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Abstract. We describe a method for computing an exact minimal au-
tomaton to act as an intermediate assertion in assume-guarantee rea-
soning, using a sampling approach and a Boolean satisfiability solver.
For a set of synthetic benchmarks intended to mimic common situations
in hardware verification, this is shown to be significantly more effective
than earlier approximate methods based on Angluin’s L* algorithm. For
many of these benchmarks, this method also outperforms BDD-based
model checking and interpolation-based model checking.

1 Introduction

Compositional verification is a promising approach for alleviating the state-
explosion problem in model checking. This technique decomposes the verification
task for the system into simpler verification problems for the individual compo-
nents of the system. Consider a system M composed of two components M1 and
M2, and a property P that needs to be verified on M . The assume-guarantee
style for compositional verification uses the following inference rule:

〈true〉 M1 〈A〉
〈A〉 M2 〈P 〉

〈true〉 M1 ‖ M2 〈P 〉
(1)

This rule states that P can be verified on M by identifying an assumption A
such that: A holds on M1 in all environments and M2 satisfies P in any environ-
ment that satisfies A. In a language-theoretic framework, we model a process as
a regular language, specified by a finite automaton. Process composition is inter-
section of languages, and a process satisfies a property P when its intersection
with L(¬P ) is empty. The above inference rule can thus be written as:

L(M1) ⊆ L(A)
L(A) ∩ L(M2) ∩ L(¬P ) = ∅

L(M1) ∩ L(M2) ∩ L(¬P ) = ∅
(2)

Let us designate the intersection of L(M2) and L(¬P ) as M ′
2. The problem of

constructing an assume-guarantee argument then amounts to finding an automa-
ton A that separates L(M1) and L(M ′

2), in the sense that L(A) accepts all the
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strings in L(M1), but rejects all the strings in L(M ′
2). Clearly, we would like

to find an automaton A with as few states as possible, to minimize the state-
explosion problem in checking the antecedents of the assume-guarantee rule.

For deterministic automata, the problem of finding a minimum-state sep-
arating automaton is NP-complete. It is reducible to the problem of finding a
minimal-state implementation of an Incomplete Deterministic Finite Automaton
(IDFA), shown to be NP-complete by Pfleeger [Pfl73]. To avoid this complex-
ity, Cobleigh et al. proposed a polynomial-time approximation method [CGP03]
based on a modification of Angluin’s L* algorithm [Ang87, RS89] for active
learning of a regular language. The primary drawback of this approach is that
there is no approximation bound; in the worst case, the algorithm will return the
trivial solution L(M1) as the separating language, and thus provide no benefit in
terms of state space reduction that could not be obtained by simply minimizing
M1. Alur et al. [AMN05] have presented a symbolic implementation of this ap-
proach, which suffers from the same drawback. In fact, in our experiments with
hardware verification problems, the L*-based approach failed to produce a state
reduction for any of our benchmark problems.

In this paper, we argue that it may be worthwhile to solve the minimal sep-
arating automaton problem exactly. Since the overall verification problem is
PSPACE-complete when M1 and M ′

2 are expressed symbolically, there is no
reason to require that the sub-problem of finding an intermediate assertion be
solved in polynomial time. Moreover, the goal of assume-guarantee reasoning is
a verification procedure with complexity proportional to |M1|+ |M ′

2| rather than
|M1| × |M ′

2|, where |M | denotes the textual size of M . If this is achieved, it may
not matter that the overall complexity is exponential in |A|, provided A is small.

With this rationale in mind, we present an exact approach to the minimal sep-
arating automaton problem, suited to assume-guarantee reasoning for hardware
verification. We apply the sampling-based algorithm used by Pena and Oliveira
[PO98] for the IDFA minimization problem. This algorithm iteratively generates
sample strings in L(M1) and L(M ′

2), computing at each step a minimal automa-
ton consistent with the sample set. Finding a minimal automaton consistent
with a set of labeled strings is itself an NP-complete problem [Gol78], and we
solve it using a Boolean Satisfiability (SAT) solver. We use the sampling ap-
proach here because the standard techniques for solving the IDFA minimization
problem [KVBSV97] require explicit state representation, which is not practical
for hardware verification.

For hardware applications, we must also deal with the fact that the alphabet
is exponential in the number of Boolean signals connecting M1 and M ′

2. This
difficulty is also observed in L*-based approaches, where the number of queries
is proportional to the size of the alphabet. We handle this problem by learning
an automaton over a partial alphabet and generalizing to the full alphabet using
Decision Tree Learning [Mit97] methods.

Using a collection of synthetic hardware benchmarks, we show that our ap-
proach is effective in producing exact minimal intermediate assertions in cases
where the approximate L* approach yields no reduction. In some cases, our
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method also provides a substantial reduction in overall verification time com-
pared to direct model checking using state-of-the-art methods.

2 Preliminaries

2.1 Deterministic Finite Automaton

Definition 1. A Deterministic Finite Automaton (DFA) M is a tuple
(S, Σ, s0, δ, F ) where: (1) S is a finite set of states, (2) Σ is a finite alpha-
bet, (3) δ : S × Σ → S is a transition function, (4) s0 ∈ S is the initial state,
and (5) F ⊆ S is the set of accepting states.

Definition 2. An Incomplete Deterministic Finite Automaton (IDFA) M is a
tuple (S, Σ, δ, s0, F, R) where: (1) S is a finite set of states, (2) Σ is a finite
alphabet, (3) δ : S × Σ → (S ∪ {⊥}) is a partial transition function, (4) s0 ∈ S
is the initial state, (5) F ⊆ S is the set of accepting states, and (6) R ⊆ S is
the set of rejecting states.

Intuitively, an IDFA is incomplete because some states may not have outgoing
transitions for the complete alphabet, and some states are neither accepting nor
rejecting. If there is no transition from state s on symbol a then δ(s, a) = ⊥. For
both DFA’s and IDFA’s we extend the transition function δ in the usual way to
apply to strings. That is, if π ∈ Σ∗ and a ∈ Σ then δ(s, πa) = δ(δ(s, π), a) when
δ(s, π) �= ⊥ and δ(s, πa) = ⊥ otherwise.

A string s is accepted by a DFA M if δ(s0, s) ∈ F , otherwise s is rejected by
M . A string s is accepted by an IDFA if δ(q0, s) ∈ F . A string s is rejected by
an IDFA M if δ(q0, s) ∈ R.

Given two languages L1, L2 ⊆ Σ∗, we will say that a DFA or IDFA separates
L1 and L2 when it accepts all strings in L1 and rejects all strings in L2. A min-
imal separating automaton (MSA) for L1 and L2 is an automaton with minimal
number of states separating L1 and L2 (we will apply this notion to either DFA’s
or IDFA’s as the context warrants).

3 The L* Approach

For comparison purposes, we first describe the L*-based approximation method
for learning separating automata [CGP03]. In the L* algorithm, a learner infers
the minimal DFA A for an unknown regular language L by posing queries to a
teacher. In a membership query, the learner provides a string π, and the teacher
replies yes if π ∈ L and no otherwise. In an equivalence query, the learner
proposes an automaton A, and the teacher replies yes if L(A) = L and otherwise
provides a counterexample. The counterexample may be positive (i.e., a string
in L \ L(A)) or negative (i.e., a string in L(A) \ L). Angluin [Ang87] gave an
algorithm for the learner that guarantees to discover A in a number of queries
polynomial in the size of A.
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Cobleigh et al. [CGP03] modified this procedure to learn a separating automa-
ton for two languages L1 and L2. Their procedure differs from the L* algorithm
in the responses provided by the teacher. In the case of an equivalence query, the
teacher responds yes if A is a separating automaton for L1 and L2. Otherwise, it
provides either a positive counterexample as a string in L1 \ L(A) or a negative
counterexample as a string in L2 ∩ L(A). To a membership query on a string π,
the teacher responds yes if π ∈ L1 and no if π ∈ L2. If π is in neither L1 nor L2,
the choice is arbitrary. Since the teacher does not know the minimal separating
automaton, it cannot provide the correct answer, so it simply answers no. Thus,
in effect, the teacher is asking the learner to learn L1, but is willing to accept
any guess that separates L1 and L2. Using Angluin’s algorithm for the learner,
we can show that the learned separating automaton A has no more states that
the minimal automaton for L1. This can, however, be arbitrarily larger than the
minimal separating automaton.

As in Angluin’s original algorithm, the number of queries is polynomial in the
size of A, and in particular, the number of equivalence queries is at most the
number of states in A. In the assume-guarantee application, L1 = L(M1) and
L2 = L(M ′

2). For hardware verification, M1 and M ′
2 are Nondeterministic Finite

Automata (NFA’s) represented symbolically (the nondeterminism arising from
hidden inputs and from the construction of the automaton for ¬P ). Answer-
ing a membership query is therefore NP-complete (essentially a bounded model
checking problem) while answer an equivalence query is PSPACE-complete (a
symbolic model checking problem). Thus, in practice the execution time of the
algorithm is singly exponential in |M1| and |M ′

2|.

4 Solving the Minimal Separating Automaton Problem

To find an exact MSA for two languages L1 and L2, we will follow the general
approach of Pena and Oliveira [PO98] for minimizing IDFA’s. This is a learning
approach that uses only equivalence queries. It relies on a subroutine that can
compute a minimal DFA separating two finite sets of strings. Although Pena
and Oliveira’s work is limited to finite automata, the technique can be applied
to any languages L1 and L2 that have a regular separator, even if L1 and L2 are
themselves not regular.

The overall flow of our procedure for computing the MSA for two languages
is shown in Algorithm 1. We maintain two sets of sample strings, S1 ⊆ L1 and
S2 ⊆ L2. The main loop begins by computing a minimal DFA A that separates
S1 and S2 (using the SampleMSA algorithm described below). The learner then
performs an equivalence query on A. If A separates L1 and L2, the procedure
terminates. Otherwise, we obtain a counterexample string π from the teacher.
If π ∈ L1 (and consequently, π �∈ L(A)) we add π to S1, else we add π to S2.
This procedure is repeated until an equivalence query succeeds. In the figure, we
test first for a negative counterexample, and then for a positive counterexample.
This order is arbitrary, and in practice we choose the order randomly for each
query to avoid biasing the result towards L1 or L2.
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Algorithm 1. Computing an MSA for two languages
LangMSA (L1, L2)
1: S1 = {}; S2 = {};
2: while (1) do
3: Let A be an MSA for S1 and S2;
4: if L1 ⊆ L(A) then
5: if L(A) ∩ L2 = ∅ then
6: return true; (A separates L1 and L2, property holds)
7: else
8: Let π ∈ L2 and π ∈ L(A); (negative counterexample)
9: if π ∈ L1 then

10: return false; (L1 and L2 are not disjoint, property fails)
11: else
12: S1 = S1 ∪ {π};
13: else
14: Let π ∈ L1 and π �∈ A; (positive counterexample)
15: if π ∈ L2 then
16: return false; (L1 and L2 are not disjoint, property fails)
17: else
18: S2 = S2 ∪ {π};

The teacher in this procedure can be implemented using a model checker. That
is, the checks L1 ⊆ L(A) and L(A) ∩ L2 = ∅ are model checking problems. In
our application, L1 and L2 are the languages of symbolically represented NFA’s,
and we use symbolic model checking methods [McM93] to perform the checks
(note that testing containment in L(A) requires complementing A, but this is
straightforward since A is deterministic).

Theorem 1. Let L1, L2 ⊆ Σ∗, for finite Σ. If L1 and L2 have a regular sepa-
rator, then Algorithm LangMSA terminates and outputs a minimal separating
automaton for L1 and L2.

Proof. Let A′ be a minimal-state separating automaton for L1 and L2 with
k states. Since S1 ⊆ L1 and S2 ⊆ L2, it follows that A′ is also a separating
automaton for S1 and S2. Thus, A has no more than k states (since it is a
minimal separating automaton for S1 and S2). Thus, if the procedure terminates,
A is a minimal separating automaton for L1 and L2. Moreover, there are finitely
many DFA’s over finite Σ with k states. At each iteration, one such automaton
is ruled out as a separator of S1 and S2. Thus, the algorithm must terminate. �

It now remains only to find an algorithm to compute a minimal separating
automaton for the finite languages S1 and S2. This problem has been studied
extensively, and is known to be NP-complete [Gol78]. To solve it, we will borrow
from the approach of Oliveira and Silva [OS98].

Definition 3. An IDFA M = (S, Σ, s0, δ, F, R) is tree-like when the relation
{(s1, s2) ∈ S2 | ∃a. δ(s1, a) = s2} is a directed tree rooted at s0.
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Given any two disjoint finite sets of strings S1 and S2, we can construct a tree-like
IDFA that accepts S1 and rejects S2, which we will call TreeSep(S1, S2).

Definition 4. Let S1, S2 ⊆ Σ∗ be disjoint, finite languages. The tree-like sep-
arator TreeSep(S1, S2) for S1 and S2 is the tree-like DFA (S, Σ, s0, δ, F, R)
where S is the set of prefixes of S1 ∪S2, s0 is the empty string, F = S1, R = S2,
and δ(π, a) = πa if πa ∈ S else δ(π, a) = ⊥.

Oliveira and Silva [OS98] showed that every IDFA A that separates S1 and S2
is homomorphic to TreeSep(S1, S2) in a sense we will define. Thus, to find a
separating automaton A of k states, we have only to guess a map from the states
of TreeSep(S1, S2) to the states of A and construct A accordingly. We will call
this process folding.

Definition 5. Let M = (S, Σ, s0, δ, F, R) and M ′ = (S′, Σ, s′0, δ′, F ′, R′) be two
IDFA’s over alphabet Σ. The map φ : S → S′ is a folding of M onto M ′ when :

– φ(s0) = s′0,
– for all s ∈ S, a ∈ Σ, if δ(s, a) �= ⊥ then δ′(φ(s), a) = φ(δ(s, a)),
– for all s ∈ F , φ(s) ∈ F ′, and
– for all s ∈ R, φ(s) ∈ R′.

The following lemma says that every separating IDFA for S1 and S2 can be
obtained as a folding of the tree-like automaton TreeSep(S1, S2). The map is
easily obtained by induction over the tree.

Lemma 1 (Oliveira and Silva). Let T = (S, Σ, s0, δ, F, R) be a tree-like
IDFA, with accepting set S1 and rejecting set S2. Then IDFA A over Σ is a
separating automaton for S1 and S2 if and only if there exists a folding φ from
T to A.

Now we will show how to construct a folding of the tree T by partitioning its
states. If Γ is a partition of a set S, we will denote by [s]Γ the element of Γ
containing element s of S.

Definition 6. Let M = (S, Σ, s0, δ, F, R) be an IDFA over Σ. A consistent
partition of M is a partition Γ of S such that

– for all s, t ∈ S, a ∈ Σ, if δ(s, a) �= ⊥ and δ(t, a) �= ⊥ and [s]Γ = [t]Γ then
[δ(s, a)]Γ = [δ(t, a)]Γ , and

– for all s ∈ F and t ∈ R, [s]Γ �= [t]Γ .

Definition 7. Let M = (S, Σ, s0, δ, F, R) be an IDFA and let Γ be a consistent
partition of S. The quotient M/Γ is the IDFA (Γ, Σ, s′0, δ

′, A′, R′) such that

– s′0 = [s0]Γ ,
– δ′(s′, a) = �{δ(s, a) | [s]Γ = s′},
– F ′ = {[s]Γ | s ∈ F}, and
– R′ = {[s]Γ | s ∈ R}.
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In the above definition, � represents the least upper bound in the lattice with
partial order � ; containing the bottom element ⊥, the top element � and the
elements of S; such that for all s, t ∈ S if s �= t then s �� t. Consistency guarantees
that the least upper bound is never �.

Theorem 2. Let T be a tree-like IDFA with accepting set S1 and rejecting set
S2. There exists an IDFA of k states separating S1 and S2 exactly when T has
a consistent partition Γ of cardinality k. Moreover, T/Γ separates S1 and S2.

Proof. Suppose Γ is a consistent partition of S(T ). It follows that the function
φ mapping s to [s]Γ is a folding of T onto T/Γ . Thus, by the lemma, T/Γ is
separates S1 and S2, and moreover it has k states. Conversely, suppose A is an
IDFA of k states separating S1 and S2. By the lemma, there is a folding φ from
T to A. By the definition of folding, the partition induced by φ is consistent and
has (at most) k states. �

According to this theorem, to find a minimal separating automaton for two
disjoint finite sets S1 and S2, we have only to construct a corresponding tree-
like automaton T , and then find the minimal consistent partition Γ of S(T ).
The minimal automaton A is then T/Γ .

We use a SAT solver to find the minimal partition, using the following en-
coding of the problem of existence of a consistent partition of k states. Let
n = �log2k�. For each state s ∈ S(T ), we introduce a vector of Boolean variables
v̄s = (v0

s . . . vn−1
s ). This represents the number of the partition to which s is

assigned (and also the corresponding state of the quotient automaton). We then
construct a set of Boolean constraints that guarantee that the partition is consis-
tent. First, for each s, we must have v̄s < k (expressed over the bits of v̄s). Then,
for every pair of states s and t that have outgoing transitions on symbol a, we
have a constraint v̄s = v̄t ⇒ v̄δ(s,a) = v̄δ(t,a) (that is, the partition must respect
the transition relation). Finally, for every pair of states s ∈ F and t ∈ R, we have
the constraint v̄s �= v̄t (that is, a rejecting state and an accepting state cannot be
put in the same partition). We call this set of constraints SatEnc(T ). A truth as-
signment ψ satisfies SatEnc(T ) exactly when the partition Γ = {Γ0, . . . , Γk−1}
is a consistent partition of T where Γi = {s ∈ S | v̄s = i}. Thus, from a satisfying
assignment, we can extract a consistent partition.

Algorithm 2 outlines our approach for computing a minimal separating au-
tomaton for two finite languages. Note that the quotient automaton T/Γ is an
IDFA. We can convert this to a DFA by completing the partial transition func-
tion δ in any way we choose (for example, by making all the missing transitions
go to a rejecting state), yielding an DFA that separates S1 and S2.

This completes the description of our LangMSA procedure for computing
an MSA for two languages L1 and L2. To find an intermediate assertion for
assume-guarantee reasoning, we have only to compute an MSA for L(M1) and
L(M ′

2), using LangMSA.
Let us now consider the overall complexity of assume-guarantee reasoning

using the LangMSA algorithm. We will assume that M1 and M ′
2 are expressed

symbolically as Boolean circuits with textual size |M1| and |M ′
2| respectively. The
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Algorithm 2. Computing an MSA for two finite languages, using SAT encoding
SampleMSA (S1, S2)
1: Let T = TreeSep(S1, S2);
2: Let k = 1;
3: while (1) do
4: if SatEnc(T ) is satisfiable then
5: Let ψ be a satisfying assignment of SatEnc(T );
6: Let Γ = {{s ∈ S(T ) | v̄s = i} | i ∈ 0 . . . k − 1};
7: Let A = T/Γ ;
8: Extend δ(A) to a total function;
9: return DFA A

10: Let k = k + 1;

number of states of these DFA’s is then O(2|M1|) and O(2|M
′
2|) respectively. Let

|A| be the textual size of the MSA (note this is proportional to both the number
of states and the size of Σ). Each iteration of the main loop involves solving
the SAT problem SatEnc(T ) and solving two model checking problems. The
SAT problem can, in the worst case, be solved by enumerating all the possible
DFA’s of the given size, and thus is O(2|A|). The model checking problems are
O(|A| × 2|M1|) and O(|A| × 2|M

′
2|). The number of iterations is at most 2|A|,

the number of possible automata, since each iteration rules out one automaton.
Thus the overall run time is O(2|A|(2|A| + |A| × (2|M1| + 2|M

′
2|))). This is singly

exponential in |A|, |M1| and |M ′
2|, but notably we do not incur the cost of

computing the product of M1 and M2. Fixing the size of A, we have simply
O(2|M1| + 2|M

′
2|).

Unfortunately, |A| is worst-case exponential in |M1|, since in the worst case
we have L(A) = L(M1). This means that the overall complexity is doubly ex-
ponential in the input size. It may seem illogical to apply a doubly exponential
algorithm to a PSPACE-complete problem. However, we will observe that in
practice, if there is a small intermediate assertion, this approach can be more
efficient than singly exponential approaches. In the case when the alphabet
is large, however, we will need some way to compactly encode the transition
function.

4.1 Optimizations

We use two optimizations to the above approach that effectively reduce the size
of the search space when finding a consistent partition of T . First, we exploit
the fact that L(M1) is prefix closed in the case of hardware verification (on the
other hand L(M ′

2) may not be prefix closed, since it includes the negation of
the property P ). This means that if string π is in the accepting set of T , we
can assume that all its prefixes are accepted as well. This allows us to mark the
ancestors of any accepting state of T as accepting, thus reducing the space of
consistent partitions. In addition, since M1 is prefix closed, it follows that there
is a prefix closed intermediate assertion and we can limit our search to prefix
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closed languages. These languages can always be accepted by an automaton with
a single rejecting state. Thus, we can group all the rejecting states into a single
partition, again reducing the space of possible partitions.

Our second optimization is to compute the consistent partition incrementally.
We note that each new sample obtained as a counterexample from the teacher
adds one new branch to the tree T . In our first attempt to obtain a partition
we restrict all the pre-existing states of T to be in the same partition as in the
previous iteration. Only the partitions of the new states of T can be chosen. This
forces us, if possible, to maintain the old behavior of the automaton A for all
the pre-existing samples and to change only the behavior for the new sample. If
this problem is infeasible, the restriction is removed and the algorithm proceeds
as usual. Heuristically, this tends to reduce the SAT solver run time in finding a
partition, and also tends to reduce the number of samples, perhaps because the
structure of the automaton remains more stable.

5 Generalization with Decision Tree Learning

As mentioned earlier, in hardware verification, the size of the alphabet Σ is
exponential in the number of Boolean signals passing between M1 and M2. This
means that in practice the samples we obtain of L(M1) and L(M ′

2) can contain
only a minuscule fraction of the alphabet symbols. Thus, the IDFA A that we
learn will also contain transitions for just a small fraction of Σ. We therefore
need some way to generalize from this IDFA to a DFA over the full alphabet in a
reasonable way. This is not a very well-defined problem. In some sense we would
like to apply Occam’s razor, inferring the “simplest” total transition function
that is consistent with the partial transition function of the IDFA. There might
be many ways to do this. For example, if the transition from a given state on
symbol a is undefined in the IDFA, we could map it to the next state for the
nearest defined symbol, according to some distance measure.

The approach we take here is to use decision tree learning methods to try to
find the simplest generalization of the partial transition function as a decision
tree. Given an alphabet symbol, the decision tree branches on the values of the
Boolean variables that define the alphabet, and at its leaves gives the next state
of the automaton. We would like to find the simplest decision tree expressing
a total transition function consistent with the partial transition function of the
IDFA. Put another way, we can think of the transition function of any state
as a classifier, classifying the alphabet symbols according to which state they
transition to. The partial transition function can be thought of as providing
“samples” of this classification and we would like to find the simplest decision
tree that is consistent with these samples. Intuitively, we expect the intermediate
assertion to depend on only a small set of the signals exchanged between M1
and M2, thus we would like to bias the procedure toward transition functions
that depend on few signals. To achieve this, we use the ID3 method for learning
decision trees from examples [Qui86].
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This allows us (line 8 of Algorithm 2) to generalize the IDFA to a symbolically
represented DFA that represents a guess as to what the full separating language
should be, based on the samples of the alphabet seen thus far. If this guess is
incorrect, the teacher will produce a counterexample that refutes it, and thus
refines the next guess.

6 Results

We have implemented our techniques on top of Cadence SMV [McM]. The user
specifies a decomposition of the system into two components. We use Cadence
SMV as our BDD-based model checker to verify the assumptions, and also as
our incremental BMC engine to check whether counterexamples are real. We
use an internally developed SAT solver. We implemented a variant of the ID3
[Qui86] algorithm to generate decision trees. We also implemented the L*-based
approach (Lstar) proposed by Cobleigh et al. [CGP03], using the optimized
version of the L* algorithm suggested by Rivest and Schapire [RS89]. All out
experiments were carried on a 3GHz Intel Xeon machine with 4GB memory,
running Linux. We used a timeout of 1000s for our experiments. We compared
our approach against Lstar, and the Cadence SMV implementation of standard
BDD-based model checking and interpolation-based model checking.

We generated two sets of benchmarks for our experiments. For all our bench-
marks, the property is true and all the circuit elements are essential for proving
the property. Therefore localization-based verification techniques will not be ef-
fective. These benchmark sets are representative of the following typical scenario.
A component of the system is providing a service to the rest of the system. The
system is feeding data into the component and is reading data from the com-
ponent. The verification task is to ensure that the data flowing through the
system is not corrupted. This property can be verified by using a very simple
assumption about the component. The assumption essentially states that the
component does not corrupt the data. For example: consider a processor and
memory communicating over a bus. In order to prove the correctness of the be-
havior of the processor on some instruction sequence, the only assumption that
the bus needs to satisfy is that it transfers that data correctly. Any buffering or
arbitration that happens on the bus is irrelevant.

Each circuit in the first benchmark set consists of a sequence of 3 shift reg-
isters: R1, R2 and R3, such that R1 feeds into R2 and R2 feeds into R3. The
property that we want to prove is that we see some (fixed) symbol a at the out-
put of R3 only if it was observed at the input of R1. We varied the lengths and
widths of the shift registers. Our results are shown in Table 1. For the circuit
S m n o, m is the width of the shift registers, n is the length of R2, and o is the
length of R1 and R3. In our decomposition, M1 consists of R2, and M2 consists
of R1 and R2. We compare our approach against Lstar. These benchmarks
were trivial (almost 0s runtime) for BDD-based and interpolation-based model
checking. For Lstar, we report the total running time (Time), the number of
states in the assumption DFA (States), and the number of membership queries



430 A. Gupta, K.L. McMillan, and Z. Fu

Table 1. Comparison of LangMSA against Lstar on simple shift register based bench-
marks

Circuit Lstar LangMSA

Time(s) States Queries Iter MC(s) Max(s) Chk(s) States Time(s)
S 1 6 3 338.81 65 16703 9 0.28 0.04 0.00 3 0.35
S 1 8 4 80 25679 9 0.37 0.04 0.00 3 0.44
S 1 10 4 78 24413 9 0.28 0.04 0.00 3 0.37
S 2 6 3 45 32444 27 1.31 0.04 0.01 3 1.29
S 2 8 4 43 29626 27 1.56 0.08 0.01 3 1.77
S 2 10 4 41 26936 27 1.83 0.09 0.01 3 2.11
S 3 6 3 24 35350 91 5.46 0.09 0.03 3 7.48
S 3 8 4 22 30997 90 10.68 0.28 0.03 3 14.36
S 3 10 4 21 26899 90 21.39 0.69 0.04 3 27.23

(Queries). In case of a timeout, we report the number of states, and queries made,
for the last generated DFA. For our approach, we report the number of model
checking calls (Iter), time spent in model checking (MC), maximum time spent
in a model checking run (Max), time spent in counterexample checks (Chk),
number of states in the assumption DFA (States), and the total running time
(Time). A ’ ’ symbol indicates a timeout. On this benchmark set, our approach
clearly outperforms Lstar both in the total runtime and in the size of the as-
sumption automaton. Our approach identifies the 3 state assumption, which says
that a can be seen at the output of M1 only if a has been inputted into M1.
Lstar only terminates on S 1 6 3, where it learns the assumption of size 65,
which is the same as M1.

For the second benchmark set, we replaced the shift registers with circular
buffers. We also allowed multiple parallel circular buffers in R2. Our results are
shown in Table 2. For the circuit C m n o p, m is the width of the circular
buffers, n is the number of parallel circular buffers in R2, o is the length of

Table 2. Comparison of LangMSA against BDD-based model checking and Lstar

on circular buffer based benchmarks

Circuit BDD Lstar LangMSA

Time(s) States Queries Iter MC(s) Max(s) Chk(s) States Time(s)
C 1 1 6 3 23.61 78 22481 29 2.09 0.17 0.05 3 2.42
C 1 1 8 4 198.36 78 22481 27 2.84 0.21 0.05 3 3.09
C 1 1 10 5 78 22481 33 3.99 0.42 0.89 3 4.41
C 1 2 6 3 57 16433 33 8.68 3.43 0.76 3 8.96
C 1 2 8 4 57 16433 26 531.92 521.89 0.05 3 532.14
C 2 1 6 3 30 26893 128 21.27 0.52 0.10 3 23.55
C 2 1 8 4 30 26893 102 25.62 3.21 0.06 3 26.48
C 2 1 10 5 30 26893 152 63.39 5.75 0.17 3 65.79
C 3 1 6 3 12 33802 427 569.50 19.90 0.23 3 622.15
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the buffers in R2, and p is the length of R1 and R3. We report the total run-
ning time (Time) of BDD-based model checking. Lstar and interpolation-based
model checking timed-out for all these benchmarks. On this benchmark set, our
approach learns the smallest separating assumption and can scale to much larger
designs compared to Lstar, interpolation-based model checking and BDD-based
model checking.

7 Conclusion and Future Work

We have presented an automated approach for assume-guarantee reasoning that
generates the smallest assumption DFA. Our experiments indicate that this tech-
nique can outperform existing L*-based approaches for computing an assumption
automaton that is not guaranteed to be minimal. For many of our benchmarks,
our approach performed better than state-of-the-art non-compositional methods
as well.

There are many directions for future research: (1) Our framework only uses
equivalence queries. Can membership queries be used for enhancing our tech-
nique? (2) Can the performance of our algorithm be improved by imposing
additional restrictions on the assumption? For example: if we assume that the as-
sumption language is stuttering closed, it can prune out long repeating sequences
from the counterexamples. (3) Which generalization techniques (besides decision
tree learning) would be effective in out framework? (4) Can we learn a parallel
composition of DFAs?
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