ing may transitions are calculated, analogously to the outgoing may transitions, in In-
comingMayCalculation, where may transitions can possibly be removed, making the
overapproximation tighter.

The calculation of the incoming must transitions is made in IncomingMustCalcu-
lation. Here a difference arises compared to the outgoing must transitions. Since must
transitions always lead to hyper-points, no must transition points directly to the split
game-state c̃ = (z, q̃), but a must transition can indirectly point to c̃ via a hyper-point
(˜Z ′, q̃′). We consider such must transitions as incoming must transitions. The hyper-
point ˜Z ′ that contains the abstract-state z being split is possibly refined (and made
tighter) by keeping only one of the substates z1 or z2 in it. The existence of such a
tighter hypertransition is checked (and resp. added) by checking if the must condition is
fulfilled when replacing z by z1 or z2. In case that none of these two refined hypertran-
sitions exists, the one where z is replaced by both new states in ˜Z ′ is added without a
necessary calculation. Note that if a refined hypertransition is discovered, then the latter
hypertransition is redundant (as it is less precise), and is hence not included. Compared
to the calculation of the outgoing must transitions, where transitions could possibly be
added, in this case we simply make the existing ingoing must transitions more precise.

Note that after the calculation of the outgoing may and must transitions, the game-
state c̃ being split (which will be removed in the end) is still allowed as target, i.e.,
it is possible that a new game-state can point to c̃. But after the recalculation of in-
coming may and must transitions, these cases, where c̃ is the target are handled. Thus,

Local Abstraction-Refinement for the mu-Calculus 17

when Refine terminates it is ensured that no transition incoming/leaving c̃ can exist. In
particular, self-loops are adequately refined by our approach.

New game-states are added with the Add-procedure, which is also responsible for
updating the validity function ω. Procedure Add (G, (η, q̃)) adds to G the game-state
(η, q̃) ∈ (Z ×Q)∪ (P(Z)×Qqua), if it is not already present, such that it yields an ab-
stract property-game. In particular, if (η, q̃) ∈ P(Z)×Qqua, then all possible transitions
leaving the new hyper-point to {(z, succ(q̃)) | z ∈ η} are also added. Furthermore, if
the automaton component q̃ of an added game-state (η, q̃) ∈ Z × Q is such that δ(q̃) is
a predicate in L, then the function ω is determined at it by calculating if
(η) ⇒ δ(q̃) or

(η) ⇒ ¬δ(q̃) holds. Again, implication is checked via the equivalent unsatisfiability
check.

Example 1. Consider the abstract property-game depicted in Figure 2 (e), where a re-
finement heuristic determined that the game-state c = (� = 1∧x �= 1, �) needs to split
according to the predicate (� = 0 ∧ x �= 0) ∨ (� = 1 ∧ x > 2). Figure 2 (f) depicts
the result of the local refinement. Initially, c is split into (� = 1 ∧ x ∈ {0, 2}, �) and
(� = 1∧x > 2, �). The outgoing transitions of the substates are recalculated: c has only
two outgoing may transitions, pointing to (� = 1 ∧ x = 1,∧) and (� = 1 ∧ x �= 1,∧).
The first remains as an outgoing may transitions of (� = 1 ∧ x ∈ {0, 2}, �), while the
second remains as an outgoing may transition of (� = 1 ∧ x > 2, �). The latter transi-
tion is also added as an outgoing must transition of (� = 1∧x > 2, �), as it now fulfills
the must condition (more precisely, a hyper-point ({� = 1 ∧ x �= 1}, �) is added, with
an incoming must transition from (� = 1 ∧ x > 2, �), and outgoing junction transition
to (� = 1 ∧ x �= 1,∧)). Next, the incoming transitions of c are considered. As a result,
the source state, c̃ = (� = 1∧x �= 1,∧), of the incoming junction transition of c is also
split into (� = 1 ∧ x ∈ {0, 2},∧) and (� = 1 ∧ x > 2,∧). The junction transitions are
adapted accordingly, and the rest of the transitions of the substates of c̃ are calculated:
the incoming may transitions of c̃ become incoming transitions of both its substates. In
addition, the incoming must transition of c̃ from (� = 1 ∧ x > 2, �), that was added
during the refinement, becomes a must hypertransition (more precisely, the hyper-point
which previously consisted of a singleton set {� = 1∧ x �= 1}, now consists of the two
abstract states to which � = 1 ∧ x �= 1 was split, however, the hyper-point is omitted
from the figure, and a must hypertransition is used instead).

So far some limitations exist in our model checking algorithm, restricting the practical
relevance of the algorithm in its current version. Those points, as well as corresponding
optimizations of the algorithm, are discussed in Section 6.

Theorem 2 (Soundness). Suppose satisfiability checks are sound and complete and
Heuristic is a refinement heuristic. If PropertyCheck(A, T) returns tt (ff) then T |= q
(resp. T �|= q) holds.

Theorem 3 (Relative completeness). Suppose satisfiability checks are sound and com-
plete and L can describe every subset of S. If the acceptance function of A always maps
to zero (i.e., A corresponds to a least fixpoint free μ-calculus formula) and T |= q, then
there exists a (not necessarily computable) refinement heuristic Heuristic such that
PropertyCheck(A, T) returns tt.

18 H. Fecher and S. Shoham

Note that the usage of hypertransitions is necessary for Theorem 3, since allowing only
singleton targets yields a model that is not complete for safety-properties with respect
to predicate abstractions, see, e.g., [6]. Theorem 3 does not hold if we restrict to com-
putable refinement heuristics, since otherwise the halting problem would be decidable.
Furthermore, Theorem 3 does not hold for automata with arbitrary acceptance func-
tion, since the underlying class of abstract models is not expressive enough. Fairness
constraints, as in [4,7], are needed.

5 Heuristics

The CEGAR-based algorithm described in Section 4 uses a refinement heuristic to de-
termine a game-state c that should be split, and a predicate p, according to which c
is split, along with the game-states reachable from it via junction transitions. In this
section we define the special class of pre-based heuristics and thereafter present and
discuss suitable ones.

Definition 9. Suppose P is an abstract property-game. Then a state (z, q) ∈ C is
predicate-unknown if δ(q) ∈ L and ω(z, q) = ⊥. A real may transition is a t ∈ R+

that has no corresponding must transition, more precisely, every must transition t′ ∈
R− that leaves the same source (sor(t) = sor(t′)) has a target tar(t′) whose first
component ˜Z is different from the singleton set consisting of the first component z of
the target of t (i.e., π1(tar(t′)) �= {π1(tar(t))}).

A refinement heuristic Heuristic is pre-based if the return value is derived from a
predicate-unknown state or from a real may transition, whenever one of them exists.
More precisely, if Heuristic(P) = (c, p) then (i) c = (z, q) is a predicate-unknown
state in C and p = δ(q) or (ii) c = sor(t) for some real may transition t ∈ R+

and p = pre(
(π1(tar(t)))) or (iii) neither a predicate-unknown state nor a real may
transition exists.

Proposition 2. A simplified abstract property-game, where the initial game-state is nei-
ther valid nor invalid, i.e. ω(ci) = ⊥, has a predicate-unknown state or a real may
transition.

Intuitively, predicate-unknown states and real may transitions are good candidates for
refinement since they can be viewed as a cause for uncertainty. In particular, the refine-
ment heuristics used in the example of Section 2 are all pre-based. Pre-based refinement
heuristics are sufficient for finite state systems:

Theorem 4 (Termination). Suppose T has a finite bisimulation quotient (with respect
to the elements of L that occur in A), satisfiability checks are sound and complete, and
Heuristic is a pre-based refinement heuristic. Then PropertyCheck(A, T) terminates,
i.e., returns tt or ff .

5.1 Bottom Up Strategy

Determine (i) a predicate-unknown state (z, q) or (ii) a real may transition t that points
to an (in)valid game-state, i.e., ω(tar(t)) �= ⊥. Return ((z, q), δ(q)), resp. (sor(t),

Local Abstraction-Refinement for the mu-Calculus 19

pre(
(π1(tar(t))))). Note that such states, resp. real may transitions, do not always ex-
ist in simplified abstract property-games. In such a case an arbitrary real may transition
t is chosen. An advantage of the bottom up strategy is that (if case (i) or (ii) are applica-
ble) at least one of the new game-states is (in)valid after the refinement. A disadvantage
of the bottom up strategy is that it can become an unnecessary source of nontermination:

Example 2. Consider the example from Section 2. Then the bottom up strategy will
‘run to’ Figure 2 (e) and then determine the may transition pointing to the invalid state.
Since pre(
(� = 1 ∧ x = 1)) = (� = 1 ∧ x = 2) ∨ (� = 0 ∧ x = 0), the result
of refinement will be splitting the source state � = 1 ∧ x �= 1 to � = 1 ∧ x = 2 and
� = 1 ∧ x �= 1 ∧ x �= 2. After simplification, an abstract property-game equivalent
to (e), which is already equivalent to (c), will be generated (with the abstract state
� = 1∧ x �= 1 replaced by � = 1∧ x �= 1∧ x �= 2, and the abstract state � = 1∧ x = 1
replaced by � = 1 ∧ x = 2). This will continue forever, replacing � = 1 ∧ x �= 1 by
� = 1 ∧ x �= 1 ∧ . . . ∧ x �= i, and � = 1 ∧ x = 1 by � = 1 ∧ x = i.

5.2 Breadth First Strategy

Determine a state (z, q) that (i) is a predicate-unknown state or a source of a real may
transition t and (ii) has a minimal distance to the initial game-state. Return ((z, q), δ(q)),
resp. (sor(t), pre(
(π1(tar(t))))). Note that it is possible that after the refinement step,
the distance of the next witness state (z, q) will decrease, since a must transition ‘point-
ing’ to {(z′, q′)} can become a hypertransition, pointing to {(z′1, q′), (z′2, q′)}, resulting
in a real may transition pointing, e.g., to (z′1, q′), whereas the original may transition
pointing to (z′, q′) was not a real one.

Example 3. Consider the example from Section 2. Then the breadth first strategy will
split one of the (true, �) states in Figure 2 (a) along the weakest precondition of true,
as it is made in (f). Thus the property will be shown after a single refinement step.

The success of the breadth first strategy in this example is due to the shallow depth
of the loop q0 → q5 → q0, which ensures that this strategy manages to recognize the
infinite must path and thus it finds the property to be valid. But if, e.g., the property of
Figure 1 is transformed into the (equivalent) property where the loop q0 → q5 → q0
is replaced by a ‘deeper’ loop q0 → q5 → q6 → . . . → qn → q0 in which q6, . . . , qn

are also �-states, then the depth of the loop makes the breadth first strategy run into
the same live-lock described in Example 2 after the first few refinement steps, before it
finds the infinite must path. Thus, it fails to terminate.

5.3 Youngest First Strategy

Determine a state (z, q) that (i) is a predicate-unknown state or a target of real may tran-
sition t and (ii) is minimal with respect to the number of splits used to obtain z. Return
((z, q), δ(q)), resp. (sor(t), pre(
(π1(tar(t))))). Point (ii) can easily be determined if
the abstract states are encoded via the afore mentioned cartesian predicate approach,
since only the positions where the cartesian function does not map to ‘unused’ have to

20 H. Fecher and S. Shoham

be counted. Note that this kind of heuristics cannot be defined, if a global refinement
approach is used, where every state is split by the new predicate.

Example 4. In Figure 2 (a) the youngest first strategy will split either the source state of
one of the three real may transitions along the weakest precondition of true or the state
(true, � = 1). If the split state in the first refinement step is one of the two (true, �)
states, then in particular the initial state is split and the property will be shown. If one
of the other two states is split, then both of them are split, and so is the target of the
real may transition leaving the upper (true, �) state (as these states are connected via
junction transitions). This ensures that the lower (true, �) state, whose outgoing real
may transition leads to a yet unsplit state, will be split along the weakest precondition
of true in the second refinement step. Thus, at latest in the second refinement step the
initial state will be split along the weakest precondition of true, and the property will
be shown. The youngest first strategy also succeeds for the modified property described
in Example 3.

In order to maintain the advantage of the bottom up strategy, real may transitions to
(in)valid states can be restrictively favored by, e.g., doubling the ‘age’ of the states that
are unknown. Sometimes pre-based refinement heuristics are not sufficient:

Example 5. Consider the property ��� �� checked on system �������	x:=0 �� [x=0]��
[x>1] x:=x−1

��
,

where x ∈ IN. Then any pre-based refinement heuristics will produce after n refine-
ments the (simplified) abstract property-game x=0∨x>n

�
��

��

�
�� , i.e., the property cannot

be verified. On the other hand if first the initial state is separated, then

x=0
�

x≥1
�

��
�� ��

�

� is obtained. Thus the property can be shown.

6 Optimizations of the Algorithm

For the sake of completeness, we present some possible optimizations of the algorithm.

Too many Simplify calls. The Simplify procedure is called after every local refinement.
Thus an expensive algorithm is calculated, while expecting only small improvements,
since only a local refinement was made. To remedy this, more refinement iterations
can be made before Simplify is called again. Further optimization is obtained, if the
validity function is also adapted during the refinement calculation, e.g., by backwards
search when a state is determined to become (in)valid, and Simplify is only called for
more exact determination of least fixpoint properties.

No reuse of theorem prover calls. Typically the same satisfiability checks are calcu-
lated multiple times, since they (mainly) depend on the abstract state and not on the
property of the configuration. Therefore, those calls can be reused by caching, or by us-
ing an additional generalized Kripke modal transition system, where the abstract states
and their may and must (hyper)transitions are stored, resp. negatively stored, whenever
a corresponding satisfiability check is made. Here, a tradeoff between time and space
arises. Furthermore, the heuristics can be tuned to prefer those game-states for which
no (or less) new satisfiability checks have to be made to determine the refinement.

Local Abstraction-Refinement for the mu-Calculus 21

Unnecessary many theorem prover calls. In case of refinement, a forward search of
game-states reachable via junction transitions always takes place. However, it is pos-
sible that the current refined game-state will immediately become (in)valid (e.g., due
to the first optimization) and thus the (in)validity of its reachable game-states will be
irrelevant. Therefore, such a forward search should only take place if the validity of the
current game-state cannot be determined immediately.

Complex pre(ψ)-calculations. The algorithm starts with the most general abstraction
consisting of only one abstract state, thus coarse abstractions arise. Such abstractions
have the disadvantage that the calculation of pre(ψ) is in general expensive. Therefore,
it is beneficial to start with a less coarse initial abstraction, which can be determined
by pre-examination of the underlying systems (e.g., by partitioning the code-lines). The
techniques of interpolations [13,22] might also help to avoid the high cost of pre(ψ)-
calculations.

Too complex formulas for the theorem prover. Due to satisfiability checks of com-
plex formulas, the calculation time of the theorem prover can outweigh the calculation
time of the parity game algorithm. A remedy is to drop precision and use further ap-
proximations. A refinement step can, in addition to the extension of the abstract state
space, perform a more precise calculation of the used approximations. We suggest the
following approximations:

– Approximate the predicates of the different states by using two formulas: one for
an over and the other for an under approximation of the precise formula. In each
calculation those approximation formulas that guarantee soundness are used.

– Approximate the must transitions, i.e., only calculate a subset of possible must tran-
sitions. For example, first calculate those having a single target and as a refinement
step calculate those having two elements as target, etc. Alternatively, only calculate
the hypertransitions on demand inside the parity game algorithm, as in [25].

– Approximate the system, e.g., instead of using T , use an approximated system for
which pre(ψ) can be more efficiently calculated.

– Approximate the theorem prover queries by clustering predicates [16]. In this ap-
proach, one theorem prover call is split into many having less complex formulas and
their results are combined afterwards, where precision is lost.

How exactly these approximation techniques can be applied is a topic of future work.

7 Conclusion

We presented a new CEGAR-based algorithm for the μ-calculus, where refinement
is local and the refinement determination is separated from the model checking algo-
rithm. Three different refinement heuristics are developed, where the most promising
one heavily depends on the local refinement approach. It is even possible that our algo-
rithm will yield improvements for safety properties, since by using a 3-valued abstract
model better refinement heuristics can be obtained. Exact examinations will take place
after the implementation of our algorithm, which is future work. The investigation of
other refinement heuristics is also the subject of future work.

22 H. Fecher and S. Shoham

References

1. Ball, T., Kupferman, O.: An abstraction-refinement framework for multi-agent systems. In:
LICS, IEEE Computer Society Press, Los Alamitos (2006)

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking
C programs. In: Margaria, T., Yi, W. (eds.) TACAS. LNCS, vol. 2031, pp. 268–283. Springer,
Heidelberg (2001)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

4. Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time model
checking. In: LICS, pp. 335–344. IEEE Computer Society Press, Los Alamitos (2004)

5. de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: Uncer-
tainty, but with precision. In: LICS, pp. 170–179 (2004)

6. Fecher, H., Huth, M.: Complete abstraction through extensions of disjunctive modal transi-
tion systems. Technical Report 0604, Christian-Albrechts-Universität zu Kiel (2006)

7. Fecher, H., Huth, M.: Ranked predicate abstraction for branching time: Complete, incremen-
tal, and precise. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 322–336.
Springer, Heidelberg (2006)

8. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV (1997)
9. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the μ-calculus. In:

Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer, Heidelberg (2005)
10. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning:

Abstraction and refinement for the full μ-calculus. Information and Compuatation (2007)
doi: 10.1016/j.ic.2006.10.009

11. Gulavani, B., Henzinger, T.A., Kannan, Y., Nori, A., Rajamani, S.K.: Synergy: A new algo-
rithm for property checking. In: FSE, ACM Press, New York (2006)

12. Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Hermanns, H.,
Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, Springer, Heidelberg (2006)

13. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL, pp. 232–244. ACM Press, New York (2004)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL (2002)
15. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-

valued program analysis. In: Sands, D. (ed.) Programming Languages and Systems. LNCS,
vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

16. Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word level predicate abstraction and
refinement for verifying RTL verilog. In: DAC, pp. 445–450. ACM Press, New York (2005)

17. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

18. Klauck, H.: Algorithms for parity games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Au-
tomata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 107–129. Springer, Heidelberg
(2002)

19. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–354 (1983)
20. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)
21. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp.

108–117. IEEE Computer Society Press, Los Alamitos (1990)
22. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
23. Namjoshi, K.S.: Abstraction for branching time properties. In: Hunt Jr., W.A., Somenzi, F.

(eds.) CAV 2003. LNCS, vol. 2725, pp. 288–300. Springer, Heidelberg (2003)

Local Abstraction-Refinement for the mu-Calculus 23

24. Pardo, A., Hachtel, G.D.: Incremental CTL model checking using BDD subsetting. In: DAC,
pp. 457–462 (1998)

25. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In: LICS’06
26. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Jensen, K., Podel-

ski, A. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. LNCS,
vol. 2988, Springer, Heidelberg (2004)

27. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull. Soc. Math.
Belg. 8(2), 359–391 (2001)

28. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

A Pseudo Code of Additional Procedures
Table 6. Procedures for the calculation of the outgoing may, resp. must, transitions

Algorithm OutgoingMayCalculation (P, z, z1, z2, q̃) % calculation of the weak transitions

leaving (z1, q̃) or (z2, q̃)

1: While {(z, q̃)}.R+ �= {} do

2: remove an element (z̃′, q̃′) from {(z, q̃)}.R+

3: if Satisfiable ((z1) ∧ pre((z̃′))) then R+ := R+ ∪ {((z1, q̃), (z̃′, q̃′))}
4: if Satisfiable ((z2) ∧ pre((z̃′))) then R+ := R+ ∪ {((z2, q̃), (z̃′, q̃′))}
5: od

Algorithm OutgoingMustCalculation (P, z, z1, z2, q̃) % calculation of the must transitions

leaving (z1, q̃) or (z2, q̃)

Local variables M1, M2, N1, N2 : P(Z) % Mi stores the yet determined relevant must transition for

(zi, q̃); Ni stores the not yet considered, relevant must transition for (zi, q̃)

1: M1 = { ˜Z ∩ π1({(z1, q̃)}.R+) | ˜Z ∈ π1({(z, q̃)}.R−)}
2: M2 = { ˜Z ∩ π1({(z2, q̃)}.R+) | ˜Z ∈ π1({(z, q̃)}.R−)}
3: remove all elements from {(z, q̃)}.R−

4: N1 := π1(P({(z1, q̃)}.R+)) \ { ˜Z1 | ∃ ˜Z ∈ M1 : ˜Z ⊆ ˜Z1}
5: N2 := π1(P({(z2, q̃)}.R+)) \ { ˜Z2 | ∃ ˜Z ∈ M2 : ˜Z ⊆ ˜Z2}
6: for i=1 to 2 do

7: While Ni �= {} do

8: take (not remove) an element ˜Z from Ni

% Check if a must transition exists (iff �(zi) ⇒ pre(
∨

z̃∈UG(q̃)∪ ˜Z
�(z̃)))) by using a satisfiability check

9: if ¬ (Satisfiable ((zi) ∧ ¬(pre(
∨

z̃∈UG(q̃)∪ ˜Z 	(z̃)))))) then

10: Mi := Mi ∪ { ˜Z} \ { ˜Zi | ˜Z ⊂ ˜Zi} ; Ni := Ni \ { ˜Zi | ˜Z ⊆ ˜Zi}
11: else Ni := Ni \ { ˜Zi | ˜Zi ⊆ ˜Z}
12: od

13: For ˜Z ∈ Mi do % Add the calculated hyper-transitions

14: Add (P, (˜Z, q̃)) ; R− := R− ∪ {((zi, q̃), (˜Z, q̃))}
15: next

16:next

Minimal Counterexample Generation for SPIN

Paul Gastin1 and Pierre Moro2

1 LSV, ENS Cachan & CNRS
61, Av. du Prés. Wilson, F-94235 Cachan Cedex, France,

Paul.Gastin@lsv.ens-cachan.fr
2 LIAFA, Univ. Paris 7

2 place Jussieu, F-75251 Paris Cedex 05, France
moro@liafa.jussieu.fr

Abstract. We propose an algorithm to compute a counterexample of
minimal size to some property in a finite state program, using the same
space constraints than SPIN. This algorithm uses nested breadth-first
searches guided by a priority queue. It works in time O(n2 log n) and is
linear in memory.

1 Introduction

Model checking is used to prove correctness of properties of hardware and soft-
ware systems. When the program is incorrect, locating errors is important to
provide hints on how to correct either the system or the property to be checked.
Model checkers usually exhibit counterexamples, that is, faulty execution traces
of the system [CV03]. The simpler the counterexample is, the easier it will be to
locate, understand and fix the error. A counterexample may mean that the ab-
straction of the system (formalized as the model) is too coarse; several techniques
allow to refine it, guided by the counterexample found by the model-checker. The
refinement stage can be done manually or automatically, but since even the au-
tomatic computation of refinements can be very expensive, it is very important
to compute small counterexamples (ideally of minimal size) in case the property
is not satisfied.

It is well-known that verifying whether a finite state system M satisfies an
LTL property ϕ is equivalent to testing whether a Büchi automaton A = AM ∩
A¬ϕ has no accepting run, where AM is a Kripke structure describing the system
and A¬ϕ is a Büchi automaton describing executions that violate ϕ. It is easy,
in theory, to determine whether a Büchi automaton has at least one accepting
run. Since there is only a finite number of accepting states, this problem is
indeed equivalent to finding a reachable accepting state and a loop around it.
A counterexample to ϕ in M can then be given as a path ρ = ρ1ρ2 in the
Büchi automaton, where ρ1 is a simple (loop-free) path from the initial state
to an accepting state, and ρ2 is a simple loop around this accepting state (see
Figure 1). Our goal is to find short counterexamples. The first trivial remark is
that we can reduce the length of a counterexample if we do not insist on the fact

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 24–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Minimal Counterexample Generation for SPIN 25

ρ1
ρ2

Fig. 1. An accepting path in a Büchi automaton

i s1 s2
ρ1

ρ2

ρ3

Fig. 2. An accepting path in a Büchi automaton

that the loop starts from an accepting state. Hence, we consider counterexamples
of the form ρ = ρ1ρ2ρ3 where ρ1ρ2 is a path from the initial state to an accepting
state, and ρ2ρ3 is a simple loop (see Figure 2).

A minimal counterexample can then be defined as a path of this form, such
that the length of ρ is minimal.

A minimal counterexample can of course be computed in polynomial time
using minimal paths algorithms based on breadth first searches (BFS). Since
the model of the system frequently comes from several components working
concurrently, the resulting Büchi automaton to be checked for emptiness may
be huge. Therefore, memory is a critical resource and, for instance, we cannot
afford to store the minimal distances between all pairs of states. Actually, even
linear space may be a problem if the constant is too high. In tools like SPIN,
only one integer and a few bits per state are stored for the computation of a
“small” counterexample (it is well-known that SPIN does not compute a minimal
counterexample). The aim of this paper is to give a polynomial time algorithm
for computing a minimal counterexample using no more memory than SPIN
does, i.e., one integer and a few flags per state.

There exists several algorithms [CVWY92, HPY96, GMZ04, SE05] to check
a Büchi automaton for emptiness and to construct a counterexample when the
language is nonempty. All these algorithms use nested depth first search (DFS)
and therefore they cannot be easily adapted to compute a minimal counterex-
ample. It is also possible to use Tarjan like algorithms to find a counterexample,
see e.g. [Cou99, VG04].

In [GMZ04], an algorithm computing a minimal counterexample is presented.
As far as the memory is concerned, this algorithm is as efficient as SPIN. How-
ever, it is still based on DFSs and its time complexity is exponential.

In [HK06], the authors propose an algorithm based on interleaved BFSs. They
use three integers and some bits per state, which is more than SPIN does. More-
over, they need to explore the edges badkwards which would be difficult in
practice with SPIN.

Our contribution is the following:

– We propose a polynomial time algorithm to compute a counterexample of
minimal size. This algorithm only uses forward edges and does not use more
memory than SPIN does when trying to reduce the size of counterexamples,

26 P. Gastin and P. Moro

i.e., one integer and some bits per state. It is based on a BFS which is driven
by a priority queue and can also be seen as several BFSs interleaved.

– We improve this algorithm with several optimizations.

Note that, we do not address the problem of finding the smallest counterex-
ample, given an LTL property and a finite system. We only focus in this paper
on the problem of finding a minimal accepting path in a Büchi automaton repre-
senting the product of the model and the negation of the property to be checked.

In the case of symbolic model checking, the problem is slightly different. In
particular, in [SB05], the authors show that classical techniques for checking
LTL properties (without past) give the smallest counterexample.

The paper is organized as follows. We first recall some notations and the
development context in the Section 2. Then we present in Section 3 an algorithm
that computes a minimal counterexample, and prove its correctness. We also
present an algorithm to recover the trace of a counterexample when only the
states s1 and s2 are known (see Figure 2). This is needed when using bit-state
hashing techniques. In Section 4, we propose several optimizations in order to
obtain a more efficient algorithm. We conclude in Section 5.

2 Context and Notations

Let A = (S, E, i, F) be a Büchi automaton where S is a finite set of states,
E ⊆ S × S is the transition relation, i ∈ S is the initial state and F ⊆ S is
the set of accepting states. Usually transitions are labeled with actions but since
these labels are irrelevant for the emptiness problem, they are ignored in this
paper. In pictures, the initial state is marked with an ingoing edge and accepting
states are doubly circled.

Recall that a path in an automaton is a sequence of states s1s2 · · · sk such
that for all i = 1, . . . , k − 1 there is a transition from si to si+1. We denote by
d(r, s) the distance between r and s, that is the length of a minimal path from r
to s. Note that d(r, s) = 0 if r = s and d(r, s) = ∞ if s is not reachable from r.
A loop is a path s1s2 · · · sk with k > 1 and sk = s1. A path s1s2 · · · sk is simple
if si �= sj for all i �= j. A loop s1s2 · · · sk is a cycle if s1s2 · · · sk−1 is a simple
path. A loop (resp. a cycle) is accepting if it contains an accepting state. Finally,
an accepting path is of the form γ = i · · · sk · · · sk+� where i · · · sk+�−1 is a simple
path and sk · · · sk+� is an accepting cycle. We call i · · · sk the head of γ. Note
that an accepting path starts in the initial state. We also call counterexample an
accepting path.

2.1 Space Constraints

When checking for emptiness a Büchi automaton that arises from a model and
the negation of an LTL formula, we often run out of memory. Hence, it is crucial
to use as little memory as possible. This is why SPIN only uses one integer and
a few bits per state when reducing the size of a counterexample. Our aim is to

Minimal Counterexample Generation for SPIN 27

use no more memory than SPIN does. Since we want to compute shortest paths
we will use BFS and store some distances. The memory constraint implies that
only one distance per state can be stored at any given time of the algorithm.

3 An Algorithm to Find the Smallest Counterexample

We will describe an algorithm to compute a minimal counterexample. We do not
include any optimization in this section. Section 4 will describe the improvements
yielding an efficient algorithm that can be implemented.

The main algorithm is presented in Section 3.5. It uses several algorithms that
are presented first.

Actually, instead of computing directly a counterexample ρ1ρ2ρ3 as described
in Figure 2, we will only compute the key-states s1 and s2 so that ρ2 is a
path from s1 to s2. The next section shows how the counterexample can be
reconstructed from s1 and s2.

3.1 Reconstructing the Counterexample

Let ρ1ρ2ρ3 be a minimal counterexample (see Figure 2). Assume that only the
states s1 and s2 that are at the beginning and the end of ρ2 are known. The
problem is to reconstruct the counterexample.

If states are stored in an hash table as usual, one can recover the trace of
the counterexample using a BFS algorithm [CSRL01] that stores, when a state
is visited for the first time, a pointer to its father. It then suffices to apply this
BFS from the initial state i to s1 to generate ρ1, then to apply it from s1 to s2
to generate ρ2 and finally to apply it once more from s2 to s1 to generate ρ3.

But if one wants to use bit-state hashing techniques [WL93, Hol98], one cannot
generate the trace using the backward pointer technique. Since all informations
about a state are not stored in the hash table, once a state is removed from the
queue, the only remaining informations for this state are the one stored in the
hash table, i.e., some flags and depth informations. A pointer to this memory
location does not give complete information about the state.

We propose a simple algorithm to reconstruct the counterexample, when
pointer to fathers cannot be used, e.g., when bit-state hashing techniques are
used. Since we know states i, s1 and s2 we only need to compute a shortest
path between a pair (r, r′) of states. We first use a BFS to store d(r, s) for each
state visited until r′ is reached. Then we use a DFS starting from r, that visits a
successor s′ of a state s iff its distance to r is d(r, s)+ 1. This condition enforces
the DFS to visit states in the order implied by their minimal distance from r.
Once r′ is reached, the shortest path is stored in the DFS stack. The description
is given in Algorithm 1.

Note that, once the distances are computed by a BFS, a backward search in
the graph starting from s and following edges for which the distance decreases
until r (hence distance 0) is reached, allows to construct efficiently the shortest
path from r to s. Unfortunately, backward searches cannot be used in practice

28 P. Gastin and P. Moro

Algorithm 1. An algorithm to generate a shortest path from r to r′

void BFS trace (State r, State r′)
1: Queue F;
2: F.enqueue(r,0); r.bfs flag = true;
3: while F �= ∅ do
4: (s,n) = F.dequeue();
5: for all s′ ∈ E(s) do
6: if ¬ s′.bfs flag then
7: F.enqueue(s′, n+1); s.bfs flag = true;
8: s.depth = n+1;
9: end if

10: if s′ == r′ then
11: goto 15;
12: end if
13: end for
14: end while
15: DFS trace(r,r′);

void DFS trace (State s, State r′)
1: cp.push(s,s.depth);; s.dfs flag = true;
2: if s == r′ then
3: exit all recursive calls of DFS trace
4: end if
5: for all s′ ∈ E(s) do
6: if ¬ s′.dfs flag and s′.depth == s.depth+1 then
7: DFS trace(s′,r′);
8: end if
9: end for

10: cp.pop();

with SPIN since it would be hard to compute the set of predecessors of a state.
Indeed, the number of potential predecessors may be use, e.g., if the state is
reached by an assignment to some integer variable.

3.2 Distances from the Initial State

The first step is to compute with a BFS the distances between the initial state
and each state. They correspond to the possible length of the path ρ1 of the
counterexample (see Figure 2). Moreover, we also store in a queue called Accept,
all the accepting states that are reachable from the initial state. All this is quite
standard and presented in Algorithm 2 for the sake of completeness.

3.3 Another Breadth First Search

Once Algorithm 2 has completed, we have stored in Accept, all reachable ac-
cepting states. We will now find the smallest counterexample going through one

Minimal Counterexample Generation for SPIN 29

Algorithm 2. A BFS to store distances from the initial state
Queue BFS distance(State i)
1: Queue F, Accept;
2: F.enqueue(i,0);
3: i.depth = 0; i.bfs flag = true;
4: while (F �= ∅) do
5: (s,n) = F.dequeue();
6: if (s ∈ F) then
7: Accept.enqueue(s);
8: end if
9: for all s′ ∈ E(s) do

10: if ¬ s′.bfs flag then
11: s′.depth = n+1;
12: F.enqueue(s′,n+1);
13: s′.bfs flag = true;
14: end if
15: end for
16: end while
17: return Accept;

of these states, and we will repeat this operation for each accepting state. Note
that, since we used a queue to store accepting states, we will start with the
accepting state which is the closest to the initial state.

We denote by r the current accepting state we are working on. Algorithm 3
will fill a priority queue (see [CSRL01]1) with the set of states reachable from
r. The priority that will be associated with a state s will be d(i, s) + d(r, s), i.e.,
|ρ1|+ |ρ3| in the sense of the Figure 2. We already know d(i, s) from Algorithm 2.
This information is stored as the s.depth. To fill the priority queue, we perform
another BFS starting from r that visits all states reachable from r. We use a
global variable maxdepth that contains the size of the smallest counterexample
found so far (∞ if no counterexamples were found yet).

Once Algorithm 3 has been performed, we have in the priority queue PQ the
states reachable from r ordered according to d(i, s) + d(r, s). We will use this
information to find the smallest counterexample passing through r.

Lemma 1

1. For all (s, n) ∈ PQ, we have n = d(i, s) + d(r, s) < maxdepth.
2. For all state s, if d(i, s) + d(r, s) < maxdepth then (s, d(i, s) + d(r, s)) ∈ PQ.

Proof. (1) For each state, we have s.depth = d(i, s). The property is clear when
s = r. Now, when s′ is inserted in PQ at line 12, we have n + 1 = d(r, s′) by
classical properties of the BFS. Since this is guarded by the test in line 11, the
result follows.
1 There are different implementations for a priority queue (binary heap, binomial heap,

Fibonacci heap). They all give the same (theoretical) complexity for our purpose.

30 P. Gastin and P. Moro

Algorithm 3. A BFS to construct the priority queue
Priority Queue BFS PQ(State r)
1: Queue F; Priority Queue PQ;
2: F.enqueue(r,0); r.bfs flag = true;
3: if r.depth < maxdepth then
4: PQ.enqueue(r, r.depth);
5: end if
6: while F �= ∅ do
7: (s,n) = F.dequeue();
8: for all s′ ∈ E(s) do
9: if ¬ s′.bfs flag then

10: F.enqueue(s′, n+1)); s′.bfs flag = true;
11: if s′.depth + n + 1 < maxdepth then
12: PQ.enqueue(s′, s′.depth + n + 1);
13: end if
14: end if
15: end for
16: end while
17: return PQ;

(2) If s = r then line 4 is executed and we get the result. Let now s′ be such
that d(i, s′) + d(r, s′) < maxdepth. Since d(r, s′) < maxdepth we deduce that
d(r, s′) < ∞ and s′ is reachable from r. Hence s′ will be considered and lines
11-13 will be executed with s′. Since s′.depth = d(i, s′) and n + 1 = d(r, s′) we
deduce from the hypothesis that (s′, d(i, s′) + d(r, s′)) is inserted in PQ. ��

3.4 BFS Guided by a Priority Queue

Algorithm 4 finds the smallest counterexample whose loop goes through a spec-
ified repeated state r. Again, our search is limited by maxdepth but we omit
this optimization from our intuitive description. After Algorithm 3 we have in
the priority queue PQ all pairs (s, n) with n = d(i, s) + d(r, s) (Lemma 1). The
aim is to find a state s such that d(i, s) + d(r, s) + d+(s, r) is minimal (here
d+(s, r) denotes the length of a shortest nonempty path from s to r). Note that
the corresponding counterexample can then be reconstructed using Algorithm 1.

i

r

s t
ρ1

ρ3

ρ′2

ρ′′2

Fig. 3.

Minimal Counterexample Generation for SPIN 31

Algorithm 4. Algorithm for finding the smallest counterexample
(State,State,int) Prio min(State r, Priority Queue PQ)
1: Queue G;
2: n = PQ.PrioMin();
3: while (PQ �= ∅ or G �= ∅) and (n + 1 < maxdepth) do
4: /* Put in G pairs (s,s) such that s is in PQ with priority n,

without being marked.*/
5: while (PQ.min() == n) do
6: (s,m) = PQ.extract min();
7: if ¬ s.marked then
8: G.enqueue(s,s);
9: s.marked = true;

10: end if
11: end while
12: G.enqueue(#);
13: while G.head() �= # do
14: (s,t) = G.dequeue();
15: for all t′ ∈ E(t) do
16: if t’ == r then
17: return (s,n+1);
18: else if ¬ t’.marked then
19: G.enqueue(s,t’);
20: t’.marked = true;
21: end if
22: end for
23: end while
24: G.dequeue(); /* symbol # */
25: n++;
26: end while
27: return (r,∞);

The idea is to use simultaneous (interleaved) BFSs. We begin with a BFS
starting from some state s with d(i, s)+d(r, s) minimal. Assume we have reached
a state t (see Figure 3). If d(i, s) + d(r, s) + d(s, t) is smaller than the minimal
priority in PQ then we continue the BFS from state t. If, on the other hand, there
is some state s′ with d(i, s′) + d(r, s′) < d(i, s) + d(r, s) + d(s, t) then we start a
new BFS from state s′ instead. We use a single queue G for all the interleaved
BFSs. In this queue, we store pairs (s, t) since, when we eventually reach r, we
need to know from which state s we started with.

The algorithm proceeds in rounds (separated by # in the queue G). In the
initialization phase, we put in G all pairs (s, s) with n = d(i, s)+d(r, s) minimal.
Then we consider all successors t′ of states t such that (s, t) is in G for some s.
The “rank” of these states t′ is n + 1 and we add (s, t′) to G for the next round
if t′ has not yet been reached. We also add for the next round the pairs (s, s)
such that (s, n + 1) is in PQ. When we reach state r we have found our smallest
counterexample whose loop goes through r.

32 P. Gastin and P. Moro

Lemma 2. Invariant for Algorithm 4: there is exactly one # in G between lines
13-23 and there is no # in G outside lines 12-24.

Proof. At the beginning of the algorithm, G is empty. We insert a # in the queue
at line 12 and no # is inserted or deleted between lines 13-23. Hence, the #
inserted at line 12 is popped at line 24. The result follows. ��

The invariants for the loops of Algorithm 4 are given by the following table

Invariants for loop 3 : (1, 2, 3, 4)
Invariants for loop 5 : (1, 2, 3, 4)
Invariants for loop 13 : (2, 3, 5, 6, 7)

where

∀s d(i, s) + d(r, s) + d+(s, r) > n (1)
∀t t is marked ∨ (t, n) ∈ PQ ∨ ∀s, d(i, s) + d(r, s) + d(s, t) > n (2)

∀s, t (s, t) ∈ G =⇒ t is marked (3)
∀s, t (s, t) ∈ G =⇒ d(i, s) + d(r, s) + d(s, t) = n (4)
∀s, t (s, t) ∈ G before # =⇒ d(i, s) + d(r, s) + d(s, t) = n (5)
∀s, t (s, t) ∈ G after # =⇒ d(i, s) + d(r, s) + d(s, t) = n + 1 (6)

PQ.PrioMin() > n (7)

Loop 3. We first show that (1, 2, 3, 4) hold initially for loop 3, i.e., after line 2:

(1) Since PQ.PrioMin() = n, we deduce from Lemma 1 that d(i, s) + d(r, s) ≥ n
for all s. The result follows since d+(s, r) > 0.

(2) Assume that d(i, s)+d(r, s)+d(s, t) ≤ n for some s. Since PQ.PrioMin() = n,
we deduce using Lemma 1 that d(i, s) + d(r, s) = n and d(s, t) = 0. Using
Lemma 1 again we obtain (t, n) = (s, n) ∈ PQ.

(3, 4) Holds trivially since G is empty.

Loop 5. Assuming that (1, 2, 3, 4) are invariants for loop 3, we obtain immedi-
ately that (1, 2, 3, 4) hold initially for loop 5. We show that they are preserved
by the execution of lines (6-10):

(1) Clear since n is unchanged.
(2) If t is marked or (t, n) ∈ PQ before line 6 then the same holds after line

10. Moreover n is unchanged in this loop hence the third part of (2) is also
invariant.

(3) Clear since whenever a pair (s, s) is inserted in G at line 8 then s is marked
at line 9 .

(4) When a pair (s, s) is inserted in G at line 8 then we have d(i, s)+ d(r, s) = n
by Lemma 1.

Loop 13. First, note that (2) and (7) hold after line 11 and are invariants by
lines (12-24): PQ and n remain unchanged in the body of loop 13 and once a
state is marked, it remains so forever.

Minimal Counterexample Generation for SPIN 33

Also, (3) holds after line 11 and when a pair (s, t′) is inserted in G at line 19
then t′ is marked at the next line. Hence, (3) is preserved by the execution of
lines (14-22).

Now, since (4) holds after line 11 then (5, 6) hold after line 12 (by Lemma 2
there are no # in G except from lines (13-23) where there is exactly one # in G).
Equation (5) is clearly preserved by lines (14-22) since new pairs are inserted in
G after #.

It remains to show that (6) is preserved by lines (14-22). Consider the pair
(s, t′) inserted in G at line 19. By (5) we have d(i, s)+ d(r, s) + d(s, t) = n. Since
t′ ∈ E(t), we get d(t, t′) ≤ 1 and we deduce that d(i, s)+d(r, s)+d(s, t′) ≤ n+1.
Now, t′ was not marked (line 18) and (t′, n) /∈ PQ by (7). We deduce from (2)
that d(i, s) + d(r, s) + d(s, t′) > n. Therefore, d(i, s) + d(r, s) + d(s, t′) = n + 1
and (6) still holds after the insertion of (s, t′) in G.

Loop 3 continued. Finally, we have to show that (1, 2, 3, 4) still hold after
line 25. We know that after line 23, the first element in G is # and that (2, 3, 6)
hold. We deduce immediately that (3, 4) hold after line 25.

We consider (1), so assume that d(i, s) + d(r, s) + d+(s, r) = n + 1 for some
s. Let t be such that r ∈ E(t) and d+(s, r) = d(s, t) + 1. Then, we deduce that
d(i, s) + d(r, s) + d(s, t) = n. Now, after line 11 we have (t, n) /∈ PQ by (7). We
deduce from (2) that t is marked. Let s′ be such that (s′, t) ∈ G. Since r ∈ E(t)
we deduce that line 17 will be executed before the end of loop 13. Therefore, if
line 24 is reached, this means that d(i, s) + d(r, s) + d+(s, r) > n + 1 for all s.
We deduce that (1) still holds after line 25 (if reached).

It remains to show that (2) still holds after line 25. This is a direct consequence
of the following:

Claim. Assume that after line 23 there are s, t′ such that t′ is not marked and
d(i, s) + d(r, s) + d(s, t′) ≤ n + 1. Then, (t′, n + 1) ∈ PQ.

Let s, t′ satisfy the hypotheses of the claim. By (7) we know that (t′, n) /∈ PQ
hence, by (2), we get d(i, s) + d(r, s) + d(s, t′) > n. Therefore, d(i, s) + d(r, s) +
d(s, t′) = n + 1. We prove that t′ = s by contradiction. So assume that t′ �= s.
Then d(s, t′) > 0 and there exists t such that d(s, t′) = d(s, t) + 1 and t′ ∈ E(t).
We obtain d(i, s) + d(r, s) + d(s, t) = n. We deduce that t was already marked
before line 12 by (7, 2). Therefore, there exists s′ such that (s′, t) has been
inserted in G before line 12 (maybe in some previous execution of the body of
loop 3). Therefore, after line 23, all successors of t have already been considered
and must be marked. This is a contradiction with t′ ∈ E(t) and t′ is not marked.
Therefore, t′ = s and we have d(i, s) + d(r, s) = n + 1. Since n + 1 < maxdepth
(test line 3), using Lemma 1 we obtain (t′, n+1) = (s, n+1) ∈ PQ, which proves
the claim.

Lemma 3. Either d(i, s) + d(r, s) + d+(s, r) ≥ maxdepth for all state s and
Algorithm 4 exits at line 27, or Algorithm 4 exits at line 17 with a pair (s, n+1)
such that d(i, s) + d(r, s) + d+(s, r) = n + 1 < maxdepth and for all state s′ we
have d(i, s′) + d(r, s′) + d+(s′, r) > n.

Proof. Follows easily from the invariants, in particular (1) and (5). ��

34 P. Gastin and P. Moro

Algorithm 5. The complete algorithm
Stack Minimal Counterexample (State i)
1: Queue Accept = BFS distance(i);
2: maxdepth = ∞;
3: while Accept �= ∅ do
4: State r = Accept.dequeue();
5: Priority Queue PQ = BFS PQ(r);
6: (s,n) = Prio min(r, PQ)
7: if n < maxdepth then
8: s1 = s; s2 = r;
9: maxdepth = n;

10: end if
11: end while
12: if maxdepth < ∞ then
13: Stack cp;
14: BFS trace(i,s1); BFS trace(s1,s2); BFS trace(s2,s1);
15: return cp;
16: end if
17: return ∅;

3.5 Synthesis

We give now the complete algorithm which computes the smallest counterexam-
ple. This algorithm works in time O(|E| · |F | · log(|S|)), the factor log(|S|) is due
to the operations on the priority queue. The algorithm works in linear space.
More precisely, for each state we store an integer (depth field) and a few bits
(bfs flag or marked). In fact, these flags should be erased after each call to an
algorithm, this is omitted for simplicity. The size of each queue is at most linear
in the number of states.

4 Improvements

The first improvement is to use, before calling Algorithm 5, a nested-DFS al-
gorithm such as [CVWY92, HPY96, SE05, GMZ04], or a Tarjan-like algorithm
[Cou99, VG04]2. This allows to perform a linear time search to detect whether
there exists some counterexample, and in this case it can also initialize maxdepth
to the size of the counterexample found in order to speed-up Algorithm 5.

We can further improve the computation time by applying the following
optimizations.

Improving the initial value of maxdepth
For Algorithm 2, suppose that a counterexample has already been found and
stored in a path called cp. Then, if an algorithm like a nested-DFS was used,

2 In fact, a nested-DFS algorithm can also prevent revisiting some states, see the end
of Algorithm 6.

Minimal Counterexample Generation for SPIN 35

Algorithm 6. A BFS to store distances from the initial state
Queue BFS distance(State i)
1: Queue F, Accept;
2: F.enqueue(i,0);
3: i.depth = 0; i.bfs flag = true;
4: maxdepth = size(cp); n = 0; saved = 0
5: while (F �= ∅) ∧ (n < maxdepth) do
6: (s,n) = F.dequeue();
7: if (s ∈ F) then
8: Accept.enqueue(s);
9: end if

10: for all s′ ∈ E(s) do
11: if s′.color != black and ¬ s′.bfs flag then
12: s′.depth = n+1;
13: F.enqueue(s′,n+1);
14: s′.bfs flag = true;
15: end if
16: end for
17: if s.color == blue and s.is in cp and depth(s,cp) - n > saved then
18: saved = depth(s,cp) - n;
19: maxdepth = size(cp) - saved;
20: end if
21: end while
22: return Accept;

one knows if a state is on the head of the counterexample (it will be blue (see
[SE05, GMZ04] for more information on the blue flag3) and in the current stack).
Algorithm 2 computes the minimal distances between the initial state and all the
states. So for each state that belongs to the head of the counterexample cp, one
can compare its distance from the initial state in the path cp, and its minimal
distance. Then, if the latter is smaller, one can already update the maxdepth
field at this point. These modifications are described in Algorithm 6, lines 4, 11
and 17-20.

Looking for counterexample in Algorithm 3
If a successor of a state is also the current accepting state, then we have found a
counterexample (and it has the form of Figure 1). Since we know its length we
can update maxdepth (see lines 19-21 in Algorithm 7).

Limiting the state space in Algorithm 3
We can also add a condition in the body of the loop saying that we are looking
for counterexamples for which the loop size is at most maxdepth (see lines 9-11
in Algorithm 7).

3 The blue color is described in these papers, but it is common to all the nested-DFS
approaches.

36 P. Gastin and P. Moro

Algorithm 7. A BFS to construct the priority queue
Priority Queue BFS PQ(State r)
1: Queue F; Priority Queue PQ;
2: F.enqueue(r,0); r.bfs flag = true;
3: if r.depth < maxdepth then
4: PQ.enqueue(r, r.depth);
5: end if
6: loop = false;
7: while F �= ∅ do
8: (s,n) = F.dequeue();
9: if n + 1 ≥ maxdepth then

10: break;
11: end if
12: for all s′ ∈ E(s) do
13: if ¬ s′.bfs flag then
14: F.enqueue(s′, n+1)); s′.bfs flag = true;
15: if (s′.depth + n + 1 < maxdepth) and (s′.depth < s.depth) then
16: PQ.enqueue(s′, s′.depth + n + 1);
17: end if
18: loop = loop ∨ (s′ == r);
19: if (s′ == r) and (s′.depth + n + 1 < maxdepth) then
20: maxdepth = s′.depth + n + 1;
21: end if
22: end if
23: end for
24: end while
25: if loop then
26: return PQ;
27: else
28: return ∅
29: end if

Call to Algorithm 4 iff a smaller counterexample may exist
There is also in Algorithm 7, a local boolean named loop, which records if there
exists an accepting path into the limited state space (limited by maxdepth). If
this boolean loop is false at the end of the execution, then there are no useful
loop passing through r and there is no need to continue the computation for this
state (see lines 6, 18 and 25-29 in Algorithm 7).

Including only useful states in PQ
Recall that we are looking for a state s for which d(i, s) + d(r, s) + d+(s, r) is
minimal. Algorithm 3 inserts in PQ pairs (s, d(i, s)+ d(r, s)) which are then used
by Algorithm 4 to find some state which minimizes the quantity above.

At line 10 of Algorithm 3, we have d(r, s) = n, d(r, s′) = n + 1 and s′ ∈
E(s). Then, d+(s, r) ≤ 1 + d(s′, r). We deduce that if d(i, s) ≤ d(i, s′) then
d(i, s)+d(r, s)+d+(s, r) ≤ d(i, s′)+d(r, s′)+d+(s′, r). Therefore, if s′ minimizes

Minimal Counterexample Generation for SPIN 37

this quantity, so does s and there is no need to insert s′ in the priority queue
PQ. This is prevented by the additional constraint on line 15 of Algorithm 7.

Note that this only saves some memory in the priority queue PQ. Indeed, with
the notation above, we have d(i, s) + d(r, s) < d(i, s′) + d(r, s′) (still assuming
that d(i, s) ≤ d(i, s′)). Hence, even if we insert (s′, d(i, s′) + d(r, s′)) in PQ, when
this pair is extracted from PQ at line 6 of Algorithm 4, the state s′ is already
marked and therefore, (s′, s′) is not inserted in G.

5 Conclusion

We have proposed an algorithm to compute the smallest counterexample of a
property represented by a Büchi automaton. We have presented a set of improve-
ments that can immediately be used to get a more efficient algorithm.

Our algorithm has nice properties. First, it can find all smallest counterex-
amples for all accepting states, if the variable maxdepth is always set to ∞.

Second, the ordering of the transitions has no impact on the computation
time. For nested-DFS approaches, the result can strongly depends on the order
of the transitions.

Third, our algorithm can also be used for bounded explicit model checking,
setting the maxdepth variable to some value. The algorithm properties ensure
that it will found the smallest counterexample passing through the state space
bounded by the maxdepth value. This is not the case for classical nested-DFS al-
gorithms which fail to answer properly for some graph configurations (depending
on the ordering for the visit).

References

[Cou99] Couvreur, J.M.: On-the-fly verification of linear temporal logic. In: FM
1999. LNCS, vol. 1708, pp. 253–271. Springer, Berlin Heidelberg New
York (1999)

[CSRL01] Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to
Algorithms. McGraw-Hill Higher Education (2001)

[CV03] Clarke, E.M., Veith, H.: Counterexamples revisited: Principles, al-
gorithms, applications. In: Verification: Theory and Practice. LNCS,
vol. 2772, pp. 208–224. Springer, Heidelberg (2003)

[CVWY92] Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algorithms
for the verification of temporal properties. Formal Methods in System
Design 1(2/3), 275–288 (1992)

[GMZ04] Gastin, P., Moro, P., Zeitoun, M.: Minimization of counterexample in
SPIN. In: Proc. of SPIN’04. LNCS, vol. 2989, pp. 92–108. Springer,
Berlin Heidelberg New York (2004)

[HK06] Hansen, H., Kervinen, A.: Minimal counterexamples in O(n log n) mem-
ory and O(n2) time. In: Proc. of ACDC’06, pp. 133–142. IEEE Computer
Society Press, Los Alamitos, CA, USA (2006)

[Hol98] Holzmann, G.: An analysis of bitstate hashing. Formal Methods in Sys-
tem Design, 13(3), pp. 287–305, extended and revised version of Proc.
PSTV95, pp. 301–314 (1998)

38 P. Gastin and P. Moro

[HPY96] Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search.
In: Proc. of SPIN’96. American Mathematical Society (1996)

[SB05] Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model
checking of LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 493–509. Springer, Heidelberg (2005)

[SE05] Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
174–190. Springer, Heidelberg (2005)

[VG04] Valmari, A., Geldenhuys, J.: Tarjan’s algorithm makes on-the-fly LTL
verification more efficient. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 205–219. Springer, Heidelberg (2004)

[WL93] Wolper, P., Leroy, D.: Reliable hashing without collosion detection. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer,
Heidelberg (1993)

Generating Counter-Examples Through
Randomized Guided Search

Neha Rungta and Eric G. Mercer

Department of Computer Science
Brigham Young University

Provo, UT 84602, USA

Abstract. Computational resources are increasing rapidly with the ex-
plosion of multi-core processors readily available from major vendors.
Model checking needs to harness these resources to help make it more
effective in practical verification. Directed model checking uses heuristics
in a guided search to rank states in order of interest. Randomizing guided
search makes it possible to harness computation nodes by running inde-
pendent searches in parallel in a effort to discover counter-examples to
correctness. Initial attempts at adding randomization to guided search
have achieved very limited success. In this work, we present a new low-
cost randomized guided search technique that shuffles states in the pri-
ority queue with equivalent heuristic ties. We show in an empirical study
that randomized guided search, overall, decreases the number of states
generated before error discovery when compared to a guided search using
the same heuristic. To further evaluate the performance gains of random-
ized guided search using a particular heuristic, we compare it with ran-
domized depth-first search. Randomized depth-first search shuffles tran-
sitions and generally improves error discovery over the default transition
order implemented by the model checker. In the context of evaluating
randomized guided search, a randomized depth-first search provides a
lower bound for establishing performance gains in directed model check-
ing. In the empirical study, we show that with the correct heuristic, ran-
domized guided search outperforms randomized depth-first search both
in effectively finding counter-examples and generating shorter counter-
examples.

1 Introduction

The current trend in micro-processor design is to group multiple processors into
a single silicon die and package. For example, dual-core processors are quickly
becoming mainstream, and quad-core packages are readily available from most
vendors. CEO Paul Otellini, at a recent Intel development forum, displayed an 80
core prototype chip capable of terabyte per second data exchange and pledged
production runs in the next five years [25]. The trend is clearly to put more
processors on a single die rather than to increase clock speed and computation
in a single processor. This is leading to an explosion in computational resources.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 39–57, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

40 N. Rungta and E.G. Mercer

The question for the model checking community given the growth in multi-core
processors, as well as parallel and distributed systems, is how can we harness
this computation power? At the heart of explicit state model checking is an
exhaustive proof to show the absence of a specific behavior. The proof literally
enumerates, in a largely brute-force manner, the entire behavior space of the
system being verified [4]. The complexity of the systems, however, limits practical
application of model checking in both time and space. Aggregating the available
computation resources to solve the model checking problem can help to improve
the situation.

Parallel and distributed model checking has shown some limited promise in
utilizing large amounts of computation resources [35, 21, 1, 20, 3, 19]. The fo-
cus of the community is to find ways to harness several computation nodes to
cooperatively construct the exhaustive proof. These approaches generally look
appealing in low node counts but are less efficient as more computation nodes
are added [22]. Seminal work goes so far as to prove that depth-first search itself
is inherently sequential and does not lend itself to parallel computation [29].
This may explain the lack of scaling in current approaches and possibly suggest
that we need a fundamentally different algorithm for model checking that is less
sequential and more amenable to parallelization.

As a counterpoint, it is possible to parallelize model checking by moving away
from an exhaustive proof and instead focus on counter-example generation. In
other words, run several independent experiments with some degree of random-
ization on individual computation nodes to find a counter-example to the proof.
This is in contrast to several computation nodes cooperatively constructing an
exhaustive proof. The shift in focus from exhaustive proof to counter-example
generation began in the directed model checking community, and it opens new
avenues for distributed model checking.

Early researchers of parallel and distributed model checking explored the
concept of random walk for counter-example generation with modest success
[17,34,24]. Random walk has inherently low memory requirements, and the work
distributes these random walk based searches over many computation nodes in
hopes of discovering a counter-example. The effectiveness of random walk in
terms of coverage is critically dependent on the structure of the model [28,2,18].
Empirical studies show that random walk is not very useful for error discovery
in the models where it achieves poor coverage. This creates a need for effective
randomized searches which better harness the computation resources.

Recent work studying default search order in model checker performance
contributes a key insight to randomization of a regular depth-first search [7].
Controlling for default search order in depth-first search by randomly choos-
ing transitions to explore (randomized DFS) dramatically improves counter-
example generation [6]. Independent randomized DFS searches easily distribute
to any number of computation nodes, however, like any search method, random-
ized DFS breaks down in certain models [32]. The issue in randomized DFS is
that it blindly moves through the behavior space even when there is information

Generating Counter-Examples Through Randomized Guided Search 41

readily available about the structure of the model and the property being
invalidated that can improve the search.

Directed model checking uses heuristics to rank interest in states and guide
the search of the behavior space to efficiently generate counter-examples [37, 9,
10, 16, 27, 33, 8, 31]. The heuristics generally consider either the model structure
or the property being validated to rank the states. A guided search then orders
the states in a priority queue based on the path cost and heuristic ranking
where states estimated to lead more quickly to a counter-example are explored
before other states. Guided search is effective in counter-example generation
and often succeeds where depth-first search fails. More importantly, the length
of the counter-examples generated by guided search algorithms are often shorter
than those generated by depth-first search. This simplifies the developer’s task
of understanding the counter-example.

Guided search also benefits from randomization, and like depth-first search,
once randomized, it can be run independently in parallel (randomized GDS1).
Preliminary work in randomized GDS chooses randomly from the first n-best
entries of the priority queue when selecting the next state to explore [23]. The
effectiveness of the randomization is not clear from the empirical study. In some
instances, the randomization helps; while in other instances, the randomization
hurts. The control, n, in [23] only ranges over a limited set of values between two
and five, and the algorithm also does not distinguish between states in the pri-
ority queue with different heuristic values. In Java PathFinder v4.0 (JPF), it is
also possible to execute a randomized GDS by randomizing the transition order
in generating successors before adding them to the priority queue. This random-
ization, however, has very limited impact on the actual default search order in
the guided search. Clearly, there are several open questions in randomized GDS
left to be explored.

This paper presents a new randomized GDS algorithm that completely shuf-
fles states in the priority queue with equal heuristic rankings. We show that
full randomization of the guided search improves the effectiveness of the search
over default search order in an empirical study. The empirical study uses char-
acterized benchmarks from [7,32] and published heuristics for the JPF, [36], and
Estes, [26], model checkers. This paper also presents a second empirical study
on the new randomized GDS algorithm in context of randomized DFS using the
previously mentioned models and heuristics. The second study highlights the
role of the heuristic in performance. When the heuristic is correctly matched to
the models and properties, the new randomized GDS algorithm outperforms ran-
domized DFS in both the effectiveness of the search in finding counter-examples
and the length of the counter-examples. When the heuristic is not correctly
matched to the models or properties, randomized DFS is more effective in er-
ror discovery which demonstrates a need to develop better heuristics for those
classes of models and properties.

1 We use randomized GDS to refer generally to any algorithm that adds randomization
into guided search, and we will clearly indicate how the search is randomized in the
context in which it appears.

42 N. Rungta and E.G. Mercer

The algorithm and empirical studies in this paper underscore a need to de-
velop methods that match heuristics to models and the properties being dis-
proved. This work and other work such as [23] and [6] also revisit a new way
to view randomization, model checking, and search techniques. It motivates a
need to study and understand how to best use randomization in model check-
ing and parallelization for counter-example generation. Research in this area is
especially timely given the rapid increase in computational resources, and more
importantly, the ever increasing need for practical model checking in system
design.

2 Background

It is important to control for default search order when evaluating model check-
ing algorithms because implementation details in the model checker itself affect
performance to a larger degree than previously supposed [7]. For example, in
a simple depth-first search, the state at the top of a search stack may have
several enabled transitions that move the current state to the next state of
computation. The choices arise from non-determinism in the model, where the
non-determinism is usually a result of scheduling decisions or input locations.
The principle observation in [7] is that controlling for the default order in which
a model checker selects transitions during depth-first search dramatically affects
the outcome of counter-example generation. The work in [7] proposes a ran-
domized DFS that controls for default transition order by shuffling transitions
enabled at each state. Follow-on work in [6] shows that randomized DFS is ef-
fective in counter-example generation across their benchmark set2. In the words
of [7], “[T]hese findings tell a strong cautionary tale”, because default search
order significantly affects performance of the techniques being evaluated in com-
parison studies. This is especially critical for directed model checking which relies
on comparison studies to establish performance gains.

Directed model checking uses a guided search rather than depth-first or
breadth-first search to find counter-examples for the property being verified.
The fundamental assumption is that an error does exist in the model, and the
goal is to find the error before exhausting computation resources. The work in
this paper focuses on a greedy best-first search; although, the ideas are equally
applicable to other best-first search techniques that make no guarantee on the
optimality of the counter-example. In other words, the results of an A∗ search
are not significantly affected by our approach. A greedy best-first search is illus-
trated in Fig. 1. The top state in Fig. 1 is the initial state. At each iteration of
the search, a state is removed from a priority queue, its successors are generated,
ranked by a heuristic function, and inserted into the priority queue. For exam-
ple, the initial state in Fig. 1 has three successors which are ranked 12, 9, and 2.
These states are inserted into the priority queue. The next iteration of the search
2 There are other default orders in model checkers that are yet to be controlled as

evidenced in [32], where different versions of JPF yield different results in random-
ized DFS.

Generating Counter-Examples Through Randomized Guided Search 43

912

1 e1

1 24

2

Fig. 1. An illustration of greedy best-first search that chooses the state nearest to the
goal state to expand in the search based on a heuristic function

removes the state with rank 2 from the priority queue and repeats the process.
The heuristic function estimates the nearness of a state to an actual goal state.
The goal state in our example is marked with the ‘e’ character. The goal state in
directed model checking is an error state from which we build a counter-example
to the specified property. A good heuristic for a greedy best-first search often
converges quickly to an error state, and the length of the counter-example is
near minimal.

Directed model checking critically relies on empirical studies to show perfor-
mance gains over depth-first search, and like depth-first search, must control for
default search order. For example, consider a priority search queue that con-
tains over 100,000 states and a heuristic function that assigns an integer value
between one and six to each state. Invariably, there are many thousand states
with equivalent heuristic values. The order in which they are explored is largely
controlled by the order in which they are generated by the model checker and
ordered in the priority queue. During a guided search, some function compares
the heuristic value of a newly generated state to the heuristic values of exist-
ing states in the queue before inserting the new state in the queue based on its
ranking. Most often, this function uses a pre-determined ordering to sort states
that have the same heuristic value. For example, when comparing a newly gen-
erated state, s1, with a heuristic value, x, to an existing state in the priority
queue, s2, with a heuristic value, x, the state ordering function always inserts
state s1 after s2 in the priority queue. The order in which states s1 and s2 are
explored can potentially affect the total number of states generated before error
discovery—a fact disregarded by the ordering function. The lesson from [7] is
that these default choices in the model checker need to be controlled. This gives
rise to randomized GDS which in the context of this paper refers to a greedy
best-first search with some randomization to control for default order.

There are several ways to implement randomized GDS, and each controls for
default order in the priority queue to a certain extent. For example, [23] randomly
chooses between the n-best entries in the priority queue, and JPF v4.0 allows

44 N. Rungta and E.G. Mercer

the transition order to be shuffled during state generation. The former method
shows some potential while the later method is not effective in randomization.
This paper presents a new algorithm for randomized GDS that controls for all
heuristic ties in the priority queue. We show that with the correct heuristic func-
tion, our new algorithm for randomized GDS outperforms not only the greedy
best-first search using default ordering but randomized DFS as well. This is es-
pecially true in models that are hard—that is, models where randomized DFS
is not successful.

3 Randomized GDS

Current techniques for randomization of guided search are not effective in ex-
ploiting the full potential of the randomization. For example, as mentioned
previously, the approach presented in [23] limits the randomization to the n-
best entries in the priority queue, where n is specified by the user. As another
example, JPF allows for randomization in its searches. To understand its ap-
proach, we need to first look at its priority queue implementation; specifically,
the DefaultComparator class. The class uses state identifiers and hash values to
resolve heuristic ties between states in the priority queue. The state identifiers
and hash values map to the same states in every single run of a guided search and
deterministically resolve the heuristic ties. Turning on the randomize choices
option in JPF successfully modifies the order in which successors, for a particular
state, are added to the priority queue because the successors are now assigned
different state identifiers every time we execute a guided search trial. This ran-
domized GDS approach causes only a small amount of variance in the number
of states generated before error discovery when compared to the guided search
since the randomization is limited to the successors of a given state. Our studies
show that the limited amount of randomization is not effective in significantly
changing the default search order.

To fully exploit the potential of randomization in directed model checking we
define a randomized GDS algorithm that randomly shuffles states with equivalent
heuristic ranking in the priority queue. The pseudo-code for this algorithm is
presented in Fig. 2. The algorithm is embarrassingly parallel [15]. Several trials
of the new randomized GDS algorithm can be launched in parallel on different
computation nodes since each randomized GDS trial is completely independent
of the other trials. There is no communication overhead between the trials which
allows the algorithm to scale up to an arbitrary number of computation nodes.

In the randomized GDS algorithm, we associate a random value with each
state generated during model checking in addition to its heuristic value. The
tuple 〈si, hi, ri〉 in Fig. 2 is an element stored in the priority queue where si is
the state, hi is the heuristic ranking of si, and ri is the random value associated
with si. The randomized GDS algorithm employs a new comparator function,
compare vals, that is also shown in Fig. 2 and uses the random values as a
secondary key to sort states with the same heuristic rankings. The approach
enables us to effectively randomize the order of states with same heuristic values

Generating Counter-Examples Through Randomized Guided Search 45

/∗ N is the set of computation nodes ∗/
procedure randomized guided search init(N)

for each i ∈ N do
execute(randomized guided search(), i)

wait for all nodes to terminate execution()
gather results(1...N)
return

/∗ Add initial element 〈s0, h0, r0〉 to PriorityQueue PQ ∗/
/∗ Add s0 to the Visited set ∗/

procedure randomized guided search()
while PQ �= ∅ do

〈si, hi, ri〉 := PQ .dequeue()
for each s′ ∈ successors(si) do

if error(s′) then
return Error Statistics

if s′ �∈ Visited then
V isited := V isited ∪ {s′}
PQ .enqueue(〈s′, heuristic(s′), rand val()〉)

return No Errors Found

/∗ PriorityQueue PQ uses compare vals to order states ∗/
procedure compare vals(〈s1, h1, r1〉, 〈s2, h2, r2〉)

if h1 > h2 then
return true

else if h1 < h2 then
return false

else
if r1 > r2 then

return true
else

return false

Fig. 2. Pseudo-code for randomized GDS that shuffles states with the same heuristic
values using a secondary key from a random number generator

across different states and search levels. The new randomized GDS algorithm
has a low cost of randomization because maintaining the random value is the
only additional cost it incurs when compared to a regular guided search.

We present two empirical studies that compare randomized GDS to default
order guided search. The first study is in JPF v4.0 uses Java benchmarks and the
second study is in Estes uses C benchmarks. JPF contains a suite of structural
heuristics, [16], that exploit thread properties in Java programs and also has a
heuristic for finding feasible abstract counter-examples [27,16]. The Java models
used in this study are small to medium sized programs that contain concurrency
errors. These models have been collected from different sources: original papers
presenting the heuristics [16], concurrency literature [12], research describing
Java specific errors [14], and the IBM benchmark suite [13]. Additionally, these

46 N. Rungta and E.G. Mercer

models are characterized to a certain degree having been used recently in two
extensive benchmarking studies [7, 32].

Our empirical study is conducted on a super-computing cluster with 618
nodes. We conduct a single experiment of executing 100 trials of our random-
ized GDS algorithm in parallel for each subject in the study. The choice of 100
trials is arbitrary, but we believe its size is sufficient to indicate general trends
in performance. The randomized GDS trials and the guided search are allocated
7GB RAM, and the execution time is bounded at 1 hour. The 1 hour is again
arbitrary but together with 100 trials constitutes an upper bound of 100 hours
of computation for each model—a significant amount of resources.

Table 1 is a comparison between the default order guided search and our new
randomized GDS algorithm in JPF. We present results for four different heuris-
tics in JPF: choose-free heuristic, most-blocked heuristic, interleaving heuristic,
and the prefer-thread heuristic. Based on the description of the heuristics in [16]
and our knowledge of the models, we pick heuristics that are most likely to work
well for a given model. We present, in Table 1, the number of states generated for
a default order guided search (GDS). The values in Table 1 with the form, x ∗, in-
dicate that the search generated x number of states before running out of either
time or memory. For the new randomized GDS algorithm (Randomized-GDS), in
Table 1, we present the following statistics: path error density (PED), minimum
(Minimum) and maximum (Maximum) number of states generated in a single error
discovering randomized GDS trial among all the trials, mean (Mean) number
of states generated in all the error discovering randomized GDS trials, and the
95% confidence interval (95% CI) for the mean number of states. The path error
density is the ratio of the number of error discovering randomized GDS trials to
the total number of trials executed.

The results in Table 1 show that the new randomized GDS algorithm, overall,
improves the error discovery for a given heuristic over default search order. In the
AccountSubtype(2,2) model, the default order guided search does not find an
error even after exploring over 2.22 million states. In contrast, all 100 trials of the
new randomized GDS algorithm find an error and explore only 193, 313 states—
on average—before error discovery. Furthermore, the maximum number of states
generated—642,193—by a single randomized GDS run of the new algorithm
is also dramatically lower than the number of states generated by the default
order guided search. Similar behavior is observed in all the ProducerConsumer
models, and some TwoStage, Piper, and Wronglock models. In certain models,
the mean number of states generated by the new randomized GDS algorithm is
more than the states generated by the default order guided search, as seen in the
Deos(abstracted) and Reorder(1,5) models; however, even in these models,
the minimum number of states generated by the new randomized GDS algorithm
is less than the number of states generated by the default order guided search.

Table 2 presents the results of running our new randomized GDS algorithm
on different distance heuristic functions implemented in the Estes model checker
[26]. We evaluate three specific distance heuristic functions in Table 2: FSM
[11], EFSM [30], and e-FCA [31]. The only change in the setup for evaluating

Generating Counter-Examples Through Randomized Guided Search 47

Table 1. Comparing the performance of default order guided search (GDS) and ran-
domized guided search (Randomized-GDS) using the heuristics in JPF and published
benchmarks

Model GDS Randomized-GDS
PED Minimum Mean Maximum 95% CI

ChooseFree Heuristic
Deos(abstracted) 16 1.00 11 40 423 14
RwNoExcpChk(2,100,1) 372,826 1.00 769 6,419 20,865 739
MostBlocked Heuristic
Clean(1,1,12) 188 1.00 33 377 993 59
Piper(2,2,2) 16,437 1.00 240 1,338 3,909 171
Piper(2,4,4) 2, 478, 360∗ 0.87 138,916 1,229,530 2,274,249 116,015
Interleaving Heuristic
Raxextended(4,3) 1, 225, 743∗ 1.00 404 20,774 670,813 14,480
PreferThreads Heuristic
Accountsubtype(2,2) 2, 225, 914∗ 1.00 30,726 193,313 642,193 94
Producerconsumer(1,10,4) 1, 783, 620∗ 0.93 2,774 145,466 742,693 36,519
Producerconsumer(1,12,4) 1, 781, 899∗ 0.90 13,830 238,092 960,610 52,981
Producerconsumer(1,16,4) 1, 781, 530∗ 0.49 7,280 257,131 889,248 67,850
Producerconsumer(1,8,4) 1, 835, 216∗ 1.00 1,148 156,428 925,537 38,689
Producerconsumer(2,2,4) 2, 591, 457∗ 1.00 10,902 109,394 313,929 13,602
Producerconsumer(2,4,4) 2, 016, 936∗ 1.00 2,592 213,491 1,122,008 45,523
Producerconsumer(2,8,4) 1, 721, 824∗ 0.68 21,055 434,401 1,098,461 77,976
Reorder(1,1) 144 1.00 40 98 163 6
Reorder(1,5) 545 1.00 36 14,864 64,447 4,312
Reorder(10,1) 1,727,521 0.00 - - - -
Reorder(5,1) 15,207 1.00 393 10,850 30,790 1,473
Reorder(8,1) 274,125 0.80 10,789 714,454 2,624,613 120,013
Reorder(9,1) 691,264 0.32 324,035 861,445 1,412,937 110,618
Twostage(1,1) 218 1.00 53 134 246 9
Twostage(2,5) 24,187 0.96 218 361,571 1,681,177 97,480
Twostage(5,2) 322,593 0.96 5,419 417,841 2,170,752 95,440
Twostage(6,1) 716,413 0.94 31,346 486,830 1,626,718 76,994
Twostage(7,1) 2, 354, 460∗ 0.36 81,218 867,382 1,411,624 120,191
Twostage(8,1) 2, 119, 657∗ 0.05 178,476 755,151 1,259,085 514,492
Wronglock(1,1) 156 1.00 37 67 122 4
Wronglock(1,10) 7,391 1.00 94 98,616 1,805,704 58,614
Wronglock(1,20) 7,391 0.78 97 562 2328 99
Wronglock(10,1) 2, 330, 993∗ 1.00 795 4,848 26,070 834
Wronglock(20,1) 2, 056, 532∗ 1.00 3,176 32,484 163,642 6,282

heuristics in Estes from the study in JPF is that the randomized GDS trials
and guided search using default search order are allocated 2 GB of RAM. The
performance of the FSM distance heuristic function improves with the new ran-
domized GDS algorithm as seen in Table 2. In the Barbershop(11) model, the
default order guided search does not find an error in over 1.2 million states

48 N. Rungta and E.G. Mercer

Table 2. Comparing the performance of default order guided search (GDS) and ran-
domized guided search (Randomized-GDS) using the Estes model checker

Model GDS Randomized-GDS
PED Minimum Mean Maximum 95% CI

FSM Heuristic
Barbershop(5) 132,376 1.00 13,917 59,496 154,473 5,948
Barbershop(9) 492,166 0.59 61,732 785,698 2,003,928 118,996
Barbershop(11) 1, 292, 835∗ 0.15 381,808 813,644 1,247,461 157,172
e-fca Heuristic
Barbershop(5) 814 1.00 921 1,012 1,308 13
Barbershop(9) 1,070 1.00 1,543 1,692 1,918 18
Barbershop(11) 1,196 1.00 1,939 2,243 2,671 27
Barbershop(20) 1,767 1.00 5,099 6,319 8,439 131
Barbershop(25) 2,086 1.00 7,654 9,873 12,657 233
EFSM Heuristic
Barbershop(5) 21,706 1.00 4,950 19,849 67,875 1,853
Barbershop(9) 17,537 0.65 94,357 816,848 1,999,595 129,344
Barbershop(11) 30,256 0.06 293,893 701,278 1,181,985 412,829

while the new randomized GDS algorithm explores only 813, 644 states—on
average—in 15 error discovering trials.

It is interesting to note that for some models, the default order guided search
outperforms the new randomized GDS algorithm using the EFSM and e-FCA
distance heuristics. For example, in the Barbershop(20) model, 1767 states are
generated with guided search while the minimum number of states generated
by the randomized GDS algorithm is 5099. The examples where default order
guided search outperforms the new randomized GDS algorithm support the hy-
pothesis presented in [7] that certain reported performance gains of directed
model checking techniques can potentially be an artifact of the default order
implemented by the model checker rather than the technique itself.

This empirical study shows—on average—that the new randomized GDS al-
gorithm is a better search technique than a default order guided search with
no randomization. As a side note, we omit the results on the n-best algorithm
in [23] and JPF’s random choice generator because they are not competitive
with the new randomized GDS algorithm. For the remainder of this paper, we
use randomized GDS to refer to our new randomized GDS algorithm. The next
section shows in another empirical study that with the correct heuristic, ran-
domized GDS performs well in the models where randomized DFS is unable to
find an error. We refer to these models as hard [32].

4 Evaluation

Randomized DFS serves as a good standard for comparison when we evaluate the
performance gains of randomized GDS [32]. Randomized GDS and randomized

Generating Counter-Examples Through Randomized Guided Search 49

DFS both effectively control for the default search of the model checker imple-
mentation which makes them well-suited for comparison. Also, when evaluating
the performance of a new heuristic, it is sometimes hard to find another heuristic
that is designed to work on the same class of programs or properties. Random-
ized DFS serves as an ideal comparison technique to evaluate the performance of
such heuristics. It also provides a tighter lower bound on performance than say a
metric based on stateless random walk, [32], and is a significant bar to overcome
when showing performance gains in stateful techniques such as randomized GDS.

We design an empirical study to compare the performance of existing heuris-
tics, using randomized GDS, to randomized DFS implemented by JPF. Like
the previous study, we run 100 trials of randomized GDS for each model and
an equal number of randomized DFS trials. We bound the execution time at 1
hour for each trial. In our initial experiments, the size of the frontier, states in
the priority queue, increases rapidly in randomized GDS trials which causes the
searches to run out of memory in JPF before reaching the specified time bound.
To overcome this issue, we bound the size of the queue in JPF at 100,000 states.
This allows randomized GDS trials to successfully run for an hour in JPF with-
out exhausting the available memory. Bounding the size of the queue turns the
complete search into a partial search; however, guided search aims to find a
counter-example efficiently rather than to do an exhaustive proof. An earlier
study, [16], and our experiments show that bounding the size of the queue does
not affect, in general, the number of randomized GDS trials that discover an er-
ror. The system configuration used to conduct this empirical study is the same
as described in the previous section.

We record and normalize values of five different metrics in the randomized GDS
and randomized DFS trials to study the performance gains of randomized GDS
over randomized DFS. We measure the path error density, number of states gen-
erated, time taken before error discovery, length of the counter-example, and
total memory utilized for each of the search trials. Recall that the path error
density is the ratio of the error discovering trials over the total number of trials
executed. We measure the minimum, mean, and maximum values for all met-
rics, except path error density, generated during the error discovering trials since
the randomization generates different results in each trial. The minimum, mean,
and maximum values generated by the search trials are normalized between 0.00
and 1.00 for each metric. Here is an explanation of the normalization process
for states generated: the smallest number of states generated among the trials
of both search techniques, for a given model, is mapped to the value of 1.00;
similarly, the largest number of states generated among the trials is mapped to
the value of 0.00. All other values for states generated, in the given model, are
normalized between these two values. The values are normalized to the max-
imum or minimum values since these represent the extremes in the observed
performance across several trials. The normalization process is conducted sepa-
rately for each metric in a model. Intuitively, values close to 1.00 indicate good
performance for a given metric while values close to 0.00 indicate the opposite.
The normalization technique helps us in better understanding and visualizing

50 N. Rungta and E.G. Mercer

Table 3. Comparing the average values generated in error discovering trials of ran-
domized guided search (RGDS), using the Prefer-Thread heuristic, and randomized
DFS (DFS)

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Accountsubtype(1,1) 1.00 1.00 0.98 0.58 0.58 0.68 0.37 0.45 0.62 0.60
Accountsubtype(2,2) 1.00 1.00 1.00 0.59 0.99 0.60 0.42 0.36 0.99 0.37
Wronglock(10,1) 1.00 1.00 1.00 0.79 0.89 0.70 0.34 0.65 0.98 0.78
Wronglock(1,1) 1.00 1.00 0.89 0.52 0.55 0.94 0.70 0.49 0.58 0.56
Wronglock(1,10) 1.00 0.97 0.47 0.98 0.45 0.98 0.57 0.53 0.90 0.93
Twostage(1,1) 1.00 1.00 0.83 0.48 0.66 0.83 0.39 0.54 0.40 0.67
Twostage(2,5) 1.00 0.96 0.52 0.91 0.54 0.94 0.44 0.59 0.39 0.78
Twostage(6,1) 1.00 0.98 0.60 0.87 0.62 0.92 0.31 0.64 0.87 0.63
Reorder(5,1) 1.00 1.00 0.34 0.72 0.34 0.83 0.45 0.75 0.44 0.79
Reorder(8,1) 1.00 0.89 0.36 0.84 0.40 0.92 0.41 0.72 0.89 0.61
ProdCons(1,16,4) 0.67 0.87 1.00 0.88 0.99 0.85 0.55 0.72 1.00 0.67
Twostage(7,1) 0.41 0.73 0.42 0.76 0.42 0.89 0.17 0.58 0.97 0.53
Wronglock(1,20) 0.28 0.81 1.00 0.99 1.00 0.99 0.50 0.62 1.00 0.99
Reorder(9,1) 0.06 0.57 0.31 0.75 0.16 0.87 0.10 0.74 0.99 0.48
Twostage(8,1) 0.04 0.57 0.70 0.70 0.40 0.74 0.01 0.50 0.99 0.43
Reorder(10,1) 0.00 0.34 0.00 0.63 0.00 0.70 0.00 0.51 0.00 0.38

the performance of the heuristic in different models because it puts all metrics
on the same scale and graph across both search techniques.

The prefer-thread heuristic, using randomized GDS, performs well in the mod-
els shown in Table 3. Please note that this table omits the data for the minimum
and maximum values across our several metrics. Table 3 only presents the aver-
age values that have been normalized. The values given in Table 3 are as follows:
path error density (PED), number of states (States), time taken (Time), length
of counter-example (Trace), and memory utilized (Memory) measured in error
discovering trials of randomized GDS and randomized DFS. In a large number of
models, the path error density is the same, 1.00, for both randomized DFS and
randomized GDS. In models where randomized DFS has a path error density
of 1.00, finding an error is not difficult, and the results on these models do not
convey much information on the effectiveness of the heuristic.

To overcome some of the weakness in the benchmarks, our study uses hard
models generated in [32] to evaluate the true effectiveness of the heuristic, which
are the last six entries in Table 3. For example, in the Wronglock(1,20) model,
the measured path error density of randomized DFS is 0.28 while the path error
density of the randomized GDS is dramatically higher at 0.81. The average values
for states, time, and memory are close to 1.00 for both search techniques in the
Wronglock(1,20) model; however, the average length of the counter-example
for randomized GDS is smaller than the average length of the counter-example
recorded from the randomized DFS trials. In understanding the length of a
counter-example, values closer to 1.00 depict a shorter counter-example while

Generating Counter-Examples Through Randomized Guided Search 51

values close to 0.00 indicate a longer counter-example. There are other mod-
els like Reorder(9,1), Twostage(8,1), and Reorder(10,1) where random-
ized GDS improves over randomized DFS.

The high path error density of randomized GDS in models where random-
ized DFS struggles to find an error makes a compelling argument for the use
of the heuristic in the given models. The results in Table 3 show that random-
ized GDS, using the prefer-thread heuristic, successfully overcomes the lower
bound on the performance set by randomized DFS in the given models.

In Fig. 3 we visualize the comparative performance of randomized DFS and
randomized GDS using the prefer-thread heuristic for the models shown in Ta-
ble 3. The minimum, mean, and maximum values for all the different metrics
and models are aggregated in Fig. 3(a). The different edges along the graph
show which search technique generates the best and worst boundary values. The
points in the graph along the axis where x = 0 show all the worst values that
are contributed by randomized DFS for the measured metrics while the points
along the axis where y = 0 show all the worst values generated by random-
ized GDS. Similarly, points along x = 1 represent the best values contributed by
randomized DFS while points along y = 1 represent the best values contributed
by randomized GDS. The points above the dashed diagonal line in Fig. 3(a)
show the values of the metrics where randomized GDS improves over random-
ized DFS. In general, there is a high density of points above the diagonal that
show for the given set of models, it is more effective to use randomized GDS,
with the prefer-thread heuristic, over randomized DFS. There is also a high den-
sity of points in the upper right corner of the graph. These points represent the
values where both randomized GDS and randomized DFS perform well and do
not help us in evaluating the true effectiveness of the search and heuristic over
randomized DFS. We now look at each of the metrics separately to understand
the areas in which randomized GDS scores over randomized DFS.

There are three metrics where randomized GDS clearly outperforms random-
ized DFS in the benchmark suite using the prefer-thread heuristic. These three
metrics are the path error density, length of the counter-example, and time taken
before error discovery as shown in Fig. 3(b), (c), and (d) respectively. The points
in the upper right corner of the graph in Fig. 3(b) show that in all trials, both
search techniques are equally successful in finding the error; however, points
that are above the dashed diagonal line show that a larger number of random-
ized GDS trials find an error in models where only a small number of random-
ized DFS trials find an error. The high path error density of randomized GDS
is a very compelling measure that depicts the improvement of randomized GDS
over randomized DFS. Randomized GDS also performs extremely well in gener-
ating shorter counter-examples. The high density of points above the diagonal
in Fig. 3(c) indicates that randomized GDS has dramatically shorter counter-
examples compared to randomized DFS across all the models in test. Similarly,
the distribution of points in Fig. 3(d) indicates that randomized GDS takes less
time to find an error when compared to randomized DFS.

52 N. Rungta and E.G. Mercer

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Aggregated Values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Path Error Density

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Length of Counter-example

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Time Taken before Error Discovery

(c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Number of States Generated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
an

do
m

iz
ed

 G
D

S

Randomized DFS

Memory Usage

(e) (f)

Fig. 3. Visualizing the normalized minimum, mean, and maximum values of different
metrics comparing randomized GDS, using the Prefer-Threads heuristic, to randomized
DFS. (a) An aggregation of all values for the different metrics. (b) Values comparing
path error density. (c) Values comparing length of counter-example. (d) Values compar-
ing time taken before error discovery. (e) Values comparing number of states generated.
(f) Values comparing memory usage.

In Fig. 3(e), it is hard to discern which search technique performs better
in generating fewer number of states before error discovery; however, the ran-
domized DFS clearly outperforms randomized GDS in the amount of memory
utilized as shown in Fig. 3(f). Randomized GDS maintains the frontier of states

Generating Counter-Examples Through Randomized Guided Search 53

Table 4. Comparison of results using the Most-Blocked Heuristic with a randomized
guided search (RGDS) to results from randomized DFS (DFS)

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Clean(1,1,12) 1.00 1.00 0.09 0.59 0.52 0.87 0.34 0.25 0.42 0.65
Piper(2,4,4) 1.00 1.00 0.96 0.65 0.96 0.63 0.60 0.85 0.94 0.25
Piper(2,8,4) 0.96 0.00 0.92 0.00 0.92 0.00 0.52 0.00 0.47 0.00

Clean(10,10,1) 0.96 0.00 0.95 0.00 0.96 0.00 0.37 0.00 0.85 0.00
Piper(2,16,8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Comparison of results using the Interleaving Heuristic with a randomized
guided search (RGDS) to results from randomized DFS (DFS)

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Airline(6,1) 1.00 1.00 0.75 0.99 0.74 0.99 0.22 0.62 0.53 0.90
Airline(6,2) 1.00 1.00 0.96 1.00 0.95 1.00 0.25 0.60 0.89 0.97

Raxextended(4,3) 1.00 1.00 0.96 0.99 0.96 1.00 0.67 0.99 0.87 0.96
Airline(20,4) 0.03 0.00 0.55 0.00 0.59 0.00 0.47 0.00 0.39 0.00
Airline(20,3) 0.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Airline(20,2) 0.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

that need to be explored. The increasing frontier size, however, has a dramatic
impact on the memory usage. The unbounded priority queue in JPF causes a
serious explosion in memory usage while executing the randomized GDS. In fact,
as mentioned earlier, we restrict the size of the priority queue to only 100,000
states so that 7 GB of RAM is not exhausted before reaching the specified time
bound. Overall, across the different metrics, randomized GDS using the prefer-
thread heuristic improves performance over randomized DFS by effectively find-
ing counter-examples and generating shorter counter-examples.

We present results for the most-blocked, interleaving, and choose-free heuris-
tics in Table 4, Table 5, and Table 6 respectively. These heuristics do not per-
form well on the class of models for which they are designed, and the comparison
with randomized DFS makes these heuristics even less appealing in our bench-
marks. For example, the randomized DFS path error density for Piper(2,8,4)
model is 0.96 while the path error density of randomized GDS using the most-
blocked heuristic as seen in Table 4 is 0.00. Similar behavior is seen for the model
Clean(10,10,1). The choose-free, most-blocked, and interleaving heuristics do
not overcome the randomized DFS lower bound and are not effective in generat-
ing counter-examples for models in the tables. The sub-par performance of these
heuristics argues a greater need to identify models where they are effective.

The results in this section indicate that given the correct heuristic for a set
of models, randomized GDS is effective in finding errors where randomized DFS

54 N. Rungta and E.G. Mercer

Table 6. Comparison of results using the Choose-Free Heuristic with a randomized
guided search (GDS) to results from randomized DFS (DFS)

PED States Time Trace Memory
DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Deos(true) 1.00 1.00 0.72 0.97 0.56 0.96 0.36 0.95 0.60 0.92
Replicated(5,2) 0.97 0.00 0.81 0.00 0.87 0.00 0.57 0.00 0.88 0.00
RWNoExpChk 0.77 1.00 0.97 0.72 0.72 0.55 0.75 0.99 0.94 0.69

struggles. It is also important to note that better error discovery, shorter
counter-examples, and reduced error discovery time in randomized GDS comes
at the cost of increased memory usage due to the large search frontier.

5 Conclusions and Future Work

This paper presents a new randomized GDS algorithm that completely shuffles
states in the priority queue with equal heuristic rankings. The algorithm is easily
implemented, efficient, and has low overhead in terms of memory and time. We
show that full randomization of the guided search improves the effectiveness of
the search over the regular guided search. To evaluate the performance of ran-
domized GDS using a particular heuristic, we compare it with randomized DFS
because randomized DFS creates a lower bound for establishing performance
gains in directed model checking. Also, when the heuristic is correctly matched to
the models and properties, the new randomized GDS algorithm outperforms ran-
domized DFS in both the effectiveness of the search in finding counter-examples
and the length of the counter-examples. The approach is timely given the recent
explosion in computation resources and is easily distributed to several compu-
tation nodes to improve the likelihood of error discovery.

There is a need to explore other avenues for combining randomization and
directed model checking. For example, can we use randomization to balance
exploring new parts of the behavior space and use heuristics to exploit the infor-
mation available about the model? Also, as we develop heuristics appropriate for
use in a randomized GDS algorithm, there is a need to understand the intended
problem domain for the heuristic. In other words, we need to characterize heuris-
tics in terms of the models for which they are expected to be effective. Without
this characterization, it is not obvious which heuristic best fits a given property
and model. There also a need to define language and metrics to characterize
heuristics for their intended problem domains. An interesting avenue of research
is to use something similar to the “Patterns” categorization for specifications [5].

Acknowledgments

We thank Matt Dwyer and Suzette Person at the University of Nebraska for
sharing with us the models presented in [7] and the discussions of their work on

Generating Counter-Examples Through Randomized Guided Search 55

the quality of models. We also thank Shmuel Ur for providing us access to the
models developed at the IBM Research Center in Haifa. We finally thank Ira
and Mary Lou Fulton for their generous donations to the BYU Supercomputing
laboratory which made it possible for us to run the extensive analysis presented
in this paper.

References

1. Barnat, J., Brim, L., St, J.: Distributed LTL model checking in SPIN. In: Dwyer,
M.B. (ed.) Model Checking Software. LNCS, vol. 2057, pp. 200–216. Springer,
Heidelberg (2001)

2. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – A
Tool for Distributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

3. Brim, L., Cerna, I., Moravec, P., Simsa, J.: How to order vertices for distributed
LTL model-checking based on accepting predcessors. Electronic Notes in Theoret-
ical Computer Science 135(2), 3–18 (2006)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM TOPLAS 8(2) (1986)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Ardis, M. (ed.) FMSP-98. Proceedings of the 2nd Work-
shop on Formal Methods in Software Practice (FMSP-98), pp. 7–15. ACM Press,
New York (1998)

6. Dwyer, M.B., Elbaum, S., Person, S., Purandare, R.: Parallel randomized state-
space search. In: Proceedings of the 29th International conference of Software En-
gineering 2007 (To Appear)

7. Dwyer, M.B., Person, S., Elbaum, S.: Controlling factors in evaluating path-
sensitive error detection techniques. In: SIGSOFT ’06/FSE-14. Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software engi-
neering, pp. 92–104. ACM Press, New York (2006)

8. Edelkamp, S., Jabar, S.: Large-scale directed model checking LTL. In: Valmari, A.
(ed.) Model Checking Software. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg
(2006)

9. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Proceedings of the 7th International SPIN Workshop. LNCS, vol. 2057,
Springer, Heidelberg (2001)

10. Edelkamp, S., Lafuente, A.L., Leue, S.: Trail-directed model checking. In: Stoller,
S.D., Visser, W. (eds.) Electronic Notes in Theoretical Computer Science, vol. 55,
Elsevier Science Publishers, Amsterdam (2001)

11. Edelkamp, S., Mehler, T.: Byte code distance heuristics and trail direction for
model checking Java programs. In: Workshop on Model Checking and Artificial
Intelligence (MoChArt), pp. 69–76 (2003)

12. Eytani, Y., Havelund, K., Stoller, S.D., Ur, S.: Towards a framework and a bench-
mark for testing tools for multi-threaded programs: Research articles. Concurrency
and Computation: Practice & Experience 19(3), 267–279 (2007)

13. Eytani, Y., Ur, S.: Compiling a benchmark of documented multi-threaded bugs.
In: Proceedings of the Workshop on Parallel and Distributed Systems: Testing and
Debugging, p. 266. IEEE Computer Society Press, Los Alamitos (2004)

56 N. Rungta and E.G. Mercer

14. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
IPDPS ’03. Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Processing, p. 286. IEEE Computer Society Press, Los Alamitos (2003)

15. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Par-
allel Software Engineering. Wesley Longman Publishing, Boston, MA, USA (1995)

16. Groce, A., Visser, W.: Model checking Java programs using structural heuristics.
International Symposium on Software Testing and Analysis , 12–21 (July 2002)

17. Haslum, P.: Model checking by random walk. In: Proceedings of ECSEL Workshop
(1999)

18. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

19. Holzmann, G.J.: The design of a distributed model checking algorithm SPIN. FM-
CAD 2006 Invited Presentation (November 2006)

20. Inggs, C.P., Barringer, H.: CTL∗ model checking on a shared-memory architecture.
Formal Methods in System Design 29(2), 135–155 (2006)

21. Jabbar, S., Edelkamp, S.: Parallel external directed model checker with linear I/O.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–
251. Springer, Heidelberg (2005)

22. Jones, M., Mercer, E., Bao, T., Kumar, R., Lamborn, P.: Benchmarking explicit
state parallel model checkers. In: 2nd International Workshop on Parallel and Dis-
tributed Methods in Verification (2003)

23. Jones, M.D., Mercer, E.: Explicit state model checking with Hopper. In: Graf,
S., Mounier, L. (eds.) Model Checking Software. LNCS, vol. 2989, pp. 146–150.
Springer, Heidelberg (2004)

24. Jones, M.D., Sorber, J.: Parallel search for LTL violations. Software Tools for
Technology Transfer 7(1), 31–42 (2005)

25. Krazit, T.: Intel pedges 80 cores in five years. CNET News.com (September 2006)
26. Mercer, E.G., Jones, M.: Model checking machine code with the GNU debugger.

In: Godefroid, P. (ed.) Model Checking Software. LNCS, vol. 3639, pp. 251–265.
Springer, Heidelberg (2005)

27. Pasareanu, C., Dwyer, M., Visser, W.: Finding feasible abstract counter-
examples. Springer International Journal on Software Tools for Technology Trans-
fer (STTT) 5(1), 34–48 (2003)

28. Pelanek, R., Hanzl, T., Cerna, I., Brim, L.: Enhancing random walk state space
exploration. In: FMICS ’05. Proceedings of the 10th International Workshop on
Formal methods for industrial critical systems, pp. 98–105. ACM Press, New York
(2005)

29. Reif, J.H.: Depth-first search is inherently sequential. Information Processing Let-
ters 20(5), 229–234 (1985)

30. Rungta, N., Mercer, E.G.: A context-sensitive structural heuristic for guided search
model checking. In: 20th IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 410–413, Long Beach, California, USA (November 2005)

31. Rungta, N., Mercer, E.G.: An improved distance heuristic function for directed
software model checking. In: Formal Methods in Computer Aided Design (FM-
CAD), pp. 60–67, San Jose, CA, USA (November 2006)

32. Rungta, N., Mercer, E.G.: Hardness for explicit state software model checking
benchmarks. In: Technical Report SMC-BYU-0107, Brigham Young University,
Department of Computer Science (2007)

33. Seppi, K., Jones, M., Lamborn, P.: Guided model checking with a bayesian meta-
heuristic. Fundamenta Informaticae 70(1-2), 111–126 (2006)

Generating Counter-Examples Through Randomized Guided Search 57

34. Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. In: Proceedings of Workshop on Parallel and
Distributed Model Checking (2003)

35. Stern, U., Dill, D.L.: Parallelizing the Murφ verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–267. Springer, Heidelberg (1997)

36. Visser, W., Havelund, K., Brat, G., Park, S.: Java PathFinder: Second generation
of a Java model checker. In: Gopalakrishnan, G. (ed.) Proceedings of the Workshop
on Advances in Verification (WAVE’00) (July 2000)

37. Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In: 35th
Design Automation Conference (DAC98), pp. 599–604 (1998)

Distributed Dynamic Partial Order Reduction
Based Verification of Threaded Software�

Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah
Salt Lake City, UT 84112, U.S.A.

{yuyang, xiachen, ganesh, kirby}@cs.utah.edu

Abstract. Runtime (dynamic) model checking is a promising verifica-
tion methodology for real-world threaded software because of its many
features, the prominent ones being: (i) it avoids the need to extract a
model and instead runs the actual code, and (ii) the precision of infor-
mation available at run-time allows techniques such as dynamic partial
order reduction (DPOR) [1] to dramatically cut down the number of
interleavings examined. Unfortunately, DPOR does not have many im-
plementations for real thread libraries such as POSIX Pthreads, and
suffers from high computational overheads due to a stateless search that
requires re-executions. In our previous work [2], we designed a runtime
model checker, inspect, that overcomes the first of these drawbacks.
Inspect has been shown capable of detecting data races, deadlocks and
other incorrect API usages in real-world PThreads C programs. In this
paper, we describe a distributed version of inspect, which implements
an extended DPOR algorithm. Our two key contributions are: (i) a prac-
tical algorithm for distributed dynamic partial order reduction; (ii) the
innovations that helped distributed inspect attain nearly linear (with
respect to the number of CPUs) speedup on realistic examples.

1 Introduction

Runtime (dynamic) model checking (e.g., as in [3]) is a promising verification
methodology for real-world threaded software because of its many features. It
avoids the (implicit or explicit) overhead of modeling programs that is usually re-
quired by other model checkers [4,5,6,7]. The precision of information available at
run-time allows techniques such as dynamic partial order reduction (DPOR) [1]
to dramatically cut down the number of interleavings examined. In our previous
work [2], we designed a runtime model checker, inspect, that (to the best of our
knowledge) is the first implementation of DPOR that handles the widely used
POSIX Pthreads library. Inspect explores relevant interleavings (generated by
DPOR) of a multithreaded C program with a specific testing scenario. In this
setting, Inspect has detected data races, deadlocks, and other incorrect API

� Supported in part by NSF award CNS00509379, Microsoft HPC Institute Program,
and SRC Contract 2005-TJ-1318.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 58–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distributed DPOR Based Verification of Threaded Software 59

usages in real-world PThreads C programs. However, we observed that run-time
is a major limiting factor of inspect. Inspect explores the state space by exe-
cuting the program concretely and observing its visible operations. As it is not
easy to capture and restore the state of a C program which runs concretely,
inspect does not keep the search history, instead employing stateless search [3])
that can incur high overheads.1

A runtime model checker such as inspect is potentially “embarrassingly par-
allel” based on the casual observation that since stateless search does not main-
tain the search history, different branches of an acyclic state space can be ex-
plored concurrently, and with very loose synchronizations. We implemented a
parallel version of inspect based on this observation, employing a centralized
load balancer to distribute work among multiple nodes. Unfortunately, we failed
to consistently obtain the linear speedup promised by the apparent parallelism.
Deeper investigation revealed the reasons. These reasons, and other features of
our algorithm are now summarized:

Avoiding Redundant Computations: Despite our use of sleep sets [8] to
avoid redundant interleavings among independent transitions, we found that
redundant (and, in fact, identical) interleavings were being explored among
multiple nodes. The problem was traced to the incremental way of computing
backtrack sets in the standard DPOR algorithm (detailed in the rest of
this paper), which is well suited for a sequential implementation but not
a loosely synchronized distributed implementation. We have developed a
heuristic technique to update backtrack sets more aggressively, as detailed
in Section 3.4.

Work Distribution Heuristics: Numerous heuristics help achieve efficient
work distribution in inspect. These include: (i) the straightforward method
of employing a single load balancing node (process) and N − 1 worker nodes
(processes); (ii) the concept of a soft limit on the number of backtrack points
recorded within a worker node before that node decides to offload work to
another worker; and (iii) minimizing communication by offloading work that
lies deepest within the stack – points from where the largest number of
program-paths are available – so that bigger chunks of work are shipped per
communication.

This paper describes these extensions to the DPOR algorithm proposed in
[1] and detailed in [2]. Our experiments demonstrate almost linear speedup with
increasing number of nodes (CPUs). For example, one of our benchmarks which
has eight threads and requires more than 11 hours to finish checking using se-
quential inspect can be checked by the parallel inspect within 11 minutes
using 65 nodes. The parallel inspect gives a speedup of 63.2 out of 65.

1 Given programs that do not terminate, a stateless search method (such as used in
inspect) requires depth-bounding or some other technique to ensure termination.
This was not an issue in our practical test programs. In this paper, we focus only on
checking multithreaded programs that terminate.

60 Y. Yang et al.

Roadmap: Section 2 presents background information on inspect and DPOR.
Section 3 presents the extended DPOR algorithm used in parallel inspect.
Section 4 presents implementation detail, and the experiment results, Section 5
the related work, and Section 6 our concluding remarks.

2 Background

2.1 Overview of Inspect

Modeling the library functions employed in, and the runtime environment of
multithreaded C programs is non-trivial. To the best of our knowledge, Verisoft
[3] is the only model checker capable of checking concurrent C programs with-
out incurring modeling overheads. Unfortunately, Verisoft focuses on concurrent
programs that interact through inter-process communication mechanisms. In a
multithreaded program, threads can interact not only through explicit synchro-
nization/mutual exclusion primitives, but also through read/write operations on
shared data objects. Our runtime model checker inspect can handle these de-
tails, and can systematically explore all possible interleavings of a multithreaded
C program under a specific testing scenario, employing DPOR.

Scheduler
with

dynamic partial
order reduction

requ est/p erm it

re quest/ permit

request/permit

executable

compile

thread1

thread2

threadn

...

Multithreaded
C programs

Source Code
Transformer

Instrumented
programs

thread library
wrapper

re-run the program until all
interleavings are explored

report
errors

Fig. 1. Inspect’s workflow

Figure 1 shows the workflow of inspect. The source code transformer instru-
ments the program at the source code level to arrange communications with a
scheduler at global interaction points. Here, a thread library wrapper helps in-
tercept thread library calls. Finally, a centralized scheduler embodies the DPOR
algorithm, and controls the interleaved executions of the threads according to
it. In inspect, instrumentation can be done automatically for C programs. The
instrumented program is compiled, and the executable is run repeatedly under
the control of the scheduler until all relevant interleavings among the threads
required by DPOR are explored.

Before performing any operation that might have a side effect on other
threads, the instrumented program sends a request to the scheduler. The sched-
uler can either allow the requesting process to proceed, or block it for any finite
duration by postponing a reply.

Distributed DPOR Based Verification of Threaded Software 61

2.2 Definitions

A multithreaded program can be modeled as a concurrent system, which consists
of a finite set of threads, and a set of shared objects. Threads communicate with
each other only through shared objects. Operations on shared objects are called
visible operations, while the rest are invisible operations. We assume threads
can only be blocked by visible operations. A state of a multithreaded program
consists of the global state of all shared objects and the local state of each thread.
A transition moves the program from one state to the next state by performing
one visible operation of a certain thread, followed by a finite sequence of invisible
operations, ending just before the next visible operation of that thread.

Given a state s and a transition t, we use the following notations:

– t.tid denotes the identity of the thread that executes t.
– next(s, t) refers to the state which is reached from s by executing t.
– s.enabled denotes the set of transitions that are enabled from s. A thread p

is enabled in a state s if there exists some transition t such that t ∈ s.enabled
and t.tid = p.

– s.backtrack refers to the backtrack set at state s (Figure 2). s.backtrack is a
set of thread identities. Here, {t | t.tid ∈ s.backtrack} is the set of transitions
which are enabled but have not been executed from s.

– s.done denotes the set of threads examined at s. Similar to s.backtrack,
s.done is also a set of thread identities. Here, {t | t.tid ∈ s.done} is the set
of transitions that have been executed from s.

2.3 Dynamic Partial Order Reduction

Partial order reduction (POR) techniques [9] are those that avoid interleaving
independent transitions during search.

Given the set of enabled transitions from a state s, partial order reduction
algorithms attempt to explore only a (proper) subset of s.enabled, and at the
same time guarantee that the properties of interest will be preserved. Such a
subset is called persistent set.

Static POR algorithms compute the persistent set of a state s immediately
after reaching it. As for multithreaded programs, persistent sets computed stat-
ically will be excessively large because of the limitations of static analysis. For
instance, if two transitions leading out of s access an array a[] by indexing it
at locations captured by expressions e1 and e2 (i.e., a[e1] and a[e2]), a static
analyzer may not be able to decide whether e1=e2 (and hence whether the
transitions are dependent or not). Flanagan and Godefroid introduced dynamic
partial-order reduction (DPOR) [1] to dynamically compute smaller persistent
sets, capitalizing on runtime information.

In DPOR, given a state s, the persistent set of s is not computed immediately
after reaching s. Instead, DPOR populates the persistent set of s while searching
under s according to depth-first search (DFS). Figure 2 recapitulates the DPOR
algorithm. In procedure update backtrack info, we see how the backtrack state

62 Y. Yang et al.

1: StateStack S;
2: TransitionSequence T ;

3: DPOR() {
4: State s = S.top;
5: update backtrack info(s);
6: if (∃ thread p, ∃t ∈ s.enabled, t.tid = p) {
7: s.backtrack = {p};
8: s.done = ∅;
9: while (∃q ∈ s.backtrack \ s.done) {

10: s.done = s.done ∪ {q};
11: s.backtrack = s.backtrack \ {q};
12: let tn ∈ s.enabled, tn.tid = q;
13: T.append(tn);
14: S.push(next(s, tn));
15: DPOR();
16: T.pop back();
17: S.pop();
18: }
19: }
20: }

21: update backtrack info(State s) {
22: for each thread p {
23: let tn ∈ s.enabled, tn.tid = p;
24: let td be the latest transition in T that is dependent and may be co-enabled

with tn;
25: if (td �= null) {
26: let sd be the state in S from which td is executed;
27: let E be {q ∈ sd.enabled | q.tid = p, or q in T , q happened after td

and is dependent with some transition in T which was executed by
p and happened after q }

28: if (E �= ∅)
29: choose any q in E, add q.tid to sd.backtrack;
30: else
31: sd.backtrack = sd.backtrack ∪ {q.tid | q ∈ sd.enabled};
32: }
33: }
34: }

Fig. 2. Dynamic partial-order reduction

of a state called sd.backtrack is updated while exploring a state s reached from
sd.backtrack under DFS. Observe from line 29 that we add to sd.backtrack a
thread id q.tid, where sd is the most recent state, searching back from s, where
a transition that depends on transition tn occurs. When the DFS unwinds to
state sd.backtrack, the backtrack set is consulted and the threads recorded in
there are scheduled, provided ‘done’ is not true (line 9). Last but not least, in
inspect, we employ sleep sets [8] to avoid interleaving independent actions.

Distributed DPOR Based Verification of Threaded Software 63

3 Algorithm

In the DPOR algorithm, the thread ids recorded in the backtrack set of a
state s (i.e., s.backtrack) help generate different (non-equivalent) executions
out of s. These executions can be independently explored. It is this insight that
distributed inspect capitalizes. In fact, as DPOR is often best implemented
through stateless search, it is completely safe to explore the different transitions
in the backtrack sets of states concurrently, and with no (or very little) syn-
chronization. With the wide availability of cluster machines, the potential for
distributed verification is very high.

To have multiple nodes explore multiple backtrack points concurrently,
each cluster node must know: (i) the transition to be executed from a back-
track point; (ii) the portion of the search stack from the initial state to the
backtrack point; (iii) the transition sequence from the initial state to reach the
backtrack point. All this information is easily obtained from the search stack.
A centralized load balancer can help balance the work among multiple nodes,
employing very limited synchronizations.

In this section, we first present an overview of the load balancing algorithm
(Section 3.1) and the computation of each worker (Section 3.2). Our extended
DPOR algorithm is presented over Sections 3.3 and 3.4.

3.1 Load Balancing

In parallel inspect, we assign one node of an N -node cluster as the centralized
load balancer (Figure 3), and the rest of N −1 nodes as workers (a simple initial
approach to ease programming). The load balancer monitors the status of all
workers for the purpose of partitioning the workload. Two classes of workers are
maintained: busy workers – the set of workers busy exploring some parts of the
state space, and idle workers – the set of workers which are available for new
work (initially all workers).

The load balancer chooses an idle worker, starts checking the program under
test on the selected node, and adds this node to the busy workers set (Line 6-9).
Then it keeps waiting for messages from busy workers until the busy workers set
is empty (Line 10-26). At this stage, all workers have finished exploring their
part of state space, which means the whole state space has been explored. In
the last step (Line 27-28), the load balancer will send a termination message to
every worker to terminate them and exit.

The messages that the load balancer can receive from the workers fall into
two categories:

– a request from a busy worker to unload some work to idle workers.
– a report message from a busy worker after it finishes exploring the assigned

state space.

While exploring the assigned state space, if a worker ends up having more
than a certain number of backtrack points in its stack, it implies that too

64 Y. Yang et al.

much work might have been assigned to this worker. In this situation, this
worker will send a work unloading request to the load balancer. If there are idle
workers available, the load balancer passes along the idle worker’s information
(line 21-24). Otherwise, it tells the requester that there are no idle worker
available (Line 17-20).

1: Program P ;
2: WorkerSet busy workers, idle workers;

3: load balance() {
4: idle workers = { all workers in the cluster };
5: busy workers = ∅;
6: let na be a worker, na ∈ idle workers;
7: idle workers = idle workers \ {na};
8: start checking P on na;
9: busy workers = {na};

10: while (busy workers �= ∅) {
11: receive event e from any worker w;
12: if(e is work finish notification)
13: busy workers = busy workers \ {w};
14: idle workers = idle workers ∪ {w};
15: }
16: else if(e is new work request){
17: if(idle workers = ∅){
18: reply “no idle workers” to w;
19: continue;
20: }
21: let nb be a worker in idle workers;
22: idle workers = idle workers \ {nb};
23: busy workers = busy workers ∪ {nb};
24: send nb’s information to w;
25: }
26: }
27: for each worker ∈ idle workers
28: send a termination message to worker;
29: }

Fig. 3. The load balancing algorithm

3.2 Worker Routine

Each worker (Figure 4) keeps passively waiting for work unloading messages,
and has DPOR-enabled depth first search for each assigned state space (Line 7-
9). Here a modified DPOR routine (detailed in Section 3.3) is used. The worker
exits the while loop and terminates when a termination message is received (Line
4-5). The task description message that a worker receives (Line 6) for starting a
new backtrack point includes:

Distributed DPOR Based Verification of Threaded Software 65

1: worker node() {
2: while (true) {
3: wait for an incoming message, let it be msg;
4: if(msg is terminating)
5: return;
6: receive task description;
7: DPOR();
8: send report to the load balancer;
9: }

10: }

Fig. 4. The routine that runs on each worker

– the portion of the search stack from the bottom until the backtrack point.
– the transition sequence to reach the backtrack point from the initial state.
– the transition to be executed from the backtrack point

The transition sequence is used to help the worker which is assigned the task
to replay the program until the backtrack point. The state stack is necessary
to help the node to avoid exploring the backtrack points that other nodes have
explored.

Figure 5 illustrates how the workers and the load balancer collaborate. Let
a be a busy worker and b an idle one, with a trying to unload some work to b.
First a sends a request to the load balancer. If there are idle nodes, the load
balancer will return an idle node’s id to the worker. In our example, the load
balancer tells a that b is idle, whereupon node a will send an unload message
to b with all the information needed for b to start searching from an unexplored
backtrack point. When b finishes the assigned work, it sends a report to the load
balancer.

Fig. 5. The message flow between the load balancer and the workers

66 Y. Yang et al.

3.3 Distributed DPOR

Figure 6 shows our distributed DPOR algorithm. Comparing with the original
DPOR algorithm in Figure 2, we made the following changes:

– add communication and work unloading primitives (Line 7-8 in Figure 6).
– to avoid the redundant exploration of the state space among multiple nodes,

we compute the backtrack points in a different way from the original DPOR
algorithm. We will present this in Section 3.4.

In this distributed DPOR, each time after updating the backtrack points,
we will check whether the number of backtrack points in the search stack has
exceeded a value n (Line 7). Here n is the number of backtrack points in the
search stack. If so, the current node decides to unload some of this excess work
to the other nodes, as captured in procedure unload work.

To derive the most benefit per exchanged work unloading message, we observe
that backtrack points situated deeper in the stack typically have larger numbers
of program-paths emanating from them. Based on this heuristic, we choose the
deepest state s in the search stack that satisfies s.backtrack �= ∅ (Line 29). After
unloading a backtrack point from s, on the current node, we will put the thread
id of the transition in s.done to avoid it being explored by the current node
(Line 37-38).

The unload work routine first checks with the load balancer to see if there
are any idle nodes. If not, the routine will return immediately (Line 27-28).
Otherwise, it finds and sends information pertaining to the deepest backtrack
point, along with the transition sequence from the initial state to that backtrack
point, to the idle node. The algorithm in Figure 6 does the unload work request
each time it enters the DPOR routine. This may lead to repeated failures if there
are no idle nodes available for a while (not observed in our experiments). Various
heuristic solutions are possible in case it arises in practice (e.g., send aggregated
requests more infrequently).

3.4 Updating the Backtrack Set

In dynamic partial order reduction, the persistent set of a given state is com-
puted dynamically. Procedure update backtrack info in Figure 2 shows how the
backtrack points are computed. One problem we encountered with the original
DPOR algorithm is that with more than two threads, it may result in redun-
dancy exploration of the same branch in parallel mode.

The example in Figure 7 illustrates this problem. The program has three
threads, all of which first acquire the global lock t, and then release the lock.
Obviously, there are 3! = 6 different interleavings for this concurrent program
with DPOR.

Assume we use a cluster that has only two worker nodes. We also assume that
the bound n in Figure 6 for unloading is 1. Let the two workers be n0 and n1,
and let the three threads be t0, t1 and t2. Figure 8 shows how the work would be

Distributed DPOR Based Verification of Threaded Software 67

1: StateStack S;
2: TransitionSequence T ;
3: Transition t;

4: DPOR() {
5: State s = S.top;
6: update backtrack info(s); � modified, details in Section 3.4
7: if (there are more than n backtrack points in the S) � added
8: unload work(); � added
9: if (∃ thread p, ∃t ∈ s.enabled, t.tid = p) {

10: s.backtrack = {p};
11: s.done = ∅;
12: while (∃q ∈ s.backtrack \ s.done) {
13: s.done = s.done ∪ {q};
14: s.backtrack = s.backtrack \ {q};
15: let tn ∈ s.enabled, tn.tid = q;
16: T.append(tn);
17: S.push(next(s, tn));
18: DPOR();
19: T.pop back();
20: S.pop();
21: }
22: }
23: }

24: unload work() {
25: send a work unload request to the load balancer;
26: receive reply rep from the load balancer;
27: if(rep says no idle node available)
28: return;
29: let s be the deepest state in stack S that s.backtrack �= ∅;
30: let Ts be the transition sequence to reach s from the initial state;
31: let Ss be a copy of the sequence of states from the bottom of S to s;
32: choose t ∈ s.backtrack;
33: let s′ be the last state in Ss (i.e. s′ is a copy of s);
34: s′.backtrack = {t};
35: s′.done = s′.done ∪ (s.backtrack \ {t});
36: send (Ss, Ts, t) to the idle node;
37: s.backtrack = s.backtrack \ {t};
38: s.done = s.done ∪ {t};
39: }

Fig. 6. DPOR for parallelization

distributed between the two nodes if we follow the update backtrack info routine
shown in Figure 2.

Let n0 start concretely executing the program first, and n1 is idle. When n0
reaches the end of its trace, we can observe the interleaving of three threads as in

68 Y. Yang et al.

global: mutex t;

thread t0: thread t1: thread t2:

lock(t); lock(t); lock(t);
unlock(t); unlock(t); unlock(t);

Fig. 7. A simple example

s0

s1

s2

s3

s4

s5

s6

({t1},{t0})

({t2},{t1})

t0.lock

t0.unlock

t1.lock

t1.unlock

t2.lock

t2.unlock

(a) the initial trace

n0

s0

s1

s2

({},{t0, t1})

({t2},{t1})

t0.lock

t0.unlock

...

s0

...

(b) distribute tasks between two nodes

n0 n1

({t1},{t0})

s0

s1

s2

s′3

s0

s′1

s′2

({t2},{t0, t1})

({},{t1, t2})

t0.lock

t0.unlock

t2.lock

({t2},{t0, t1})

({t1},{t2})

t1.lock

t1.unlock

t2.lock

...

...

(c) redundant backtrack points

n0 n1

Fig. 8. An example of redundant backtrackings. The sets maintained are (s.backtrack,
s.done).

Figure 8(a). Here, two backtrack points at s0 and s2 have been recorded. When
the work node n0 detects this (i.e., more than one backtrack point in the search
stack), it will send a request to the load balancer for unloading work. First the
load balancer will tell n0 that n1 is idle. Second, n0 will send the backtrack point,
transition sequence, copy of the search stack to n1, following the unload work
routine in Figure 6. Then the work node n1 will receive the message and ready
for exploring the state space assigned to it. The left half of Figure 8(b) captures
this scenario.

At this point, with respect to the situation in Figure 8(b), n0 will explore
transition t2.lock from the backtrack point s2, while n1 will explore transition
t1.lock from s0. Both nodes will update the backtrack information according to
their own search stacks. The scenario in Figure 8(c) results, in which both n0 and

Distributed DPOR Based Verification of Threaded Software 69

n1 compute and place t2 in s0.backtrack whose transition should be explored
from s0. This will result in redundant explorations being conducted by n0 and
n1. In the worst case, this kind of redundancy may have all the workers explore
the same interleaving, and result in little or no speedup (Our experiments shown
in Section 4 confirms this).

1: StateStack S;
2: TransitionSequence T ;

3: update backtrack info(State s) {
4: for each thread p {
5: let tn ∈ s.enabled, tn.tid = p;
6: for each td ∈ T that is dependent and may be co-enabled with tn {
7: let sd be the state in S from which td is executed;
8: let E be {q ∈ sd.enabled | q.tid = p, or q in T , q happened after td

and is dependent with some transition in T which was executed by
p and happened after q }

9: if (E �= ∅)
10: choose any q in E, add q.tid to sd.backtrack;
11: else
12: sd.backtrack = sd.backtrack ∪ {q.tid | q ∈ sd.enabled};
13: }
14: }
15: }

Fig. 9. Modified update backtrack info

This problem is caused by the algorithm shown in Figure 2 computing
s.backtrack incrementally with respect to state s. In parallel inspect, when
a worker unloads work to some idle node, it is possible that the full backtrack
set has not yet been associated with states in the copy of the stack being passed
along. To solve this problem, given a state s, one must attempt to compute all
transitions associated with s.backtrack as aggressively as possible. We observe
that the update backtrack info routine shown in Figure 2 only updates the latest
state in the search stack from which the enabled transition in dependent and
may be co-enabled with the next transition (Line 25-32 in Figure 2).

The modified update backtrack info routine is shown in Figure 9. For each to
be executed transition t, the new routine will check the stack to find all states
from which a dependent and may be co-enabled transition was executed (Line 6
of Figure 9), and update the correspondent backtrack set. With the new routine,
we will get the distributed scenario as shown in Figure 10. Note that this is only
a heuristic; we do not know of a way to retain loose synchronizations between
the threads and still avoid this redundancy.

Correctness: The soundness of the final DPOR algorithm described (employed
in parallel inspect) follows from the fact that the parallel algorithm is guaranteed

70 Y. Yang et al.

s0

s1

s2

s3

s4

s5

s6

({t1, t2},{t0})

({t2},{t1})

t0.lock

t0.unlock

t1.lock

t1.unlock

t2.lock

t2.unlock

(a) the initial trace

n0

s0

s1

s2

({t2},{t0, t1})

({t2},{t1})

t0.lock

t0.unlock

...

s0

...

(b) distribute tasks between two nodes

n0 n1

({t1},{t0, t2})

Fig. 10. With the modified update backtrack set

to compute at least all the backtrack set entries computed by the sequential
algorithm for every state. We alter only where this information is computed.

4 Implementation and Experiments

We implemented the parallel inspect using MPI [10,11]. MPI (Message Passing
Interface) is a message-passing library specification, designed to ease the use of
message passing by end users. It is the de facto standard of high performance
computing. MPI makes writing parallel program much easier, and is supported
by virtually all supercomputers and clusters. We used the MPI routines MPI Send
and MPI Recv for communication among nodes.

One interesting problem we encountered while we implemented the parallel
inspect is that the cluster’s network file system can be a bottleneck for a parallel
runtime checker if there are disk write operations in the program under test. We
note that this problem can be easily avoided by using the local disks.

We conducted our experiments on a 72-node cluster with 2GB memory and
two 2.4GHz Intel XEON processors on each node. We compiled the program with
gcc-4.1.0 and -O3 option. We used LAM-MPI 7.1.1 [12] as the message passing
interface. The runtimes that we report are the average runtimes calculated over
three runs.

Table 1 shows some benchmarks we have used to test the parallel inspect.
In Table 1, the second column is the number of threads in each benchmark,

Distributed DPOR Based Verification of Threaded Software 71

Table 1. Checking time with the sequential inspect

benchmark threads runs check using sequential inspect (sec)
fsbench 26 8,192 291.32
indexer 16 32,768 1188.73

aget 6 113,400 5662.96
bbuf 8 1,938,816 39710.43

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

indexer
fsbench

Fig. 11. The speedup of the two benchmarks, indexer and fsbench from [1]. As the state
spaces of these two benchmarks are relatively small, with the number of worker nodes
increasing, the communication overhead increases more rapidly than the time reduction
we get from distributing the work to more nodes. As a result, we see a degradation
of speedup when we use more than 52 nodes to do parallel checking for indexer, and
more than 48 nodes for fsbench.

the third column shows the number of runs needed for runtime checking the
program, and the last column shows the time that the sequential inspect needs
for checking the program.

The first two benchmarks, indexer and fsbench, are from [1]. Indexer captures
the scenarios in which multiple threads insert messages into a hash table concur-
rently. Fsbench is an abstraction of the synchronization idiom in Frangipani file
system. The third benchmark, aget [13] is an ftp client in which multiple threads
are used to download different segments of a large file concurrently. The last
benchmark, bbuf is an implementation of a bounded buffer with four producers
and four consumers that have put/get operations on it.

Indexer and fsbench are relatively small benchmarks. Using one node in the
cluster, the sequential inspect takes about 25 minutes to check indexer, and

72 Y. Yang et al.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

with algo in Fig. 9
with algo in Fig. 2

Fig. 12. Speedups on the bounded buffer example

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

with algo in Fig. 9
with algo in Fig. 2

Fig. 13. Speedups on the aget example

5 minutes to check fsbench. Using parallel inspect and at most 65 nodes (one
node as the load balancer and 64 worker nodes), we can check both of them
within 40 seconds.

Figure 11 shows the speedup we got using the parallel inspect against the
sequential inspect on indexer and fsbench. As the performance of using the
modified update backtrack info in Figure 9 does not differ significantly from using

Distributed DPOR Based Verification of Threaded Software 73

the original update backtrack info in Figure 2, we do not show the comparison
in Figure 11.

Figure 12 shows the speedup we got using the parallel inspect on bbuf. The
sequential inspect needs more than 11 hours to finish checking the program.
During this period of time, inspect needs to re-run the program for more than
1.9 million times. As shown in Figure 12, the parallel inspect can give us almost
linear speedup. It turns out that we can get a speedup of 63.2 out of 64 worker
nodes (totally 65 nodes, including the load balancer), and reduce the checking
time to 11 minutes. In this figure, we also show the comparison between the
speedup we got using the modified update backtrack info in Figure 9 and the
original update backtrack info in Figure 2. As we can see, without the modifica-
tion in Figure 9, we get little speedup while the number of nodes increases.

Figure 13 shows the speedup using the parallel inspect on aget. There are
data races in the original aget. We fixed those data races and did experiments on
the fixed version. We reduced the size of the data package, which aget gets from
the ftp server, to 512 bytes, to avoid the non-determinism introduced by the
network environment. The result again confirms that parallel inspect can give
out almost linear speedup, and our extension on the original DPOR is efficient.

5 Related Work

Parallel and distributed model checking has been a topic of growing interest, with
a special conference series (PDMC) devoted to this topic. An exhaustive litera-
ture survey is beyond the scope of this paper. Quite a few distributed and parallel
model checkers based on message passing have been developed for Murphi and
SPIN [14,15,16,17,18]. Stern and Dill [14] developed a parallel Murphi which dis-
tributes states to multiple nodes for further exploration according th the state’s
signature. They pointed out the idea of coalescing states into larger messages for
better network utilization in the context of model checking. Eddy [15] extends
the work and studies the parallel and distributed model checking under the mul-
ticore architecture. Kumar and Mercer [17] improve the load balancing method
in parallel Murphi. Recently Holzmann and Bosnacki [18] design a multicore
model checking algorithm to improve SPIN to fully utilize the multicore chips.

Brim et al. [19] propose a distributed partial order reduction algorithm for
generating a reduced state space. The algorithm exploits features of the partial
order reduction which makes the idea of distributed DFS-based algorithm fea-
sible. Palmer et al. [20,21] propose another distributed partial order reduction
algorithm based on the two-phase partial order reduction algorithm.

As far as the authors know, our work is the first effort on using parallelism to
speed up runtime model checking for multithreaded programs.

6 Conclusion

Checking time has been the major bottleneck for runtime model checkers such
as inspect. We design a distributed dynamic partial order reduction algorithm,

74 Y. Yang et al.

and develop a parallel version of inspect, using parallelism to speed up model
checking. Our experiments confirm that parallel inspect is quite robust and
scales well on a wide variety of nodes. It can give out almost linear speedup
compared with the sequential inspect.

Acknowledgment

We gratefully acknowledge the computational support provided by the Scientific
Computing and Imaging Institute at the University of Utah, thank Eric Swenson
and other staff members helping us with the experiments, and thank Sarvani
Vakkalanka for reading the draft.

References

1. Flanagan, C., Godefroid, P.: Dynamic Partial-order Reduction for Model Checking
Software. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 110–121. ACM Press, New
York (2005)

2. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: UUCS-07-008: Run-
time Model Checking of Multithreaded C Programs. Technical report (2007),
http://www.cs.utah.edu/research/techreports/2007/ps/UUCS-07-008.ps

3. Godefroid, P.: Model Checking for Programming Languages using Verisoft. In:
POPL, pp. 174–186 (1997)

4. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

5. Robby, D.M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software
model checking framework. In: ESEC / SIGSOFT FSE, pp. 267–276 (2003)

6. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI ’04. Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, pp. 1–13. ACM Press, New York (2004)

7. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A Model Checker
for Concurrent Software. In: Cointe, P. (ed.) ECOOP 1996. LNCS, vol. 1098, pp.
484–487. Springer, Heidelberg (1996)

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer, Heidelberg (1996)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

10. Snir, M., Otto, S.: MPI-The Complete Reference: The MPI Core. MIT Press,
Cambridge (1998)

11. http://www.mpiforum.org/docs/docs.html
12. http://www.lammpi.org/
13. http://www.enderunix.org/aget/
14. Stern, U., Dill, D.L.: Parallelizing the Murhi Verifier. In: Grumberg, O. (ed.) CAV

1997. LNCS, vol. 1254, pp. 256–278. Springer, Heidelberg (1997)
15. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.:

Parallel and Distributed Model Checking in Eddy. In: Valmari, A. (ed.) Model
Checking Software. LNCS, vol. 3925, pp. 108–125. Springer, Heidelberg (2006)

http://www.cs.utah.edu/research/techreports/2007/ps/UUCS-07-008.ps
http://www.mpi forum.org/docs/docs.html
http://www.lam mpi.org/
http://www.enderunix.org/aget/

Distributed DPOR Based Verification of Threaded Software 75

16. Sivaraj, H., Gopalakrishnan, G.: Random Walk Based Heuristic Algorithms for
Distributed Memory Model Checking. Electr. Notes Theor. Comput. Sci. 89(1)
(2003)

17. Kumar, R., Mercer, E.G.: Load Balancing Parallel Explicit State Model Checking.
Electr. Notes Theor. Comput. Sci. 128(3), 19–34 (2005)

18. Holzmann, G., Bosnacki, D.: Multi-core model checking with Spin (2007)
19. Brim, L., Cerna, I., Moravec, P., Simsa, J.: Distributed Partial Order Reduction

of State Spaces. PDMC (1) (2004)
20. Palmer, R., Gopalakrishnan, G.: Partial Order Reduction Assisted Parallel Model

Checking. PDMC (2002)
21. Palmer, R., Gopalakrishnan, G.: A distributed partial order reduction algorithm.

In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, p. 370. Springer,
London, UK (2002)

Some Solutions to the Ignoring Problem

Sami Evangelista and Christophe Pajault

CEDRIC - CNAM Paris
2, rue Cont, 75003 Paris

{evangeli,christophe.pajault}@cnam.fr

Abstract. The ignoring problem refers to the fact that some actions
may be infinitely postponed by a state space search algorithm that makes
use of partial order reduction (POR). The prevention of this phenomenon
is mandatory if one wants to verify more elaborate properties than the
deadlock freeness, e.g., safety or liveness properties. We present in this
work some solutions to this problem. In order to assess the quality of our
propositions, we included them in our model checker Helena. We report
the result of some experiments which show that our algorithms yield
better reductions than state of the art algorithms like those implemented
in the Spin tool.

Keywords: explicit model checking, partial order reduction, ignoring
problem, cycle proviso.

Model checking [5], or state space analysis, is a formal method to prove that
finite state systems match their specification. Given a model of the system and
a property, usually expressed in a temporal logic such as LTL, it explores all the
possible configurations, i.e., the state space, of the system to check the validity
of the property. Despite its simplicity, its practical application is limited due to
the well-known state explosion problem: the state space can be far too large to
be explored in a reasonable time.

Partial-order reduction (POR) [18,16,11] is an approach to cope with this
problem by tackling one of its main source, the concurrent execution of several
components. It is based on the following observation: due to the interleaving
semantic of concurrent systems, a set of different executions can have exactly
the same effect on the system and be only a permutation of the same sequence.
Thus, an efficient way to reduce the state explosion would be to explore only a
single or some representative executions and ignore all the others permutations
that are equivalent to the chosen ones.

On the basis of this principle, several authors proposed the idea of a selective
search algorithm: at each state visited by the algorithm, a set of transitions is
computed and only the transitions of this set are used to generate the immediate
successors of the state. The execution of the other transitions is postponed and
delegated to a future state. Consequently some states may never be explored. In
the best case, the state space is reduced in an exponential way.

The ignoring problem, first identified in [18], is a pathological situation that
may arise if one does not choose sets carefully: a transition may be infinitely

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 76–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Some Solutions to the Ignoring Problem 77

delayed. This means that the transition selection function can be totally un-
fair with respect to some process of the system. Though the prevention of this
phenomenon is not mandatory if one wants to check if the system deadlocks, it
must be resolved for “higher level” properties, e.g., safety or liveness properties.
The idea is to enforce an additional condition, called proviso, which ensures that
the selection function will never forget a transition. By strengthening the accep-
tance conditions of a set, the proviso may unfortunately cause new states to be
generated. It is thus crucial to have an efficient proviso that introduce the least
number of states.

We propose in this paper two new versions of this proviso which show good
results as our experimentations attested it. The first one, designed for safety
properties, can be seen as an optimization of the Spin model checker [12] proviso
while the second one targets liveness properties.

The paper is structured as follows. Section 1 contains some basic elements on
model checking and partial-order reduction that are needed for the understand-
ing of this paper. The next section introduces different approaches proposed to
deal with the ignoring problem. In section 3 we explain our motivations and
we show why, in our sense, there is still a need for other algorithms. Our con-
tribution is the two new versions of the proviso presented in sections 4 and 5.
We report in section 6 the results of some experiments done with our model
checker Helena [8] which implements our propositions as well as state of the art
algorithms. At last, section 7 summarizes our contribution.

1 Formal Background

1.1 State Transition Graphs

We will develop our ideas in the frame of state transition graphs (STG). An
STG is a directed graph that describes all the possible evolutions of a system.

Definition 1 (State transition graph). A state transition graph (STG), is a
4-tuple (S, s0, A, →) where S is a finite set of states; s0 ∈ S is the initial state
of the system; A is a set of actions; →⊆ S ×A×S is the transition relation,
which is such that (s, a, s′) ∈→ ∧(s, a, s′′) ∈→⇒ s′ = s′′.

Let (S, s0, A, →) be an STG. If (s, a, s′) ∈→ then we note s
a→ s′ and we say that

s′ is a successor of s. An action a ∈ A is enabled for s ∈ S, denoted s
a→, iff there

exists s′ ∈ S such that s
a→ s′. We can also note s → s′ if there exists a ∈ A

such that s
a→ s′. The set of enabled actions at a state s ∈ S, denoted en(s), is

defined by en(s) = {a ∈ A | s
a→}. A state s is a dead state iff en(s) = ∅. For

any natural number n ∈ N, states si ∈ S and actions ai ∈ A with i ∈ {1 . . . n},
s1

a1→ . . . sn−1
an−1→ sn is called an execution sequence of length n iff si

ai→ si+1 for
all i ∈ {1..n − 1}. State sn is said to be reachable from s1. A state is reachable
iff it is reachable from s0.

78 S. Evangelista and C. Pajault

1.2 Partial-Order Reduction

Partial-order reductions [18,16,11] restrict the part of the state space that needs
to be explored during verification in such a way that all properties of interest
are preserved. The reduction is achieved on-the-fly, i.e., during the state space
exploration to avoid the construction of the full state space. The underlying
principle is to select for each state some enabled actions that will be executed
while the others are postponed and delegated to a future state. This selection
mechanism is formalized through the notion of reduction function.

Definition 2 (Reduction function). Let (S, s0, A, →) be an STG. A reduc-
tion function r is a mapping from S to 2A such that ∀s ∈ S, r(s) ⊆ en(s).

When en(s) = r(s) for some state s the function does not provide any reduction.
We say that s is fully expanded. Otherwise, it is partially expanded. An action a
is ignored in s iff a ∈ en(s) \ r(s).

By applying such a reduction function, one can build a reduced graph.

Definition 3 (Reduced STG). Let (S, s0, A, →) be an STG and r be a reduc-
tion function. The reduced STG (Sr, s0r, Ar, →r) is defined by:

– s0r = s0, Ar = A.
– s ∈ Sr iff there is a finite execution sequence s0

a0→ . . .
an−1→ sn such that

s = sn and ai ∈ r(si), ∀si ∈ {s0 . . . sn−1}.
– (s, a, s′) ∈→r iff s ∈ Sr, (s, a, s′) ∈→ and a ∈ r(s).

Partial-order reduction for dead states detection. It is clear that a selec-
tion function has to respect some rules to preserve properties of interest. This led
to several variations of the reduction according to the kind of property specified.
However, since the general principle of the partial-order reduction theory is to
exploit the commutativity of concurrent actions to limit useless interleavings, all
are based on the key notion of independence of actions. Intuitively, two actions
a and b are independent if they cannot disable each other and if they commute
in any state of the system.

Definition 4 (Independence). An independence relation is a symmetric and
anti-reflexive relation I ∈ A × A satisfying the two following conditions for each
state s ∈ S and for each (a, b) ∈ I.

Enabledness. if a, b ∈ en(s) and s
b→ s′ then a ∈ en(s′).

Commutativity. if a, b ∈ en(s) then s
a→ s′′ b→ s′ and s

b→ s′′′ a→ s′.

Two actions a and b are independent iff (a, b) ∈ I. Otherwise, they are dependent
and (a, b) belongs to the relation (A × A) \ I.

This independence relation is usually computed at compile time, i.e., before
the exploration of the state space, on the basis of a static analysis of the model.
An action that only manipulate local variables, e.g., an assignment to a local
variable will be typically considered as independent from any other action.

We are now able to enumerate the two following conditions which allow us to
compute a persistent set (PS) of transitions for a state s.

Some Solutions to the Ignoring Problem 79

C0. r(s) = ∅ iff en(s) = ∅.
C1. an action that is dependent on an action of r(s) cannot be executed without

a transition in r(s) occurring first.

A reduction function that compute persistent sets preserves all the dead states
of the system [11] and can thus be used for the detection of such states. The
only purpose of C0 is to guarantee that the search algorithm with reduction
progresses if the normal one does. The intuition behind condition C1 is that
after the execution of any sequence that only includes transitions outside r(s)
all the transitions of r(s) will still be executable. Thus we can execute them
immediately and delay the execution of the others.

Partial-order reduction for safety properties. A search algorithm that
compute persistent sets may infinitely delay the execution of some transitions
and miss states of interest. The following additional constraint, called proviso,
can prevent this phenomenon, called action ignoring problem [18].

C2S. For any state s ∈ Sr, a ∈ en(s) there is s′ reachable from s in the reduced
graph such that a ∈ r(s′).

This condition ensures that any enabled action will be executed in a state reach-
able from s. If the reduction function satisfies this condition, it can be showed
that the reduced graph is, what Godefroid called, a trace automaton. Trace au-
tomata have the nice property to preserve the reachability of local states: if a
process can reach a given state in the initial graph, then it will also be able to
reach this state in the reduced graph. Trace automata can therefore be used to
verify a large range of safety properties that include, for example, assertions on
local variables.

Partial-order reduction for liveness properties. To preserve liveness prop-
erties we must ensure that any cycle of the graph does not contain an enabled
transition that is never executed (in the states of the cycle). This leads to a
strengthened version of the proviso, denoted C2L.

C2L. A cycle is not allowed if it contains a state in which some action a is
enabled, but never included in r(s) for any state s on the cycle.

This condition is usually replaced by the following one, implied by the C1 con-
dition, that can be more easily implemented.

C2L’. Along each cycle of the reduced graph, there is some state s that is fully
expanded.

Coupled with another condition (see [5]) that preserves the interleavings of some
interesting actions (the visible actions), the C2L proviso can be used to compute
ample sets [16]. A selection function that computes such sets builds a reduced
graph that is equivalent to the initial one with respect to LTL-X formulae.

80 S. Evangelista and C. Pajault

2 Related Works

The safety and liveness provisos are stated as properties of the reduced STG
whereas we may want to perform the reduction on-the-fly. Therefore they are
usually reformulated as conditions that can be efficiently checked during the
construction of the reduced STG and, hence, are tightly linked to the way the
search algorithm proceeds and the data structures it handles.

For depth first search (DFS), we can use the fact that every cycle contains
a transition that reached the search stack at some point during the search. It
is then sufficient to forbid to partially expanded states to reach the stack. This
gives a first version of the liveness proviso, denoted C2L

s [17]. This proviso is the
one implemented by the Spin model checker [12].

C2L
s . If r(s) 	= en(s) then no action in r(s) may reach a state of the stack.

For safety properties a weaker condition can be defined. We may indeed let a
transition reach a state on the stack, provided that another transition leads to
a state outside this stack [11].

For breadth first search (BFS), a similar version has been recently introduced
in [3].

C2L
q . If r(s) 	= en(s) then all the actions of r(s) reach a state of the queue.

The intuition behind this condition is that we do not have to worry about ig-
noring some actions of s since we delegate the problem to the successors of s
which all belong to the queue and will be processed later. Once again, the weaker
version of this proviso for safety proviso denoted C2S

q requires that at least one
action leads to a state of the queue.

This idea has been generalized in [4] to general state exploring algorithms,
that is, any explicit algorithm that partitions the state space into three mutually
disjoint sets: the open states that have been met but not expanded yet, the closed
states that have been met and expanded (and can potentialy be reopened),
and the unmet states. This new proviso can, for example, be used in directed
model checking [7]. An open (or unmet) state is safe in the sense that it can be
reached by a partially expanded state without risking to introduce some ignoring
phenomenon: the resolution of this problem is delegated to this state that will
be explored later. On the other hand, closed states are dangerous destinations
since they have already been explored.

In [13], a new technique is proposed which aim is to set up the entire reduction
mechanism at compile time. The method is then independent from the search
algorithm and can be used, for example, in symbolic model checking. Considering
a concurrent system, which is a composition of sequential processes, the authors
exploit the fact that a cycle in the state space results from some cycle(s) in the
sequential processes of the model. The idea is to statically choose an action in
each of these cycles and to mark it as sticky. The proviso can then be reduced
to the following condition: a persistent set that does not include all the enabled
actions may not contain a sticky action.

Some Solutions to the Ignoring Problem 81

The two-phase algorithm presented in [14] uses an alternative to the in-stack
check to verify both safety and liveness properties. It alternates phases in which
it fully expand states and phases of expansion of deterministic states, i.e., states
in which singleton persistent sets can be computed. For some models the two-
phase algorithm can achieve significantly better results than a depth first search
that uses the C2L

s proviso.

3 Motivations

Partial order methods can drastically reduce the verification requirements by
eliminating redundant interleavings. In the best case the reduction factor is
exponential. However, in many cases they are not as efficient as one would expect.
This is mainly due to two factors.

First of all, the computation of persistent sets relies on a static analysis of the
model that sometimes produces coarse approximations. Dynamic partial order
reduction, a proposition to cope with this problem, has been recently introduced
by Flanagan and Godefroid [9].

Another source of inefficiencies can come from the resolution of the ignoring
problem. Indeed we can identify models for which the use of the “historical”
proviso based on an in-stack check yields poor results. We will illustrate this
problem with the help of the Petri net depicted on figure 1(a). This net models
a solution to the dining philosophers problem in which a philosopher takes two
forks atomically. Some places have been duplicated for the sake of clarity. They
are drawn as dashed circles. Places i1, i2, i3 and i4 model the idle state of the
4 philosophers while the eating state is modeled by e1, e2, e3 and e4. Place fi

models the state of the fork of philosopher i. To seat at the table (transition ti),
the philosopher i must take his fork fi and the fork of its neighbor, i.e., fj with
j = i mod n + 1. Once is meal finished he goes back to the idle state and puts
back his forks (transition ri).

We have drawn on figure 1(b) the state space of this net built with the C2L
s

proviso. Fully expanded states are double circled1 and states are numbered ac-
cording to the order they are visited by the algorithm. It appears that this
combination does not reduce the number of states but can only save the execu-
tion of two transitions. Indeed, the in-stack check often succeeds and this leads
to a full expansion of most states. However, it is clear that an optimal proviso
(see figure 1(c)) would not introduce any state since all the cycles of the state
space reduced with PS contains the initial state which is fully expanded.

With four philosophers this optimal proviso only saves two states but if we
generalize the problem to n philosophers the reduction is much more impressive.
Indeed, the full state space and the state space reduced with proviso C2L

s both
have a size in O(2n) while the state space reduced with an optimal proviso has
n + 1 states.

1 We will adopt this graphical convention throughout the paper.

82 S. Evangelista and C. Pajault

i1 i2 i3 i4 f1f1

e1 e2 e3 e4

r1 r2 r3 r4

t1 t2 t3 t4

f2

i1 i2

f3

i3

f4

i4

(a) A Petri net model of the dining philoso-
phers

63

2 5

1

4 7

r2

r1
t1

t2

r3

t3

r4
t4

t1
t4t3

r1 r2

t2

(b) PS + C2L
s

2 3 54

1

(c) PS + an optimal
proviso

Fig. 1. An example that illustrates our motivations

Our intuition is that the ignoring problem is a phenomenon that seldom occurs
in practice. By taking a too defensive approach traditional implementations of
the cycle proviso such as those based an in-stack check can introduce much more
states than necessary. Though our example is not representative as it corresponds
to the worst case we can think of, it still illustrates the fact that the C2L

s proviso
is not adapted for some classes of models.

The static proviso [13] may overcome this problem if the sticky transitions
are chosen appropriately, e.g., transitions t1, t2, t3 and t4 in our example, but
since it is based on a static analysis of the model its performances may vary
according to the input formalism of the model checker. For example, since there
is no clear notion of process or loop in high-level Petri nets, the language of our
model checker Helena [8], a detection of sticky transitions may produce a coarse
approximation containing many useless transitions.

The two phase algorithm [14] also achieves an optimal reduction on this ex-
ample, but it is based on a principle - always selecting singletons - that can,
for some models, be too much strong. For instance, it does not behave very well
when processes can act indeterministically. Moreover, it prevents the use of some
elaborated techniques that refine the dependency relation, e.g., [2].

Our objective is therefore to devise a proviso that (1) can be an interesting
alternative when others fail to efficiently reduce the state space; (2) is not linked
to a particular formalism and can be implemented by any model checker.

Some Solutions to the Ignoring Problem 83

4 A Proviso for Safety Properties

We propose in this section a new version of the safety proviso that is based on a
depth-first search algorithm. This one also performs checks in the stack to avoid
an infinite postponement of actions but it considerably relaxes the conditions
under which a transition is acceptable.

Figure 2 gives the POR algorithm in a pseudo-code form. The principle of
our proviso C2S

e is to associate to each state s of the stack an integer expanded
that records the number of fully expanded states on the stack below s, i.e.,

k+1

k

DFS Stack

0
s0

s′

s′′

s

a k

between s0 and s. The global variable expanded keeps track of
this number. Then, when an action a leads from a state s to a
state s′ on the stack we compare the number of fully expanded
states currently on the stack, i.e., the value of s.expanded, to
the number associated to s′, i.e., s′.expanded. If the first one is
strictly greater then this obviously means that there is a fully
expanded state s′′ on the stack between s′ and s. Hence, s′′ is
reachable from s and the enabled actions of s will necessarily
be executed at a state on the path from s to s′′. This can be
illustrated with the help of the opposite figure. Enclosed in each
state is the value of its expanded attribute.

Proviso C2S
e is clearly better than C2S

s , in the sense that it will always com-
pute smaller persistent sets (but not necessarily smaller graphs). Indeed it can
be viewed as an optimization of C2S

s : by removing the expanded attribute and
by changing the condition of function C2S

e we obtain the same proviso. The price
to pay is a slight increase of the memory requirements. Our proviso requires an
additional integer per state (typically 32 bits) for the expanded attribute. How-
ever, some savings can be done by removing the expanded attribute of the states
that leave the stack. Indeed, once popped from the DFS stack this attribute is
not used anymore by the algorithm. In addition, the space required to store this
information is usually small compared to the size of states in a large system.
Lastly, we will see in section 6 that this extra memory consumption should, in
most cases, be largely compensated by the reduction achieved.

To show the correctness of our proviso we prove that the reduction function
has a witness [1]. This notion is defined below.

Definition 5 (Witness function). Let T = (S, s0, A, →) be an STG, r a
reduction function of T and T r = (Sr, s0r, Ar, →r) be the reduction of T with
respect to r. A mapping W : Sr → N is a witness for r iff:

∀s ∈ Sr, r(s) 	= en(s) ⇒ ∃(s, a, s′) ∈→r such that W (s′) < W (s)

The intuition behind this idea of witness function is that for any state s of the
reduced graph that is partially expanded we can find a successor s′ of s with
W (s′) < W (s) and to which we delegate the execution of the actions ignored
at s. By reitering this operation on s′ we obtain a sequence W (s), W (s′), . . . of
decreasing numbers. As the state space is finite, we will necessarily find a state
s′′ which is such that W (s′′) ≥ W (s′′′) for any of its successors s′′′. Obviously

84 S. Evangelista and C. Pajault

dfs (s)
1 H ← H ∪ {s}
2 s.expanded ← expanded
3 s.inStack ← true
4 let P be a persistent set that
5 satisfies C2S

e (s, P) or en(s)
6 if there is no such set
7 if P = en(s) then
8 expanded ← expanded + 1
9 for a ∈ P do
10 let s

a→ s′

11 if s′ /∈ H then dfs(s′)
12 if P = en(s) then
13 expanded ← expanded− 1
14 s.inStack ← false

C2S
e (s, P)

1 for a ∈ P do
2 let s

a→ s′

3 if
4 s′ /∈ H or
5 ¬s′.inStack or
6 s.expanded > s′.expanded
7 then
8 return true
9 return false

search ()
1 H ← ∅
2 expanded ← 0
3 dfs(s0)

Fig. 2. A depth first search algorithm that implements our safety proviso

in such state, r(s′′) = en(s′′) and all the actions ignored in s that haven’t been
selected on the path from s to s′′ belong to r(s′′). It is therefore sufficient to
prove that the reduced STG has a witness [1].

Lemma 1. Proviso C2S
e implies the safety cycle proviso C2S.

Proof. Let W : Sr → N be a function that enumerates the states of the re-
duced STG (Sr, s0r, Ar, →r) in the order they are removed from the stack : s0
is mapped to |Sr| − 1 while the first state to be popped is mapped to 0. Let FW

be the states of Sr that violate the witness conditions, i.e., defined by

FW = {s ∈ Sr | r(s) 	= en(s) ∧ ∀(s, a, s′) ∈→r, W (s′) ≥ W (s)}
Let us observe the algorithm when it processes a state s ∈ FW . It holds for all
the successors s′ ∈ Sr of s that s′ ∈ H ∧s′.inStack. Otherwise s′ leaves the stack
before s and W (s′) < W (s) (⇒ s /∈ FW). In addition there must be a state s′

such that s
a→r s′ for some a ∈ r(s) and s′.expanded < s.expanded. Otherwise,

r(s) = en(s) (⇒ s /∈ FW).
Hence, there is a path s1 →r s2 →r . . . →r sn such that s′ = s1, s1.inStack∧

· · ·∧sn.inStack and r(sn) = en(sn). We can define a new function W ′ such that

1 − W ′(s1) < W (s) and W ′(s1) < W (s1)
2 − ∀si ∈ {s2, . . . , sn}, W ′(si) < W ′(si−1) and W ′(si) < W (si)
3 − ∀s /∈ {s1, . . . , sn}, W ′(s) = W (s)

Let us compare FW ′ and FW . Point 1 implies that s /∈ FW ′ . In addition, it
trivially follows from the three points that FW ′ \ FW = ∅, i.e., W ′ does not
introduce a new “violating state”. Thus we have |FW ′ | < |FW |.

By reitering the same operation on W ′ until FW = ∅ we obtain a witness
W .
�

Some Solutions to the Ignoring Problem 85

The different steps of the construction of
the witness function are illustrated with
the help of the opposite figure. States
are numbered according to function W .
At each step, the gray state corresponds
to the state s of the proof that violates
the witness function conditions.

3

4 4

0

0

1

4

2 1

0

1

−1

0

−1 −2

FW FW

5 A Proviso for Liveness Properties

The conditions that ensure a sound reduction are stronger when one wants to
analyze liveness properties, e.g., LTL-X formulae. The reduction must indeed
ensure that for any cycle, an action enabled at one of its states will be executed
at some state of the cycle. We have seen that a sufficient way to proceed is to
fully expand a state on each cycle of the graph.

We would like to adapt the idea of the C2S
e proviso, presented in the previous

section, to the verification of liveness property. Unfortunately, a direct adapta-
tion does not guarantee the desired behavior. We illustrate this problem with
the simple graph depicted below.

s1s2 s0

s

Let us assume that the algorithm first processes state s0, then pushes s1 that
is fully expanded and finally reaches s2. Since s1 is on the stack between s0 and
s2 the persistent set which consists of the single action that leads from s2 to s0 is
valid. Now let us suppose that later the algorithm backtracks to s0 and executes
a sequence s0 → . . . → s such that none of the states of this sequence is fully
expanded. According to the C2S

e proviso, the singleton {s → s2} is a valid set.
Hence, we close a cycle that does not contain any fully expanded state and in
which an action may be ignored: s0 → . . . → s → s2 → s0.

In order to prevent such situations we will have to perform some additional
checks possibly leading to less reductions. We will in particular forbid that state
s reaches state s2 without being fully expanded.

The pseudo-code of our algorithm is given in figure 3. In addition to the
expanded attribute of proviso C2S

e the new proviso C2L
c , the color proviso, as-

sociates some extra information to each state. A state will thus be marked as
green, red or orange. This color gives us crucial informations when we want to
determine whether an action is allowed or not (see function C2L

c).

green states are safe states. These ones may be reached by any other state
without risking of closing an invalid cycle. Intuitively, if a state is green then
either it is fully expanded either all its successors are green.

red states are dangerous states. A state may not reach a red state without being
fully expanded. This could indeed close a “bad” cycle as in our example. Red
states do not belong to the stack anymore.

86 S. Evangelista and C. Pajault

orange states are potentially dangerous states. An orange state is a state of the
stack that can be reached by a partially expanded state under the condition
of the C2S

e proviso: a fully expanded state appears between the two in the
DFS stack.

Colors are then attributed as follows.
When a new state is generated and pushed onto the stack we mark it as green

if it is fully expanded or orange otherwise. The orange color is attributed in
function push state before the computation of the persistent set P to resolve
the case where P contains a self-loop transition. Orange states are therefore all
the partially expanded states which are in the stack.

An orange state leaving the stack is colored in green if all its successors are
green or red otherwise. Hence, while red and green are final states, i.e., the color
of a green or red state can not change, orange is a transitory color: once the
search terminated, the stack is empty and all states are marked as red or green.

The purpose of lines 13-18 of procedure dfs is to deal with the situation where
the state s is partially expanded and reaches a red state s′ that was not in H
when the persistent set of s was computed. We must then fully expand s, assign
it the green color and restart its expansion. In practice we found out that this
situation is very unusual.

Let us go back to our previous example and see how our algorithm will proceed
on this one. As state s2 is popped from the stack we color it in red since its only
successor, state s0, is orange, i.e., partially expanded and on the stack. We then
backtrack to state s0 and reach later s. Since s2 is a red state the action leading
from s to s2 is not allowed if s is not fully expanded. Consequently, we will have
to select another set or to fully expand s.

In order to prove the correctness of our proviso we proceed in two steps. We
first show that the reduced STG cannot contain a cycle of red states.

Proposition 1. Let T = (S, s0, A, →) be an STG and T r = (Sr, s0r, Ar, →r)
be its reduction obtained using the algorithm of figure 3. Then, there is no cycle
of red states in T r, i.e., ∀s1, . . . , sn ∈ Sr,

s1 →r s2 →r . . . →r sn →r s1 ⇒ ∃i ∈ {1..n} | si.color = green

Proof. Let us suppose that there is a cycle s1 →r s2 →r . . . →r sn →r s1
with si.color = red, ∀i ∈ [1..n] and such that s1 is the first state visited by the
algorithm, i.e., pushed onto the stack.

Necessarily during the search we reached a configuration in which

1. States s1, . . . , si are on top of the stack.
2. s1.color = · · · = si.color = orange.
3. There is a ∈ r(si) such that si

a→ sj and sj ∈ H .

From now on, we observe this configuration. By assumption, sj.color 	= green,
hence, sj.color ∈ {orange, red}. Let us look at these two possibilities.

sj .color = red (⇒ sj has left the stack)
We again consider two different cases.

Some Solutions to the Ignoring Problem 87

dfs (s)
1 H ← H ∪ {s}
2 push state(s)
3 let P be a persistent set that
4 satisfies C2L

c (s, P) or en(s)
5 if there is no such set
6 if P = en(s) then
7 expanded ← expanded + 1
8 s.color ← green
9 search_loop:
10 for a ∈ P do
11 let s

a→ s′

12 if s′ /∈ H then dfs(s′)
13 elsif s.color = orange
14 and s′.color = red
15 then
16 s.color ← green
17 P ← en(s)
18 goto search_loop
19 if P = en(s) then
20 expanded ← expanded− 1
21 pop state(s)

search ()
1 H ← ∅ ;; expanded ← 0 ;; dfs(s0)

push state (s)
1 s.inStack ← true
2 s.color ← orange
3 s.expanded ← expanded

pop state (s)
1 s.inStack ← false
2 if s.color = orange then
3 if ∀a ∈ r(s), s a→ s′,
4 s′.color = green
5 then
6 s.color ← green
7 else
8 s.color ← red

C2L
c (s, P)

1 for a ∈ P do
2 let s

a→ s′

3 if
4 s′ ∈ H and
5 (s′.color = red or
6 (s′.color = orange and
7 s′.expanded = s.expanded))
8 then
9 return false
10 return true

Fig. 3. A depth first search algorithm that implements our liveness proviso

sj ∈ H when r(si) is computed
Necessarily, sj .color = red when r(si) is computed. Otherwise, sj is on
top of si in the stack and sj .color = orange when we reach sj from
si. It trivially follows from the condition of the if statement at line 3
of C2L

c that sj ∈ H ∧ sj .color = red ⇒ r(si) = en(si), and hence
si.color = green after the assignment at line 8 of dfs.

sj /∈ H when r(si) is computed
Then, when sj is reached at line 11 of dfs it holds, by assumption, that
sj ∈ H , sj .color = red and si.color = orange. So, si is colored in green
at line 16.

sj .color = orange (⇒ sj is on the stack)
State sj was pushed on the stack before si. Thus we had sj .color = orange

when r(si) was computed. From function C2L
c , if sj ∈ H ∧sj .color = orange

then sj .expanded < si.expanded. Otherwise, we would have r(si) = en(si)
and si would be colored in green at line 8 of dfs. Since sj .expanded <
si.expanded then there exists sk with j < k < i such that r(sk) = en(sk).
Consequently, sk.color = green from the line 8 of dfs.

So in both cases there is a green state in the cycle.
�

88 S. Evangelista and C. Pajault

Secondly, we prove that if a cycle of the reduced STG contains a green state
then it contains a fully expanded state.

Proposition 2. Let T = (S, s0, A, →) be an STG and T r = (Sr, s0r, Ar, →r) be
its reduction obtained using the algorithm of figure 3. In any cycle s1 →r s2 →r

. . . →r sn →r s1, if there is si such that si.color = green then there is sj such
that r(sj) = en(sj).

Proof. We consider in this proof a cycle s1 →r s2 →r . . . →r sn →r s1 such that
si.color = green for some i ∈ {1..n}.

Let us first suppose that there is a red state in the cycle. If there exists si with
si.color = red then, necessarily, there are sj and sk such that sj .color = green,
sk.color = red and sj →r sk (otherwise, the cycle would only contain red states).
Since it trivially holds that a green state with a red successor is fully expanded
our claim is proved for this first case.

Now let us suppose that ∀i ∈ {1..n}, si.color = green. Necessarily, during
the search a state si reached a state sj on the stack. Since sj .inStack = true
then sj .color ∈ {orange, green}. Let us look at these two possibilities.

sj .color = green - It holds for any green state s of the stack that r(s) = en(s).
sj .color = orange - When si leaves the stack (before sj) it becomes red as it

has a non green successor. This goes against our initial assumption that all
the states of the cycle are green.

So in both cases there is a fully expanded state in the cycle.
�

It is then straightforward to prove the correctness of our liveness proviso.

Lemma 2. Proviso C2L
c implies the liveness cycle proviso C2L.

Proof. This lemma is a direct consequence of propositions 1 and 2.

Anticipation of the backtrack phase. The red color appears in the graph
when some partially expanded state s reaches an orange state. Indeed, once s is
popped from the stack it becomes red and this color will be propagated to its
predecessors in the stack. This way to proceed is very careful since we assume
that the orange states reached by s will be later colored in red. However, there are
situations in which we can directly color orange states in green by anticipating
the backtrack phase.

We will illustrate the principle of this optimization with the help of figure 4.
The letters correspond to the colors of states. Without optimization when state
s is processed it reaches the orange state s’ and thus becomes red when popped.
However, since all the outgoing arcs of s’ have been visited and its only successor
is green, we know that it will become green when leaving the stack. We can
therefore immediately color s’ in green. As a direct consequence, state s only
reaches green states and can be marked as green.

The implementation of this optimization requires one extra boolean variable
per state of the stack which specifies if all the outgoing arcs of the state have

Some Solutions to the Ignoring Problem 89

No optimization With anticipation

GR

G

O O Gs’s’ s’

s ss

G G

Fig. 4. Illustration of the optimization

been visited. We also introduce an additional color: purple. States colored in
purple are states of the stack that will be marked as red when popped. The only
purpose of this new color is to ease the implementation of this optimization:
purple states are treated as orange states when checking the proviso.

With the optimized proviso, denoted C2L
c�, the algorithm proceeds as follows.

When it assigns the green color to the current state or when it executes an
action that leads to a green state, the stack is scanned from top to bottom until
it meets a green or purple state or an orange state of which some outgoing arcs
have not been visited. The green color is assigned to all the states scanned.

Alternatively, when an action leads to a purple or an orange state, the algo-
rithm scans the stack until it meets a green or purple state and colors all the
states scanned in purple.

We believe that this optimization has a strong potential insofar as the persis-
tency condition C1 often leads to compute singletons, e.g., with a single tran-
sition that only operates on local variables, or to fully expand states. In such
situations our optimization is very useful since it allows to assign the green color
to most of the states of the stack: as soon as a fully expanded state is met, the
green color propagates from top to bottom to all the states of the stack.

If it is clear that our safety proviso outperforms the in-stack check based one,
we cannot draw such a conclusion for the color proviso. Proviso C2L

s and C2L
c are

both based on the notion of dangerous and safe states. With the C2L
s proviso,

dangerous states are all the states of the stack (or more generally, all the closed
states [4]) while, on the contrary, with the color proviso, dangerous states do not
belong to the stack anymore. It is therefore crucial to experiment these provisos
in order to determine which one achieves the best reduction in practice.

6 Experiments

We implemented the algorithms proposed in our model checker Helena [8]. The
tool takes as input a high-level Petri net and can verify reachability properties
or the presence of dead states. In order to assess the quality of our provisos we
also implemented the in-stack and in-queue check based provisos for DFS and
BFS which are part of the Spin model checker.

We considered several families of models. Some are simple “toy” examples.
Others are communication protocols or mutual exclusion algorithms of which
some can be found on the BEEM web portal [15]. We also translated some

90 S. Evangelista and C. Pajault

concurrent Ada software to high-level nets with the help of the Quasar tool
(http://quasar.cnam.fr). Some of these models can be found in Helena dis-
tribution (http://helena.cnam.fr).

We observed, as it was the case in [3], that BFS based provisos tend to be less
efficient that those based on a DFS. Indeed, on the ten models considered we
only found one model (the slotted ring protocol) for which they achieved a better
reduction. In addition the difference was pretty insignificant. On other models
there were sometimes huge differences. Therefore, we decided not to report the
results obtained with BFS based provisos to focus on a comparison between the
in-stack check based provisos and our algorithms.

The result of the experimentations are reported in table 1. We performed sev-
eral searches: without partial order reduction at all (column No POR); without
action ignoring resolution (column PS); with a safety cycle proviso (columns C2S

s
and C2S

e); with a liveness proviso (columns C2L
s , C2L

c and C2L
c�). The numbers

reported in columns No POR and PS must therefore be seen as upper and lower
bounds when comparing the different provisos.

For each run we report the number of states of the reduced graph and the
amount of memory consumed to store the state space. In some cases, we ran out
of memory and could not complete the search. This is indicated by a “oom”.

For safety properties, a comparison of columns PS and C2S
e shows that our

proviso performs an excellent reduction. On eight models it did not introduce
states that were not visited by an algorithm without action ignoring prevention.
For Lamport’s algorithm, it caused the exploration of a few thousands states
which is quite low with respect to the size of the state space of this model. It also
doubled the graph size of the resource allocation system. In this model, a process
may potentially diverge and perform an infinite sequence that does not include
any synchronization. So there actually is some risk of ignoring problem and it is
thus obvious that any proviso will necessarily cause the visit of additional states.
Nevertheless C2S

e behaves much better than C2S
s and on this model.

These results confirm our initial expectations: a DFS seldom closes a cycle
that does not contain any fully expanded state. In any concurrent system, there
are usually some points of synchronization, e.g., an access to a global variable,
the acquisition of a lock. When the processes reach these points it is likely that
the algorithm fully expand the state. It seems to us that a weak point of the
C2S

s proviso is that it does not exploit such information on the past of the search
that the stack can provide us. Our proviso should therefore be nearly optimal in
the sense that it will only disallow the algorithm to close a cycle when this one
does not actually contain a fully expanded state.

We also observe that C2S
s and C2L

s sometimes brutally increase the graph
size. This confirm our initial intuition that these provisos are not adapted to
some systems. We can find several models for which these provisos cause the
algorithm to visit much more states than really needed. For some examples, e.g.,
the slotted ring protocol, the resource allocation system, a look at column No
POR shows that they even almost cancel the reduction.

http://quasar.cnam.fr
http://helena.cnam.fr

Some Solutions to the Ignoring Problem 91

Table 1. Comparison of the different provisos implemented in Helena

No POR PS PS + Safety proviso PS + Liveness proviso
C2S

s C2S
e C2L

s C2L
c C2L

c�

Simple models
Load-balancing system (7 clients, 3 servers)

1 574 530 72 093 631 056 72 093 630 997 211 012 72 194
26.4 MB 1.2 MB 10.7 MB 1.5 MB 10.7 MB 4 MB 1.3 MB

A peer-to-peer communication protocol (8 processes)
743 580 163 72 852 163 72 852 884 830 252 315

12.1 MB 0.1 MB 1.2 MB 0.1 MB 1.2 MB 15.6 MB 5.2 MB
Resource allocation system (4 processes)

2 550 759 72 637 1 449 206 151 531 1 783 881 754 878 607 004
49.9 MB 1.5 MB 28.7 MB 3.6 MB 35.2 MB 23.2 MB 15.6 MB

Protocols and mutual exclusion algorithms
Lamport’s mutual exclusion algorithm (4 processes)

1 914 784 1 052 518 1 282 950 1 055 985 1 455 606 1 304 311 1 304 310
41.02 MB 22.5 MB 27.4 MB 26.7 MB 31.3 MB 31.6 MB 31.6 MB

Peterson’s mutual exclusion algorithm (4 processes)
3 407 946 259 942 356 068 259 942 356 698 292 622 260 608
49.3 MB 3.7 MB 5.1 MB 4.7 MB 5.1 MB 4.8 MB 4.3 MB

Production cell (8 plates)

oom 396 931 1 024 422 396 931 1 138 954 495 543 451 355
18.2 MB 46.3 MB 19.1 MB 51.4 MB 24.2 MB 21.9 MB

Slotted ring protocol (7 processes)
439 296 287 508 413 321 287 508 437 579 401 803 304 417
6.1 MB 4 MB 5.8 MB 5.1 MB 6.1 MB 6.5 MB 4.9 MB

Models extracted from programs
The chameneos (4 tasks)

oom
415 361 899 295 415 361 899 295 733 654 494 123
4.7 MB 10.4 MB 6.4 MB 10.4 MB 10.2 MB 6.9 MB

The dining philosophers (6 tasks)
10 888 070 109 222 174 354 109 222 174 354 115 333 110 190

136 MB 1.3 MB 2.1 MB 1.7 MB 2.1 MB 1.7 MB 1.6 MB
A client-server program (4 clients, 2 servers)

oom 87 129 99 430 87 129 99 430 159 202 108 659
1.4 MB 1.6 MB 1.7 MB 1.6 MB 2.8 MB 1.9 MB

By comparing columns PS and C2L
c� we can evaluate our proviso in term

of number of states it introduces. The results are rather convincing. On seven
models out of ten the reductions achieved are very close. For the peer-to-peer
protocol and the resource allocation system, the introduction of this additional
condition involves an important increase of the graph size. As we mentioned it

92 S. Evangelista and C. Pajault

earlier this fact is not very surprising for the resource allocation system. For the
peer-to-peer protocol we will see that our proviso is not adapted to its graph
structure.

On the whole, C2L
c� seems to achieve better reductions than C2L

s . For some
models the difference is quite impressive. We can cite the load balancing system
or to a lesser extent the production cell. There also are some examples, e.g.,
Lamport’s mutual exclusion algorithm, for which the difference is slighter. We
only found two models out of ten for which C2L

s behaves better: the client-server
program and the peer-to-peer communication protocol. For the first one the dif-
ference is hardly perceptible. A closer look at the graph structure of the peer-to-
peer protocol explains the bad results obtained by C2L

c� with respect to the C2L
s

... ...

C2L
c� C2L

s

s

s′

s

s′

s′′ s1 s′′ s1 snsn

proviso. We found out that the sit-
uation depicted by the opposite fig-
ure often occurred. With the C2L

c�

proviso, when s is processed it may
be partially expanded since the
fully expanded s′′ is between s and
s′ in the stack. Later, when states
s1, . . . , sn are reached, the algo-
rithm expands them fully since s
has become red. On the other hand, with the C2L

s proviso state s may not reach
s′ without being fully expanded. States s1, . . . , sn can then be partially ex-
panded since they lead to s that has left the stack. This can explain why, on this
example, C2L

c� fully expands much more states than C2L
s .

Let us conclude this section with some observations about memory usage. We
notice that despite the additional memory it requires per state, C2L

c� generally
outperforms C2L

s . There is only one model - Lamport’s algorithm - for which
C2L

c� achieves a better reduction than C2L
s but consumes more memory. Even in

this case, the difference is insignificant. Moreover, as we already pointed it out,
memory usage could be optimized by suppressing the expanded attribute of the
states that leave the stack.

7 Conclusion

The contribution of this paper is the two new versions of the cycle proviso that
resolves the ignoring phenomenon that may arise when applying partial order
reduction. The algorithms introduced are simple, easy to implement and can be
integrated in any explicit state model checker since they do not rely on any spec-
ification language. As a counterpart they assume a DFS exploration of the state
space and require the storage of some additional informations. Nevertheless, we
have seen that this extra memory consumption is usually compensated by the
reduction achieved. A set of experiments revealed that our proviso outperforms
state of the art algorithms, like those implemented by the Spin model checker,
on many models.

Some Solutions to the Ignoring Problem 93

We still plan to perform a more thorough experimentation in order to identify
graph structures or classes of models for which our proviso outperforms the
others or, on the contrary, is not adapted.

It should also be instructive to compare it with the two-phase algorithm [14]
that also seems to outperform the standard proviso on many models - mainly
those in which process act in a deterministic way.

At last we have the intuition that the color proviso could be optimized further
by weakening the acceptance conditions of a persistent set. When the execution
of an action a leads from an orange state o to a red state r the basic question
we have to answer is the following one: is there a path leading from r to o or,
otherwise stated, is there a path leading from r to a state of the stack? If not,
then no cycle of partially expanded states may include the transition o

a→ r, and
a may be executed without risking of closing an invalid cycle. Such a question
can be answered by performing Tarjan’s algorithm to detect strongly connected
components or one of its variations for LTL model checking [6,10]. However, a
comparison of columns PS and C2L

c� of table 1 shows that it is not obvious if
this further reduction will compensate the extra memory consumed by Tarjan’s
algorithm (an additional stack plus at least one integer per state). On several
models proviso C2L

c� introduces a very little number of states and it is likely that
this will not be the case for these.

Acknowledgements. The authors thank Jean-François Pradat-Peyre for his
comments on early drafts of this paper.

References

1. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997)

2. Basten, T., Bosnacki, D.: Enhancing partial-order reduction via process clustering.
In: Proceedings of the 16th IEEE International Conference on Automated Software
Engineering, pp. 245–253. IEEE Computer Society Press, Los Alamitos (2001)

3. Bosnacki, D., Holzmann, G.J.: Improving Spin’s partial-order reduction for
breadth-first search. In: Godefroid, P. (ed.) Model Checking Software. LNCS,
vol. 3639, pp. 91–105. Springer, Heidelberg (2005)

4. Bosnacki, D., Leue, S., Lluch-Lafuente, A.: Partial-order reduction for general
state exploring algorithms. In: Valmari, A. (ed.) Model Checking Software. LNCS,
vol. 3925, pp. 271–287. Springer, Heidelberg (2006)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

6. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271.
Springer, Heidelberg (1999)

7. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. International Journal on Software
Tools for Technology Transfer 5(2-3), 247–267 (2004)

94 S. Evangelista and C. Pajault

8. Evangelista, S.: High level petri nets analysis with Helena. In: Ciardo, G., Daron-
deau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg
(2005)

9. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of the 34th Symposium on Principles of Programming
Languages, pp. 110–121. ACM Press, New York (2005)

10. Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 205–219. Springer, Heidelberg (2004)

11. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996)

12. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

13. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigun, H.: Static partial order
reduction. In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384,
pp. 345–357. Springer, Heidelberg (1998)

14. Nalumasu, R., Gopalakrishnan, G.: An efficient partial order reduction algorithm
with an alternative proviso implementation. Formal Methods in Systems De-
sign 20(3), 231–247 (2000)

15. Pelánek, R.: BEEM: Benchmarks for explicit model checkers (http://
anna.fi.muni.cz/models/index.html). In: Proceedings of the 14th International
SPIN Workshop. LNCS, Springer, Heidelberg (2007)

16. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

17. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

18. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

http://anna.fi.muni.cz/models/index.html

Cartesian Partial-Order Reduction

Guy Gueta1, Cormac Flanagan2, Eran Yahav3, and Mooly Sagiv1

1 Tel Aviv University
{guygueta,msagiv}@post.tau.ac.il

2 University of California at Santa Cruz
cormac@soe.ucsc.edu

3 IBM T.J. Watson Research Center
eyahav@us.ibm.com

Abstract. Verifying concurrent programs is challenging since the number of
thread interleavings that need to be explored can be huge even for moderate
programs. We present a cartesian semantics that reduces the amount of non-
determinism in concurrent programs by delaying unnecessary context switches.
Using this semantics, we construct a novel dynamic partial-order reduction al-
gorithm. We have implemented our algorithm and evaluate it on a small set of
benchmarks. Our preliminary experimental results show a significant potential
saving in the number of explored states and transitions.

1 Introduction

This paper addresses the problem of proving the correctness of a concurrent program,
i.e., of showing that all possible program traces satisfy certain correctness properties.
We define a cartesian partial order reduction technique that allows to safely consider
only a subset of these program traces. Our technique can be combined with existing fi-
nite state model checkers to yield new algorithms for finite state systems. It can also be
combined with abstract interpretation [4] to yield new conservative algorithms for infi-
nite systems. In both cases we expect to obtain significant speedups without sacrificing
soundness or completeness. We have implemented a model checker based on cartesian
partial order reduction, and provide preliminary experimental results that show a signif-
icant reduction in the number of states and transitions explored. Our experiments also
compare the performance of our algorithm to the partial order reduction techniques of
SPIN [12], and the recent technique of [6]. Compared to these techniques, cartesian par-
tial order reduction saves more states and transitions on most of our example programs.

1.1 Partial Order Reduction

Partial order reduction techniques [8,14,17] combat state explosion by only exploring a
representative subset of all possible program traces. In general, however, verifying that
a subset of all traces is representative may be as hard as solving the underlying verifica-
tion problem. Therefore, existing partial order reduction techniques mostly focus on two
special cases: “sleep sets” [8, pp. 75] and “persistent sets” [8, pp. 41]. In particular, a

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 95–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

96 G. Gueta et al.

transition is established as persistent by checking for its potential collisions with an infi-
nite future of another thread. Such collisions are traditionally detected via static analysis
(e.g., [5]), which may yield coarse results for complicated or pointer-rich code. Alterna-
tively, dynamic partial order reduction [6] infers persistent sets dynamically as part of a
stateless search, but is applicable only to cycle-free systems. The algorithm of [5] also
infers persistent sets dynamically, but only for thread-local and lock-protected data.

1.2 Main Results

In this paper, we present a new approach for partial order reduction. This approach
identifies and exploits a different kind of redundancy than either sleep sets or persistent
sets. The strength of our approach stems from the fact that, unlike in persistent sets,
where a transition must be checked for conflicts with an infinite future of another thread,
we only inspect a finite future for collisions, and guarantee safety by exploring both
possible extensions at any collision point. In Sec. 4.1, we show that this approach yields
significant improvements even over optimal persistent sets. This result is also supported
by our preliminary empirical study in Sec. 7.

N=12;
boolean A[N,N];
Robot(int x,int y)
int dirX = 1, dirY = 1;
while(true)
A[x,y]=false;
x += dirX; y += dirY;
if(x=N-1 or x=0) dirX*=(-1);
if(y=N-1 or y=0) dirY*=(-1);
assert(A[x,y]⇒(x=9 or x=2));
A[x,y]=true;

Main()
newthread Robot(0,0);
newthread Robot(4,0);

Fig. 1. Two threads implementing robots

Our technique is presented as new op-
erational (or execution) semantics that
can be applied to both finite and infinite
systems. In particular, it can be combined
with abstract interpretation in order to
conservatively handle infinite traces and
infinite state systems.

A motivating example. The concurrent
program of Fig. 1 simulates an arena with
two robots which move in different paths.
Each robot is represented by a thread that
calculates and updates its position in an
infinite loop. The program verifies that
the robots can meet only at the 9th and the
2nd rows by using an assert instruction
(identical to the Java assert). Although
this program is quite simple, its state space is relatively large. An attempt to reduce
the state space by existing partial order reduction methods is problematic because:

1. Most partial order reduction methods (e.g., persistent sets) are based on a static
dependence analysis. Such analyses will fail to establish the independence of the
transitions in this program, and therefore yield a poor reduction of the state space.

2. Dynamic partial order reduction [6] requires a stateless search, and so cannot han-
dle examples such as this one, where there are cycles in the state space.

3. The approach of [5] provides limited benefit on this benchmark because it does not
contain much thread-local or lock-protected data.

In Sec. 7, we show that our approach saves close to 73% of the transitions that need to
be explored for this program.

Cartesian Partial-Order Reduction 97

We present cartesian partial order reduction as an operational (or execution) seman-
tics, which we believe makes it simpler to understand and to establish correctness (see
[9]). For example, in contrast to the dynamic analysis of [6], it does not rely on happens-
before relations [13]. Also, since it saves intermediate states, it supports cycles and be-
haves well in transition systems with multiple paths into a single state. Finally, it can
be combined with (counter-example driven) abstract interpretation to handle concurrent
programs with infinite state spaces (e.g., [19]).

The contributions of this paper can be summarized as follows:

– We present a novel cartesian semantics that reduces the nondeterminism in concur-
rent programs.

– Based on this semantics, we derive a corresponding cartesian partial order reduc-
tion algorithm that can be used to improve both finite-state model checkers and
infinite-state abstract interpreters. Our algorithm identifies dependencies dynami-
cally, avoiding the inherent imprecision of static dependence analyses. It also over-
comes the cycle-free restriction of [6], and so is applicable to more programs.

– We present preliminary experimental results showing that our approach can lead to
significant savings in the number of explored states and transitions. We also show
that our approach is beneficial in cases where traditional partial order reduction
methods are unable to reduce the space.

The rest of this paper is organized as follows. Sec. 2 provides an informal overview
of our method. Sec. 3 includes basic definitions and notations. Sec. 4 defines our carte-
sian semantics and shows that it is observationally equivalent to the standard semantics.
Sec. 5 and Sec. 6 realize this semantics as a model checking algorithm. Sec. 7 reports
initial empirical results on the behavior of this model checking algorithm. Sec. 8 de-
scribes related work and Sec. 9 concludes. Appendix A describes the benchmarks from
Sec. 7.

2 Overview

Thread 1:
0: z := 8
1: x := 1
2: z := 42
3: y := 7
4: w := z

Thread 2:
0: q := 8
1: priv := y
2: q := 42
3: priv := x
4: nop

Fig. 2. Two threads using shared
variables x and y

This section provides an overview of our approach
for the simple concurrent program shown in Fig. 2.
The two threads in this program share two variables,
x and y, and all variables are initially zero.

Whereas traditional model checking would ex-
plore all possible interleavings of these two threads,
our approach explores only a representative subset
of these interleavings, based on the notion of de-
pendent transitions. For this program, there are two
pairs of dependent transitions: the statement x := 1
(of thread 1) is dependent with priv := x (of thread 2); similarly, y := 7 is dependent
with priv := y. (In this simple example, a static notion of dependence is sufficient.
Our approach detects dependencies dynamically, however, thus overcoming the inher-
ent imprecision of statically identified dependencies.)

The key idea of our approach is to find, for each explored state, a sequence of tran-
sitions for each thread such that only the last transitions in these two sequences are

98 G. Gueta et al.

allowed to be dependent (i.e., every pair of transitions other than the last two transitions
must be independent). We refer to the two sequences of transitions found for a state as
a cartesian vector for that state.

For the program’s initial state, a suitable cartesian vector is:

T1 : z:=8; x:=1 T2 : q:=8; priv:=y; q:=42; priv:=x

since z:=8 is independent of all transitions in T2’s sequence, and x:=1 is indepen-
dent of all transitions in T2’s sequence except the last. The last transitions x:=1 and
priv:=x may be (and indeed are) dependent.

After finding the two sequences, we nondeterministically pick one of them, exe-
cute that sequence in its entirety (without a context switch), and then continue explo-
ration from that resulting state. For example, suppose we first execute the sequence T1 :
z:=8; x:=1. At the resultant state, a suitable cartesian vector is:

T1 : z:=42; y:=7 T2 : q:=8; priv:=y

since only the last pair of transitions are dependent. Again, we nondeterministically
pick one of these sequences and execute it entirely, without context switches.

By proceeding in this manner, we eventually explore all possible orderings of the
dependent transitions in this program. Fig. 3 shows how our approach explores a repre-
sentative subset of all possible traces of this program.

As an aside, it is worth noting that the statement z:=8 in T1 is a persistent tran-
sition, as it has no future collisions with T2. In principle, this could have allowed ex-
ploring only representative traces that begin with z:=8 as their first step. Establishing
that z:=8 is indeed a persistent transition, however, requires inspection of the future
execution of T2 (which in general, may be infinite). In some cases, the persistence of
a transition can be established by a preceding static dependence analysis phase. Like
methods based on persistent sets, our approach can also benefit from such static depen-
dence information when it exists. Unlike z:=8, the statement x:=1 is not persistent,
as it has a future collision with priv:=x in T2 (as long as priv:=x is not executed).

ε

z:=8, x:=1

q:=8, priv:=y, q:=42, priv:=x

z:=42, y:=7

q:=8, priv:=y

w:=z, q:=8, priv:=y, q:=42, priv:=x, nop

q:=8, priv:=y, q:=42, priv:=x, nop, w:=z

nop

z:=8, x:=1,z:=42,y:=7,w:=z

q:=42, priv:=x, nop, z:=42, y:=7, w:=z

z:=42, y:=7, w:=z, q:=42, priv:=x, nop

nop

z:=8, x:=1,z:=42,y:=7,w:=z

Fig. 3. Exploration of representative traces of the example program of Fig. 2

3 Basic Definitions

We consider a concurrent system composed of a finite set Threads of threads. The
threads communicate by performing atomic operations on communication objects (e.g.
shared variables).

Cartesian Partial-Order Reduction 99

A state of the concurrent system consists of the LocalState of each thread (the values
for all the thread’s private variables), and of the SharedState (values for all the com-
munication objects). That is, State = SharedState × LocalStates where LocalStates =
Threads → LocalState. For ls ∈ LocalStates, we write ls[T �→ l] to denote the map
that is identical to ls except that it maps T to the local state l.

A transition moves the system from one state to a subsequent state, by performing
an atomic operation of a chosen thread. The transition tT,l of thread T for local state l is
defined via a total function: tT,l : SharedState → LocalState×SharedState. A transition
tT,l ∈ τ is enabled in a state s = 〈g, ls〉 (where g ∈ SharedState and ls ∈ LocalStates)
if l = ls(T). If t = tT,l is enabled in s = 〈g, ls〉 and t(g) = 〈g′, l′〉, then we say the
execution of t from s produces a unique successor state s′ = 〈g′, ls[T �→ l′]〉, written
exec(s, t) = s′ or s ⇒ s′. We say that q is reachable from s in the standard semantics
if s

∗⇒ q.
Notice that in a given state every thread has exactly one enabled transition, therefore

no thread can be blocked. This is not restrictive, as blocking or termination of a thread
can be modeled by a self loop. Let τ denote the set of all transitions of the system
τ = {tT,l|T ∈ Threads, l ∈ LocalState}.

A trace is an infinite sequence σ = s1, t1, s2, t2, . . . such that for every i ∈ N
+,

exec(si, ti) = si+1. A trace prefix is a nonempty (possibly infinite) prefix of a trace, that
does not end with a transition. We denote the set of all trace prefixes (of the considered
concurrent system) by Prefix. A legal prefix of thread T is a trace prefix that has at least
one transition and all its transitions are executed by thread T.

For A ∈ Prefix, we say that t ∈ A if t is a transition in A. We denote the last transition
of A by last tran(A). If there is no transition in A or A is infinite then last tran(A)=⊥.
We denote the first and last states of A by first(A) and last(A) respectively. If A is
infinite then last(A)=⊥. We denote the set of states in A by states(A).

Our cartesian partial order reduction technique is based on the notion of transitions
being independent, which essentially means that the order in which these transitions are
executed does not matter.

Definition 1 (Independence). We say that transitions t and t′ of different threads are
independent if 1 for every s ∈ State : t, t′ ∈ enabled(s) =⇒ exec(exec(s, t), t′) =
exec(exec(s, t′), t). If two transitions of different threads t and t′ are independent, then
we write t ‖ t′, otherwise we write t
‖ t′.

4 Cartesian Partial Order Reduction

The standard semantics of multithreaded programs nondeterministically chooses a
thread for scheduling right after every transition, but this degree of nondeterminism
results in state space explosion. In this section, we present a non-standard cartesian
semantics that avoids many context switches, while preserving both soundness and
completeness.

1 Sometimes similar definitions require that independent transitions are not disable each other,
this is not necessary because two transitions from different threads can never disable each other
in the presented concurrent system.

100 G. Gueta et al.

As outlined in Section 2, our cartesian semantics is defined in terms of cartesian vec-
tors. Essentially, a cartesian vector (CV) for a state describes a sequence of transitions
that each thread can perform without context switches from that state.

Definition 2 (Cartesian Vector). In a concurrent system with n threads of control, a
vector (p1, . . . , pn) ∈ Prefixn is a cartesian vector from a state s if for every Ti, Tj ∈
Threads the following holds:

1. first(pi) = s;
2. pi is a legal prefix of thread Ti;
3. ∀t ∈ pi, t

′ ∈ pj : t
‖ t′ =⇒ t = last tran(pi) ∧ t′ = last tran(pj).

Intuitively, this definition implies that if two prefixes are in the same cartesian vector,
then only their last transitions may depend on each other. Note that each state may have
multiple CVs. In particular, every state has at least the minimal CV, which contains
exactly one transition for each thread, but many states will also admit larger CVs.

Example 1. For the program of Fig. 2, consider the two trace prefixes from the initial
state: p1 is the sequence z:=8; x:=1; z:=42 (of thread 1) and p2 is the sequence
q:=8; priv:=y (of thread 2). Each prefix accesses different variables, therefore the
vector (p1, p2) is a cartesian vector for the initial state.

Now consider the longer prefix p′1: z:=8; x:=1; z:=42; y:=7. In this case
(p′1, p2) is still a cartesian vector because only the last transitions are dependent.

To generate a cartesian vector for any explored state, we assume the existence of an
cartesian function φ : State → Prefixn such that, for every s ∈ State, φ(s) is a cartesian
vector from s. Every state space has at least the minimal cartesian function, which
simply returns the minimal CV for each state (see Section 5). Section 5 describes an
algorithm for computing better CVs.

Given a cartesian function φ, we can build a a cartesian semantics that uses φ as a
guide for execution. The intuition behind the cartesian semantics is as follows: when
the cartesian semantics starts the execution from a state s it selects a prefix σ from the
vector φ(s) and executes the transitions of σ. When the semantics reaches last(σ) (the
last state of σ) it starts the procedure again from last(σ). If σ is infinite it continues to
go over the states of σ forever.

The cartesian semantics generated by φ is formalized as two binary relations −→φ

and =⇒φ on states, where −→φ relates states at the end of prefixes, and is transitively
closed, and =⇒φ extends −→φ to also include intermediate states.

Definition 3. We define the binary relations −→φ and =⇒φ on State with respect to a
cartesian function φ inductively in Fig. 4. Here −→φ is the relation on final states in
which scheduling occurs and =⇒φ is the relation on both final and intermediate states.

An important property of cartesian semantics is described by the following theorem,
which states that the set of local states is identical for the standard semantics and the
cartesian semantics. Consequently, if a thread sees a violation of a local safety property
(e.g., by using an assert instruction as in Java), then the same thread will see the same
violation under the cartesian semantics.

Cartesian Partial-Order Reduction 101

s −→φ s reflexivity

s −→φ s′ ∃π ∈ φ(s) : s′ = last(π) basis

s −→φ s′ s′ −→φ s′′

s −→φ s′′
transitivity

s =⇒φ s reflexivity

s =⇒φ s′ ∃π ∈ φ(s) : s′ ∈ states(π) basis

s −→φ s′ s′ =⇒φ s′′

s =⇒φ s′′
pseudo-transitivity

Fig. 4. Inference rules for a cartesian semantics

Theorem 1. For every cartesian function φ, if s
∗⇒ 〈g, ls[T �→ l]〉 then there exist

g′ ∈ SharedState and ls′ ∈ LocalStates such that s =⇒φ 〈g′, ls′[T �→ l]〉.

The proof appears in [9].
The situation with global properties is somewhat more complex. To illustrate this

situation, consider again the program of Fig. 2, for which we can build a cartesian se-
mantics with the following cartesian vector from the initial state: T1 : z:=8; x:=1;
z:=42, T2 : q:=8; priv:=y; q:=42. This cartesian semantics will never reach
a state with z = 8 and q = 8. Therefore, the global property “there is a state in which
z=8 and q=8” cannot be directly proven by using the cartesian semantics. Instead, we
can convert this global property into a local property by introducing a dummy thread
that merely observes the variables involved in the property (i.e., a thread that reads z
and q in an infinite loop), and then use the cartesian semantics to verify this localized
version of the original global property.

4.1 Cartesian Semantics Versus an Optimal Persistent Sets Algorithm

To illustrate the relation between the cartesian semantics and persistent sets, consider
the example program shown in Fig. 5 (a). For this example, the program counters of the
two threads uniquely define the current value of x and y, and so we can represent each
state simply as a pair of program counters (pc1, pc2).

For this program, an optimal persistent sets algorithm will save only one transition,
that from the state (3,3), because in any other state, in which the two threads have not
terminated, there is a collision between the next step of T1 and a future step of T2 (and,
symmetrically, a collision between the next step of T2 and a future step of T1).

In contrast, a suitable cartesian vector for this program’s initial state is:
T 1: x++;x++;x++; T 2: y++;y++;y++. Hence, the cartesian semantics saves
12 transitions and entirely avoids the states (1, 2), (1, 1), (2, 1), (2, 2), as illustrated in

102 G. Gueta et al.

Thread 1:
0: x++
1: x++
2: x++
3: assert(y≤c)
4:end

Thread 2:
0: y++
1: y++
2: y++
3: assert(x≤c)
4:end

(0,0) (1,0)(0,1) (2,0) (3,0) (4,0)(0,4) (0,3) (0,2)

(1,1) (2,1)(1,2) (3,1) (4,1)(1,4) (1,3)

(2,2) (3,2)(2,3) (4,2)(2,4)

(3,3) (4,3)(3,4)

(4,4)

saved by a cartesian semanticssaved by a cartesian semantics

(a) (b)

Fig. 5. (a) A simple concurrent program, and (b) reduced state space with a cartesian semantics

Fig. 5 (b). The algorithm we propose in Sec. 6 utilizes this fact and does not explore
these states and transitions.

Note that a combination of persistent sets and sleep sets will not reduce these states
because sleep sets is not able to reduce states.

5 Computing Cartesian Vectors

In order to build an algorithm based on the cartesian semantics, we need the ability
to calculate a cartesian vector for every observed state of the concurrent system. The
algorithm CalcCV in Fig. 6 computes such CVs. CalcCV assumes that the state space
is finite or acyclic.

The algorithm starts with a minimal CV, where each prefix contains a single tran-
sition. Such a vector necessarily satisfies Def. 2. However, for such minimal CVs, the
cartesian semantics provides no benefits since it coincides with the standard semantics.

To yield longer prefixes that reduce the explored state space, the algorithm then
repeatedly extends this CV with additional transitions, while still satisfying Def. 2.
The array extendable identifies threads whose prefix can still be extended. Ini-
tially, all threads are extendable, and threads are removed from this set as conflicts are
detected.

Each iteration of the while loop picks some extendable prefix, and tries to extend
it with the next transition of that thread. Two complications arise here. First, if the
added transition conflicts with the last transition of a different prefix, then such con-
flicts are allowed by Def. 2, but the algorithm records that neither prefix can be further
extended.

Second, if a thread is in an infinite loop whose transitions do not conflict with con-
current threads, then that thread has an infinite prefix. To avoid diverging in such situa-
tions, the CalcCV algorithm avoids extending a prefix once a cycle has been detected.
Instead, it marks such prefixes as being infinite; these marks are used by the model
checking algorithm of the following section.

This cycle check guarantees that, on any finite state system, the CalcCV algorithm
will eventually terminate, once all threads are exhausted. Indeed, this procedure ac-
tually returns a maximal cycle-free CV. That is, adding additional transitions to the

Cartesian Partial-Order Reduction 103

CalcCV(s) {
for each i ∈ 1..n do {
CV[i] = s.NextTrans(s,Ti).nextState(s,Ti);

}
extendable = { 1..n }
for each i,j ∈ 1..n such that i �=j and

last tran(CV[i]) is dependent with last tran(CV[j]) {
extendable = extendable - {i,j}

}
while (extendable �= ∅) { // repeatedly extend CV
pick any i ∈ extendable
s = last(CV[i]);
if(∃j �= i. NextTrans(s,Ti) is dependent

with some transition in CV[j] (other than the last)) {
extendable = extendable - {i}

} else {
for each j �=i such that NextTrans(s,Ti)

is dependent with last tran(CV[j]) {
extendable = extendable - {i,j}

}
if(NextState(s,Ti) in CV[i] and i ∈ extendable) {

mark CV[i] as infinite
extendable = extendable - {i}

}
// add this transition to CV
add NextTrans(s,Ti) and NextState(s,Ti) to CV[i]

}
}
return CV

}
Helper functions:
NextTrans(s, T): return tT,l for s = 〈g, ls[T
→ l]〉
NextState(s, T): return exec(s,NextTrans(s,T))

Fig. 6. Algorithm for calculating cartesian vectors.

result of CalcCV(s) yields an CV that is either invalid or contains cycles that re-visit
previously-explored states.

Note that the order in which our algorithm tries to extend prefixes is arbitrary, and
different exploration orders can lead to different resulting CVs. Our implementation
of the algorithm uses a round-robin exploration (we did not test the effect of other
exploration orders).

The correctness of the algorithm is established in the following lemma, which holds
for any finite state system:

Lemma 1. For every state s, CalcCV(s) terminates and returns a valid CV.

The proof appears in [9].

104 G. Gueta et al.

Example 2. The following steps describe an execution of CalcCV from the initial state
of the program shown in Fig. 2.

1. At the beginning, both threads are extendable, and each prefix contains only the
program’s initial state, where both threads are about to execute line 0.

2. T1 executes z:=8, T2 executes q:=8, and no conflicts are detected.
3. T1 executes x:=1, T2 executes priv:=y, and no conflicts are detected.
4. T1 executes z:=42, T2 executes q:=42, and still no conflicts are detected.

5a. The next transition of T1 is y:=7, which conflicts with the previously-executed
transition priv:=y of T2, so this thread is no longer extendable.

5b. The next transition of T2 is priv:=x, which conflicts with the previously-executed
transition x:=1 of T1, so this thread is also no longer extendable.

At this point, the extendable set is empty, so CalcCV returns the cartesian vector: T1 :
z:=8; x:=1; z:=42; T2 : q:=8; priv:=y; q:=42;.

Since CalcCV is called for each visited state, a key concern is the running time of this
procedure. For our intended application of software model checking, we assume that
each transition accesses at most one memory location, and two transitions of different
threads are dependent only if they access the same memory location and that at least
one of these accesses is a write. Under these assumptions, it is fairly straightforward to
implement CalcCV such that its running time is proportional to the size of the resulting
CV (that is, to the sum of the lengths of the prefixes in this CV). In particular, each step
of the implementation either extends CV or reduces the extendable set.

6 Model Checking Algorithm

Fig. 7 presents a state exploration or model checking algorithm that explores all reach-
able states of the cartesian semantics, using the subroutine CalcCV to compute cartesian
vectors for each reached state. Notice that only the last states of finite prefixes are added
to WorkSet (according to the cartesian semantics the exploration does not have to con-
tinue from infinite prefixes).

Notice that CalcCV stops only before or after transitions that participate in a memory
contention (only such transitions can be detected as dependent), therefore the reduced
state space does not contain a state in which two threads (or more) are at the middle
of sections without memory contentions. Therefore we can simply identify a class of
states that are not present in the reduced state space. It is worth mentioning that in many
large programs most of the code does not involve memory contention, therefore many
states are saved by our method.

A simple variant of this algorithm executes a few instances of CalcCV in parallel (on
different processors). This variant utilizes the fact that CalcCV runs independently on
one processor without being affected by what happening on the other processors. Such
variant can efficiently utilize a few processors and reduces the running time of the model
checking, especially when the calculated CVs are long. We present the pseudo-code of
this simple variant in Fig. 8, and evaluate its performance in our experiments.

Cartesian Partial-Order Reduction 105

modelCheck(s0) {
WorkSet = {s0}
CoveredSet = ∅
while WorkSet is not empty {
select and remove s from WorkSet
if not member(s,CoveredSet) {

CoveredSet = CoveredSet ∪ { s }
CV = CalcCV(s)
for each prefix ∈ CV {

verify local properties in states(prefix)
if prefix is not marked as infinite
WorkSet = WorkSet ∪ { last(prefix) }

}}}}

Fig. 7. A cartesian model checking algorithm based on CalcCV

InitThread(s0)
WorkSet = {s0}
CoveredSet = ∅
ActiveThreads = 0
start a worker thread for each processor
wait until ((WorkSet is empty) and (ActiveThreads=0))
terminate all worker threads

WorkerThread()
begin:
lock {
if(WorkSet is empty) goto begin
ActiveThreads++
select and remove s from WorkSet
if member(s,CoveredSet)

ActiveThreads--
goto begin

CoveredSet = CoveredSet ∪ { s }
}
CV = CalcCV(s)
for each prefix ∈ CV
verify local properties in states(prefix)
if prefix is not marked as infinite

lock { WorkSet = WorkSet ∪ { last(prefix) } }
lock { ActiveThreads-- }
goto begin

Fig. 8. A concurrent variant of the cartesian model checking algorithm

106 G. Gueta et al.

7 Experimental Evaluation

In this section, we describe preliminary experimental results comparing the cartesian
algorithm to other exploration algorithms.

Table 1. Number of stored states, transitions, and running time (milliseconds.) of the cartesian
and standard exploration algorithms for our benchmarks. In this table, Conc Time indicates the
running time of the concurrent variant of the cartesian algorithm.

Standard algorithm Cartesian algorithm Percentage of Saving
Benchmark States Transitions Time (ms) States Transitions Time (ms) Conc Time (ms) States Transitions Time Conc Time
SharedPtr 32131 64262 266 418 12785 47 32 98.7 80.1 82.3 31.9
SharedArray 2276 4552 16 132 1648 0 0 94.2 63.8 99 0
2 Robots 4877 9754 109 56 2635 15 15 98.9 73 86.2 0
3 Robots 326759 980277 1206422 56 6387 62 31 100 99.3 99 50
File System (1 Threads) 9 8 0 N/A N/A N/A N/A N/A N/A N/A 0
File System (2 Threads) 81 144 0 1 16 0 0 98.8 88.9 0
File System (3 Threads) 729 1944 16 1 24 0 0 99.9 98.8 99 0
File System (4 Threads) 6561 23328 437 1 32 0 0 100 99.9 99 0
File System (5 Threads) 59049 262440 24047 1 40 0 0 100 100 99 0
File System (6 Threads) 531441 2834352 2567703 1 48 0 0 100 100 99 0
File System (7 Threads) 1 56 0 0 0
File System (8 Threads) 1 64 0 0 0
File System (9 Threads) 1 72 0 0 0
File System (10 Threads) 1 80 0 0 0
File System (11 Threads) 1 88 0 0 0
File System (12 Threads) 1 96 0 0 0
File System (13 Threads) 1 104 0 0 0
File System (14 Threads) 10 1026 62 32 48.4
File System (15 Threads) 100 10120 563 203 63.9
File System (16 Threads) 1000 99800 5968 2078 65.2
File System (17 Threads) 10000 984000 64204 23000 64.2
Indexer (1 Threads) 5 4 0 N/A N/A N/A N/A N/A N/A N/A N/A
Indexer (2 Threads) 25 40 0 1 8 0 0 96 80 0
Indexer (3 Threads) 125 300 0 1 12 0 0 99.2 96 0
Indexer (4 Threads) 625 2000 0 1 16 0 0 99.8 99.2 0
Indexer (5 Threads) 3125 12500 47 1 20 0 0 100 99.8 99 0
Indexer (6 Threads) 15625 75000 641 1 24 0 0 100 100 99 0
Indexer (7 Threads) 78125 437500 15297 1 28 0 0 100 100 99 0
Indexer (8 Threads) 390625 2500000 494687 1 32 0 0 100 100 99 0
Indexer (9 Threads) 1 36 0 0 0
Indexer (10 Threads) 1 40 0 0 0
Indexer (11 Threads) 1 44 0 0 0
Indexer (12 Threads) 9 394 16 16 0
Indexer (13 Threads) 81 3528 187 79 57.8
Indexer (14 Threads) 729 31590 1813 625 65.5
Indexer (15 Threads) 6561 282852 17172 6250 63.6
Indexer (16 Threads) 59049 2532546 191421 82859 56.7
2 Philosophers 11 22 0 9 28 0 0 18.2 -27.3 0
3 Philosophers 36 108 0 27 174 0 0 25 -61.1 0
4 Philosophers 119 476 0 94 750 0 0 21 -57.6 0
5 Philosophers 393 1965 16 295 2984 31 31 24.9 -51.9 -93.8 0
6 Philosophers 1298 7788 172 942 11233 187 156 27.4 -44.2 -8.7 16.6
7 Philosophers 4287 30009 1766 2955 41091 1187 969 31.1 -36.9 32.8 18.4
8 Philosophers 14159 113272 29594 9212 145717 11609 11141 34.9 -28.6 60.8 4
9 Philosophers 46764 420876 383219 28675 509218 132078 138703 38.7 -21 65.5 -5
CMIS C=2 N=8 16430 115010 813 51 1627 32 15 99.7 98.6 96.1 53.1
CMIS C=4 N=16 1014131 7098917 10294344 51 3091 47 31 100 100 99 34
CMIS C=8 N=32 51 8035 156 62 60.3
CMIS C=16 N=64 51 25987 735 281 61.8
CMIS C=32 N=128 51 94147 4875 1719 64.7
CMIS C=64 N=256 51 359491 36531 17672 51.6
CMIS C=128 N=256 6 100336 12141 12250 -0.9
CMIS C=127 N=255 11 221954 27860 27328 1.9

We compared the number of states, transitions, and CPU time measured by a standard
model checking algorithm (exhaustive exploration without partial order reduction) and
by the cartesian algorithm of Fig. 7. The comparison was done for a few benchmark

Cartesian Partial-Order Reduction 107

programs, and the results are reported in Table 1. The number of states mentioned in the
results is the number of states that the algorithm stores during its execution (i.e. the size
of CoveredSet when the algorithm terminates). An empty cell in the table indicates that
the algorithm ran out of memory. Additional results and details about the benchmarks
can be found in the appendix.

In order to check dependency between transitions, the implementation of the carte-
sian algorithm conservatively assumes that two transitions are dependent if they have
conflicting memory accesses (i.e., one writes and the other reads or writes from the
same location). During the execution of CalcCV, the algorithm remembers the mem-
ory locations accessed by each thread (in the current CalcCV execution) and uses this
information for determining dependency between transitions.

The benchmarks were also tested on SPIN [11], but its partial order reduction algo-
rithm was unable to reduce the state space of any of the benchmarks (i.e. SPIN’s partial
order reduction did not affect the numbers of states and transitions).

Some of the acyclic benchmarks were tested on the dynamic partial order reduc-
tion algorithm from [6] (hereafter, referred to as FG). Because FG is stateless we only
compared the number of transitions. For some acyclic benchmarks, the cartesian al-
gorithm executed much fewer transitions than FG, even when FG was combined with
sleep sets [8] (e.g. for the SharedArray benchmark, the cartesian algorithm executed
only 1648 transitions whereas FG executed more than 107 transitions). For some other
acyclic benchmarks such as FileSystem, FG executed less transitions than the cartesian
algorithm, but in these cases the differences were less significant.

We also implemented the concurrent variant of the cartesian algorithm mentioned in
Sec. 6 and run the benchmarks on it using a machine with 4 processors. In some cases
(Indexer, FileSystem, CMIS) it saved around 60% of the running time (comparing to
the sequential variant).

8 Related Work

A key limitation in model checking concurrent software systems [2] is the notorious
state explosion problem. One approach to this problem is to reduce the size of the state
space via abstraction [4] and abstraction refinement [1,10,3] techniques. A comple-
mentary approach is to only explore a (sufficiently large) fraction of the system’s state
space, via partial order reduction techniques.

One standard partial order reduction technique is based on persistent (or stubborn)
sets [18,8]. This technique computes a subset of the enabled transitions in each visited
state, and only explores those transitions. This computed subset is called a persistent set,
and contains sufficiently many transitions to guarantee certain completeness properties.
Our approach can yield improvements even over the most precise persistent sets.

A traditional limitation of persistent sets is that they are typically obtained from a
static analysis of the code, via algorithms such as those described in [8]. Hence, the
approximations inherent in any static analysis can result in coarse persistent sets, par-
ticularly for pointer-rich code. Our algorithm overcomes this limitation by detecting
conflicts between transitions dynamically, instead of statically.

108 G. Gueta et al.

The approach of dynamic partial order reduction [6] computes persistent sets on-
the-fly by detecting conflicts dynamically, but only performs a stateless search, and
extending it to a stateful search has proven quite difficult. In contrast, the algorithm of
this paper performs a stateful search, which provides two key improvements over [6]:
(1) it can handle systems with cycles; and (2) even on cycle-free systems, storing states
avoids repeated explorations of the same parts of the state space.

A number of recent techniques have considered various kinds of exclusive access
predicates for shared variables that specify synchronization disciplines such as “this
variable is only accessed when holding its protecting lock” or “this variable is local
to this thread” [15,16,5,7]. These exclusive access predicates can be leveraged to dy-
namically infer persistent transitions, and so reduce the search space. At the same time,
exclusive access predicates can be verified or inferred during reduced state-space ex-
ploration. These techniques of [5,16] in particular have demonstrated significant per-
formance improvements for the common cases of thread-local and lock-protected data.
However, these techniques are less effective when the synchronization discipline
changes during program execution, such as when an object is protected by different
variables at different stages during the program’s execution.

9 Conclusions

We have presented a new approach Cartesian approach to partial order reduction that
can be used by model checkers and abstract interpreters. We are encouraged by the
empirical results that show improvement over prior approaches for some benchmarks.

References

1. Ball, T., Rajamani, S.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
3. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Robby, C.S.P., Zheng, H.: Bandera:

Extracting Finite-State Models from Java Source Code. In: Proceedings of the 22nd Interna-
tional Conference on Software Engineering (2000)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Symp. on
Principles of Prog. Languages, pp. 269–282. ACM Press, New York, NY (1979)

5. Dwyer, M.B., Hatcliff, J., Prasad, V.R., Robby,: Exploiting Object Escape and Locking Infor-
mation in Partial Order Reduction for Concurrent Object-Oriented Programs. Formal Meth-
ods in System Design 25(2–3) (2004)

6. Flanagan, C., Godefroid, P.: Dynamic Partial-Order Reduction for Model Checking Soft-
ware. In: Proceedings of POPL’2005, 32nd ACM Symposium on Principles of Programming
Languages, Long beach (January 2005)

7. Flanagan, C., Qadeer, S.: Transactions for Software Model Checking. In: Proceedings of the
Workshop on Software Model Checking, pp. 338–349 (June 2003)

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

9. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction. Technical
Report TA-CS-2007-052, School of Computer Science, Tel Aviv University (2007) Available
at http://www.cs.tau.ac.il/∼guygueta/Cartesian.pdf

http://www.cs.tau.ac.il/~guygueta/Cartesian.pdf

Cartesian Partial-Order Reduction 109

10. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc. of the 29th
ACM Symposium on Principles of Programming Languages, Portland, pp. 58–70. ACM
Press, New York (2002)

11. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual
12. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Proceedings of the

7th IFIP WG6 International Conference on Formal Description Techniques VII, pp. 197–
211. Chapman & Hall Ltd, London, UK (1995)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

14. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

15. Stoller, S.D.: Model-Checking Multi-Threaded Distributed Java Programs. International
Journal on Software Tools for Technology Transfer 4(1), 71–91 (2002)

16. Stoller, S.D., Cohen, E.: Optimistic Synchronization-Based State-Space Reduction. In: Gar-
avel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 489–504.
Springer, Heidelberg (2003)

17. Valmari, A.: Stubborn sets for reduced state space generation. In: 10th Conference on Appli-
cations and Theory of Petri Nets, pp. 491–515 (1991)

18. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) Ad-
vances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

19. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic. In:
Proc. Symp. on Principles of Prog. Languages, pp. 27–40. ACM Press, New York (2001)

A Benchmarks Description

In this appendix we describe the benchmarks.

A.1 Robots

The Robots example shown in Fig. 1. This program simulates an arena with a number of
robots that move in different paths, where each robot is represented by a separate thread.
Approaches based on static dependence will not be able to determine when a collision
is possible, and would yield a poor reduction of the state space. The dynamic partial
order reduction of [6] is not applicable for this benchmark, as its statespace contains
cycles.

For this benchmark, we consider two configurations: one that uses 2 robots, as shown
in Fig. 1, and one with 3 robots in which a new robot is added and set to start from
position (7, 0).

Table 1 shows that for both configurations (2 robots, and 3 robots), the cartesian
algorithm provides a significant improvement over the standard semantics.

A.2 CMIS

CMIS is a concurrent sorting algorithm which is composed from Merge-Sort and Insert-
Sort, its pseudo code appears in Fig. 9. In Table 1, C indicates an array length from
which CMIS uses a sequential Insert-Sort (see pseudo code), N indicates the length
of the array. In all the cases the input was an array sorted in a descending order (CMIS

110 G. Gueta et al.

ConcurrentMergeInsertSort(A, p, r) {
if(r-p+1 ≤ C)

InsertSort(A, p, r);
else {

q =
 p+r
2

� ;
run ConcurrentMergeInsertSort(A, p, q) on a child thread ;
ConcurrentMergeInsertSort(A, q+1, r);
wait for child thread termination ;
Merge(A, p, q, r);

}
Assert(A is sorted) ;

}

InsertSort(A, p, r) {
for j = p+1 to r {

key = A[j];
i = j - 1 ;
while ((i > p-1) and (A[i] > key)) {

A[i+1] = A[i];
i--;

}
A[i+1] = key ;

}
}

Merge(A, p, q, r) {
for i = p to r

draft[i] = A[i] ;
i = p; j = q+1; k = p;
while ((i ≤ q) and (j ≤ r)) {

if(draft[i] ≤ draft[j])
A[k++] = draft[i++];

else
A[k++] = draft[j++];

}
while (i ≤ q)

A[k++] = draft[i++];
}

Fig. 9. The CMIS (Concurrent-Merge-Insert-Sort) benchmark

sorted the array in an ascending order). Our approach does not deal with dynamic thread
creation therefore we simulated the dynamic threads creation by using threads that wait
on a loop until they receive an appropriate request.

A.3 SharedArray

The code of the SharedArray benchmark is shown in Fig. 10. In this program, there are
two threads writing to a shared array in a loop. Each of the threads accesses different

Cartesian Partial-Order Reduction 111

N = 64;
int A[N];
int idx0 = 0, idx1 = 1,counter = 1;
Thread i (i = 0, 1)

While(idxi < N) atomic {
A[idxi]=counter + idxi;
idxi += 2 ;

}
atomic {

counter = counter + 1 + idx1−i ;
assert(counter ≤ 2*N + 4) ;

}

Fig. 10. SharedArray Example

portions of the array. In every iteration of the loop each thread reads the value of a
shared variable counter and updates the array using its value. After finishing the loop
each thread updates the value of the shared variable counter. The instructions within
the atomic blocks (marked by the keyword atomic) are executed together atomically.

Partial order reduction algorithms based on persistent sets will not be able to reduce
the state space of this program. This is due to the fact that in every state in which the
two threads are still running, every persistent set contains all enabled transitions.

A.4 SharedPtr

The code for the SharedPtr benchmark is shown in Fig. 11. In this benchmark, two
threads are performing updates to memory locations identified using a shared pointer p.

The behavior of this example is similar to that of the SharedArray example, in the
sense that the threads sometimes access disjoint parts of memory, but in a way that a
static partial order reduction approach will not be able to detect.

N = 100;
int x=3, y=4, c1=0, c2=0
int* p
Thread 1

p = &y;
for(int i=0; i < N; i++) c1 += x;

*p += 3;
assert(3 ≤ x, y ≤ 9);

Thread 2
p = &x;
for(int i=0; i < N; i++) c2 += y;

*p += 2;
assert(3 ≤ x, y ≤ 9);

Fig. 11. SharedPtr Example

112 G. Gueta et al.

const int size = 128;
const int max = 4;
int[size] table;
int m = 0, w, h;
Thread tid
while (true) {

w := getmsg();
h := hash(w);
while (cas(table[h],0,w) == false) {

h := (h+1) % size;
}

}
int getmsg() {

if (m < max) {
return (++m) * 11 + tid;

} else {
exit(); // terminate

}
}
int hash(int w) {

return (w * 7) % size;
}

Fig. 12. Indexer Example (from [6])

A.5 Indexer

This example is taken from [6]. This example has no cycles and behaves well with a
persistent sets algorithm. In this benchmark, there are no collisions between the threads
when the number of threads is less than 12. As a result, the cartesian algorithm is able to
considerably reduce the number of transitions when using up to 11 threads. In contrast,
the standard exploration suffers from exponential increase in the number of transitions.
Notice that in some cases the number of stored states is 1, this is reasonable because in
these cases the threads have no conflicts between them.

A.6 File System

This example is also taken from [6]. It uses up to 17 threads that communicate via
a shared memory. The properties of this example are similar to those of the Indexer
example.

A.7 Dining Philosophers

This example is the classical dining philosophers program.

On-the-Fly Dynamic Dead Variable Analysis

Joel P. Self and Eric G. Mercer

Department of Computer Science
Brigham Young University

Provo, Utah, USA

Abstract. State explosion in model checking continues to be the pri-
mary obstacle to widespread use of software model checking. The large
input ranges of variables used in software is the main cause of state
explosion. As software grows in size and complexity, the problem only
becomes worse. As such, model checking research into data abstraction
as a way of mitigating state explosion has become more and more impor-
tant. Data abstractions aim to reduce the effect of large input ranges.
This work focuses on a static program analysis technique called dead
variable analysis. The goal of dead variable analysis is to discover vari-
able assignments that are not used. When applied to model checking,
this allows us to ignore the entire input range of dead variables and thus
reduce the size of the explored state space.

Prior research into dead variable analysis for model checking does
not make full use of dynamic run-time information that is present dur-
ing model checking. We present an algorithm for intraprocedural dead
variable analysis that uses dynamic run-time information to find more
dead variables on-the-fly and further reduce the size of the explored
state space. We introduce a definition for the maximal state space re-
duction possible through an on-the-fly dead variable analysis and then
show that our algorithm produces a maximal reduction in the absence
of non-determinism.

1 Introduction

Model checking is a way to automatically verify properties of a system [13,4,17,
11, 10]. The model of a system is a directed graph containing a set of vertices
and a set of edges. In explicit state model checking, vertices represent states of
the system and edges represent transitions between states. When used to verify
software, model checking can discover subtle errors in deep execution traces that
are easily passed over in traditional software testing techniques. Since model
checking is a form of formal verification, the output of a model checker is a proof
that the system does or does not satisfy the specified property.

When model checking software, a state is a snapshot of the program at a
single program location. The state contains the program location and the values
of all of the variables in the program. The program is used to generate successor
states given a current state. Every state generated is stored in a V isited set, and

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 113–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 J.P. Self and E.G. Mercer

every newly generated state is checked against the set to determine if the state is
new. A breadth-first or depth-first search is used to explore the entire state space
and ultimately verify or disprove the specified property. A single state may have
multiple successors due to non-determinism in the program. Non-determinism
represents input from an outside source such as user input from a keyboard
or input from a sensor. The model checker must generate successor states that
represent all possible input values in order to explore all possible scenarios when
running the program. Since the size of the reachable state space is exponential in
the branching factor of the model, the state space becomes large rather quickly,
even for programs with relatively few variables. The rapid growth of the state
space is called the state explosion problem.

An important technique for mitigating the state explosion problem in verifi-
cation is data abstraction [5]. Data abstraction reduces the size of the generated
state space by abstracting away data values; in other words, it removes variables
from the state to make their values unconstrained. Variables that receive values
from a non-deterministic input often have such large domains that removing
even a single variable can greatly reduce the effect of state explosion.

Dead variable analysis is a type of data abstraction that determines when the
values of variables do not matter in order to simplify a program state. Variables
can be either live or dead with respect to a program location. A variable is live at
a location when its current value is used. A variable is dead at a location when it
is redefined before it is used in some future location, or it is not used in any future
location. When a variable is dead at a program location its value does not affect
the behavior of the program since it is not used. Static dead variable analysis
(SDVA) has been implemented in several model checkers including SPIN, XMC,
Bandera, IF, and Bebop [12,7,6,3,2,18,16]. When SDVA discovers that a variable
is dead at a location, it becomes unnecessary for the model checker to track values
for that variable.

Fig. 1(a) is a simple program with labeled locations that we use to illustrate
how SDVA helps reduce the cost of state exploration. We must assume that any
possible value may be passed into the function; however, for the sake of brevity,
we only consider four input patterns. The reachable state space of the program
from the four input patterns is shown in Fig. 1(b). There are 13 states in the
state space of this program when no dead variable analysis is used. SDVA marks
c dead at locations 2, 3, and 4, since c is reassigned at location 4, and it marks b
dead at location 3, since b is reassigned at location 3. We can coalesce multiple
states into a single state by ignoring dead variables since the values of these
variables do not matter. For example, the states s1 and s2 in Fig. 1(b) become
equivalent when the dead variable c is ignored. We combine these into one state
in Fig. 2(a). Similar reductions to Fig. 1(b) are applied to states (s5, s6), (s7, s8),
and (s10, s11). The final reduced state space from SDVA is shown in Fig. 2(a).

SDVA, being a static analysis technique, does not use any of the dynamic
run-time information available during model checking. For this reason, SDVA
is conservative and only considers a variable dead if its current value is not
used on any future paths including infeasible paths that are unreachable in any

On-the-Fly Dynamic Dead Variable Analysis 115

1: f (int a, int b, int c);
2: if (a > 0) then
3: b = 3;
4: c = 5;
5: print a, b, c;

2:a = 0
 b = 1
 c = 3

2:a = 1
 b = 1
 c = 2

2:a = 1
 b = 2
 c = 3

3:a = 1
 b = 1
 c = 2

5:a = 0
 b = 1
 c = 5

4:a = 1
 b = 3
 c = 2

2:a = 0
 b = 1
 c = 2

3:a = 1
 b = 2
 c = 3

4:a = 0
 b = 1
 c = 2

4:a = 0
 b = 1
 c = 3

4:a = 1
 b = 3
 c = 3

5:a = 1
 b = 3
 c = 5

S11

S0

S1 S2 S4S3

S5 S6 S7 S8

S9 S10

S12

(a) (b)

Fig. 1. A simple program and its reachable state space. (a) A simple program with
variables dead at several locations. (b) The reachable state space of the program
in (a).

program execution. Additionally, when there is a pending pointer dereference in
the program, the variable referenced cannot be known until run-time. Variable
aliasing in general cannot be computed statically; therefore, in order to be safe,
SDVA must assume all variables could be used at the pointer dereference and
declare all variables as live. These two issues cause the SDVA to not find the
true dead variable set for a state; however, run-time information that is readily
available during model checking resolves memory aliasing allowing variables to
be positively marked as live and other variables to be marked as dead. Run-
time information also reveals the exact path taken through the program. A dead
variable analysis that uses run time information during model checking is able
to discover a more precise dead variable set for each state and possibly generate
smaller state spaces. The use of run-time information is the idea behind dynamic
dead variable analysis (DDVA).

An example of the effects of DDVA can be seen in Fig. 2(b). The state space is
generated when variable valuations in addition to program location are used to
refine dead variable analysis. When the variable a is greater than zero, it causes

116 J.P. Self and E.G. Mercer

the program to go to location 3 which makes b dead at locations 2 and 3. The
refined path allows s3 and s4 from Fig. 2(a) to be represented with just a single
state, s3, in Fig. 2(b).

Recent work in DDVA labels variables live or dead dependent on specific fu-
ture execution paths and is tied directly to the reachable state space of the
system [14]. During model checking, [14] simulates single procedure programs
forward to discover a partial future path and the variables that are referenced at
pointer dereferences. The paths in the program that are not taken in the future
are removed from the program. A dead variable analysis on this new program
marks more variables as dead because of the missing paths; however, the DDVA
algorithm requires user input to determine how far forward to simulate the pro-
gram in order to achieve the greatest reduction in the state space. Without the
correct input value, the algorithm achieves little to no reduction with a substan-
tial increase in verification time and memory used. It is not possible to know
what the best explore depth is a priori without further analysis. Additionally,
the algorithm does not handle programs with loops and non-determinism making
DDVA as implemented in [14] impractical to use.

This paper presents a definition of the maximal state space reduction possible
from a dead variable analysis and a new algorithm for intraprocedural dynamic
dead variable analysis that yields a maximal reduction on single procedure pro-
grams with no non-determinism. By triggering analyses only after each trace has
been fully determined and by updating states in the reachable state space with
new dead variable information, our new algorithm discovers the true set of dead
variables for any state. Without non-determinism, the future of an execution
path is fixed; however, with non-determinism, the future path is uncertain. A
single state can have a future that causes one of its variables be dead and an-
other future where that same variable is live. Variables that become dead after
a point of non-determinism cannot be reliably marked as dead before the point
of non-determinism without first analyzing the entire reachable state space. In
the presence of non-determinism, our algorithm yields the maximum state space
reduction that is possible from an on-the-fly dead variable analysis.

2 Related Work

There are currently several relevant works on dead variable analysis in model
checking known to us. The work in [3] focuses primarily on showing that live
variable analysis defines an equivalence stronger than bisimulation. Static live
variable analysis comes at virtually no cost compared to the cost of model check-
ing and is completely orthogonal to other techniques used to attack the state
explosion problem [3, 18, 16]. Although SDVA is relatively quick, it only consid-
ers program locations in its analysis and can only discover unconditionally dead
variables. An analysis that makes use of variable valuations available during
model checking, in addition to program locations, can determine more precise
paths through the program and find variables that are conditionally dead.

On-the-Fly Dynamic Dead Variable Analysis 117

2:a = 0
 b = 1

2:a = 1
 b = 1

2:a = 1
 b = 2

4:a = 0
 b = 1

5:a = 0
 b = 1
 c = 5

3:a = 1

4:a = 1
 b = 3

5:a = 1
 b = 3
 c = 5

S10

S0

S1 S3 S4

S5 S7

S9

S12

2:a = 0
 b = 1

2:a = 1

4:a = 0
 b = 1

3:a = 1

4:a = 1
 b = 3

5:a = 0
 b = 1
 c = 5

5:a = 1
 b = 3
 c = 5

S10

S0

S1 S3

S5 S7

S9

S12

(a) (b)

Fig. 2. Two state spaces showing the results of SDVA and DDVA. (a) A reduction of
several states from using SDVA. (b) The additional reduction of one state from using
DDVA.

The dynamic dead variable analysis in [14] uses run time information to resolve
conditional branches and pointer dereferences. In order to do this, the DDVA
stops the model checker just before conditional branch points and pointer deref-
erences are processed and runs a forward analysis. The forward analysis deter-
mines a partial path that the program takes in the future and resolves memory
aliasing. The forward analysis is terminated either at a user-specified explore
depth or at a state with a non-deterministic assignment to a variable. Having
a partial path through the program text allows the analysis to use program lo-
cations and variable valuations to more precisely determine dead variable sets.
The algorithm prunes off portions of the program that are now known to be
unreachable given the observed program locations and variable valuations. The
normal SDVA is then run on this reduced program to find more precise sets of
dead variables.

Although the DDVA in [14] may find more precise sets of dead variables
than SDVA, it presents two issues. The first issue is that there is no correlation
between explore depths and state space reductions; and the second issue is that

118 J.P. Self and E.G. Mercer

no explore depth can give a true dead variable set in the presence of looping
structures. The first issue is a consequence of the starting point for each forward
analysis and the fact that states cannot have their dead variable sets updated
once they have been stored in the V isited set. The algorithm does not run
a new forward analysis until the model checker runs past the end of the last
forward analysis. Consequently, smaller explore depths have shorter analyses
but the analyses happen more often. Whereas bigger explore depths have longer
analyses, but the analyses are less frequent. An example of such a situation is
illustrated in Fig. 3.

Fig. 3 demonstrates how longer explore depths do not always translate to
greater state space reductions. In the figure, each box on the left represents a
state in the search stack in the model checker. Of particular note are states 10
and 18, where a is defined and then redefined such that a is dead from state
10 to state 17. The forward analysis needs to reach state 18 to discover that a
is dead. The way the algorithm is designed, it can only declare a dead in the
window of states generated after the start of the forward analysis and before
the next non-deterministic assignment. In the forward analysis patterns on the
right, each empty rectangle represents the window of states explored by a single
forward analysis. The analysis pattern with the smaller explore depth finds that
a is dead on the second analysis, and since the analysis starts at state 10, can
declare a dead in states 10 through 17. The pattern with the bigger explore
depth also finds that a is dead on its second analysis, but since the analysis
starts at state 17, it can only declare a dead at state 17; thus, it is impossible
to know a priori the explore depth to produce the best state space reduction
without further analysis of the program structure.

The second issue with the DDVA in [14] is that the true dead variable set for
a state is not discovered no matter what explore depth is used. Once states are
generated and stored in the V isited set they cannot have their dead variable sets
updated even if more dead variables are discovered. Additionally, the program
text is used for DVA. In the presence of loops, the program text conservatively
captures all paths. It has no way to unroll loops and find the exact path taken.
These limitations prevent the algorithm from achieving the maximal state space
reduction. The goal of this work is to formally define the maximal reduction
from DDVA and present an on-the-fly algorithm for computing it.

3 DVA Maximal Reduction

The dead variable abstraction in this work relies on the states and execution
paths in the reachable state space and the control flow graph (CFG) of the sys-
tem being verified. A state s is a mapping of variables to a finite domain or
�, s : V −→ D ∪ {�}, where V is the set of all variables in the system, D
is a finite domain, and � represents an unconstrained or abstracted variable.
We use the symbol S to represent the set of all possible mappings of variables
to the domain or �. For simplicity, we assume a single initial state, denoted by s0,

On-the-Fly Dynamic Dead Variable Analysis 119

a is defined

is redefineda

start

exit

1

17
18

10

State Generation
Along a Path depth = 9 depth = 17

Fig. 3. On the left is the search stack with the variable a defined at state 10 and then
redefined at state 18. On the right are two patterns of forward analyses with different
explore depths. Highlighted regions show where each analysis marks a as dead.

that contains the initial mapping; although, the results readily extend to systems
with multiple initial states.

A control flow graph is a tuple, (N, E), where N is a set of nodes and E ⊆
N × N is a set of edges connecting nodes. Each node α in the CFG represents
a transition that executes atomically in the system. A transition α ⊆ S × S
relates a state with its next state. A transition is enabled in s if and only if there
exists an s′ such that α(s, s′) holds. A transition α(s, s′) is valid if α is in the
CFG and applying α to s yields s′. A transition is deterministic if and only if
for every state s there is at most one s′ such that α(s, s′) holds. The CFG is
used in an iterative dataflow analysis to find dead variables [1]. SDVA and the
DDVA in [14] use a CFG to find dead variables in the program. This work uses
execution paths for the analysis.

An execution path, π = s0
α0→ s1

α1→ · · · , is a finite or infinite sequence of states
and transitions such that s0 is the initial state and for every i, αi(si, si+1) is a
valid transition and (αi, αi+1) ∈ E. A path suffix πi is the suffix of the execution
trace π starting at si. The set of all states that are in traces that begin with s0
and contain only the transitions in E constitute the reachable state space of the
system SR ⊆ S.

The formal definition we use to mark live and dead variables in a trace makes
use of some basic predicates. The predicate def(v, α) is true when the variable v
is defined by the transition α. Similarly, used(v, α) is true when v is used by α.
We now give the definition of a variable being live in a transition of an execution
path:

120 J.P. Self and E.G. Mercer

Definition 1. A variable v is live in a transition αi of an execution path πi =
si

αi→ si+1
αi+1→ · · · if and only if:

- there exists a j ≥ i such that used(v, αj) and
- ¬def(v, αk) for all i < k < j

We use this definition of live variables in the function live(πi, v), which takes
πi, the suffix of the execution trace π starting at si, and returns whether the
variable v is live in the first state on the trace. If a variable is not live in a state
then it is dead. Intuitively, a dead variable is a variable whose current valuation
is not used on any future path.

Variables mapped to � are abstracted and unconstrained. In this way, a state
that has abstracted variables can represent many different states. The set of all
abstracted variables in a state s is abstract(s) = {v | s(v) = �} and the set of
concrete variables is concrete(s) = {v | s(v) ∈ D}.

In order to compare and match states that have differing sets of abstracted
variables we define a relation between two states called contains denoted �c.

Definition 2. A state s′ is contained in s, denoted s′ �c s if:

- abstract(s′) ⊆ abstract(s) and
- For all variables v in concrete(s), s′(v) = s(v)

A state is contained in another state if the set of abstracted variables of the first
state are a subset or equal to the set of abstracted variables of the second state
and variables that are concrete in both states are equal.

SDVA only uses the information available in the CFG of the program to do
the analysis which admits infeasible paths and produces an imprecise set of
dead variables. When a precise execution path through the CFG is used to find
dead variables, the true dead variable sets for every state on the trace can be
calculated. Finding the true dead variable set for each state in the reachable
state space produces an abstract state space that is a DVA maximal reduction
of the concrete state space.

Definition 3. An abstract state space S′
R is a DVA maximal reduction of

the concrete state space SR if and only if:

- For every reachable execution trace starting at the initial state π = s0
α0→

s1
α1→ · · · in the concrete state space, there exists an abstract execution trace

π′ = s′0
α0→ s′1

α1→ · · · such that for all i, si �c s′i and s′i ∈ S′
R

- For all states s′ in S′
R, and for all variables v in V , if the value of v in s′ is

not �, then there exists a reachable concrete trace π = s0
α0→ s1

α1→ · · · and
an i ≥ 0 such that si �c s′ and live(πi, v)

The original DDVA in [14] uses some runtime information to refine SDVA and
find more dead variables; however, it is not able to construct a DVA maximal
reduction of a concrete state space and occasionally creates an abstract state
space that is no smaller than the state space produced using SDVA. The dynamic

On-the-Fly Dynamic Dead Variable Analysis 121

dead variable analysis in this work implements Definition 3 on-the-fly to produce
a DVA maximally reduced state space in the absence of non-determinism. In the
presence of non-determinism, our dynamic dead variable analysis produces the
closest approximation to a DVA maximally reduced state space that is possible
to produce on-the-fly.

4 Maximal Dynamic Dead Variable Analysis

Our DDVA algorithm achieves a DVA maximal reduction by analyzing fully
determined execution paths through the program instead of partial future paths
generated from a forward analysis. A fully determined execution path is a single
execution path that has been fully explored; it generates no more unique states.
An execution path that has reached the exit of the program or a path that
has reached an already visited state (representing a path that has entered an
infinite loop or merged into an already explored path) are the two kinds of fully
determined execution paths. Whenever the search generates a fully determined
path, a dead variable analysis is performed. New sets of dead variables for each
state in the path are calculated starting with the last state in the path. The
exception to this is when a prefix for a trace is unique but all states in its
suffix are already in the V isited set. In this case, we can use the dead variable
information we already calculated for the suffix to start calculating the dead
variables at the last state of the prefix.

When the model checker fully resolves an execution path through the pro-
gram, the dead variable analysis may find more dead variables for states that
have already been explored. A full execution path reveals dynamic run time
information of all of the states in the path, allowing the analysis to positively
declare variables live or dead. Updating the dead variable sets of visited states
requires that they be re-stored in the V isited set. In order to avoid storing states
that are later found to be duplicates when their dead variable sets are updated,
we use the contains relation to ascertain whether a state is unique even before
its final dead variable set is generated. In our algorithm, if s′ �c s, s′ is a newly
generated state, and s ∈ Visited , then s′ is not inserted into Visited , because it
is contained in s. This pre-emptive duplicate detection saves us from having to
generate and store states that are later found to be duplicates.

The new algorithm to dynamically find dead variables, shown in Fig. 4, is
remarkably simpler than the work in [14]. The function dfs performs a standard
depth-first search to enumerate the entire state space of the model. Stack is the
depth-first search stack. An entry in Stack consists of (s, A), with s being a state
that includes the location and A being a set of transitions that can be applied
to the state to get a next state and location. For our V isited set, we use a hash
table that implements the contains relation to compare states. The function a(s)
takes a state s and returns the set A, a : s −→ A. A transition α ∈ A maps a
current state onto a next state as defined previously. When a duplicate state is
generated (line 11) or the exit is reached (line 16), model checking is suspended
and a dead variable analysis is run. In the case that the exit of the program

122 J.P. Self and E.G. Mercer

is reached, updateDeadVars is called with null because the entire trace is
contained in Stack. When a duplicate state is reached, updateDeadVars is
called with the state in the hash table that matched the newly generated state.

The equation used in updateDeadVars to calculate dead variables sets in
a state requires as input the previous state’s set of dead variables. The vari-
able used for this, PreviousDeadV ars, is initialized to all variables at line 22
when the exit is reached due to the fact that all variables are dead at the exit.
When a partial path is in Stack and a path suffix is in V isited, we initialize
PreviousDeadV ars to be the dead variables in the state we matched on, line
24. Finally, in cases where the exit is not reached because the modeled program
enters an infinite loop, the analysis is started with PreviousDeadV ars being
empty, line 26, as we cannot determine what the previous state’s dead variable
set is without entering into an infinite loop ourselves. When a state maps to a
non-deterministic assignment in the program, as indicated by the return value
of nonDeterminism(strace), line 28, PreviousDeadV ars is set to the empty set,
because dead variables discovered after a point of non-determinism cannot be
used to calculate the set of dead variables for states before the non-determinism.
This point is explained in greater depth at the end of this section.

The equation for the definition of a dead variable is applied at line 31 of
updateDeadVars to find the set of dead variables for each state in the trace.
The function def(A) = {v | ∀α ∈ A, def(α, v)} returns the set of variables
that are defined in a set of transitions and the function used(A) = {v | ∀α ∈
A, used(α, v)} returns the set of variables that are used by a set of transitions. If
the analysis finds more dead variables than are currently in the state, the states in
Stack are updated with their new dead variable sets. Variables that are always
live, such as the program location, are never abstracted. The updated states
are re-stored in the hash table using the function replace(V isited, strace, s

′)
(line 34).

The following is an example run of the algorithm in Fig. 4 that produces the
state space shown in Fig. 2(b). The algorithm assumes that SDVA has already
been run so that any new dead variables that are found by our DDVA are unioned
with the set of dead variables found by the SDVA. Since some states shown in
Fig. 2(a) are produced and then later have their dead variable sets updated
to become the states in Fig. 2(b), we add a superscript, a or b, to states that
differ between the two figures. Our model checking run starts with s0 as our
start state. The state s0 is pushed onto Stack at line 2 and then the depth-first
search is called at line 3. In the main loop of dfs, s0 is peeked at on the top
of Stack. Line 8 chooses a transition α from s0’s transition set, if there is more
than one transition, and removes the transition from the set. Then line 9 uses
the transition to produce s1 from program location 1 of Fig. 1. We check for
uniqueness of the newly generated state in lines 10 and 11. If the state is not
contained in any other state in V isited, then it is a unique state. The new state
in this example is unique so we add it to V istited and then push it onto Stack
at lines 14 and 15. We need to perform a dead variable analysis on each trace

On-the-Fly Dynamic Dead Variable Analysis 123

after it has been generated, so we check if this trace has finished at line 16 by
checking to see if the current state’s location is the program exit.

The current trace has not reached the exit so we return to the top of the loop
and peek at s1 on the top of Stack. The state s1 has a single action in its action
set. This action is used to produce s5 which is added to V isited and Stack. The
third time through the main loop of dfs, s5 is peeked at on the top of Stack at
line 6. The state s9, the successor of s5, is generated and pushed onto Stack.
Since s9 is generated at the exit location, we call updateDeadVars at line 17.
All variables are dead at the end of the program so the set PreviousDeadV ars
is set to contain all the variables in the program at line 22. We iterate backwards
through the trace calculating the dead variables for each state starting at the last
state. The dead variables of the current state are calculated using the formula on
line 31 and then the appropriate variables are marked as dead at line 32. In this
example, no new dead variables are found, so we return from updateDeadVars.
The fourth time through the main dfs loop, s9 is at the top of Stack. It has
an empty action set, so it is popped off of Stack, and we look at s5. The state
s5 also has no more children, so it is also popped off Stack and then the same
process occurs for s1.

The next action in s0’s action set produces sa
3 . The state sa

3 does not trigger
a dead variable analysis and the successor of sa

3 , s7, also does not trigger an
analysis. The next state, s10, leads to s12, which is at the exit, so another dead
variable analysis is run. This time the variable b is found to be dead at program
locations 2 and 3. Marking b as dead in sa

3 produces the state sb
3 which replaces

the previous state at lines 33 and 34.
After returning from updateDeadVars, s12, s10, s6, and s3 are popped off

of Stack. The next successor of s0 is s4 which is contained in sb
3, so it is not

added to the Stack or V isited. Only s0 is in Stack when updateDeadVars is
called so no new dead variables are found. Now that s0’s action set is empty, it
is popped from Stack and state generation has completed.

Our DDVA algorithm is designed on the definitions in the previous section.
As such, we claim that using our algorithm to model check single procedure pro-
grams without non-determinism produces DVA maximally reduced state spaces
on-the-fly by implementing Definitions 2 - 3; however, the presence of non-
deterministic assignments to variables can affect the future path from a state so
that a state with a non-deterministic assignment can have more than one possi-
ble future. These multiple futures of a single state may cause the state to have
different sets of dead variables. It is possible that the non-determinism does not
actually affect the state’s dead variable set, but the only way to know for sure is
to examine the entire reachable state space; however, once the entire reachable
state space is produced, model checking has finished and there is no longer a
need to find more dead variables.

An example of how an execution path can affect states produced before the
point of non-determinism is presented in Fig. 5. The function get input rep-
resents non-deterministic input from an outside source that ranges over a large
finite domain. The variable a is dead at location 2 if c is greater than 2 and the

124 J.P. Self and E.G. Mercer

1: verify ((l0, s0))
2: push(Stack , s0, a(s0)))
3: dfs()

4: dfs ()
5: while Stack �= � do
6: (s, A) := peek(Stack)
7: if A �= � then
8: choose and remove transition α from A
9: s′ := α(s)

10: for all si ∈ V isited do
11: if s′ �c si then
12: updateDeadVars(si)
13: goto: line 5
14: V isited := V isited ∪ {s′}
15: push(Stack , (s′, a(s′)))
16: if s is at ExitLocation then
17: updateDeadVars(null)
18: else
19: pop(Stack)

20: updateDeadVars (si)
21: if Stack.LastState is at ExitLocation then
22: PreviousDeadV ars := V
23: else if si �∈ Stack then
24: PreviousDeadV ars := abstract(si)
25: else
26: PreviousDeadV ars := �
27: for strace := Stack.LastState to Stack.F irstState do
28: if nonDeterminism(strace) then
29: PreviousDeadV ars = �
30: A := a(strace)
31: DeadV ars := (PreviousDeadV ars ∪ def(A)) ∩¬used(A)
32: s′ = setAbstract(strace, DeadV ars)
33: if s′ �= strace then
34: replace(V isited, strace, s

′)
35: PreviousDeadV ars := DeadV ars

Fig. 4. Pseudo-code for the maximal DDVA algorithm

path goes through location 4. A state generated at location 2 could not have
a marked as dead because c might be assigned a value less than or equal to 2,
making a live. It is possible that every single value returned by get input at
location 2 during model checking is greater than 2, which means we can mark a
dead at location 2; however, the only way to check if get input always returns
a value greater than 2 is to finish generating the entire reachable state space.

In order to correctly mark variables as dead in the presence of non-determinism,
dead variable knowledge gained after a non-deterministic assignment cannot be

On-the-Fly Dynamic Dead Variable Analysis 125

1: a = get input();
2: c = get input();
3: if c > 2 then
4: a = 5;
5: print a, b, c;

Fig. 5. A program fragment that has a point of non-determinism that affects what can
be declared dead above it

used on states generated before the assignment unless we first generate every
possible assignment and future path for the analysis. It is possible that on some
models this strategy does find the DVA maximal reduction as it may be the case
that the non-determinism in a particular model does not affect dead variable sets
in preceding states. We cannot determine on-the-fly whether this is the case, so
our algorithm produces state spaces that are not technically DVA maximally
reduced when non-determinism is present.

5 Results

We implemented our DDVA algorithm in the Estes model checker developed at
the BYU Software Model Checking Lab [15]. Estes uses the GNU debugger as a
state generator in order to verify software at the object code level. Since a single
line of code from a high level language can easily translate into two or more
object code instructions, ways to reduce the size of the explored state space are
invaluable. The specific simulator we use as our state generator is based on the
Motorola 68hc11 processor and can be found in the Gnu Debugger (GDB) [8].
We use the tools found in the GEL collection of libraries [9] to compile C source
code into the binary files that run in the simulator.

In order to implement the contains relation, we need to be able to compare new
states with existing states to see if the new state is contained in another state;
however, comparing each new state with all the existing states in the V isited set
is too unwieldy as the set becomes larger. Since the contains relation stipulates
that the values of concrete variables must be equal, we only need to compare each
new state with all other states that have the same register values and program
location, as these variables are never abstracted. To take advantage of this fact,
we implement a chained hash table, where the registers and program location
of each state in a chain are equal. When a new state is generated, we hash on
the registers and program location to find the correct chain and then compare
the state to each of the states in the chain until an exact match or containing
state is found, or the end of the chain is reached. If a match or containing state
is found, then the new state is discarded. If the new state is unique, it is simply
appended to the end of the chain.

We compare the implementation of our DDVA algorithm against normal
model checking, model checking with SDVA, and the best and worst runs of

126 J.P. Self and E.G. Mercer

the DDVA in [14]. We compare the different techniques running on six different
models in the following areas:

– States generated : Size of the V isited set at the end of model checking.
– Wall clock time: Total time taken to finish model checking.
– Total memory used : The total amount of memory used by the model checker

to complete a model checking run.
– Abstraction time: Total amount of time taken in the dead variable analyses.

We test the algorithms on a number of artificial and real world tests including
the main test used to benchmark the DDVA in [14]. The first three models are
artificial with no real world objective other than to showcase the kind of state
space reductions that are possible with a dynamic dead variable analysis. The
last three models are mock-ups of real world functions or programs than can be
found in embedded platforms or general purpose computers. The machine used
for testing contains an 3GHz Intel Pentium 4 processor and 2GB of RAM. The
results are shown in Fig. 6 and Fig. 7.

The data in Fig. 6 and Fig. 7 show how the DDVA in [14] either results in
no better reduction than SDVA or has widely varying results depending on the
explore depth. Our DDVA on the other hand always has a smaller state space
than SDVA, and thus, always has lower memory usage than all of the other
methods. For simplicity, the DDVA algorithm in [14] is referred to as original in
the tables, while our algorithm is referred to as maximal.

The easy3 model is a program with several global integer variables that non-
deterministically receive a value at the beginning of the program. The rest of the
program contains conditional branches and, depending on values of the variables,
all but one variable becomes dead in each branch. The results are shown in the
top table of Fig. 6. The example benefits greatly from dead variable analysis. The
original DDVA discovers dead variables at the exact same point that SDVA finds
dead variables in the example and incurs the time penalty of extra analyses for
no state space reduction. Our DDVA reduces the state space and is only slightly
slower than SDVA. The original DDVA performs more analyses and thus takes
almost twice as long as our DDVA to do its abstraction and yet gains nothing
over the static analysis. Our DDVA produces a 35% smaller state space and
correspondingly has a lower peak memory usage.

The littleBranchmodel is similar to easy3; although, it contains nested con-
ditionals which the original DDVA can take advantage of with the right explore
depth. The results are shown in the middle table of Fig. 6. This model, how-
ever small, illustrates the difficulty in achieving a good result with the original
DDVA. Our DDVA, on the other hand, gives the largest state space reduction,
takes the least time to complete, and is able to do this every time without a user
specified depth bound.

The multiBranch model shown in Fig. 6 is a much larger version of the
littleBranch model that is used to test the original DDVA. In addition to hav-
ing deeper nesting than littleBranch, multiBranchmakes use of local variables
that are referenced as an offset from the frame pointer. Whenever there is an
upcoming pointer dereference, SDVA is forced to declare all variables live. The

On-the-Fly Dynamic Dead Variable Analysis 127

Model Name: easy3, Lines of Code: 38

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 34640 0m12.764s 34.5 0.0s
Static N/A 15814 0m6.605s 33.80 0.001s

Original best 2 15814 0m10.765s 34.46 3.792s
Original worst 2 15814 0m10.765s 34.46 3.792s

Maximal N/A 10330 0m8.105s 25.5312 2.017s

Model Name: littleBranch, Lines of Code: 57

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 864 0m0.442s 30.9 0.0s
Static N/A 721 0m0.405s 31.4 0.001s

Original best 6 658 0m0.344s 31.43 0.074s
Original worst 2 721 0m0.34s 31.43 0.0492s

Maximal N/A 530 0m0.223s 23.79 0.0138s

Model Name: multiBranch, Lines of Code: 140

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 294515 1m49.170s 87.1 N/A
Static N/A 217454 1m21.780s 74.87 0.002s

Original best 16 176651 1m41.458s 75.79 42.67s
Original worst 5 217478 2m10.965s 83.46 46.35s

Maximal N/A 145440 2m36.640s 57.99 7.513s

Fig. 6. Results for 3 artificial models. All 3 models are designed to showcase the benefits
of using DDVA.

results from this model are shown in the lower table of Fig. 6. This is a good
example of a situation where DDVA is engineered to surpass the performance of
SDVA; however, again the performance of the original DDVA is unpredictable,
and at its worst, generates more states than the static analysis due to the strict
state comparison in the hash table. Please note that although our DDVA gener-
ates the smallest state space in this example, it incurs a higher run time due to
the long chains in the chained table.

Fig. 7 gives the results from the lexer, robot and bintree models. The
lexer model is patterned after a function in a simple lexical analyzer. The
model simulates input as a string of characters which the function reads and
then returns a token based on what is in the first one or two characters. The
robot model simulates a line following robot with three sensors. The robot
changes the speed of its left and right motors based on input from the three
sensors. In both of these models, our DDVA has the smallest state space and
lowest memory usage while taking equal or less time to complete. The bintree

128 J.P. Self and E.G. Mercer

Model Name: lexer, Lines of Code: 92

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 262843 1m28.391s 66.9 0.0s
Static N/A 226169 1m17.633s 66.32 0.002s

Original best 2 225370 1m51.479s 71.30 31.66s
Original worst 3 226172 1m53.866s 71.13 33.46s

Maximal N/A 74024 1m45.56s 37.69 4.898s

Model Name: robot, Lines of Code: 55

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 35865 0m12.838s 35.3 0.0s
Static N/A 27940 0m10.377s 35.6 0.002s

Original best 2 27940 0m18.675s 36.21 7.947s
Original worst 2 27940 0m18.675s 36.21 7.947s

Maximal N/A 27784 0m11.494s 29.21 0.552s

Model Name: bintree, Lines of Code: 31

Explore States Total Memory Abstraction
Analysis Depth Generated Time Used (MB) Time

None N/A 157828 1m0.608s 66.5 0.0s
Static N/A 154084 1m1.061s 68.4 0.005s

Original best 6 150964 2m14.807s 73.74 72.09s
Original worst 2 154084 2m7.356s 71.47 64.87s

Maximal N/A 103839 1m7.530s 52.62 16.34s

Fig. 7. Results for 3 real-world models. The lexer model is a simple lexical analyzer.
The robot model simulates a line following robot. The bintree model searches a binary
tree for a specific node.

model is the only model with a loop in it. This model searches a binary tree
for a specific node. Due to algorithmic limitations, the original DDVA typically
does not perform well on models with loops because its analysis is tied to the
CFG. Our DDVA does much better because it analyzes entire traces through
the program which is equivalent to unrolling the loop as many times as needed
and then performing dead variable analysis on the unrolled loop as shown in the
bottom table of Fig. 7.

6 Conclusions and Future Work

Dead variable analysis is an effective means of reducing the size of the explored
state space in model checking while retaining all relevant behaviors of the sys-
tem. Dynamic dead variable analysis provides a way of finding a larger set of

On-the-Fly Dynamic Dead Variable Analysis 129

dead variables for each state resulting in even smaller state spaces than those
generated using SDVA. Our DDVA greatly improves upon the ideas set forth
in the original DDVA of [14] by eliminating the dependence on a user specified
explore depth and by producing a DVA maximally reduced state space for mod-
els with no non-determinism and the closest possible approximation to a DVA
maximally reduced state space in models that contain non-determinism. Our
algorithm also correctly addresses looping structures in the analysis.

Our maximal DDVA algorithm is currently limited to single procedure pro-
grams. Future work focuses on modifying our DDVA algorithm to work on multi-
procedural programs. The easiest way to do this is to declare all global variables
as live, and treat every procedure and its local variables as a separate program.
As the program returns from a procedure, a dynamic dead variable analysis is
run on the trace of states generated through the procedure and dead variables
sets for states generated in the procedure are updated.

Other areas of future work include finding ways to speed up run time, adapting
the algorithm to different searches, and using a more efficient way of represent-
ing dead variables. The current implementation of the algorithm suffers from
an increase in run time on large models that can make state space exploration
infeasible. This increase in run time comes from the use of a chained hash table
and the contains relation. An avenue for future work would be to look into ways
to mitigate this problem. Another direction for future work adapts DDVA to
work with other search algorithms such as breadth-first search. The benefit of
breadth-first search is that paths that reach an error state are guaranteed to be
the shortest path to the error. Lastly, the current data structure used to mark
dead variables is highly inefficient. Some future work could be dedicated to cre-
ating data structures that take less memory to store dead variable information.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA (1986)

2. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software
Verification. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

3. Bozga, M., Fernandez, J., Ghirvu, L.: State space reduction based on live variables
analysis. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 164–178.
Springer, Heidelberg (1999)

4. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

5. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. on Programming Languages and Systems 16(5), 1512–1542 (1994)

6. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Zheng,
R., Zheng, H.: Bandera: extracting finite-state models from Java source code. In:
International Conference on Software Engineering, pp. 439–448 (2000)

130 J.P. Self and E.G. Mercer

7. Dong, Y., Ramakrishnan, C.R.: An optimizing compiler for efficient model check-
ing. In: FORTE XII / PSTV XIX ’99: Proceedings of the IFIP TC6 WG6.1 Joint In-
ternational Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE XII) and Protocol Specification, Testing
and Verification (PSTV XIX), pp. 241–256. Kluwer, B.V, Norwell (1999)

8. The Gnu project debugger: (2006) Available at http://sources.redhat.com/gdb/
9. GNU libraries for 68hc11 and 68hc12: (2005) Available at

http://gel.sourceforge.net/
10. Havelund, K., Pressburger, T.: Model checking Java programs using Java

pathfinder (1998)
11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with

Blast. In: Ball, T., Rajamani, S.K. (eds.) Model Checking Software. LNCS,
vol. 2648, pp. 235–239. Springer, Heidelberg (2003)

12. Holzmann, G.J.: The engineering of a model checker: the Gnu i-protocol case study
revisited. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) Theoretical and
Practical Aspects of SPIN Model Checking. LNCS, vol. 1680, Springer, Toulouse,
France (1999)

13. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2003)

14. Lewis, M.S., Jones, M.D.: A dead variable analysis for explicit model checking.
ACM SIGPLAN 2006 Workshop on Partial Evaluation and Program (2006)

15. Mercer, E.G., Jones, M.: Model checking machine code with the GNU debugger.
In: Godefroid, P. (ed.) Model Checking Software. LNCS, vol. 3639, pp. 251–265.
Springer, San Francisco, USA (2005)

16. Pelánek, R.: On-the-fly state space reductions. Technical Report FIMU-RS-2005-
03, Faculty of Informatics Masaryk University Brno (2005)

17. Robby, M., Dwyer, J.: Bogor: an extensible and highly-modular software model
checking framework (2003)

18. Yorav, K., Grumberg, O.: Static analysis for state-space reductions preserving tem-
poral logics. Form. Methods Syst. Des. 25(1), 67–96 (2004)

http://sources.redhat.com/gdb/
http://gel.sourceforge.net/

SAT-Based Summarization
for Boolean Programs

Gérard Basler�, Daniel Kroening, and Georg Weissenbacher��

Computer Systems Institute, ETH Zurich, 8092 Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Boolean programs are frequently used to model abstractions
of software programs. They have the advantage that reachability prop-
erties are decidable, despite the fact that their stack is not bounded.
The enabling technique is summarization of procedure calls. Most model
checking tools for Boolean programs use BDDs to represent these sum-
maries, allowing for efficient fix-point detection. However, BDDs are
highly sensitive to the number of state variables. We present an ap-
proach to over-approximate summaries using Bounded Model Checking.
Our technique is based on a SAT solver and requires only few calls to a
QBF solver for fix-point detection. Our benchmarks show that our imple-
mentation is able handle a larger number of variables than BDD-based
algorithms on some examples.

1 Introduction

Boolean programs [1] are frequently used to model software programs. They
provide the usual control-flow constructs of an imperative language such as C,
but variables are exclusively of Boolean type. The use of Boolean programs as
an abstract model has been promoted by the success of the Slam project [2].
Slam verifies control-flow dominated properties of Windows device drivers by
abstracting an ANSI-C program into a Boolean program. The abstract model
of the original program is obtained by means of Predicate Abstraction [3]. It
contains the same procedures and control flow as the original program, and
thus, Boolean programs are a natural formalization. The Boolean variables are
used to keep track of predicates over the variables of the original program.

The main advantage of Boolean programs over finite-state transition systems
is that their stack allows a precise representation of the behavior of proce-
dure calls, including procedure-local variables and (possibly unbounded) recur-
sive calls. Nevertheless, reachability properties for Boolean programs are decid-
able [4]: Procedures can access and modify only the topmost element of the
stack. Therefore, summarizing the procedures prevents a re-evaluation of a call
if the same calling context has already been considered before [5].
� Supported by the Swiss National Science Foundation.

�� Supported by Microsoft Research through its European PhD Scholarship
Programme.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 131–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 G. Basler, D. Kroening, and G. Weissenbacher

Most existing model checkers compute summaries incrementally at each call
site. The reachable states are determined by means of a saturation procedure,
which computes and adds summaries until no new states are discovered. In-
stances of such model checkers are Bebop [1], which is shipped with Slam, and
Moped [6]. Both tools use a symbolic representation of states and summaries
based on (ordered) Binary Decision Diagrams (BDDs) [7]. Ordered BDDs are
a canonical representation of formulas and can be compared efficiently, thus
enabling the detection of previously explored portions of the state space.

Unfortunately, in case of a large number of state variables, the BDDs become
unmanageably large. Approaches based on SAT-solvers (e.g. [8]) are less sensitive
to the number of variables. However, they suffer from the fact that the compari-
son of sets of states requires a decision procedure for quantified Boolean formulas
(QBF), making fix-point detection significantly harder than with BDDs.

We propose a SAT-based summarization technique that reduces the required
number of QBF calls significantly. We exploit the following observation about
Boolean programs generated by tools such as Slam: They are shallow. Formally,
this means that the length of the shortest path from an initial state to any
reachable valuation of global and local variables is bounded by a small constant.
This bound is called sequential depth. Only few programs written in a general
purpose programming language such as ANSI-C have this property. A single loop
with an integer counter variable may result in a Kripke structure with loop-free
paths as long as 232.

Obviously, a Boolean program may just as well have a sequential depth that
is exponential in the number of Boolean variables it contains. However, such a
program must encode the equivalent of a binary counter using a propositional
relation over the Boolean variables. Such models are typically not generated by
any of the program analysis tools that we experimented with: Tools based on
predicate abstraction generate at least one predicate per loop iteration [9].

In order to avoid the expensive fix-point detection, we generate a universal
summary, which encodes all possible execution traces of the procedure up to its
sequential depth, starting from an uninitialized calling context. A universal sum-
mary is an over-approximation of the fix-point that incremental summarization
would yield.

Computing the exact sequential depth is as hard as model checking. To avoid
this computation, we use an over-approximation, the reachability recurrence di-
ameter, that is commonly used in bounded model checking (BMC) and can be
computed by means of a SAT solver.

Related Work. Boolean programs have been introduced as a formalism to rep-
resent abstract models generated by Slam [10]. The success of the Slam project
motivated many researchers to work on even faster model checking algorithms
for Boolean programs. The formalism is equally expressive as Pushdown systems,
which have been studied long before Slam was presented: Büchi proved already
in 1964 that the set of reachable states of a pushdown system (represented by
a string rewriting system) can be expressed in terms of a regular language [4].
This result implies that reachability of states of pushdown systems is decidable.

SAT-Based Summarization for Boolean Programs 133

Sharir and Pnueli introduce summarization as an element of an iterative fix-point
detection based dataflow analysis algorithm for a language slightly more expres-
sive than Boolean programs [5]. Ball and Rajamani’s model checker Bebop is
based on this work, but uses BDDs to represent states symbolically [1]. Our
QBF-based summarization approach (see Section 3) is similar to the algorithm
implemented in Bebop, but uses SAT instead of BDDs. Finkel et al. present
an automata-based saturation algorithm that constructs the regular set repre-
senting the reachable states of a pushdown system [11]. Esparza presents an
optimized version of Finkel’s algorithm [6], and Schwoon improves this approach
using a BDD-based symbolic representation of pushdown systems [12]. Lal and
Reps present a graph-theoretic approach for model checking (weighted) push-
down systems [13]. None of the approaches listed above is based on satisfiability
solving techniques.

Recently, several algorithms based on rewriting have been proposed for model
checking pushdown systems: Boujjani and Esparza survey approaches that use
rewriting to solve the reachability problem for sequential as well as for concur-
rent pushdown systems [14]. Rewriting-based reachability analysis of concurrent
pushdown system is also covered by [15] and [16]. However, the reachability
problem for concurrent pushdown is undecidable.Various approaches have been
considered to overcome this problem (e.g., [17,18,19] and [15]). We omit a dis-
cussion of this work, since our approach does not target concurrent Boolean
programs.

Leino’s model checker for Boolean programs Dizzy [20] uses SAT-based sym-
bolic simulation. However, the fix-point detection is still done by computing
BDDs representing the set of reachable states.

Kroening presents a SAT-based model checker called Boppo for concurrent
pushdown systems without recursive procedures [8]. This work comes closest
to our approach, since Boppo uses a SAT-solver for symbolic simulation and
a QBF-solver for fix-point detection. Procedure calls can be simulated by dy-
namic threads. However, in the presence of threads, Boppo computes an over-
approximation of the set of reachable states. Furthermore, Boppo does not gen-
erate summaries for procedures.

Our approach is different from the model checking algorithms listed above,
since we compute an over-approximation of the summaries of a Boolean program,
instead of computing the least fix-point of this set. Still, our algorithm does not
yield false positives with respect to reachability properties. To compute this
over-approximation, we use Bounded Model Checking (BMC).

BMC was introduced by Biere et al. [21] as a SAT-based alternative to finite-
state model checking algorithms that use Binary Decision Diagrams (BDDs) [7].
BMC searches for counterexamples of length at most length k, which is increased
iteratively. The approach is complete if k exceeds the completeness threshold
CT [22]: If there is no counterexample of length at most CT , then the property
in question cannot be violated at all. The recurrence diameter, which can be
computed using a SAT solver, is an over-approximation of the completeness
threshold for reachability properties of finite-state transition systems [22].

134 G. Basler, D. Kroening, and G. Weissenbacher

Contribution and Outline. We present background on Boolean programs and
BMC in Sec. 2. In Section 3, we present a SAT-based model checking algorithm
which computes a set of summary edges for each procedure and finds the least
fix-point of these sets using a QBF solver. This work is based on the algorithm
presented in [1]. To the best of our knowledge, our tool is the first one that
implements summarization using SAT and QBF.

In Section 4, we introduce the notion of a universal summary, which encodes
the unwinding of all possible execution traces of a procedure up to its reacha-
bility recurrence diameter. We explain how the use of universal summaries can
significantly reduce the number of calls to the QBF solver.

We have implemented these algorithms for model checking Boolean programs
and provide experimental results comparing this implementation to a conven-
tional BDD-based algorithm in Section 5.

2 Background

The construction of universal summaries is based on an over-approximation of
what we call the sequential depth of a procedure. We borrow this idea from
Bounded Model Checking.

2.1 Bounded Model Checking

BMC is a method for finding logical errors in finite-state transition systems. It
is widely regarded as a complementary technique to symbolic BDD-based model
checking, and frequently used in the hardware industry; see [23] for a survey of
experiments with BMC conducted in industry.

Definition 1 (Finite-State Transition System). A Finite-State Transition
System M = 〈S, T, s0〉 is defined by a finite set of states S, a transition relation
T ⊆ S × S, and an initial state s0 ∈ S.

Given a finite-state transition system M, an LTL property ϕ, and a natural
number k, a BMC procedure decides whether there exists a sequence of transi-
tions of M of length k or less that violates ϕ. SAT-based BMC is performed by
generating a propositional formula, which is satisfiable if and only if such a path
exists. We write M |=k ϕ if all sequences of transitions up to length k satisfy ϕ.

In practice, the application of BMC is typically restricted to the refutation of
safety properties, and is conducted in an iterative manner: Starting with a small
initial value of k, k is incremented until either 1) an error is found, or 2) the
problem becomes intractable due to the complexity of solving the corresponding
SAT instance.

Bounded Model Checking is complete iff k reaches a completeness threshold
CT , which indicates there exists no path in M that violates φ.

Definition 2 (Completeness Threshold [22]). A completeness threshold of
a transition system M with respect to a property ϕ is any natural number CT

SAT-Based Summarization for Boolean Programs 135

such that, given that the property ϕ is not violated by any sequence of transitions
of length up to CT , then it cannot be violated at all, i.e.,

M |=CT φ =⇒ M |= φ (1)

holds.

Clearly, if M |= ϕ, then the smallest CT is 0, and otherwise it is equal to the
length of the shortest counterexample. This implies that finding the smallest
CT is at least as hard as checking M |= ϕ. Consequently, we concentrate on
computing an over-approximation of the smallest CT .

The Reachability Diameter of a finite-state transition system M is a com-
pleteness threshold for reachability properties of the form Gp:

Definition 3 (Reachability Diameter [22]). Given a finite-state transition
system M, the Reachability Diameter rd(M) of a M is the minimal number of
steps required for reaching all reachable states.

The Reachability Diameter corresponds to our notion of the sequential depth.

Definition 4 (Reachability Recurrence Diameter [22]). The Reachabil-
ity Recurrence Diameter with respect to a finite state transition system M =
〈S, T, s0〉 is the longest loop-free path in M starting from the initial state s0:

rrd(M)
def
= max{i|∃s1 . . . si.

i−1
∧

j=0

T (sj, sj+1) ∧
i−1
∧

j=0

i
∧

k=j+1

sj 	= sk} (2)

The Reachability Diameter and the Reachability Recurrence Diameter are only
defined for transition systems with a finite state space. However, Boolean pro-
grams do not adhere to this restriction, since they contain procedures with call-
by-value parameter passing and recursion.

2.2 Semantics of Boolean Programs

We define Boolean programs and their semantics in terms of the control-flow
graph of a program. A Boolean program consists of a set of procedures, each of
which is represented by its control flow graph (CFG).

As usual, a control flow graph is a directed graph with nodes corresponding
to program locations. Without loss of generality, we assume that each procedure
has exactly one entry node ni and one exit node ne.

In accordance to [1], a state comprises of the program counter n (which is
a node in the CFG) and the valuation Ω of the variables in scope. Unlike the
conventional notion of a program state, a state in a Boolean program does not
contain the content of the call stack.

Each edge 〈n1, n2〉 of the CFG corresponds to a transition 〈n1, Ω1〉 → 〈n2, Ω2〉
that relates the values Ω1 of the variables in scope before the transition to those
(Ω2) after the transition.

We use the following notation to describe transition functions:

136 G. Basler, D. Kroening, and G. Weissenbacher

– Ω(e) denotes the evaluation of the expression e according to the valuation Ω
of the variables in e. Expressions and their evaluation are defined the usual
way.

– We refer to the state before the execution of a transition function as current
state, and to the state afterwards as next state. We use primed versions of
the variables to distinguish variables that refer to the next state from the
variables in the current state. We allow expressions to range over variables in
two different states 〈n1, Ω1〉 and 〈n2, Ω2〉. (Ω1, Ω2)(e) denotes the evaluation
of such an expression e.

– Expressions may also contain non-deterministic choice. While non-determin-
istic values are traditionally represented by “∗”, we use a set of non-deter-
ministic choice variables ι1, . . . ιk instead. We use ξ to denote a valuation to
these variables, and we use [e]ξ to denote the evaluation of the expression e
under the mapping ξ.

In the given setting, only the topmost element of the stack has an immediate
impact on the execution of a transition. Therefore, the outcome of a call to a
procedure is exclusively determined by the values of the global variables and the
actual parameters at the call site. Consequently, each actual call to a procedure
pr can be summarized by a pair of states 〈ni, Ωi〉, 〈no, Ωo〉, where ni denotes the
entry node of the control flow graph of pr, and no denotes the corresponding
exit node. We use Σ(pr) to denote the set of these pairs for a procedure pr.
Furthermore, we assume in this section that Σ(pr) contains the entries for all
reachable call contexts. Clearly, Σ(pr) is finite for Boolean programs.

For a given entry state, the corresponding exit states1 are determined by the
transition functions of the control flow graph of pr. The transition functions are
in turn determined by the statements corresponding to the nodes of the control
flow graph. We distinguish the following statements:

– The skip statement does not modify the variables, but increments the pro-
gram counter by one.

– The goto �1, . . . , �m statement non-deterministically changes the program
counter to one of the program locations �1, . . . , �m provided as argument.
The valuation of the variables does not change.

– The assume e statement increases the program counter by one iff the condi-
tion e evaluates to true in the current state. Otherwise, the assume state-
ment has no successor states, i.e., the program terminates.

– The constrained assignment statement x1, . . . , xk := e1, . . . , ek constrain e
assigns the values of the expressions e1, . . . , ek to the variables x1, . . . , xk.
The expressions are evaluated in the current state and may contain a non-
deterministic choice variables. The constraint e is a predicate that ranges
over the variables of the current and the next state. It is evaluated in both
states, and the statement has no successor state if e does not hold.

– The return statement corresponds to the exit node of the control flow graph
of pr. Whenever it is reached, the current state determines the exit valuation

1 The use of non-determinism may result in more than one exit valuation.

SAT-Based Summarization for Boolean Programs 137

of the corresponding summary. We assume without loss of generality that all
return values are passed to the caller via global variables, i.e., return has no
parameters. Therefore, the variables are not modified. The program counter
of the successor statement is determined by the caller of the corresponding
procedure pr.

– The call pr(e1, . . . , ek) modifies the global variables according to an appli-
cable summary 〈ni, Ωi〉, 〈no, Ωo〉 in Σ(pr). A summary is applicable if a) Ωi

agrees with the current state on the global variables, and b) the evaluation of
e1, . . . , ek matches the corresponding actual parameters in Ωi. (The calling
context determines the entry valuation of a summary.)

Then, the call to pr(e1, . . . , ek) modifies the global variables according
to Ωo. If more than one summary is applicable, one summary is chosen non-
deterministically (analogously to the goto statement).

In the case that an applicable summary exists, the call sets the program
counter to the statement that succeeds the call. Otherwise, the statement
succeeding the call is never reached.

The statements skip, assume, the constrained assignment, and procedure
calls have a single successor node in the control flow graph (according to the
structure of the program). The return statement has no successor in the control
flow graph, since the program location that succeeds a return statement cannot
be determined statically. Goto statements may have more than one successor.
Conditional statements like if-then-else or while loops can be modeled using
a combination of the goto and assume statements.

The recursive nature with respect to Σ(pr) of the definition of the semantics
indicates that the set of summaries Σ(pr) of a Boolean program can be obtained
by means of a fix-point computation. Several algorithms that compute the least
fix-point of the set Σ(pr) in order to determine the set of reachable states have
been proposed [1,11,12].

We present a QBF-based algorithm to compute the least fix-point for Σ(pr)
in the following section, and propose to use a SAT-based over-approximation of
this fix-point in Section 4.

3 Summarization Using QBF

In this section we describe how we compute the least fix-point of Σ(pr) using
forward symbolic execution and QBF-based fix-point detection.

The valuation of a symbolic state is represented in terms of a Boolean for-
mula over non-deterministic choice variables ι1, . . . , ιk, i.e., we use a parametric
representation. Boolean formulas are defined the usual way.

Let N be the set of nodes in a CFG of a Boolean program, let V be the
variables of that program.

Definition 5 (Symbolic State). A symbolic state is a triple 〈n, γ, ω〉, where
n ∈ N identifies the node in the CFG and is represented explicitly, and γ is a
Boolean formula over the non-deterministic choice variables and represents the

138 G. Basler, D. Kroening, and G. Weissenbacher

Table 1. Conditions on the symbolic transitions 〈n1, γ1, ω1〉 → 〈n2, γ2, ω2〉 for the
statements skip, goto, assume, and the constrained assignment

Instruction γ2 ω2

skip γ2 = γ1 ω2 = ω1

return γ2 = γ1 ω2 = ω1

goto �1, . . . �k γ2 = γ1 ω2 = ω1

assume e γ2 = (γ1 ∧ ω1(e)) ω2 = ω1

x1, . . . , xk := e1, . . . , ek

constrain e
γ2 = (γ1 ∧ (ω1, ω2)(e)) ω2 = (ω1[x1/ω1(e1)] . . . [xk/ω1(ek)])

guard of the state. The component ω maps the variables V to formulas over
ι1, . . . , ιk, representing a set of valuations for the variables in the symbolic state.

Each symbolic state 〈n, γ, ω〉 represents the set of explicit states

{〈n, Ω〉|∃ξ.[γ]ξ ∧ ∀v ∈ V.Ω(v) = [ω(v)]ξ}

where ω(e) denotes the evaluation of the expression e according to the mapping ω
(analogously to Ω(e) in Section 2). The symbolic state 〈�10, (ι1∨ι2), {a �→ ι1, b �→
(¬ι1 ∧ ι2)}〉, for instance, represents the explicit states 〈�10, {a �→ 0, b �→ 1}〉 and
〈�10, {a �→ 1, b �→ 0}〉. The valuation 〈ι1, ι2〉 = 〈0, 0〉 is ruled out by the guard,
and the valuations 〈ι1, ι2〉 = 〈1, 0〉 and 〈ι1, ι2〉 = 〈1, 1〉 yield the same explicit
state. An unsatisfiable guard indicates that there is no concrete state represented
by 〈n, γ, ω〉 [8].

Before we proceed to introduce our symbolic representation of summaries, we
define the transition conditions for the statements skip, goto, assume, and the
constrained assignment. In Table 1, we write ω[x/e] for the mapping that maps
x to the formula e, while it agrees with the mapping ω on all other variables.
We use γ1 and ω1 to refer to the components γ and ω of the current state,
and γ2 and ω2 to refer to the next state. The program locations are omitted,
since they change according to the rules presented in Section 2. The conditions in
Table 1 are equivalent to those presented in [8] (except for the return statement).
According to this table, the components γ and ω are modified as follows:

– In case of a skip, return, or goto statement, γ as well as ω do not change.
– Conditions contributed by assume statements are instantiated according to

ω1 and conjoined with the guard γ1. The symbolic execution terminates if
γ2 is unsatisfiable.

– A constrained assignment updates the mapping ω2 accordingly. If a con-
straining condition is present, it is instantiated using ω1 and ω2, and con-
joined with γ1.

An actual symbolic transition can be characterized by a pair of symbolic states
〈n1, γ1, ω1〉, 〈n2, γ2, ω2〉. The first state represents the concrete set of states before
the transition, and the second the corresponding concrete states afterwards. By

SAT-Based Summarization for Boolean Programs 139

construction (see Table 1), the components γ1, γ2, ω1, and ω2 share sub-formulas.
Therefore, given one of the concrete states 〈n1, Ω1〉 ∈ 〈n1, γ1, ω1〉, we can obtain
the states that are reachable from 〈n1, Ω1〉 via this transition by constraining
the state 〈n2, γ2, ω2〉:

〈n2,

(

γ2 ∧
∧

v∈V

ω1(v) = Ω1(v)

)

, ω2〉 (3)

Continuing our example, we construct the symbolic successor for the state
〈�10, (ι1 ∨ ι2), {a �→ ι1, b �→ (¬ι1 ∧ ι2)}〉 and the following statement:

a := ¬a constrain (¬b ∨ a′)

According to Table 1, we obtain ω2 = {a �→ ¬ι1, b �→ (¬ι1 ∧ ι2)} and γ2 = (ι1 ∨
ι2)∧(ι1 ∨¬ι2 ∨¬ι1) ≡ (ι1 ∨ ι2). We compute the successor states for the concrete
state 〈�10, {a �→ 0, b �→ 1}〉 by adding the constraint ι1 = 0 ∧ (¬ι1 ∧ ι2) = 1
to γ2, ruling out the successor state 〈�11, {a �→ 0, b �→ 1}〉 and leaving us with
〈�11, {a �→ 1, b �→ 0}〉.

If we constrain the transition 〈n1, γ1, ω1〉, 〈n2, γ2, ω2〉 with a symbolic state
〈n1, γ0, ω0〉 (analogously to Equation 3), we obtain a symbolic state that repre-
sents the set of states reachable from 〈n1, γ0, ω0〉 via this transition:

〈n2,

(

γ2 ∧ γ0 ∧
∧

v∈V

ω1(v) = ω0(v)

)

, ω2〉 (4)

In (4), we assume that the non-deterministic choice variables in 〈n1, γ0, ω0〉
differ from those in 〈n1, γ1, ω1〉 and 〈n2, γ2, ω2〉. This can always be achieved by
renaming.

The representation of transitions by means of two symbolic states is not re-
stricted to single transitions, but can be extended to sequences of transitions in
the natural way. This representation enables the summarization of compound
transitions, and is similar to the concept of path edges [1].

Definition 6 (Path edges and summary edges). A pair of symbolic states
〈ni, γi, ωi〉, 〈no, γo, ωo〉 is a path edge of procedure pr iff all of the following hold:

– ni is the entry node of pr.
– 〈ni, γi, ωi〉 is reachable from an initial state of the Boolean program.
– 〈no, γo, ωo〉 is reachable from 〈ni, γi, ωi〉 by a sequence of statements that

does not contain the return statement of pr (unless no happens to be the
corresponding exit node).

A summary edge of pr is a path edge 〈ni, γi, ωi〉, 〈no, γo, ωo〉, for which ni cor-
responds to the entry node, and no corresponds to the exit node of pr.

Using Definition 6 and Equation 4, we can give a symbolic transition function
for the procedure call statement. Assume that we encounter a procedure call

140 G. Basler, D. Kroening, and G. Weissenbacher

pr(e1, . . . , ek) and the current state is 〈nc, γc, ωc〉. Let Σs(pr) be the set of
symbolic summaries for the procedure pr. We use g1, . . . , gm to denote the global
variables of the Boolean program, l1, . . . , lj to denote the local variables of the
calling context, and f1, . . . , fk to denote the formal parameters of the procedure
pr.

A summary edge 〈ni, γi, ωi〉, 〈no, γo, ωo〉 ∈ Σs(pr) is applicable to the calling
context 〈nc, γc, ωc〉 iff

1. for all reachable valuations of g1, . . . , gm, e1, . . . , ek in 〈nc, γc, ωc〉 there exists
a matching valuation to g1, . . . , gm, f1, . . . , fk in 〈ni, γi, ωi〉, and

2. γo is still satisfiable when the global and formal variables are restricted to
the global variables and parameter expressions of γc and ωc according to
Equation 4.

The universal quantification in the first condition requires us to use a QBF
instance to decide applicability:

∀ξc. [γc]ξc ⇒ ∃ξo.
∧

s∈{1..m}
[wi(gs)]ξo = [wc(gs)]ξc ∧

∧

t∈{1..k}
[wi(ft)]ξo = [wc(et)]ξc ∧ [γo]ξo

(5)

Again, we assume that the non-deterministic choice variables in 〈nc, γc, ωc〉
are disjoint from those in the summary edge.

Assuming that (5) holds, we can restrict the symbolic state 〈no, γo, ωo〉 to
the states reachable from the calling context 〈nc, γc, ωc〉 analogously to (4). By
applying the summary, we obtain a new symbolic state 〈nr, γr, ωr〉 (the state
after the return statement) with

γr := γo ∧ γc ∧
∧

s∈{1..m}
wi(gs) = wc(gs) ∧

∧

t∈{1..k}
wi(ft) = wc(et) (6)

and

ωr(g1) = ωo(g1), . . . , ωr(gm) = ωo(gm), ωr(l1) = ωc(l1), . . . , ωr(lj) = ωc(lj) (7)

Now consider the case that (5) does not hold, i.e., Σs(pr) contains no ap-
plicable summary. In that case, a new summary edge must to be computed for
the calling context 〈nc, γc, ωc〉. For this purpose, we construct a new symbolic
state 〈ni, γi, ωi〉 which agrees with 〈nc, γc, ωc〉 on the global variables, and as-
sign e1, . . . , ek to the formal parameters (using same transition function as the
assignment statement). The symbolic state 〈ni, γi, ωi〉 serves as entry node for a
new path edge, and may eventually yield a new summary edge.

Fix-point Detection. In order to determine the least fix-point of Σs(pr), our
reachability checking performs symbolic simulation of a Boolean program. The
algorithm maintains a set P of path edges and summary edges Σs(pr) that

SAT-Based Summarization for Boolean Programs 141

1: procedure insert(π)
2: if π �⊆ P then
3: insert π into P
4: insert π into W
5: end if
6: end procedure

7: Initialize P to ∅;
8: for all pr do Initialize Σs(pr) to ∅;
9: end for

10: W := {〈n0, true, ω∗〉, 〈n0, true, ω∗〉}; � 〈n0, true, ω∗〉 is initial state
11: W ′ := ∅;
12: while W �= ∅ do
13: remove π = 〈ni, γi, ωi〉, 〈no, γo, ωo〉 from W
14: if statement of no is skip, assume, or assignment then
15: π′ :=trans(π, no);
16: insert(π′);

17: else if statement of no is goto �1, . . . , �k then
18: π�1 , . . . , π�k

:=trans(π, no); � split path edge
19: for all t ∈ {1..k} do
20: insert(π�t);
21: end for

22: else if statement of no is call pr(e1, . . . , ek) then
23: for all σpr ∈ Σ(pr) do
24: if applicable(π, σpr) then
25: π′ :=apply(π, σpr);
26: insert(π′);
27: end if
28: end for
29: if {σpr ∈ Σ(pr) | applicable(π, σpr)} = ∅ then
30: construct entry state 〈ni, γi, ωi〉 for pr;
31: π′ := {〈ni, γi, ωi〉, 〈ni, γi, ωi〉};
32: insert(π′);
33: insert π into W ′ � postpone expansion
34: end if

35: else if statement of no is return then
36: if π �⊆ Σs(pr of ni) then
37: σ := π; � encountered new summary edge
38: insert σ into Σs(pr);
39: for all πc ∈ W ′ s.t. applicable(πc, σ) do
40: π′ :=apply(πc, σ); � perform postponed expansion
41: insert(π′);
42: end for
43: end if

44: end if
45: end while

Fig. 1. The SAT based model checking algorithm

142 G. Basler, D. Kroening, and G. Weissenbacher

have been constructed so far. Our algorithm is similar to the BDD-based model
checking algorithm presented in [1]. However, unlike a BDD-based representation
of path edges, our representation is not canonical. The price we pay for being
able to apply transition functions efficiently is that we need to solve a QBF
instance in order to determine whether a path edge is already an element of P .

Let V be the variables of the procedure pr. Given two path edges 〈ni, γi1, ωi1〉,
〈no, γo1, ωo1〉 and 〈ni, γi2, ωi2〉, 〈no, γo2, ωo2〉, the latter is at least as general as
the former iff

∀ξ1. [γo1]ξ1 ⇒ ∃ξ2. [γo2]ξ2 ∧
∧

v∈V

[ωi1(v)]ξ1 = [ωi2(v)]ξ2 ∧ [ωo1(v)]ξ1 = [ωo2(v)]ξ2
(8)

where ξ1 refers to the non-deterministic choice variables of the first path edge,
and ξ2 to those of the second. Equation 8 holds iff the set of pairs of concrete
states represented by the first path edge is a subset of the corresponding set
represented by the second. In that case, a further expansion of the path edge
〈ni, γi1, ωi1〉, 〈no, γo1, ωo1〉 does not yield any states that are not discovered by
expanding the more general path edge.

The pseudo code of our QBF-based algorithm is presented in Figure 1. It
resembles the model checking algorithm presented in [1], but uses SAT and QBF
instead of BDDs. In line 10, we use ω∗ to indicate that the state is initialized
non-deterministically.

We use applicable(π, σ) to denote the condition in Equation 5, where π =
〈ne, γe, ωe〉, 〈nc, γc, ωc〉 is a path edge that provides the calling context, and σ is a
summary edge. Furthermore, apply(π, σ) denotes the path edge that we obtain
by applying the summary according to equations (6) and (7). The condition in
Equation 8 is expressed by π1 ⊆ π2 and holds if the path edge π1 is subsumed
by π2. Finally, we use trans(π, n) to denote the application of the transition
function of a node n as listed in Table 1.

The algorithm maintains a work-list W in which all path-edges that are cur-
rently explored are stored. Each path edge of this work-list is expanded according
to the transition functions described above, until either the guard becomes un-
satisfiable or the resulting path edge is already in P . For convenience, we define
a procedure insert(π), which we use to insert a path edge into the work-list,
unless it is already contained in P .

In line 14, the transition functions presented in Table 1 are applied. Whenever
the algorithm encounters a goto statement, the current path edge is split (see
line 17).

Procedure calls are handled in line 22. Matching summary edges are applied
immediately. However, if there is no applicable summary edge, we construct an
entry state for the called procedure and add a corresponding path edge to the
work-list W . Furthermore, we store the current path edge σ in W ′, which is
examined whenever we add a new summary to Σ(pr). Thus, we guarantee that
any summary of pr that is eventually generated is applied to also σ (see line 39).

SAT-Based Summarization for Boolean Programs 143

Path merging. Splitting the path edge in line 17 of our algorithm in Fig-
ure 1 may lead to an explosion of the of the number of path edges. Therefore,
we merge path edges in our work-list W whenever possible. Two path edges
〈ni1, γi1, ωi1〉, 〈no1, γo1, ωo1〉 and 〈ni2, γi2, ωi2〉, 〈no2, γo2, ωo2〉 can be merged if
〈ni1, no1〉 and 〈ni2, no2〉 coincide. In that case, we construct a new path edge
〈ni1, γi, ωi〉, 〈no1, γo, ωo〉 such following conditions hold for γi and ωi:

– γi =
(

γi1 ∧
∧

v∈V ωi(v) = ωi1(v)
)

∨
(

γi2 ∧
∧

v∈V ωi(v) = ωi2(v)
)

– for all v ∈ V , ωi(v) = ωi1(v) ∨ ωi2(v)

Analogously, we construct similar conditions for γo and ωo and name the proce-
dure that merges a set of path edges Π merge(Π). We deploy a heuristic that
postpones the application of certain transitions (e.g. at join nodes in the CFG)
in order to increase the number of path edges in W that can be merged. A sim-
ilar approach is used by the model checker Dizzy [20], but not in combination
with summarization.

4 Universal Summaries

Solving the QBF instances is the primary performance bottleneck of the algo-
rithm presented in the previous section. The majority of the QBF instances is
generated by the fix-point detection algorithm (see Equation 8). These QBF in-
stances cannot be avoided if we want to compute the least fix-point of Σs(pr).
However, if we settle for an over-approximation of this fix-point, we can reduce
the number of calls to the QBF solver significantly.

The set of path edges consisting of all sequences of transitions of a proce-
dure pr up to its reachability recurrence diameter (see Def. 3) is such an over-
approximation. The definition of the reachability recurrence diameter requires
adaption to be applicable to procedures of Boolean programs:

– The reachability recurrence diameter is only defined for finite state system
and therefore not applicable to recursive procedure calls.

– The transition function T in Definition 1 is a compound, synchronous tran-
sition function that modifies all state variables in each step. A Boolean pro-
gram is a disjunctive partitioning of local transitions, and the advantage of
locality is lost if we treat it as a compound transition function.

We address these issues as follows:

– We replace the procedure calls in pr by a non-deterministic assignment to
all global variables that are potentially changed by the callee. The set of
these variables can be obtained by static analysis. The resulting procedure
pr* is an over-approximation of the behavior of pr.

– We still split the path edges, but perform aggressive merging, i.e., we merge
at every join node in the CFG. Thus, instead of unwinding the entire com-
pound transition function, each cycle in the CFG is unwound separately. This
corresponds to the loop unrolling algorithm used in the Cbmc tool [24].

144 G. Basler, D. Kroening, and G. Weissenbacher

1: procedure unroll(pr)
2: W := {〈ni, true, ω∗〉, 〈ni, true, ω∗〉}; � 〈ni, true, ω∗〉 is initial state
3: for all nodes n ∈ CFG(pr) do
4: P(n) := ∅;
5: end for
6: assign priorities no nodes: the closer to a return statement, the lower;

7: while W �= ∅ do
8: choose no with highest priority s.t. ∃〈ni, γi, ωi〉, 〈no, γo, ωo〉 ∈ W;
9: W ′ := {〈n′

i, γ
′
i, ω

′
i〉, 〈n′

o, γ
′
o, ω

′
o〉 ∈ W | n′

o = no};
10: W := W \W ′;
11: π′ := merge(W ′);
12: expand(π′, no); � expands π′ and adds result to W
13: end while
14: assert (statement of no is return);
15: return π′;
16: end procedure

Fig. 2. Expanding and merging path edges at every join node

The algorithm in Figure 2 performs aggressive merging by making sure that
no path edge can proceed beyond a join node unless all other path edges in the
work list have “caught up”. We achieve this by assigning a priority to each node
in the control flow graph. The priority depends on the distance to the exit node:
Nodes closer to the return statement have a lower priority, and the exit node
itself has the lowest priority.

Note that this algorithm fails to proceed beyond a join node of a cycle of
the CFG if the procedure expand (see call in line 12) perpetually generates new
path edges for this cycle. We prevent this by restricting the path edges generated
by expand to the reachability recurrence diameter of pr:

Definition 7 (Reachability Recurrence Diameter of procedure). The
reachability recurrence diameter rrd(pr) of a Boolean procedure pr is the longest
sequence of concrete transitions in pr* such that no state 〈n, Ω〉 of the procedure
is visited twice.

Given a set of symbolic path edges 〈ni, γi, ωi〉, 〈no, γo,j, ωo,j〉, j ∈ {1..n} for a
node no in procedure pr*, we can construct a formula (similar to Equation 2)
that is satisfiable iff there are n distinct states such that each path edge repre-
sents one of them:

∃ξ.

⎡

⎣

n−1
∧

j=0

n
∧

k=j+1

γo,j ∧ γo,k ∧
∨

v∈V

ωo,j(v) 	= ωo,k(v)

⎤

⎦

ξ

(9)

If we keep a record of all path edges that reach a node n (using a set P(n)),
we can use Equation 9 to check whether there still exists a sequence of concrete
transitions that visits no state at n twice. We use recurring(P(n)) to denote
Equation 9.

SAT-Based Summarization for Boolean Programs 145

1: procedure insert(π)
2: if ¬recurring(P(no) ∪ {π}) then
3: P(no) := P(no) ∪ {π};
4: W := W ∪ {π};
5: end if
6: end procedure

7: procedure expand(π,no)
8: if statement of no is skip, assume, or assignment then
9: π′ :=trans(π, no);

10: insert(π′);
11: else if statement of no is goto �1, . . . , �k then
12: π�1 , . . . , π�k

:= trans(π,no);
13: for all � ∈ {�1, . . . �k} do
14: insert(π�);
15: end for
16: else if statement of no is a call pr’(e1, . . . , ek) then
17: let G ⊆ {g1, . . . , gm} be globals changed in pr’;
18: π′ := π with G assigned non-deterministically;
19: insert(π′);
20: end if
21: end procedure

Fig. 3. Unrolling transitions of a Boolean procedure until states repeat

The pseudo-code for the procedure expand is presented in Figure 3. The
algorithm checks at each program location whether the reachability recurrence
diameter is exceeded. The path edge of the current step is added to P(n) unless
recurring(P ∪ {π}) holds (we implicitly assume that path edges with unsatis-
fiable guards are dropped, too).

Whenever the algorithm encounters a procedure call pr’(. . .), it replaces the
transition by a non-deterministic assignment to the globals that are potentially
changed by pr’ (see line 18). Finally, we return the entirely merged path edge π
that reaches the exit node of the CFG.

Again, we use 〈ni, true, ω∗〉 to denote the non-deterministically initialized
state (see line 2 in Figure 2), i.e., we do not restrict the calling context. Therefore,
our algorithm generates a path edge that contains all sequences of transitions
that do not visit a state twice for an arbitrary calling context.

We use this observation to justify our initial claim: The path edge π obtained
by computing unroll(pr) over-approximates Σs(pr). We call this π a universal
summary.

Definition 8 (Universal summary). The universal summary Σu(pr) of a
procedure pr is the path edge that we obtain by merging the path edges of all
sequences of transitions (the initial state being an unconstrained calling con-
text) of pr* up to the reachability recurrence diameter of pr*, i.e., Σu(pr) :=
unroll(pr)).

146 G. Basler, D. Kroening, and G. Weissenbacher

Table 2. Comparison of performance of Bebop, QBF-based summarization, and uni-
versal summaries (timout: > 2h)

Benchmark #vars Bebop QBF-summaries univ. summ. violation
Slam adddevice 434 4m37.4s 0m0.6s 0m1.8s yes
Slam nulldevice 434 4m34.0s 0m8.6s 0m1.4s yes

Slam pendedcompletedreq 86 0m30.9s timeout 0m13.5s yes
Slam targetrelationneedsref 37 0m0.4s 0m0.5s 0m2.74s no

Slam markirppending 11 0m0.4s 0m3.0s 0m18.5s no
Slam wmiforward 15 0m0.7s 0m2.0s 0m15.3s no
Terminator 1 74 timeout 1m55.9s 1m55.9s yes
Terminator 2 60 88m22.6s timeout timeout yes

The universal summary of pr does not only over-approximate Σs(pr), but also
the set of feasible transition sequences. These spurious execution traces are elim-
inated when Σu(pr) is applied at all call sites of pr according to equations (6)
and (7).

However, in case of a cyclic dependency between procedures (i.e., in case
of recursion or mutual recursion) the universal summaries cannot be applied.
Therefore, we compute the universal summaries of all non-recursive procedures
of a Boolean program, and use the algorithm in Figure 1 to handle the remaining
recursive procedure calls.

5 Benchmarks

We used Slam [10] and Terminator [25] to generate eight Boolean programs
from Windows device drivers. We compare the performance of our implementa-
tion on these examples to the model checker Bebop, which is part of Microsoft
Research’s Slam/SDV toolkit [10] (see Table 2). In addition, we compare the
effect of summarization with universal summaries and entirely QBF-based sum-
marization. The column labeled “violation” indicates whether the reachability
property we are checking for can be violated or not.

The algorithm that uses universal summaries deploys a heuristic that switches
back to QBF-summaries for procedures with universal summaries that are larger
than a certain threshold. This typically happens if the procedure contains a lot
of non-deterministic assignments.

The benchmarks are incoherent, and we have yet to investigate why this is
the case. In some situations (like the adddevice benchmark with 434 variables),
our implementation is significantly faster than Bebop. However, this cannot be
generalized. Furthermore, in some cases it turns out to be disadvantageous to
use universal summaries (see, for instance, the markirppending benchmark).
The QBF-instances resulting from the combination of universal summaries and
QBF-based summarization may become too large for the solver Skizzo [26]. In
the Terminator 2 benchmark, this also happens without universal summaries.

SAT-Based Summarization for Boolean Programs 147

We have a large number of small regression tests that indicate that BDD-based
implementations are still faster for Boolean programs with a small number of
variables. However, the reason for this may be that we did not profile and opti-
mize our implementation, yet. We intend to make an updated set of benchmarks
available as soon as we are able to explain the performance problems on small
examples.

6 Conclusion

We present a SAT based model checking algorithm for Boolean programs that
uses a QBF solver to compute the least fix-point of the set of summary edges
of a procedure. Furthermore, we introduce the concept of universal summaries,
an over-approximation of the summary edges our initial algorithm computes.
By using universal summaries, we reduce the number of calls to the QBF solver
significantly.

Our preliminary benchmarks do not allow us to conclude that our approach is
in general superior to BDD based model checking. However, some of the results
are very promising and indicate that it is worthwhile to further pursue the idea.

Acknowledgements. We would like to thank Vijay D’Silva, Angelo Brillout,
and our anonymous reviewers for their valuable comments on this paper.

References

1. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software
Verification. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

2. Ball, T., Rajamani, S.: Boolean programs: A model and process for software anal-
ysis. Technical Report 2000-14, Microsoft Research (2000)

3. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

4. Büchi, J.R.: Regular canonical systems. Archive for Mathematical Logic 6, 91
(1964)

5. Sharir, M., Pnueli, A.: Two approaches to interprocedural data dalow analysis.
In: Program Flow Analysis: Theory and Applications, pp. 189–233. Prentice-Hall,
Englewood Cliffs (1981)

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

7. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

8. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous
Boolean programs. In: Godefroid, P. (ed.) Model Checking Software. LNCS,
vol. 3639, pp. 75–90. Springer, Heidelberg (2005)

9. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate ab-
straction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 152–165.
Springer, Heidelberg (2006)

148 G. Basler, D. Kroening, and G. Weissenbacher

10. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, Springer, Heidelberg (2004)

11. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. ENTCS 9 (1997)

12. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München (2002)

13. Lal, A., Reps, T.: Improving pushdown system model checking. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

14. Bouajjani, A., Esparza, J.: Rewriting models of Boolean programs. In: Pfenning,
F. (ed.) RTA 2006. LNCS, vol. 4098, Springer, Heidelberg (2006)

15. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: Principles of Programming Languages
(POPL), pp. 62–73. ACM Press, New York (2003)

16. Bouajjani, A., Touili, T.: On computing reachability sets of process rewrite systems.
In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 484–499. Springer, Heidelberg
(2005)

17. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–103.
Springer, Heidelberg (2005)

18. Touili, T., Sighireanu, M.: Bounded communication reachability analysis of
bounded communication reachability analysis of process rewrite systems with or-
dered parallelism. In: Verification of Infinite State Systems (INFINITY), Elsevier,
Amsterdam (2007)

19. Cook, B., Kroening, D., Sharygina, N.: Over-approximating Boolean programs
with unbounded thread creation. In: Formal Methods in Computer-Aided Design
(FMCAD), pp. 53–59. IEEE Computer Society Press, Los Alamitos (2006)

20. Leino, K.R.M.: A SAT characterization of Boolean-program correctness. In: Ball,
T., Rajamani, S.K. (eds.) Model Checking Software. LNCS, vol. 2648, pp. 104–120.
Springer, Heidelberg (2003)

21. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
pp. 193–207. Springer, Heidelberg (1999)

22. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2003)

23. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 118–149 (2003)

24. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

25. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

26. Benedetti, M.: Evaluating QBFs via symbolic skolemization. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer,
Heidelberg (2005)

LTL Satisfiability Checking

Kristin Y. Rozier1,� and Moshe Y. Vardi2

1 NASA Langley Research Center, Hampton, Virginia 23681
Kristin.Y.Rozier@nasa.gov

2 Rice University, Houston, Texas 77005
vardi@cs.rice.edu

Abstract. We report here on an experimental investigation of LTL satisfiabil-
ity checking via a reduction to model checking. By using large LTL formulas,
we offer challenging model-checking benchmarks to both explicit and symbolic
model checkers. For symbolic model checking, we use both CadenceSMV and
NuSMV. For explicit model checking, we use SPIN as the search engine, and we
test essentially all publicly available LTL translation tools. Our experiments result
in two major findings. First, most LTL translation tools are research prototypes
and cannot be considered industrial quality tools. Second, when it comes to LTL
satisfiability checking, the symbolic approach is clearly superior to the explicit
approach.

1 Introduction

Model-checking tools are successfully used for checking whether systems have desired
properties [11]. The application of model-checking tools to complex systems involves
a nontrivial step of creating a mathematical model of the system and translating the de-
sired properties into a formal specification. When the model does not satisfy the speci-
fication, model-checking tools accompany this negative answer with a counterexample,
which points to an inconsistency between the system and the desired behaviors. It is
often the case, however, that there is an error in the system model or in the formal spec-
ification. Such errors may not be detected when the answer of the model-checking tool
is positive: while a positive answer does guarantee that the model satisfies the speci-
fication, the answer to the real question, namely, whether the system has the intended
behavior, may be different.

The realization of this unfortunate situation has led to the development of several
sanity checks for formal verification [29]. The goal of these checks is to detect errors in
the system model or the properties. Sanity checks in industrial tools are typically sim-
ple, ad hoc, tests, such as checking for enabling conditions that are never enabled [31].
Vacuity detection provides a more systematic approach. Intuitively, a specification is sat-
isfied vacuously in a model if it is satisfied in some non-interesting way. For example,

� Work contributing to this paper was completed at Rice University, Cambridge University, and
NASA Langley Research Center, and was supported in part by the Rice Computational Re-
search Cluster (Ada), funded by NSF under Grant CNS-0421109 and a partnership between
Rice University, AMD and Cray.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 149–167, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

150 K.Y. Rozier and M.Y. Vardi

the linear temporal logic (LTL) specification �(req → ♦grant) (“every request is even-
tually followed by a grant”) is satisfied vacuously in a model with no requests. While
vacuity checking cannot ensure that whenever a model satisfies a formula, the model is
correct, it does identify certain positive results as vacuous, increasing the likelihood of
capturing modeling and specification errors. Several papers on vacuity checking have
been published over the last few years [2, 3, 8, 27, 26, 30, 34, 37], and various industrial
model-checking tools support vacuity checking [2, 3, 8].

All vacuity-checking algorithms check whether a subformula of the specification
does not affect the satisfaction of the specification in the model. In the example above,
the subformula req does not affect satisfaction in a model with no request. There is, how-
ever, a possibility of a vacuous result that is not captured by current vacuity-checking
approaches. If the specification is valid, that is, true in all models, then model checking
this specification always results in a positive answer. Consider for example the spec-
ification �(b1 → ♦b2), where b1 and b2 are propositional formulas. If b1 and b2 are
logically equivalent, then this specification is valid and is satisfied by all models. Nev-
ertheless, current vacuity-checking approaches do not catch this problem. We propose
a method for an additional sanity check to catch exactly this sort of oversight.

Writing formal specifications is a difficult task, which is prone to error just as im-
plementation development is error prone. However, formal verification tools offer little
help in debugging specifications other than standard vacuity checking. Clearly, if a for-
mal property is valid, then this is certainly due to an error. Similarly, if a formal prop-
erty is unsatisfiable, that is, true in no model, then this is also certainly due to an error.
Even if each individual property written by the specifier is satisfiable, their conjunction
may very well be unsatisfiable. Recall that a logical formula ϕ is valid iff its negation
¬ϕ is not satisfiable. Thus, as a necessary sanity check for debugging a specification,
model-checking tools should ensure that both the specification ϕ and its negation ¬ϕ
are satisfiable. (For a different approach to debugging specifications, see [1].)

A basic observation underlying our work is that LTL satisfiability checking can be
reduced to model checking. Consider a formula ϕ over a set Prop of atomic proposi-
tions. If a model M is universal, that is, it contains all possible traces over Prop, then ϕ
is satisfiable precisely when the model M does not satisfy ¬ϕ. Thus, it is easy to add a
satisfiability-checking feature to LTL model-checking tools.

LTL model checkers can be classified as explicit or symbolic. Explicit model check-
ers, such as SPIN [28] or SPOT [15], construct the state-space of the model explicitly
and search for a trace falsifying the specification [12]. In contrast, symbolic model
checkers, such as CadenceSMV [32], NuSMV [9], or VIS [5], represent the model and
analyze it symbolically using binary decision diagrams (BDDs) [7].

LTL model checkers follow the automata-theoretic approach [45], in which the com-
plemented LTL specification is explicitly or symbolically translated to a Büchi automa-
ton, which is then composed with the model under verification; see also [44]. The model
checker then searches for a trace of the model that is accepted by the automaton. All
symbolic model checkers use the symbolic translation described in [10] and the anal-
ysis algorithm of [17], though CadenceSMV and VIS try to optimize further. There
has been extensive research over the past decade into explicit translation of LTL to

LTL Satisfiability Checking 151

automata[13, 14, 18, 19, 20, 25, 21, 24, 40, 38, 42], but it is difficult to get a clear
sense of the state of the art from a review of the literature. Measuring the performance
of LTL satisfiability checking enables us to benchmark the performance of LTL model
checking tools, and, more specifically, of LTL translation tools.

We report here on an experimental investigation of LTL satisfiability checking via
a reduction to model checking. By using large LTL formulas, we offer challenging
model-checking benchmarks to both explicit and symbolic model checkers. For sym-
bolic model checking, we used both CadenceSMV and NuSMV. For explicit model
checking, we use SPIN as the search engine, and we tested essentially all publicly
available LTL translation tools. We used a wide variety of benchmark formulas, either
generated randomly, as in [14], or using a scalable pattern (e.g.,

∧n
i=1 pi). LTL formulas

typically used for evaluating LTL translation tools are usually too small to offer chal-
lenging benchmarks. Note that real specifications typically consist of many temporal
properties, whose conjunction ought to be satisfiable. Thus, studying satisfiability of
large LTL formulas is quite appropriate.

Our experiments resulted in two major findings. First, most LTL translation tools
are research prototypes and cannot be considered industrial quality tools. Many of them
are written in scripting languages such as Perl or Python, which has drastic negative im-
pact on their performance. Furthermore, these tools generally degrade gracelessly, often
yielding incorrect results with no warning. Among all the tools we tested, only SPOT
can be considered an industrial quality tool. Second, when it comes to LTL satisfiabil-
ity checking, the symbolic approach is clearly superior to the explicit approach. Even
SPOT, the best LTL translator in our experiments, was rarely able to compete effectively
against the symbolic tools. This result is consistent with the comparison of explicit and
symbolic approach to modal satisfiability [35, 36], but is somewhat surprising in the
context of LTL satisfiability in view of [39].

Related software, called lbtt,1 provides an LTL-to-Büchi explicit translator test-
bench and environment for basic profiling. The lbtt tool performs simple consistency
checks on an explicit tool’s output automata, accompanied by sample data when incon-
sistencies in these automata are detected [41]. Whereas the primary use of lbtt is to
assist developers of explicit LTL translators in debugging new tools or comparing a pair
of tools, we compare performance with respect to LTL satisfiability problems across a
host of different tools, both explicit and symbolic.

The structure of the paper is as follows. Section 2 provides the theoretical back-
ground for this work. In Section 3, we describe the tools studied here. We define our
experimental method in Section 4, and detail our results in Section 5. We conclude with
a discussion in Section 6.

2 Theoretical Background

Linear Temporal Logic (LTL) formulas are composed of a finite set Prop of atomic
propositions, the Boolean connectives ¬, ∧, ∨, and →, and the temporal connectives X
(next time) U (until), R (release), � (also called G for “globally”) and ♦ (also called
F for “in the future”). We define LTL formulas inductively:

1 www.tcs.hut.fi/Software/lbtt/

www.tcs.hut.fi/Software/lbtt/

152 K.Y. Rozier and M.Y. Vardi

Definition 1. For every p ∈ Prop, p is a formula. If ϕ and ψ are formulas, then so are:
¬ϕ ϕ∧ψ ϕ → ψ ϕUψ Gϕ

ϕ∨ψ X ϕ ϕR ϕ F ϕ

LTL formulas describe the behavior of the variables in Prop over a linear series of
time steps starting at time zero and extending infinitely into the future. We satisfy such
formulas over computations, which are functions that assign truth values to the elements
of Prop at each time instant [16].

Definition 2. We interpret LTL formulas over computations of the form π : ω → 2Prop.
We define π, i � ϕ (computation π at time instant i ∈ ω satisfies LTL formula ϕ) as
follows:

π, i � p for p ∈ Prop if p ∈ π(i).
π, i � ϕ∧ψ if π, i � ϕ and π, i � ψ.
π, i � ¬ϕ if π, i � ϕ.
π, i � X ϕ if π, i+ 1 � ϕ.
π, i � ϕUψ if ∃ j ≥ i, such that π, j � ψ and ∀k, i ≤ k < j, we have π,k � ϕ.
π, i � ϕR ψ if ∀ j ≥ i, if π, j � ψ, then ∃k, i ≤ k < j, such that π,k � ϕ.

We define (F ϕ) as (true Uϕ) and (Gϕ) as (¬F ¬ϕ). We take models(ϕ) to be the set
of computations that satisfy ϕ at time 0, i.e., {π : π,0 � ϕ}.

In automata-theoretic model checking, we represent LTL formulas using Büchi
automata.

Definition 3. A Büchi Automaton (BA) is a quintuple (Q,Σ,δ,q0,F) where:

Q is a finite set of states.
Σ is a finite alphabet.
δ : Q× Σ → Q is the transition relation.
q0 ∈ Q is the initial state.
F ⊆ Q is a set of final states.

A run of a Büchi automaton over an infinite word w = w0,w1,w2, . . . ∈ Σ is a sequence of
states q0,q1,q2, . . . ∈ Q such that ∀i ≥ 0, δ(qi,wi) = qi+1. An infinite word w is accepted
by the automaton if the run over w visits at least one state in F infinitely often. We denote
the set of infinite words accepted by an automaton A by Lω(A).

A computation satisfying LTL formula ϕ is an infinite word over the alphabet Σ = 2Prop.
The next theorem relates the expressive power of LTL to that of Büchi automata.

Theorem 1. [46] Given an LTL formula ϕ, we can construct a Büchi automaton Aϕ =
〈

Q,Σ,δ,q0,F
〉

such that |Q| is in 2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly models(ϕ).

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness
checking, as ϕ is satisfiable iff models(ϕ) �= /0 iff Lω(Aϕ) �= /0.

We can now relate LTL satisfiability checking to LTL model checking. Suppose we
have a universal model, M, that generates all computations over its atomic propositions;
that is, we have that L+ ω(M) = (2Prop)ω. We now have that M does not satisfy ¬ϕ if
and only if ϕ is satisfiable. Thus, ϕ is satisfiable precisely when the model checker finds
a counterexample.

LTL Satisfiability Checking 153

3 Tools Tested

In total, we tested eleven LTL compilation algorithms from nine research tools. To
offer a broad, objective picture of the current state-of-the-art, we tested the algorithms
against several different sequences of benchmarks, comparing, where appropriate, the
size of generated automata in terms of numbers of states and transitions, translation
time, model-analysis time, and correctness of the output.

3.1 Explicit Tools

The explicit LTL model checker SPIN [28] accepts either LTL properties, which are
translated internally into Büchi automata, or Büchi automata for complemented proper-
ties (“never claims”). We tested SPIN with Promela (PROcess MEta LAnguage) never-
claims produced by several LTL translation algorithms. (As SPIN’s built-in translator is
dominated by TMP, we do not show results for this translator.) The algorithms studied
here represent all tools publicly available in 2006, as described in the following table:

Explicit Automata Construction Tools

LTL2AUT . (Daniele–Guinchiglia–Vardi)
Implementations (Java, Perl) . LTL2Buchi, Wring
LTL2BA (C) . (Oddoux–Gastin)
LTL2Buchi (Java) . (Giannakopoulou–Lerda)
LTL → NBA (Python) . (Fritz–Teegen)
Modella (C) . (Sebastiani–Tonetta)
SPOT (C++) (Duret-Lutz–Poitrenaud–Rebiha–Baarir–Martinez)
TMP (SML of NJ) . (Etessami)
Wring (Perl) . (Somenzi–Bloem)

We provide here short descriptions of the tools and their algorithms, detailing aspects
which may account for our results. We also note that aspects of implementation includ-
ing programming language, memory management, and attention to efficiency, seem to
have significant effects on tool performance.

Classical Algorithms. Following [46], the first optimized LTL translation algorithm
was described in [24]. The basic optimization ideas were: (1) generate states by demand
only, (2) use node labels rather than edge labels to simplify translation to Promela, and
(3) use a generalized Büchi acceptance condition so eventualities can be handled one
at a time. The resulting generalized Büchi automaton (GBA) is then “degeneralized” or
translated to a BA. LTL2AUT improved further on this approach by using lightweight
propositional reasoning to generate fewer states [14]. We tested two implementations
of LTL2AUT, one included in the Java-based LTL2Buchi tool and one included in the
Perl-based Wring tool.

TMP2 [18] and Wring3 [40] each extend LTL2AUT with three kinds of additional
optimizations. First, in the pre-translation optimization, the input formula is simplified

2 www.bell-labs.com/project/TMP/
3 www.ist.tugraz.at/staff/bloem/wring.html

www.bell-labs.com/project/TMP/
www.ist.tugraz.at/staff/bloem/wring.html

154 K.Y. Rozier and M.Y. Vardi

using Negation Normal Form (NNF) and extensive sets of rewrite rules. Second, mid-
translation optimizations tighten the LTL-to-GBA-to-BA translation algorithms. Third,
the resulting automata are minimized further during post-translation optimization. In
the end, TMP produces a BA whereas Wring halts translation with a GBA, which we
had to degeneralize.

LTL2Buchi4 [25] optimizes the LTL2AUT algorithm by initially generating
transition-based generalized Büchi automata (TGBA) rather than node-labeled BA to
allow for more compaction based on equivalence classes, contradictions, and redun-
dancies in the state space. Special attention to efficiency is given during the ensuing
translation to node-labeled BA. The algorithm incorporates the formula rewriting and
BA-reduction optimizations of TMP and Wring.

Modella5 focuses on minimizing the nondeterminism of the property automaton in
an effort to minimize the size of the product of the property and system model automata
during verification [38]. If the property automaton is deterministic, then the number of
states in the product automaton will be at most the number of states in the system model.
Thus, reducing nondeterminism is a desirable goal. This is accomplished using semantic
branching, or branching on truth assignments, rather than the syntactic branching of
LTL2AUT. Modella also postpones branching when possible.

Alternating Automata Tools. Instead of the direct translation approach of [46], an alter-
native approach, based on alternating automata, was proposed in [43]. In this approach,
the LTL formula is first translated into an alternating Büchi automaton, which is then
translated to a nondeterministic Büchi automaton.

LTL2BA6 [21] first translates the input formula into a very weak alternating au-
tomaton (VWAA). It then uses various heuristics to minimize the VWAA, before trans-
lating it to GBA. The GBA in turn is minimized before being translated into a BA,
and finally the BA is minimized further. Thus, the algorithm’s central focus is on opti-
mization of intermediate representations through iterative simplifications and on-the-fly
constructions.

LTL→NBA7 follows a similar approach to that of LTL2BA [19]. Unlike the heuristic
minimization of LWAA used in LTL2BA, LTL→NBA uses a game-theoretic minimiza-
tion based on utilizing a delayed simulation relation for on-the-fly simplifications.

Back to Classics. SPOT8 is the most recently developed LTL-to-Büchi optimized trans-
lation tool [15]. It does not use alternating automata, but borrows ideas from all the tools
described above. It adds two important optimizations: (1) unlike all other tools, it uses
pre-branching states, rather than post-branching states (as introduced in [13]), and (2)
it uses BDDs ([6]) for propositional reasoning.

4 http://ase.arc.nasa.gov/people/dimitra/LTL2Buchi.php
5 http://www.science.unitn.it/∼stonetta/modella.html
6 http://www.liafa.jussieu.fr/∼oddoux/ltl2ba/
7 http://estragon.ti.informatik.uni-kiel.de/∼fritz/ABA-Simulation/ltl.cgi
8 http://spot.lip6.fr/wiki/SpotWiki

http://ase.arc.nasa.gov/people/dimitra/LTL2Buchi.php
http://www.science.unitn.it/~stonetta/modella.html
http://www.liafa.jussieu.fr/~oddoux/ltl2ba/
http://estragon.ti.informatik.uni-kiel.de/~fritz/ABA-Simulation/ltl.cgi
http://spot.lip6.fr/wiki/SpotWiki

LTL Satisfiability Checking 155

3.2 Symbolic Tools

Symbolic model checkers describe both the system model and property automaton sym-
bolically: states are viewed as truth assignments to Boolean state variables and the tran-
sition relation is defined as a conjunction of Boolean constraints on pairs of current and
next states [7]. The model checker uses a BDD-based fix-point algorithm to find a fair
path in the model-automaton product [17]. CadenceSMV9 [32] and NuSMV10 [9] both
evolved from the original Symbolic Model Verifier developed at CMU [33]. Both tools
support LTL model checking via the symbolic translation of LTL to automata described
in [10]. CadenceSMV additionally implements heuristics that attempt to reduce LTL
model checking to CTL model checking in some cases [4].

4 Experimental Methods

4.1 Performance Evaluation

We ran all tests on Ada, a Rice University Cray XD1 cluster.11 Ada is comprised of 158
nodes with 4 processors (cores) per node for a total of 632 CPUs in pairs of dual core
2.2 GHz AMD Opteron processors with 1 MB L2 cache. There are 2 GB of memory
per core or a total of 8 GB of RAM per node. The operating system is SuSE Linux 9.0
with the 2.6.5 kernel. Each of our tests was run with exclusive access to one node and
was considered to time out after 4 hours of run time. We measured all timing data using
the Unix time command.

Explicit Tools. Each test was performed in two steps. First, we applied the translation
tools to the negation of the input LTL formula and ran them with the standard flags
recommended by the tools’ authors, plus any additional flag needed to specify that the
output automaton should be in Promela. Second, each output automaton, in the form
of a Promela never-claim, was checked by SPIN. In this role, SPIN serves as a search
engine for each of the LTL translation tools; it takes a never-claim and checks it for
non-emptiness in conjunction with an input model.12

In all tests, the model was a universal Promela program, enumerating all possible
traces over Prop. For example, when Prop = {A,B}, the Promela model is:

bool A,B;
/* define an active procedure to generate values for A and B */
active proctype generateValues()
{ do

:: atomic{ A = 0; B = 0; }
:: atomic{ A = 0; B = 1; }
:: atomic{ A = 1; B = 0; }
:: atomic{ A = 1; B = 1; }
od }

9 http://www.cadence.com/company/cadence labs research.html
10 http://nusmv.irst.itc.it/
11 http://rcsg.rice.edu/ada/
12 It would be interesting to use SPOT’s SCC-based search algorithm [23] as the underlying

search engine, rather than SPIN’s nested depth-first search algorithm [12].

http://www.cadence.com/company/cadence_labs_research.html
http://nusmv.irst.itc.it/
http://rcsg.rice.edu/ada/

156 K.Y. Rozier and M.Y. Vardi

We use the atomic{} construct to ensure that the Boolean variables change value in
one unbreakable step. Note that the size of this model is exponential in the number of
atomic propositions.

Symbolic Tools. We compare the explicit tools with CadenceSMV and NuSMV. To
check whether a LTL formula ϕ is satisfiable, we model check ¬ϕ against a universal
SMV model. For example, if ϕ = (X(a)), we provide the following input to NuSMV:

MODULE main
VAR
a : boolean;
b : boolean;
c : boolean;

LTLSPEC !(X(a=1))
FAIRNESS
1

SMV negates the specification, ¬ϕ, symbolically compiles ϕ into Aϕ, and conjoins Aϕ
with the universal model. If the automaton is not empty, then SMV finds a fair path,
which satisfies the formula ϕ. In this way, SMV acts as both a symbolic compiler and a
search engine.

4.2 Input Formulas

We benchmarked the tools against three types of scalable formulas: random formulas,
counter formulas, and pattern formulas. Scalability played an important role in our ex-
periment, since the goal was to challenge the tools with large formulas and state spaces.
All tools were applied to the same formulas and the results (satisfiable or unsatisfiable)
were compared. The symbolic tools, which were always in agreement, were considered
as reference tools for checking correctness.

Random Formulas. In order to cover as much of the problem space as possible, we
tested sets of 250 randomly-generated formulas varying the formula length and number
of variables as in [14]. We randomly generated sets of 250 formulas varying the number
of variables, N, from 1 to 3, and the length of the formula, L, from 5 up to 65. We set
the probability of choosing a temporal operator P = 0.5 to create formulas with both
a nontrivial temporal structure and a nontrivial Boolean structure. Other choices were
decided uniformly. We report median running times as the distribution of run times has
a high variance and contains many outliers. All formulas were generated prior to testing,
so each tool was run on the same formulas. While we made sure that, when generating
a set of length L, every formula was exactly of length L and not up to L, we did find
that the formulas were frequently reducible. Tools with better initial formula reduction
algorithms performed well in these tests.

Counter Formulas. Pre-translation rewriting is highly effective for random formulas,
but ineffective for structured formulas [18, 40]. To measure performance on scalable,
non-random formulas we tested the tools on formulas that describe n-bit binary counters

LTL Satisfiability Checking 157

with increasing values of n. These formulas are irreducible by pre-translation rewriting,
uniquely satisfiable, and represent a predictably-sized state space. Whereas our measure
of correctness for random formulas is a conservative check that the tools find satisfiable
formulas to be satisfiable, we check for precisely the unique counterexample for each
counter formula. We tested four constructions of binary counter formulas, varying two
factors: number of variables and nesting of X ’s.

We can represent a binary counter using two variables: a counter variable and a
marker variable to designate the beginning of each new counter value. Alternatively, we
can use 3 variables, adding a variable to encode carry bits, which eliminates the need
for U-connectives in the formula. We can nest X ’s to provide more succinct formulas
or express the formulas using a conjunction of unnested X -sub-formulas.

Let b be an atomic proposition. Then a computation π over b is a word in (2{0,1})ω.
By dividing π into blocks of length n, we can view π as a sequence of n-bit values, de-
noting the sequence of values assumed by an n-bit counter starting at 0, and increment-
ing successively by 1. To simplify the formulas, we represent each block b0,b1, . . . ,bn−1

as having the most significant bit on the right and the least significant bit on the left.
For example, for n = 2 the b blocks cycle through the values 00, 10, 01, and 11. For
technical convenience, we use an atomic proposition m to mark the blocks. That is, we
intend m to hold at point i precisely when i = 0 mod n.

For π to represent an n-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0’s.
2) The first n bits are 0’s.
3) If the least significant bit is 0, then it is 1 n steps later

and the other bits do not change.
4) All of the bits before and including the first 0 in an n-bit block flip

their values in the next block; the other bits do not change.

For n = 4, these properties are captured by the conjunction of the following formulas:

1. (m) && ([](m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& X(X(X(X(m)))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. []((m && !b) ->

(X(X(X(X(b)))) &&
X (((!m) &&
(b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b)))))) U m)))

4. [] ((m && b) ->
(X(X(X(X(!b)))) &&
(X ((b && !m && X(X(X(X(!b))))) U

(m || (!m && !b && X(X(X(X(b)))) &&
X((!m && (b -> X(X(X(X(b))))) &&

(!b -> X(X(X(X(!b)))))) U m)))))))

Note that this encoding creates formulas of length O(n2). A more compact encoding
results in formulas of length O(n). For example, we can replace formula (2) above with:

2. ((!b) && X((!b) && X((!b) && X(!b))))

158 K.Y. Rozier and M.Y. Vardi

We can eliminate the use of U-connectives in the formula by adding an atomic
proposition c representing the carry bit. The required properties of an n-bit counter
with carry are as follows:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0’s.
2) The first n bits are 0’s.
3) If m is 1 and b is 0 then c is 0 and n steps later b is 1.
4) If m is 1 and b is 1 then c is 1 and n steps later b is 0.
5) If there is no carry, then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit n steps later and adjust the carry.

For n = 4, these properties are captured by the conjunction of the following formulas.

1. (m) && ([](m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. [] ((m && !b) -> (!c && X(X(X(X(b))))))
4. [] ((m && b) -> (c && X(X(X(X(!b))))))
5. [] (!c & X(!m)) ->

(X(!c) && (X(b) -> X(X(X(X(b))))) &&
(X(!b) -> X(X(X(X(!b))))))

6. [] (c -> ((X(!b) -> (X(!c) && X(X(X(X(!b)))))) &&
(X(c) && X(X(X(X(b)))))))

Pattern Formulas. We further investigated the problem space by testing the tools on
the eight classes of scalable formulas defined by [22] to evaluate the performance of
explicit state algorithms on temporally-complex formulas.

E(n) =
n

∧

i=1

♦pi, U(n) = (. . .(p1 U p2) U . . .) U pn, R(n) =
n

∧

i=1

(�♦pi ∨♦�pi+1).

U2(n) = p1 U (p2 U (. . . pn−1 U pn) . . .), C1(n) =
n

∨

i=1

�♦pi, C2(n) =
n

∧

i=1

�♦pi.

Q(n) =
∧

(♦pi ∨�pi+1), S(n) =
n

∧

i=1

�pi.

5 Experimental Results

Our experiments resulted in two major findings. First, most LTL translation tools are re-
search prototypes, not industrial quality tools. Second, the symbolic approach is clearly
superior to the explicit approach for LTL satisfiability checking.

5.1 The Scalability Challenge

When checking the satisfiability of specifications we need to consider large LTL for-
mulas. Our experiments focus on challenging the tools with scalable formulas. Unfor-
tunately, most explicit tools do not rise to the challenge. In general, the performance of
explicit tools degrades substantially as the automata they generate grow beyond 1,000

LTL Satisfiability Checking 159

states. This degradation is manifested in both timeouts (our timeout bound was 4 hours
per formula) and errors due to memory management. This should be contrasted with
BDD tools, which routinely handle hundreds of thousands and even millions of nodes.

We illustrate this first with run-time results for counter formulas. We display each
tool’s total run time, which is a combination of the tool’s automaton generation time and
SPIN’s model analysis time. We include only data points for which the tools provide
correct answers; we know all counter formulas are uniquely satisfiable. As is shown in
Figures 1 and 2,13 SPOT is the only explicit tool that is somewhat competitive with the
symbolic tools. Generally, the explicit tools time out or die before scaling to n = 10,
when the automata have only a few thousands states; only a few tools passed n = 8.

Number of bits in binary counter

T
im

e
in

S
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Total Processing Time on 2-variable Counter Formulas

Modella LTL->NBA

TMP

LTL2AUT(W)
Wring

CadenceSMV
NuSMV

Spot

Correct Results

Fig. 1. Performance Results: 2-Variable
Counters

Number of bits in binary counter

T
im

e
in

S
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

10000 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Total Processing Time on 2-variable Linear Counter Formulas

Modella LTL->NBA

TMP

LTL2AUT(W)

Wring

CadenceSMV
NuSMV

Spot

Correct Results

Fig. 2. Performance Results: 2-Variable Linear
Counters

Figures 3 and 4 show median automata generation and model analysis times for
random formulas. Most tools, with the exception of SPOT and LTL2BA, timeout or die
before scaling to formulas of length 60. The difference in performance between SPOT
and LTL2BA, on one hand, and the rest of the explicit tools is quite dramatic. Note that
up to length 60, model-analysis time is negligible. SPOT and LTL2BA can routinely
handle formulas of up to length 150, while the symbolic tools scale past length 200,
with run times of a few seconds.

Figure 5 shows performance on the E-class formulas. Recall that ¬E(n) is the for-
mula

∨n
i=1 �¬pi. Since each formula �¬pi can be translated into an automaton with

a fixed number of states, ¬E(n) can be translated into an automaton with O(n) states.
Nevertheless, most tools show an unnecessary exponential blow-up. CadenceSMV is
the only tool whose performance seems to scale linearly. (The evidence for NuSMV is
inconclusive.)

Graceless Degradation. Most explicit tools do not behave robustly and die gracelessly.
When LTL2Buchi has difficulty processing a formula, it produces over 1,000 lines of

13 We recommend viewing all figures online, in color, and magnified.

160 K.Y. Rozier and M.Y. Vardi

Formula length

M
ed

ia
n

A
u

to
m

at
a

G
en

er
at

io
n

T
im

e
(s

ec
)

25 50 75 100 125 150
0

1

2

3

4

5 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Average-Behavior Analysis: P = 0.5; N = 2

Fig. 3. Random Formulas – Automata Genera-
tion Times

Formula length

M
ed

ia
n

M
od

el
A

na
ly

si
s

T
im

e
in

S
pi

n/
S

M
V

(s
ec

)

25 50 75 100 125 150 175 200
0

1

2

3

4

5

6 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Average-Behavior Analysis: P = 0.5; N = 2

Fig. 4. Random Formulas – Model Analysis
Times

Number of variables in formula

M
ed

ia
n

T
ot

al
R

un
T

im
e

(s
ec

)

1 2 3 4 5 6 7 8 9 10 11 12 13

10-2

10-1

100

101

102

103

104
LTL2AUT(B)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
CadenceSMV
NuSMV

Run Times for E-class Scaleable Formulas

Number of variables in formula

N
u

m
be

r
of

S
ta

te
s

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103
LTL2AUT(B)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP

Number of Automata States for E-class Scaleable Formulas

Fig. 5. E-class Formula Data

java.lang.StackOverflowError exceptions. LTL2BA periodically exits with “Com-
mand exited with non-zero status 1” and prints into the Promela file, “ltl2ba: releasing a
free block, saw ’end of formula’.” Python traceback errors hinder LTL→NBA. Modella
suffers from a variety of memory errors including *** glibc detected *** double
free or corruption (out): 0x55ff4008 ***. Sometimes Modella causes a seg-
mentation fault and other times Modella dies gracefully, reporting “full memory” before
exiting. When used purely as a LTL-to-automata translator, SPIN often runs for thou-
sands of seconds and then exits with non-zero status 1. TMP behaves similarly. Wring
often triggers Perl “”Use of freed value in iteration” errors. When the translation results
in large Promela models, SPIN frequently yields segmentation faults during its own
compilation. For example, SPOT translates the formula E(8) to an automaton with 258
states and 6,817 transitions in 0.88 seconds. SPIN analyzes the resulting Promela model

LTL Satisfiability Checking 161

in 41.75 seconds. SPOT translates the E(9) formula to an automaton with 514 states and
20,195 transitions in 2.88 seconds, but SPIN segmentation faults when trying to com-
pile this model. SPOT and the SMV tools are the only tools that consistently degrade
gracefully; they either timeout or terminate with a succinct, descriptive message.

A more serious problem is that of incorrect results, i.e., reporting “satisfiable” for an
unsatisfiable formula or vice versa. Note, for example, in Figure 5, the size of the au-
tomaton generated by TMP is independent of n, which is an obvious error. The problem
is particularly acute when the returned automaton Aϕ is empty (no state). On one hand,
an empty automaton accepts the empty language. On the other hand, SPIN conjoins the
Promela model for the never-claim with the model under verification, so an empty au-
tomaton, when conjoined with a universal model, actually acts as a universal model. The
tools are not consistent in their handling of empty automata. Some, such as LTL2Buchi
and SPOT return an explicit indication of an empty automaton, while Modella and TMP
just return an empty Promela model. We have taken an empty automaton to mean “un-
satisfiable.” In Figure 6 we show an analysis of correctness for random formulas. Here
we counted “correct” as any verdict, either “satisfiable” or “unsatisfiable,” that matched
the verdict found by the two SMVs for the same formula as the two SMVs always agree.
We excluded data for any formulas that timed out or triggered error messages. Many of
the tools show degraded correctness as the formulas scale in size.

Formula length

P
ro

po
rt

io
n

of
C

or
re

ct
C

la
im

s

5 10 15 20 25 30 35 40 45 50 55 60 65
0

0.5

1

1.5

2 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Random Formula Analysis: P = 0.5; N = 3

Fig. 6. Correctness Degradation

Does Size Matter? The focus of almost all LTL translation papers, starting with [24],
has been on minimizing automata size. It has already been noted that automata mini-
mization may not result in model checking performance improvement [18] and specific
attention has been given to minimizing the size of the product with the model [38, 22].
Our results show that size, in terms of both number of automaton states and transitions
is not a reliable indicator of satisfiability checking run-time. Intuitively, the smaller the
automaton, the easier it is to check for nonemptiness. This simplistic view, however,
ignores the effort required to minimize the automaton. It is often the case that tools

162 K.Y. Rozier and M.Y. Vardi

Number of bits in binary counter

N
u

m
be

r
of

S
ta

te
s

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103

104
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for 2-variable Counter Formulas

Fig. 7. Automata Size: 2-Variable Counters

Number of bits in binary counter

N
u

m
be

r
of

S
ta

te
s

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103

104
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for 2-variable Linear Counter Formulas

Fig. 8. Automata Size: 2-Variable Linear
Counters

Formula Length

N
u

m
be

r
of

S
ta

te
s

5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

150

200

250

300 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for 3-variable Random Formulas
90% Correct or Better

Formula Length

N
um

be
r

o
fT

ra
ns

iti
on

s

5 10 15 20 25 30 35 40 45 50 55 60 65
10-1

100

101

102

103

104
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata Transitions for 3-variable Random Formulas
90% Correct or Better

Fig. 9. State and Transition Counts for 3-Variable Random Formulas

spend more time constructing the formula automaton than constructing and analyzing
the product automaton. As an example, consider the performance of the tools on counter
formulas. We see in Figures 1 and 2 dramatic differences in the performance of the tools
on such formulas. In contrast, we see in Figures 7 and 8 that the tools do not differ sig-
nificantly in terms of the size of generated automata. Similarly, Figure 5, shows little
correlation between automata size and run time for E-class formulas.

Consider also the performance of the tools on random formulas. In Figure 9 we see
the performance in terms of size of generated automata. Performance in terms of run
time is plotted in Figure 11, where each tool was run until it timed out or reported an
error for more than 10% of the sampled formulas. SPOT and LTL2BA consistently have
the best performance in terms of run time, but they are average performers in terms of
automata size. LTL2Buchi consistently produces significantly more compact automata,

LTL Satisfiability Checking 163

in terms of both states and transitions. It also incurs lower SPIN model analysis times
than SPOT and LTL2BA. Yet LTL2Buchi spends so much time generating the automata
that it does not scale nearly as well as SPOT and LTL2BA.

5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools outperformed the explicit
tools, demonstrating faster performance and increased scalability. (We measured only
combined automata-generation and model-analysis time for the symbolic tools. The
translation to automata is symbolic and is very fast; it is linear in the size of the formula
[10].) We see this dominance with respect to counter formulas in Figures 1 and 2, for
random formulas in Figures 3, 4, and 11, and for E-class formulas in Figure 5. For U-
class formulas, no explicit tools could handle n = 10, while the symbolic tools scale up
to n = 20; see Figure 10. The only exception to the dominance of the symbolic tools
occurs with 3-variable linear counter formulas, where SPOT outperforms both symbolic
tools. We ran the tools on many thousands of formulas and did not find a single case in
which either symbolic tool yielded an incorrect answer yet every explicit tool gave at
least one incorrect answer during our tests.

Number of variables in formula

M
ed

ia
n

T
ot

al
R

un
T

im
e

(s
ec

)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10-2

10-1

100

101

102

103

104

105 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Run Times for U-class Scaleable Formulas

Number of variables in formula

N
u

m
be

r
of

S
ta

te
s

2 3 4 5 6 7 8 9
100

101

102

103
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for U-class Scaleable Formulas

Fig. 10. U-class Formula Data

The dominance of the symbolic approach is consistent with the findings in [35, 36],
which reported on the superiority of a symbolic approach with respect to an explicit
approach for satisfiability checking for the modal logic K. In contrast, [39] compared
explicit and symbolic translations of LTL to automata in the context of symbolic model
checking and found that explicit translation performs better in that context. Conse-
quently, they advocate a hybrid approach, combining symbolic systems and explicit
automata. Note, however, that not only is the context in [39] different than here (model
checking rather than satisfiability checking), but also the formulas studied there are gen-
erally small and translation time is negligible, in sharp contrast to the study we present
here. We return to the topic of model checking in the concluding discussion.

164 K.Y. Rozier and M.Y. Vardi

Formula length

M
ed

ia
n

A
u

to
m

at
a

G
en

er
at

io
n

T
im

e
(s

ec
)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
-1

0

1

2

3

4

5

6

7

8

9

10 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Random Formula Analysis: P = 0.5; N = 3

90% Correct or Better

Formula length

M
ed

ia
n

M
o

d
el

A
n

al
ys

is
T

im
e

(s
ec

)

5 10 15 20 25 30 35 40 45 50 55 60 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Random Formula Analysis: P = 0.5; N = 3

90% Correct or Better

Fig. 11. Automata generation and SPIN Analysis Times for 3-Variable Random Formulas

Figures 3, 4, and 11 reveal why the explicit tools generally perform poorly. We see
in the figures that for most explicit tools automata-generation times by far dominate
model-analysis times, which calls into question the focus in the literature on minimiz-
ing automata size. Among the explicit tools, only SPOT and LTL2BA seem to have
been designed with execution speed in mind. Note that, other than Modella, SPOT and
LTL2BA are the only tools implemented in C/C++.

6 Discussion

Too little attention has been given in the formal-verification literature to the issue of
debugging specifications. We argued here for the adoption of a basic sanity check: sat-
isfiability checking for both the specification and the complemented specification. We
showed that LTL satisfiability checking can be done via a reduction to checking univer-
sal models and benchmarked a large array of tools with respect to satisfiability checking
of scalable LTL formulas.

We found that the existing literature on LTL to automata translation provides little in-
formation on actual tool performance. We showed that most LTL translation tools, with
the exception of SPOT, are research prototypes, which cannot be considered industrial-
quality tools. The focus in the literature has been on minimizing automata size, rather
than evaluating overall performance. Focusing on overall performance reveals a large
difference between LTL translation tools. In particular, we showed that symbolic tools
have a clear edge over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiability checking, there are a cou-
ple of conclusions that apply to model checking in general. First, LTL translation tools
need to be fast and robust. In our judgment, this rules out implementations in languages
such as Perl or Python and favors C or C++ implementations. Furthermore, attention
needs to be given to graceful degradation. In our experience, tool errors are invari-
ably the result of graceless degradation due to poor memory management. Second, tool

LTL Satisfiability Checking 165

developers should focus on overall performance instead of output size. It has already
been noted that automata minimization may not result in model checking performance
improvement [18] and specific attention has been given to minimizing the size of the
product with the model [38]. Still, no previous study of LTL translation has focused on
model checking performance, leaving a glaring gap in our understanding of LTL model
checking.

References

[1] Ammons, G., Mandelin, D., Bodik, R., Larus, J.R.: Debugging temporal specifications with
concept analysis. In: PLDI, Proc. ACM Conf., pp. 182–195 (2003)

[2] Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi, M.Y.:
Enhanced vacuity detection for linear temporal logic. In: Hunt Jr., W.A., Somenzi, F. (eds.)
CAV 2003. LNCS, vol. 2725, Springer, Heidelberg (2003)

[3] Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL for-
mulas. Formal Methods in System Design 18(2), 141–162 (2001)

[4] Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of
linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) Computer Aided Verifi-
cation. LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999)

[5] Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng,
S.-T., Edwards, S., Khatri, S., Kukimoto, T., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary,
S., Shiple, T.R., Swamy, G., Villa, T.: VIS: a system for verification and synthesis. In: Alur,
R., Henzinger, T.A. (eds.) Computer Aided Verification. LNCS, vol. 1102, pp. 428–432.
Springer, Heidelberg (1996)

[6] Bryant, R.E.: Graph-based algorithms for boolean-function manipulation. IEEE Trans. on
Computers, vol. C-35(8) (1986)

[7] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

[8] Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer,
Heidelberg (2005)

[9] Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. It’l J. on Software Tools for Tech. Transfer 2(4), 410–425 (2000)

[10] Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal
Methods in System Design 10(1), 47–71 (1997)

[11] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
[12] Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms

for the verification of temporal properties. Formal Methods in System Design 1, 275–288
(1992)

[13] Couvreur, J-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock,
J.C.P., Davies, J. (eds.) FM’99 - Formal Methods. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999)

[14] Daniele, N., Guinchiglia, F., Vardi, M.Y.: Improved automata generation for linear tempo-
ral logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV’99. LNCS, vol. 1633, pp. 249–260.
Springer, Heidelberg (1999)

[15] Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using
transition-based generalized büchi automata. In: MASCOTS, Proc. 12th Int’l Workshop,
pp. 76–83. IEEE Computer Society, Los Alamitos (2004)

166 K.Y. Rozier and M.Y. Vardi

[16] Emerson, E.A.: Temporal and modal logic (chapter 16). In: Van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 997–1072. Elsevier, MIT Press, Cam-
bridge (1990)

[17] Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional µ-
calculus. In: LICS, 1st Symp., Cambridge, pp. 267–278 (1986)

[18] Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CON-
CUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)

[19] Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation rela-
tions for alternating büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS,
vol. 2759, pp. 35–48. Springer, Heidelberg (2003)

[20] Fritz, C.: Concepts of automata construction from LTL. In: Sutcliffe, G., Voronkov, A.
(eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 728–742. Springer, Heidelberg (2005)

[21] Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

[22] Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In:
Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925, pp. 53–70. Springer, Hei-
delberg (2006)

[23] Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-fly LTL verification more
efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205–219.
Springer, Heidelberg (2004)

[24] Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of
linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Test-
ing, and Verification, August 1995, pp. 3–18. Chapman & Hall, Sydney, Australia (1995)

[25] Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL
formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529, Springer, Heidelberg (2002)

[26] Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004)

[27] Gurfinkel, A., Chechik, M.: How vacuous is vacuous. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)

[28] Holzmann, G.J.: The model checker SPIN (Special issue on Formal Methods in Software
Practice). IEEE Trans. on Software Engineering 23(5), 279–295 (1997)

[29] Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006)

[30] Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. J. on Software
Tools For Technology Transfer 4(2), 224–233 (2003)

[31] Kurshan, R.P.: FormalCheck User’s Manual. Cadence Design, Inc. (1998)
[32] McMillan, K.: The SMV language. Technical report, Cadence Berkeley Lab (1999)
[33] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)
[34] Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in model

checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69. Springer,
Heidelberg (2004)

[35] Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for K. In: Voronkov, A.
(ed.) Automated Deduction - CADE-18. LNCS (LNAI), vol. 2392, pp. 16–30. Springer,
Heidelberg (2002)

[36] Piterman, N., Vardi, M.Y.: From bidirectionality to alternation. Theoretical Computer Sci-
ence 295(1–3), 295–321 (2003)

[37] Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg (2002)

LTL Satisfiability Checking 167

[38] Sebastiani, R., Tonetta, S.: more deterministic vs. smaller büchi automata for efficient LTL
model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp.
126–140. Springer, Heidelberg (2003)

[39] Sebastiani, R., Tonetta, S., Vardi, M.Y.: Symbolic systems, explicit properties: on hybrid
approaches for LTL symbolic model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 350–373. Springer, Heidelberg (2005)

[40] Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

[41] Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. STTT
- Int’l J. on Software Tools for Tech. Transfer 4(1), 57–70 (2002)

[42] Thirioux, X.: Simple and efficient translation from LTL formulas to Büchi automata. Electr.
Notes Theor. Comput. Sci, vol. 66(2) (2002)

[43] Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C.
(eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994)

[44] Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

[45] Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st LICS, pp. 332–344 (1986)

[46] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Compu-
tation 115(1), 1–37 (1994)

An Embeddable Virtual Machine
for State Space Generation

Michael Weber�

Department of Software Engineering
CWI, Amsterdam, The Netherlands

Michael.Weber@cwi.nl

Abstract. The semantics of modelling languages are not always spec-
ified in a precise and formal way, and their rather complex underlying
models make it a non-trivial exercise to reuse them in newly developed
tools. We report on experiments with a virtual machine-based approach
for state space generation. The virtual machine’s (VM) byte-code lan-
guage is straightforwardly implementable, facilitates reuse and makes it
an adequate target for translation of higher-level languages like the SPIN
model checker’s Promela, or even C. As added value, it provides effi-
ciently executable operational semantics for modelling languages. Several
tools have been built on top of the VM implementation we developed,
to evaluate the benefits of the proposed approach.

1 Introduction

Common approaches in state-based model checking employ modeling languages
like CSP [11], LOTOS [3], Murφ [6], DVE [1], or Promela [13] to describe
actual state spaces. These languages are usually non-trivial: in addition to con-
cepts found in programming languages (scopes, variables, expressions) they pro-
vide features like process abstraction, non-determinism, guarded commands, syn-
chronisation and communication primitives, timers, etc.. Implementing an oper-
ational model of high-level languages for use in verification tools is consequently
not straightforward.

That being said, when developing new verification algorithms and tools it is
highly desirable to reuse an already existing modeling language like Promela,
which has been used in a sizeable number of real-world case studies. In our expe-
rience, we identified four main benefits. First, we can reuse existing case studies
to test new tools and compare to already published results, instead of having
to resort to artificial examples. Secondly, tool developers can concentrate on the
implementation of algorithms if the part of how model data enters the devel-
oped tool is either reuseable or easily reimplemented, and can be incorporated
in whatever infrastructure is dictated by the requirements of a new algorithm.
From a user perspective, switching to a model checking tool with compatible
� This research has been partially funded by the Netherlands Organization for Scien-

tific Research (NWO) under FOCUS/BRICKS grant number 642.000.05N09.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 168–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Embeddable Virtual Machine for State Space Generation 169

input language is made easier, as it avoids the penalty of having to reimplement
the model in another formalism, and showing that the semantics have been pre-
served in the translation. In addition, existing models can be used to benchmark
new tools on realistic data sets. Lastly, by taking the virtual machine as an
intermediate layer, we can implement (and reuse!) common analyses like dead
variable reduction and statement merging independent of the high-level input
language.

Contributions. In order to remedy the perceived shortcomings we propose a
virtual machine (VM) based approach to state space generation, in which high-
level modeling languages are translated to byte-code instructions. Subsequent
execution of such byte-code programs with a VM yields state spaces for further
use in model checkers, simulators and testing tools. A key point is that the VM
is easily embeddable into a host application (for example, a model checker). As
such, it should have a formal specification and a straightforwardly implementable
execution model, which imposes as few constraints as possible on the tool it is
embedded into. In the rest of the paper we present how this can be carried out.
We validated the approach with a number of applications based around NIPS,
an implementation of the VM described here.

Organisation. In section 2 we describe the virtual machine model and its byte-
code semantics. Section 3 summarizes how the virtual machine is used for state
space generation in a number of applications: a target for Promela compila-
tion, which has been embedded into external-memory and distributed-memory
model checkers. As further benefit for tools developers, these tools can be used
unchanged to interface with other front-ends, for example, to check C code for
embedded systems. We conclude with a summary of related and future work in
sections 4 and 5. Appendix A presents benchmark results for our VM implemen-
tation to show practical usefulness of our approach.

2 Virtual Machine Specification

The virtual machine (VM) we are using as running example here contains a
couple of features not all of which are commonly found at byte-code level in
conventional VM architectures like the Java Virtual Machine (JVM) [15]. They
are a superset of the features we observed as common in modeling languages. In
particular, we have:

Non-determinism. If non-deterministic choice is encountered during execut-
ing, the machine offers all possible continuations to the scheduler who then
decides which path to take.

Concurrency. Processes can be created, not only statically but also during
execution of the model.

Communication. Both, rendezvous and asynchronous channel objects are
provided for inter-process communication.

170 M. Weber

First-class channels. Like in Promela and π-calculus [14], channels are first-
class values, i.e. they can be sent over channels like any other value, thus
allowing for a dynamic communication structure.

Priority scheme. Our byte-code allows to specify which actions have to be
given preference. Together with explicit control over externally visible ac-
tions, this allows to encode high-level constructs like Promela’s atomic
and d_step.

Speculative execution. Code sequences like guards are executed speculatively,
and changes to the global state are rolled back if the sequence does not run
to completion (see Section 2.4). Such non-deterministic effects are naturally
not easily replicable in a conventional VM.

External Scheduling. Scheduling decisions are delegated to host applications.
This allows for implementation of different scheduling policies which is
needed to cater for simulation (interactive scheduling) vs. state space ex-
ploration with some search strategy (breadth-first, depth-first, heuristics,
interactive, random, or combinations thereof).

The design of our VM was mainly driven by pragmatic decisions: it was our
intention to create a model that is simple, efficient and embeddable as compo-
nent into host applications, with implementation effort split between the VM
and compilers targeting it. For example, many instructions make use of the
VM’s stack because it is trivial for compilers to generate stack-based code for
expression evaluation. On the other hand, a stack-based architecture alone is
inconvenient for translation of counting loops, thus registers were added. The
RISC-like instruction set is motivated by the need for fast decoding inside the
instruction dispatcher, the VM’s most often executed routine.

Although our machine is a mixture of register-based and stack-based
architecture, we are nevertheless dealing with finite state models in this pa-
per by putting bounds on all resources. Concurrency is modeled by interleaving
semantics.

A complete specification of a virtual machine suitable as target for Promela
is available [20]. Our starting point was a simple VM model, which we then
extended with features needed to cater for Promela’s semantics. However, in
the interest of reusability we tried to keep these additions as generic as possible
(see Section 3.4).

In the following, we will present a formalisation of the VM which is suitable for
implementation. We found this an invaluable help in allowing different groups
working independently on compilers, byte-code optimizers and the VM itself.
It also serves as a reference in case the VM needs to be reimplemented, or for
answering questions regarding the semantics of compiled languages.

We start by specifying global and local state, and invariants which transla-
tions must preserve. Afterwards we present the byte-code semantics and how
scheduling between alternatives is done.

An Embeddable Virtual Machine for State Space Generation 171

State

Process 1

…

Process n

Global variables

Channel 1

…

Channel m

Channel

Process

Local variables

Stack

Register 1

…

Register 8

Message type

Message 1

…

Message k

Fig. 1. Overview over the state of the virtual machine. Dotted borders around registers
and stack indicate that they are only temporarily part of the machine state, but are
not preserved.

2.1 Machine State

The machine’s global state as depicted in Figure 1 consists of a few global objects
and the local state of its processes.

Definition 1 (Global State). The global state Γ = 〈Π, e, G, Φ〉 of our virtual
machine is a tuple

Γ ∈ Processes × Pid⊥ × Mem × Channels

with Π denoting a finite set of processes, e the process identifier of a process
with exclusive execution privileges (⊥ if none), G the global variable store, and
Φ the—again finite—set of existing channels (channels are global objects).

We will refer to the set of all global states as Γ as well, if the context makes
clear what is meant.

Definition 2 (Process). A process π = 〈p, M, Λ′〉 is a tuple

π ∈ Processes = (Pid × ExecMode × ProcessState′) ∪ {stop}

with p denoting a globally unique identifier, M ∈ {N, A, I, T} its execution mode
(normal, atomic, invisible, terminated), and Λ′ the local state of a process (Def-
inition 3).

Furthermore, we allow the special symbol stop to denote a deadlocked process
which cannot make any further step.

A process can be either inactive or active.

While a single process can be deadlocked, there might be others which can still
continue, so that there is no global deadlock yet.

Often, we do not want a global state Γ = 〈Π, e, G, Φ〉 to contain the dead-
locked process stop. To simplify notation, we write Γ �= stop iff no process in Π
is deadlocked: ∀π ∈ Π : π �= stop.

172 M. Weber

Definition 3 (Local Process State). A local process state Λ′ = 〈L, m〉 is a
pair

Λ′ ∈ ProcessState′ = Mem × IN

and denotes the process-local variable store L and its program counter m.
When a process becomes active, its state Λ′ is augmented with registers R0

and a stack Dε = ε to its active local state Λ = 〈L, m, R0, Dε〉:

Λ ∈ ProcessState = Mem × IN × Registers × Stack

When it becomes inactive again, its last two components are projected away. As
a result, they can only be used for storing temporary values.

Definition 4 (Store). We identify three stores in our virtual machine model:
for global (G) and local variables (L), and for registers (R). As usual, we model
stores as mappings σ ∈ IN → Value, that is for a store σ, σ[i] denotes the store’s
value at position i. Replacing a value v at position i in the store is written as
σ[i/v].

Initial stores are denoted as σ0 (∀i : σ0[i] := 0). For convenience, we write ri to
reference the ith register R[i].

We added registers to our virtual machine for situations when byte-code effects
on the machine’s state are not fitting well to a stack model, for instance if values
are operated on more than once.

Definition 5 (Data Stack). Expression evaluation takes place on the data
stack component D ∈ Stack = Value∗ of a process state. A stack is represented
as finite (possibly empty) word D = vn : · · · : v1, vi ∈ Value, n ∈ IN.

We denote the empty stack as Dε = ε.

Communication. Processes can use several ways to communicate values among
each other. First, they can use the global store G which can be modified by any
process at any time. A more structured way of communication is provided by
means of channels. They also offer a model for message-passing synchroniza-
tion. In our machine, communication channels are typed and bounded, and we
distinguish between rendezvous channels and asynchronous channels.

Definition 6. A channel φ = 〈c, l, t, C〉 is a tuple

φ ∈ Channels = ChanId × IN × IN × Message∗

with c denoting a globally unique channel identifier, l the channel capacity, and
C = c0 : · · · : cl its current contents (cl being the last message in the chan-
nel). Each message ci ∈ Message = Value∗ consists of a sequence of values of
length t.

An Embeddable Virtual Machine for State Space Generation 173

Rendezvous channels have zero capacity. A message can temporarily be stored
in a channel during rendezvous communication, hence exceeding the capacity of
the channel. Such states are internal to the virtual machine and unobservable to
its outside. Similarly, asynchronous channels which exceed their capacity auto-
matically fall back to the same behavior as rendezvous channels: send operations
on those block until they are within their allowed capacity again.

Definition 7 (Rendezvous Communication). We define a predicate sync(Γ)
on a global state Γ = 〈Π, e, G, Φ〉 to determine whether rendezvous communica-
tion is taking place: at least one channel φ = 〈c, l, t, C〉 contains more messages
than its capacity l allows.

sync(Γ) :=

{

true if ∃φ = 〈c, l, t, C〉 ∈ Φ : |C| > l

false otherwise

2.2 Invariants

Translation to our byte-code language must guarantee the following invariants:
as already pointed out in Definition 3, a process becoming active again always
resumes execution with register set R0 and the empty stack Dε. Conversely, at
those points in the program when a process may become inactive, the contents of
registers and stack are discarded and need not matter for the rest of its execution.
This means, that it is unnecessary to consider registers and stack as part of a
state vector given to a model checking algorithm.

Because the number of local variables is fixed, a local state Λ′ then occupies
constant space only.

2.3 Byte-Code Semantics

Having defined the state of our virtual machine, we now proceed by defining the
semantics of operations on it. These operations are carried out at process level,
with only a single process being active at once.

In the spirit of earlier displays of Promela semantics by Holzmann and
Natarajan [13], we compose our semantics from several smaller parts by defin-
ing four relations to model process activation, internal, intermediate and finally
scheduler transitions.

A transition from state Γ1 to Γ2 is a relation →T ∈ Γ × ΣT × Γ , with a finite
set of labels ΣT and set of states Γ . If not important, we will elide labels from
our presentation. For brevity, we write Λ1, G1, Φ1 → Λ2, G2, Φ2 instead of

〈{〈p, M, Λ1〉, π1, . . . , πn}, e, G1, Φ1〉
−→ 〈{〈p, M, Λ2〉, π1, . . . , πn}, e, G2, Φ2〉

πi = 〈pi, Mi, 〈Li, mi〉〉 for all 1 ≤ i ≤ n

State components remaining unchanged in a transition are left out.

174 M. Weber

Table 1. Load and Store byte-codes

LDC c load constant c onto top of data stack
〈L, m, R,D〉 →int 〈L, m + 1, R, D : c〉

LDV g load variable onto top of data stack
〈L, m, R,D : a〉 →int 〈L, m + 1, R, D : L[a]〉 if g = L
〈L, m, R,D : a〉, G →int 〈L, m + 1, R, D : G[a]〉, G if g = G

STV g store stack top in variable
〈L, m, R,D : v : a〉 →int 〈L[a/v], m + 1, R, D〉 if g = L
〈L, m, R,D : v : a〉, G →int 〈L, m + 1, R, D〉, G[a/v] if g = G

POP ri pop top-most value from stack into register
〈L, m, R,D : v〉 →int 〈L, m + 1, R[i/v], D〉

PUSH ri push value from register onto stack
〈L, m, R,D〉 →int 〈L, m + 1, R, D : ri〉

As mentioned before, only one process can be active at any point in time.
Thus we define process activation as transition

〈{〈p, M, 〈L, m〉〉, π1, . . . , πn}, e, G, Φ〉
p−→act 〈{〈p, M, 〈L, m, R0, Dε〉〉, π1, . . . , πn}, e, G, Φ〉

∀i ∈ {1, . . . , n} : πi = 〈pi, Mi, 〈Li, mi〉〉
and e ∈ {p, ⊥}, M �= T

A process needing exclusive execution privileges must be activated, otherwise
any process can be activated (e = ⊥). Processes already run to completion
(M = T) are not activated again.

Next, we define those transitions an active process can possibly take: the inter-
nal-step relation →int ∈ Γ × Γ is the least relation satisfying the rules given
below. For reasons of presentation, we divided internal steps into several parts.
Note that the byte-code operation to be executed next is determined by indexing
program counter m of the currently active process into a global instruction list
Instr.

Load and Store. Our machine supports usual operations to load constants
(LDC), and manipulate values of local and global variables (LDV, STV), as defined
in Table 1. The differentiation of local and global store access simplifies byte-code
analysis for, e.g., statement merging.

To avoid stack juggling operations like DUP, SWAP, etc., values can be stored
into and retrieved from registers with PUSH and POP.

Arithmetic and Boolean Operations. Expression byte-codes like ADD, LT,
AND, NEG, etc., operate on one or more of the stack’s top-most entries. Their
semantics are obvious and thus only defined exemplarily:

An Embeddable Virtual Machine for State Space Generation 175

Table 2. Control-flow byte-codes

JMPNZ a jump if non-zero
〈L, m, R, D : 0〉 →int 〈L, m + 1, R, D〉
〈L, m, R, D : v〉 →int 〈L, a,R, D〉, if v �= 0

NDET a non-deterministic jump
〈L, m, R, D〉 →int 〈L, m + 1, R,D〉
〈L, m, R, D〉 →int 〈L, a,R, D〉

ELSE a else jump
〈L, m, R, D〉 →int 〈L, m + 1, R,D〉
〈L, m, R, D〉 →int 〈L, a,R, D〉 if all 〈L, m + 1, R, D〉 →∗

int Λ′ −→end stop
UNLESS a unless jump

〈L, m, R, D〉 →int 〈L, a,R, D〉
〈L, m, R, D〉 →int 〈L, m + 1, R,D〉 if all 〈L, a,R, D〉 →∗

int Λ′ −→end stop
CALL a call subroutine

〈L, m, R, D〉 →int 〈L, a,R, D : m + 1〉
RET return from subroutine

〈L, m, R, D : a〉 →int 〈L, a, R, D〉

OP⊗ : 〈L, m, R, D : u : v〉 →int 〈L, m + 1, R, D : u ⊗ v〉

Control-flow Operations. For control flow changes, we define conditional
and unconditional jumps in Table 2. In order to allow explicit modeling of non-
determinism, we define NDET a as having two possible successor states: one con-
tinuing with the next instruction and the other continuing at instruction a. In
some situations, it is helpful to allow conditional non-determinism, where the
existence of one alternative is dependent on the presence or absence of another.
For this, we add byte-codes ELSE a and its dual UNLESS a. They are used in the
translation of Promela constructs with similar names, for example.

CALL a and RET can be used to translate function calls. By default the return
address is left on the stack, thus it does not survive if a process becomes inactive.
It is in the responsibility of the compiler to store it inside the state vector. This
allows for some flexibility when dealing with recursive functions. In general,
their treatment requires cooperation between the compiler and an analysis tool
working with the generated state space.

Promela itself does not allow function calls, so in the translation these byte-
codes are used only for sharing common code blocks. However, they have been
also been used to compile method calls of an object-oriented language [21].

Operations on Channels. For inter-process communication, our virtual ma-
chine model contains several operations on channels. These include operations
to dynamically create channels, query their properties, and manipulate their
contents. Both, synchronous and asynchronous channels are supported.

Because of space constraints, we elide their treatment here and refer to the
full specification [20]. However, we will return to the topic of synchronous com-
munication in Section 2.4, when discussing process scheduling.

176 M. Weber

Table 3. Operations for Process Deactivation

STEP M ′ step complete with mode M ′

〈{〈p, M, 〈L, m,R, D〉〉} ∪ Π,e, G, Φ〉
M′−−→end 〈{〈p, M ′, 〈L, m + 1〉〉} ∪ Π, e′, G, Φ〉

e′ :=

⎧

⎨

⎩

p if M ′ ∈ {A, I}
⊥ otherwise

and ∀πi ∈ Π : πi = 〈pi, Mi, 〈Li, mi〉〉
NEX step not executable

〈L, m,R, D〉 −→end stop

Spawning New Processes. To start a new process, its current parameters are
placed onto the data stack. Specifying the size of these parameters and the start
address of its code, a new process is instantiated:

RUN k, a run a new process starting at address a
〈{π, π1, . . . , πn}, e, G, Φ〉 →int 〈{π′, π1, . . . , πn, π′′}, e, G, Φ〉

with π = 〈p, M, 〈L, m, R, D : v0 : · · · : vk−1〉〉
and π′ = 〈p, M, 〈L, m + 1, R, D : p′′〉〉
and π′′ = 〈p′′, N, 〈L0[0/v0, . . . , k − 1/vk−1], a〉〉
and p′′ ∈ Pid a unique process identifier

Deactivation of Processes. Following a cooperative multitasking approach,
eventually a process allows resumption of other processes by deactivating itself
with one of the operations in Table 3.

We introduce STEP M as flexible means to control which states become visible
to an external scheduler. If further execution of a process is not anticipated
(e.g. because of unsatisfied guard conditions or reception attempts on empty
channels), process execution may be aborted explicitly by NEX. This byte-code
instruction can be used to translate guards—boolean conditions which can enable
or disable a transition. By attaching an action label to a STEP, we can cater for
action-based setups as well.

2.4 Scheduling

With all the machinery in place, we now proceed with the relation of scheduler
transitions , −→sched . We define it in terms of intermediate transitions −→step ,
which is the least relation satisfying

Γ
p,M−−−→step Γ ′ if Γ

p−→actΓ0 →∗
int Γ1

M−→end Γ ′

This means, that in a machine state Γ some process identified as p is activated,
then a number of internal transitions happen, until at some point the process
deactivates itself in state Γ ′, assigning the whole sequence mode M .

An Embeddable Virtual Machine for State Space Generation 177

In case the machine gets “stuck” without successor states because some pro-
cess with exclusive execution privileges becomes deadlocked, this process loses
them, thus enabling execution possibilities for other processes:

〈Π, e, G, Φ〉 p,M−−−→step Γ ′ if 〈Π, e, G, Φ〉 e,−→step stop

and 〈Π, ⊥, G, Φ〉 p,M−−−→step Γ ′

We can then define the transitions visible to an external scheduler. The ap-
proach we took is due to our decision to model rendezvous communication within
the interleaving model and thus using an intermediate state which is not revealed
to the scheduler. We can distinguish three cases: a process ends a sequence of
invisible steps with either a visible transition or a transition leading to deadlock,
and no interim rendezvous communication can take place, or, rendezvous com-
munication can take place, with the restriction that the sending and receiving
halves of the communication must be consecutive.

Definition 8 (Scheduler Transition). We define the scheduler transition re-
lation

p−→sched as least relation satisfying the following rules.

– A scheduler transition consists of a (possibly empty) sequence of invisible
steps, followed by a visible step, that is, a step with mode N (normal), A
(atomic) or T (terminated). None of the steps is a rendezvous
communication.

Γ
p−→sched Γ ′ if Γ = Γ1

p,I−−→step · · · p,I−−→step Γn−1
p,M−−−→step Γn = Γ ′

and ∀i : ¬sync(Γi) and M �= I and Γ ′ �= stop

– Alternatively, if a sequence of invisible steps leads to a deadlocked process,
the last step right before the deadlock becomes visible irrespectively of its
mode I.

Γ
p−→sched Γ ′ if Γ = Γ1

p,I−−→step · · · p,I−−→step Γn−1
p,−−→step stop

and ∀i : ¬sync(Γi) and Γ ′ = Γn−1

– Lastly, we allow a rendezvous channel to actually contain one message more
than its capacity allows, if the immediately following transition resolves this
again by having a rendezvous partner receiving this message, so that said
rendezvous channel is within its limits again and the resulting state becomes
visible to the scheduler again. In this case the sender loses its execution
privilege. It can then be picked up by the receiver. Note that we do not allow
a process to have rendezvous communication with itself (p �= p′).

With this mechanism, rendezvous communication can be used to pass
around execution privileges between processes like in Promela.

178 M. Weber

Γ
p−→sched Γ ′′ if Γ

p,M−−−→step Γ ′ = 〈Π ′, e′, G′, Φ′〉

and 〈Π ′, ⊥, G′, Φ′〉 p′,M ′
−−−→step Γ ′′

and sync(Γ ′) and ¬sync(Γ ′′)
and p �= p′ and Γ ′′ �= stop and M �= T

In all cases, we do not allow a scheduler transition to lead to a global state
containing a deadlock process stop.

Our handling of deadlock processes allows us to define a global deadlock state
Γ where no process can complete a scheduler transition naturally: there is no Γ ′

such that Γ
p−→sched Γ ′.

Definition 9 (Initial State). The scheduler starts program execution with the
initial state of our machine: Γinit = 〈{〈1, N, 〈L0, init〉〉}, ⊥, G0, ∅〉

The actual interface to run state space generation is not described here, as it is
largely based on the same principles as Open/CÆSAR [7]. In fact, a preliminary
test has shown that we can connect our implementation to CADP [8] with little
effort, thus leveraging their large toolset.

3 Applications

The described virtual machine has been utilized successfully in a number of
projects1, which we briefly detail below. On the same time, these projects served
as testbed to check whether the virtual machine based approach we advocate
is generic enough to accomodate different modelling languages and verification
frameworks.

3.1 Promela

We validated our virtual machine-based approach to state space generation by
defining a translation from Promela to byte-code. As positive side-effect, we
obtain an operational semantics for Promela which in particular is suitable
for classical compiler-based analyses and also for reimplementation. A complete
translation procedure is described by Schürmans [20]. Separate from the compiler
and thus Promela, we developed several common optimizations for static state
space reduction on the byte-code level, for example, dead variable reduction and
a variant of statement merging.

Although other modeling languages could have been used as well, Promela
was chosen because it is a truly non-trivial example and it has wide acceptance
inside and outside academia.

Benchmarks of our virtual machine show that it performs well enough to
be of practical use (Appendix A) on its own. In combination with the projects

1 http://www.cwi.nl/∼weber/nips/

http://www.cwi.nl/~weber/nips/

An Embeddable Virtual Machine for State Space Generation 179

described in the following, we could even obtain results which so far have been
out of reach.

3.2 An External-Memory Model Checker

The virtual machine is used as state-space generation component in an adaptive
external-memory model checking tool [10].

As main memory is still the most restricting factor in state space generation
and model checking of industrial-scale models, we developed an algorithm which
gradually moves parts of the state space to hard disk when memory fills up.
Thus, as long as enough memory is available, it behaves mostly like a regular,
memory-bound algorithm.

In unmodified state-space exploration algorithms, checking whether a state
has already been visited requires random access to the set of visited states due to
commonly used hashtable schemes. In a disk-based setting, such access patterns
are prohibitively expensive because they incur large latency when reading from
hard disk, in comparison to memory accesses. We get around these limitations
by reordering queries such that disk access is avoided if at all possible (through
caching strategies) and, failing that, queries are carried out at least in large
groups rather than one by one. Besides compression, this allows us also to access
the state space stored on disk in a linear fashion, which is orders of magnitude
faster than random access.

The amount of main memory available still influences the time needed for full
state space generation, however it does not impose a hard limit anymore. With
this out of the way, we were able to benchmark our algorithm: the unmodified
virtual machine, together with the Promela compiler mentioned in Section 3.1
allowed us to use models of real case studies as benchmark material, instead of
being constrained to artificial models. In addition, we were able to compare our
results with prior experiments.

A short summary is given in Section A. Some of the large models, for exam-
ple Lunar scenario 4(d) [23], have previously been reported as exceeding the
capabilities of SPIN with 4 GB RAM, with both partial order reduction and
COLLAPSE enabled. In contrast, we performed state space generation of the men-
tioned Lunar scenario with a memory limit of 2.5 GB RAM and without partial
order reduction (Appendix A).

3.3 NIPS and DiVinE

An alternative to the external-memory model checker described in Section 3.2, is
the use of distributed algorithms in verification to get around memory limitations
of a single computer. Much research has been devoted to this theme in recent
years, for a motivation and recent overview we refer to [4].

The DiVinE library [1] has been conceived as a toolkit and testbed for dis-
tributed model checking algorithms, with among other things, an emphasis on
LTL model checking. While DiVinE features its own modelling language, DVE,
we can apply their algorithms unmodified on Promela models, through the use

180 M. Weber

of our virtual machine. In effect, the combination of the two libraries yields a dis-
tributed model checker for Promela, with, at the time of writing, five different
LTL model checking algorithms to choose from.

Moving from a sequential to a distributed setting requires some consideration.
In particular, the design of data structures must support relocation to other com-
puters. For our virtual machine, this means that snapshots of its run-time state
can be captured and send to another computer. This is particularly easy in
our case, as a snapshot is represented opaquely in an architecture-independent,
continuous array of binary data which can be written directly to a network con-
nection, without a potentially costly serialization step. Heterogenous distributed
environments are supported as well.

In addition, we can redecide on analysis tools without having to modify or
rewrite our models, solely depending on the availability of computing resources
and hard disk. For example, using DiVinE’s distributed algorithms usually gives
much faster results. However, if the used computing cluster is busy, a job may
spend days in the batch queue before being processed, thus making our external-
memory algorithm a viable alternative.

3.4 Model Checking Embedded Systems Software

In the previous sections, we have mainly highlighted the use of our virtual
machine as target for Promela. Despite it being the initial inspiration, we
aimed at designing a generic framework which can cope with different mod-
elling formalisms. As our litmus test we have based the mcess (short for Model
Checking Embedded Systems Software) project on our virtual machine. We pro-
ceed with a short summary, a more detailed description is given elsewhere [19,
Sect. 5.2ff].

Embedded systems based on microcontrollers are often used in safety-critical
environments. In mcess, we address the problem of checking correctness of code
written for particular microcontrollers. Regrettably, and despite the sensitivity
of the application area, often no formal specifications exist on such projects, so
we either have to extract a specification (semi-)manually, or base our analysis
directly on the implemention under scrutiny. Matters are complicated further
by the fact that systems are implemented in a mixture of assembly language
and C, most often utilizing specific hardware idiosyncrasies of these severely
resource-constrained devices. Previous case studies have shown that existing
C model checkers are not directly applicable to such implementations due to the
hardware-specific nature [18].

Instead of trying to parse and analyze source code, we chose to compile it
with an off-the-shelf C compiler (which is often supplied by the microcontroller
vendor), and take the generated binary executable as starting point. We rely on
the generated debugging information to present results back to the user. The ap-
proach allows us to process assembly and C code in one go. Also, we successfully
sidestepped dealing with the complex syntax and even more daunting semantics
of C.

An Embeddable Virtual Machine for State Space Generation 181

Conceptually, assembly language is much easier to formalize, and its seman-
tics are usually precisely described by the vendor. To take a concrete example,
we chose the widely used ATMEL ATmega family of microcontrollers, and im-
plemented a translator from ATmeta16 assembly (or rather disassembly, to be
precise) to our virtual machine instruction set. For many of the instructions,
the translator itself has been generated semi-automatically from the semantics
given in the ATMEL specification. The critical parts are the hardware depen-
dencies like interrupts (modeled as processes), I/O ports, timers (replaced by
non-determinism and abstractions by the compiler), etc.. These require (one-
time) manual effort, for example, to obtain a closed system.

A number of factors contribute to the viability of this approach: the type
of microcontrollers we are dealing with very space-constrained, typically they
have memory in the order of 1024 Bytes. Unsurprisingly, memory allocation
is mostly done completely static (no calls to malloc()). A limited hardware
stack precludes recursive function calls. All these factors make a straight-forward
translation much more amenable to yield good results. Deeper analyses can then
be layered on top of that.

For state space generation and model checking of such microcontroller pro-
grams, we can again utilize the tools described in the previous sections without
extra effort. They are well suited to deal with the potentially large state spaces.

4 Related Work

4.1 Promela Semantics

Several formal semantics for Promela have been proposed in the past, but it
turns out that none of them covers all aspects of the language. The original
publication [13] is incomplete in this sense and now partly outdated, as SPIN
evolved. It was improved on by a more modular and less implementation-specific
approach by Weise [22], but there the handling of nested do loops in combination
with goto statements is unsound. Another incomplete attempt is from Bevier [2].
The specification is a Lisp program and as such peppered with implementation
artefacts.

In contrast, we developed a compiler for Promela targeting the virtual in-
struction set defined in Section 2.3. Our translation aims at being faithful to
SPIN’s Promela semantics. It mainly deviates in allowing nested scopes, in or-
der to straighten out the rather confusing static semantics of declarations (vari-
ables can be used before being declared). However, we concede that regrettably
there are no good means to assure this except continual testing with publicly
available models against SPIN as reference implementation.

4.2 Virtual Machines

Virtual machines have been used extensively in Computer Science. A well-known
example is the work of Wirth on the Pascal programming language [24].

182 M. Weber

Independent to our work, two (unpublished, to the best of our knowledge)
attempts of virtual machine models for restricted Promela-like languages have
been brought to our attention [9,17]. Geldenhuys [9] describes a virtual machine
as part of the general design of a model checker, while our work is focused on
providing a reusable component for state space generation.

ESML [5], the high-level language translated into byte-code is restricted in
several ways when compared to Promela, and its underlying virtual machine
inherits some of these restrictions. For example, it lacks support for asynchronous
channels, shared variables and dynamic process creation.

Rosien [17, Section 8] describes some shortcomings of his attempt, for example
the lack of arrays, no support for data types beyond integers, unclear semantics
for do loops or handshake communication inside atomic blocks (“[. . .] causes
undesired results, unexpected atomic deadlocks or otherwise erratic behavior.”).
Besides that, Rosien’s design did not take into account, e.g., distributed settings
where successive states may be generated on different computers.

Both papers do not provide a formal model of their VM or of the translation
into their byte-code language, making it non-trivial to derive implementations
from their work. Neither are implementations readily available.

Bogor. From existing model checking frameworks, we found the Bogor frame-
work [16] closest to the work presented here. It is an extensible framework for
software model checking, in particular object-oriented software. Its intermedi-
ate representation (BIR) is a high-level guarded command language, not unlike
Promela. While it can be translated further down to a certain extent, con-
structs like arrays, locks, exceptions, and high-level control constructs remain,
complicating an implementation of its operational semantics.

The Bogor framework consists of a large Java code base, which ruled it out
when we were looking into possibilities to interface with other languages. In
contrast, our VM implementation itself comprises less than 5000 lines2 of C and
has been interfaced efficiently with C, C++ and Java, and connected to model
checking frameworks aimed at high performance like DiVinE.

While Bogor and the work presented here share some common goals, our focus
is on embedding into other applications, and thus we aim to show the feasability
to provide a reusable library, rather than a framework (which might hamper its
integration with a host application with incompatible structure.)

From the tool point of view, our aim is not to beat the Bogor framework in
terms of features, but rather to provide a small but versatile component which
can easily be reused, or written from scratch based on a formal specification.

5 Conclusions

We presented a virtual machine-based approach to state-space generation, in
which the virtual machine’s instruction set doubles as intermediate language.

2 According to SLOCCount, http://www.dwheeler.com/sloccount/

http://www.dwheeler.com/sloccount/

An Embeddable Virtual Machine for State Space Generation 183

Assigning operational semantics in such a way makes them straightforwardly
implementable, thus encouraging reuse. Among the byte-code instructions are
all operations commonly needed for the specification of concurrent systems: non-
determinism, process creation, communication primitives, and a way to express
scheduler constraints (atomic regions). State-space generators derived in such a
way can be small and portable, while benchmarks with a concrete implementa-
tion showed that we can obtain practically usable results.

However, some critical thoughts are in order. For example, it is possible to
relate analysis results like error traces from the VM back to the original input
(Promela or C), but there is no stable interface yet available.

Also, a command line simulator is available, yet while working towards in-
tegration of our VM implementation in IBM’s Eclipse IDE, we found the need
for deeper introspection of the VM state. Providing a suitable interface without
slowing down state space generation requires some more research. This is worth-
while because we are using the same code for simulation and model checking,
thereby foregoing deviations in results. For example, to the best of our know-
ledge SPIN has been plagued from time to time with the interactive simulation
and a model checking run yielding different outcomes.

Nevertheless, with our applications we have shown benefits to be expected
through synergy effects of developing an embeddable component for use in third-
party tools.

Acknowledgements. We thank Michael Rohrbach and Stefan Schürmans for their
implementation efforts and valuable discussions. Theo Ruys brought Rosien’s
work to our attention. Part of this research has been carried out at RWTH
Aachen University.

References

1. Barnat, J., Brim, L., Černá, I., Šimeček, P.: DiVinE the distributed verification
environment. In: Leucker, M., van de Pol, J. (eds.) 4th International Workshop
on Parallel and Distributed Methods in verifiCation (PDMC’05), Lisbon, Portuga,
July 2005 (2005)

2. Bevier, W.: Towards an operational semantics of PROMELA in ACL2. In: Pro-
ceedings of the 3rd International SPIN Workshop, April 1997 (1997)

3. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. In: van Eijk, P.H.J., Vissers, C.A., Diaz, M. (eds.) The Formal Description
Technique LOTOS, pp. 23–73. Elsevier Science Publishers, North-Holland (1989)

4. Brim, L.: Distributed verification: Exploring the power of raw computing power.
In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and
PDMC 2006. LNCS, vol. 4346, pp. 23–34. Springer, Heidelberg (2006)

5. de Villiers, P., Visser, W.: ESML—a validation language for concurrent systems.
In: Bishop, J. (ed.): 7-th Southern African Computer Symposium, pages, July 1992,
pp. 59–64 (1992)

184 M. Weber

6. Dill, D., Drexler, A., Hu, A., Yang, C.: Protocol verification as a hardware design
aid. In: ICCD ’92: Proceedings of the 1991 IEEE International Conference on
Computer Design on VLSI in Computer & Processors, Washington, DC, USA, pp.
522–525, IEEE Computer Society (1992)

7. Garavel, H.: OPEN/CAESAR: An open software architecture for verification, sim-
ulation, and testing. Lecture Notes in Computer Science 1384, 68–84 (1998)

8. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. EASST Newslet-
ter 4, 13–24 (2002)

9. Geldenhuys, J.: Efficiency issues in the design of a model checker. Msc. thesis,
University of Stellenbosch, South Africa (November 1999)

10. Hammer, M., Weber, M.: To Store or Not To Store reloaded: Reclaiming memory
on demand. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg (2007)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

12. Holzmann, G.J.: The engineering of a model checker: the gnu i-protocol case study
revisited. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) Theoretical and
Practical Aspects of SPIN Model Checking. LNCS, vol. 1680, Springer, Heidelberg
(1999)

13. Holzmann, G.J., Natarajan, V.: Outline for an operational-semantics definition of
PROMELA. Technical report, Bell Laboratories, July 1996 (1996)

14. Milner, R.: The polyadic π-calculus: a tutorial. Technical Report ECS–LFCS–91–
180, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, UK, Oct. 1993. In: Bauer, F.L., Brauer, W.,
Schwichtenberg, H. (ed.): Logic and Algebra of Specification, Springer, Heidelberg
(1993)

15. Qian, Z.: A formal specification of java virtual machine instructions for objects,
methods and subrountines. Formal Syntax and Semantics of Java, 271–312 (1999)

16. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software
model checking framework. SIGSOFT Softw. Eng. Notes 28(5), 267–276 (2003)

17. Rosien, M.: Design and implementation of a systematic state explorer. Msc. thesis,
University of Twente, The Netherlands (March 2001)

18. Schlich, B., Kowalewski, S.: Model checking C source code for embedded systems.
In: Proceedings of the IEEE/NASA Workshop on Leveraging Applications of For-
mal Methods, Verification, and Validation (ISoLA 2005), September 2005 (2005)

19. Schlich, B., Rohrbach, M., Weber, M., Kowalewski, S.: Model checking software for
microcontrollers. Technical Report AIB-2006-11, RWTH Aachen (August 2006)

20. Schürmans, S.: Ein Compiler und eine Virtuelle Maschine zur Zustandsraumgener-
ierung. Diplomarbeit, RWTH Aachen University (October 2005)

21. Veldema, R.: Personal communication on the Tapir programming language (2006)
http://www2.informatik.uni-erlangen.de/Forschung/Projekte/Tapir/

22. Weise, C.: An incremental formal semantics for PROMELA. In: Proceedings of the
3rd International SPIN Workshop, April 1997 (1997)

23. Wibling, O., Parrow, J., Pears, A.: Automatized verification of ad hoc routing
protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 343–358. Springer, Heidelberg (2004)

24. Wirth, N.: Pascal-s: A subset and its implementation. In: Barron, D.W. (ed.) Pascal
- The Language and its Implementation, pp. 199–259. John Wiley, New York (1981)

http://www2.informatik.uni-erlangen.de/Forschung/Projekte/Tapir/

An Embeddable Virtual Machine for State Space Generation 185

A Benchmarks

Our test setup consists of an AMD Athlon 64 3500+ running Linux. We used
SPIN 4.2.5 for comparison. SPIN translates Promela models into C source code
which subsequently is compiled, and then run for the analysis.

By default, SPIN uses data-flow optimizations and statement merging [12]
to reduce size of the explored state space, thus requiring less time and mem-
ory for the task. The optimizations can be disabled optionally (spin -o1 -o3).
We benchmarked SPIN without said optimizations against our implementation
(columns “Unoptimized” in Table 5), and another time with both optimizations
enabled, against our unmodified VM, but with path compression (a variant of
statement merging) enabled in our Promela compiler.

We compiled the pan.c files generated by SPIN from the Promela models,
and used gcc (version 3.3.5) with option -O2 (C optimisations), -DNOREDUCE (dis-
abling partial-order reduction) and -DBFS (enabling breadth-first search). BFS
is the main strategy used in NIPS because of the requirements of distributed
algorithms, whereas SPIN’s default is depth-first search (DFS). We did not im-
plement optimizations used in SPIN’s DFS, which is why we compare BFS only.

In our tests, we used models that come with the SPIN distribution. Our
experiments show that NIPS (version 1.2.2) is close enough to SPIN both in
state vector size (rightmost columns of Table 5) and state space generation
speed for our purposes. The actual state count of models is not directly com-
parable, due to different ways of counting (for example, SPIN counts both
halves of a rendezvous communication separately), and due to differing base
levels and optimizations. However, crucial behaviour is not optimized away of
course.

The size of state vectors, which contain all information needed to restart the
virtual machine from (global and local variables, channels, processes), is typically
within a few bytes of what is reported by SPIN.

Table 4 shows the results for some large Promela models. The experiments
were carried out on a 64-bit AMD OpteronTM 248 Dual Processor machine (only
one processor used) with 16 GB RAM and a single 200 GB Serial-ATA hard disk,
running Linux 2.6.4. For the first two models an arbitrary limit of 2.5 GB RAM
was set, whereas the other models were given 16 GB RAM. A full account of the
experiments and the models is given in [10].

Table 4. Runs for large Promela models. States visited are all states, including single-
successor states, whereas column States stored shows only states with more than one
successor. M and G denote factors 106 resp. 109, GB means Gigabyte.

States Time Uncompressed
Model visited stored Edges [h] storage [GB]

GIOP1 192.9M 162.5M 664.6M 13:34:21 79.2
Lunar 4(d) 1.3G 248.3M 1.9G 35:37:29 153.0
Hugo: Hot fail 555.6M 205.3M 864.9M 15:18:16 166.9
Lunar 4(f) 1.6G 334.6M 2.6G 38:36:02 230.0

186 M. Weber

T
ab

le
5.

St
at

e
Sp

ac
e

G
en

er
at

io
n:

A
co

m
pa

ri
so

n
be

tw
ee

n
N

IP
S

an
d

SP
IN

.P
r
o
m
e
l
a

m
od

el
s

ar
e

ta
ke

n
fr

om
th

e
SP

IN
di

st
ri

bu
ti
on

.T
im

es
ar

e
m

ea
su

re
d

as
w

al
l-
cl

oc
k

ti
m

e
in

se
co

nd
s

on
an

A
M

D
A

th
lo

n
64

35
00

+
ru

nn
in

g
L
in

ux
.

N
IP

S
V

ir
tu

al
M

ac
h
in

e
S
P

IN
4.

2.
5

N
IP

S
S
P

IN
U

n
op

ti
m

iz
ed

w
it

h
P
at

h
C

om
p
r.

U
n
op

ti
m

iz
ed

D
.
F
lo

w
&

S
tm

t.
M

er
ge

S
ta

te
si

ze
P
ar

am
et

er
S
ta

te
s

T
im

e
S
ta

te
s

T
im

e
S
ta

te
s

T
im

e
S
ta

te
s

T
im

e
in

by
te

s

M
A
X

er
a
to

st
h
en

es
6

17
0

0.
00

2
34

0.
00

1
19

5
0.

01
6

12
8

0.
01

6
13

0
12

4
10

76
4

0.
02

0
74

0.
00

3
10

06
0.

01
8

54
8

0.
01

8
16

3
15

6
14

27
44

0.
05

1
19

0
0.

00
6

38
64

0.
02

6
22

63
0.

02
6

22
9

22
0

18
77

66
0.

16
6

34
2

0.
01

2
12

03
5

0.
05

8
64

77
0.

05
8

26
2

25
2

22
24

09
2

0.
56

9
62

6
0.

02
5

41
61

0
0.

34
4

21
53

9
0.

34
4

29
5

28
4

26
69

92
0

1.
71

7
1
1
6
2

0.
05

4
12

98
23

2.
43

0
6
9
6
1
8

0.
43

0
32

8
31

6
30

14
62

22
3.

82
4

1
7
1
0

0.
08

8
28

29
14

11
.8

55
1
3
0
0
6
2

3.
85

5
36

1
34

8
34

3
4
7
0
1
2

10
.4

18
2
9
1
4

0.
17

7
71

38
17

17
1.

44
1

3
4
2
0
2
8

26
.4

41
39

4
38

0

N
L

le
a
d
er

3
6

75
4

0.
00

9
10

5
0.

00
2

74
3

0.
01

8
40

7
0.

01
8

13
1

11
6

4
8

56
78

0.
08

2
37

9
0.

00
8

56
26

0.
03

7
24

10
0.

03
7

18
6

18
0

5
10

46
09

1
0.

64
9

15
09

0.
03

5
45

93
7

0.
26

8
15

79
1

0.
26

8
24

9
22

0
6

12
38

24
65

6
.1

8
0

6
2
4
1

0.
17

6
38

21
51

3
.1

2
0

1
0
6
4
4
9

0.
12

0
32

0
30

8

N
L

le
a
d
er

2
3

6
45

71
0.

05
4

66
7

0.
01

0
44

76
0.

02
7

24
30

0.
02

7
13

8
12

4
4

8
14

33
73

1.
32

1
1
0
0
1
2

0.
16

1
14

22
60

0.
65

0
6
0
0
5
2

0.
65

0
19

3
18

8

N
p
et

er
so

n
N

2
32

7
0.

00
3

30
0.

00
0

30
3

0.
01

7
18

5
0.

01
7

38
40

3
51

11
8

0.
26

8
8
5
3

0.
01

2
45

92
7

0.
08

5
2
5
3
7
1

0.
08

5
50

48

p
ft

p
13

78
18

4
1
0
.0

3
3

30
16

03
4.

99
6

12
75

18
0

3
.7

7
0

21
91

67
0.

77
0

18
9

15
2

sn
o
o
p
y

12
44

34
2.

38
5

68
65

8
1
.4

4
2

91
92

5
0.

43
6

61
62

4
0
.4

3
6

20
5

18
8

N
so

rt
5

21
24

5
0.

27
6

57
2

0.
01

0
14

34
9

0.
07

7
46

52
0.

07
7

18
1

18
4

6
15

26
28

1.
78

9
2
0
1
9

0.
04

0
95

67
7

0.
57

6
22

35
0

0.
57

6
21

5
21

6

Scalable Multi-core LTL Model-Checking�

J. Barnat, L. Brim, and P. Ročkai

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{barnat,brim,xrockai}@fi.muni.cz

Abstract. Recent development in computer hardware has brought more
wide-spread emergence of shared-memory, multi-core systems. These ar-
chitectures offer opportunities to speed up various tasks – among others
LTL model checking. In the paper we show a design for a parallel shared-
memory LTL model checker, that is based on a distributed-memory algo-
rithm. To achieve good scalability, we have devised and experimentally
evaluated several implementation techniques, which we present in the
paper.

1 Introduction

With the arrival of 64-bit technology the traditional space limitations in formal
verification may become less severe. Instead, time could quickly become an im-
portant bottleneck. This naturally raises interest in using parallelism to fight the
“time-explosion” problem.

Much of the extensive research on the parallelization of model checking algo-
rithms followed the distributed-memory programming model and the algorithms
were parallelized for networks of workstations, largely due to easy access to net-
works of workstations. Recent shift in architecture design toward multi-cores has
intensified research pertaining to shared-memory paradigm as well.

In [12] G. Holzmann proposed an extension of the SPIN model checker for
dual-core machines. The algorithms keep their linear time complexity and the
liveness checking algorithm supports full LTL. The algorithm for checking safety
properties scales well to N-core systems. The algorithm for liveness checking,
which is based on the original SPIN’s nested DFS algorithm, is unable to scale to
N-core systems. It is still an open problem to do scalable verification of general
liveness properties on N-cores with linear time complexity.

A different approach to shared-memory model checking is presented in [15],
based on CTL∗ translation to Hesitant Alternating Automata. The proposed
algorithm uses so-called non-emptiness game for deciding validity of the original
formula and is therefore largely unrelated to the algorithms based on fair-cycle
detection.

In this paper we propose a design for a parallel shared-memory model checking
tool, that is based on known distributed-memory algorithms. For the prototype
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 187–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 J. Barnat, L. Brim, and P. Ročkai

implementation we considered the algorithm by Černá and Pelánek [7]. This al-
gorithm is linear for properties expressible as weak Büchi automata, which com-
prise majority of LTL properties encountered in practice. Although the worst-
case complexity is quadratic, the algorithm exhibits very good performance with
real-life verification problems. To achieve good scalability, we have devised sev-
eral implementation techniques, as presented in this paper, and applied them to
the algorithm. We expect, that application of the proposed implementation ap-
proaches to other distributed-memory algorithms for LTL model checking may
bring similar improvements in scalability on N-core systems.

The main contribution of the paper can thus be seen in giving at least a partial
answer to the open research problem. We show that most (see e.g.[10]) of the
practically used liveness properties (in fact the complete persistence class [18,8])
can be model-checked using scalable linear time algorithm on multi-core, shared-
memory systems.

In Section 2 we summarize the existing parallel algorithms for LTL model
checking (accepting cycle detection). In Section 3 we present several implemen-
tation techniques that were applied to multi-core implementation of the selected
algorithm. In Section 4 we report on scalability tests and on comparison with
dual-core Nested DFS algorithm.

2 Parallel LTL Model-Checking Algorithms

Efficient parallel solution of many problems often requires approaches radically
different from those used to solve the same problems sequentially. Classical exam-
ples are list rankings, connected components, depth-first search in planar graphs
etc. In the area of LTL model checking the best known enumerative sequential
algorithms based on fair-cycle detection are the Nested DFS algorithm [9,14]
(implemented, e.g., in the model checker SPIN [13]) and SCC-based algorithms
originating in Tarjan’s algorithm for the decomposition of the graph into strongly
connected components (SCCs) [22]. However, both algorithms rely on inherently
sequential depth-first search postorder, hence it is difficult to adapt them to par-
allel architectures. Consequently, different techniques and algorithms are needed.
Unlike LTL model checking, the reachability analysis is a verification problem
with efficient parallel solution. The reason is that the exploration of the state
space can be implemented e.g. using breadth-first search. In the following, we
sketch four parallel algorithms for enumerative LTL model checking that are,
more or less, based on performing repeated parallel reachability to detect reach-
able accepting cycles. The reader is kindly asked to consult the original sources
for the details.

[MAP] The main idea of the Maximal Accepting Predecessor Algo-
rithm [4,6] is based on the fact that every accepting vertex lying on an accepting
cycle is its own predecessor. An algorithm that is directly derived from the idea,
would require expensive computation as well as space to store all proper accept-
ing predecessors of all (accepting) vertices. To remedy this obstacle, the MAP
algorithm stores only a single representative of all proper accepting predecessor

Scalable Multi-core LTL Model-Checking 189

for every vertex. The representative is chosen as the maximal accepting prede-
cessor accordingly to a presupposed linear ordering ≺ of vertices (given e.g. by
their memory representation). Clearly, if an accepting vertex is its own maximal
accepting predecessor, it lies on an accepting cycle. Unfortunately, it can happen
that all the maximal accepting predecessor lie out of accepting cycles. In that
case, the algorithm removes all accepting vertices that are maximal accepting
predecessors of some vertex, and recomputes the maximal accepting predeces-
sors. This is repeated until an accepting cycle is found or there are no more
accepting vertices in the graph.

The time complexity of the algorithm is O(a2 · m), where a is the number
of accepting vertices and m is the number of edges. One of the key aspects
influencing the overall performance of the algorithm is the underlying ordering
of vertices used by the algorithm. It is not possible to compute the optimal
ordering in parallel, hence heuristics for computing a suitable vertex ordering
are used. ��

[OWCTY] The next algorithm [7] is an extended enumerative version of the One
Way Catch Them Young Algorithm [11]. The idea of the algorithm is to
repeatedly remove vertices from the graph that cannot lie on an accepting cycle.
The two removal rules are as follows. First, a vertex is removed from the graph
if it has no successors in the graph (the vertex cannot lie on a cycle), second, a
vertex is removed if it cannot reach an accepting vertex (a potential cycle the
vertex lies on is non-accepting). The algorithm performs removal steps as far
as there are vertices to be removed. In the end, either there are some vertices
remaining in the graph meaning that the original graph contained an accepting
cycle, or all vertices have been removed meaning that the original graph had no
accepting cycles.

The time complexity of the algorithm is O(h · m) where h is the height of
the SCC quotient graph. Here the factor m comes from the computation of
elimination rules while the factor h relates to the number of global iterations
the removal rules must be applied. Also note, that an alternative algorithm is
obtained if the rules are replaced with their backward search counterparts. ��

[NEGC] The idea behind the Negative Cycle Algorithm [5] is a transformation
of the LTL model checking problem to the problem of negative cycle detection.
Every edge of the graph outgoing from a non-accepting vertex is labeled with 0
while every edge outgoing from an accepting vertex is labeled with −1. Clearly,
the graph contains a negative cycle if and only if it has an accepting cycle.

The algorithm exploits the walk to root strategy to detect the presence of a
negative cycle. The strategy involves construction of the so called parent graph
that keeps the shortest path to the initial vertex for every vertex of the graph.
The parent graph is repeatedly checked for the existence of the path. If the
shortest path does not exist for a given vertex, then the vertex is a part of
negative, thus accepting, cycle. The worst case time complexity of the algorithm
is O(n ·m), where n is the nubmer of vertices and m is the number of edges. ��

190 J. Barnat, L. Brim, and P. Ročkai

[BLEDGE] An edge (u, v) is called a back-level edge if it does not increase the dis-
tance of the target vertex v form the initial vertex of the graph. The key obser-
vation connecting the cycle detection problem with the back-level edge concept,
as used in the Back-Level Edges Algorithm [1], is that every cycle contains at
least one back-level edge. Back-level edges are, therefore, used as triggers to start
a procedure that checks whether the edge is a part of an accepting cycle. However,
this is too expensive to be done completely for every back-level edge. Therefore,
several improvements and heuristics are suggested and integrated within the al-
gorithm to decrease the number of tested edges and speed-up the cycle test.

The BFS procedure which detects back-level edges runs in time O(m + n). In
the worst case, each back-level edge has to be checked to be a part of a cycle,
which requires linear time O(m + n) as well. Since there is at most m back-level
edges, the overall time complexity of the algorithm is O(m.(m + n)). ��

All the algorithms allow for an efficient implementation on a parallel architecture.
The implementation is based on partitioning the graph (its vertices) into disjoint
parts. Suitable partitioning is important to benefit from parallelization.

One particular technique, that is specific to automata based LTL model check-
ing, is cycle locality preserving problem decomposition [2,16]. The graph (prod-
uct automaton) originates from synchronous product of the property and sys-
tem automata. Hence, vertices of product automaton graph are ordered pairs.
An interesting observation is that every cycle in a product automaton graph
emerges from cycles in system and property automaton graphs. Let A, B be
Büchi automata and A ⊗ B their synchronous product. If C is a strongly con-
nected component in the automaton graph of A⊗B, then A-projection of C and
B-projection of C are (not necessarily maximal) strongly connected components
in automaton graphs of A and B, respectively.

As the property automaton origins from the LTL formula to be verified, it is
typically quite small and can be pre-analyzed. In particular, it is possible to iden-
tify all strongly connected components of the property automaton graph. A parti-
tion function may then be devised, that respects strongly connected components
of the property automaton and therefore preserves cycle locality. The partitioning
strategy is to assign all vertices that project to the same strongly connected com-
ponent of the property automaton graph to the same sub-problem. Since no cycle
is split among different sub-problems it is possible to employ localized Nested DFS
algorithm to perform local accepting cycle detection simultaneously.

Yet another interesting information can be drawn from the property automa-
ton graph decomposition. Maximal strongly connected components can be clas-
sified into three categories:

Type F: (Fully Accepting) Any cycle within the component contains at least
one accepting vertex. (There is no non-accepting cycle within the compo-
nent.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

Scalable Multi-core LTL Model-Checking 191

Realizing that vertex of a product automaton graph is accepting only if the
corresponding vertex in the property automaton graph is accepting it is possible
to characterize types of strongly connected components of product automaton
graph according to types of components in the property automaton graph. This
classification of components into types N , F , and P can be used to gain addi-
tional improvements that may be incorporated into the above given algorithms.

3 Implementation Techniques

It is a well known fact, that a distributed-memory, parallel algorithm is straight-
forwardly transformed into a shared-memory one. However, there are several
inefficiencies involved in this direct translation. Several traits of shared-memory
architecture may be leveraged to improve real-world performance of such im-
plementations. In this section, we present our approaches at the challenges of
shared-memory architecture and its specific characteristics. We will detail the
techniques concerning communication, memory allocation and termination de-
tection, and we will show their application on the OWCTY algorithm as de-
scribed in Section 2. Before doing so, though, let us describe the target platform
in more detail.

3.1 Shared-Memory Platform

We work with a model based on threads that share all memory, although they
have separate stacks in their shared address space and a special thread-local stor-
age to store thread-private data. Our working environment is POSIX, with its
implementation of threads as lightweight processes. Switching contexts among
different threads is cheaper than switching contexts among full-featured pro-
cesses with separate address spaces, so using more threads than there are CPUs
in the system incurs only a minor penalty.

Critical Sections, Locking and Lock Contention. In a shared-memory set-
ting, access to memory, that may be used for writing by more than a single
thread, has to be controlled through use of mutual exclusion, otherwise, race
conditions will occur. This is generally achieved through use of a “mutual ex-
clusion device”, so-called mutex. A thread wishing to enter a critical section has
to lock the associated mutex, which may block the calling thread if the mutex
is locked already by some other thread. An effect called resource or lock con-
tention is associated with this behaviour. This occurs, when two or more threads
happen to need to enter the same critical section (and therefore lock the same
mutex), at the same time. If critical sections are long or they are entered very
often, contention starts to cause observable performance degradation, as more
and more time is spent waiting for mutexes.

Role of Processor Cache. There are two fairly orthogonal issues associated
with processor cache. First, cache coherence which is implemented by hardware,

192 J. Barnat, L. Brim, and P. Ročkai

but its efficiency is affected by programmer, and cache efficiency, which mostly
depends on data structures and algorithms employed.

Cache coherence poses an efficiency penalty when there are many processors
writing to same area of memory. This is largely avoided by the distributed al-
gorithm, however, locking and access to shared data structures have no other
choice. Cache coherence on modern architectures works at a level of cache lines,
roughly 64 byte chunks of memory that are fetched from main memory into
cache at once.

Modern mutex implementations ensure that the mutex is the only thing
present on a given cache line, so it does not affect other data, and, more impor-
tantly, it ensures that two mutexes never share a cache line, which would pose
a performance penalty.

Recent development in multi-core platforms deals with cache coherence prob-
lem in a different, more efficient manner, namely, by sharing the level two cache
among two or more cores, therefore reducing the cache coherence overhead sig-
nificantly. Yet, with the current state of technology, this still does not mitigate
the overhead completely.

3.2 Implementing Algorithms in Shared-Memory

The above considerations bring us to the actual algorithm implementation and
the associated techniques we came up with. They are all designed to reduce
communication overhead, exploiting traits of shared-memory systems that are
not available in distributed-memory environments. Consequently, the main goal
is to improve scalability of the implementation, which is inversely proportional to
communication overhead and its growth with increasing number of threads. That
said, keeping in mind the possibility to scale beyond shared-memory systems,
we try to keep the implementation in a shape that would make a combined tool
to work efficiently on clusters of multi-CPU machines achievable.

When we venture into a strictly shared-memory implementation, one may
pose a question, whether a different approach of using a standard serial algo-
rithm modified to allow parallelisation at lower levels of abstraction would give
a scalable, efficient program for multi-CPU and/or multi-core systems. Our ef-
forts at extracting such a micro-parallelism in our codebase have been largely
fruitless, due high synchronisation cost relative to amount of work we were able
to perform in parallel. Although we intend to do more research on this topic, we
do not expect significant results.

In the following sections, we explore the possibilities to build on existing
distributed-memory approaches, in the vein of statically-partitioned graphs, re-
ducing the overhead using idioms only possible due to locality of memory.

3.3 Communication

Generally, in a distributed computation, all communication is accomplished
by passing messages – e.g. using a library like MPI for cluster message passing.

Scalable Multi-core LTL Model-Checking 193

However, in communication-intensive programs, or those sensitive to communi-
cation delay, using general-purpose message passing interface is fairly inefficient.

In shared-memory, most of the communication overhead can be eliminated
by using more appropriate communication primitives, like high-performance,
contention- and lock- free FIFOs (First In, First Out queues). We have adopted
a variant of the two-lock algorithm – a decent compromise between performance
on one hand and simplicity and portability on the other – presented in [20]. Our
modifications involve improved cache-efficiency (by using a linked list of memory-
continuous blocks, instead of linked list of single items) and only using a single
write-lock, instead of a pair of locks, one for reading and one for writing, since
there is ever only one thread reading, while there may be several trying to write.

Every thread involved in the computation owns a single instance of the FIFO
and all messages for this thread are pushed onto this single queue. This may
introduce a source of resource-contention, where many processes are trying to
append messages to a single queue, but considering the message distribution in
our system, this turns out to be a negligible problem in practice. With different
patterns of communication, a complete lock-free design may be more appropriate
(one is given in [20]).

type FIFO of T:
type Node:

buffer : array of T
next: pointer to Node
read, write: integer

nodeSize : integer (size of buffer)
head, tail: pointer to Node
writeLock : mutex

Fig. 1. FIFO representation

Require: f is a FIFO of T instance, x of type T is an element to enqueue
Ensure: f contains x as its last element

lock(f.writeMutex)
if f .tail .write = f.nodeSize then

t ← newly allocated Node, all fields 0
else

t ← f.tail
t .buffer [t .write] ← x
t .write ← t .write + 1
if f.tail �= t then

f .tail .next = t
f .tail = t

unlock(f.writeMutex)

Fig. 2. FIFO enqueue

194 J. Barnat, L. Brim, and P. Ročkai

Require: f is a non-empty FIFO instance
Ensure: front element of f is dequeued and then returned

if f .head .read = f .nodeSize then
f .head ← f .head .next

f .head .read ← f .head .read + 1
return f .head .buffer [f .head .read − 1]

Fig. 3. FIFO dequeue

Representation and pseudo-code for enqueue and dequeue algorithms are
found in Figures 1, 2 and 3, respectively. The correctness, linearizability and
liveness proofs as given in [20] are straightforwardly adapted to our implemen-
tation and thus left out.

Alternatives to our implementation, which may be more appropriate in differ-
ent settings, include a ring-buffer FIFO implementation (if there is a bound on
the amount of in-flight data known beforehand, the ring-buffer implementation
may be more efficient) and possibly an algorithm based on swapping incoming
and outgoing queues (which could be easily implemented as a pointer swap).
The latter gives results comparable to the described FIFO method, although
the code and locking behaviour is much more complex and error-prone, which
made us opt for the simpler FIFO implementation.

3.4 Memory Allocation

In a distributed computation, every process has simply its own memory which it
fully manages. In a shared-memory, however, we prefer to manage the memory
as a single shared area, since an equal partitioning of available memory and
separate management may fall short of efficient resource usage. However, this
poses some challenges, especially in allocation-intensive environment like ours.

First, a näıve approach of protecting the allocation routines with a simple
mutual exclusion is highly prone to resource contention. Fortunately, modern
general-purpose allocator implementations refrain from this idea and have a
generally non-contending behaviour on allocation. However, releasing memory
back for reuse is more complex to achieve without introducing contention, in a
setting where it is often the case that thread other than the one allocating the
chunk tries to release it.

There are known general-purpose solutions to this problem, e.g. [19], however
they are currently not in widespread use, therefore we have to refrain from
the above-mentioned pattern of releasing memory from different than allocating
thread, in order to avoid contention and the accompanying slowdown.

The message-passing implementation we employ is pointer-based, in other
words, the message sent is only a pointer and the payload (actual interesting
message content) is allocated on the shared heap and it may be either reused or
released by the receiving thread. Observe however, that releasing the associated
memory in the receiving thread will introduce the situation which we are trying
to avoid.

Scalable Multi-core LTL Model-Checking 195

We side-step the issue by adding a new communication FIFO to each thread
(recall that our communication induces only low overhead and virtually no con-
tention). When a receiving thread decides that the message content needs to be
disposed of, instead of doing it itself, sends the message back to the originating
thread using the second FIFO. The originating thread then, at convenient inter-
vals, releases the memory in a single batch, having an interesting side-effect of
slightly improving cache-efficiency.

3.5 Efficient Termination Detection

Since our algorithms rely on work distribution among several largely independent
threads, similarly to a distributed algorithm, we need a specific algorithm for
shared-memory termination detection, that would pose minimal overhead and
minimal serialisation.

One possible solution is presented in [17], which does not use locking and relies
on the system to provide an enqueue-with-wakeup primitive. However, in our
system, we have primitives available that support a somewhat different approach:
implementation of sleeping/wakeup primitives already relies on locking and we
leverage this inherent locking in our termination detection algorithm.

The POSIX threading library offers a mechanism called “condition signalling”,
which we use to implement thread sleeping and wakeup. A “condition” is a device
that allows to be waited-for by its owning thread and “signalling a condition”
from another thread will cause the waiting thread to wake up and continue
execution. However, this device in itself is race-prone, since the condition may
be signalled just before the owner goes to sleep, leading to a deadlock – another
signal may never come. Therefore, the condition is always protected by a mutex,
which is always locked through the execution of the owner thread and is only
atomically unlocked when the thread enters sleep state and atomically reclaimed
before waking up.

Since the available mutex implementation allows a lock-or-fail behaviour, as
opposed to lock-or-wait which is usually employed for protecting critical sections,
we can use the condition device to implement an efficient termination detection
algorithm.

Observe, that at any time when a thread is idle, its condition-protecting mutex
is unlocked and conversely, whenever the thread is busy, this mutex is locked. So
the termination detection algorithm first tries to lock condition mutexes of all
worker threads, one by one, using the lock-or-fail behaviour. Then, it proceeds
to check the queues. If it succeeded locking all threads and all queues are empty,
termination has occurred. Pseudo-code for the algorithm is shown in Figure 4.

We run the termination detection in a dedicated scheduler thread, which also
wakes up threads that have pending work. This means that if it has successfully
grabbed any locks, queues belonging to those locked threads are checked, and
if any is found to be non-empty, the thread is awakened. After every run, all
grabbed locks are released again.

Moreover, although this algorithm works correctly as-is, it is rather inefficient
if left running in a loop. Therefore, the scheduler thread goes to sleep after every

196 J. Barnat, L. Brim, and P. Ročkai

Require: threads: array of Thread, Thread contains idleMutex and idleCondition, fifo
Ensure: termination has occurred iff true is returned

mutex : Mutex, cond : Condition, held : array of Boolean
busy ← false
for t in threads do

if trylock(t.idleMutex) then
held [t] ← true

else
held [t] ← false
busy ← true

for t in threads do
if not empty(t.fifo) then

busy ← true
if held [t] then

signal(t.idleCondition)
for t in threads do

unlock(t.idleMutex)
return not busy

Fig. 4. Termination Detection in Shared-Memory

iteration, and is woken up by any worker thread that goes idle. This requires
a slight modification to the algorithm above, since it adds a race-condition,
where the last thread going to sleep wakes up the scheduler, which then runs the
algorithm before the calling thread manages to go to sleep, assuming termination
did not happen and going to sleep, at which point the system deadlocks, as
everyone is idle.

An alternative approach would be to synchronously execute the termination
detection algorithm in the thread that has become idle, but due to the nature of
the system, the above is more practical code-wise and only incurs very insignif-
icant overhead.

3.6 Implementing OWCTY in Shared-Memory

As can be seen from the pseudo-code (refer to Figure 5), the main OWCTY loop
consists of few steps, namely, reachability, elimination and reset. All of them can
be parallelised, but only on their own, which requires a barrier after each of them.
Only reachability and elimination run in parallel in the current code, reset is to
be implemented.

The algorithm uses a BFS state space visitor to implement both reachability
and elimination. The underlying BFS is currently implemented using a partition
function, i.e., every state is unambiguously assigned to one of the threads. The
framework in which the algorithm is implemented offers a multi-threaded BFS
implementation based on this kind of state-space partitioning. The algorithm
itself is only presented with resulting transition and node-expansion events, un-
concerned with the partitioning or communication details.

Scalable Multi-core LTL Model-Checking 197

Require: initial is initial state
S ←Reachability(initial)
old ← ∅
while S �= old do

old ← S
S ←Reset(S)
S ←Reachability(S)
S ←Elimination(S)

return S �= ∅

Fig. 5. OWCTY Pseudo-code

The barriers are implemented using the termination detection algorithm pre-
sented – the computation is initiated by the main thread and the termination
detection is then executed in this same thread, which also doubles as a sched-
uler. When the step terminates, the main thread prepares the next step, spawns
the worker threads and initiates the computation again. Since the hash table is
always thread-private, i.e. owned exclusively by a single thread, the main thread
has to transfer the hash table among different threads in the serial portion of
computation. This is nonetheless done cheaply (few pointer operations only) so
is probably not worth parallelising.

4 Experiments

4.1 Methodology

The main testing machine we have used is a 16-way AMD Opteron 885 (8 CPU
units with 2 cores each). All timed programs were compiled using gcc 4.1.2
20060525 (Red Hat 4.1.1-1) in 32-bit mode, using -O3. This limits addressable
memory to 3GB, which was enough for our testing. The machine has 64GB of
memory installed, which means that none of the runs were affected by swapping.

For this paper, our main concern is speed and scalability, therefore we focus
on these two parameters. Measurement was done using standard UNIX time
command, which measures real and cpu times used by program. Note that the
cpu time given in tables equals to a sum of times spent by individual processors,
thus for parallel computations the value of cpu time should exceed the value of
real time.

For the experimental evaluation we implemented algorithms upon the state
generator from DiVinE [3]. All the models we have used are listed in Table 1
including the verified properties. The models come from the BEEM database [21]
that contains the models in DiVinE-native modeling language as well as in
ProMeLa. We used ProMeLa models for comparison with the SPIN model
checker. The models are not extremely large, although, their size is sufficient
for the time spent on parsing and initialization to be negligible.

198 J. Barnat, L. Brim, and P. Ročkai

Table 1. Models and verified properties

vAcronym Description Property (LTL formula)
elevator1 Motivated by elevator ProMeLa

model from distribution of SPIN.
The cab controller chooses the next
floor to be served as the next re-
quested floor in the direction of
the last cab movement. If there is
no such floor then the controller
consider the opposite direction. (3
floors)

If level 0 is requested, the cab passes
the level without serving it at most
once.

G(r0 =⇒ (¬l0U(l0U(¬l0U(l0U

(l0 ∧ open))))))

elevator2 Same model as elevator, with
slightly adjusted parameters to in-
crease state space size. No formula
was used with this model.

N/A

leader Leader election algorithm based on
filters. A filter is a piece of code
that satisfy the two following con-
ditions: a) if m processes enter the
filter, then at most m/2 processes
exit; b) if some process enter the fil-
ter, then at least one of them exits.
(5 processes)

Eventually a leader will be elected.

F (leader)

rether Software-based, real-time Ethernet
protocol whose purpose is to pro-
vide guaranteed bandwidth and de-
terministic, periodic network access
to multimedia applications over
commodity Ethernet hardware. It is
a contention-free token bus proto-
col for the datalink layer of the ISO
protocol stack. (5 Nodes)

Infinitely many NRT actions of
Node 0.

G(F (nact0))

peterson Peterson’s mutual exclusion proto-
col for N processes. (N=4)

Someone is in critical section in-
finitely many times.

G(F (SomeoneInCS))

anderson Anderson’s mutual exclusion proto-
col for N processes. (N=6) N/A

4.2 Results

First, we have measured run-times of algorithms presented in Section 2 that
were implemented using DiVinE framework and mpich2 library compiled for

Scalable Multi-core LTL Model-Checking 199

 0

 2000

 4000

 6000

 8000

 10000

 12000

 8 4 2 1

T
im

e
(s

ec
on

ds
)

Number of cores

BLEDGE

elevator
leader

peterson
rether

 0

 50

 100

 150

 200

 250

 300

 8 4 2 1

T
im

e
(s

ec
on

ds
)

Number of cores

MAP

elevator
leader

peterson
rether

 0

 100

 200

 300

 400

 500

 600

 700

 800

 8 4 2 1

T
im

e
(s

ec
on

ds
)

Number of cores

NEGC

elevator
leader

peterson
rether

 20

 40

 60

 80

 100

 120

 140

 8 4 2 1

T
im

e
(s

ec
on

ds
)

Number of cores

OWCTY

elevator
leader

peterson
rether

Fig. 6. Scalability of BLEDGE, MAP, NEGC, and OWCTY algorithms implemented
using DiVinE and MPI compiled for shared-memory architecture

shared-memory architecture. As shown in Figure 6 these implementations do not
exhibit desired scalability on shared-memory architecture, even though they all
scale well in a distributed memory environment. Some algorithms have scaled up
to 4 cores, but using more cores did not bring any speedup. Under this setting,
every MPI node is executed in a separate process.

We have performed more experiments to evaluate the efficiency of techniques
introduced in Section 3. We have implemented parallel breadth-first search based
reachability and the OWCTY algorithm. Run-times of the thread-optimized BFS
reachability and of the thread-optimized implementation of OWCTY algorithm
are reported in Figure 7.

The thread-optimized implementations display better scalability behavior,
since adding cores reduces computation time at least up to 12 cores, for some
models even to 16 cores. Between 12 and 16 cores, the communication overhead
reaches a limiting threshold, so adding more does not bring any further speedup
and may even impede a slight performance setback.

The actual threshold and curve steepness is generally affected by the parti-
tion function used, as well as relative cost of cross transitions. The latter issue
partially explains why the MPI versions of algorithms have scalability problems,
since the cross transition cost is in this case much higher than in the multi-
threaded version.

200 J. Barnat, L. Brim, and P. Ročkai

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 8 12 16

T
im

e
(s

ec
on

ds
)

Number of cores

MT-OWCTY

elevator 1
leader

peterson
rether

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 4 8 12 16

T
im

e
(s

ec
on

ds
)

Number of cores

MT-BFS

elevator 1
leader

peterson
rether

anderson
elevator 2

Fig. 7. Scalability of multi-threaded OWCTY and BFS reachability

4.3 Comparison with SPIN

Since the multi-core version of SPIN was not publicly available, in order to make
a direct comparison, we run a single reachability on the product automaton
graph with SPIN. As SPIN was running only the first procedure of the Nested
DFS algorithm we get a good lower bound on runtime of the multi-core SPIN
implementation. SPIN was used with parameters -m10000000 -w27 to get the
best performance. We have not observed any performance penalty from using
bigger stack or hash table than strictly necessary.

We have also measured run-times of a dual-core Nested DFS algorithm as
proposed in [12], that was implemented using DiVinE state generator. The run-
times are reported in Table 2.

Table 3 gives run-times for SPIN, multi-threaded BFS reachability, and
OWCTY cycle detection algorithm, both performed on 16 cores.

Scalable Multi-core LTL Model-Checking 201

Table 2. Parallel Nested DFS in DiVinE

Model real cpu
elevator1 0:53.4 1:16
leader 0:9.7 0:18.1
peterson 0:24.1 0:33.1
rether 0:45.3 1:5.9

Table 3. Comparison with SPIN

Model SPIN reachability BFS reachability OWCTY
elevator1 0:14.4 0:12.1 0:26.8
peterson 0:7.4 0:4.2 0:9.2

5 Conclusions

We observe, that the algorithms employed by DiVinE, when augmented with the
shared-memory-specific techniques, scale fairly well on multiple cores. Our cur-
rent OWCTY-based, multi-threaded implementation scales up to 12, and for some
models, even to 16 cores, which is a definite improvement over the MPI version.

This fulfills our goal of implementing a scalable multi-core LTL model checker.
Thanks to the algorithm used, it has a linear time complexity for majority of LTL
properties verified in practice and achieves scalability that makes it practical to
use on machines with several CPU cores available.

From the experimental data we see that SPIN outperforms DiVinE in raw
speed, but due to SPIN’s usage of the Nested DFS algorithm, even if using a
parallel nested search, it is bound to execute primary DFS on a single core,
which severely limits its scalability potential.

From the profiling work we have done, it is clear that the main bottleneck of
DiVinE is its state generator. Improvements in this area should reduce the abso-
lute running times, but will likely negatively affect relative scalability. Therefore,
we will continue to work on reducing parallel execution overhead, to maintain
or even improve current scalability.

In the pursue of scalability, we also intend to explore alternative approaches
to state-space partitioning, non-partitioning approaches and usefulness of load-
balancing in this context.

References

1. Barnat, J., Brim, L., Chaloupka, J.: Parallel Breadth-First Search LTL Model-
Checking. In: Proc. 18th IEEE International Conference on Automated Software
Engineering, pp. 106–115. IEEE Computer Society, Los Alamitos (2003)

2. Barnat, J., Brim, L., Černá, I.: Property Driven Distribution of Nested DFS. In:
Proceedinfs of the 3rd International Workshop on Verification and Computational
Logic (VCL’02 – held at the PLI 2002 Symposium), University of Southampton,
UK, Technical Report DSSE-TR-2002-5 in DSSE, pp. 1–10 (2002)

202 J. Barnat, L. Brim, and P. Ročkai

3. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – A
Tool for Distributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

4. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors are Better than
Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

5. Brim, L., Černá, I., Krčál, P., Pelánek, R.: Distributed LTL model checking based
on negative cycle detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FST
TCS 2001: Foundations of Software Technology and Theoretical Computer Science.
LNCS, vol. 2245, pp. 96–107. Springer, Heidelberg (2001)

6. Brim, L., Černá, I., Moravec, P., Šimša, J.: How to Order Vertices for Distributed
LTL Model-Checking Based on Accepting Predecessors. In: Proceedings of the
4th International Workshop on Parallel and Distributed Methods in verifiCation
(PDMC 2005), pp. 1–12 (2005)

7. Černá, I., Pelánek, R.: Distributed explicit fair cycle detection (set based approach).
In: Ball, T., Rajamani, S.K. (eds.) Model Checking Software. LNCS, vol. 2648, pp.
49–73. Springer, Heidelberg (2003)

8. Černá, I., Pelánek, R.: Relating hierarchy of temporal properties to model check-
ing. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327.
Springer, Heidelberg (2003)

9. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-Efficient Al-
gorithms for the Verification of Temporal Properties. Formal Methods in System
Design 1, 275–288 (1992)

10. Dwyer, M., Avrunin, G., Corbett, J.: Property specification patterns for finite-
state verification. In: Ardis, M. (ed.) Proc. 2nd Workshop on Formal Methods in
Software Practice (FMSP-98), pp. 7–15. ACM Press, New York (1998)

11. Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is there a best symbolic
cycle-detection algorithm? In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS
2001. LNCS, vol. 2031, pp. 420–434. Springer, Heidelberg (2001)

12. Holzmann, G.: The Design of a Distributed Model Checking Algorithm for SPIN.
In: FMCAD, Invited Talk (2006)

13. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, London (2003)

14. Holzmann, G.J., Peled, D., Yannakakis, M.: On Nested Depth First Search. In:
The SPIN Verification System, pp. 23–32. American Mathematical Society, 1996.
Proc. of the 2nd SPIN Workshop (1996)

15. Inggs, C., Barringer, H.: Ctl* model checking on a shared memory architecture.
Formal Methods in System Design 29(2), 135–155 (2006)

16. Lafuente, A.L.: Simplified distributed LTL model checking by localizing cycles.
Technical Report 00176, Institut für Informatik, University Freiburg, Germany
(July 2002)

17. Leung, H.-F., Ting, H.-F.: An optimal algorithm for global termination detection
in shared-memory asynchronous multiprocessor systems. IEEE Transactions on
Parallel and Distributed Systems 8(5), 538–543 (1997)

18. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proc. ACM Sympo-
sium on Principles of Distributed Computing, pp. 377–410. ACM Press, New York
(1990)

19. Michael, M.M.: Scalable lock-free dynamic memory allocation. SIGPLAN
Not. 39(6), 35–46 (2004)

Scalable Multi-core LTL Model-Checking 203

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Symposium on Principles of Distributed Com-
puting, pp. 267–275 (1996)

21. Pelánek, R.: BEEM: BEnchmarks for Explicit Model checkers (February 2007)
http://anna.fi.muni.cz/models/index.html

22. Tarjan, R.: Depth First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 146–160 (1972)

http://anna.fi.muni.cz/models/index.html

A SystemC/TLM Semantics in Promela and Its
Possible Applications

Claus Traulsen1,2, Jérôme Cornet1, Matthieu Moy1, and Florence Maraninchi1

1 Verimag, Centre Équation - 2, avenue de Vignate, 38610 GIÈRES — France
2 Dept. of Computer Science, Christian-Albrechts-Universität zu Kiel,

Olshausenstr. 40, 24098 KIEL — Germany

Abstract. SystemC has become a de facto standard for the modeling of
systems-on-a-chip, at various levels of abstraction, including the so-called
transaction level (TL). Verifying properties of a TL model requires that
SystemC be translated into some formally defined language for which
there exist verification back-ends. Since SystemC has no formal seman-
tics, this includes a careful encoding of the SystemC scheduler, which has
both synchronous and asynchronous features, and a notion of time. In a
previous work, we presented a complete chain from SystemC to a syn-
chronous formalism and its associated verification tools. In this paper,
we describe the encoding of the SystemC scheduler into an asynchronous
formalism, namely Promela (the input language for Spin). We comment
on the possible uses for this new encoding.

1 Introduction

SystemC [17] is a C++ library/language used for the description of Systems-
on-Chip (SoCs) at different levels of abstraction, from cycle-accurate to purely
functional models. It comes with a simulation environment, and is becoming
a de facto standard in the SoCs industry. SystemC is being increasingly used
for writing Transaction Level Models (TLM) [7] that allow embedded software
development on a virtual prototype of the final chip.

A TL model written in SystemC is based on an architecture, i.e., a set of com-
ponents and connections between them. Components behave concurrently. Each
component has typed connection ports. Its behavior is given by a set of commu-
nicating processes programmed in full C++ and managed by a non-preemptive
scheduler. Synchronization mechanisms include events, which can be waited for
or notified. A process yields control back to the scheduler either by waiting for
an event or by waiting for a given period of time to elapse.

Communications between modules proceed by function calls traversing com-
ponents or communication channels (for instance bus models). At the transac-
tion level, such function calls are used to model two types of communication:
transactions (atomic exchange of data between modules) and interrupts.

Since the TL models are considered as reference models in the SoC design
flow, it is necessary to validate properties at this level of abstraction. This is
currently done by intensive testing, but formal verification is being investigated

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 204–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A SystemC/TLM Semantics in Promela 205

for some years now, in both industry and academia. However, the definition of
SystemC, while being an IEEE norm, lacks formal semantics.

Some work on verifying properties of SoC assume that they are described
in some parallel formalism inspired by SystemC. Often, this formalism only
reflects the subset of the language used for Register Transfer Level (RTL) mod-
els and is useless to express the specificities of a TL model (see for instance
[9], [5] ; more references in Section 5). Formal verification for RTL designs has
been studied a lot, and providing such analysis for designs written in SystemC
does not bring new results. Moreover, even if the formalism reflects in some
way the transaction level of abstraction, it is often quite far from real SystemC
designs.

We are interested in verifying properties of real SystemC designs, at the trans-
action level. This requires that SystemC and TLM-specific features be translated
into some formally defined language for which there exists verification back-ends.
This includes a careful encoding of the SystemC scheduler, which has both syn-
chronous and asynchronous features, and a notion of time.

Choosing the formal language in which to translate SystemC is important
because it often restricts the set of verification back-ends that can be applied.
If we translate SystemC into a symbolic synchronous formalism, we have access
to tools like the Lustre [8], SMV [13] or Esterel [2] tool-chains; if we translate it
into an asynchronous formalism, we have access to Spin [10], IF [4], etc. Since
the semantics of SystemC processes is neither entirely synchronous, nor entirely
asynchronous, any choice implies some encoding. The encoding itself may be
responsible for a significant part of the model size.

Another important point is the way time is interpreted. Since SystemC con-
tains explicit constructs to wait for time, the translation into the input language
of a timed-model checker like IF [4] or UPPAAL [12] could seem to be an ap-
propriate choice. However, we do not need the full expressive power of timed
automata to encode SystemC, and using timed automata would imply to pay
the price of the symbolic analysis needed for clocks in the verification back-ends.
Consequently, we will choose a discrete interpretation of time in SystemC, and
encode timers into some ordinary variables.

In a previous work [16,14], we described a complete chain from SystemC to
a synchronous formalism. It is based upon a systematic encoding of SystemC
processes into a flavor of synchronous automata. In such a case, SystemC pro-
cesses are encoded one by one into automata, communicating with an additional
automaton that encodes the scheduler specification. The automata correspond-
ing to the user processes are produced specifically to communicate with this
scheduler automaton, using additional synchronous signals and the instanta-
neous dialogue mechanism available in a pure synchronous semantics. The set of
automata can then be translated into several synchronous formalisms (SMV [13]
input, Lustre), without computing the intrinsic products between them, hence
delegating the potential state explosion to the verification back-ends that are
better equipped to tackle the problem. Another good property of the translation

206 C. Traulsen et al.

into Lustre is that we get something executable. It means that we can, at least,
compare the Lustre encoding with the official SystemC semantics, on benchmark
programs.

However, the encoding into a synchronous formalism renders manual reading
difficult, and the amount of additional synchronizations needed to reflect the
semantics of SystemC can be put in question again.

Another approach would be to define a direct semantics by using an ad hoc
product to represent the effect of the scheduler, that is creating a dedicated par-
allel composition which would include the main characteristics of the SystemC
scheduling specification. While this approach produces more readable results,
the fact is that it also requires to create a dedicated model-checker and prevents
from using existing verification tools, that deal only with well-known formalisms.

In this paper, we explore the encoding of the SystemC scheduler into an asyn-
chronous formalism, namely Promela, the input language for the tool Spin [10].
The translation into Promela is another way to give a formal semantics to
SystemC/TLM. Thanks to the simulator provided with Spin, the semantics is
executable, and it will be possible to test the faithfulness of our encoding w.r.t.
the official scheduler.

So far, we experimented our translations for model-checking and intensive
testing of properties like deadlocks and assertions.

The alternative encoding of SystemC into an asynchronous formalism will also
allow the comparison of the two verification chains, with respect to the size of the
models, the power of the verification tools, etc. In other words, we try to answer
the following questions: for a given SystemC model, and a given property of it,
is it more efficient to use a synchronous verification chain, or an asynchronous
one? This may depend on the type of property, and is still being investigated.

The rest of the paper is structured as follows: Section 2 gives an short intro-
duction to TL modeling with SystemC. Section 3 describes the translation and
Section 4 how to use it for verification. We consider related work in Section 5
and conclude in Section 6.

2 Transaction Level Modeling with SystemC

2.1 Subset of SystemC

We briefly describe the main characteristics of SystemC, when used for Trans-
action Level Models.

Globally, a TLM component, or module, is an encapsulated piece of code that
contains active code (processes to be scheduled by the global scheduler) and pas-
sive code (functions offered to the external world, that will be called from a process
of another component, by a control flow transfer). Inside such a component, the
processes and the functions may share variables and events in order to synchronize
with each other. Note that a function code and an active process are conceptually
in parallel, since the function will be called by another flow of control.

In SystemC, the architecture of the platform is built by a piece of code (the
so-called elaboration phase that runs first), but this is conceptually equivalent

A SystemC/TLM Semantics in Promela 207

to a quite traditional architecture-description-language (ADL) (see for instance
[6]) that connects the ports exposed by the components.

Communications between modules proceed by function calls traversing com-
ponents or communications channels (for instance bus models). SystemC pro-
vides built-in primitive communication channels such as sc_signal to model
hardware signals at the Register Transfer Level of abstraction. Synchronization
associated with the communications is performed by events and shared variables
inside modules and/or channels.

In the sequel, we only consider SystemC models at Transaction Level. By
such restriction we mean that neither the built-in primitive channels nor the
so-called request update mechanism (intended for RTL modeling) are used. We
will also assume that there is no dynamic creation of processes (see section 3.1
for justification). Otherwise, we fully support other SystemC features.

2.2 A Simple Example

Consider the simple example in Figure 1, consisting of two modules. The first
module contains a process that waits for an event e1. After receiving the event,
it waits an additional 7 ns, before performing some action α. Here α is the
abstraction of some real, local computation.When α is finished, the first process
will trigger an interrupt in the second module, by calling the function g. The
first module also offers an interrupt port by the function f , which will notify the
local event e1. Similarly, the second module contains a process that waits 5 ns
before performing β. Thereafter it will trigger the interrupt in the first module,
and wait for the event e2, i.e. for an interrupt that triggers the function g.

Module 1

// Process 1
whi l e (t rue)
{

wait(e1);
wait (7, SC_NS);
cout << "alpha";
interrupt_out .g();

}

// Function f
vo id f()
{

e1.notify ();
}

Module 2

// Process 2
whi l e (t rue)
{

wait(5, SC_NS);
cout << "beta";
interrupt_out .f();
wait(e2);

}

// Function g
vo id g()
{

e2.notify ();
}

Fig. 1. A simple example of a TL model with two modules

208 C. Traulsen et al.

While this example is trivial, it contains the relevant parts of a TL model:
waiting for event notification, waiting for time and function calls to other mod-
ules, which are used to model transactions and interrupts.

There exist three difficulties when defining the semantics of SystemC:

1. The non-preemptive scheduler: we have to ensure that a running process
is not interrupted by any other process unless it explicitly relinquishes the
control back to the scheduler, by performing a wait either on time or on an
event.

2. The SystemC scheduler ensures that time can only elapse when no process
is eligible (while SystemC has no control on real time, the simulation time
is merely a counter that the scheduler can decide to increment or not). So
all statements are executed instantaneously, except when waiting either for
time or for an event that is not notified immediately.

3. Function call communications: they are used for both interrupts and trans-
actions. A process P performing a function call communication lets its con-
trol flow go outside its component to finally reach the destination compo-
nent where a function is executed. The execution of P may continue only
after the function call is finished. This means that if the receiver’s func-
tion performs a wait() statement, P will yield the control back to the
scheduler, and when elected again will resume its execution in the receiver’s
function.

3 Expressing SystemC Semantics in Promela

3.1 General Ideas

The Architecture. First, we will abstract from the architecture description
part. In a real SystemC design, the function that is actually called when a
process P in a module M executes an instruction p.f() is determined by the
link between the port p of M and a port p’ on another module M ′ containing
a function f ′ associated with p′.

In the rest of the paper, we will consider that the architecture is hard coded
in the function names. In other words, we will consider a process P calling a
function f , and another module containing f .

Processes and Functions. The modeling of a SystemC program into
Promela transforms each process and each function into a Promela process.
SystemC distinguishes several types of processes (SC_THREAD, SC_METHOD, etc.).
We consider here the use of SC_THREAD, which is the most general, since the encod-
ing will not benefit from the restrictions enforced on the other types of processes.

We decided to encode the functions as Promela processes in order to keep
them well separated from the processes. Thus, the transformation stays modular
and is easier to code. Another possibility would have been to do the inlining of the
functions inside the processes calling them, and transforming the resulting code
into a Promela process. Our choice implies to handle the problem of functions

A SystemC/TLM Semantics in Promela 209

1

2

e1:=1

3

 {e1=0}

4

 X:=0

5

 [X=7]

6

 alpha

7

call(g)

 ret(g) 1

2

begin(f)

3

 e1:=0

 end(f)

Fig. 2. Automata for Module 1. The left automaton corresponds to Process 1, the right
one to function f . The variable X is used to model time. We distinguish between clock
guards (square brackets) and guards on variables (curly brackets).

that can be called by multiple different processes. We perform a preprocessing on
the SystemC program that consist in duplicating and renaming such functions in
order to ensure that each function is called by only one process. This is possible
because the function calls we consider are used for communications and therefore
do not exhibit recursion (this argument also applies when choosing to inline the
functions). The number of copies to do for a given function is bounded statically by
the number of instantiated processes: while SystemC has recently added a feature
to create processes dynamically, this feature is not used (to our knowledge) for
Transaction Level models because the number of needed processes is linked to the
number of master ports to drive, and ports cannot be created dynamically. In this
article’s examples, function parameters and return values are not represented but
they could be taken into account by using global variables for both.

All time values appearing in the SystemC model must be integer multiples of
some basic time granularity. We also assume that all variables can be declared
globally, without any naming conflicts. All these restrictions can be ensured by
simple preprocessing of the SystemC program without loss of generality.

3.2 Intuitive Idea: Representation with Automata

Our translation to Promela can also be seen as a translation into a set of au-
tomata. Each process and each function is translated into one interpreted au-
tomaton, i.e. manipulating some variables. The variables are used 1) to represent
shared variables in the SystemC code 2) to encode SystemC events and 3) to count
time. In the latter case, we will talk about clocks, which will be integers (see later).
The transitions hold classically guards on variables as well as assignments. Clocks
can either be tested for equality with a constant or a variable, or they can be set
to 0. The automata derived from Module 1 of the simple example can be found in
Figure 2. They simply reflect the control structure of the SystemC code.

210 C. Traulsen et al.

The various automata then have to be asynchronously interleaved, respecting
the non-preemptive specification of the scheduler. To obtain this, the automata
have two different kinds of states, which we represent as black and white states.
Black states represent local control flow: when an automaton is in a black state, it
cannot not be preempted by the scheduler. White states basically represent wait
statements: when an automaton is in a white state, it can be preempted, hence
interleaved with any other process. A special case is the one of function calls, which
directly transfer the control to the automaton that implements the function. This
means we have to synchronize the transitions labeled by call (resp. ret) with the
corresponding transition labeled by begin (resp. end).

Since we are mainly interested in the synchronization between different mod-
ules, we will not describe all the possible data processing inside the modules. This
abstracted code could also be represented by encoding its control flow using only
black states. The key elements of SystemC are translated in the following way:

wait(e) 1

 e:=1

 {e=0}
e.notify() e:=0

wait(k ns) 1

 X:=0

2

 [X=k]
wait(e, k ns)

1

 X:=0

2

 e:=1

3

 [X=k] {e=0}

f()

1

...

 begin(f)

3

 end(f)

port.f() 1

 call(f)

 ret(f)

3.3 Detailed Encoding

In the following we will show how our encoding in Promela deals with the three
problematic parts of SystemC: non-preemptive scheduling, time-elapse and func-
tion calls.

Non-Preemptive Scheduling. We distinguish between control points where
the scheduler may transfer the control to another process (white states), and in-
ternal control points (black states) of one process. The non-preemptive execution

A SystemC/TLM Semantics in Promela 211

of one automaton is realized with an additional shared variable M of type int. This
variable can take the value 0, to mean that any process can perform a step, or N ,
to mean that the process number N is the only one to be activated. A graphical
representation and the actual Spin encoding are shown in Figure 3.

1

2
 {x=0}
alpha

3

 {x!=0}
 beta

myturn && State ==1 && x==0
-> alpha; State =2; M= t h i s ;

myturn && State ==1 && x==1
-> beta; State =3; M=0;

Fig. 3. Representation of non-preemption in Promela. The next value of M depends on
the color of the next state.

This variable is set to 0 by each process that performs a wait. Otherwise, a
process sets M to its own identifier, to indicate that it will take an additional step.
For function calls, M is used to transfer the control to another process explicitly
without the possibility of any other interleaving. We also considered a different en-
coding that only relied on atomic sections in Promela to model non-preemption.
We sketch the problems with that approach in Section 3.5.

For simple examples, the use of an extra variable for ensuring atomicity is surely
not efficient. We could use the atomic or d_step statement in Promela to en-
sure that no process can interleave a black state. In the trivial example in Figure 2,
where each black state has exactly one incoming and one outgoing transition, we
could also merge these and remove the black states all-together. But since the
atomic behavior represented by the black states may be any complex control-flow,

2

 X:=0

 [X=10]

a c t i v e proctype update_clock (){
end:

do
:: atomic{timeout && M==0 && X_used

-> X=X+X_used ;}
od

}
. . .

a c t i v e proctype A(){
do
:: atomic{myturn && state ==1

-> X=0; X_used =1;M=0; state =2}
:: atomic{myturn && state ==2 && X=10

-> X=0; X_used =0;. . .}
. . .

Fig. 4. Representation of clocks, which are needed to wait for time, as an automaton and
in Promela. The process update_clock lets time elapse synchronously for all processes.
Time is incremented whenever at least one clock is used, and only the time for clocks
which are actually used is incremented.

212 C. Traulsen et al.

connected to white states by multiple in- and outgoing transitions, this simplifi-
cation is not possible in the general case.

Clocks. For every process that waits for time, we declare a clock (see Figure 4).
We consider discrete time, that is every clock is an integer. A dedicated
clock_update process increments the clocks synchronously as soon as no other
process can run, which is tested using Promela’s timeout statement. Hence time
will never elapse if there is an instantaneous loop, i.e., when there exists a cycle
in the automaton which never performs a wait. Before a wait occurs, the process
resets the corresponding clock to zero. We flag for each clock X whether the cor-
responding process is currently waiting on it, with a Boolean variable X_used. A
clock is reset to zero when no process waits for it, and it is never increased in this
time (it is a dead variable). Hence, the values of the clock are in the range between
0 and the value of the corresponding wait. This handling of clocks is similar to the
one in discrete time Spin [3].

Function Calls. For each function f , a global Boolean variable F is introduced.
The effects of f are transformed into:

– calling f : F := 1
– returning from the call: {F == 0}
– begin of the declaration of f : {F == 1}
– end of the declaration: F := 0

This is illustrated by Figure 5.

1

 call(f)

 ret(f)

...
:: myturn && State ==1

-> f=1; State =2; M=2
:: myturn && State ==2 && f==0

-> State =1;M=this;
...

1

...

 begin(f)

3

 end(f)

...
:: myturn && State ==1 && f==1

-> State =2; M=this;
:: myturn && State ==2

-> alpha; State =3; M=this;
:: myturn && State=3

-> f=0; State =1; M=1;
...

Fig. 5. Representation of function calls in Promela. Assume that the caller has the
identifier 1 and the function has identifier 2.

Additionally, a call sets M to the id of the automaton that implements f . Sim-
ilarly, end sets M back to the value of the caller. Since each function is called by at

A SystemC/TLM Semantics in Promela 213

most one process, this value is unique. Simply setting M without using F is not suf-
ficient, because we have to make sure that the caller is blocked until the function
is completed. Since the function might perform a wait, the scheduler could oth-
erwise decide to execute the caller again too early. Similarly, we have to prevent
the function from being executed without being called.

If a function is never called, we could simply remove it. On the other hand, it
might be the case that our model is only partially defined, that is: one or several
modules of the system are not known, and considered as black-boxes (possibly
with Byzantine behavior). In this case, we can give an over approximation of the
possible behavior of unknown modules, by assuming that a called function can
take an arbitrary time, and that each process may call any function at any time.
This is reflected by the macro state between call and ret.

Functions are used both to model interrupts and transactions in TLM. The
call representing an interrupt is directly done to another module. On the other
hand, transactions are handled by a bus that performs a routing depending on
the transaction’s address. In the examples, we forget about the bus, and for each
transaction directly call the recipient component’s function. This simplification
assumes we have determined manually to which component each transaction is
addressed. In the general case, the code responsible for routing, as well as specific
bus behavior can be taken into account by modeling the functions and processes
inside the bus, as automata, like any other component. We would then need at
least an address parameter for each transaction function calls.

SystemC Events. Each SystemC event (sc_event) is encoded using a Boolean
variable. The encoding has to reflect the fact that these events are not persistent:
if the event is notified before a process waits for it, the notification is lost. This is
done by setting the variable to 1 before yielding, which overwrites any previous
notifications, the latters done by setting the variable to 0. This encoding assumes
that only one process is waiting for the event. When multiple processes wait for
the same event, each process taken individually can either miss or get the noti-
fications of the event, depending on its order of execution. This situation can be
handled simply by duplicating the event in order to get has many events as wait-
ing processes, with only one waiting process per event. Other notification and wait
constructs can be encoded following the same principle, as showed on some addi-
tional examples in the array of Section 3.2.

Simple Example. The global definitions and the clock update for the exam-
ple can be found in Figure 6. First the scheduling variable is declared. The macro
myturn is an abbreviation to indicate that an automaton is enabled, i.e. it is either
itself in a black state, or all automata are in white states. Since we do not have vari-
ables in the example, we only need to declare the variables for the events. Addition-
ally, we have an integer value and a Boolean flag for each clock, indicating whether
we are currently waiting for the clock. Time may elapse, i.e. the update_clock
process is enabled when no other process can perform a step, all processes are in
a white state and at least one process waits on time. Using X=X+X_used to update
time ensures that time will only elapse for a clock that is used.

214 C. Traulsen et al.

i n t M=0;
#define myturn (M==0 || M==this)

// Variables
bool e1=0;
bool e2=0;

// Functions
bool f=0;
bool g=0;

// Clocks
#define time_enabled timeout && M==0 && (X_used || Y_used)

i n t X=0;
bool X_used =0
i n t Y=0;
bool Y_used =0

a c t i v e proctype update_clock(){
end:

do
:: atomic {time_enabled -> X=X+X_used; Y=Y+Y_used; }
od

}

Fig. 6. Global definitions and the process for synchronous time elapse

TheSpin code for Module 1 canbe found in Figure 7. Eachprocess has a variable
to store its active state and its id. We could also use the process id that is automat-
ically assigned by Spin, but using a new value makes it easier to compute the id for
function calls, without increasing the number of reachable states. The translation
of the automata is straightforward.Each transitionbecomes an atomic action, that
first tests whether the automata can run, i.e. is in the right state with the guard
evaluating to true. Thereafter the effect of the transition is performed and the new
state is set.At last, the scheduling variable is set according towhether the new state
is black or white and whether a function call or termination is performed. Since a
clock is explicitly set to 0 before each wait, and only at such a point, we also set
the clock to “used” when leaving state 3. Similarly, when state 4 is left, we declare
the clock as “not used anymore”. Labels that abstract real, local computations like
alpha are printed. The code for Module 2 can be found in Figure 8.

3.4 Validation of the Semantics

Our semantics for SystemC as an encoding in Promela is done in order to get
the same effect when composing the automata with the asynchronous product of
Spin as when executing the corresponding SystemC code with a valid SystemC
scheduler. To check that our semantics was corresponding to SystemC, we instru-
mented the SystemC models in order to produce test traces. We included in the
Promela automata the same elements as produced in the SystemC text traces.
Each observable action becomes a possible message in a global channel. When an
action is performed, the corresponding message is sent to the channel. In order
to reduce the size of the channel, the message is read from the channel again di-
rectly after. The SystemC trace we want to check is transformed into a notrace

A SystemC/TLM Semantics in Promela 215

a c t i v e proctype module1 (){
byte state =1;
byte this =1;

do
:: atomic {myturn && state ==1 -> e1=1;state =2;M=0}
:: atomic {myturn && state ==2 && e1==0 -> state =3;M=this}
:: atomic {myturn && state ==3 -> X=0;X_used =1;state =4;M=0}
:: atomic {myturn && state ==4 && X==7 -> X=0; X_used =0; state =5;M=0}
:: atomic {myturn && state ==5 -> printf ("MSC: alpha\n");state =6;M=this}
:: atomic {myturn && state ==6 -> g=1;state =7;M=4}
:: atomic {myturn && state ==7 && g==0 -> state =1;M=this}
od

}

a c t i v e proctype fun_f (){
byte state =1;
byte this =2;

do
:: atomic {myturn && state ==1 && f==1 -> state =2;M=this}
:: atomic {myturn && state ==2 -> e1=0;state =3;M=this}
:: atomic {myturn && state ==3 -> f=0;state =1;M=3}
od

}

Fig. 7. Promela code for Module 1 with the function f

a c t i v e proctype module2 (){
byte state =1;
byte this =3;

do
:: atomic {myturn && state ==1 -> Y=0;Y_used =1;state =2;M=0}
:: atomic {myturn && state ==2 && Y==5 -> Y=0;Y_used =0;state =3;M=0}
:: atomic {myturn && state ==3 -> printf ("MSC: beta\n");state =4;M=this}
:: atomic {myturn && state ==4 -> f=1;state =5;M=2}
:: atomic {myturn && state ==5 && f==0 -> state =6;M=this}
:: atomic {myturn && state ==6 -> e2=1;state =7;M=0}
:: atomic {myturn && state ==7 && e2==0 -> state =1;M=this}
od

}

a c t i v e proctype fun_g (){
byte state =1;
byte this =4;

do
:: atomic {myturn && state ==1 && g==1 -> state =2;M=this}
:: atomic {myturn && state ==2 -> e2=0;state =3;M=this}
:: atomic {myturn && state ==3 -> g=0;state =1;M=1}
od

}

Fig. 8. Promela code for Module 2 with the function g

declaration; now we can use the build-in Spin test to check whether the behavior
of the trace is a valid behavior of the Spin model. The only problem was to produce
all the text traces allowed by the SystemC specification given a SystemC program.
While the specification allows any order of execution when multiple processes can
be executed, the official SystemC simulator (as well as third party tools) takes only

216 C. Traulsen et al.

one order, deterministically. A modification of the official simulator existed in the
lab, allowing to execute every possible scheduling. We used it to produce every
possible traces, and checked that all these traces were included in our semantics.

3.5 Alternative Encoding

We also considered another encoding, which completely relied on Promela’s
atomic sections to model non-preemption. Each state was transformed into a goto
label, followed by an atomic section that contained all outgoing transitions. Ad-
ditionally, all black states where combined in one atomic section, including the
labels. The semantics of Promela ensures that a jump from inside an atomic
section to a label which is also contained in an atomic section preserves atomicity.
The first problem with this encoding is that we have to inline all functions in order
to tell to which point the function returns. But we have the benefit that we do not
need the variable M for the scheduling, or the variables to hold the current state of
each process. Furthermore, the implementation with gotos is much more efficient
than using a loop with a non-deterministic choice.

But the main problem with this encoding is that the simulator of Spin inter-
leaves jumps from atomic section to another atomic section (although the docu-
mentation and the prover do the opposite). While Spin proves properties that rely
on the fact that such jumps are atomic, it also generates traces that violate the
property.

The combination of gotos and atomic sections also make it impossible to use
partial order reduction. Intuitively, goto m1 and atomic{goto m1} are equivalent
when m1 is inside an atomic section, because a single statement is always atomic
and every possible interleaving that could occur after the goto could as well occur
before it. However, for the explicit atomic, Spin will not allow any interleaving
neither after nor before the goto, when partial order reduction is enabled.

bool X=0;

active proctype A(){
assert(X==0);

}

active proctype B(){
X=1;
atomic{goto m0};
atomic{skip;

m0: X=0
}

}

Fig. 9. A program whose verification depends on whether partial order reduction is en-
abled

Consider for example the program in Figure 9. The assertion is violated, when
B just executes X=1 before A is executed. Spin finds this error, when the program
is verified without partial order reduction, while it proves that all assertions hold
when partial order reduction is enabled.

Because of these problems, this encoding does not have the benefits of an exe-
cutable semantics. Therefore, we choose the not so efficient, but more robust en-
coding as the default.

A SystemC/TLM Semantics in Promela 217

4 Verification

4.1 Generic Properties

There are a number of properties that should hold for every TL model. First, it
should never deadlock. For instance, a deadlock occurs when a process is waiting
for an event that is never notified. A deadlock in the SystemC model corresponds
directly to the fact that all Promela processes are blocked. With Spin, this can
be checked by verifying that no “invalid end states” exist, which is built in the
prover. Since we only increase time when at least one process performs a wait on
time, it can never be the case that the clock_update process runs forever, which
would make it impossible for Spin to detect a deadlock. On the other hand, when
all processes terminate, the update_clock process will be blocked. Therefore, we
explicitly declare the corresponding states as valid end states.

A deadlock might occur in the simple example in Figure 1, if we remove the
wait(5, SC_NS) statement from the second process. Then the scheduler can
choose to execute the second process first, and let it notify the event without a
process waiting for it (this is indeed a common error for SystemC programmers).
After that, both processes wait for events, but none is ever notified.

Another property we want to check is that no process runs forever without
yielding. This can be expressed by the formula �♦M = 0. For models with clocks,
we can also check that time will always elapse, using the formula �♦enabled
(update clock).

Of course, these last two properties are liveness formula and can only be checked
if all abstractions preserve them (over-approximations of the behaviors preserve
safety properties, but do not preserve liveness properties, in general). For the sim-
ple example, we do not need to perform any abstractions at all. If, however, the
model becomes too large, the first abstraction that comes to mind is to remove
all clocks, and to change every clock-guard to true. This implies that a process
might halt in an arbitrary number of steps before a guard. But the property that
a thread is monopolizing the behavior is independent from the clocks, so it can
still be verified that way.

These tests work very well on the small example both with the possible deadlock
and without. The proof is almost instantaneous, and the number of states remains
small. We also checked these properties for the subset of a real-world MPEG de-
coding platform, which modeled the synchronization between the different com-
ponents, with good results (see Figure 10).

This example contains many interleavings, a characteristic of real-world plat-
forms. In the bug version, a deadlock may occur. The MPEG example is a modular
version, with more parallel automata. All tests were performed on an Intel Celeron
with 2.80 GHz and 1 GB RAM.

4.2 Checking Assertions

Checking assertions in the TL model is straightforward. Assertions are simply in-
serted at the corresponding transition, and directly written into the Spin code. So

218 C. Traulsen et al.

without bug with bug MPEG
time (s) states time (s) states time (s) states

deadlock < 0.1 35 < 0.1 9 < 0.1 126
no yielding < 0.1 49 < 0.1 55 < 0.1 209
time elapse < 0.1 57 < 0.1 9 < 0.1 226

Fig. 10. Benchmarks for the mpeg example

far, we are mainly using assertions to check that some part of the model is never
executed. This could also be modeled using specific error states. Since assertions
are always safety properties, they are not effected by possible abstractions.

4.3 Benchmarks

Our test model consists of a chain of modules. The first module triggers an in-
terrupt in the next one. This interrupt notifies an event, allowing the module to
trigger an interrupt in the next module, and so on. The last module contains an
assertion which is either always false (bug) or always true (no-bug). The latter
forces Spin to compute the whole state space when checking for invalid assertions.
While this model may seem artificial, it exhibits the characteristics found in more
complex real-world models and leading to state explosion: many processes, syn-
chronized by SystemC events, which can thus be lost depending on the execution
order of the various statements. Such study allows to experiment on how the state
space that needs to be explored grows depending on parameters. The results pre-
sented in Figure 11 focus on the main parameter which is the number of modules.
We also tried to experiment with adding an arbitrary number of black states inside
the processes, which for clarity is not in the table.

The normal encoding uses the global variable M, to assure atomicity, while the
goto version is our alternative encoding. In order to allow all intended behavior,
we disabled partial order reduction when checking the encoding with goto.

The entry NT (not tested) indicates that the checking has aborted due to lack
of memory. Both encodings find the bug very fast.

When computing the whole state space, we see that the encoding using gotos
is more efficient, but the number of states increases exponentially for both encod-
ings. This is due to the increase of white states. We can solve the bug by wait-
ing before the notification, in order to make sure that no event is lost. While this
makes the model completely deterministic, the number of states is still growing
exponentially. Adding deterministic, local computations, increases the number of
reachable states linearly for the normal encoding, and not at all for the encoding
with gotos.

4.4 Comments on Performance

There are two possible sources for state explosion, making the model too large
for automatic verification: the clocks and the interleaving between the processes.

A SystemC/TLM Semantics in Promela 219

modules 3 5 7 9
time (s) states time (s) states time (s) states time (s) states

normal: bug < 0.1 32 < 0.1 48 < 0.1 64 < 0.1 80
normal: no-bug < 0.1 3919 0.5 64831 11.8 104576 NT NT
goto: bug < 0.1 10 < 0.1 14 < 0.1 18 < 0.1 22
goto: no-bug < 0.1 287 < 0.1 1535 < 0.1 7679 0.2 36863

modules 11 13 15 17
time (s) states time (s) states time (s) states time (s) states

normal: bug < 0.1 104 < 0.1 120 < 0.1 136 < 0.1 152
normal: no-bug NT NT NT NT NT NT NT NT
goto: bug < 0.1 34 < 0.1 38 < 0.1 42 < 0.1 46
goto: no-bug 1.1 172031 7 786431 47 353894 NT NT

Fig. 11. Benchmarks for the chain call example

Modeling time by integers is usually not a good idea. However, our clocks are al-
ways bounded by the time of the corresponding wait, which is usually a rather
small value, and since the clocks are updated synchronously, the actual increase
of the state space is moderate. The size of the state space depends on the max-
imum time a process waits for, and the number of unrelated wait statements in
parallel processes.

One way to cope with the state explosion is to use Spin not for formal verifica-
tion, but for intensive testing. This is encouraged by the fact that in the bench-
mark the existing bugs were found very fast. This also allows to use more efficient
algorithms in Spin, like hash-compact search, which only give approximate re-
sults.

On the other hand, our benchmark shows that introducing white states lead to
state-explosion, while introducing black states has only a minor impact. Typical
case-studies contain mostly control-flow, and only a few waits; therefore we are
confident that we can model check programs of interesting size with our approach.

5 Related Work

The problem of SystemC having no official formal semantics is not new. Most of
the research work studying SystemC in a formal context starts giving it a seman-
tics in another well-defined formalism.

The majority of the approaches to give a semantics to SystemC are limited to
its RTL subset, that is models describing synchronous circuits in detail. For in-
stance, [9] expresses the semantics for the RTL subset in terms of Abstract State
Machines. In this work, the processes executes concurrently, while the SystemC
specification explicitly says the opposite (non-preemptive scheduling). [18] does
the same using denotational semantics, but without taking into account the notion

220 C. Traulsen et al.

of control-flow inside the processes. These previous works have in common the fact
that the target formalism that is used does not have concrete tools, and therefore it
is impossible to check on examples that the given semantics is faithful. Moreover,
the lack of connection to verification tools questions the possible applications for
these works.

The approach followed by CheckSyC [5] goes one step further, in the sense that
it provides a complete chain from SystemC parsing to formal verification, with
relatively good experimental results. The main idea in this work is to recognize
and extract well-known synchronous automata from RTL SystemC models and
to reuse tools that model-check efficiently synchronous hardware. [19] follows the
same idea using the GNU SSA (static single assignment) form of GCC for parsing
the code and the synchronous language Signal [1] as the target formalism. Ad-
ditional benefits, such as compositional reasoning, are presented but still on the
RTL subset, whereas we are interested in handling models at higher abstraction
levels.

The work in [11] apparently supports any SystemC program, by separating
hardware (combinatorial functions, FSM, etc., corresponding to the RTL subset)
from software (other unconstrained SystemC processes) to use different verifica-
tion approaches. This separation is useless for us, since code for Transaction Level
Models, while modeling hardware, falls in the second category. The semantics for
SystemC is given by parallel automata with rendez-vous. Variables encoding the
status for each process are used in the global state space to model the effect of the
scheduler. However, nothing is said on wait(time) statements, which is a non-
trivial point of the semantics.

We already experimented with the connection of SystemC to a proof engine,
with the objective of analyzing Transaction-Level Models. The first output of this
work was the tool-chain LusSy [14]. Starting from a SystemC program, we use
a SystemC front-end to parse it, generate an intermediate representation called
HPIOM made of communicating synchronous automata. We can then generate
Lustre or SMV code to connect to a variety of proof engines. The connection to
Lustre provides both provability and executability. The work presented here dif-
fers on several points: the first one is that LusSy uses a SystemC-independent in-
termediate formalism, and models the details of the scheduler using an explicit
automaton. As opposed to this, we are using here a representation with automata
in which the notion of non-preemption is built-in. The details of the scheduler do
not need to appear in a separate automaton, but the main scheduling principles
are reflected by the automaton encoding, in such a way that the product of Spin
does the intended work. The second difference is that LusSy uses a synchronous
formalism, while we are experimenting here with Spin, which is asynchronous. Fi-
nally, the encoding in LusSy over-approximates the possible behavior when time
elapses. Whereas the values waited for by the processes determine their order of
execution, the encoding considers any possible order. The present work with Spin
computes the actual order in which the processes will be executed. The abstrac-
tion in LusSy is conservative for verifying safety properties, but at the expense of
larger state spaces.

A SystemC/TLM Semantics in Promela 221

6 Further Work and Conclusion

We have presented a way of translating TL models written in SystemC into
Promela. This is one way of giving a formal semantics to SystemC. We use this
encoding to perform verification of TL models, like checking for deadlocks and
assertions.

The asynchronous encoding seems to be worth further investigation, compared
to a synchronous one. When translating SystemC to a synchronous framework,
the atomicity between two white states is obtained by a quite complex synchroni-
sation between the automata for the processes, and the automata that represents
the scheduler. Conversely, when translating SystemC to Promela, the atomicity
is built-in. Therefore, if the number of white states is small compared to the num-
ber of black states, the formal verification should be easier for the asynchronous
encoding

On the other hand, translating SystemC into Lustre or SMV has the advan-
tage of producing a symbolic description of the system that can be exploited by
symbolic model-checkers and abstract-interpretation tools.

The use of Spin is probably better for bug tracking, while the use of a symbolic
tool is probably better for performing aggressive abstractions and approximate
property verification.

Right now, the transformation from SystemC to Promela is manual. While
interesting as a first approach to the problem, it would be necessary to implement
the principles presented here in a complete tool-chain to apply the approach on a
larger case-study and compare it with the synchronous encoding. This would mean
to reuse a front-end like Pinapa [15], that we developed for LusSy, a transformation
into a structure representing the particular form of automata used here, and a
Spin code generator. We already have a prototype for the data structure and the
code generator, but the biggest part of the work is the transformation from the
actual SystemC code.

References

1. Benveniste, A., le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the Signal language and its semantics. Technical Report 459,
IRISA, Rennes, France (1989)

2. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.):
Proof, Language and Interaction: Essays in Honour of Robin Milner (2000)

3. Bosnacki, D., Dams, D.: Discrete-time Promela and Spin. In: Ravn, A.P., Rischel,
H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 307–310. Springer, Heidelberg (1998)

4. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: 4th Inter-
national School on Formal Methods for the Design of Computer, Communication
and Software Systems: Real Time, SFM-04:RT, Bologna, September 2004. LNCS
Tutorials, Springer, Heidelberg (2004)

5. Drechsler, R., Große, D.: CheckSyC: An Efficient Property Checker for RTL Sys-
temC Designs. ISCAS 4, 4167–4170 (2005)

6. Feiler, P.: Architecture Analysis & Design Language (AADL). Technical Report
AS5506, SAE International (2004)

222 C. Traulsen et al.

7. Ghenassia, F. (ed.): Transaction Level Modeling with SystemC, TLM Concepts and
Applications for Embedded Systems. Springer, Heidelberg (2005)

8. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying critical systems
by means of the synchronous data-flow programming language LUSTRE. IEEE
Transactions on Software Engineering, Special Issue on the Specification and Anal-
ysis of Real-Time Systems September 1992 (1992)

9. Hoffmann, D., Gerlach, J., Ruf, J., Kropf, T., Mueller, W., Rosenstiehl, W.: The
Simulation Semantics of SystemC. In: DATE, pp. 64–70 (2001)

10. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, London (2004)

11. Kroening, D., Sharygina, N.: Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning. In: MEMOCODE 2005, pp. 101–110 (2005)

12. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer 1(1–2), 134–152 (1997)

13. McMillan, K.L.: The SMV system (November 06, 1992)
14. Moy, M.: Techniques and Tools for the Verification of Systems-on-a-Chip at the

Transaction Level. PhD thesis, INPG, Grenoble, France (December 2005)
15. Moy, M., Maraninchi, F., Maillet-Contoz, L.: Pinapa: An extraction tool for

SystemC descriptions of systems-on-a-chip. In: EMSOFT (September 2005)
16. Moy, M., Maraninchi, F., Maillet-Contoz, L.: LusSy: an open Tool for the Analysis

of Systems-on-a-Chip at the Transaction Level. Design Automation for Embedded
Systems 10(2-3), 73–104 (2006)

17. Open SystemC Initiative. IEEE 1666: SystemC Language Reference Manual (2005)
www.systemc.org

18. Salem, A.: Formal Semantics of Synchronous SystemC. DATE 1, 10376–10381
(2003)

19. Talpin, J.-P., Le Guernic, P., Shukla, S., Gupta, R.: Compositional behavioral mod-
eling of embedded systems and conformance checking. International Journal on Par-
allel processing, special issue on testing of embedded systems (2005)

www.systemc.org

Towards Model Checking Spatial Properties with
SPIN�

Alberto Lluch Lafuente

Department of Computer Science, Università di Pisa
lafuente@di.unipi.it

Abstract. We present an approach for the verification of spatial proper-
ties with Spin. We first extend one of Spin’s main property specification
mechanisms, i.e., the linear-time temporal logic LTL, with spatial con-
nectives that allow us to restrict the reasoning of the behaviour of a
system to some components of the system, only. For instance, one can
express whether the system can reach a certain state from which a sub-
set of processes can evolve alone until some property is fulfilled. We give
a model checking algorithm for the logic and propose how Spin can be
minimally extended to include the algorithm. We also discuss potential
improvements to mitigate the exponential complexity introduced by spa-
tial connectives. Finally, we present some experiments that compare our
Spin extension with a spatial model checker for the π-calculus.

1 Introduction

Spin [1] is a popular model checker used to verify temporal properties of con-
current systems. Part of its success is due to its efficiency. As a matter of fact,
it is used as back-end model checker of various verification tools, like the first
version of the Java Pathfinder [2], Bandera [3] or CheckVML [4]. Spin can also
be used [5,6] to check properties of systems described in process algebras like
the π-calculus [7].

System specifications in Spin are given in Promela, a high-level language
for defining communicating processes, while system properties can be given in a
linear-time temporal logic (LTL) [8], in the more expressive formalism of Büchi
automata, or by using other ad-hoc mechanisms to express deadlock freedom,
satisfaction of local assertions, etc. In that manner Spin is used to reason about
temporal properties of concurrent systems. In some cases, however, one would
like to restrict the reasoning to some parts of the system, only. For instance, in a
client-server system one would like to express that, under some conditions, two
clients can evolve together to reach some undesired state.

Such properties can be expressed by means of spatial logics, that are for-
malisms for expressing structural properties of models where there is a notion of
� This work has been supported by the EU within the FETPI Global Comput-

ing, project IST-2005-016004 SEnSOria (Software Engineering for Service-Oriented
Overlay Computers).

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 223–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 A. Lluch Lafuente

composition. Besides the usual boolean connectors, spatial logics include ingredi-
ents like the connective 0 to represent an empty model or the spatial decomposi-
tion | which allows to write formulae φ1|φ2 that are satisfied by models that can
be decomposed into two parallel submodels satisfying φ1 and φ2, respectively.

The origins of logics to reason about temporal and spatial properties of sys-
tems can be tracked back on early work on logics for reasoning about networks of
processes. For instance, the multiprocess network logic of [9] considers networks
of interconnected processes and proposes a first-order logic with linear temporal
modalities and spatial modalities everywhere, anywhere to respectively refer to
the properties of some and any process connected to the process under consider-
ation. This approach further inspired, amongst others, the logics ICTL* [10] and
IPTL [11], indexed extensions of CTL* and LTL, respectively. The logic IPTL
is actually the propositional fragment of the multiprocess network logic and
ICTL* is an extension of CTL* (without the next-time operator) enriched with
conjunctions and disjunctions of indexed propositions. In these early works the
main focus was on reasoning about properties like mutual exclusion in systems
with many identical processes.

More recently, several approaches to the verification of spatial properties have
been proposed, on logics either for concurrent software system specifications
given in process calculi like the π-calculus [12,13,14] or the ambient calculus [15],
or data structures such as heaps [16], trees [17] and graphs [18]. Each such
approach proposes a logic that combines spatial connectives with ingredients to
reason about model specific aspects (names, childhood, edge adjacency, etc.).

Our goal is to extend the capabilities of Spin in order to make it able to check
spatial properties. We believe that this would be interesting both for system
specifications given directly in Promela or in other formalisms used by formal
methods tools (e.g. the ones cited above) that rely on Spin for the verification.
In most cases, structural aspects are a relevant issue that is worth specifying
and verifying.

We achieve this by extending LTL with spatial connectives, much in the line
of [14] which proposes a spatial version of a first-order μ-calculus to reason about
spatial, temporal and name properties of π-calculus specifications. In contrast
with [14] and the rest of the recent spatial logics cited above, we do not introduce
the usual void and composition operators. Instead, we introduce second-order
process variables that can be instantiated, compared or used to restrict the be-
havior that a formula refers to. More precisely, ∃X.φ expresses that φ holds for
some subset X of the set of system processes, [φ]X expresses that φ holds for
runs restricted to transitions involving processes in set X , and formula ψ1 ⊆ ψ2
expresses that process expression ψ1 is contained in process expression ψ2, where
process expressions combine the empty set, singletons formed by process iden-
tities, set union and complementation and process set variables. The difference
with the multiprocess network logic of [11] and similar works is that our pro-
cess quantification is not used to reason about connections or local properties of
processes but to refer to the behaviour to some processes only.

Towards Model Checking Spatial Properties with SPIN 225

Our flavour of spatial connectives allows us to compactly express properties
that, as far as we can see, are not expressible with the above cited approaches. For
instance, the choice of a second-order quantifier has been inspired by the fact that
the fixpoint-free fragment of the spatial logic of [18] is captured by Courcelle’s
monadic second-order logic for graphs [19]. In our case, the usual spatial compo-
sition φ1 | φ2 can be seen as an abbreviation of ∃X, Y.X�Y = P∧�φ1�X ∧�φ2�Y ,
where �φ�X is the strict restriction (c.f. Section 2.3) of φ under X . It is worth
noticing that the use of process quantification and restriction is strictly more ex-
pressive than the use of decomposition since the latter does not allow to reason
about the whole system inside a decomposition. For instance, recalling the prop-
erty of a client-server system suggested above we could not extend it to express
whether in the undesired situation the server can always evolve to correct the
situation. As a more concrete example, consider that one cannot express with
the use of the decomposition operator that there is a set of processes X that
lead the system to a state where there is another set of processes Y that satisfy
a formula φ, a property that is expressed in our logic by ∃X.[�∃Y.[φ]Y]X . We
shall see that this is possible because existential quantification is not affected by
restriction. In the formula above, for instance, ∃Y quantifies over the whole set
of processes of the system and not over X .

After giving the syntax and semantics of the spatial logic, we sketch a basic
model checking algorithm and discuss its integration in Spin. The algorithm
is very simple and mainly relies on Spin’s algorithm for LTL model checking.
Indeed, we show that verification of the logic can be reduced to checking a certain
set of LTL formulae. The extension of Spin is minimal since it mainly requires
us to add the capability of starting the search from a given state and restrict
the set of active processes.

Next we face the complexity of the logic, which is strongly influenced by
second-order quantification. Indeed, in order to check ∃X.φ we need to consider
all subsets of the set P of processes of the system, which number is exponential
in the size of P . This is a severe drawback on the performance of spatial model
checkers. Analyzing all the possible subsets is, however, not always necessary.
For instance, a typical property that is used by spatial model checkers is ¬void∧
¬(¬void | ¬void), abbreviated with 1, which expresses that a system has only
one component. A property that can be clearly checked in constant time. Take
now a formula 1|φ, which expresses that a process can be removed such that the
remaining system will satisfy φ. Clearly, only a linear number of decompositions
have to be checked. While these cases can be dealt with by introducing explicit
ingredients in the logic, the general problem remains open.

However, we argue that there is space for efficient algorithms. Consider a
formula ∃X.φ. Suppose we find that the system restricted to a set Q of processes
does not satisfy φ. We know that, under some conditions, the system restricted
to a superset P of Q simulates the system restricted to Q. For some formulae φ
we can conclude that φ is neither satisfied by the system restricted to P without
actually performing the verification. We shall see how to generalize some of these
reasonings.

226 A. Lluch Lafuente

This paper is structured as follows. Section 2 presents the spatial logic for
Spin. Section 3 proposes a model checking algorithm and discusses methods to
reduce the verification effort. Section 4 presents comparative empirical results
with a spatial logic model checker. A last section concludes the paper and outlines
current and future work.

2 Spatial Logic for Spin

This section defines the syntax and semantics of our logic, which is interpreted
over a suitable formalism. We also give some example properties of a well-known
problem, namely Dijkstra’s dining philosophers problem, and suggestions for
spatial property specification patterns.

2.1 Computational Model

We introduce a variant of labeled transition systems as a a suitable representation
of the state space of Promela models over which our logic will be defined. We
first recall the usual notion of (state) labeled transition systems.

Definition 1 (labeled transition system). A labeled transition system M
is a tuple 〈s0, S, →, L, AP 〉, where S is a set of states, s0 ∈ S is the initial
state, →⊆ S × S is a transition relation and L : S → 2AP is a labeling function
mapping states into subsets of AP , a set of atomic predicates representing the
observations on states.

Our notion of labeled transition considers that the system is composed by a set
P of processes.

Definition 2 (composed labeled transition system). A composed labeled
transition system M is a tuple 〈s0, S, →, L, AP, P〉, such that 〈s0, S, →, L, AP 〉
is labeled transition system and P is a finite set of processes that partitions the
transition relation, i.e., →= ε→ ∪

⋃

p∈P
p→, where ε→ is a set of empty transitions

used for the usual stutter extension of finite runs1.

Composed labeled transition systems roughly approximate Promela models
without dynamic process creation where processes concurrently execute in an
interleaving manner communicating via asynchronous operations2. In the rest
of the paper we shall use the term labeled transition systems or just systems to
refer to composed labeled transition systems.

An infinite run of a system M at state s0, denoted M, s0 is an infinite sequence
s0 → s1 → A maximal finite run is a finite sequence s0 → s1 → . . . → sn

1 We naively use transition labels above transitions and neglect the definition of labeled
transitions as triples or via a labeling function to avoid confusion since only state
labels play a role in the semantics.

2 In Promela terminology, this mainly means that the run statement and synchronous
channels are not allowed.

Towards Model Checking Spatial Properties with SPIN 227

such that there is no transition sn → sn+1 in the system. A state s is called
ending state if there is no transition departing from it. For the sake of simplicity,
we assume that systems with finite maximal runs are represented by equivalent
systems where the transition relation includes empty transitions that extend
finite runs as usual, i.e., given a transition relation → we define the stutter
extension of → by se(→) =→ ∪{s

ε→ s | ∀s ∈ S.(s, s′) �∈→}. In words, for each
ending state s a self transition s

ε→ s is added. Thus, in the rest of the paper run
denotes infinite run. extend finite runs as usual, i.e., given a transition relation →
we define the stutter extension of → by se(→) =→ ∪{s

ε→ s | ∀s ∈ S.(s, s′) �∈→}.
In words, for each ending state s a self transition s →s is added. Thus, in the
rest of the paper run denotes infinite run. The set of all runs of M starting at
s is denoted by ρ(M, s). For a run r = s0 → s1 → . . . si → si+1 → . . ., the suffix
run of r starting at si is ri = si → si+1 → . . ., while the i-th state of such a run
r is denoted by sr

i . A state s ∈ S is reachable if there is a run r such that s = sr
i

for some i ∈ N.
Given a system M we define MP as M restricted to its subprocesses P ⊆ P ,

i.e., MP = 〈s0, S, →P , L, AP, P〉. The restricted transition relation →P is defined
by se(ε→ ∪

⋃

p∈P

p→), i.e., the stutter extension of the transitions of processes in
P . Thus, the runs of MP can be seen as the runs of M restricted to P , where a
run r restricted to a set of processes P is denoted by rP and is defined as the
maximal prefix of r such that every transition s → s′ belongs to some process
in P , i.e., s → s′ ∈

⋃

p∈P

p→. If no transition of r belongs to a process outside
P then rP is exactly r. Otherwise, rP is like r until the first transition s → s′

belonging to a process outside P is encountered. Then the rest of rP is infinitely
extended as explained above.

2.2 Logic Syntax

Once we have a minimal formalism for a Promela model, we present the syntax
of the spatial logic, where we assume a given system M = 〈s0, S, →, L, AP, P〉.

Definition 3 (logic syntax). Let V be a set of process variables. The syntax
of our spatial logic is given by the following grammar:

φ ::= T | ¬φ | φ ∨ φ | a (boolean connectives)
◦φ | φUφ (temporal connectives)
ψ ⊆ ψ | ∃X.φ | [φ]X (spatial connectives)

ψ ::= ∅ | {p} | X | ψ ∪ ψ | ψ (set expressions)

where a ∈ AP , p ∈ P and X ∈ V .

In the definition above V is assumed to contain a special variable X that will
be used to record the set of processes under which the system is restricted. We
shall describe all ingredients in detail after the definition of the semantics of the
logic. Here, we just advance the intuitive meaning of the spatial connectives and
the set expressions. The rest of the ingredients constitute the well-known linear

228 A. Lluch Lafuente

temporal logic LTL [8], which we present here in a minimal manner by means of
the next-time unary operator ◦ and the until binary operator U. Other typical
operators can be derived from these, as we will recall in a next section.

Set connectives are nothing but the empty set, a singleton formed by the
identity of a process, a set variable, set union and set complementation (with
respect to P). Set inclusion is thus trivially interpreted.

The second-order existential process quantifier binds X with a set of process
which we shall see is a subset of the processes of the system. Then, a formula
[φ]X is valid if φ holds for the system restricted to processes in X . However, φ
might contain further restriction operators which can change the set of process
that restrict the system. In this way, we can reason about the behaviour of sub-
components of a system without losing the capacity to refer to the behaviour of
the whole system.

Before giving the formal semantics, we define the sets fn(φ) and fn(ψ) of free
variables of a formula φ and a set expression ψ. These are defined as expected.

Definition 4 (free variables). Given a formula φ, the set fn(φ) of free vari-
ables of φ is defined by:

fn(T) = ∅
fn(¬φ) = fn(φ)

fn(φ1 ∨ φ2) = fn(φ1) ∪ fn(φ2)
fn(a) = ∅

fn(◦φ) = fn(φ)
fn(φ1Uφ2) = fn(φ1) ∪ fn(φ2)

fn(ψ1 ⊆ ψ2) = fn(ψ1) ∪ fn(ψ2)
fn(∃X.φ) = fn(φ) \ {X}
fn([φ]X) = fn(φ) ∪ {X}

Similarly, given a set expression ψ, the set fn(ψ) of free variables of ψ is
defined by:

fn(∅) = ∅
fn({p}) = ∅
fn(X) = {X}

fn(ψ1 ∪ ψ2) = fn(ψ1) ∪ fn(ψ2)
fn(ψ) = fn(ψ)

Obviously, the definition above assumes the usual safe renaming of variables
such that variable names are not reused. We will consider closed formulae only,
i.e., formulae where every process variable is bound by a quantifier, or in other
words, formulae φ such that fn(φ) = ∅. The notion of free names is crucial to
define the equivalence axioms that we shall see in a next section.

2.3 Semantics

The semantics of our logic is interpreted over labeled transition systems.

Towards Model Checking Spatial Properties with SPIN 229

Definition 5 (logic semantics). Let M = 〈s0, S, →, L, AP, P〉 be a transition
system, φ, φ1, φ2 be formulae, ψ, ψ1, ψ2 be set expressions, X ∈ V be a second-
order process variable, σ : V → 2P be a mapping of process variables into sets
of processes, s ∈ S and r be a run of M . The semantics of our logic is given by
the following satisfaction relation:

M, r |=σ T ⇔ true
M, r |=σ ¬φ ⇔ M, r �|=σ φ
M, r |=σ φ1 ∨ φ2 ⇔ M, r |=σ φ1 or M, r |=σ φ2
M, r |=σ a ⇔ a ∈ L(sr

0)
M, r |=σ ◦φ ⇔ M, r1 |=σ φ
M, r |=σ φ1Uφ2 ⇔ ∃k ∈ N.M, rk |=σ φ2 and ∀0 ≤ j < k.M, rj |=σ φ1
M, r |=σ ψ1 ⊆ ψ2 ⇔ �ψ1�σ ⊆ �ψ2�σ

M, r |=σ ∃X.φ ⇔ ∃P ∈ 2P .M, r |=σ[P /X] φ
M, r |=σ [φ]X ⇔ M, sr

0 |=σ[σ(X)/X] φ

M, s |=σ φ ⇔ ∀r ∈ ρ(Mσ(X), s).M, r |=σ φ

where �ψ�σ is inductively defined by

�∅�σ = ∅
�{p}�σ = {p}
�X�σ = σ(X)
�ψ1 ∪ ψ2�σ = �ψ1�σ ∪ �ψ2�σ

�ψ�σ = P \ �ψ�σ

Recall that X is assumed to be a distinguished variable of V which we use to
identify the set of processes under which the formula is restricted. Obviously, in
the initial environment X is mapped to the set P of all processes of the system
such that we say that M satisfies φ, written M |= φ, whenever M, s0 |=σ[P/X] φ
for any σ.

As the last equation of the satisfaction relation defined above suggests, a
formula φ is satisfied by system M at state s if all runs of M restricted to
σ(X) starting at φ satisfy φ. The satisfaction relation for boolean and temporal
connectives is the usual one. Recall that ◦φ holds for a run r iff φ holds in the
next state after the first state of r, while φ1Uφ2 requires to φ1 to hold until
some point where φ2 holds.

The inclusion of set expressions is defined as expected: ψ1 ⊆ ψ2 holds in
environment σ whenever the set expression φ is included in the set expression
φ2, both under the environment σ. A formula ∃X.φ is satisfied by a run r in
environment σ whenever there is a set of processes P ⊆ P for which φ holds for
r in an environment σ′ that is like σ except that variable X is mapped to P .
Finally, [φ]X holds for a run r of system M whenever all runs of M restricted
to σ(X) starting from the first state of r satisfy φ in a new environment where
σ is updated to map X to σ(X).

In addition to the usual boolean and set abbreviations we enumerate the
following ones:

230 A. Lluch Lafuente

�φ ≡ ¬�φ eventually
�φ ≡ ¬�¬φ globally

φ1Rφ2 ≡ ¬(¬φ1U¬φ2) release
∃1X.φ ≡ ∃X.

∨

p∈P X = {p} ∧ φ first-order quantifier
∀P.φ ≡ ¬∃X.φ universal quantifier
�φ�X ≡ [{φ}X]X strict restriction

φ1 | φ2 ≡ ∃X, Y.X � Y = P ∧ �φ1�X ∧ �φ2�Y composition
φ1||φ2 ≡ ¬(¬φ1 | ¬φ2) dual composition

0 ≡ X = ∅ no process
1 ≡ ¬0 ∧ (0||0) unique process

Here {φ}X is formula φ relativized to X , which limits the reasoning in φ to
processes inside X . This is mainly done by limiting every quantifier inside φ to
subsets of X and intersecting every set expression with X .

Definition 6 (relativized formula). A formula φ relativized to process vari-
able X is defined by

{T }X = T
{¬φ}X = ¬{φ}X

{φ1 ∨ φ2}X = {φ1}X ∨ {φ2}X

{a}X = a
{◦φ}X = ◦{φ}X

{φ1Uφ2}X = {φ1}XU{φ2}X

{ψ1 ⊆ ψ2}X = (ψ1 ∩ X) ⊆ (ψ2 ∩ X)
{∃Y.φ}X = ∃Y.Y ⊆ X ∧ {φ}X

{[φ]Y }X = ∃Z.Z = Y ∩ X ∧ [{φ}X]Z

Most of the introduced abbreviations are typical in temporal and spatial logics.
Regarding temporal abbreviations, we recall that �φ is used to express that φ
will eventually hold, �φ states that φ holds in every reachable state and φ1Rφ2
is the dual of the until operator, satisfied when φ2 holds forever or until some
point where both φ1 and φ2 hold. The spatial abbreviations can be used to ex-
press the number of processes present in the (sub)system or to reason about
decompositions of the system. An interesting abbreviation is the strict restric-
tion, which suggests the way one can force that a quantification that appears
under a restriction is limited to the subsets of processes under which the for-
mula is restricted. The strict restriction forbids a formula to refer to processes
outside the subsystem under which it is restricted. The best example of use of
the strict restriction are the composition operators. For instance, φ1 | φ2 holds
whenever the processes of a system M can be decomposed into two (possibly
empty) disjoint sets P, Q such that MP , MQ respectively satisfy φ1, φ2 under
strict restriction. This means that φ1 and φ2 cannot refer to processes outside P
and Q, respectively. Dually, φ1||φ2 holds whenever for all disjoint decompositions
P, Q, MP satisfies φ1 or MQ satisfies φ2, both under strict restriction.

Towards Model Checking Spatial Properties with SPIN 231

2.4 Examples

We illustrate the use of our logic with Dijkstra’s dining philosophers problem [20].
Recall that it involves a number of philosophers sitting around a table. There
is a plate in front of each philosopher and a fork between each pair of adjacent
plates. A philosopher needs two forks to eat the spaghetti on his own plate. The
problem is to find a protocol that allows the philosophers to use the forks in
such a manner that they can all eat.

A strategy where every philosopher takes his left and right fork as a single
atomic action is deadlock free but leads to starvation, i.e., philosophers are not
guaranteed to eat infinitely often. On the other hand, consider a strategy where
every philosopher decides to pick up his left fork and to not release it before a
second fork has been acquired. It is clearly not deadlock free. It suffices to let
each philosopher to pick up his left fork such that no philosopher will ever get
its right fork.

We might refer to the state space of the problem as the system, where pro-
cesses correspond to philosophers. In the following examples we will mainly make
use of the compositional operator even if equivalent formulae written without
such abbreviation are indeed simpler and more efficiently checked. The idea is
to use a notation easy to understand to readers that are familiar with spatial
logics and to explicit the fact that most of them are expressible in the spatial
logic of [14], whose model checker we use in the the comparative experiments
of a next section. However, we also give an example of a formula that is not
expressible via the composition operator.

Assume that we want to reason about the second version of the problem. We
know that it is not deadlock free, but we want to analyze the nature of deadlocks.
Suppose that we have have an atomic proposition deadlock that holds in deadlock
states only. A first spatial property that we might consider is that a deadlock
occurs if and only if the system has no processes or all the processes collaborate.
In other words, a strict subset of processes cannot lead the system into a deadlock
state. This is expressed by the following formula:

prop1 ≡ (�deadlock) ∧ (¬0 | ((�deadlock) → 0))

Observe that 0 necessarily implies deadlock. Regarding our comment above,
observe that the property could be more compactly and efficiently expressed by
the formula ¬∃X.X �= ∅ ∧ X �= P ∧ [�deadlock]X .

Now, we might wonder whether it is true that in every deadlock-free state of
the protocol, it is possible to separate the philosophers in two groups such that
one of the groups never deadlocks:

prop2 ≡ �(¬deadlock → ((�¬deadlock) | T))

More generally, we might wonder whether in every deadlock-free state of the
protocol, it is possible to separate the philosophers in two groups such that none
of the groups ever deadlock:

232 A. Lluch Lafuente

prop3 ≡ �(¬deadlock → (�¬deadlock | �¬deadlock))

We also might want to consider properties about starvation. Assume that a
proposition p1eats holds in states where philosopher p1 is eating. The typical
starvation-free property requires each philosopher to be able to eat infinitely
often. In our case we can write ��p1eats since by symmetry we know that it
suffices to reason about one philosopher.

On the other hand, another interesting property could be whether it is possi-
ble, starting from a state in which p1 is not eating, to find a group of philosophers
that can lead p1 into his eating state:

prop4 ≡ �(¬p1eats → (�p1eats | T))

Then, we can state a property requiring that, at any state where p1 is eating,
we can find a group of philosophers that allows p1 to eat infinitely often:

prop5 ≡ �(p1eats → (��p1eats | T))

Finally, we might think of a property stating that a subset of processes can
lead p1 into its eating state but then a set of processes can make him starve:

prop6 ≡ ∃X.[�(p1eats ∧ ∃Y.[¬��p1eats]Y)]X

It is worth noting that this property is not expressible by using the composi-
tional abbreviation.

As an exercise we invite the reader to reason about the validity of the stated
properties. The solution is given in Section 4.

2.5 Applications

We give further evidence of the practical interest of our logic by considering the
extension of typical property specification patterns for finite-state verification.
More precisely, we focus on the patterns identified in [21] (also available on
the web3). There, patterns are mainly organized according to two categories:
occurrence and order. The latter refer to the occurrence of a given event (e.g.,
absence, universality, existence), while the former regard the relative order in
which multiple events occur (e.g., precedence, response, chains). In addition
patterns, can be refined by limiting the scope where the property is intended to
hold (globally, before or after an event, between two events, etc.). For the sake
of simplicity, we will assume here a global scope.

Absence (�¬φ) and universality (�φ) are similar patterns to state an invariant
property represented by the (not necessarily atemporal) formula φ. Indeed, the
only actual difference is the point of view of event φ: absence is typically used to
guarantee that some undesired event never happens and universality is used to
ensure that a good property holds in every reachable state. A typical case where
3 http://patterns.projects.cis.ksu.edu/

http://patterns.projects.cis.ksu.edu/

Towards Model Checking Spatial Properties with SPIN 233

one could need spatial connectives is when it is known that the universality or
absence of φ does not hold, but one is interested in identifying subsystems for
which those properties still hold. This is what we did in the previous section
regarding the absence of deadlocks.

Existence properties (�φ) express that some event will eventually happen. In
the previous section we used this pattern to ensure the existence of a bad event,
namely a deadlock and we combined it with spatial connectives to guarantee
that only the whole system could make that bad event happen. Typical appli-
cations require φ to be a good event which does not happen if the system has
cyclic behaviours where φ never happens. Hence, in some cases we could allow
such behaviours but require a set of processes to exist that can exit the cyclic
behaviour and ensure the existence of φ. This can be expressed with the formula
�(¬φ → ∃X.[�∃Y = P .[�φ]Y]X).

Combining the universality and existence patterns also results in the infinitely
often pattern ��φ that we used to state absence of starvation in the example
of the previous section. By nesting spatial ingredients inside such a pattern we
can write a formula [�[�φ]Y]X that can be used to express that in any state
reachable by processes of X the processes Y ensure occurrence of φ. This might
be useful in case we have bad processes (X) trying to avoid the good event (φ)
and good processes (Y) ensuring the occurrence of the good event.

Precedence of event φ1 over φ2 is expressed by ¬φ1Wφ2, where φ1Wφ2 ab-
breviates the weak until operator φ1U(φ2 ∨�φ1). Response properties (�(φ1 →
�φ2)) are used to require that every request φ1 will be followed by a response
φ2. In both cases we can use spatial connectives to restrict the reasoning to some
processes only. For instance, we can strengthen a response property by requiring
that a process X alone (e.g., a server) achieves to produce the response. This is
stated by �(φ1 → [�φ2]X).

Chain patterns are used to express relations of complex combinations of
events. These include precedence or response relationships consisting of sequ-
ences of individual events. We consider the 1-stimulus, 2-response pattern here,
expressed by �(φ1 → �(φ2 ∧ ◦�φ3)), where φ1 is the request or stimulus and
φ2,φ3 are the responses. The formula states that every event φ1 is eventually
followed by φ2 and φ3 (in this order). As proposed in the above paragraph, the
occurrence of both events can be restricted to different sets of processes, i.e.,
�(φ1 → [�(φ2 ∧ [◦�φ3]Y)]X).

3 Model Checking

We face here the model checking problem for the spatial logic presented in the
previous Section by sketching a basic algorithm and proposing potential im-
provements.

3.1 Basic Algorithm

The algorithm for checking spatial formulae mainly relies on Spin’s capacity
to check LTL formulae. Recall that the mechanism used by Spin in order to

234 A. Lluch Lafuente

check LTL properties is the so-called automata-based model checking approach.
Roughly speaking, in order to check that a system M satisfies a formula φ a
Büchi automaton A is constructed as the intersection of the Büchi automata
corresponding to M and ¬φ. Intuitively, A accepts the infinite runs accepted
by both the system and the negation of φ, i.e., it models the behaviours of the
system violating property φ.

This is done in Spin by implementing a Büchi automaton as a special process
called never claim that is executed concurrently with the system. The executabil-
ity of the transitions of the never claim depends on boolean expressions on the
system variables that represent the atomic propositions of the corresponding
formula.

Algorithm check(P ,s,σ,φ) switch φ do
case ψ1 ⊆ ψ2

return set(ψ1, σ) ⊆ set(ψ2, σ) ;
case ∃X.φ1

foreach P1 ∈ 2P do
σ[X] := P1;
if spin(P, s, σ, φ1) then return true ;

return false;
case [φ1]X

return spin(σ[X], s, σ, φ1) ;

Fig. 1. Procedure check for checking spatial subformula

Our algorithm exploits the fact that the transitions of the never claim are
Promela statements which can include, for instance, calls to procedures writ-
ten in C. The idea is that we convert spatial formulae into maximal LTL sub-
formulae where spatial formulae are substituted by a call to a special verification
procedure, which possibly relies on Spin again. This approach has the benefit to
require minimal changes in Spin.

Thus, the first thing to do is to convert a spatial formula into a set of pure
LTL formulae whose atomic propositions are related to spatial subformulae.

Definition 7. Let φ be a formula. The corresponding flat formula flat(φ) is
defined by

flat(T) = T
flat(¬φ) = ¬flat(φ)

flat(φ1 ∨ φ2) = flat(φ1) ∨ flat(φ2)
flat(a) = a

flat(◦φ) = ◦flat(φ)
flat(φ1Uφ2) = flat(φ1)Uflat(φ2)

flat(ψ1 ⊆ ψ2) = aψ1⊆ψ2

flat(∃X.φ) = a∃X.flat(φ)
flat([φ]X) = a[flat(φ)]X

Towards Model Checking Spatial Properties with SPIN 235

Thus, when converting the negation of a flattened formula into the correspond-
ing never claim, each atomic proposition aφ is actually replaced by a call to
check(P ,s,σ,φ). Procedure check is depicted in Figure 1. It takes four param-
eters as input and returns a boolean value. The first parameter is P which
represents the set of processes under which the formula is restricted. The second
parameter s is the system state from which the formula must be checked. The
third parameter is an array σ of processes that ranges over variable names. It
implements the environment of process variables. Finally, φ is a flat formula.

Observe that the procedure relies on an extension of Spin which we refer to as
spin. The extension is minimal and allows to restrict the execution to a subset
of processes, start the verification from a given state and record the array σ.

Set expressions are trivially checked via a procedure set. Process quantifica-
tion requires us to consider all possible subsets P1 of P . For each such set, σ[X]
is updated with its value and spin is called with the new value for σ in order to
check φ. Finally, process restriction [φ1]X is checked by calling spin using the
set of processes assigned to X as first parameter.

3.2 Spatial Equivalences

The exponential complexity introduced by the second-order process quantifica-
tion can be mitigated in some cases by rewriting the formula in an appropriate
manner. For instance, a formulae ∃X.φ is trivially equivalent to φ if X is not
a free variable of φ. As a first step towards such a simplification we introduce
a set of structural axioms for spatial formulae which induces an equivalence of
formulae.

Definition 8 (spatial equivalence). The spatial equivalence is the least re-
lation ≡s on formulae closed under the following axioms:

∃X.T ≡s T
∃X.φ1 ∨ φ2 ≡s φ1 ∨ ∃X.φ2 if X �∈ fn(φ1)

∃X.a ≡s a
∃X. ◦ φ ≡s ◦∃X.φ

∃X.φ1Uφ2 ≡s (∃X.φ1)Uφ2 if X �∈ fn(φ2)
∃X.φ1Uφ2 ≡s φ1U∃X.φ2 if X �∈ fn(φ1)

∃X.ψ ≡s ψ if X �∈ fn(ψ)
∃X.∃Y.φ ≡s ∃Y.∃X.φ
∃X.[φ]Y ≡s [∃X.φ]Y if X �= Y

[T]X ≡s T
[¬φ]X ≡s ¬[φ]X

[φ1 ∨ φ2]X ≡s φ1 ∨ [φ2]X if X �∈ fn(φ1) and φ1 atemporal
[a]X ≡s a

[ψ1 ⊆ ψ2]X ≡s ψ1 ⊆ ψ2
[∃Y.φ]X ≡s ∃Y.[φ]X

236 A. Lluch Lafuente

In the definition above a formula φ is atemporal if it does not contain any
temporal operator. Next, we state that the satisfaction relation is closed under
spatial equivalence.

Proposition 1. Let φ1, φ2 be two spatial formulae and M be a transition sys-
tem. If φ1 ≡s φ2 we have M |= φ1 whenever M |= φ2.

Proof (sketch). The proof is trivial: one can basically apply the reasonings usual
in propositional logics. The only case that is worth mentioning regards the axiom
∃X. ◦ φ ≡s ◦∃X.φ. But this is not a problem since we assume that the set of
processes P is constant.

In current work we are investigating heuristics for deciding, given a certain for-
mula φ1, how to rewrite it into an equivalent formula φ2 such that checking
φ2 requires significantly less effort, possibly by introducing additional axioms
for typical abbreviations. For instance, consider formula �∃X.�φ. One can eas-
ily show that ��φ ≡ �φ and �∃X.φ ≡ ∃X.�φ are equivalence axioms of our
logic. This leads to the equivalent formula ∃X.�φ which clearly requires less
verification effort with our basic algorithm.

3.3 Exploiting Simulations

Checking ∃X.φ requires us in general to consider the 2P decompositions of the
system. However, in some cases such a formula can be checked more efficiently.
Consider for instance formula 1 expressing that there is just one process in the
system, which can be checked in constant time, or formulae of the form (1∧φ) | ψ
stating that there is a decomposition of the system where one part consists of a
single process satisfying φ and the rest satisfies ψ, which requires considering a
linear number of decompositions, only. Another typical example is the formula
∀1X.�φ�X or, equivalently, false||(1 → φ) expressing that the system restricted
under any single process satisfies φ.

A simple way to tackle the problem in specific cases is to explicitly include such
abbreviations in the logic and implement ad-hoc procedures for them. However,
it is worth studying procedures for the general case. For instance, one can try
to exploit the fact that a system approximates the behaviour of its subsystems.
We first define a well-known notion of approximation.

Definition 9 (simulation). Given two transition systems M1 = 〈s0
1, S1, →1,

L1, AP1, P1〉, M2 = 〈s0
2, S2, →2, L2, AP2, P2〉, a relation R ⊆ S1 × S2 is a simu-

lation relation whenever s1Rs2 implies:

– L(s1) = L(s2);
– for every transition s1 →1 s′1 there is a transition s2 →2 s′2 such that s2Rs′2.

If there is a simulation relation R such that s1Rs2 we say that M2 at s1 simulates
M1 at s2, written M1, s1 � M2, s2. If s1, s2 are s0

1,s0
2 we just say that M2

simulates M1, written M1 � M2.

Towards Model Checking Spatial Properties with SPIN 237

We next observe that under some conditions a subsystem MP simulates its
subsystem MQ. That this is not true in general can be easily shown. The problem
relies in the fact that MQ might contain empty transitions that are not present
in MQ and that might not be simulated. An example are deadlocks present in
MQ.

A sufficient condition for guaranteeing the that MP satisfies MQ is that MP

preserves the ending states of MQ. This means that in the states where the
processes in Q cannot progress, neither can the processes in P \ Q. A trivial but
realistic case where this happens is when the processes in Q do not communicate
with processes in P \ Q. Hence, if we have Q ⊆ P ⊆ P we say that P is a fair
superset of Q whenever for any reachable ending state s in MQ state s is also
an ending state in MP .

Proposition 2 (fair supersets simulate). Let M be a transition system and
P, Q be two sets of processes such that P is a fair superset of Q then, for any
s ∈ S:

MQ, s � MP , s.

Proof (sketch). The identity relation id = {(s, s) | s ∈ S} is clearly a simulation
relation since both L(s) = L(s) for any s ∈ S and →Q⊆→P .

The notion of simulation is sufficient to preserve satisfaction of the temporal logic
ACTL* and thus LTL [22] but not our full logic due to the spatial operators.
However, we can still identify fragments of our spatial logic that are preserved
by fair supersets of processes. The class of preserved formulae is characterized
by a type system, which may assign to a formula φ the type “→”, meaning that
φ is preserved by fair supersets or the type “←”, meaning that φ is reflected by
fairs supersets.

Definition 10 (preserved formulae). The typing rules are given by

T, a :↔
¬φ : d−1 if φ : d

φ1 ∨ φ2 : d if φ1 : d and φ2 : d
◦φ : d if φ : d

φ1Uφ2 : d if φ1 : d and φ2 : d
ψ1 ⊆ ψ2 :→ if ψ1 ⊆ ψ2 antimonotonic
ψ1 ⊆ ψ2 :← if ψ1 ⊆ ψ2 monotonic

∃X.φ : d if φ : d
[φ]X : d if φ : d

where it is intended that →−1=← and ←−1=→. Moreover φ :↔ is a shortcut
for φ :→ and φ :←, while φ1, φ2 : d stands for φ1 : d and φ2 : d.

In the definition above ψ1 ⊆ ψ2 antimonotonic means that for any pairs of
mappings σ1, σ2 that ensure that for any variable X ∈ V it holds σ1(X) ⊆ σ2(X)
we have that �ψ1 ⊆ ψ2�σ2 implies �ψ1 ⊆ ψ2�σ1 . Monotonicity of process set
inclusions is defined similarly.

238 A. Lluch Lafuente

We now state that preserved (resp. reflected) formulae are indeed preserved
(resp. reflected) by fair supersets.

Proposition 3 (preservation). Let M be a transition system and P, Q be two
sets of states such that P is a fair superset of Q, and let φ be a formula. Then
for any s ∈ S, X ∈ V we have

M, s |=σ[P /X] φ ⇒ M, s |=σ[Q/X] φ if φ :→
M, s |=σ[P /X] φ ⇐ M, s |=σ[Q/X] φ if φ :←

Proof (sketch). Let us consider the first equation (the other is dual). Note that we
have to prove that the satisfaction relation is antimonotonic with respect to any
variable X but this clear from the definition of preserved formulae. Regarding
the temporal connectives observe that we have MP simulates MQ at s.

Proposition 3 gives an intuition on how to improve the check of spatial operators.
If, for instance, we have to check whether a system M satisfies formula ∃X.φ
with φ being a preserved formula and we find out that M, s �|=σ[Q/X] φ we know
that M, s �|=σ[P /X] φ for any fair superset P of Q. Determining the fair supersets
of Q can be based on a static analysis. This suggest the improved version of the
check procedure depicted in Figure 2.

Algorithm check(P ,s,σ,φ) switch φ do
case ψ1 ⊆ ψ2

return set(ψ1, σ) ⊆ set(ψ2, σ) ;
case ∃X.φ1

foreach P1 ∈ 2P do
valid[P1] := unknown ;

foreach P1 ∈ 2P such that valid[P1] �= false do
σ[X] := P1;
if spin(P, s, σ, φ1) then return true ;
if preserved(φ) then

foreach P2 ∈ 2P such that fair(P2, P1) do
valid[P2] := false ;

return false;
case [φ1]X

return spin(σ[X], s, σ, φ1);

Fig. 2. Procedure check for checking preserved spatial subformulae exploiting supersets

4 Experiments

We compared a first implementation of the basic algorithm as an extension
of the Spin model checker with SLMC [23] a spatial model checker that imple-
ments the approach described in [14] for checking spatial properties of π-calculus

Towards Model Checking Spatial Properties with SPIN 239

specifications. The goal of the experiments is to have a first impression of the
efficiency of our basic algorithm by comparing it with the only spatial model
checker we are aware of.

Before presenting the results we reveal the solution for the validity of the
properties described in Section 2.4. Recall that we consider a deadlock solu-
tion to Dijkstra’s dining philosophers problem consisting in a protocol for the
philosophers such that they first try to catch the left fork and then the right one.
A philosopher that manages to get both forks is considered to be in its eating
state whose only outgoing transition corresponds to releasing both forks at the
same time. Properties prop1, prop2, prop5 and prop6 hold while prop3 and
prop4 do not hold.

Table 1 depicts the results. The second and third columns respectively corre-
spond to the results of the spatial version of Spin and the SLMC model checker.
Each row presents the respective running time (in seconds) achieved when check-
ing the properties described in section 2.4 in Promela and π-calculus models
of the deadlock solution to Dijkstra’s dining philosophers problem. For each
property we have tested instances of the problem with increasing number n of
philosophers. We restrict the results to two instances per problem with a limit
of 10 philosophers and a time limit of 30 minutes.

Table 1. Experimental results

Problem Spatial Spin SLMC
prop1, n = 9 0.56 3.60
prop1, n = 10 1.19 16.11
prop2, n = 5 5.08 0.45
prop2, n = 6 21.58 1.71
prop3, n = 8 0.13 32.41
prop3, n = 9 0.32 240.87
prop4, n = 3 0.04 0.14
prop4, n = 4 0.10 o.t.
prop5, n = 5 26.30 0.26
prop5, n = 6 740.37 1.08

We are currently investigating the reasons why the performance of both model
checkers drastically differ depending on the property checked. However, the fact
that Spin offers a better performance in some cases is encouraging because our
current implementation is limited to the basic algorithm. Additional experiments
show that Spin is much more efficient for exhaustive exploration of the model
as well as for deadlock detection.

5 Conclusion

We have proposed a spatial logic for the Spin model checker. The logic basi-
cally extends LTL with spatial connectors to quantify over the set of component

240 A. Lluch Lafuente

processes of a system and restrict a formula under such sets. In such a manner
we can express properties of that relate the behaviour of the components of the
system.

We have sketched a basic implementation that requires minimal changes in
the implementation of Spin. Next, we have discussed possible ways to reduce the
complexity introduced by the second order process quantifier. First, we defined
a set of structural axioms under which the satisfaction of spatial formula is
closed. Then, we identified a fragment of the logic that is preserved by some fair
subsystems, such that if we find out that such a formula does not hold for the
system restricted to the set of processes Q we can neglect checking φ for the fair
supersets of Q.

Last, we presented a set of comparative experiments with the spatial model
checker SLMC [23] which show that our basic algorithm offers a better perfor-
mance in some cases. This encourages us to implement the proposed improve-
ments and further study heuristics for an efficient verification of our logic.

In current work we are implementing our whole approach, analyzing its com-
plexity, investigating ways to rewrite formulae into equivalent ones that are more
easy to check, and studying trade-offs between the relaxation of the notion of
fair supersets and the reduction of preserved fragments in order to achieve good
performance. A good starting point could be to exploit classical results of com-
positional reasoning [24] and verification of infinite families of finite-state sys-
tems [22]. Potential directions of future research consists of extending the ap-
proach to systems with dynamic creation of processes or including first-order
predicates in the line of [9] such that also state observations are affected by
process restriction.

We also plan to analyze the application of state space reduction techniques
in our approach, with a special focus in those techniques implemented in Spin
and in extensions of it. For example, we would like to show whether partial
order reduction [25] can be soundly applicable and investigate how to exploit
the fact that in the calls to Spin some of the processes are inactive which means
that some interferences of transitions in the whole system can be guaranteed to
be absent in some subsystems. As another example, when the focus is on bug
finding, the directed model checking approach [26] can be used to accelerate the
search for errors and possibly provide shorter counterexamples. One can study
heuristics to decide the order in which to consider the assignment of subsets to
a variable such that errors are found faster.

References

1. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Reading,
Massachusetts (2004)

2. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.
International Journal on Software Tools for Technology Transfer 2(4) (2000)

Towards Model Checking Spatial Properties with SPIN 241

3. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Z.H.: Bandera: Extracting finite-state models from Java source code. In: 22nd
International Conference on Software Engineering (ICSE), IEEE Computer Society
Press, Los Alamitos (2000)

4. Varr D., ó.: Automated formal verification of visual modeling languages by model
checking. Software and System Modeling 3(2), 85–113 (2004)

5. Song, H., Compton, K.J.: Verifying π-calulus processes by promela translation.
Technical Report CSE-TR-472-03, University of Michigan (2003)

6. Wu, P.: Interpreting π-calculus with spin/promela. Technical report, Lab. for Com-
puter Science, Institute of Software, Chinese Academy of Sciences (2001)

7. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, Cambridge (1992)

8. Manna, Z., Pnueli, A.: The temporal logic of reactive systems. Springer, Heidelberg
(1991)

9. Reif, J., Sistla, A.P.: A multiprocess network logic with temporal and spatial modal-
ities. J. Comput. Syst. Sci. 30(1), 41–53 (1985)

10. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many
identical finite state processes. Inf. Comput. 81(1), 13–31 (1989)

11. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992)

12. Caires, L., Cardelli, L.: A spatial logic for concurrency (part II). In: Proceedings of
the 13th International Conference on Concurrency Theory, pp. 209–225. Springer,
Heidelberg (2002)

13. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2),
194–235 (2003)

14. Caires, L., Cardelli, L.: Behavioral and spatial observations in a logic for the π-
calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–87.
Springer, Heidelberg (2004)

15. Cardelli, L., Gordon, A.D.: Ambient logic. Mathematical Structures in Computer
Science (to appear)

16. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic
in Computer Science, pp. 55–74. IEEE Computer Society Press, Los Alamitos
(2002)

17. Cardelli, L., Gardner, P., Ghelli, G.: Manipulating trees with hidden labels. In:
Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS, vol. 2620, pp. 216–
232. Springer, Heidelberg (2003)

18. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)

19. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G., (ed.) Handbook of Graph Gram-
mars and Computing by Graph Transformation. World Scientific, pp. 313–400
(1997)

20. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115–138
(1971)

21. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420 (1999)

22. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

242 A. Lluch Lafuente

23. Vieira, H.: L.C.: The spatial logic model checker user’s manual. Technical Report
TR-DI/FCT/UNL-03/2004, Faculty of Science and Technology New University of
Lisbon (2004)

24. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking.
In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS,
vol. 1536, pp. 81–102. Springer, Heidelberg (1998)

25. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE.
IFIP Conference Proceedings, vol. 6, pp. 197–211. Chapman & Hall, Sydney, Aus-
tralia (1994)

26. Edelkamp, S., Leue, S., Lluch Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. STTT 5(2-3), 247–267 (2004)

Model Extraction for ARINC 653 Based
Avionics Software�

Pedro de la Cámara, Maŕıa del Mar Gallardo, and Pedro Merino

University of Málaga
Campus de Teatinos s/n,

29071, Málaga, Spain
{pedro.delacamara}@gmail.com, {gallardo,pedro}@lcc.uma.es

Abstract. One of the most exciting and promising approaches to ensure
the correctness of critical systems is software model checking, which con-
siders real code, written with standard programming languages like C.
One general technique to implement this approach is producing a reduced
model of the software in order to employ existing and efficient tools, like
spin. This paper presents the application of the technique to avionics
software constructed on top of an application interface (api) compliant
with the arinc 653 specification (apex), which is widely employed by
the manufacturers in the avionics industry. The paper uses techniques to
automatically extract promela models from C source code. These tech-
niques were previously developed by the authors. However, they are now
extended to deal with new problems, like real-time aspects and apex
scheduling. In order to close the extracted model during the verification,
we built a reusable apex-specific environment. This apex environment
models the execution engine (i.e. an apex compliant RTOS) that im-
plements apex services. Finally, this paper also contains a novel testing
method to ensure the correctness of this apex environment. This testing
method uses spin to execute official arinc 653 test cases.

Keywords: Model extraction, software model checking, avionics, apex,
Real Time.

1 Introduction

Application software for avionics, ranging from comfort and measurement soft-
ware to critical flying control systems, are currently implemented on top of a
shared network of processors following standard interfaces like arinc 653 (Avion-
ics Application Software Standard Interface) [1]. The applications share proces-
sors, memory and devices (sensors and input/output devices) and the whole
system requires specific scheduling methods with real time features. So the ver-
ification of this kind of system is a real trend for model checker practitioners.

It is well known that one major problem of model checking for non-expert engi-
neers is that the technique requires a deep understanding of both the modelling
� This work has been partially supported by the Spanish MEC under grants TIN2004-

7943-C04 and TIN 2005-09405-C02-01.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 243–262, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

244 P. de la Cámara, M.M. Gallardo, and P. Merino

and the property languages supported by the tools. Furthermore, the manual
construction process is susceptible to human errors due to misunderstandings or
plain programming bugs. This is one reason to start many projects that can gen-
erate suitable models with minimal human interaction (see Feaver [9], JPF1 [7]
and Bandera [4]). In [6] and [5], the authors develop a model extraction tech-
nique to deal with software built on top of well defined apis. The approach
was implemented for spin 4 (the same target as that of other related tools like
FeaVer or Bandera). In this paper, we extend and apply our method to verify C
applications running on top of apex. The main extensions to our previous work
consist in modelling time features and using conformance testing for checking
the correctness of our model.

Modelling and verification of avionics software is also described in [10]. The
problem of modelling real time in spin has been considered in [3]. Although, a
detailed comparison with these works is given in Section 8, we may summarize
the main contributions of this paper as follows:

1. The method to model timing events preserves the size of the state space
into the limits suitable for verification with spin, like [3]. In addition, our
approach can also benefit from abstract matching.

2. The approach in [10] is oriented to the verification of the operating system
(os), and not to the applications running on top of this os. We apply model
extraction techniques to applications (i.e. to its C source code) in order to
generate promela+C models. Then we close the extracted models with an
environment, which is in fact a model of an apex-compliant os. Finally we
apply Model Checking to the closed model.

3. Since the verification of the application depends on the correctness of the
environment (os model), we decided to automatically check its correctness.
To this end, we employ also spin to perform automatic testing, using the
arinc standard test cases [2]. It is important to notice that these test cases
are run only one time. Once the correctness of the environment is proven, it
can be reused with many application models.

The paper is organized as follows. The preliminary material in Section 2 sum-
marizes our general extraction approach to deal with software constructed on
top of well-defined apis [6]. Section 3 gives an overview of the apex api and the
partitioning scheme for avionics software. The main ideas of the model extrac-
tion approach are presented in Section 4 and the details of time modelling in
Section 5. Some experimental results that confirm the feasibility of the method
is given in Section 6. Section 7 shows the correctness of our approach through
testing. Sections 8 and 9 conclude with a more detailed comparison with related
works, and the conclusions, respectively.

2 Model Extraction with Well-Defined APIs

Existing approaches to verifying software by model extraction do not specifically
address the problem of how to model services provided by the operating system.

Model Extraction for ARINC 653 Based Avionics Software 245

They are suitable for source code that only contains library functions that can
be executed by the target model checker (see Feaver [7]). When the target model
checker cannot directly execute all the operating system calls, it is necessary to
add some extra hardness to complete the extracted models.

Clientsandservers(C code)

global vars

main()
{
Local vars

C block;
API call;
............
C block;
API call;

}

Functions

global vars

main()
{
Local vars

C block;
API call;
............
C block;
API call;

}

Functions

Additional C global vars;

proctype p1()
{
C global vars
C local vars;

C block;
API call;
............
C block;
API call;

}

proctype p2()
{

C block;
API call;
............
C block;
API call;

}

Clientsandservers(Pormelacode)

Fig. 1. Mapping scheme in SocketMC

In [6] we considered how to verify concurrent C applications that make exten-
sive use of os facilities through system calls. In our approach to model extraction,
we construct a spin oriented model of the behavior of some operating system
apis. This model is used to automatically obtain a correct abstraction of the soft-
ware that makes use of this api, for instance the Berkley-like Socket api. Follow-
ing [9], we defined a mapping from the original C code to extended promela.
Tool SocketMC automatically transforms each api call into promela. The
new promela model can be verified with standard spin.

As shown in Figure 1, mapping from the original code to promela is done
replacing every process (every main function) with a proctype definition. Then,
the body of every proctype is filled using the extensions for C code (c decl,
c state, c expr and c code). This is done breaking the C code at the points
where a call to api appears. The final promela code preserves the sequential
execution of every C block code between two system calls. Thus, when verifying
the model, spin interleaves blocks and system calls as atomic sentences.

By default, the promela models produced by our model extractor contain all
the C variables in the original code. Our method to produce abstract matching
functions, presented in [5], allows us to automatically reduce the set of variables
that should be actually managed to produce the state space. This optimization
is also considered for models extracted from apex based C applications.

This approach can be used for any kind of api, provided that the way of mod-
elling the api calls preserve their semantics. So, in order to verify C applications

246 P. de la Cámara, M.M. Gallardo, and P. Merino

Fig. 2. APEX Interface

written on top of apex, we only need to correctly model the services provided by
apex and reuse our model extraction tool SocketMC. The definition of such
api models is the aim of this paper.

3 The arinc api for Avionics Software: apex Interface

On-board avionics computing systems have evolved from federated specific com-
puter systems towards generic to modular and integrated computers, like the
Integrated Modular Avionics (ima). Most of the federated computers perform
basically the same functions (input, processing, and output). A natural way of
optimizing resources is to adopt a modular approach: to identify common parts,
to standardize interfaces and to encapsulate services. Then, the next step is to
share the hardware and software resources by integrating several functions on
the same execution platform.

To enable multiple applications to be executed on the same computation re-
source, while avoiding error propagation, a robust isolation mechanism is used.
Isolation is achieved by means of spatial and temporal partitioning, i.e., seg-
regation of memory and time slots allocated to various application parts (or
partitions) by means of software and hardware mechanisms.

The Operating System (os) offers the basic and common services for all appli-
cations such as load, scheduling, and communication, through a well-defined api
conforming to the arinc 653 specification called apex. We now briefly describe
the main characteristics of apex (see [1] for a more detailed description).

Partitioning.- One purpose of a core module in an ima system is to support
one or more avionics applications and to allow their independent execution. This
can be correctly achieved if the system provides partitioning, i.e., a functional
separation of the avionics applications, usually for fault containment (to prevent
any partitioned function from causing a failure in another partitioned function)
and for ease of verification, validation and certification. A partition is basically
the same as a program in a single application environment: it comprises data, its

Model Extraction for ARINC 653 Based Avionics Software 247

Fig. 3. Process Time Capacity

own context, configuration attributes, etc. For large applications, the concept of
multiple partitions relating to a single application is recognized.

apex Interface.- As Figure 2 shows, interface apex is located between the
application software and the os. It defines a set of facilities provided by the sys-
tem for application software to control the scheduling, communication, and the
status information of its internal processing elements. apex also provides a com-
mon logical environment for the application software that enables independently-
produced applications to execute together on the same hardware.

Scheduling.-Specification differences between partition scheduling and process
scheduling. Scheduling of partitions is strictly deterministic over time. The Sys-
tem Integrator assigns one or more time windows to each partition. This is done
in the fixed configuration within the core module. The scheduling algorithm runs
repetitively with a fixed periodicity. Partitions have no priority by themselves.
The scheduling unit is an apex process. Each process has a priority. The schedul-
ing algorithm is priority preemptive. During any process rescheduling event, the
os always selects the highest priority process in the ready state within the par-
tition to receive processor resources. If several processes have the same current
priority, the os selects the oldest one.

Time Management.- As Figure 3 shows, a time capacity is associated with each
process, and represents the response time given to the process for satisfying its
processing requirements. When a process is started, its deadline is set to the
value of the current time plus the time capacity. This deadline time may be
postponed by means of service REPLENISH. This capacity is an absolute duration
of time, not an execution time. This means that a deadline overrun will occur
even when the process is not running inside or outside the partition window, but
will be acted upon only inside a partition window of its own partition.

Interpartition and Intrapartition communication.- Interpartition communica-
tion is defined as the communication among two or more partitions executing
either on the same module or on different modules. It may also mean communi-
cation between apex partitions and external equipment. Interpartition commu-
nication is conducted via messages. Intrapartition communication mechanisms

248 P. de la Cámara, M.M. Gallardo, and P. Merino

allow processes to communicate and synchronize with each other. All intraparti-
tion message passing mechanisms must ensure atomic message access.

Table 1. Modelled services

Service Behaviour
GET PROCESS ID provides a process identifier
GET PROCESS STATUS returns the current status of the specified process. The current

status of each process in a partition is available to all processes
within that partition.

CREATE PROCESS creates a new process and returns its identifier. Partitions
can create as many processes as the pre-allocated memory
space supports. The consistency among process and
partition parameters is checked. Assigning INFINITE TIME VALUE
to PERIOD and TIME CAPACITY defines an aperiodic process
and a process without DEADLINE, respectively.

SET PRIORITY changes the current process’ priority. The process is placed as the newest
process with that priority in the ready state. Process rescheduling
is performed after this service request only when the process
whose priority is changed is in the ready or running state.

SUSPEND SELF suspends the execution of the current process, if it is aperiodic,
until the RESUME service request is issued or the specified time-out
value expires.

RESUME resumes another previously suspended process. The resumed process
will become ready if it is not waiting on a resource (delay, semaphore,
period, event, message). A periodic process cannot be suspended,
so it cannot be resumed.

STOP makes a process ineligible for processor resources until another
process issues START.

START initializes all attributes of a process to their default values,
and resets the runtime stack of the process. If the partition is in
NORMAL mode, the process’ deadline expiration time and the next release
point are calculated.

GET MY ID returns the identifier of the current process.
GET PARTITION STATUS provides the status of the current partition.
SET PARTITION MODE sets the operating mode of the current partition to normal

after initialization of the partition is completed. The service is also
used to set the partition back to idle (partition shutdown), and to cold
start or warm start (partition restart), when a serious fault
is detected and processed.

TIMED WAIT suspends execution of the requesting process for a minimum
amount of elapsed time. Value zero allows the round robin scheduling
of processes with the same priority.

PERIODIC WAIT suspends the execution of the requesting process until the next release
point in the processor time line that corresponds to the period
of the process.

GET TIME returns the value of the system clock. The system clock is
the value of a clock common to all processors in the module.

REPLENISH updates the deadline of the requesting process with a specified
BUDGET TIME value. It is not allowed to postpone a periodic process
deadline past its next release point.

4 Modelling Processes

Following the approach described in [6], our promela model is composed of
several application processes, extracted from the application C source code, and
an environment that closes the model. During the extraction, the api calls in the
original source code are translated into calls to the environment. Consequently,

Model Extraction for ARINC 653 Based Avionics Software 249

the environment is the process that provides the apex services to the application
processes, and that stores all the state information needed as global data.

We have not modelled every apex service or functionality. As a first step, we
have focussed on what, in our opinion, is the most critical aspect to be modelled
in spin, that is, the apex Time Management. Table 1 above shows services
modelled with a brief description of their behaviour.

Since the present paper focuses on modelling apex Time Management, and
several apex features and services are not implemented in this first phase, the
following limitations have been imposed: only one partition is allowed, processes
cannot be restarted after being stopped, partitions cannot be restarted, error
handler, and Health Monitoring and recovering actions are not supported.

4.1 Modelling the Process Scheduling

Applications running on apex are composed of processes. Processes are sched-
uled according to the following apex process scheduling rules: 1) the scheduling
unit is an apex process, 2) each process has a priority, 3) the scheduling algo-
rithm is priority preemptive, 4) during any process rescheduling event, the os
always selects the highest priority process in the ready state, and 5) if several
processes have the same current priority, the os selects the oldest one.

In our model, scheduling is included in the environment and ensures that, in
every state, only one promela process is executable by spin. Scheduling also
ensures that the apex scheduling rules are followed when selecting a process for
processor resources.

Modelling preemption without state explosion. The first issue of mod-
elling apex scheduling comes from the process preemption requirement. apex
specification states that a process may be preempted whenever a re-scheduling
event takes place (for instance, when a higher-priority process is resumed after
a timeout expiration). Implementing this requirement increases the complexity
of the resulting model, which may lead to state explosion during verification.

To solve this problem, we divide the source code into code blocks and apex api
calls, as introduced in [6] (see Figure 1). Code blocks operate only at local scope
(i.e. read and write local variables). api calls operate at global scope (i.e. read or
write global variables). Notice that application processes can only communicate
with other processes or with the environment through api calls.

From the model checking point of view, code blocks perform non-visible local
actions, that neither affect other processes nor the environment. Thus, when
a process is executing a code block, it does not matter in which code point
it is preempted. Therefore we may merge all the sentences of a code block in
an atomic block, allowing processes to be preemptable only before or after the
execution of a code block. The idea of merging local sentences is well known,
and it has already used in [6].

api calls behave differently. They use global information and have global ef-
fects but, since they are already executed atomically in the real system, it is also
correct setting them as atomic in the model.

250 P. de la Cámara, M.M. Gallardo, and P. Merino

Controlling process execution. The second important issue when modelling
the apex scheduling is to ensure that the scheduling rules are fulfilled. Scheduling
must be able to stop the execution of a process and resume another one. To
do this, we use a provided() sentence in each promela proctype declaration.
Sentence provided() appends an executability clause to every transition of that
process, disabling its execution when it is false. For example, global variable
curSchProc in clause “proctype p1() provided (curSchProc == pid)” stores
the pid of the process currently in execution. Thus, sentence provided() is only
true for the process whose pid matches curSchProc. Thus, the scheduler can
control the execution of processes by modifying the Pid stored in the variable.

Storing process attributes. Scheduler must keep information about the at-
tributes of each process to correctly realize the context switch. These data are
stored as C-structures in the environment, using the embedded-C primitives
provided by spin 4. Attributes may be static, if their value does not change, or
dynamic. Process attributes are shown in Table 2 below.

Due to optimization reasons, only dynamic attributes are included in the
spin state-vector. Static attributes are marked as Tracked UnMatched data (see
references [6], [5] and [8]). Hiding these data during the comparison of states
(Matching) does not discard any significant behaviour, since static attributes are
written only once, during the partition initialization phase, when the process is
created and the initialization phase is completely deterministic.

Table 2. Process attributes

Static Attributes
Name
Base priority Initial priority
Period
Time capacity the amount of time in which the process must finish

its work (it is used to calculate the process deadline)
type of deadline it can be HARD or SOFT

Dynamic Attributes
Current priority
Deadline Absolute time when time budged will expire.
State apex state of the process: WAITING, RUNNING, DORMANT, READY.
Waiting cause Reason why a process is WAITING (e.g. for a resource).
Position in queue If the process is WAITING or READY, position in the queue

of processes waiting for the same cause.
This attribute is used when there are several candidates
to be awaked/run and the scheduler must choose the oldest one.

Resource If the process is waiting for a resource, this is its identifier
(e.g. a communication port).

Timeout If the process was suspended with timeout,
absolute time when the process will be resumed.

Time wait If the process called TIMED WAIT,
absolute time when the process will continue its execution.

Model Extraction for ARINC 653 Based Avionics Software 251

Calling the scheduling functionality. Scheduler is called when the so-called
re-scheduling events occur. Re-scheduling events are triggered when a change
in the environment may modify the executability of one process. Examples of
these events are api calls (e.g. SET PROCESS PRIORITY and SUSPEND SELF), time
events (e.g. deadline or timeout expiration), the reception of messages in ports,
and intra-partition communication (events up, signaling of semaphores, etc.)

5 Modelling Time

The apex time management model is based on the notion of time events. In
respect to model checking with spin, a time event is a global event, triggered by
the environment, and associated to a point in the timeline.

The time event concept is related to the classic “tick” signal used in other
real-time models. A “tick” signal usually indicates that certain amount of time
has elapsed. It is used to interrupt the execution of the model, and to allow the
increment or decrement of a time counter. In some cases, increasing/decreasing
is not the only action. Other actions, such as awakening a process or notifying a
deadline violation, are also carried out as a response to this “tick”. In contrast to
these signals, time events are only triggered when other actions must be taken.
In other words, a time event is a special “tick” signal that is only triggered if its
effect on the model goes beyond increasing/decreasing a time counter.

Our time management model includes a system clock that keeps track of the
time flux, and that is updated by time events. That means that the system clock
is only updated when a time-related event takes place. If a monitor process
observed the system clock during an execution sequence, it would notice that
the clock keeps the same value for long time and then, after a time event takes
place, it jumps to a new value. The most important issue is that the size of the
jump is completely dependant on the time event, and on the behavior of model
itself. It is worth noting that, in terms of model checking, this approach causes
a state-space reduction by avoiding “tick” signals that interrupt the model only
to update time counters.

5.1 Life-Cycle of Time Events

Time events may be armed statically, before starting verification, or dynamically
by the environment during execution of the model. The typical life cycle of a
time event is as follows:

– An application process calls an apex service (e.g. TIMED WAIT(500ms)).
– The environment (i.e. the apex os) takes control and suspends the calling

process. Then it arms a Waiting Timeout time event that will be triggered
500ms in the future.

– The environment returns the execution to another ready application process.
– Eventually (i.e. 500ms in the future), the environment will trigger the time

event. Then execution of the running process will be interrupted, so that the
environment can awake the suspended process.

252 P. de la Cámara, M.M. Gallardo, and P. Merino

– Finally, the environment updates the system clock in 500ms, removes the
time event, and returns execution to the appropriate application process.

5.2 Implementing and Using Time Events

Regarding the implementation details in spin, the environment keeps a list with
all the armed time events as a global state variable. The impact of the list in the
state-vector size is not remarkable, since it is optimized for memory saving.

Time events may be used in different ways, depending on how they are armed
and triggered. In this project, we have explored two ways of modelling apex
time management in spin. They are called Time Management Types and each
one corresponds to a different modelling requirement. Time Management Type
1 (tmt1) is used for modelling applications when the execution times of the
application code are unknown. Time Management Type 2 (tmt2) is a refinement
of tmt1 taking these execution times into account.

Time Management Type 1: Execution times are not used. In the early
stages of software development for industrial processes, execution times are often
not available. However, in these first phases, verification by model checking can
be very useful as a mean of discarding design errors. Even if execution times
are unknown, the piece of software under analysis may already include in the
code some time values (inherited from the requirement or design phases). tmt1
provides a model of the environment capable to interpret these time values, but
without using specific execution times.

tmt1 makes an over-approximation of the model assuming that the execution
of each application code block may take a variable amount of time ranging from
0 to infinite time units, but only at those time points where a time event is
triggered. Evidently, this over-approximation produces execution traces that will
never happen in real execution.

This over-approximation is implemented by the process TimeEventTrigger,
whose code appears below. This process is in charge of triggering time events
and runs parallel to the application processes.

proctype TimeEventTrigger () {
do \
:: (1) ->c_code {ma_Tempus_Fugit();} \
od;

}

Process TimeEventTrigger contains an infinite loop with a call to the envi-
ronment function ma Tempus Fugit that triggers time events, and updates the
system clock. Since TimeEventTrigger may always be executed, every transi-
tion of the model may non-deterministically choose to execute either an atomic
application code block (whenever there exists at least one enabled process), or
the TimeEventTrigger sentence Tempus Fugit.

We now describe the possible execution sequences produced by spin when
the application code blocks and process TimeEventTrigger are interleaved. In
the discussion, we denote with A0, A1, . . . , Ak the application code blocks of the

Model Extraction for ARINC 653 Based Avionics Software 253

model under analysis, et(Ai)(0 ≤ i ≤ k) being their respective execution times.
Similarly, we assume that T0, T1, · · · are the sucessive TimeEventTrigger tran-
sitions, and that tp(Ti) is the time point associated to the time event triggered
in Ti. We use → to represent the order in which transitions are executed in a
given sequence of transitions. It is important to remember that the system clock
is only updated during the time event triggering which, in this case, means that
it is only updated by Tempus Fugit.

Starting with one TimeEventTrigger transition T0, spin explores all the fol-
lowing execution sequences:

– T0 → A0 → A1 → · · · , that is, no TimeEventTrigger transition takes place.
Then, the system clock remains unchanged, and therefore, et(A0)+et(A1)+
· · · = 0.

– T0 → A0 → · · · An → T1 → · · · , that is some application code blocks
are executed between T0 and T1. After T1 is triggered, the system clock is
updated, and therefore, et(A0) + · · · + et(An) = tp(T1) − tp(T0).

– T0 → T1 → A0 → · · · , that is, the first block A0 is executed after T1. This
sequence models the behavior where et(A0) > tp(T1) − tp(T0). It can also
represent a behavior where execution of A0 is disabled until the time event
T1 is triggered.

– T0 → T1 → T2 → · · · , that is, no application code block is executed. This
sequence models the behavior where et(A0) is infinite. It can also represent
a behavior where execution of A0 is indefinitely disabled.

tmt1 can be used to verify properties related to the ordering of execution of
application code blocks (Ai) and TimeEventTrigger transitions (Ti). This in-
cludes all non-real-time temporal properties usually checked in spin. In addition,
tmt1 can only deal with some of the properties involving real time values. For
example, the existential property “Process P1 is able to do its work before its
deadline” can be checked. spin will try to find an execution in which P1 is able
to finish successfully. However, property “Process P1 shall always do its work
before its deadline” cannot be proven because it will always be violated by the
execution sequence where one code block has an infinite execution time.

Time Management Type 2: Execution Times are used. The Time Man-
agement Type 2 refines tmt1 by adding information about the execution times
of the application processes. tmt2 assigns a fixed execution time to each code
block. These times may be real data, estimations or even purely hypothetical
values.

In a real system, a time event may happen at any time as, for instance, during
the execution of a code block. However, code blocks are modelled as atomic
sentences, and therefore, their execution cannot be interrupted. But this is not a
problem, since, by definition, code blocks only perform local computation, with
no visible effects on other processes, and it does not matter whether a time event
is triggered during or just before a code block, as it does not influence the whole
behavior of the model.

254 P. de la Cámara, M.M. Gallardo, and P. Merino

The strategy of tmt2 is to delay the execution of a code block until it can
be executed without being interrupted by time events. Whenever a code block
is delayed, its remaining execution time is decreased in an amount equal to the
delay. This is because the model considers that, in the real system, the code
block would be partially executed. Eventually, when the remaining execution
time is so short that no time event can interrupt the code block, the actual code
block will be executed.

A special time control logic, which is considered part of the environment,
is added at the beginning of each code block. Both the whole code block and
time control logic are included in an atomic sentence. The following example
illustrates the way time control logic works.

1 CP1:
2 Atomic { /* Init of Time Control Logic of Block 1 */
3 if RemainingExecTime(_pid) = 0 then
5 RemainingExecTime(_pid) = CP1_EXEC_TIME;
6 end if
6 if ((T_NextTimeEvent - CurrentTime) < RemainingExecTime(_pid) then
/* Partial code block execution */
7 RemainingExecTime(_pid) = RemainingExecTime(_pid) - (T_NextTimeEvent - CurrentTime);
8 CurrentTime = T_NextTimeEvent;
9 Trigger Time Event;
10 goto CP1;
11 else /* Complete code block execution */
8 CurrentTime = CurrentTime + RemainingExecTime(_pid);
9 RemainingExecTime(_pid) = 0;
11 end if
/* End of Time Control Logic of Block 1 */

///
APPLICATION CODE BLOCK

///
12 }

Firstly, the time control logic stores the fixed execution time for the code
block into the global variable RemainingExecTime, which is specifically assigned
to the corresponding process. This variable is only updated when its value is
zero.

Then, the time to the next armed time event is calculated, and if it is pos-
sible to completely execute the code block before the next time event is trig-
gered, variable RemainingExecTime is set back to zero, and the system clock
is increased in the same amount. In other words, the elapsed time is equal to
RemainingExecTime. After setting the system clock, the code block is executed
as usual.

Otherwise, if the block code cannot be completely executed, the difference be-
tween the next time event and the current system clock time is calculated. This
value, that represents the time elapsed during which the code block has been
partially executed, is subtracted from RemainingExecTime. Just after that, the
time event is triggered, and the process jumps back outside the atomic block.
Notice that, as a result of the triggered time event, the process may be disabled.
Eventually, when the process runs again, it will try to execute the same code
block, performing a new iteration of the time control logic. Since this time vari-
able RemainingExecTime is not zero, its value is not updated. This iteration
goes on until the code block can be completely executed.

Model Extraction for ARINC 653 Based Avionics Software 255

This implementation also includes process TimeEventTrigger, whose code
appears below, and that uses the timeout promela sentence to trigger time
events when the rest of processes are blocked.

proctype TimeEventTrigger () {
do \
:: (timeout) ->c_code {ma_Tempus_Fugit();} \
od;

}

In summary, if an execution event is a fictitious event that occurs when a
code block finalizes its execution, it is possible to state that tmt2 preserves the
ordering of time events and execution events.

However, a question still remains. What happens with the api service calls
which are not completely local? The answer is that in a real system, a time event
cannot interrupt api calls. The concrete effects of a time event (for example, a
DEADLINE) triggered during an api call are mostly implementation dependant.
Usually, the effects can be seen after the process returns from the call. In our
model, api calls are delayed until all the interrupting time events are triggered.

6 Experimental Results

We now present an example to evaluate our apex environment. The application
code has been instrumented in such a way that spin generates one execution
trace for each possible execution sequence. By analyzing the traces, we may
understand the order in which sentences were executed during verification, and
the time when it happened (measured with the modelled system clock). We have
used Time Management Type 1.

The example consists of one process P1 with the following behaviour. Process
P1 obtains its own identifier (GET MY ID), modifies its own priority (SET PRIORITY)
four times and enters the waiting state (TIMED WAIT) for 500 time units. After
awaking, it reads the system clock (GET TIME) and stops itself (STOP SELF). The
complete code is shown in Appendix A. Process init is shown below.

init{ atomic {
c_code { MODEL_A653_Init(); };
c_code{

strcpy (a_att.NAME, "p1");
a_att.STACK_SIZE = 200;
a_att.BASE_PRIORITY = 30;
a_att.PERIOD = INFINITE_TIME_VALUE;
a_att.TIME_CAPACITY= 5000;
a_att.DEADLINE = SOFT; };

A653_CREATE_PROCESS(&a_att, &a_proc, &a_return,p1);
A653_START(a_proc,&a_return);
A653_SET_PARTITION_MODE(NORMAL,&a_return);
run clock();

}; };

It creates P1 (CREATE PROCESS), starts it (START) and begins the normal process
scheduling by setting the partition in NORMAL mode (SET PARTITION MODE). Since
P1 has a time capacity of 5000 time units, its deadline shall be set 5000 time

256 P. de la Cámara, M.M. Gallardo, and P. Merino

units. For this example, we modelled a minimal Health Monitoring functionality
that stops process P1 when its deadline is reached.

As described in Section 5.2, Time Management Type 1 makes use of process
TimeEventTrigger to trigger time events. In order to explore every possible
sequence of time events and application code-blocks, Time Management Type 1
takes advantage of the non-deterministic interleaving between this process and
the application processes. In particular, the instrumentation code added to this
example generates 10 traces, one for each possible execution sequence. We now
discuss them in detail.

Trace 1
Time Process Executed Description

0 TimeEventTrigger Next time event t = 5000
5000 DEADLINE

In this trace, TimeEventTrigger runs before P1 and triggers the P1-DEADLINE

time event. In consequence, the execution is stopped before P1 can run. In a real
system, this behavior takes place if the execution time of the first code-block of
P1 takes more than 5000 time units.

Traces 2-6
The second trace corresponds to the scenario where P1 is able to execute sentence
(GET MY ID) before its deadline is triggered. Note that after the execution of
GET MY ID, the system time has not advanced.

Time Process Executed Description
0 P1 CP11: GET MY ID
0 TimeEventTrigger Next time event t = 5000

5000 DEADLINE

The next four traces are similar to the previous one. In each of then, P1 is able
to execute one additional sentence SET PRIORITY before the deadline is triggered.

Traces 7-10
Time Process Executed Description

0 P1 CP11: GET MY ID
0 P1 CP12: SET PRIORITY
0 P1 CP13: SET PRIORITY
0 P1 CP14: SET PRIORITY
0 P1 CP15: SET PRIORITY
0 P1 CP15: TIMED WAIT
0 TimeEventTrigger Next time event t = 500

500 Awake P1
500 TimeEventTrigger Next time event t = 5000
5000 DEADLINE

In the seventh trace, P1 enters a waiting state for 500 time units. A time
event is armed at t = 500 and, since no other process is executing, it is triggered.

Model Extraction for ARINC 653 Based Avionics Software 257

Finally, the deadline of P1 is triggered. The last three traces show how P1 contin-
ues its execution after TIMED WAIT. The last trace represents the behavior where
the execution of P1 is so fast that its deadline is not triggered. spin reached
depth 30, with state-vector of 228 bytes (107 bytes to store the environment
state.) The example confirms that Time Management Type 1 can be used as an
over-approximation when there is no information about execution times.

7 Testing the Model of the API

In a real system, application processes use the os services described in the speci-
fication arinc 653 Part 1 [1]. In the verification model, applications call services
provided by the verification environment. To ensure the correctness of the verifi-
cation, the behavior of the environment services must match the real os services.
As a first step to establish the soundness of the model proposed here, we have
carried out an exhaustive testing campaign. The procedure consists in running
a battery of Test Cases, written in promela+C code, which call every imple-
mented service in every possible condition. Each Test Case provides a fail/pass
verdict, depending on the behavior of the services called.

Test Cases are defined considering the arinc 653 Part 3 “Conformity Test
Specification” document [2]. This specification gives a description in natural lan-
guage of an apex conformity test-battery. In other words, this battery checks if
the apex services provided by an os are conformed to the arinc 653 Part 1 spec-
ification. In consequence, it can also be used to check if the services implemented
in our environment are also conformant.

Test Cases are classified into functional and robustness tests. Functional tests
check that the service works in normal use conditions. Robustness tests check
how the service works in abnormal conditions (e.g. it returns the appropriate
error codes). The result is a complete conformance test suite. Our work firstly
consisted in selecting the test definitions applicable to the current services im-
plemented in the environment. Then we built the promela-C Test Cases and
finally we checked that no Test Case returned a fail verdict. The execution of the
test cases and the promela model of apex is done with the validation facilities
of spin. Due to space restrictions, we cannot describe in detail the codes for Test
Cases developed. As an example, Appendix B shows the Test Case checking the
SET PRIORITY service when the PROCESS ID input parameter is not valid.

It is worth noting that during testing we have used Time Management Type 2
because we are assuming a deterministic evolution of time.

8 Related Work

Since this paper focuses mainly on modelling the time management aspects of
apex, in this section, we have concentrated on the previous references which
have modelled real-time in spin.

The proposal presented in [10] shows how to verify a microkernel used in the
avionics industry, by constructing a promela model of the Honeywell DEOS

258 P. de la Cámara, M.M. Gallardo, and P. Merino

operating system. In order to close the os model, all the possible interactions
between the DEOS model and the external world are modelled inside the en-
vironment. Basically, this environment includes threads requiring services from
the os and time-related interruption sources. Our work has the opposite goal.
We aim at verifying avionics applications which access os services through the
apex interface. In our case, we semi-automatically extract promela models
from applications source code (see [6]). In order to close the application model,
we need to use an environment able to provide apex services to the applications.

In the DEOS environment, one message is periodically generated to indicate
that a higher priority thread may become schedulable. After receiving this mes-
sage, the kernel checks if the current running process must be pre-empted by
the higher priority thread. In our case, since the environment is the os, and the
threads are the applications to be verified, whenever a higher priority process
becomes schedulable, the environment, that is the os, disables the execution of
the low-priority processes and enables the high-priority one.

The DEOS environment has two time-related interruption sources. The first
one periodically interrupts the kernel, in order to check if a higher priority has
become schedulable. The second one interrupts the kernel whenever the running
process exhausts its time budget. The DEOS environment combines both in-
terruptions in one process, in order to coordinate them and avoid “impossible”
behaviours. Similarly, our environment includes a TimeEventGenerator process
that may be seen as the combination of every time-related interruption source
applicable on apex (waiting timeout expiration, time budget expiration, etc.)
However, instead of ticks, our TimeEventGenerator triggers time events. Each
time events has an associated time point. The environment is able to know the
current system time, just by reading the time point value of the last time event
triggered. This feature allows our environment to provide the system time to
the applications. Since both the environment and the applications are aware of
system time, it is possible to use timing values in the properties to be verified
(i.e. in LTL formulae).

The work presented in [3] is a time extension for promela. The principles
explained in that work are generic and may be applicable to different modelling
problems. In our case, we aim at modelling the time management as described
in the apex specification. The context of our approach is automatic model ex-
traction of avionics applications and apex environment modelling. That means
that we are in the position of using modelling techniques specially tailored for
this context. On the other hand, some of the techniques and assumptions made
may not be applicable to other modelling problems.

In the discrete time model of [3], time is divided into slices. The actions take
place inside these slices, making it possible to obtain a measure for the time
elapsed between events belonging to different slices. However, within a slice,
only the relative ordering between events is known. The time elapsed between
events is measured in ticks of a global digital clock that is increased by one
with every such tick. In our case, a time slice may be considered as the time
elapsed between two consecutive time events. The main difference is that the

Model Extraction for ARINC 653 Based Avionics Software 259

time slice size is always variable and depends on model behavior. Furthermore,
time events may only happen between two atomic blocks of application codes.
Another significant difference is that we have identified two different use scenar-
ios, depending on whether the execution time of application code blocks is known
or not. If execution time is not known, the environment assumes the worst case
over-approximation, that is, the execution time of each code block may be any
value from 0 to infinite. In practice, this means that between two time events, a
process can execute a non-deterministic number of code blocks, unless it makes
an api call involving waiting for an event (TIMED WAIT, etc.).

In principle, as in [3], only the relative ordering between events is known
within a slice. However, if the execution time of code blocks is known, the envi-
ronment making it possible to know the absolute time in which a block of code
was executed. One important point of the work [3] is that it is compatible with
spin partial order reduction algorithm (POR). This is not our case, since we use
the promela the provide sentence which is incompatible with POR. However,
this is not a big performance issue for our model, since the main objective of
POR is to reduce the state explosion caused by non-deterministic process in-
terleaving. Due to the way in which apex processes are scheduled, this kind of
state explosion rarely appears during verification.

Another related development is the RT-Spin package of [11]. RT-Spin extends
promela in order to deal with Real Time. This is the main difference with our
work, since we rely on standard promela.

Finally, another main difference with the works referred to above is that most
of the environment is implemented in C code. This is done using the embedded
C capabilities of spin 4. The embedded C code allows us to use data abstraction
techniques, as those explained in [5].

9 Conclusions

The first and most important conclusion of this work is that verification of apex-
based avionics applications is feasible with spin. We have proven that spin is able
to model apex-like Real-Time management in a correct and efficient manner, if
the right methods and assumptions are used. Our past experience in modelling
apis ([6], [5]). tells us that other features of apex (e.g. inter-partition communi-
cation, process synchronization, etc) can also be modelled in spin. Actually, we
are extending SocketMC to obtain a more generic model extractor that allows
us to automatically verify apex based applications.

The second conclusion is that verification methods and assumptions must be
adapted to each use-scenario. In our case, if application execution times are not
known before the verification, then we must use methods and assumptions that
cope with this incertitude (i.e. Time Management Type 1). On the other hand,
when execution times become available, we must refine the verification using
more accurate methods and assumptions (i.e. Time Management Type 2).

In respect to future work, we have several parallel lines of study. First, we plan
to expand the set of modelled apex services. The next step will be to include

260 P. de la Cámara, M.M. Gallardo, and P. Merino

inter-partition and intra-partition communication services. These new services
will be integrated in the ongoing extension of SocketMC[6].

We also want to improve the approach by using memory optimization methods
based on data abstraction [5]. We have detected that in some use-scenarios,
the execution times are known, but with some degree of incertitude. For these
scenarios we want to build a Hybrid Time Management, where execution times
are non-deterministically chosen among a limited set of values.

Finally, we realize that apex static configuration (e.g. ports, partitions, time-
schedule, etc.) must also be incorporated into the verification model. For this
purpose, we plan to enable our environment to read external static configuration
information. In the long term, we want to be able to parse apex configuration
XML files and translate them into a spin-friendly configuration.

References

1. ARINC. ARINC Specification 653-2: Avionics Application Software Standard In-
terface Part 1 - Required Services. Aeronautical Radio INC, Maryland, USA (2005)

2. ARINC. ARINC Specification 653-2: Avionics Application Software Standard In-
terface Part 3 - Conformity Test Specification. Aeronautical Radio INC, Maryland,
USA (2006)

3. Bosnacki, D., Dams, D.: Integrating Real Time into SPIN: A Prototype Imple-
mentation. In: Proc. of the FIP TC6 WG6.1 Joint Int. Conf. FORTE XI / PSTV
XVIII ’98, pp. 423–438. Kluwer, B.V, Boston, MA (1998)

4. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S.: Bandera:
Extracting finite-state models from java source code. In: ICSE ’00: Proc.of the 22nd
Int. Conf. on Software Engineering, pp. 439–448. ACM Press, New York (2000)

5. de la Cámara, P., Gallardo, M.M., Merino, P.: Abstract matching for software
model checking. In: Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925,
pp. 182–200. Springer, Heidelberg (2006)

6. de la Cámara, P., Gallardo, M.M., Merino, P., Sanán, D.: Model checking software
with well-defined apis: the socket case. In: FMICS ’05: Proc. of the 10th Int. Work-
shop on Formal methods for Industrial Critical Systems, pp. 17–26. ACM Press,
New York (2005)

7. Havelund, K., Pressburger, T.: Model Checking Java Programs using Java
Pathfinder. International Journal of Software Tools for Technology Transfer 2(4),
366–381 (2000)

8. Holzmann, G.J., Joshi, R.: Model-driven Software Verification. In: 11th Int. Work-
shop on Model Checking of Software (SPIN04), pp. 76–91 (2004)

9. Holzmann, G.J., Smith, M.H.: Software model checking: Extracting Verification
Models from Source Code. Software Testing, Verification & Reliability 11(2), 65–
79 (2001)

10. John Penix, W., Visser, E., Engstrom, A.: Verification of Time Partitioning in
the DEOS Scheduler Kernel. In: ICSE ’00: Proceedings of the 22nd Int. Conf. on
Software Engineering, pp. 488–497. ACM Press, New York (2000)

11. Tripakis, S., Courcoubetis, C.: Extending Promela and Spin for Real Time. In: Mar-
garia, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 329–348. Springer,
Heidelberg (1996)

Model Extraction for ARINC 653 Based Avionics Software 261

A Code of the Example

c_state "PROCESS_ID_TYPE apid" "Local p1"
c_state "RETURN_CODE_TYPE ret" "Local p1"
c_state "SYSTEM_TIME_TYPE time" "Local p1"
proctype p1 () provided (_curSchProc == _pid)
{ CP11:

atomic {
TRACE(11);
A653_GET_MY_ID(&(Pp1->apid),&(Pp1->ret),Pp1->_pid);}

CP12:
atomic {

TRACE(12);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret)); }

CP13:
atomic {

TRACE(13);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret));}

CP14:
atomic {

TRACE(14);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret));}

CP15:
atomic {

TRACE(15);
A653_SET_PRIORITY(Pp1->apid,34,&(Pp1->ret)); }

CP16:
atomic {

TRACE(16);
A653_TIMED_WAIT(500,&(Pp1->ret),Pp1->_pid);}

CP17:
atomic {

TRACE(17);
A653_GET_TIME(&(Pp1->time),&(Pp1->ret));
c_code{

printf("Time = %u \n",Pp1->time);
}; }

CP18:
atomic {

TRACE(18);
A653_STOP_SELF(Pp1->_pid);}

} }

B Test Case Checking SET PRIORITY

//P1
proctype P1 () provided (_curSchProc == _pid) {

...
}

//Master Test

c_state "RETURN_CODE_TYPE ret" "Local Master_Test"

proctype Master_Test () provided (_curSchProc == _pid) {

// Invalid Process Id
atomic {

A653_SET_PRIORITY(INVALID_PROCESS_ID, HIGH_PROCESS_PRIORITY, &(PMaster_Test->ret));
}

// Expected RETURN_CODE == INVALID_PARAM
atomic {

c_code{
if (PMaster_Test->ret == INVALID_PARAM)

262 P. de la Cámara, M.M. Gallardo, and P. Merino

{
printf("T-API-PROC-0340:0010 =PASS\n");

} else
{

printf("T-API-PROC-0340:0010 =FAIL\n");
}

assert(go);
}

}
atomic {

A653_STOP_SELF(PMaster_Test->_pid);
}

}

//Init:

c_code {
PROCESS_ATTRIBUTE_TYPE a_att;
PROCESS_ID_TYPE a_proc;
RETURN_CODE_TYPE a_return;

};
c_track "&a_att" "sizeof(PROCESS_ATTRIBUTE_TYPE)" "Matched"
c_track "&a_proc" "sizeof(PROCESS_ID_TYPE)" "Matched"
c_track "&a_return" "sizeof(RETURN_CODE_TYPE)" "Matched"

init{ atomic {

// Init Model
c_code {

MODEL_A653_Init();
};

// Create & Start Master_Test
c_code{

strcpy (a_att.NAME, "Master_Test");
a_att.STACK_SIZE = 200;
a_att.BASE_PRIORITY = REGULAR_MASTER_PROCESS_PRIORITY;
a_att.PERIOD = INFINITE_TIME_VALUE;
a_att.TIME_CAPACITY= INFINITE_TIME_VALUE;
a_att.DEADLINE = HARD;

};
A653_CREATE_PROCESS(&a_att, &a_proc, &a_return,eso2);
A653_START(a_proc,&a_return);

// Create & Start P1
c_code{

strcpy (a_att.NAME, "P1");
a_att.STACK_SIZE = 200;
a_att.BASE_PRIORITY = HIGH_PROCESS_PRIORITY;
a_att.PERIOD = INFINITE_TIME_VALUE;
a_att.TIME_CAPACITY= INFINITE_TIME_VALUE;
a_att.DEADLINE = HARD;

};

A653_CREATE_PROCESS(&a_att, &a_proc, &a_return,eso2);
A653_START(a_proc,&a_return);

// Start Scheduling
A653_SET_PARTITION_MODE(NORMAL,&a_return);
run clock();

}; };

BEEM: Benchmarks for Explicit Model Checkers

Radek Pelánek�

Department of Information Technologies, Faculty of Informatics
Masaryk University Brno, Czech Republic

{xpelanek}@fi.muni.cz

Abstract. We present Beem — BEnchmarks for Explicit Model check-
ers. This benchmark set includes more than 50 parametrized models
(300 concrete instances) together with their correctness properties (both
safety and liveness). The benchmark set is accompanied by an compre-
hensive web portal, which provides detailed information about all models.
The web portal also includes information about state spaces and facilities
for selection of models for experiments.

The address of the web portal is http://anna.fi.muni.cz/models.

1 Introduction

The model checking field underwent a rapid development during last years. Sev-
eral new, sophisticated techniques have been developed, e.g., symbolic methods,
bounded model checking, or automatic abstraction refinement. However, for sev-
eral important application domains we cannot do much better than the basic
explicit model checking approach — brute force exhaustive state space search.
This technique is used by several of the most well-known model checkers (e.g.,
Spin, Murphi). The application scope of the explicit technique has been extended
significantly by progress in computer speed and algorithmic improvements and
many realistic case studies showed practical usability of the method. Even some
of the software model checkers (e.g., Java PathFinder, Zing) are based on the
explicit search.

There is also a significant body of research work devoted to the improve-
ment of explicit model checking. Unfortunately, many papers fail to convincingly
demonstrate the usefulness of newly presented techniques. In order to perform
high quality experimental evaluation, researchers need to have access to:

– tool in which they can implement model checking techniques,
– benchmark set of models which can be used for comparisons.

At the moment, there is a large number of model checking tools (see [4]),
but the availability of benchmark sets is rather poor. The aim of this work
is to contribute to the progress in this direction. We present Beem — a new
benchmark set with a web portal.

� Partially supported by GA ČR grant no. 201/07/P035.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 263–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

264 R. Pelánek

This short paper presents the main rationale and design choices behind Beem.
Detailed documentation is given in a technical report [10], which presents de-
scription of the modeling language and used models, functionality and realization
of the web portal, and an example of an experimental application over the set.

2 Experimental Work in Model Checking

In order to support the need for benchmarks, we present an evaluation of ex-
periments in model checking papers. We have used a sample of model checking
publications; experiments in each of these publications were classified into one
of the following five categories:

Q1 Random inputs or few toy models.
Q2 Several toy models (possibly parametrized) or few simple models.
Q3 Several simple models (possibly parametrized) or one large case study.
Q4 An exhaustive study of parametrized simple models or several case studies.
Q5 An exhaustive study with the use of several case studies.

Table 1. presents the quality of experiments in papers from our sample (de-
tailed description of the classification and list of all used papers and their clas-
sification is given in [10]). Although the classification is slightly subjective, it
is clear from Table 1. that there is nearly no progress in time towards higher
quality of used models. This is rather disappointing, because more and more
case studies are available. Low experimental standards make it hard to assess
newly proposed techniques; the practical impact of many techniques can be quite
different from claims made in publications. This obstructs the progress of the
research in the field. Clearly, a good benchmark set is missing.

The need for benchmarking, better experiments, and thorough evaluation of
tools and algorithms is well recognized, e.g., experimentation is a key part of
Hoare’s proposal for a “Grand Challenge of Verified Software” [6]. There is also
significant interest in benchmarks in the model checking community (see e.g.,
Corbett [3], Avrunin et al. [5], Atiya et al. [1], Jones et al. [8]). Nevertheless,
the progress up to date has been rather slow. The main obstacle in developing

Table 1. Quality of experiments reported in model checking papers. We have used
a sample of 80 publications which are concerned with explicit model checking and
contain an experimental section (for details see [10]). For each quality category, we
report number of published papers in years 1994-2006.

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Q1 - - 1 1 1 1 1 3 2 4 2 1 1
Q2 - - 3 3 2 3 3 1 2 2 2 1 -
Q3 - 2 1 3 1 2 2 1 3 2 2 4 1
Q4 1 - - - 1 - 1 4 1 1 2 - 2
Q5 - - - 1 - - - - 1 - 1 - -

BEEM: Benchmarks for Explicit Model Checkers 265

model checking benchmarks is the absence of a common modeling language —
each model checking tool is tailored towards its own modeling language and even
verification results over the same example are often incomparable.

Although the development of benchmarks is difficult and the model checking
community will probably never have a universal benchmark set, we should try
to build benchmarks as applicable as possible and steadily improve our experi-
mental analysis. This is the goal of this work.

3 BEEM

Modeling Language. Models are implemented in a low-level modeling language
based on communicating extended finite state machines (DVE language, see [10]
for syntax and semantics). The adoption of a low-level language makes the man-
ual specification of models hard, but it has several advantages. The language has
a simple and straightforward semantics; it is not difficult to write own parser
and state generator. Models can be automatically translated into other modeling
languages — at the moment, the benchmark set includes also Promela models
which were automatically generated from DVE sources.

Models and Properties. Most of the models are well-known examples and
case studies. Models span several different application areas (e.g., mutual ex-
clusion algorithms, communication protocols, controllers, leader election algo-
rithms, planning and scheduling, puzzles). In order to make the set organized,
models are classified into different types and categories. The benchmark set
is large and still growing (at the moment it contains 57 parametrized mod-
els with 300 specified instances). Source codes of all models are publicly
available. Models are briefly described and include pointers to sources
(e.g., paper describing the case study), i.e., Beemalso serves as an information
portal.

The benchmark set includes also correctness properties of models. Safety prop-
erties are expressed as reachability of a predicate, liveness properties are ex-
pressed in Linear temporal logic. Since an important part of model checking is
error detection, the benchmark set includes also models with errors (presence of
an error is a parameter of a model).

Tool Support. The modeling language is supported by an extensible model
checking environment — The Distributed Verification Environment (DiVinE)
[2]. DiVinE is both a model checking tool and a open and extensible library for
a development of model checking algorithms. Researchers can use this extensible
environment to implement their own algorithms, easily perform experiments
over the benchmark set, and directly compare with other algorithms in DiVinE.
Promela models can be used for comparison with the well-known model checker
Spin [7].

266 R. Pelánek

statistics
summary

summary
info

st. space
info

model
MDVE

description
XML

verification

model
info

list of
instances

results

model
DVE

state
space

st. space
statistics

state space
generator

analyzator

preprocessor

verification

reachability

Manually
created

Automatically
generated

Web
interface

R

model
Promela

Fig. 1. Overview of the realization of the web portal. The user provides two files:
parametrized model and its description. All other information is automatically gener-
ated.

Web Portal. The benchmark set is accompanied by an comprehensive web por-
tal, accessible at http://anna.fi.muni.cz/models, which facilitates the exper-
imental work. The web provides (see Fig 1. for overview of realization):

– presentation of all information about models, their parameters, and correct-
ness properties,

– detailed information about properties of state spaces of models [9] including
summary information,

– verification results,
– web form for selection of suitable model instances according to a given cri-

teria,
– instance generator, which can generate both DVE models and Promela mod-

els for given parameter values.

All data can be downloaded. Since model descriptions are systematic (XML
file), it is easy to write own scripts for manipulation with models and automation
of experiments.

BEEM: Benchmarks for Explicit Model Checkers 267

4 Summary

The aim of this paper is not to present “the ultimate benchmark set” but rather:

– to provide a ready-made set for those who want to compare different model
checking techniques and to facilitate experimental research,

– to encourage higher standards in model checking experiments,
– to stimulate the discussion about benchmarks in the model checking com-

munity.

Detailed description of the benchmarks set, example of an experimental appli-
cation, and direction for the future work can be found in the technical report [10].

Acknowledgement. I thank Pavel Krčál and to members of the DiVinE group,
particularly Ivana Černá, Pavel Šimeček and Jǐŕı Barnat, for collaboration, dis-
cussions, and feedback.

References

1. Atiya, D.A., Catano, N., Lüettgen, G.: Towards a benchmark for model checkers of
asynchronous concurrent systems. In: Fifth International Workshop on Automated
Verification of Critical Systems: AVOCs, University of Warwick, United Kingdom
(September 12–13, 2005)

2. Barnat, J., Brim, L., Černá, I., Moravec, P., Rockai, P., Šimeček, P.: Divine - a
tool for distributed verification. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 278–281. Springer, Heidelberg (2006), http://anna.fi.muni.cz/
divine

3. Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng. 22(3), 161–180 (1996)

4. Crhová, J., Krčál, P., Strejček, J., Šafránek, D., Šimeček, P.: Yahoda: the database
of verification tools. In: Proc. of TOOLSDAY affiliated to CONCUR 2002, FI MU
report series (2002) Accessible at http://anna.fi.muni.cz/yahoda/

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Benchmarking finite-state verifiers.
International Journal on Software Tools for Technology Transfer (STTT) 2(4),
317–320 (2000)

6. Hoare, T.: The ideal of verified software. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 5–16. Springer, Heidelberg (2006)

7. Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts (2003)

8. Jones, M., Mercer, E., Bao, T., Kumar, R., Lamborn, P.: Benchmarking explicit
state parallel model checkers. In: Proc. of Workshop on Parallel and Distributed
Model Checking (PDMC’03). ENTCS, vol. 89, Elsevier, Amsterdam (2003)

9. Pelánek, R.: Typical structural properties of state spaces. In: Graf, S., Mounier, L.
(eds.) Proc. of SPIN Workshop. LNCS, vol. 2989, pp. 5–22. Springer, Heidelberg
(2004)

10. Pelánek, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Masaryk University Brno (2006)

http://anna.fi.muni.cz/divine
http://anna.fi.muni.cz/divine
http://anna.fi.muni.cz/yahoda/

C.OPEN and ANNOTATOR: Tools for
On-the-Fly Model Checking C Programs�

Maŕıa del Mar Gallardo1, Christophe Joubert2,
Pedro Merino1, and David Sanán1

1 University of Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
{gallardo,pedro,sanan}@lcc.uma.es

2 Technical University of Valencia, Camino de Vera s/n, 46022, Valencia, Spain
joubert@dsic.upv.es

Abstract. This paper describes a set of verification components that
open the way to perform on-the-fly software model checking with the
Cadp toolbox, originally designed for verifying the functional correct-
ness of Lotos specifications. Two new tools (named C.Open and
Annotator) have been added to the toolbox. The approach taken fits
well within the existing architecture of Cadp which doesn’t need to be
altered to enable C program verification.

1 Introduction

The software model checking problem consists in verifying that a program, i.e.
an infinite state system described in a high-level language, does not contain er-
rors, such as improper memory access, misuse of system interfaces, or violation
of (temporal logic) properties. The verification process is automatic, and the
wrong conception of the program is eventually illustrated by means of potential
offending behaviors of the system (e.g., counter examples). Traditionally, pro-
grams are first analysed to statically remove parts that do not affect the property
of interest, using light-weight pre-processing technique such as program slicing.
The reduced model is then abstracted using predicate abstraction and localization
techniques. Finally, the resulting finite state system is processed by Sat-based,
Bdd-based or explicit state model checkers.

Existing software model checkers, like Slam [1] and Blast [2], are either
domain specific (e.g., verification of drivers), language dependent, or based on
dedicated algorithms and tools. This paper presents an analysis engine that finds
application programming interface (Api) usage errors in C programs, similarly
to Blast and Slam, but rather focusing on a general purpose model checking
framework. We describe a set of components, namely C.Open and Annotator,
that enable the explicit state verification of C programs by means of the last
stable Cadp 2006 “Edinburgh” release. The Cadp toolbox1 [3] is a complex

� This work has been supported by the Spanish MEC under grant TIN2004-7943-C04.
1 Cadp web site: “http://www.inrialpes.fr/vasy/cadp”.

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 268–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

C.OPEN and ANNOTATOR 269

software suite integrating numerous verification tools. Cadp supports the pro-
cess algebra Lotos for specification, and offers various tools for simulation and
formal verification, including equivalence checkers (bisimulations) and model
checkers (temporal logics and modal μ-calculus). The toolbox is designed as an
open platform for the integration of other specification, verification and analysis
techniques. This is realized by means of Apis which on different levels provide
means to extend or exploit the functionalities of the toolbox. These Apis have
been used by others to link Cadp to other specification languages as well as other
verification/testing tools. Here we describe how these Apis have been used by
C.Open to support C program transformation and abstraction based on Xml
intermediate representation, and by Annotator to support on-the-fly data flow
analysis and program slicing, namely influence analysis, of implicit control flow
graphs using boolean equation systems (Bess). Our efforts have been driven by
the intention to avoid changes to the existing components as much as possible,
while providing a sound and efficient framework for C program model checking.

Originality. Our approach differs from previous works, like Blast and Slam,
in several ways:

1. in the first attempt to connect to the Cadp toolbox a model generator
(C.Open) that automatically extracts implicit labeled transition systems
(Ltss) from programs written in C programming language, and a static an-
alyzer (Annotator) that works on implicit abstracted control flow graphs
(Cfgs) described as Ltss,

2. in our emphasis on the verification of distributed protocols (e.g., the Peter-
son’s mutual exclusion (Pme) protocol between two processes), using well-
specified Apis [4], described as multiple (or multi-instantiated) concurrent in-
dependent C programs, rather than on sequential (Slam) or multi-threaded
programs (ongoing work of Blast),

3. in our use of the Open/Cæsar modular architecture and Xml, Bes and
Lts technologies to represent the state-space and verification problem effi-
ciently and to facilitate the connection to other programming languages, like
Promela, and

4. in the way we concentrated this research work on the compiler side, similarly
to Bandera and Bogor [5] model checking frameworks, but using well-
established verification tools of the Cadp toolbox as back-end.

2 Software Architecture

The toolset encompasses two sorts of tools (see Figure 1) to verify C programs
generated via Cadp. (i) The C.Open tool provides different means to distill an
implicit Lts from a C program. (ii) The static analyser Annotator enables on-
the-fly data flow and influence analysis of implicit Ltss describing abstract Cfgs.

Distilling implicit LTSs from a C program. C.Open [6] is an addon component
for Cadp to support C program input to the Open/Cæsar environment [7],

270 M.M. Gallardo et al.

though we state that the Xml Api, called PiXL [8], on which the tool is based,
is general enough to attach the C program abstraction process to other veri-
fication toolboxes, such as Spin, via Promela specifications instead of implicit
Ltss [4]. The idea that Open/Cæsar environment can be connected to a C
compiler and that existing Cadp tools can thereby be extended to this new
class of specifications is an important step towards re-using well-established ver-
ification toolboxes. C.Open (400 lines of Shell script) takes as inputs a system

liv
e

va
ri

ab
le

s

de
ad

 v
ar

ia
bl

es

ve
ry

 b
us

y
ex

pr
es

si
on

s

av
ai

la
bl

e
ex

pr
es

si
on

s

re
ac

hi
ng

 d
ef

in
iti

on
s

re
ac

ha
bi

lit
y

as
se

rt
io

n

fo
rm

ul
a ap

i

Lts

Bes

graph)

(state)

(boolean

exploration

encoding
static analysis

p
ro

p
er

ty
sa

ti
sf

ac
ti

on

Annotator

(-bes, -bfs, -formula, -xml, etc.)

Open/Cæsar environment

optional input/output argument

: provides

: input/output : new tools

: Cadp librairies

C2Xml

cc

C.Open

Xml2LTS

C program

cæsar
library

annotating
function (.xml,

program

library
cæsar solve

annotator
(.exe)

(.xml)
Api model

(.xml)

.txt, implicit)

PiXL

Open/Cæsar

graph module

implicit Lts

Lts exploration

Bes resolution

Fig. 1. C.Open and Annotator tools

described by a set of C programs, an operating system Api’s model represented
in Xml, and an Open/Cæsar application (e.g., Annotator). As an output,
it generates an executable application (e.g., annotator.exe) by performing the
required sequence of tool invocations: 1) a tool, called C2Xml (2 000 lines of
Java), is used with Javacc and a C grammar (1 000 lines of Java), to translate
C programs into PiXL compliant Xml models; 2) another tool, called Xml2Lts
(4 500 lines of Java), then slices the program models with respect to system Apis
to be preserved [9] and it constructs the Open/Cæsar graph module describing
the implicit program Lts; 3) finally, the C compiler cc is called.

C.Open allows to construct abstracted state spaces on-the-fly, and only to
the required precision (w.r.t. a specific Api). It currently offers the possibility
to generate either Cfg or explicit state space of a program as an implicit Lts.

C.OPEN and ANNOTATOR 271

Analysing implicit CFGs. Annotator implements standard data flow analysis
algorithms on a Cfg, by using boolean equation systems (Bess) [10,11]. It also
computes various influence analyses [12], generally used for compacting the pro-
gram state representation, by detecting the relevant program variables in each
control point, for a property of interest.

Our static analyser takes as inputs a static analysis to carry out and an Lts
describing the Cfg of a program, in which instructions are abstracted to the
strict necessary information (i.e., modified and defined variables, used expres-
sions, and instruction type). This Lts is represented implicitly by its successor
function as an Open/Cæsar program provided by compliant compilers, such
as C.Open, but existing Cadp compilers, such as Cæsar, could be directly
extended to provide such Cfgs [13].

Annotator (6 000 lines of C code) consists of several modules, each one
containing the Bes translation for a particular static analysis (live variables,
very busy expressions, available expressions, reaching definitions, reachability,
assertion control, formula and Api preservation influence analyses). Bess are
represented implicitly by their successor function, in the same way as Ltss in
Open/Cæsar. They are handled internally by the Cæsar Solve [14] library,
which offers several on-the-fly resolution algorithms, based on different search
strategies (e.g., breadth-first). Dependent on the option selected by the user, the
analysis result is written to an Xml or textual file. These formats allow post-
processing of computed analyses, by directly conveying the result as input to
compilers reading these formats, such as C.Open, allowing further compilation
optimizations.

Availability. The proposed tools are publicly available through the following web
pages http://www.lcc.uma.es/gisum/tools/smc. C.Open and Annotator,
being part of the database of research tools developed using Cadp, are also
referenced by the Cadp web site. Both new tools are rather small, robust and
mature (in operation for about a year) and detailed manual pages are provided,
as well as more than 25 program examples and step-by-step small case studies.
More recently [15], we also defined web services that allow the remote use of
C.Open and Annotator, as well as most of Cadp verification tools, through
the Fmics-jEti platform [16] from a jAbc client [17].

Applicability. Concerning applicability, C.Open compiles concurrent C pro-
grams into the Open/Cæsar intermediate format (i.e., implicit labeled transi-
tion system (Lts)), to which efficient Cadp model checkers, such as Evaluator
(evaluation of regular alternation-free μ-calculus formulas) and Bisimulator
(equivalence checking), are connected. Hence, Ctl, Actl, Pdl, Pdl-Δ and
regular alternation-free μ-calculus properties can be verified on our C input
programs. In the Pme demonstration, we successfully checked respectively one
safety, liveness and fairness property on the C implementation of the protocol
and we also reduced the explicit-state space size by 20% using Api influence
analysis results computed by the Annotator tool. Furthermore, all analyses
that are available in the Cadp toolbox can be directly used on our C input

http://www.lcc.uma.es/gisum/tools/smc

272 M.M. Gallardo et al.

programs. Unfortunately, we could not compare our verification framework with
well-established software model checkers, like Blast or Slam, since they are
not dealing with distributed protocols with well-defined Apis yet.

Scalability. Annotator has been successfully experimented on very large Cfgs,
extracted from the Vlts benchmark2, with size up to 106 program counters and
instructions. Moreover, C.Open and Annotator allow several levels of abstrac-
tion of the program instructions present in the LTS model, giving the possibility
to verify further properties or to achieve further reductions on the program model.

3 Conclusion and Future Work

The development of an on-the-fly software model checker “from scratch” is a
complex and costly task. The open modular architecture adopted for C.Open
and Annotator aims at making this process easier, by using the Xml inter-
mediate representation, the well-established verification framework of Bess, to-
gether with the generic libraries for Lts exploration and Bes resolution provided
by Cadp. For instance, this tool architecture reduces the effort of implementing
a new static analysis to its strict minimum: encoding the mathematical definition
of the analysis as a Bes, and interpreting the result. We plan to continue our
work by extending Annotator with other static analyses (e.g., reset variables
analysis [13]) and by interconnecting the two new Cadp components with tools
extending Spin, such as SocketMC [4] and αSpin [18].

References

1. Ball, T., Rajamani, S.K.: The slam toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

3. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European Asso-
ciation for Software Science and Technology (EASST) Newsletter 4 (2002) 13–24
Also available as INRIA Technical Report RT-0254 (December 2001)

4. Camara, P., Gallardo, M., Merino, P., Sanán, D.: Model checking software with
well-defined apis: the socket case. In: Gnesi, S., Margaria, T., Massink, M. (eds.)
Proceedings of the 10th International Workshop on Formal Methods for Industrial
Critical Systems FMICS’2005, Lisbon, Portugal, ACM-SIGSOFT, pp. 17–26 (2005)

5. Robby, Rodŕıguez, E., Dwyer, M.B., Hatcliff, J.: Checking JML specifications using
an extensible software model checking framework. Springer International Journal
on Software Tools for Technology Transfer (STTT) 8, 280–299 (2006)

6. Gallardo, M., Merino, P., Sanán, D.: Towards model checking c code with
open/cæsar. In: Barjis, J., Ultes-Nitsche, U., Augusto, J.C. (eds.) Proceedings of
the 4th International Workshop on Modelling, Simulation, Verification and Val-
idation of Enterprise Information Systems MSVVEIS 2006, Paphos, Cyprus, pp.
198–201, Insticc Press (2006)

2 Vlts web site:
http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html

http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

C.OPEN and ANNOTATOR 273

7. Garavel, H.: Open/cæsar: An open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS,
vol. 1384, pp. 68–84. Springer, Heidelberg (1998)

8. Gallardo, M., Mart́ınez, J., Merino, P.: Nuñez, P., Pimentel, E.: Pixl: Applying
xml standards to support the integration of analysis tools for protocols. Science of
Computer Programming (2006)

9. Gallardo, M., Joubert, C., Merino, P., Sanán, D.: On-the-fly API influence analysis
of software. In: Merino, P., Bakkali, M. (eds.) Proceedings of the 2nd International
Conference on Science and Technology JICT’07, Málaga, Spain, Spicum (2007)

10. Gallardo, M., Joubert, C., Merino, P.: On-the-fly data flow analysis based on veri-
fication technology. In: Drechsler, R., Glesner, S., Knoop, J. (eds.) Proceedings of
the 6th International Workshop on Compiler Optimization meets Compiler Veri-
fication COCV’2007, Braga, Portugal. Electronic Notes in Theoretical Computer
Science, Elsevier, Amsterdam (to appear)

11. Gallardo, M., Joubert, C., Merino, P.: Implementing influence analysis using pa-
rameterised boolean equation systems. In: Proceedings of the 2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and Val-
idation ISOLA’06, Paphos, Cyprus, 2006, IEEE Computer Society Press, Los
Alamitos (To appear)

12. Cámara, P., Gallardo, M., Merino, P.: Abstract matching for software model check-
ing. In: Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925, pp. 182–200.
Springer, Heidelberg (2006)

13. Garavel, H., Serwe, W.: State space reduction for process algebra specifications.
Theoretical Computer Science 351(2), 131–145 (2006)

14. Mateescu, R.: Caesar solve: A generic library for on-the-fly resolution of
alternation-free boolean equation systems. Springer International Journal on Soft-
ware Tools for Technology Transfer (STTT) 8, 37–56 (2006)

15. Gallardo, M., Joubert, C., Merino, P., Sanán, D.: On-the-fly model checking for
C programs with extended CADP in FMICS-jETI. In: Proceedings of the 12th
IEEE International Conference on Engineering of Complex Computer Systems
ICECCS’07, Auckland, New Zealand, IEEE Computer Society Press, Los Alamitos
(to appear)

16. Margaria, T., Steffen, B.: Advances in the FMICS-jETI platform for program veri-
fication. In: Proceedings of the 12th IEEE International Conference on Engineering
of Complex Computer Systems ICECCS’07, Auckland, New Zealand, IEEE Com-
puter Society Press, Los Alamitos (to appear)

17. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of veri-
fication tools in jETI. In: Proceedings of the 12th IEEE International Conference
on the Engineering of Computer-Based Systems ECBS’05, Greenbelt, MD, USA,
pp. 431–436. IEEE Computer Society Press, Los Alamitos (2005)

18. Gallardo, M., Martinez, J., Merino, P., Pimentel, E.: αspin: A tool for abstraction
in model checking. Software Tools for Technology Transfer 5(2-3), 165–184 (2004)

ACSAR: Software Model Checking with
Transfinite Refinement

Mohamed Nassim Seghir and Andreas Podelski

Universität Freiburg, Georges-Köhler-Allee 52, 79110 Freiburg, Germany

1 Introduction

ACSAR (Automatic Checker of Safety properties based on Abstraction Refine-
ment) is a software model checker for C programs in the spirit of Blast [6],
F-Soft [7], Magic [5] and Slam [1]. It is based on the counterexample-guided
abstraction refinement (CEGAR) paradigm. Its specificity lies in the way it
overcomes a problem common to all tools based on this paradigm. The problem
arises from creating more and more spurious counterexamples by unfolding the
same (while- or for-) loop over and over again; this leads to an infinite or at
least too large sequence of refinement steps. The idea behind ACSAR is to ab-
stract not just states but also the state changes induced by structured program
statements, including for- and while-statements. The use of the new abstraction
allows one to shortcut such a “transfinite” sequence of refinement steps.

The divergence of the abstraction refinement loop is not just a theoretical
problem but one that hits us in our practical use of software model checker.
ACSAR is integrated in a higher order theorem prover, namely Isabelle [3]. It is
called, from within Isabelle, for discharging automatically generated verification
obligations. Thus, another specificity of ACSAR as a software model checker lies
in the way that it is used. We report on our experience of using ACSAR at the
end of the paper.

2 A Motivating Example

Let us illustrate the need of abstracting loops through the example in Figure 1(a).
This example is taken from the list of benchmarks that were used by McMillan
and Jhala [8]. It represents the concatenation of two strings. The key word
assume does not exist in the C language but it is used for the model checker to
express additional assumptions.

A classical refinement generates predicates i ≥ 200, j < 100, i+1 ≥ 200, j+1 <
100, i+2 ≥ 200, j+2 < 100 . . . i+99 ≥ 200, j+99 < 100. The loop is unrolled as
many times as the number of loop iterations in a real execution. Moreover, if we
want to perform a generic verification for arbitrary string length, by substituting
size for 100 in line 12 and 21, and size ∗ 2 for 200 in line 25, the refinement
process completely diverges. The problem is inherent to the CEGAR scheme
in its present form (based on state abstraction) where the loop (15, 16, 17, 18,
19, 15) is unfolded over and over again. In this case, neither the interpolation
approach nor the split prover method seem to help [8].

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 274–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ACSAR: Software Model Checking with Transfinite Refinement 275

1 main(){
2
3 char x[101], y [101], z [201];
4 int i , j ,k;
5
6 i = 0;
7 while(x[i] != 0){
8 z[i] = x[i];
9 i++;

10 }
11 /∗ length of x is less than 100 ∗/
12 assume(i < 100);
13
14 j = 0;
15 while(y[j] != 0){
16 z[i] = y[j];
17 i++;
18 j++;
19 }
20 /∗ length of y is less than 100 ∗/
21 assume(j < 100);
22
23 z[j] = 0;
24 /∗ prove we don’t overflow z ∗/
25 if (i >= 200)
26 {ERROR: goto ERROR;}
27 }

1 main(){
2
3 char x[101], y [101], z [201];
4 int i , j ,k;
5
6 i = 0;
7 while(x[i] != 0){
8 z[i] = x[i];
9 i++;

10 }
11 /∗ length of x is less than 100 ∗/
12 assume(i < 100);
13
14 j = 0;
15 if (∗){
16 assume((j next − j)==(i next − i));
17 i = i next;
18 j = j next;
19 }
20 /∗ length of y is less than 100 ∗/
21 assume(j < 100);
22
23 z[j] = 0;
24 /∗ prove we don’t overflow z ∗/
25 if (i >= 200)
26 {ERROR: goto ERROR;}
27 }

(a) (b)

Fig. 1. Example in C code before and after the abstraction

3 Loop Abstraction Approach

As alternative to the iterative unfolding of loops, ACSAR approximates state
changes induced by the execution of the loop. The idea of abstracting transi-
tions was previously used to prove the termination of programs [2]. Our use of
transition abstraction is in the context of checking safety properties.

3.1 How Does ACSAR Abstract Loops?

ACSAR extracts the list of transition constraints corresponding to the program.
Below are the transition constraints corresponding to the loop (15, 16, 17, 18,
19, 15) from the example in Figure 1(a).

pc = 15 ∧ y[j] �= 0 ∧ z′[i] = y[j] ∧ i′ = i + 1 ∧ j′ = j + 1 ∧ pc′ = 15 (1)
pc = 15 ∧ y[j] = 0 ∧ pc′ = 21 (2)

A transition constraint is a conjunction of atomic formulas, it expresses a binary
relation between a starting state and an arrival state of the program. In atomic

276 M. Nassim Seghir and A. Podelski

formulas, variables marked with primes are evaluated in the arrival state of the
transition, otherwise they are evaluated in the starting state. The special variable
pc represents the program counter. When an atomic formula does not contain
any variable marked with a prime it is called a guard. An atomic formula that
contains variables with primes is called an update. If a variable does not appear
marked with a prime in any atomic formula, then it means implicitly that its
value does not change when the transition is performed.

The next step is the abstraction phase. In this phase non relevant guards
are removed and constraints expressing relations between old and new values of
the variables are extracted. For example: the expression (i′ − i) = (j′ − j) is
automatically extracted by ACSAR as both variables i and j increase by the
same constant number within the loop. Transition constraints (1) and (2) are
replaced by their abstractions (1’) resp. (2’). To the difference of transition (1)
its abstraction (1’) does not loop but it approximates the effect of the loop over
the program variables. With this abstraction ACSAR succeeds to prove that the
program is safe.

pc = 15 ∧ i′ − i = j′ − j ∧ pc′ = 21 (1’)
pc = 15 ∧ pc′ = 21 (2’)

Question: How can one express the above abstraction of a loop in terms of a
source-to-source transformation on the C program? The problem is that a tran-
sition constraint expresses a constraint on the after-value of a transition, but a
program statement defines the after-value by the value of an expression. As of-
ten, the solution is very simple. We write the transition constraint as a program
expression (using an uninitialized auxiliary variable x next for the primed ver-
sion of the variable x) and use the program expression in an assume statement
and then add assignment statements of the form x = x next. See Figure 1(b).
The loop (15, 16, 17, 18, 19, 15) is replaced by a nondeterministic ’if’ block (the
‘nondeterministic’ expression is denoted *).

What do we gain with loop abstraction? The benefit is two fold:

– We obtain better performance in terms of time and space. Table 1 illustrates
a comparison between the loop abstraction approach and a simple approach
based on the weakest precondition for refinement. We apply both approaches
on different instances of the example of figure 1(a). Column size contains
different values of the size of input array variables x and y. Implicitly, the
size of z is 2 ∗ size. Using the simple approach, we clearly notice a nonlinear
increase of the verification time in function of instance size. With the loop
abstraction approach, the execution time is the same and relatively small for
all the instances.

– Using the loop abstraction approach, we can verify a generic version (sec-
tion 2) of the previous example. The abstract transition represents a param-
eterization of all paths corresponding to loop unfolding of different instances
of the example program.

ACSAR: Software Model Checking with Transfinite Refinement 277

Table 1. Performance comparison between the loop abstraction approach and the
simple approach

instance size time number of states
simple loop abstraction simple loop abstraction

1 10 1.19 0.29 12 5
2 20 2.77 / 22 /
3 50 33.59 / 52 /
4 75 127.72 / 77 /
5 100 336.56 / 102 /

4 ACSAR in Short

ACSAR has the usual ingredients of a software model checker. It receives as input
a C file consisting of functions and data structures. Location labels are used to
specify a monitor for the property that we want to check. A global control-flow
graph is obtained by inlining function bodies into the corresponding call sites.
ACSAR translates the program into a set of transition constraints, its canonical
representation. The main kernel of ACSAR is composed of two parts: the search
engine that explores the state space (building the abstraction on the fly) and
the counter example analyzer which increases the precision of the search engine
when the abstraction is too coarse. For building the abstraction and, respectively,
for checking consistency of transitions, both parts interact with a parameterized
constraint solver such as Simplify [4]. ACSAR builds the abstraction of loops on
demand, namely when the counter example analyzer has detected that a loop has
been unfolded twice. The threshold for the number of unfoldings is a parameter
which, for now, is set to two.

5 Experimental Evaluation

ACSAR is used in the Verisoft project1 as a back-end for the higher order in-
teractive theorem prover Isabelle [3]. Isabelle has a Hoare logic module for the
specification and verification of programs [10]. For a Hoare triple P c Q Isabelle
performs the proof of the postcondition Q in three steps: the proof that Q holds,
the proof that the program c terminates and the proof that no run time errors
occur during the execution of c under the precondition P . For this last step
Isabelle generates proof obligations expressing necessary conditions for a safe
execution of any command in the program c. For example, given the integer
variable x and the command x := x + 1, Isabelle generates the proof obligation
MINint ≤ x ≤ MAXint. The task of verifying such a proof obligation is au-
tomatically delegated to ACSAR. The overall goal is to minimize the ‘manual’
interaction between the verification engineer and Isabelle. In the (ongoing) in-
teractive verification effort for the Vamos micro-kernel (which is being developed
1 http://www.verisoft.de

278 M. Nassim Seghir and A. Podelski

within the Verisoft project), ACSAR automatically discharges about 75% of the
(automatically generated) verification obligations (the remaining 25% concern
properties that require variable quantification).

Outlook: We are planning to carry over methods for the generation of linear
invariants [9] to our approach for abstracting loops. We want also to handle
simple array assertions that involve quantifiers; e.g., ∀i (0 ≤ i < n) ⇒ a[i] = 0.

References

1. Ball, T., Rajamani, S.K.: The Slam project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

2. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, Springer, Heidelberg
(2005)

3. Daum, M., Maus, S., Schirmer, N., Nassim Seghir, M.: Integration of a software
model checker into Isabelle. In: LPAR, pp. 381–395 (2005)

4. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Lab (2003)

5. Chaki, S., et al.: Modular verification of software components in C. In: ICSE, pp.
385–395 (2003)

6. Thomas, A.: Henzinger: Software verification with BLAST. In: Ball, T., Rajamani,
S.K. (eds.) Model Checking Software. LNCS, vol. 2648, pp. 235–239. Springer,
Heidelberg (2003)

7. Ivancic, F., Shlyakhter, I., Gupta, A., Ganaim, M.K.: Model checking C programs
using F-soft. In: ICCD, pp. 297–308 (2005)

8. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, Springer, Heidelberg (2006)

9. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151
(1976)

10. Schirmer, N.: A verification environment for sequential imperative programs in
Isabelle/HOL. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, Springer, Heidelberg (2004)

Instrumenting C Programs with Nested Word
Monitors

Swarat Chaudhuri and Rajeev Alur

University of Pennsylvania

1 Introduction

In classical automata-theoretic model checking of safety properties [6], a system
model generates a language L of words modeling system executions, and verifi-
cation involves checking if L ∩ L′ = ∅, L′ being the language of words deemed
“unsafe” by the specification. This view is also used in recent program analyz-
ers like Blast [5] and Slam [2], where a specification is a word automaton (or
monitor) with finite-state control-flow that accepts all “unsafe” program execu-
tions. Typical analysis constructs the “product” of a program and a monitor, in
effect instrumenting the program with extra commands and assertions, so that
the input program fails its specification if and only if the product program fails
an assertion. The latter is then checked for possible assertion failures. Monitors
also find use in testing and runtime verification, where we try finding assertion
violations in the product program at runtime.

One shortcoming of these notations is expressiveness. As finite automata can-
not argue about the nested structure of procedure calls and returns in programs,
these languages cannot state pre/post-conditions arising in specification lan-
guages like JML [4]: “if a file is open right before a call, then it is open when the
procedure returns.” Nor can they reason about procedural contexts and express
properties like: “if a file is opened, it must be closed before control exits the
present context.” Another issue is that these notations cannot reason modularly
about programs. If programs are structured, why not specifications as well?

These problems are overcome if a program execution is modeled by a nested
word [1] rather than a word. A nested word is obtained by adding, to a word
modeling an execution, a set of nested jump-edges that connect call sites to their
matching returns. A nested word automaton processing a nested word reads the
symbols in the underlying word just like a word automaton. However, transitions
here also take jump-edges into account: while transitioning to a return position
(a point in the word with an incoming jump-edge), a nested word automaton can
consult its state at the source of the jump-edge, i.e., the call matching the return.
Intuitively, the monitor tracks the program’s global control flow by following the
underlying word, and its local control flow by following the jump-edges.

This paper presents a specification language—called Pal—based on nested
word automata, and a tool to instrument C code using it. This language ex-
tends the Blast specification language [3], and while its richer foundations lets
it state context-sensitive properties, it has syntax close to Blast’s and allows
easy instrumentation. Monitors in Pal are independent of the programs they are

D. Bošnački and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 279–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

280 S. Chaudhuri and R. Alur

used to instrument, and work irrespective of whether recursion is present. While
they are theoretically only as expressive as monitors in Blast in the absence
of recursion, they are more modular, succinct and comprehensible even in this
case. We believe, therefore, that these monitors present an example of structured
specifications, suitable for structured programs. Finally, while our monitors ex-
tend the specification format of a model checker, their use is not limited to static
checking. Once a program has been instrumented with a monitor, it can be used
for testing or run-time verification as well as static analysis or model checking.

2 Language Description

We present the Pal language via an exam-global int infoo = 0;
global int open = 0;
global FILE * stream;

event { /* event 1 */
pattern {

$1=fopen($2,$?);}
guard { strcmp($2,’’dat’’)

||(open==0 && infoo==1)}
action {

if (!strcmp($2,’’dat’’)){
open = 1;
stream = $1;}}

}

event { /* event 2 */
pattern { fclose ($1); }
action { if ($1 == stream)

open = 0; }}

event { /* event 3 */
pattern { $? = foo ($?); }
local int stored;
before {
action { stored = infoo;

infoo = 1; }}
after {
guard { open == 0 }
action {
infoo = stored; }}

}

Fig. 1. A Pal specification

ple. Consider a C program that opens or
closes files via calls to fopen and fclose,
and the following requirement, applying to
a procedure foo: “a secret file dat is not
opened outside the scope of a file-handling
routine foo. If foo, or a procedure called
transitively from it, opens a stream for dat,
then: (1) no new stream for dat is opened
without closing the current stream, and (2)
any open stream for this file must be closed
by the time the top-level call to foo re-
turns.” Such a discipline follows program-
mer intuition and prevents security flaws
where the main context, unaware that foo
has left open a sensitive stream, invokes an
untrusted program that can now do I/O on
the “leaked” stream (for a real instance of
this, see Sec. 3).

A Pal monitor for this requirement is
shown in Fig. 1. The states of the monitor
are encoded by a set of monitor variables,
and its transitions by a set of event{...}
blocks. Some monitor variables are global
and are declared using the keyword global
— intuitively, global monitor variables may
be tested or updated by any event. In addi-
tion, each event includes an optional set of
local monitor variables, declared using the
keyword local, whose scope is restricted
to the current event.

Events are fired by matching patterns
on statements in the analyzed program.

A pattern, specified in a pattern{...} block, is an assignment or procedure
call with possible “pattern variables” ($?, $1, $2, etc.). During matching, the

Instrumenting C Programs with Nested Word Monitors 281

variables $1, $2, etc. match arbitrary C expressions and the variable $? serves
as a wildcard— e.g., the pattern in event 1 matches all calls to fopen. For each
statement matching the pattern1 specified in the i-th event, the monitor sets up
a precondition and a postcondition using the code in the blocks before{...}
and after{...} in this event. The precondition (similarly, postcondition) checks
whether an optional guard—a C expression over monitor and pattern variables,
inside a guard{...} block—is satisfied by the monitor state right before (after)
this statement. If the guard is not satisfied, an assertion violation is reported.
Otherwise, the state of the monitor is updated by executing the C code contained
within an optional action{...} block. This code is allowed to read pattern vari-
ables, and read or update monitor variables. For succinctness, we allow guards
and actions to be defined outside before or after blocks (event 1 or 2)—in this
case they are assumed to define preconditions.

During instrumentation, code blocks implementing
int infoo = 0;
int open = 0;
FILE * stream;

bar() {
int stored;
...
stored = infoo;
infoo = 1;
x = foo(y);
if (open == 0)

infoo = stored;
else ERROR;
...

}

Fig. 2. Instrumenting us-
ing event 3

an event’s precondition and postcondition are respec-
tively injected before and after statements matching
its pattern. Consider a call x = foo(y) in a proce-
dure bar in a program; on instrumentation using the
monitor in Fig. 1, this line in replaced by the chunk of
code in Fig. 2. Declarations of the monitor variables
are added as well; stored is declared locally in bar,
and infoo, open, and stream are declared globally.

Some may note that this syntax closely resembles
that of the Blast query language. Blast, too, al-
lows injection of code before or after a program state-
ment using the keywords before and after. This sim-
ilarity is a design feature, as our goal was to extend
Blast minimally to obtain a specification language
for context-sensitive requirements. The key new fea-
tures in Pal are local variables and the ability to de-
clare before and after blocks in the same event. This
seemingly superficial modification makes a major se-
mantic difference: the control-flow of a monitor is now

given by a nested word automaton, rather than a word automaton. Consider
our example monitor and an execution of the input program containing a call
to foo. In the nested word capturing this execution, there is a jump-edge from
the call to foo to its matching return. Now, as the monitor reads this execution,
it can save its state right before control enters foo using its local variables, and
retrieve this state at the matching return. Thus, it has the power of a nested
word automaton that reads the corresponding nested word, consulting its state
at the source of an incoming jump-edge while transitioning to a return position.
On the other hand, our monitor can use its global variables to pass states into
invoked procedures such as foo, just like a Blast monitor. More abstractly, this
amounts to state updates as it reads the underlying word structure.
1 Monitors are deterministic—i.e., if more than one pattern is matched at any point,

we break the tie by picking the one in the event defined first.

282 S. Chaudhuri and R. Alur

We end this section with some hints to check that the monitor in Fig. 1
specifies our original requirement. The variables infoo and open track whether
foo is in the stack and whether dat is open, and stream stores a possible open
stream for dat. The variable stored is used to infer whether control is back to
the top-level context calling foo. The rest is easily verified.

3 Implementation and Case Studies

We have implemented Pal on top of the current implementation of Blast. The
specification and analysis modules in Blast are orthogonal: the former generates
C code instrumented with a monitor, while the latter checks the generated code
for assertion failures. We extend Blast’s specification module to permit Pal
monitors, and analyze the generated code statically as well as dynamically. The
source code of our implementation, along with the examples that we now discuss,
is available at http://www.cis.upenn.edu/~swarat/tools/pal.tar.gz.

File descriptor leak in fcron. A monitor as in Sec. 2 could be used to prevent
a reported bug (http://nvd.nist.gov/nvd.cfm?cvename=CVE-2004-1033) in
Version 2.9.4 of fcron, a periodic command scheduler for Linux. Here, the main
function of a binary (fcrontab) calls a routine parseopt, which calls a routine
is allowed to check if a user is “allowed”, which calls a procedure that opens,
but forgets to close, a stream for a secret file fcron.allow. After control returns
to the main context, the program starts a process with a name derived from an
environment variable. However, an attacker can change the value of this variable
to start a malicious program that reads fcron.allow via the open file stream.

This error may be prevented by a policy that allows parseopt to open
fcron.allow, but not to leak its descriptor. In addition, we could require that
this secret file is not opened outside the scope of parseopt. This policy makes in-
tuitive sense: as parseopt is a routine verifying a username, it is reasonable that
it, or procedures it calls transitively, opens the file of allowed users. However, by
the principle of least privilege, this file should only be opened when necessary,
i.e., when parseopt is on the stack. A monitor expressing these requirements
looks very similar to the one in Fig. 1. On instrumenting fcron with this moni-
tor, we find a policy violation within a few random tests (model-checking using
Blast is not a good strategy due to the call to strcmp in the monitor).

Stack-sensitive security properties. Consider the security property: “A pro-
gram must not execute a sensitive operation write at any point when an un-
trusted routine foo is on the stack.” In the Java and C# languages, such policies
are automatically enforced by the run-time environment, using the mechanism
of stack inspection. In C, they may be enforced dynamically using a monitor—
however, traditional monitors cannot express such properties of the stack, so that
a nested word monitor is needed. Of course, such monitors could also be used in
static analysis or software model checking.

Fig. 3 shows a monitor for the above requirement. The global variable infoo
tracks if foo is in the stack, and a guard ensures that writes only happen outside
the scope of foo.

Instrumenting C Programs with Nested Word Monitors 283

We note that Pal may also be used to state some requirements of this na-
ture that cannot be enforced via stack inspection. Consider the property: “If an
untrusted procedure has ever been on the stack, a certain sensitive operation
must not be executed.” The rationale is that an untrusted routine may cause a
side-effect that proves to be dangerous at a future point, so that if we call one,
we must strengthen the security policy. However, since the culpable routine may
no longer be on the stack when violation occurs, stack inspection does not help
in this case. On the other hand, it is easy to state such properties in Pal; code
for a sample monitor is available on our webpage.

Logging policies. Pal also finds use in
global int infoo = 0;

event {
pattern { write(); }
guard { infoo == 0 }

}

event {
pattern {$? = foo($?);}
local int stored;
before {
action { stored = infoo;

infoo = 1; }}
after {
action { infoo = stored; }}

}

Fig. 3. Stack-sensitive security

stating logging policies enforced in large
development efforts such as Windows. Con-
sider the property: “whenever a proce-
dure returns an error value, the error must
be logged via a routine log before control
leaves the current procedural context.”
Now, different development groups may
call log via different wrapper functions;
however, the logging policy is fixed across
groups and thus independent of the wrap-
pers. In order to track if control has re-
turned from a wrapper to the original
context, we need a Pal monitor.

While we do not have access to indus-
trial code bases where such policies are
most natural, we have, as a proof of con-
cept, applied this monitor on hand-coded
examples and found policy violations us-
ing Blast and random tests.

Acknowledgement. We thank Zhe Yang for valuable suggestions.

References
1. Alur, R., Madhusudan, P.: Adding nested structure to words. Developments in Lan-

guage Theory, 1–13 (2006)
2. Ball, T., Rajamani, S.: The slam toolkit. In: Computer Aided Verification, 13th

International Conference (2001)
3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The blast

query language for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS,
vol. 3148, pp. 2–18. Springer, Heidelberg (2004)

4. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, R., Poll,
E.: An overview of JML tools and applications. In: Workshop on Formal Methods
for Industrial Critical Systems, pp. 75–89 (2003)

5. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002)

6. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

Author Index

Alur, Rajeev 279

Barnat, Jǐŕı 2, 187
Basler, Gérard 131
Brim, Luboš 2, 187

Chaudhuri, Swarat 279
Chen, Xiaofang 58
Cornet, Jérôme 204

Dams, Dennis 1
de la Cámara, Pedro 243

Evangelista, Sami 76

Fecher, Harald 4
Flanagan, Cormac 95

Gallardo, Maŕıa del Mar 243, 268
Gastin, Paul 24
Gopalakrishnan, Ganesh 58
Gueta, Guy 95

Joubert, Christophe 268

Kirby, Robert M. 58
Kroening, Daniel 131

Lluch Lafuente, Alberto 223

Maraninchi, Florence 204
Mercer, Eric G. 39, 113
Merino, Pedro 243, 268
Moro, Pierre 24
Moy, Matthieu 204

Nassim Seghir, Mohamed 274

Pajault, Christophe 76
Pelánek, Radek 263
Podelski, Andreas 274

Ročkai, Petr 187
Rozier, Kristin Y. 149
Rungta, Neha 39

Sagiv, Mooly 95
Sańan David 268
Self, Joel P. 113
Shoham, Sharon 4

Traulsen, Claus 204

Vardi, Moshe Y. 149

Weber, Michael 168
Weissenbacher, Georg 131

Yahav, Eran 95
Yang, Yu 58

	Title Page
	Preface
	Organization
	Table of Contents
	StackSnuffer: Curing Orion’s Unsoundness
	Tutorial: Parallel Model Checking
	Local Abstraction-Refinement for the mu-Calculus
	Introduction
	Example
	Preliminaries
	System
	Strong-Weak-Parity-Game
	Property Language

	CEGAR Locally Applied on Configurations
	Heuristics
	Bottom Up Strategy
	Breadth First Strategy
	Youngest First Strategy

	Optimizations of the Algorithm
	Conclusion
	Pseudo Code of Additional Procedures

	Minimal Counterexample Generation for SPIN
	Introduction
	Context and Notations
	Space Constraints

	An Algorithm to Find the Smallest Counterexample
	Reconstructing the Counterexample
	Distances from the Initial State
	Another Breadth First Search
	BFS Guided by a Priority Queue
	Synthesis

	Improvements
	Conclusion

	Generating Counter-Examples Through Randomized Guided Search
	Introduction
	Background
	Randomized GDS
	Evaluation
	Conclusions and Future Work

	Distributed Dynamic Partial Order Reduction Based Verification of Threaded Software
	Introduction
	Background
	Overview of Inspect
	Definitions
	Dynamic Partial Order Reduction

	Algorithm
	Load Balancing
	Worker Routine
	Distributed DPOR
	Updating the Backtrack Set

	Implementation and Experiments
	Related Work
	Conclusion

	Some Solutions to the Ignoring Problem
	Formal Background
	State Transition Graphs
	Partial-Order Reduction

	Related Works
	Motivations
	A Proviso for Safety Properties
	A Proviso for Liveness Properties
	Experiments
	Conclusion

	Cartesian Partial-Order Reduction
	Introduction
	Partial Order Reduction
	Main Results

	Overview
	Basic Definitions
	Cartesian Partial Order Reduction
	Cartesian Semantics Versus an Optimal Persistent Sets Algorithm

	Computing Cartesian Vectors
	Model Checking Algorithm
	Experimental Evaluation
	Related Work
	Conclusions
	Benchmarks Description
	Robots
	CMIS
	SharedArray
	SharedPtr
	Indexer
	File System
	Dining Philosophers

	On-the-Fly Dynamic Dead Variable Analysis
	Introduction
	Related Work
	DVA Maximal Reduction
	Maximal Dynamic Dead Variable Analysis
	Results
	Conclusions and Future Work

	SAT-Based Summarization for Boolean Programs
	Introduction
	Background
	Bounded Model Checking
	Semantics of Boolean Programs

	Summarization Using QBF
	Universal Summaries
	Benchmarks
	Conclusion

	LTL Satisfiability Checking
	Introduction
	Theoretical Background
	Tools Tested
	Explicit Tools
	Symbolic Tools

	Experimental Methods
	Performance Evaluation
	Input Formulas

	Experimental Results
	The Scalability Challenge
	Symbolic Approaches Outperform Explicit Approaches

	Discussion

	An Embeddable Virtual Machine for State Space Generation
	Introduction
	Virtual Machine Specification
	Machine State
	Invariants
	Byte-Code Semantics
	Scheduling

	Applications
	Promela
	An External-Memory Model Checker
	NIPS and DiVinE
	Model Checking Embedded Systems Software

	Related Work
	Promela Semantics
	Virtual Machines

	Conclusions
	Benchmarks

	Scalable Multi-core LTL Model-Checking
	Introduction
	Parallel LTL Model-Checking Algorithms
	Implementation Techniques
	Shared-Memory Platform
	Implementing Algorithms in Shared-Memory
	Communication
	Memory Allocation
	Efficient Termination Detection
	Implementing OWCTY in Shared-Memory

	Experiments
	Methodology
	Results
	Comparison with SPIN

	Conclusions

	A SystemC/TLM Semantics in Promela and Its Possible Applications
	Introduction
	Transaction Level Modeling with SystemC
	Subset of SystemC
	A Simple Example

	Expressing SystemC Semantics in Promela
	General Ideas
	Intuitive Idea: Representation with Automata
	Detailed Encoding
	Validation of the Semantics
	Alternative Encoding

	Verification
	Generic Properties
	Checking Assertions
	Benchmarks
	Comments on Performance

	Related Work
	Further Work and Conclusion

	Towards Model Checking Spatial Properties with SPIN
	Introduction
	Spatial Logic for Spin
	Computational Model
	Logic Syntax
	Semantics
	Examples
	Applications

	Model Checking
	Basic Algorithm
	Spatial Equivalences
	Exploiting Simulations

	Experiments
	Conclusion

	Model Extraction for ARINC 653 Based Avionics Software
	Introduction
	Model Extraction with Well-Defined APIs
	The ARINC API for Avionics Software: APEX Interface
	Modelling Processes
	Modelling the Process Scheduling

	Modelling Time
	Life-Cycle of Time Events
	Implementing and Using Time Events

	Experimental Results
	Testing the Model of the API
	Related Work
	Conclusions
	Code of the Example
	Test Case Checking SET_PRIORITY

	BEEM: Benchmarks for Explicit Model Checkers
	Introduction
	Experimental Work in Model Checking
	BEEM
	Summary

	C.OPEN and ANNOTATOR: Tools for On-the-Fly Model Checking C Programs
	Introduction
	Software Architecture
	Conclusion and Future Work

	ACSAR: Software Model Checking with Transfinite Refinement
	Introduction
	A Motivating Example
	Loop Abstraction Approach
	How Does ACSAR Abstract Loops?

	ACSAR in Short
	Experimental Evaluation

	Instrumenting C Programs with Nested Word Monitors
	Introduction
	Language Description
	Implementation and Case Studies

	Author Index

