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Preface

This volume contains the proceedings of the International Conference on Com-
puter Aided Verification (CAV), held in Berlin, Germany, July 3–7, 2007. CAV
2007 was the 19th in a series of conferences dedicated to the advancement of the
theory and practice of computer-assisted formal analysis methods for software
and hardware systems. The conference covers the spectrum from theoretical re-
sults to concrete applications, with an emphasis on practical verification tools
and the algorithms and techniques that are needed for their implementation.

We received 134 regular paper submissions and 39 tool paper submissions.
Of these, the Program Committee selected 33 regular papers and 14 tool papers.
Each submission was reviewed by at least three members of the Program Com-
mittee. The reviewing process included a PC review meeting, and – for the first
time in the history of CAV – an author feedback period. About 50 additional
reviews were provided by experts external to the Program Committee to assure
a high quality selection.

The CAV 2007 program included three invited talks from industry:

– Byron Cook (Microsoft Research) on Automatically Proving Program Ter-
mination,

– David Russinoff (AMD) on A Mathematical Approach to RTL Verification,
and

– Thomas Kropf (Bosch) on Software Bugs Seen from an Industrial Perspec-
tive.

The conference featured four tutorials:

– Tom Henzinger (EPFL) on Modeling, Verification, and Synthesis of Compo-
nent Interfaces,

– Natarajan Shankar (SRI) on A Tutorial on Satisfiability Modulo Theories,
– Gary T. Leavens (Iowa State University) on A JML Tutorial: Modular Spec-

ification and Verification of Functional Behavior for Java, and
– Martin Fränzle (Carl von Ossietzky Universität Oldenburg) on Verification

of Hybrid Systems.

CAV 2007 had seven affiliated workshops:

– AHA 2007: International Symposium on Automatic Heap Analysis
– ARTIST2 Workshop on Tool Platforms for Modelling, Analysis and Valida-

tion of Embedded Systems
– FMICS 2007: 12th Int. Workshop on Formal Methods for Industrial Critical

Systems
– GVD 2007: 3rd German Verification Day
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– PDMC 2007: 6th Int. Workshop on Parallel and Distributed Methods in
verifiCation

– SMT 2007: 5th International Workshop on Satisfiability Modulo Theories
– SPIN 2007: 14th International SPIN Workshop on Model Checking of Soft-

ware

In addition to these events, two tool competitions were held. The third “Satis-
fiability Modulo Theories Competition” and the first “Hardware Model Checking
Competition” reported about their results within the scientific program of CAV
2007.

We gratefully acknowledge financial support for CAV 2007 from the Artist2
Network of Excellence, Cadence Design Systems, the German Science Founda-
tion, IBM, Informatik Saarland, Intel Corporation, Microsoft Research, NEC
and Synopsys.

We thank the Program Committee members, the external experts, and the
sub-referees for their work in evaluating the submissions and assuring a high
quality program. We also thank the Steering Committee and the Chairs of CAV
2006 for their help and advice. The organization of CAV was supported by
AVACS, and we thank Jürgen Niehaus and his team for their excellent support.
Special thanks also to the organizing committee (Christoph Scholl, Universität
Freiburg, workshops; Henning Dierks, OFFIS, tool exhibition; Holger Schlin-
gloff, Humboldt Universität Berlin, local organization). Finally, we thank An-
drei Voronkov for creating and supporting the outstanding EasyChair conference
management system.

July 2007 Werner Damm
Holger Hermanns
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Automatically Proving Program Termination

(Invited Talk)

Byron Cook

Microsoft Research

In this talk I will describe new tools that allow us to automatically prove ter-
mination and other liveness properties of software systems. In particular I will
discuss the Terminator program termination prover and its application to the
problem of showing that Windows device driver event-handling routines always
eventually stop responding to events.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Mathematical Approach to RTL Verification

(Invited Talk)

David M. Russinoff

Advanced Micro Devices, Inc.
david.russinoff@amd.com

The formal hardware verification effort at Advanced Micro Devices, Inc. has
emphasized theorem proving using ACL2, and has focused on the elementary
floating-point operations. Floating-point modules, along with the rest of our
microprocessor designs, are specified at the register-transfer level in a small syn-
thesizable subset of Verilog. This language is simple enough to admit a clear
semantic definition, providing a basis for formal analysis and verification. Thus,
we have developed a scheme for automatically translating RTL code into the
ACL2 logic, thereby reducing the potential for error in the development of for-
mal hardware models.

Formal statements of correctness (IEEE compliance) of arithmetic operations
are encoded in the same language and translated into ACL2 along with the
RTL. Their proofs are developed interactively and mechanically checked with
the ACL2 prover.

Much of the effort involved in this project has been in the development and
formalization of a general theory of floating-point arithmetic and its bit-level
implementation, resulting in an ACL2 library of lemmas pertaining to bit vectors,
logical operations, floating-point representations, and rounding. The library is
publicly available as a part of the standard ACL2 release.

In this talk, I will describe my experience over the past decade in the develop-
ment and application of this methodology. I will describe lessons learned through
the process, especially regarding the relevance of the established principles and
methodologies of both software verification and traditional mathematics to the
hardware problem. Finally, I will discuss prospects for extending these methods
to functional areas beyond the floating-point unit and the ultimate objective of
a fully verified microprocessor design.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Software Bugs Seen from an Industrial

Perspective
or

Can Formal Methods Help on Automotive
Software Development?

(Invited Talk)

Thomas Kropf

Robert Bosch GmbH

Developing software for automotive applications is a challenging task. To stay
competitive conflicting goals must be met: complex and innovative algorithms
with many versions for different car line variants have to be implemented within
the tight resource boundaries of embedded systems; high reliability especially for
safety critical applications like airbag or braking applications has to be ensured
under immense cost pressure. Despite these demanding constraints in recent
years automotive software development has made significant progress in terms
of productivity and quality. All this has been achieved without direct usage of
formal methods.

However, software is still a good part away from being bug-free. If looking
closer it becomes apparent that often unclear specifications or an incomplete
understanding of the application domain is the root cause of erroneous software.
In such cases any validation approach for a given piece of software would not
succeed. Still there are many cases where the software implementation indeed
violates a given specification.

Consequently, the second part of the talk gives a set of application areas
where current development and validation techniques still lead to unsatisfactory
results, i.e., where software bugs are still hard to detect. In these cases, formal
methods may help to improve the current situation. Some examples are given
where and how those approaches are already used or where an introduction into
real-life design flows is imminent. The talk ends with some challenging problems
where basic research is still needed.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, p. 3, 2007.
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Abstract. A temporal interface for a software component is a finite
automaton that specifies the legal sequences of calls to functions that
are provided by the component. We compare and evaluate three dif-
ferent algorithms for automatically extracting temporal interfaces from
program code: (1) a game algorithm that computes the interface as a rep-
resentation of the most general environment strategy to avoid a safety
violation; (2) a learning algorithm that repeatedly queries the program
to construct the minimal interface automaton; and (3) a CEGAR algo-
rithm that iteratively refines an abstract interface hypothesis by adding
relevant program variables. For comparison purposes, we present and
implement the three algorithms in a unifying formal setting. While the
three algorithms compute the same output and have similar worst-case
complexities, their actual running times may differ considerably for a
given input program. On the theoretical side, we provide for each of the
three algorithms a family of input programs on which that algorithm
outperforms the two alternatives. On the practical side, we evaluate the
three algorithms experimentally on a variety of Java libraries.

1 Introduction

Large software systems are built using components and libraries, which are
often developed by different teams, or even different companies. Quality com-
ponent interfaces facilitate the integration and validation process for such sys-
tems. This explains the recent interest in rich interfaces for existing code, such
as software libraries. We consider temporal interfaces [4], which specify the le-
gal sequences of function calls to a library, i.e., those sequences that do not
cause the library to enter an error state. Consider, for example, the library
shown in Fig. 1, which supports read and write accesses to files. The safe
use of the library requires that a file be opened for read or for read-write
access before being read, and be opened for read-write access before being
written. The library interface can be represented by the regular expression
((ropen · read∗ · close) ∪ (rwopen · (read ∪ write)∗ · close))∗. This interface
is both safe, in that it accepts no sequence of function calls that leads to an
error in the library, and permissive, in that it accepts all other sequences.
� This research was supported in part by the grant SFU/PRG 06-3, and by the Swiss

National Science Foundation.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 4–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Algorithms for Interface Synthesis 5

void ropen(File f) {
if (!f.rdflag)

f.rdflag = true;
else

f.error = true; }

void close(File f) {
if (f.rdflag) {
f.rdflag = false;
f.wrflag = false; }

else
f.error = true; }

void rwopen(File f) {
if (!f.rdflag) {
f.rdflag = true;
f.wrflag = true; }

else
f.error = true; }

void read(File f) {
if (!f.rdflag)
f.error = true; }

void write(File f) {
if (!f.wrflag)
f.error = true; }

Fig. 1. Example of a library that supports read and write accesses to files

Several algorithms have been proposed for automatically extracting safe and
permissive temporal interfaces (in the form of finite automata) from library
code. Like many questions of sequential synthesis, interface extraction is fun-
damentally a game problem, namely, the problem to compute the most general
environment strategy for calling library functions without causing a safety vio-
lation. We call the algorithm that solves the safety game on the library code the
‘direct’ algorithm. As the complexity of this algorithm grows with the number
of library states, two very different improvements have been suggested. The first
is based on techniques for learning a finite automaton by repeatedly querying a
teacher [1]. The learning algorithm guarantees the construction of a determin-
istic interface automaton with a minimal number of states, and thus performs
well if the number of states required in the interface is small. The second im-
provement is based on counterexample-guided abstraction refinement [3]. The
CEGAR algorithm computes a library abstraction, then extracts an interface
automaton for the abstract library, then checks if the extracted interface is both
safe and permissive for the concrete library (using two reachability tests), and if
not, iteratively refines the library abstraction [5]. This algorithm performs well
if there exists a small abstraction of the library from which a safe and permissive
interface can be constructed.

Our aim is to compare and analyze the three approaches (direct; learning; and
CEGAR) both theoretically and experimentally. Even though they address the
same problem, the three algorithms proceed very differently. Moreover, the learn-
ing algorithm was published and previously implemented in the context of Java
libraries without guaranteeing interface permissiveness [1], and the CEGAR al-
gorithm was published and previously implemented in the context of C programs
without ensuring interface minimality [5]. For a fair comparison, we formalize
and reimplement all three algorithms in a uniform setting. In order to disregard
orthogonal issues as much as possible, we remove all effects of the programming
language by choosing, as input to the three algorithms, the transition graph of
a library. We assume the transition graphs to be finite-state, so that all three
algorithms are guaranteed to terminate (on infinite-state systems, none of the
algorithms is guaranteed to terminate, although different algorithms may ter-
minate on different inputs). In order to further level the playing field, we add a
permissiveness check to the learning algorithm of [1], and we add a minimization
step to the direct and the CEGAR algorithm. We also make some improvements
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to the published algorithms. For example, we simplify the CEGAR algorithm
by combining the safety and permissiveness checks into a single reachability test
(rather than using two separate tests on different automata, as suggested in [5]).

On the theoretical side, we construct parametric families of input programs
that amplify the differences in the performance of the three algorithms. In exper-
iments, we find that these input families do not represent uninteresting corner
cases, but commonly occur in applications such as Java libraries. As expected,
abstraction refinement performs best if only few program variables1 are needed
to prove an interface both safe and permissive. If this is the case, then the re-
sulting interface automaton has few states. Learning also requires the interface
automaton to be small, and performs better than CEGAR if the interface states
reflect the values of many different program variables. The direct (game) algo-
rithm outperforms both other approaches if the interface is not small, but the
size of the state space is not too large to be explored and minimized (this is
because the direct algorithm does not involve any of the overhead necessary for
either learning or automatic abstraction refinement).

2 Open Programs and Interfaces

We investigate sequences of calls to a software library. We formalize the library
code as an open program. In order to remove language effects, we describe an
open program as a labeled transition graph over a finite set of boolean variables.
The labels are function calls; one of the variables marks the error states. Certain
sequences of function calls may lead the open program to an error state. At
the concrete level, an open program is deterministic, and thus each sequence of
function calls either causes or does not cause an error (this will not be true in
general for abstractions of open programs). The set of all sequences of function
calls that do not cause an error is called the safe and permissive interface of
the open program. We strive to construct a minimal deterministic finite-state
representation of that interface, called an interface automaton.

Finite automata. Consider a finite automaton A = (Q, Σ, q0, δ) with the set Q
of states, the input alphabet Σ, the initial state q0 ∈ Q, and the transition
relation δ ⊆ Q × Σ × Q (there are no accepting states). The automaton A is
serial if for all states q ∈ Q, there exists an input symbol f ∈ Σ and a state q′ ∈ Q
such that (q, f, q′) ∈ δ. The automaton A is input-enabled if for all states q ∈ Q
and all input symbols f ∈ Σ, there exists a state q′ ∈ Q such that (q, f, q′) ∈ δ.
The automaton A is deterministic if for all states q, q′, q′′ ∈ Q and all input
symbols f ∈ Σ, if (q, f, q′) ∈ δ and (q, f, q′′) ∈ δ, then q′ = q′′. The transitive
closure w−→δ of the transition relation is defined as usual: let q

ε−→δ q′ if q = q′,
and let q

f ·w−−→δ q′ if there exists a state q′′ such that (q, f, q′′) ∈ δ and q′′ w−→δ q′.
The reachable region of the automaton is Reach(A) = {q ∈ Q | ∃w : q0

w−→δ q}. A
trace α of A is a finite or infinite sequence 〈p0, f0, p1, f1, . . .〉 such that p0 = q0,

1 We perform abstraction by hiding variables. Similar criteria can be obtained for
predicate abstraction.
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and pj
fj−→δ pj+1 for all j ≥ 0. The word induced by the trace α is the sequence

f0 ·f1 ·f2 · · · of input symbols. The language L(A) is the set of finite and infinite
words w ∈ Σ∗ ∪ Σω such that there exists a trace of A that induces w. The ω-
language Lω(A) is the set of infinite words in L(A); that is, Lω(A) = L(A)∩Σω.

Open programs. An open program P = (X, Σ, s0, ϕ, xe) consists of a finite
set X of boolean variables, whose truth-value assignments [[X ]] represent the
states of the program; a finite alphabet Σ of exported function names; an initial
state s0 ∈ [[X ]]; a set ϕ containing a transition predicate ϕf over X∪X ′ for every
function f ∈ Σ, where the set X ′ contains a primed variable x′ for each variable
x ∈ X ; and an error variable xe ∈ X . The semantics of the open program P
is given by a finite automaton AP = ([[X ]], Σ, s0, δP ) and a set EP of error
states. The transition relation δP is defined by (s, f, t) ∈ δP iff s ∪ t′ satisfies
the transition predicate ϕf , where the state t′ ∈ [[X ′]] is obtained by giving each
primed variable x′ ∈ X ′ the value t(x). We require of every open program P that
the automaton AP be input-enabled. The open program P is concrete if AP is
deterministic. For a concrete open program, in every state, every function call
leads to a unique successor state. We will also consider open programs that result
from abstraction; in general these do not have deterministic transition relations.
The set EP of error states is the set of states s with s(xe) = t. Without loss of
generality we assume that for all states s ∈ EP , if (s, f, s′) ∈ δP , then s′ ∈ EP .

Interfaces. An interface for an open program P is a closed2 (in the Cantor
topology) set of infinite words over the alphabet Σ of function names. A finite
or infinite word w ∈ Σ∗ ∪ Σω is safe for P if for all finite prefixes w′ of w,
if s0

w′−→δP s, then s /∈ EP . A language L ⊆ Σ∗ ∪ Σω is safe for P if every
word in L is safe for P . A language L ⊆ Σ∗ ∪ Σω is permissive for P if L
contains every word that is safe for P . The safe and permissive interface for P
is the set I(P ) ⊆ Σω of infinite words that are safe for P . Interfaces for P
can be specified by serial automata over the input alphabet Σ. We look for
deterministic interface specifications, which can be used to monitor the legality
of a sequence of function calls. Such serial and deterministic automata can be
minimized. Thus, the interface synthesis problem is defined as follows:

Given a concrete open program P , we wish to find the (unique) minimal
serial and deterministic finite automaton B such that the ω-language
Lω(B) is the safe and permissive interface for P ; that is, Lω(B) = I(P ).

Checking interface automata for safety. Let P = (X, Σ, s0, ϕ, xe) be an
open program, and let B = (Q, Σ, q0, λ) be a finite automaton. The product of P
and B is the finite automaton AP × B = (Q×, Σ, q×0 , λ×) with Q× = [[X ]] × Q,
q×0 = (s0, q0), and λ× = {((s, q), f, (s′, q′)) | (s, f, s′) ∈ δP and (q, f, q′) ∈ λ}.
The language L(B) is safe for P iff s /∈ EP for all states (s, q) ∈ Reach(AP × B).
Based on this characterization of safety, we use a procedure checkSafe(P, B) to
check if L(B) is safe for P . If L(B) is safe for P , then checkSafe(P, B) returns
2 A set L of infinite words is closed if for every infinite word w, if every finite prefix

of w is a prefix of some word in L, then w ∈ L.
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Fig. 2. Example concrete open program and the output of the three algorithms

Yes; otherwise it returns a finite trace 〈(s0, q0), f0, (s1, q1), f1, . . . , (sn, qn)〉 of
the product AP × B such that sn ∈ EP .

Checking interface automata for permissiveness. Given an open program
P = (X, Σ, s0, ϕ, xe), the errorless automaton A−

P = ([[X ]], Σ, s0, δ
−
P ) has the

transition relation δ−P = {(s, f, s′) ∈ δP | s′ /∈ EP }. Given a finite automaton
B = (Q, Σ, q0, λ), the serialized automaton B+ = (Q ∪ {qsink}, Σ, q0, λ

+) has
the sink state qsink and the transition relation λ+ = λ ∪ {(q, f, qsink) | q ∈ Q
and f ∈ Σ, and (q, f, q′) /∈ λ for all q′ ∈ Q} ∪ {(qsink, f, qsink) | f ∈ Σ}. We
have the following sufficient condition on permissiveness [5]: the language L(B)
is permissive for P if Reach(A−

P × B+) contains no state of the form (s, qsink).
For deterministic B, the other direction also holds: if L(B) is permissive for P ,
then Reach(A−

P × B+) contains no state of the form (s, qsink). Based on this
characterization of permissiveness, we use, for deterministic B, a procedure
checkPermissive(P, B) to check if L(B) is permissive for P . If L(B) is per-
missive for P , then checkPermissive(P, B) returns Yes; otherwise it returns a
finite trace 〈(s0, q0), f0, (s1, q1), f1, . . . , (sn, qn)〉 of the product A−

P × B+ such
that qn = qsink. The procedures checkSafe(P, B) and checkPermissive(P, B) are
implemented as reachability analyses.

3 Three Algorithms for Interface Synthesis

We discuss three different algorithms for synthesizing interface automata.
Figure 2(a) shows the automaton of a concrete open program, which we use
as an example. The grey circles denote the error states.

3.1 Direct Algorithm

Given a concrete open program P , the algorithm Direct first constructs the er-
rorless automaton A−

P , and then calls the procedure Prune, which prunes the se-
rialized automaton (A−

P )+ backwards, starting from qsink, to eliminate all states
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Algorithm 1. Direct(P )
Input: a concrete open program P = (X, Σ, s0, ϕ, xe)
Output: the minimal serial deterministic automaton B such that Lω(B) = I(P )

return Minimize(Prune(A−
P ))

all of whose successors lead to qsink. The pruning removes all unrecoverable
states of P , from which all infinite input sequences cause an error. Formally,
a state q ∈ Q of a deterministic automaton C = (Q, Σ, q0, λ) is recoverable
if there exists an infinite trace 〈p0, f0, p1, f1, . . .〉 of C such that p0 = q, and
pi �= qsink for all i ≥ 0. This yields a (still deterministic) automaton D, which
we refer as the intermediate automaton obtained in the direct algorithm. Then
the procedure Minimize produces from D a minimal automaton B, using the
DFA minimization algorithm [6]. (More precisely, we serialize D to obtain D+,
and consider the sink state of D+ as rejecting, and all other states as accepting.
We then minimize the automaton and remove the introduced sink state.) The
result B is the minimal serial and deterministic automaton such that Lω(B) is
the safe and permissive interface for P .

Example. Figure 2(b) shows the serialized errorless automaton (C+), its pruned
version (B1), and its minimized version (B2), for the automaton AP from Fig. 2(a)
The grey circles represent the set Err in the procedure Prune. The error states
from EP are unreachable and not shown. The state qS is the sink state qsink.

Time complexity. For an open program with k variables, pruning requires
worst-case time O(|Σ| · 2k). If the pruned automaton D has n states, then sub-
sequent minimization needs O(|Σ| · n · log n) time. The worst case occurs if
n = O(2k), giving a running time of O(|Σ| · k · 2k) for the direct algorithm.

Theorem 1. Given a concrete open program P with variables X and exported
function names Σ, the direct algorithm (Alg. 1) produces the minimal serial and
deterministic finite automaton B such that Lω(B) is the safe and permissive
interface for P , in time linear in |Σ| and exponential in |X |.
Note that if AP is not deterministic, then the pruning performed by the direct
algorithm does not guarantee to result in a safe interface. To work on abstract
open programs, the direct algorithm would have to be preceded by an exponen-
tial determinization step, i.e., subset construction. However, even for concrete
open programs P , where no determinization is necessary, the direct algorithm
needs to explore the entire state space of P and minimize an intermediate au-
tomaton D of possible size O(2k), where k is the number of variables of P . In
software libraries, we expect many recoverable states —i.e., states from which
some sequences of function calls are allowed— and this gives rise to large inter-
mediate automata. Hence the direct algorithm is often too expensive. Therefore
the following two alternative algorithms have been proposed. While no better
in worst-case complexity, in many cases the two alternatives outperform the di-
rect algorithm. They do so by employing very different strategies: the learning
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Algorithm 2. Prune(C)
Input: a deterministic automaton C = (Q, Σ, q0, λ)
Output: a serial deterministic automaton B such that Lω(B) = Lω(C)
Variables: a serial automaton C+, a state qsink �∈ Q, and

three state sets Err ,Wait ,Pre ⊆ (Q ∪ {qsink})
C+ := serialized automaton (Q ∪ {qsink}, Σ, q0, λ

+) for C
Err := {qsink}; Wait := Err
while Wait �= ∅ do

choose s ∈ Wait ; Wait := Wait \ {s}
Pre := {r ∈ Q | (r, f, s) ∈ λ+ for some f ∈ Σ}
for each state r ∈ Pre do

if r /∈ Err and (∀f ∈ Σ : r
f−→λ+ s′ and s′ ∈ Err) then

Err := Err ∪ {r}; Wait := Wait ∪ {r}
return (Q \ Err , Σ, q0, {(q, f, q′) ∈ λ | q′ �∈ Err})

algorithm queries the concrete open program; the CEGAR algorithm automati-
cally constructs and refines an abstract open program.

3.2 Learning Algorithm

An approach based on learning the interface was proposed by Alur et al. [1].
The learning algorithm learns the interface language by asking membership and
equivalence questions to the teacher, i.e., the given concrete open program P .
In a membership question, the algorithm asks whether a particular word is safe
for P or not. In an equivalence question, the algorithm asks if the language of the
conjectured automaton C = (Q, Σ, q0, λ) is safe and permissive for P . To con-
struct the conjectured automaton, the learning algorithm maintains information
about a finite collection of words over Σ in an observation table (R, E, G), where
R and E are finite sets of words over Σ, and G is a function from (R∪(R·Σ))×E
to B. The set R is a set of representative words. For each word r ∈ R that is safe
for P , there exists a state qr in the automaton C such that qε

r−→λ qr. The set E
is a set of suffix words that distinguish the states. For all representative words
r1, r2 ∈ R, there exists a word e ∈ E such that only one of r1 · e and r2 · e is
safe for P . The function G stores the results of the membership questions, i.e., it
maps a pair of two words r ∈ R∪ (R ·Σ) and e ∈ E to t if r · e is safe for P , and
to f otherwise. For a detailed description of the learning algorithm we refer to
Alur et al. [1] (cf. also [2] and [7]). For a fair comparison between the algorithms,
the learning algorithm described here learns the interface from the concrete open
program rather than from a manual abstraction of the same, as proposed by Alur
et al. [1]. Since a concrete open program is deterministic, the learning algorithm
produces an interface that is not only safe, but also permissive.

Algorithm. The learning algorithm starts with R and E set to {ε}, and G is
initialized for every combination of two words from R ∪ (R · Σ) and E using
membership questions (procedure memb). Then, the algorithm checks whether
the table (R, E, G) is closed (procedure checkClosure). If not, the algorithm adds
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Algorithm 3. Learning(P )
Input: a concrete open program P = (X, Σ, s0, ϕ, xe)
Output: the minimal serial deterministic automaton B such that Lω(B) = I(P )
Variables: two sets of words R and E over Σ, two words rnew and enew over Σ

an array G that maps (R ∪ (R · Σ)) × E to B,
an automaton C = (Q,Σ, q0, λ), and
a finite trace α× of a product automaton

R := {ε}; E := {ε}; G[ε, ε] := memb(P, ε · ε);
for each f ∈ Σ do

G[ε · f, ε] := memb(P, ε · f · ε)
while true do

rnew := checkClosure(R, E, G)
while rnew �= Yes do

R := R ∪ {rnew}
for each f ∈ Σ, e ∈ E do

G[rnew · f, e] := memb(P, rnew · f · e)
rnew := checkClosure(R, E, G)

C := makeConjecture(R, E, G)
α× := checkSafe(P, C)
if α× = Yes then

α× := checkPermissive(P, C)
if α× = Yes then

return Prune(C)
w := the word induced by the trace α×

enew := findSuffix(P, R,w); E := E ∪ {enew}
for each r ∈ R and f ∈ Σ do

G[r, enew ] := memb(P, r · enew)
G[r · f, enew ] := memb(P, r · f · enew)

new representative words and rechecks for closure. Once (R, E, G) is closed, an
automaton C is conjectured (procedure makeConjecture). Then, the algorithm
checks if L(C) is safe and permissive for P (this check represents an equiv-
alence question). If not, a counterexample trace is returned. The longest suf-
fix of the counterexample (found by the procedure findSuffix) is added to E,
and the algorithm rechecks for closure. The learning algorithm constructs a
deterministic automaton C whose states correspond to the trace-equivalence
classes of Reach(AP ). Two states s, t ∈ [[X ]] are trace-equivalent if there are no
word w ∈ Σ∗ and no states s′, t′ ∈ [[X ]] such that s

w−→δP s′ and t
w−→δP t′ and

s′(xe) �= t′(xe). Then, the algorithm calls the procedure Prune to produce the
minimal serial and deterministic finite automaton B such that Lω(B) is the safe
and permissive interface for P .

Example. Figure 2(c) shows in the first two boxes the two conjectured au-
tomata. Automaton C2 is the final conjecture, which is used to produce the
serial deterministic finite automaton B.
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Procedures used in the learning algorithm

– memb(P, w) returns t if w is safe for P . Otherwise it returns f.
– checkClosure(R, E, G) returns Yes if for every r ∈ R and f ∈ Σ, there exists

an r′ ∈ R such that G[r ·f, e] = G[r′, e] for every e ∈ E. Otherwise it returns
the word r · f such that there is no r′ satisfying the above condition.

– makeConjecture(R, E, G) returns a deterministic automaton C=(Q,Σ, q0,λ),
where Q = R \ {r ∈ R | G[r, ε] = f}, and q0 = ε, and for every r ∈ Q and
every f ∈ Σ, if G[r · f, ε] = t, then (r, f, r′) ∈ λ, where r′ is the word such
that G[r · f, e] = G[r′, e] for every e ∈ E.

– findSuffix(P, R, w) finds the longest suffix w′ of w such that for some r ∈ R
and f ∈ Σ, memb(P, r · f · w′) �= memb(P, r′ · w′), where r

f−→λ r′.

Time complexity. For an open program with k variables and m trace-
equivalence classes, the generation of a conjectured automaton has the time
complexity O(2k · (m2 · |Σ|+m · log c)), where c is the length of the longest coun-
terexample trace α× seen by the algorithm. At the end, a call to the procedure
Prune takes O(m·|Σ|) time. Thus the learning algorithm has the worst-case time
complexity O(|Σ| · 23k) when the number of trace-equivalence classes is O(2k).
However, when the number m of trace-equivalence classes (which determines the
size of the output automaton) is small compared to the number 2k of concrete
program states, then the learning algorithm may perform better than the direct
algorithm. This is because learning produces the minimal interface automaton,
whereas the direct algorithm needs to explicitly minimize an intermediate au-
tomaton of potential size O(2k).

Theorem 2. Given a concrete open program P with variables X and exported
function names Σ, and m trace-equivalence classes in Reach(AP ), the learning
algorithm (Alg. 3) produces the minimal serial and deterministic finite automa-
ton B (with O(m) states) such that Lω(B) is the safe and permissive interface
for P , in time linear in |Σ|, quadratic in m, and exponential in |X |.

3.3 CEGAR Algorithm

A different approach based on automatic abstraction refinement was proposed
by Henzinger et al. [5].

Abstraction. An abstraction for an open program P = (X, Σ, s0, ϕ, xe) is a set
Y ⊆ X of variables, where xe ∈ Y . The abstraction hides the variables in X \Y .
Given a state s ∈ [[X ]], the state s[Y ] is the valuation in [[Y ]] such that s(x) =
s[Y ](x) for all x ∈ Y . An open program P and an abstraction Y for P yield the
(abstract) open program P [Y ] = (Y, Σ, s0[Y ], ϕ[Y ], xe), where for each f ∈ Σ,
the transition predicate ϕf [Y ] is the projection ∃(X ∪X ′)\(Y ∪Y ′) : ϕf of ϕf to
the variables in Y ∪ Y ′ (existential abstraction). The semantics of P [Y ] is given
by the abstract automaton AP [Y ] and the set EP [Y ] of abstract error states. Note
that (s, f, s′) ∈ δP [Y ] iff (t, f, t′) ∈ δP for some concrete states t, t′ ∈ [[X ]] with
s = t[Y ] and s′ = t′[Y ]. The original CEGAR algorithm for interface synthesis [5]
uses two abstractions: one for checking safety and a possibly different one for
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Algorithm 4. CEGAR(P )
Input: a concrete open program P = (X, Σ, s0, ϕ, xe)
Output: the minimal serial deterministic automaton B such that Lω(B) = I(P )
Variables: an abstraction Y for P , the open program P [Y ], an automaton C

Y := {xe}
while Y �= X do

C := A−
P [Y ]

α× := checkSafe(P [Y ], C)
if α× = Yes then

return Minimize(Prune(Determinize(C)))
else

α := findSpuriousTrace(P, α×); Y := getNewVars(P, α, Y )
return Minimize(Prune(Determinize(A−

P )))

checking permissiveness. We use a single abstraction, based on the following
observations. An open program P with initial state s0 and error variable xe is
visibly deterministic [5] if there is no word w ∈ Σ∗ and no states s, t ∈ [[X ]] such
that s0

w−→δP s and s0
w−→δP t and s(xe) �= t(xe).

Lemma 1. Given the errorless automaton A−
P = (Q, Σ, q0, λ) of an open pro-

gram P , if the language L(A−
P ) is safe for P , then L(A−

P ) is permissive for P
and P is visibly deterministic.

Proof. (i) We know that the safety and permissiveness conditions are reachability
questions on AP × A−

P and A−
P × A−

P

+
, respectively. As AP is input-enabled, we

know that if (q, f, qsink) ∈ λ+, then (q, f, q′) ∈ δP with q′ ∈ EP . Thus, if there
exists no state (t, q) ∈ ReachAP ×A−

P
such that t ∈ EP , then there exists no state

(t, qsink) ∈ Reach
A−

P ×A−
P

+ . Hence, L(A−
P ) is a permissive interface for P .

(ii) The fact that L(A−
P ) is safe for P guarantees that there exists no word w

such that w is not safe for P and q0
w−→λ q for some state q ∈ Q. Also, we

know that the automaton A−
P is the errorless automaton for P , and L(A−

P ) is
permissive for P . Therefore, there exists no word w such that there exist two
states u and v with s0

w−→δP u and s0
w−→δP v and u(xe) �= v(xe). Hence, P is

visibly deterministic. �
Lemma 2. Let Y be an abstraction for a concrete open program P such that
P [Y ] is visibly deterministic. If a language L is safe and permissive for P [Y ],
then L is safe and permissive for P .

Proof. Let a word w ∈ L be a counterexample for safety of P . By construction
of AP [Y ], we know that the word w is also unsafe for the abstract open pro-
gram P [Y ], which is a contradiction to our assumption that L is safe for P [Y ].
Similarly, permissiveness of L for P [Y ] guarantees that L is permissive for P . �
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Algorithm 5. getNewVars(P, α, Y )
Input: a concrete open program P = (X, Σ, s0, ϕ, xe), an abstraction Y for P , and

a finite trace α = 〈t0, f0, . . . , tn〉 of the automaton AP [Y ]

Output: a new abstraction Y ′ for P such that Y ⊂ Y ′ and α is not a trace of AP [Y ′]

Variables: states s, s′ ∈ [[X]] and t, ts, t
′ ∈ [[Y ]], a set R ⊆ [[X]] of states, and f ∈ Σ

s := s0; t := s0[Y ]
for i := 1 to n do

ts := ti; f := fi−1

let s′ ∈ [[X]] be such that s
f−→δP s′; let t′ ∈ [[Y ]] be such that t′ = s′[Y ]

if t′ �= ts then
R := {r ∈ Reach(AP ) | t = r[Y ] and there exists u ∈ [[X]] such that ts = u[Y ]

and r
f−→δP u}

return splitState(s, R, Y )
s := s′; t := t′

Algorithm. We start with an abstraction that contains only the error variable;
that is, Y = {xe}. We construct the abstract open program P [Y ] and its er-
rorless automaton C = A−

P [Y ]. Then, we check whether L(C) is safe for P [Y ].
If so, then we know that L(C) is also permissive and that P [Y ] is visibly de-
terministic (by Lemmas 1 and 2). Otherwise, we obtain a counterexample trace
α× = 〈(s0[Y ], q0), f0, . . . , (sn[Y ], qn)〉 of the product automaton AP [Y ] × C. Now
we use the procedure findSpuriousTrace(P, α×) to check if the word w induced
by the trace α× is safe for the concrete open program P . If w is safe (resp. un-
safe) for P , then the procedure declares the projection α of α× that is followed
by the component automaton AP [Y ] (resp. C) as spurious. Formally, the finite
trace α = 〈t0, f0, . . . , tn〉 of the abstract automaton AP [Y ] (resp. C = A−

P [Y ]) is
spurious if there exists no trace 〈s0, f0, . . . , sn〉 of the concrete automaton AP

such that ti = si[Y ] for all 0 ≤ i ≤ n. Next, we add more variables from X
to the abstraction Y such that the spurious trace α is eliminated from AP [Y ]
(resp. C). This is done by the procedure getNewVars , which constructs a trace
β = 〈s0, f0, . . . , sn〉 of AP , and its corresponding abstract trace β[Y ], such that
β induces the same word as α. The procedure locates the first position i where
the spurious abstract trace α differs from the genuine abstract trace β. Then it
finds a set R of states in AP that cause the spurious abstract trace, and a set
Y ′ ⊆ X of variables such that Y ⊂ Y ′ and if t = si−1[Y ′], then there does not
exist a state r ∈ R with t = r[Y ′]. This concludes one refinement step.

In the next refinement iteration, we construct the refined abstract open pro-
gram P [Y ′], and check if it is safe (and therefore visibly deterministic using
Lemma 1). We say that an abstraction Y suffices to prove the safety of P if
P [Y ] is visibly deterministic. Once the CEGAR algorithm finds a visibly deter-
ministic abstract open program P [Y ], we call the procedure Determinize fol-
lowed by Prune and Minimize , to obtain the minimal serial and deterministic
finite automaton B such that Lω(B) is the safe and permissive interface for P .
This is because before minimization, the abstract automaton AP [Y ] found by
the CEGAR algorithm may not be minimal. Note that given a concrete open
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program P , finding an abstraction Y for P with a minimal number of variables
such that the abstract open program P [Y ] is visibly deterministic, is NP-hard [3].

Example. Figure 2(d) shows in the first box automaton AP[Y] with the abstrac-
tion Y = {xe}. Adding one more variable yields the automaton AP[Y′], whose
open program is found to be visibly deterministic. The result B is computed by
first determinizing, then pruning and minimizing.

Procedures used in the CEGAR algorithm

– splitState(s, R, Y ) for s ∈ [[X ]], R ⊆ [[X ]], and Y being the current abstrac-
tion, finds a set Y ′ ⊆ X of variables such that Y ⊂ Y ′ and there is no state
r ∈ R such that t = r[Y ′], where t ∈ [[Y ′]] with t = s[Y ′]. It returns Y ′.

– findSpuriousTrace(P, α×) first checks whether the word w induced by the
finite trace α× of the product automaton is safe for P . If so, then returns
the trace 〈s0[Y ], f0, . . . , sn[Y ]〉 of AP [Y ] in α×. Otherwise, it returns the
trace 〈q0, f0, . . . , qn〉 of C = A−

P [Y ] in α×.
– Determinize(A) determinizes the serial automaton A = (Q, Σ, q0, δ). We

note that since A is the automaton for a visibly deterministic open program,
the automaton A is ‘almost’ deterministic, and it is straightforward to deter-
minize A. Determinization does not change the set of states, the alphabet,
and the initial state, only the transition relation: for every state q ∈ Q and
every function f ∈ F , if there exist more than one transitions from q on f ,
then we choose arbitrarily one of the transitions (q, f, q′) ∈ δ to be in the
new transition relation of the resulting deterministic automaton.

Time complexity. Let X and abstraction Y be sets of k and c variables, re-
spectively. One iteration of the algorithm requires O(|Σ| · 2max{k,2c}) time. At
the end of the refinement procedure, the call to procedure Determinize runs
in time O(|Σ| · 2l), where l is the number of variables in the abstraction that
suffices to prove the safety of P . The procedure Prune requires time O(|Σ| · 2l)
followed by the procedure Minimize , which takes time O(|Σ| · l · 2l). Thus, the
worst-case time complexity of the CEGAR algorithm is O(|Σ| · 22k), which is
encountered if the abstraction refinement introduces all k program variables.
However, when the number l of variables that suffice to prove the safety of P
(which determines the size of the output automaton) is small compared to the
number k of all program variables, then the CEGAR algorithm may perform
better than the direct algorithm, because the exponential time dependency on
k is due only to the cost of constructing the abstract program. To be precise,
to check whether there is an abstract transition (s, f, s′) ∈ δP [Y ] between two
given abstract states s, s′ ∈ [[Y ]] requires time O(2k) but only space O(k). Such
a check can often benefit from symbolic methods.

Theorem 3. Given an open program P with variables X and exported function
names Σ, the CEGAR algorithm (Alg. 4) produces the minimal serial and de-
terministic finite automaton B (with O(2l) states) such that Lω(B) is the safe
and permissive interface for P , in time linear in |Σ| and exponential in |X | + l,
where l is the size of an abstraction that suffices to prove the safety of P .
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Fig. 3. Examples of concrete open programs where one algorithm performs better than
others. The grey circles denote the error states.

4 Theoretical Separation of the Algorithms

We describe three theoretical classes of examples that amplify the differences
between the three algorithms presented in the previous section. These examples
suggest that the three algorithms are important in their own right, and it is
worthwhile to understand them properly for efficient usage.

We consider concrete open programs with k variables and a fixed alphabet
Σ = {f1, f2}. We denote the set of states by {s0, s1, ...s2k−1}. The boolean value
of the variables is encoded in the index of the state; for example, at s1, the first
k−1 variables are 0, and the last variable is 1. Also, the first variable is the error
variable. Thus, the first half of the states are non-error states, and the second
half are error states. We consider all pairs of the direct (D), learning (L), and
CEGAR (C) algorithm. We evaluate the pairs on the metric of time complexity.
We show graphical examples with k = 4 in Fig. 3, which can be scaled to
arbitrary k. We assume that the CEGAR algorithm finds the minimal sufficient
abstraction in each case.

– D faster than L and C. For the open program in Fig. 3(a), the interface
automaton has size O(2k); that is, the interface is no smaller than the library.
The direct algorithm requires O(2k ·k) time, whereas the learning algorithm
requires O(23k) time and the CEGAR algorithm requires O(22k) time. The
direct algorithm is the fastest, because it avoids the overhead of learning and
abstraction refinement.

– L faster than C and D. The interface automaton for the open program in
Fig. 3(b) has two states (for all k). Hence, the learning algorithm requires
O(2k) time. On the other hand, the CEGAR algorithm has to continue
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Table 1. Run time for different algorithms, measured on a 3.0 GHz Pentium IV ma-
chine with 1GB memory. The parameter k is described for each class in the text.

k Interface automaton size Learning time CEGAR time
List Iterator

5 2 0.19 s 0.91 s
6 2 0.43 s 1.53 s
7 2 1.10 s 4.31 s
8 2 2.31 s 12.12 s

Piped Output Stream

12 2 2.12 s 0.89 s
13 2 5.30 s 1.83 s
14 2 12.32 s 3.76 s
15 2 27.82 s 7.68 s

refinement until adding k − 1 variables to the abstract program, and thus
produces an intermediate automaton with O(2k) states. Hence, including
minimization, CEGAR requires O(22k) time. The direct algorithm prunes
the concrete program. This yields an intermediate automaton with O(2k)
states, which is then minimized to obtain the interface automaton with two
states. Thus, the direct algorithm requires O(2k · k) time.

– C faster than L and D. For the open program in Fig. 3(c), the number
of trace-equivalence classes is exponential in the number l of variables that
suffice to prove the safety of the program, and l is logarithmic in the num-
ber of all variables; that is, l = O(log k). Thus the CEGAR algorithm re-
quires O(2k · log k) time. On the other hand, the learning algorithm requires
O(2k · k2) time, because it depends quadratically on the size of the interface
automaton. The direct algorithm again has to minimize O(2k) recoverable
states, to produce the interface automaton with O(2l) states. Thus, the direct
algorithm runs in O(2k · k) time.

5 Practical Evaluation of the Algorithms

We implemented the three algorithms in C++. We experimented with a variety
of Java libraries [1], all of which have a finite number of states. For comparison
purposes, we wanted the direct algorithm to succeed on the concrete open pro-
grams; thus we first simplified the Java classes. We retained all fields in a class,
but reduced their sizes, and hence the state spaces. The Java libraries were
manually translated into such simplified, but still concrete, open programs. The
input to the tool is the transition relation of a concrete open program. Table 1
reports some results of our experiments.

Direct works fastest. The following example is similar to Fig. 3(a), where the
direct algorithm performs better than the other algorithms.
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– java.util.Stack: We consider the class with k + 1 boolean variables. The first
variable encodes error, and the remaining k variables encode the current
size of the stack (thus, the maximal size of the stack is 2k). We create an
interface for the methods push(), pop(), and peek(). The algorithms produce
the interface automaton with O(2k) states. The direct algorithm is fastest.

In general, the direct algorithm performs best if either the number of recover-
able library states is small, or as in the example above, the number of trace-
equivalence classes of the library is of the order of the number of library states.
Neither is the case for the following three examples.

Learning works fastest. The following example is similar to Fig. 3(b).

– java.util.ListIterator: We compute the interface for four methods: next(),
prev (), remove(), add(). The list iterator is encoded by 2k + 1 boolean vari-
ables, one for error, k to encode the previous returned iterator location lp,
and another k to encode the current iterator location lc. The methods next()
and prev () store lc in lp, and update lc. The method remove() checks if lp
is valid; if so, then remove() removes the entry in location lp. Both add()
and remove() invalidate lp. The CEGAR algorithm finds that only the last
k variables are redundant, and thus produces an automaton of size O(2k).
This automaton is then minimized to obtain the interface automaton with
two states, which is shown in Fig. 4(a). On the other hand, the learning algo-
rithm learns that only one value of lp (reached on calling add() or remove())
marks the previous iterator location as invalid, and that all other values are
equivalent. Hence, the learning algorithm finishes after distinguishing two
states of the interface.

CEGAR works fastest. The following programs are similar to Fig. 3(c).

– com.sun.se.impl.activation.ServerTableEntry: We encode the class using
k + 3 boolean variables. The first variable encodes error, the next two encode
the state of the system, and the remaining k encode the current server ID.
The interface is built for six methods, as shown in Fig. 4(b). The CEGAR
algorithm finds that the two variables that encode the state of the system
suffice to prove the safety of the class; after minimization it produces the
interface automaton with three states, which is shown in Fig. 4(b). The
learning algorithm learns the three distinguishable states of the interface,
but takes a longer time to do so.

– java.io.PipedOutputStream: The class is represented by k + 2 boolean vari-
ables. The first variable encodes error, the second encodes the connect flag,
and the remaining k variables encode the buffer. We build an interface for the
following methods: connect(), write(), flush(), and close(). We model invo-
cations of connect() returning different values (0 or 1) as different methods.
The CEGAR algorithm discovers that the variable that encodes the connect
flag suffices to prove the safety of the class. The output is an interface au-
tomaton with two states, which is shown in Fig. 4(c). Again, the learning
algorithm needs more time to find the two distinguishable states.
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Fig. 4. Interface automata for list iterator, server table entry, and piped output stream

6 Conclusion

We formalized and implemented three different algorithms for interface synthesis
in a uniform framework. For each of the three algorithms, we identified classes
of open programs for which the algorithm is better suited for interface synthesis
than the two alternatives. The direct algorithm has the advantage in scenarios
where the interface automaton of the library is large, or the program has few
recoverable states, i.e., states from which some sequences of function calls are
legal. The CEGAR algorithm is the most efficient solution when many variables
of the input program can be hidden in the interface automaton. The learning
algorithm performs best if the interface automaton is much smaller than the set
of recoverable program states, but does not correspond to an abstraction of the
input program over a small set of program variables.
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Abstract. Solvers for satisfiability modulo theories (SMT) check the satisfiabil-
ity of first-order formulas containing operations from various theories such as the
Booleans, bit-vectors, arithmetic, arrays, and recursive datatypes. SMT solvers
are extensions of Boolean satisfiability solvers (SAT solvers) that check the sat-
isfiability of formulas built from Boolean variables and operations. SMT solvers
have a wide range of applications in hardware and software verification, extended
static checking, constraint solving, planning, scheduling, test case generation, and
computer security. We briefly survey the theory of SAT and SMT solving, and
present some of the key algorithms in the form of pseudocode. This tutorial pre-
sentation is primarily directed at those who wish to build satisfiability solvers or
to use existing solvers more effectively.

1 Introduction

Satisfiability is the basic and ubiquitous problem of determining if a formula express-
ing a constraint has a model or a solution. A large number of problems can be de-
scribed in terms of satisfiability, including graph problems, puzzles such as Sudoku,
planning, scheduling, software and hardware verification, extended static checking,
optimization, test case generation, among others. Many of these problems can be en-
coded by Boolean formulas and solved using Boolean satisfiability (SAT) solvers. Other
problems require the added expressiveness of equality, uninterpreted function sym-
bols, arithmetic, arrays, datatype operations, and quantifiers. Such problems can be
handled by solvers for theory satisfiability or satisfiability modulo theories (SMT).
In recent years, satisfiability procedures have undergone dramatic improvements in
efficiency and expressiveness. SAT solvers like WalkSAT [SKC96], SATO [Zha97],
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GRASP [MSS99], Chaff [MMZ+01], zChaff [ZM02,Zha03], Siege [Rya04], and Min-
iSAT [ES03] have introduced several enhancements to the efficiency of SAT solving.
Though SMT technology has been in development since the late 1970s with the work
of Shostak [Sho79] and Nelson and Oppen [NO79,Nel81], the incorporation of SAT-
based search has yielded very significant efficiencies. Satisfiability is an active and
growing area of research with a number of exciting applications and connections to
artificial intelligence, operations research, and computational biology. The present tu-
torial is mostly based on the Yices SMT solver [DdM06b]. It is directed at non-experts
and aims to explain some of the basic principles of SAT and SMT solving.

Section 2 covers the basic background on logic and satisfiability. In Section 3, we
explain the basic DPLL search procedures for satisfiability. Procedures for solving
constraints in individual theories are discussed in Section 4. Theory combinations are
discussed in Section 5, and the DPLL-based search procedure for satisfiability mod-
ulo theories is presented in Section 6. E-graph matching [Nel81,DNS03] described in
Section 7 is an important technique for introducing relevant instantiations of quantified
formulas within a search procedure.

2 Preliminaries

We explain the basic syntactic and semantic background needed to follow the rest of
the tutorial.

2.1 Propositional Logic

A propositional formula φ can be a propositional variable p or a negation ¬φ0, a con-
junction φ0 ∧φ1, a disjunction φ0 ∨φ1, or an implication φ0 ⇒ φ1 of smaller formulas
φ0, φ1. A truth assignment M for a formula φ maps the propositional variables in φ
to {�, ⊥}. A given formula φ is satisfiable if there is a truth assignment M such that
M |= φ under the usual truth table interpretation of the connectives. If M |= φ for
every truth assignment M , then φ is valid. A propositional formula is either valid or its
negation is satisfiable.

A literal is either a propositional variable p or its negation ¬p. The negation of a
literal p is ¬p, and the negation of ¬p is just p. A formula is a clause if it is the iterated
disjunction of literals of the form l1 ∨ . . . ∨ ln for literals li, where 1 ≤ i ≤ n. A
formula is in conjunctive normal form (CNF) if it is the iterated conjunction of clauses
Γ1 ∧ . . . ∧ Γm for clauses Γi, where 1 ≤ i ≤ m.

2.2 First-Order Logic

In defining a first-order signature, we assume countable sets of variables X , function
symbols F , and predicates P . A first-order logic signature Σ is a partial map from
F ∪P to the natural numbers corresponding to the arity of the symbol. A Σ-term τ has
the form

τ := x | f(τ1, . . . , τn),
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where f ∈ F and Σ(f) = n. For example, if Σ(f) = 2 and Σ(g) = 1, then f(x, g(x))
is a Σ-term. A Σ-formula has the form

ψ := p(τ1, . . . , τn) | τ0 = τ1 | ¬ψ0 | ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | (∃x : ψ0) | (∀x : ψ0),

where p ∈ P and Σ(p) = n, and each τi, 1 ≤ i ≤ n is a Σ-term. For example, if
Σ(<) = 2 for a predicate symbol <, then (∀x : (∃y : x < y)) is a Σ-formula. The set
of free variables in a formula ψ is represented as vars(ψ). A sentence is a formula with
no free variables.

A Σ-structure M consists of a nonempty domain |M | where for each f ∈ F such
that Σ(f) = n, M(f) is an n-ary map on |M |, for each p ∈ P such that Σ(p) = n,
M(p) is a subset of |M |n, and for each x ∈ X , M(x) ∈ |M |. The interpretation of
a term a in M is given by M [[x]] = M(x) and M [[f(a1, . . . , an)]] = M(f)(M [[a1]], . . . ,
M [[an]]). For a Σ-formula ψ and a Σ-structure M , satisfaction M |= ψ can be
defined as

M |= a = b ⇐⇒ M [[a]] = M [[b]]
M |= p(a1, . . . , an) ⇐⇒ (M [[a1]], . . . , M [[an]]) ∈ M(p)

M |= ¬ψ ⇐⇒ M |= ψ

M |= ψ0 ∨ ψ1 ⇐⇒ M |= ψ0 or M |= ψ1

M |= ψ0 ∧ ψ1 ⇐⇒ M |= ψ0 and M |= ψ1

M |= (∀x : ψ) ⇐⇒ M{x �→ a} |= ψ, for all a ∈ |M |
M |= (∃x : ψ) ⇐⇒ M{x �→ a} |= ψ, for some a ∈ |M |

A first-order Σ-formula ψ is satisfiable if there is a Σ-structure M such that M |= ψ,
and it is valid if in all Σ-structures M , M |= ψ. A Σ-sentence is either satisfiable or
its negation is valid. We focus on the satisfiability problem for quantifier-free first-order
formulas.

3 SAT Solving

The principles of modern SAT solving have their origin in the 1960 procedure of
Davis and Putnam [DP60], as simplified in 1962 by Davis, Logemann, and Love-
land [DLL62]. The first step in the Davis–Putnam–Logemann–Loveland (DPLL) pro-
cedure is to convert the formula to conjunctive normal form (CNF) by introducing new
variables to label the subformulas. A formula can be converted to clausal form by intro-
ducing fresh variables for each compound subformula and adding suitable clauses, e.g.,
in converting ¬p ∨ (¬q ∧ r), we label ¬q ∧ r as b and ¬p ∨ b as a to obtain the clauses
a, a ∨ p, a ∨ ¬b, ¬a ∨ ¬p ∨ b, b ∨ q ∨ ¬r, ¬b ∨ ¬q, ¬b ∨ r.

The input to the satisfiability procedure is given as a set of clauses K represent-
ing the CNF formula

∧
K . The DPLL procedure builds a partial truth assignment for

the variables in K by successively guessing an assignment for an unassigned literal,
propagating the consequences of the partial assignment with respect to the clauses, and
backtracking on the partial assignment when a conflict is detected in the form of a falsi-
fied clause. The procedure terminates either with a truth assignment satisfying each of
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dpll(K) := dpllr(0, ∅, K, ∅) (init)
dpllr(0, M, K, C) := ⊥, if (contrad)

propagate(M, K, C) = ⊥[Γ ]
dpllr(h + 1, M, K, C) := dpllr(h′, Mh′ , K, C′), where (backjump)

propagate(M, K, C) = ⊥[Γ ],
analyze(h + 1, M, Γ ) = Γ ′,
C′ = C ∪ {Γ ′},
h′ = L2 (Γ ′)

dpllr(h, M, K, C) := dpllr(h + 1, M ′′, K, C), where (split)
M ′ = propagate(M, K, C) �= ⊥,
l = select(M ′, K) �= ⊥,
M ′′ = M ′; l

dpllr(h, M, K, C) := M ′, where (sat)
M ′ = propagate(M, K, C) �= ⊥,
select(M ′, K) = ⊥

Fig. 1. The DPLL Boolean Satisfiability Procedure

the clauses, or with a demonstration that no such assignment can be constructed. The
state of the search procedure is a 4-tuple 〈h, M, K, C〉 consisting of the decision level
h, the partial assignment M , the input clause set K , and a set C of conflict clauses
derived from K that are constructed during the search.

At a decision level h, the partial assignment consists of a sequence M0; . . . ; Mh.
Each Mi at decision level i is of the form d; 〈l1[Γ1], . . . , lk[Γk]〉 for some k, where
d is the decision literal at level i, and each li is an implied literal and the clause Γi

occurs in K ∪ C. The assignment M0 contains no decision literal. A decision literal
or implied literal in M is said to be an assigned literal in M . No assigned literal in M
occurs twice in M , nor does it occur negated in M . The assignment corresponding to
M maps a variable p to � (respectively, ⊥) if p (respectively, ¬p) is an assigned literal
in M . If neither p nor ¬p occurs in M , then the assignment is undefined. Given an
assigned literal l occurring in M at level i, the assignment preceding l, written as M<l,
consists of M0; . . . ; Mi−1; M<l

i , where M<l
i consists of the part of the assignment of

Mi preceding the occurrence of l. For each entry l[Γ ] in M , the clause Γ occurs in
K ∪ C and is of the form l ∨ Γ ′, where M<l |= ¬Γ ′. The notation Mh represents the
sequence M0; . . . ; Mh.

The DPLL search algorithm shown in Figure 1 works by constructing the partial as-
signment M through the use of propagation, analysis/backjumping, and decision literal
selection, until it has constructed an assignment satisfying the input clauses K or it
can be shown that there is no such assignment. For decision level h > 0, the propaga-
tion operation propagate(h, M, K, C) shown in Figure 2 works by adding l[Γ ] to Mh,
where Γ ∈ K ∪ C is of the form l ∨ Γ ′, where M |= ¬Γ ′. When h = 0, each unit
clause l in K ∪ C is placed in M0 as l[l]. Propagation can also detect a conflict where
there is a clause of the form Γ such that M |= ¬Γ . If a conflict is detected at decision
level 0, then the dpll algorithm reports unsatisfiability. If no conflict is detected, then a
literal that is unassigned in M is selected using the select(M, K) operation and added
to the partial assignment. The procedure is then invoked at level h + 1.
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propagate(M, K, C) := propagate(〈M, l[Γ ]〉, K, C), where (unit)
Γ ∈ K ∪ C,
Γ ≡ l ∨ l1 ∨ . . . ∨ ln,
M �|= l,
M |= ¬li ∧ . . . ∧ ¬ln

propagate(M, K, C) := ⊥[Γ ], where (conflict)
if Γ ∈ K ∪ C : M |= ¬Γ

propagate(M, K, C) := M, where (terminate)
for each Γ ∈ K ∪ C,
M |= Γ or
Γ ≡ l ∨ l′ ∨ Γ ′, and l, l′ �∈ dom(M)

Fig. 2. DPLL Propagation

Otherwise, if clause Γ in K ∪ C is the source of the conflict, it can be analyzed by
the analyze(h, M, Γ ) operation to construct a conflict clause that is added to C. Here,
Γ is of the form l1 ∨ . . . ∨ ln where M contains ¬li[¬li ∨ Γi], for 1 ≤ i ≤ n. The
analysis phase successively replaces Γ with the result of resolving Γ with each clause
¬li ∨Γi for li occurring at level h until Γ contains a unique literal l at level h. Note that
M |= ¬Γ for each such clause Γ generated through analysis. Furthermore, the clause
Γ contains at least one literal l such that ¬l is assigned at level h since the conflict is
detected at level h. The analysis process is iterated until there is a unique such literal
l such that Mh |= ¬l. The clause Γ ′ = analyze(h, M, Γ ) constructed by the analysis
phase is added as a conflict clause to C to obtain the new conflict clause set C′. Let
h′ = L2 (Γ ′) be the highest level below h such that there is a literal l′ in Γ ′ with
Mh′ |= ¬l′. The unique literal l at level h in Γ ′ is implied by the partial assignment
Mh′ and Γ ′.

The search is resumed with the state 〈h′, Mh′ , K, C′〉. Though the partial assignment
has shrunk, it now contains more implied literals at level h′. On the other hand, if no
conflict is detected at level h, then an unassigned literal d is selected as the decision lit-
eral at level h + 1, and the search is resumed with the state 〈h + 1, 〈M ; d〉, K, C〉. If no
unassigned literals remain, then the algorithm terminates with a satisfying assignment
M for K . Termination [NOT06,Sha05] follows since each step of propagation, back-
jumping (with propagation), or selection increases the quantity

∑h
i=0 |Mi| ∗ N (N−h)

towards the bound N (N+1) for N = |vars(K)|.
We have assumed that the propagation phase is complete, but the procedure works

even when the propagation step is incomplete so that Mh need not contain all the literals
that are implied by M0; . . . ; Mh. Thus it is possible that Mj contains literals that are
actually implied at some level i, with i < j. In this case, a conflict can still be traced to
some level ĥ below the current level h, and the analyze operation can be modified to
construct a conflict clause Γ that contains a unique literal at level ĥ.

The algorithm can either terminate with an assignment M satisfying the input clause
set K , or with an unsatisfiability when a conflict is reported at the decision level 0. The
SAT procedure can also generate a proof of unsatisfiability since a conflict at level 0
implies that some clause Γ in K when resolved with other clauses from K ∪ C yields
a contradiction. The clauses in C are themselves derived by resolution.
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step h M K C Γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r, ¬q[¬q ∨ ¬r] K ∅
propagate 2 ; s; r, ¬q, p[p ∨ q] K ∅
conflict 2 ; s; r, ¬q, p K ∅ ¬p ∨ q

analyse 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r[¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Fig. 3. Example of the DPLL Satisfiability Procedure

Example 1. An example computation of the DPLL algorithm for demonstrating the
unsatisfiability of the input K given by {p ∨ q, ¬p ∨ q, p ∨ ¬q, s ∨ ¬p ∨ q, ¬s ∨ p ∨
¬q, ¬p ∨ r, ¬q ∨ ¬r}. is shown in Figure 1. In this example, there are no unit input
clauses. The partial assignment M0 is therefore empty. The literal s is selected as the
decision literal at level 1. Propagation does not yield any new implied literals at level
1. Then, literal r is selected as the decision literal at level 2. Now propagation adds
the literals ¬q and p, but then detects the conflict with clause ¬p ∨ q. Analyzing this
conflict, we obtain the conflict clause q which is added to C while backjumping to level
0. Now there is a unit clause q, and propagation adds the literals p and r to M0 before
detecting the conflict on the clause ¬q ∨ ¬r. Since this conflict is at level 0, the input
clause is judged to be unsatisfiable.

The proof of unsatisfiability for the example in Figure 1 can be constructed by res-
olution. The conflict clause q is proved by resolving ¬p ∨ q with p ∨ q. The proof of
unsatisfiability is constructed by resolving ¬q∨¬r with ¬p∨r to obtain ¬p∨¬q which
is in turn resolved with p ∨ ¬q to obtain ¬q which is resolved with the conflict clause q
to derive ⊥.

Given two clause sets K1 and K2 such that K1 ∪ K2 is unsatisfiable, a Craig inter-
polant [Cra57] is a formula φ whose propositional variables appear in both K1 and K2
such that K1 =⇒ φ and φ, K2 is unsatisfiable. Interpolants are useful for a number of
applications and can be extracted from proofs of unsatisfiability [McM05]. The DPLL
procedure can also be used for computing the disjunctive normal form (DNF) or Binary
Decision Diagram (BDD) representation corresponding to all satisfying assignments
for a formula. The DPLL procedure can also be used to construct a minimal unsatis-
fiable core of clauses from the input and a maximal subset of the input clauses that is
satisfiable. Pseudo-Boolean constraints are of the form

∑n
i=1 ci ∗ pi ≥ N , where for

1 ≤ i ≤ n, ci is an integer constant, N is an integer constant, and ci ∗ pi equals ci if
pi, and 0, otherwise. The conjunction of a clause set K together with pseudo-Boolean
constraints can also be solved.

SAT solving can be used to solve constraints over finite domains involving planning
and scheduling, and in the verification of finite-state hardware and software systems.
Key ideas in the development of efficient SAT solvers originate from SATO [Zha97],
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GRASP [MSS99], and Chaff [MMZ+01]. Efficient implementations of SAT algorithms
include ZChaff [ZM02,Zha03], Berkmin [GN02], Siege [Rya04], and MiniSAT [ES03].

4 Theory Constraint Solving

We now examine satisfiability in first-order theories. These theories can be presented
axiomatically or as a class of first-order structures. We define a theory over a signature
Σ as a class of first-order structures closed under isomorphism and variable reassign-
ment. The current section will examine the clausal validity problem (CVP) of determin-
ing if a clause l1 ∨ . . . ∨ ln is valid, or equivalently, if the conjunction ¬l1 ∧ . . . ∧ ¬ln
is satisfiable. For SMT applications, it is important that these procedures support the
incremental assertion of literals, efficient backtracking, and the production of explana-
tions in the form of the subset of input literals needed for unsatisfiability.

4.1 Equivalence

CVP for an equivalence relation given by axioms for reflexivity, symmetry, and transi-
tivity can be solved using the union-find algorithm. The input literals are equalities and
disequalities between variables. The algorithm maintains two data structures: a mapping
F on the variables in the input and a set of input disequalities D. The find structure F
must be acyclic so that for any n > 0 and variable x, either F (x) = x or Fn(x) = x.
The operation F ∗(x) can be defined to return the canonical representative of the equiv-
alence class containing x. The operation union(F )(x, y) is used to construct the find
structure in which the equivalence classes of x and y are merged. It assumes a total
ordering ≺ on the variables.

union(F )(x, y) =
{

F [x′ := y′], y′ ≺ x′

F [y′ := x′], otherwise

where x′ ≡ F ∗(x) ≡ F ∗(y) ≡ y′

The addeqlit procedure shown in Figure 4 takes as input a literal l (an equality or
disequality), the find structure F , and the disequality set D. Initially F (x) = x for each
variable x, and D is empty. The operation addeqlit(l, F, D) updates the state 〈F, D〉
with the constraint given by the literal l.

There are many variations on this basic theme that involve path compression and
tree-weight directed union which together yield the near-linear O((m + n) ∗ α(n))
complexity for m union/find operations over n variables [GF64,Tar75]. The algorithm
can also be augmented to maintain proofs in the form of transitivity chains and to sup-
port efficient retraction [dMRS04,NO05]. The algorithm can be applied to equivalence
relations other than equality.

4.2 Congruence Closure

The free theory Φ(Σ) over a signature Σ is the first-order theory with an empty set of
non-logical axioms. Equality is treated as a logical symbol with the axioms of reflex-
ivity, symmetry, transitivity, and congruence. Note that the equivalence theory above is
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addeqlit(x = y, F, D) := 〈F, D〉, if (skip)
F ∗(x) ≡ F ∗(y)

addeqlit(x = y, F, D) :=

�
⊥, if F ′∗(u) ≡ F ′∗(v) for some u �= v ∈ D
〈F ′, D〉, otherwise

(union)

where
x′ = F ∗(x) �≡ F ∗(y) = y′,
F ′ = union(F )(x, y)

addeqlit(x �= y, F, D) := ⊥, if F ∗(x) ≡ F ∗(y) (contrad)
addeqlit(x �= y, F, D) := 〈F, D〉, if F ∗(x) ≡ F ∗(x′), F ∗(y) ≡ F ∗(y′), (skipdiseq)

for x′ �= y′ ∈ D
addeqlit(x �= y, F, D) := 〈F, {x �= y} ∪ D〉, otherwise. (adddiseq)

Fig. 4. Adding an Equality to a Union-Find Structure

just the free theory Φ(∅) over an empty signature. CVP for Φ(Σ) requires the extension
of the union–find procedure to the computation of the congruence closure
[Koz77,Sho78]. Bachmair, Tiwari, and Vigneron [BTV03] give an elegant presenta-
tion of congruence closure in the form of inference rules. Our presentation is closer to
a typical implementation.

A congruence relation extends equivalence with the rule that for each n-ary func-
tion f , f(s1, . . . , sn) = f(t1, . . . , tn) if si = ti for each 1 ≤ i ≤ n. The oper-
ation congruent(F, s, t) checks if s ≡ f(s1, . . . , sn), t ≡ f(t1, . . . , tn) such that
F ∗(si) ≡ F ∗(ti) for 1 ≤ i ≤ n. The term universe T which includes every term
in the CVP is assumed to be given. Any subterm of a term in T is also a member of T .
For any term t in T , π(t) returns the set of terms t′ in T of the form f(t1, . . . , tn) such
that for some i, 1 ≤ i ≤ n, t ≡ ti. The congruence closure operation for closing a find
structure under congruence is shown in Figure 5.

close(F, D, Q,π) := close(F ′, D, Q′, π), (congruence)
when s, t : s = t ∈ Q, F ∗(s) �≡ F ∗(t),
congruent (F, s, t)
〈F ′, D, π′〉 = addeqlit(s = t, F, D, Q, π),

Q′ = Q ∪ {s′ = t′| s
′ ∈ π(s), t′ ∈ π(t),

congruent(F ′, s′, t′)}
close(F, D, Q,π) := 〈F, D, π〉, otherwise. (terminate)

Fig. 5. Congruence Closure

The addeqlit operation can be modified to make use of close , and the only relevant
case of this definition is shown below.

addeqlit (s = t, F, D, π) :=
{⊥, if F ′(u) ≡ F ′(v) for some u = v ∈ D

close(F ′, D, ∅, π), otherwise
where
s′ = F ∗(s), t′ = F ∗(t), s′ ≡ t′,
s′ ≺ t′, F ′ = F [t′ := s′], π′ = π[s′ := π(s′) ∪ π(t′)]
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The Ackermann reduction is a simple alternative to congruence closure. It works
by reducing congruence to equivalence by successively replacing each term f(x) in
the given formula ψ with a fresh variable xf(x) to obtain ψ′. The satisfiability of ψ is
equivalent to that of ψ′ ∧ ∧{x1 = y1 ∨ . . . ∨ xn = yn ∨ xf(x) = xf(y) | xf(x), yf(x) ∈
vars(ψ′)}, and the latter formula is in Φ(∅).

4.3 Difference Arithmetic

Difference arithmetic (DA) deals with arithmetic constraints of the form x − y ≤ c,
where c is an integer constant. Equality constraints x = y can be expressed as x − y ≤
0 ∧ y − x ≤ 0. Strict inequalities can also be captured so that x − y < c is just
x − y ≤ c − 1, and the negation of x − y ≤ c is just y − x ≤ −c − 1. By introducing
a special variable x0 representing 0, we can also express unary constraints of the form
x ≤ c as x − x0 ≤ c and x ≥ c as x0 − x ≤ −c.

A conjunction of such constraints is satisfiable if there is an assignment ρ of integers
to the variables such that for each inequality x−y ≤ c, the integer difference ρ(x)−ρ(y)
evaluates to a value that is at most c.

Difference constraints can be modeled by means of a weighted directed graph with
the variables as vertices with an edge of weight c from y to c corresponding to each
constraint x − y ≤ c. The Bellman–Ford algorithm can be employed in an incremental
form to find an integer assignment, when one exists, for the variables satisfying the
constraints. If there is a negative-weight cycle of edges such that x−x1 ≤ c1, x1−x2 ≤
c2, . . . xn − x ≤ cn, where

∑n
i=1 cn < 0, then the constraints are unsatisfiable since

there is no assignment to x or the other variables in the cycle that would satisfy the
chaining of these inequalities.

The procedure maintains a variable assignment ρ so that it satisfies the inequality
constraints processed, and an edge map E such that for each vertex y, E(y) is a set of
pairs 〈x, c〉 such that x − y ≤ c is a constraint that has been processed. Initially, the
assignment ρ can be arbitrary, and the edge map E is empty. The addineq(x, y, c, ρ, E)
operation adds a constraint x − y ≤ c to 〈ρ, E〉.

addineq(x, y, c, ρ, E) := 〈ρ, E[y := E(y) ∪ {〈x, c〉}]〉, if

ρ(x) − ρ(y) ≤ c

addineq(x, y, c, ρ, E) :=
{⊥, if ρ′′ = ⊥

〈ρ′′, E′〉, otherwise

where ρ(x) − ρ(y) > c

ρ′ = ρ[x := ρ(y) + c]
E′ = E[y := E(y) ∪ {〈x, c〉}],
ρ′′ = relaxv(y, ρ′, E′, {x})

The operation relaxv(y, ρ, E, Q) is defined to relax each edge 〈x, z〉 by ensuring that
ρ(z)−ρ(x) ≤ c for 〈z, c〉 ∈ E(x). If the vertex y itself appears in the queue of vertices
to be processed, then a negative weight cycle is signaled.
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relaxv(y, ρ, E, ∅) := ρ

relaxv(y, ρ, E, Q) := ⊥, if y ∈ Q

relaxv(y, ρ, E, Q) := relaxv(y, ρ′, E, Q′), where

〈ρ′, Q′〉 = relax (x, ρ, Q), for x ∈ Q

relax (x, ρ, Q) := 〈ρ′, Q′〉, where

Q′ = (Q − {x}) ∪ {z | 〈z, c〉 ∈ E(x), ρ(z) − ρ(x) > c}
ρ′ = ρ ◦ [z �→ ρ(x) + c | 〈z, c〉 ∈ E(x), ρ(z) − ρ(x) > c]

The above incremental procedure is based on the incremental Bellman–Ford al-
gorithm of Wang, Ivančić, Ganai, and Gupta [WIGG05]. Cherkassky and Goldberg
[CG96] give a survey of negative-weight cycle detection algorithms.

4.4 Linear Arithmetic

Linear arithmetic (LA) constraints have the form c0 +
∑n

i=1 ci ∗xi ≤ 0, where each ci,
for 0 ≤ i ≤ n is a rational constant, and the variables xi range over the reals. The LA
solver described below is based on the method of de Moura and Dutertre [DdM06a].
This method is often faster than the Bellman–Ford procedure on difference arithmetic
constraints, and supports an efficient but incomplete check for unsatisfiability that is
useful in an SMT solver.

The input to the procedure is

– A set of n real-valued variables x1, . . . , xn

– A set of m linear equalities (where m ≤ n)

a11x1 + . . . + a1nxn = 0
...

am1x1 + . . . + amnxn = 0

written in matrix form, Ax = 0.
– Bounds on all variables: li ≤ xi ≤ ui where li is either −∞ or a rational number,

and ui is either +∞ or a rational number.

The goal is to determine whether there is x such that Ax = 0 and li ≤ xi ≤ ui for
i = 1, . . . , n (i.e., whether the constraints are satisfiable).
The solver maintains a tableau and an assignment.

– The tableau is defined by dividing the variables into a set B of m basic variables
and a set N of n − m non-basic variables, then rewriting the constraints Ax = 0 as
follows:

xi1 =
∑

xj∈N

b1jxj

...

xim =
∑

xj∈N

bmjxj

where xi1 , . . . , xim are the basic variables.
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– The assignment β assigns a rational value β(xi) to every variable xi, such that
• For all non-basic variable xj , we have lj ≤ β(xj) ≤ uj .
• For all basic variable xik

, we have

β(xik
) =

∑

xj∈N

bkjβ(xj).

If β also satisfies the bounds on basic variables, namely,

lik
≤ β(xik

) ≤ uik

for k = 1, . . . , n then the constraints are satisfiable and β(x1)...β(xn) is a feasible
solution. Otherwise, if there is a basic variable xik

with β(xik
) < lik

, then a pivoting
step is used to swap it with a non-basic variable xj such that bkj > 0 and xj < uj or
bkj < 0 and xj > lj , and symmetrically when β(xik

) > uik
.

A0 =

j
s1 = −x + y

s2 = x + y
β0 = (x �→ 0, y �→ 0, s1 �→ 0, s2 �→ 0)

A1 = A0 x ≤ −4 β1 = (x �→ −4, y �→ 0, s1 �→ 4, s2 �→ −4)

A2 = A1 −8 ≤ x ≤ −4 β2 = β1

A3 =

j
y = x + s1

s2 = 2x + s1

−8 ≤ x ≤ −4
s1 ≤ 1

β3 = (x �→ −4, y �→ −3, s1 �→ 1, s2 �→ −7)

Fig. 6. Example

Figure 6 illustrates the algorithm on a small example. Each row represents a state.
The columns contain the tableaux, bounds, and assignments. The first row contains the
initial state. Suppose x ≤ −4 is asserted. Then the value of x must be adjusted, since
β0(x) > −4. Since s1 and s2 depend on x, their values are also modified. No pivoting
is required since the basic variables do not have bounds, so A1 = A0. Next, x ≥ −8
is asserted. Since β1(x) satisfies this bound, nothing changes: A2 = A1 and β2 = β1.
Next, s1 ≤ 1 is asserted. The current value of s1 does not satisfy this bound, so s1
is pivoted with y to decrease s1. The resulting state S3 is shown in the last row; all
constraints are satisfied.

If s2 ≥ −3 is asserted in S3 then an inconsistency is detected: Tableau A2 does not
allow s2 to increase since both x and s1 are at their upper bound. Therefore, s2 ≥ −3
is inconsistent with state S3.

5 Combining Theories

We have shown solutions to the CVP problem for individual theories such as linear
arithmetic and the theory of equality over uninterpreted terms. Many natural constraint
solving problems contain symbols from multiple theories. Given two theories T1 and T2



A Tutorial on Satisfiability Modulo Theories 31

over signatures Σ1 and Σ2, the union theory T1 + T2 is the class of Σ-structures, with
Σ = Σ1 ∪ Σ2 whose projection to Σi is a Ti-model, for i = 1, 2. The easiest case to
consider is when Σ1 and Σ2 are disjoint. The Nelson–Oppen procedure [NO79] gives a
method for composing CVP-solvers for T1 and T2 into one for T1 +T2. For example, T1
the free theory Φ(Σ1) over a signature Σ and T2 is the difference arithmetic theory DA.

A quantifier-free Σ-formula ψ can be purified so that each literal in the formula is a
Σi-literal for i = 1, 2. Let ψ[t := s] be the result of replacing each occurrence of t in ψ
by s. A pure Σi-term, for i = 1, 2, is a Σi-term that is not a variable.

purify(ψ, R) := purify(ψ[t := x], R ∪ {x = t}),
for fresh x,

pure Σi-term t in ψ, i = 1, 2

purify(ψ, R) := (
∧

R) ∧ ψ, otherwise.

The main point of purification is that if purify(ψ, ∅) = ψ′, then ψ and ψ′ are equi-
satisfiable and each literal in ψ′ is a Σ1-literal or a Σ2-literal.

A partition Π on a set of variables γ is a disjoint collection subsets γ1, . . . , γn such
that

⋃n
i=1 γi = γ. Given a partition Π of the form γ1, . . . , γn, an arrangement AΠ

is a union of the set of equalities {x = y | for some i : x, y ∈ γi} and the set of
disequalities {x = y | for some i, j : i = j, x ∈ γi, y ∈ γj}.

A Boolean implicant P for a quantifier-free Σ-formula ψ containing the set of literals
L is a subset of literals in L such that

∧
P =⇒ ψ in propositional logic. The formula

ψ is T -satisfiable if there is an Boolean implicant P of ψ that is T -satisfiable. If T =
T1∪T2 for Σ1-theory T1 and Σ2-theory T2, with Σ1∩Σ2 = ∅, and P = P1∪P2, where
each Pi consists of Σi-literals and γ = vars(P1) ∩ vars(P2), then P is T -satisfiable if
there is an arrangement AΠ of γ such that each Pi ∪ AΠ is Ti-satisfiable. For this joint
satisfiability result to hold, the theories T1 and T2 must be stably infinite [Opp80], i.e.,
if a formula is Ti-satisfiable, it must be satisfiable in a countable model.

We now show how the T -satisfiability of a quantifier-free Σ-formula can be solved
by an extension of the dpll procedure.

6 Satisfiability Modulo Theories

The extension of the dpll satisfiability procedure to T -satisfiability of quantifier-free
Σ-formulas employs an oracle for T -satisfiability of implicants. This procedure adds a
context S for the incrementally updated state of the theory solver. We assume that there
is a procedure assert(l[Γ ], S) that adds a literal implied by S and the clause Γ ∈ K∪C
to the state S. When the added literal l is a decision literal, we indicate the absence of an
implying clause by l[]. This procedure need not be complete with respect to detecting
unsatisfiability, so we have a complete procedure check (S) which checks if the state
S is satisfiable. We also have a third procedure ask (l, S) which is an incomplete test
for determining if the result of adding l to state S is unsatisfiable. We assume that all
three procedures when they return ⊥ also return an explanation clause Γ ′ of the form
l1 ∨ . . .∨ ln such that ¬li is an input literal. We assume that the state S is check-pointed
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tdpll(K) := tdpllr(0, ∅, ∅, K, ∅) (tinit)
tdpllr(0, M, S, K, C) := ⊥, where (tcontrad)

scanprop(M, S, K, C) = ⊥[Γ ]
tdpllr(h + 1, M, S, K, C) := tdpllr(h′, M, Sh′ , K, C′), where (tbackjump)

scanprop(M, S, K, C) = ⊥[Γ ],
tanalyze(h + 1, M, Γ ) = Γ ′,
C′ = C ∪ {Γ ′},
h′ = L2 (Γ ′)

tdpllr(h, M, S, K, C) := tdpllr(h + 1, M ′, S′′, K, C), where (tsplit)
〈M ′, S′〉 = scanprop(M, S, K, C) �= ⊥,
l = tselect(M, S, K) �= ⊥,
S′′ = assert (l[], S′)

tdpllr(h, M, S, K, C) :=

����
���

S′, if check(S′) �= ⊥
tdpllr(h′, M, Sh′ , K, C′), where
check(S′) = ⊥[Γ ],
h′ = L2 (Γ ), C′ = C ∪ {Γ}

(tcheck)

with S′ = scanprop(M, S, K, C) �= ⊥,
tselect(M, S′, K) = ⊥

Fig. 7. DPLL Search for Satisfiability Modulo Theories

at each level so that Si represents the state at level i including all the input assertions
up to that point.

With these, we can modify the dpll procedure from Section 3 as shown in Figure 7.
The main difference from dpll is that the selected literal is asserted to the context S
and the complete check procedure is used to check for T -satisfiability of the context S
when there are no splitting literals left. The procedure of literal selection tselect can be
identical to select . The theory propagation procedure scanprop is defined below. It first
identifies some of the literals l such that l or ¬l appears in K that are entailed by the
context S.

scanprop(M, S, K, C) := tpropagate(M ′, S, K, C′), where

〈M ′, C′〉 = scanlits(M, S, K, C)
scanlits(M, S, K, C) := 〈M ′, C′〉, where

M ′ = M ◦ 〈l ∈ lits(K) − lits(M) | ask(¬l, S) = ⊥[Γ ]〉,
C′=C∪ {Γ | ∃l ∈ lits(K) − lits(M) : ask(¬l, S)=⊥[Γ ]}

The tpropagate procedure is adapted from the propagate procedure from Section 3
and shown in Figure 8. The literals that are added to M are also asserted to the
context S.

Methods combining DPLL SAT solving with theory constraint solving were intro-
duced in CVC [BDS02], ICS [dMRS02], and Verifun [FJOS03], and Nieuwenhuis,
Oliveras, and Tinelli [NOT06] give a rigorous and abstract presentation of this
combination.
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tpropagate(M, S, K, C) :=

�
⊥[Γ ], if S′ = ⊥[Γ ]
tpropagate(〈M, l[Γ ]〉, S′, K, C), otherwise

(tunit)

where
Γ ∈ K ∪ C,
Γ ≡ l ∨ l1 ∨ . . . ∨ ln,
M �|= l,
M |= ¬li ∧ . . . ∧ ¬ln
S′ = assert(l, S)

tpropagate(M, S, K, C) := ⊥[Γ ], where (tconflict)
if Γ ∈ K ∪ C : M |= ¬Γ

tpropagate(M, S, K, C) := 〈M, S〉, where (tterminate)
for each Γ ∈ K ∪ C,
M |= Γ or
Γ ≡ l ∨ l′ ∨ Γ ′, and l, l′ �∈ dom(M)

Fig. 8. Theory Propagation

7 E-Graph Matching

Most SMT solvers incorporate quantifier reasoning using matching over E-graphs (i.e.,
E-matching) [Nel81,DNS03]. An E-graph data-structure is the find structure F main-
tained in Section 4.2. Each equivalence class containing a term t has a canonical repre-
sentative F ∗(t). Let class(t) denotes the equivalence class that contains t, i.e.,
{s | F ∗(s) = F ∗(t)}.

Semantically, the formula ∀x1, . . . , xn.ψ is equivalent to the infinite conjunction∧
β β(F ) where β ranges over all substitutions over the x. In practice, solvers use

heuristics to select from this infinite conjunction those instances that are “relevant” to
the conjecture. The key idea is to treat an instance β(ψ) as relevant whenever it contains
enough terms that are represented in the current E-graph. That is, non-ground terms tp
from ψ are selected as patterns, and β(ψ) is considered relevant whenever β(tp) is in
the E-graph.

An abstract version of the E-matching algorithm is shown in Fig. 9. The set of rele-
vant substitutions for a pattern p can be obtained by taking

⋃
t∈E match(tp, t, ∅). The

abstract matching procedure returns all substitutions that E-match a pattern tp with term
t. That is, if β ∈ match(tp, t, ∅) then U∪β |= tp = t, and conversely, if U∪β |= tp = t,
then there is a β′ congruent to β such that β′ ∈ match(tp, t, ∅).

match(x, t, S) := {β ∪ {x �→ t} | β ∈ S , x �∈ dom(β)} ∪
{β | β ∈ S , F ∗(β(x)) = F ∗(t)}

match(c, t, S) := S if c ∈ class(t)

match(c, t, S) := ∅ if c �∈ class(t)

match(f(p1, . . . , pn), t, S) =
�

f(t1,...,tn)∈class(t)

match(pn, tn, . . . ,match(p1, t1, S))

Fig. 9. E-matching (abstract) algorithm
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8 Conclusions

Satisfiability is the process of finding an assignment of values to variables given some
constraints on these variables, or explaining why the constraints have no solution. Many
computational problems are instances of satisfiability. For this reason, it is important
to have efficient solvers for Boolean constraints, constraints over finite domains, con-
straints in specific theories, and constraints in combinations of theories. SMT solving
is an active and exciting area of research with many practical applications. We have
presented some of the basic algorithms, but a real implementation requires careful at-
tention to a large number of implementation details and heuristics that we have not
covered.

SAT and SMT solving technologies are already making a profound impact on a num-
ber of application areas. The theoretical challenges include better representations and
algorithms, efficient methods for combining theories and for quantifier reasoning, and
various extensions to the basic search method. A lot of experimental work also remains
to be done on the careful evaluation of different algorithms and heuristics. In the next
few years, satisfiability is likely to become the core engine underlying a wide range of
powerful technologies.

References

BDS02. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, Springer, Heidelberg (2002)

BTV03. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of Au-
tomated Reasoning 31(2), 129–168 (2003)

CG96. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. In: European
Symposium on Algorithms, pp. 349–363 (1996)

Cra57. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957)

DdM06a. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

DdM06b. Dutertre, B., de. Moura, L.: The Yices SMT solver (2006)
DLL62. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem prov-

ing. Communications of the ACM 5(7), 394–397 (1962) Reprinted in Siekmann and
WrightsonSiekmannWrightson83, pp. 267–270, (1983)

dMRS02. de Moura, L., Rue, H., Sorea, M.: Lazy theorem proving for bounded model check-
ing over infinite domains. In: Voronkov, A. (ed.) Automated Deduction - CADE-18.
LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002)

dMRS04. de Moura, L., Rue\ss, H., Shankar, N.: Justifying equality. In: Proceedings of PDPAR
’04 (2004)

DNS03. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. In: Technical Report HPL-2003-148, Hewlett-Packard Systems Research Center
(2003)



A Tutorial on Satisfiability Modulo Theories 35

DP60. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3),
201–215 (1960)
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JML, the Java Modeling Language, is the lingua franca of researchers working
on specification and verification techniques and tools for Java. There are over 23
research groups worldwide working on various aspects of the JML project. These
groups have built a large suite of tools for automated checking and verification
(see http://jmlspecs.org).

This tutorial will present JML features useful for specifying the functional
behavior of sequential Java classes and interfaces. Participants will get hands-on
experience writing JML specifications for data types, including pre- and post-
conditions, frames, invariants, history constraints, ghost and model fields, and
specfication inheritance. They will also see how to verify object-oriented code
using supertype abstraction for modular Hoare-style reasoning. Finally there
will be an exchange of ideas on improving existing JML tools, open research
problems, and future directions for research related to JML, including ways to
connect JML to various theorem provers.
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by the US National Science Foundation under grant CCF-0429567. Kiniry and
Poll were funded in part by the Information Society Technologies programme of
the European Commission, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project.
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Embedded digital systems have become ubiquitous in everyday life. Many such
systems, including many of the safety-critical ones, operate within or comprise
tightly coupled networks of both discrete-state and continuous-state components.
The behavior of such hybrid discrete-continuous systems cannot be fully under-
stood without explicitly modeling and analyzing the tight interaction of their
discrete switching behavior and their continuous dynamics, as mutual feedback
confines fully separate analysis to limited cases. Tools for building such inte-
grated models and for simulating their approximate dynamics are commercially
available, e.g. Simulink with the Stateflow extension1. Simulation is, however, in-
herently incomplete and has to be complemented by verification, which amounts
to showing that the coupled dynamics of the embedded system and its environ-
ment is well-behaved, regardless of the actual disturbance and the influences of
the application context, as entering through the open inputs of the system un-
der investigation. Basic notions of being well-behaved demand that the system
under investigation may never reach an undesirable state (safety), that it will
converge to a certain set of states (stabilization), or that it can be guaranteed
to eventually reach a desirable state (progress).

Within this tutorial, we concentrate on automatic verification and analy-
sis of hybrid systems, with a focus on fully symbolic methods manipulating
both the discrete and the continuous state components symbolically. We provide
an introduction to hybrid discrete-continuous systems, demonstrate the use of
predicative encodings for compactly encoding operational high-level models, and
continue to a number of methods for automatically analyzing safety, stability,
and progress. These methods entail semi-decision and approximation methods
for dealing with the general undecidability and for improving scalability, corre-
sponding data structures and decision diagrams, the use of advanced arithmetic
constraint solvers for manipulating large and complex-structured Boolean com-
binations of undecidable arithmetic constraints, and the automatic generation
of Lyapunov-like witness functions for stability and progress.

The tutorial in particular provides an overview over recent results of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (AVACS)2 pertaining to hybrid systems.
1 http://www.mathworks.com/products
2 Supported by the German Research Foundation (DFG) under contract SFB/TR 14

AVACS, see www.avacs.org
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Abstract. A recent approach to automated assume-guarantee reason-
ing (AGR) for concurrent systems relies on computing environment as-
sumptions for components using the L∗ algorithm for learning regular
languages. While this approach has been investigated extensively for mes-
sage passing systems, it still remains a challenge to scale the technique
to large shared memory systems, mainly because the assumptions have
an exponential communication alphabet size. In this paper, we propose a
SAT-based methodology that employs both induction and interpolation
to implement automated AGR for shared memory systems. The method
is based on a new lazy approach to assumption learning, which avoids an
explicit enumeration of the exponential alphabet set during learning by
using symbolic alphabet clustering and iterative counterexample-driven
localized partitioning. Preliminary experimental results on benchmarks
in Verilog and SMV are encouraging and show that the approach scales
well in practice.

1 Introduction

Verification approaches based on compositional reasoning allow us to prove prop-
erties (or discover bugs) for large concurrent systems in a divide-and-conquer
fashion. Assume-guarantee reasoning (AGR) [21, 18, 24] is a particular form
of compositional verification, where we first generate environment assumptions
for a component and discharge them on its environment (i.e., the other compo-
nents). The primary bottleneck is that these approaches require us to manually
provide appropriate environment assumptions. Recently, an approach [12] has
been proposed to automatically generate these assumptions using learning al-
gorithms for regular languages assisted by a model checker. Consider an AGR
rule, called NC. This rule states that given finite state systems M1, M2 and
P , the parallel composition M1 ‖ M2 satisfies P (written as M1 ‖ M2 � P ) iff
there exists an environment assumption A for M1 such that the composition of
� This research was sponsored by the National Science Foundation under grant nos.

CNS-0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Re-
search Office under grant no. DAAD19-01-1-0485, the Office of Naval Research under
grant no. N00014-01-1-0796, the Defense Advanced Research Projects Agency under
subcontract no. SA423679952, the General Motors Corporation, and the Semicon-
ductor Research Corporation grant no. TJ-1366.
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M1 and A satisfies P (M1 ‖ A � P ) and M2 satisfies A (M2 � A). It is known
that if M1 and P are finite-state (their languages are regular), then a finite state
assumption A exists. Therefore, the task of computing A is cast as a machine
learning problem, where an algorithm for learning regular languages L∗ [6, 26]
is used to automatically compute A. The L∗ learner computes a determinis-
tic finite automaton (DFA) corresponding to an unknown regular language by
asking queries to a teacher entity, which is capable of answering membership
(whether a trace belongs to the desired assumption) and candidate (whether the
current assumption hypothesis is correct) queries about the unknown language.
Using these queries, the learner improves its hypothesis DFA using iterative
state-partitioning (similar to the DFA minimization algorithms [17]) until the
teacher replies that a given hypothesis is correct. In our context, a model checker
plays the role of the teacher. It answers the queries by essentially checking the
two premises of the rule NC with respect to the a given hypothesis A. While
this approach is effective for small systems, there are a number of problems in
making it scalable:

– Efficient Teacher Implementation: The teacher, i.e., the model checker, must
be able to answer membership and candidate queries efficiently. More pre-
cisely, each query may itself involve exploration of a large state space making
explicit-state model checking infeasible.

– Alphabet explosion: If M1 and M2 interact using a set X of global shared com-
munication variables (referred to as a shared memory system subsequently),
the alphabet of the assumption A consists of all the valuations of X and is
exponential in size of X . The learning algorithm explicitly enumerates the
alphabet set at each iteration and performs membership queries for enumer-
ation step. Therefore, it is prohibitively expensive to apply L∗ directly to
shared memory systems with a large number of shared communication vari-
ables. Indeed, it is sometimes impossible to enumerate the full alphabet set,
let alone learning an assumption hypothesis. We refer to this problem as the
alphabet explosion problem.

– System decomposition: The natural decompositions of a system according
to its modular syntactic description may not be suitable for compositional
reasoning. Therefore, techniques for obtaining good decompositions auto-
matically are required.

In this work we address the first two problems. More precisely, we propose (i)
to efficiently implement the teacher using SAT-based model checking; and (ii)
a lazy learning approach for mitigating the alphabet explosion problem. For an
approach dealing with the third problem, see, for instance, the work in [22].

SAT-based Teacher. In order to allow the teacher to scale to larger models,
we propose to implement it using a SAT-based symbolic model checker. In par-
ticular, we use SAT-based bounded model checking (BMC) [9] to process both
membership and candidate queries. BMC is effective in processing membership
queries, since they involve unrolling the system transition relation to a finite
depth (corresponding to the given trace t) and require only a Boolean answer.
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The candidate queries, instead, require performing unbounded model checking
to show that there is no counterexample for any depth. Therefore, we employ
complete variants of BMC to answer the candidate queries. In particular, we
have implemented two different variants based on k-induction [27] and interpo-
lation [20] respectively. Moreover, we use a SMT solver as the main decision
procedure [29, 3].

Lazy Learning. The main contribution of our work is a lazy learning algorithm
l∗ which tries to ameliorate the alphabet explosion problem. The lazy approach
avoids an expensive eager alphabet enumeration by clustering alphabet symbols
and exploring transitions on these clusters symbolically. In other words, while
the states of the assumption are explicit, each transition corresponds to a set of
alphabet symbols, and is explored symbolically. The procedure for learning from
a counterexample ce obtained from the teacher is different: besides partitioning
the states of the previous hypothesis as in the L∗ algorithm, the lazy algorithm
may also partition an alphabet cluster (termed as cluster-partitioning) based on
the analysis of the counterexample. Note that since our teacher uses a SAT-based
symbolic model checker, it is easily able to answer queries for traces where each
transition corresponds to a set of alphabet symbols. Moreover, this approach is
able to avoid the quantifier elimination step (expensive with SAT) that is used to
compute the transitions in an earlier BDD-based approach to AGR [4]. We have
developed several optimizations to l∗, including a SAT-based counterexample
generalization technique that enables coarser cluster partitions.

Our hope, however, is that in real-life systems where compositional verification
is useful, we will require only a few state and cluster partitions until we converge
to an appropriate assumption hypothesis. Indeed if the final assumption has
a small number of states and its alphabet set is large, then there must be a
large number of transitions between each pair of states in the assumption which
differ only on the alphabet label. Therefore, a small number of cluster partitions
should be sufficient to distinguish the different outgoing clusters from each state.
Experiments based on the earlier BDD-based approach to AGR [4, 22] as well
as our approach have confirmed this expectation.

We have implemented our SAT-based compositional approach in a tool called
Symoda (stands for SYmbolic MODular Analyzer). The tool implements SAT-
based model checking algorithms based on k-induction and interpolation to-
gether with the lazy learning algorithms presented in this paper. Preliminary
experiments on Verilog and SMV examples show that our approach is effective
as an alternative to the BDD-based approach in combating alphabet explosion
and is able to outperform the latter on some examples.

Related Work. Compositional verification based on learning was proposed by
Cobleigh et al. [12] in the context of rendezvous-based message passing systems
and safety properties using explicit-state model checking. It has been extended to
to shared memory systems using symbolic algorithms in [4, 22]. The problem of
whether it is possible to obtain good decompositions of systems for this approach
has been studied in [11]. An overview of other related work can be found in
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[16, 22, 28]. SAT-based bounded model checking for LTL properties was proposed
by Biere et al. [9] and several improvements, including techniques for making
it complete have been proposed [25, 5]. All the previous approaches are non-
compositional, i.e., they build the transition relation for the whole system. To the
best of our knowledge, our work in the first to address automated compositional
verification in the setting of SAT-based model checking.

The symbolic BDD-based AGR approach [4] for shared memory systems using
automated system decomposition [22] is closely related to ours. The technique
uses a BDD-based model checker and avoids alphabet explosion by using eager
state-partitioning to introduce all possible new states in the next assumption,
and by computing the transition relation (edges) using BDD-based quantifier
elimination. In contrast, we use a SAT-based model checker and our lazy learning
approach does not require a quantifier elimination step, which is expensive with
SAT. Moreover, due to its eager state-partitioning, the BDD-based approach
may introduce unnecessary states in the assumptions. Two other approaches
to improve learning based on alphabet set underapproximation and iterative
enlargement have been proposed [10, 16]. Our lazy approach is complementary
and can learn assumptions effectively in cases where a small alphabet set is not
sufficient. Further, it is possible to combine the previous approach with ours by
removing variables from assumption alphabets and adding them back iteratively.
Finally, a learning algorithm for parameterized systems (where the alphabet
consists of a small set of basis symbols, each of which is parameterized by a set of
boolean variables) was proposed in [8]. Our lazy algorithm, in contrast, performs
queries over a set of traces using a SAT-based model checker and performs more
efficient counterexample analysis.

2 Notation and Preliminaries

We define the notions of symbolic transition systems, automata, and composition
which we will use in the rest of the paper. Our formalism borrows notation
from [23, 19]. Let X = {x1, . . . , xn} be a finite set of typed variables defined
over a non-empty finite domain of values D. We define a label a as a total map
from X to D which maps each variable xi to value di. An X-trace ρ is a finite
sequence of labels on X . The next-time label is a′ = a〈X/X ′〉 is obtained from a
by replacing each xi ∈ dom(a) by x′

i. Given variables X and the corresponding
next-time variables X ′, let us denote the (finite) set of all predicates on X ∪ X ′

by ΦX (true and false denote the boolean constants). Given labels a and b on
X , we say that a label pair (a, b′) satisfies a predicate φ ∈ ΦX , denoted φ(a, b′),
if φ evaluates to true under the variable assignment given by a and b′.

CFA. A communicating finite automata (CFA) C on a set of variables X (called
the support set) is a tuple 〈X, Q, q0, δ, F〉; Q denotes a finite set of states, q0
is the initial state, δ ⊆ Q × ΦX × Q is the transition relation and F is the
set of final states. For states q, q′ ∈ Q and φ ∈ ΦX , if δ(q, φ, q′) holds, then
we say that φ is a transition predicate between q and q′. For each state q, we
define its follow set fol(q) to be the set of outgoing transition predicates, i.e.,
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fol(q) = {φ|∃q′ ∈ Q. δ(q, φ, q′)}. We say that fol(q) is complete iff
∨{φ ∈ fol(q)}

= true and disjoint iff for all φi, φj ∈ fol(q), φi ∧φj = false. Also, we say that
δ is complete (deterministic) iff for each q ∈ Q, fol(q) is complete (disjoint). The
alphabet Σ of C is defined to be the set of label pairs (a, a′) on variables X
and X ′. The above definition of transitions (on current and next-time variables)
allows compact representation of CFAs and direct composition with STSs below.

A run of C is defined to be a sequence (q0, . . . , qn) of states in Q such that
q0 = q0. A run is said to be accepting if qn ∈ F . Given a W -trace (X ⊆ W ), ρ =
a0, . . . , an, is said to be a trace of C if there exists an accepting run (q0, . . . , qn)
of C, such that for all j < n, there exists a predicate φ, such that δ(qj , φ, qj+1)
and φ(aj , a

′
j+1) holds. In other words, the labels aj and aj+1 must satisfy some

transition predicate between qj and qj+1. The W -trace language LW (C) is the
set of all W -traces of C. Note that this definition of W -trace allows a sequence
of labels on X to be extended by all possible valuations of variables in W \X and
eases the definition of the composition operation below. In general, we assume
W is the universal set of variables and write L(C) to denote the language of C.

A CFA can be viewed as an ordinary finite automaton with alphabet Σ which
accepts a regular language over Σ. While the states are represented explicitly,
the follow function allows clustering a set of alphabet symbols into one transi-
tion symbolically. The common automata-theoretic operations, viz., union, in-
tersection, complementation and determinization via subset-construction can be
directly extended to CFAs. The complement of C is denoted by C, where L(C)
= L(C). An illustration of a CFA is given in the extended version [28].

Symbolic Transition System. A symbolic transition system (STS) M is a
tuple 〈X, S, I, R, F〉, defined over a set of variables X called its support, where
S consists of all labels over X , I(X) is the initial state predicate, R(X, X ′) is
the transition predicate and F (X) is the final state predicate. Given a variable
set W (X ⊆ W ), a W -trace ρ = a0, . . . , an is said to be a trace of M if I(a0)
and F (an) hold and for all j < n, R(aj , a

′
j+1) holds. The trace language L(M)

of M is the set of all traces of M .1

CFA as an STS. Given a CFA C = 〈XC , QC , q0C , δC , FC〉, there exists an STS
M = 〈X, S, I, R, F〉 such that L(C) = L(M). We construct M as follows: (i)
X = XC ∪ {q} where q is a fresh variable which ranges over QC , (ii) I(X) =
(q = q0), (iii) F (X) = ∃qi ∈ FC .(q = qi), and (iv) R(X, X ′) =

(∃q1, q2 ∈ QC , φ ∈ Φ. (q = q1 ∧ q′ = q2 ∧ δC(q1, φ, q2) ∧ φ(XC , X ′
C))

Synchronous Composition of STSs. Suppose we are given two STSs M1 =
〈X1, S1, I1, R1, F1〉 and M2 = 〈X2, S2, I2, R2, F2〉. We define the composition
M1 ‖ M2 to be a STS M = 〈X, S, I, R, F〉 where: (i) X = X1 ∪ X2, (ii) S
consists of all labels over X , (iii) I = I1 ∧ I2, (iv) R = R1 ∧ R2, and (v) F =
F1 ∧ F2.

Lemma 1. Given two STSs M1 and M2, L(M1 ‖ M2) = L(M1) ∩ L(M2).

1 We overload the symbol L() to describe the trace language of both CFAs and STSs.
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We use STSs to represent system components and CFA on shared variables to
represent automata computed in the various AGR sub-tasks. We assume that
all STSs have total transition predicates. We define the composition of an STS
M with a CFA C, denoted by M ‖ C, to be M ‖ MC , where MC is the STS
obtained from C. Although we use a synchronous notion of composition in this
paper, our work can be directly extended to asynchronous composition also.

Definition 1 (Model Checking STSs). Given an STS M and a property
CFA P , the model checking question is to determine if M � P where � denotes
a conformance relation. Using the trace semantics for STSs and CFAs and set
containment as the conformance relation, the problem can be reduced to checking
if L(M) ⊆ L(P ).

Since CFAs are closed under negation and there is a language-equivalent STS
for each CFA, we can further reduce the model checking question to checking if
L(M ‖ MP ) is empty, where the STS MP is obtained by complementing P to
form P and then converting it into an STS. Let STS M = M ‖ MP . In other
words, we are interested in checking if there is an accepting trace in M, i.e., a
trace that ends in a state that satisfies FM.

2.1 SAT-Based Model Checking

It is possible to check for existence of an accepting trace in an STS M using
satisfiability checking. A particular instance of this problem is bounded model
checking [9] where we check for existence of an accepting trace of length k using
a SAT solver.

Bounded Model Checking(BMC). Given an integer bound k, the BMC
problem can be formulated in terms of checking satisfiability of the following
formula [9]:

BMC(M, k) := IM(s0) ∧
∧

0≤j≤k−1

RM(sj , sj+1) ∧
∨

0≤j≤k

FM(sj) (1)

Here sj (0 ≤ j ≤ k ) represents the set of variables XM at depth j. The transition
relation of M is unfolded up to k steps, conjuncted with the initial and the final
state predicates at the first and the last steps respectively, and finally encoded
as a propositional formula that can be solved by a SAT solver. If the formula is
SAT then the satisfying assignment corresponds to an accepting trace of length
k (a counterexample to M � P ). Otherwise, no accepting trace exists of length k
or less. It is possible to check for accepting traces of longer lengths by increasing
k and checking iteratively.

Unbounded Model Checking(UMC). The unbounded model checking prob-
lem involves checking for an accepting trace of any length. Several SAT-based
approaches have been proposed to solve this problem [25]. In this paper, we con-
sider two approaches, one based on k-induction [27, 14, 15] and the other based
on interpolation [20].
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The k-induction technique [27] tries to show that there are no accepting traces
of any length with the help of two SAT checks corresponding to the base and
induction cases of the UMC problem. In the base case, it shows that no accepting
trace of length k or less exists. This exactly corresponds to the BMC formula
(Eq. 1) being UNSAT. In the induction step, it shows that if no accepting trace
of length k or less exists, then there cannot be an accepting trace of length k +1
in M, and is represented by the following formula:

Step(M, k) :=
∧

0≤j≤k

RM(sj , sj+1)∧
∧

0≤j≤k

¬FM(sj)∧FM(sk+1)∧
∧

0≤i≤j≤k

si �= sj+1

(2)
The induction step succeeds if Step(M, k) is UNSAT. Otherwise, the depth k is
increased iteratively until it succeeds or the base step is SAT (a counterexample is
found). The set of constraints of form si �= sj+1 in (Eq. 2) (also known as simple
path or uniqueness constraints) are necessary for completeness of the method
and impose the condition that all states in the accepting trace must be unique.
The method can be implemented efficiently using an incremental SAT solver [14],
which allows reuse of recorded conflict clauses in the SAT solver across iterations
of increasing depths. The k-induction technique has the drawback that it may
require as many iterations as the length of the longest simple path between
any two states in M (also known as recurrence diameter [9]), which may be
exponentially larger than the longest of all the shortest paths (or the diameter)
between any two states. Translating the above formulas to propositional logic
may involve loss of structural information; we avoid it by using a SMT solver
[29, 3, 28] as our main decision procedure.

Another approach to SAT-based UMC is based on using interpolants [20]. The
method computes an over-approximation I of the reachable set of states in M,
which is also an inductive invariant for M, by using the UNSAT proof of the
BMC instance (Eq. 1). If I does not overlap with the set of final states, then it
follows that there exists no accepting trace in M. An important feature of this
approach is that it does not require unfolding the transition relation beyond the
diameter of the state space of M, and, in practice, often succeeds with shorter
unfoldings. We do not present the details of this approach here; they can be
found in [20, 5].

3 Assume-Guarantee Reasoning Using Learning

Assume-Guarantee reasoning allows dividing the verification task of a system
with multiple components into subtasks each involving a small number of com-
ponents. AGR rules may be syntactically circular or non-circular in form. In this
paper, we will be concerned mainly with the following non-circular AGR rule:

Definition 2. Non-circular AGR (NC) Given STSs M1, M2 and CFA P ,
show that M1 ‖ M2 � P , by picking an assumption CFA A, such that both (n1)
M1 ‖ A � P and (n2) M2 � A hold.
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The NC rule is sound and complete [23, 4, 28] and can be extended to a system
of n STSs M1 . . . Mn by picking a set of assumptions 〈A1 . . . An−1〉 [12]. The
proof of completeness of NC relies on the notion of weakest assumptions 2.

Lemma 2. (Weakest Assumptions) Given a finite STS M with support set
XM and a CFA P with support set XP , there exists a unique weakest assumption
CFA, WA, such that (i) M ‖ WA � P holds, and (ii) for all CFA A where
M ‖ A � P , L(A) ⊆ L(WA) holds. Moreover, L(WA) is regular and the support
variable set of WA is XM ∪ XP .

As mentioned earlier (cf. Section 1), a learning algorithm for regular languages,
L∗, assisted by a model checker based teacher, can be used to automatically
generate the assumptions [12, 7]. However, there are problems in scaling this
approach to large shared memory systems. Firstly, the teacher must be able to
discharge the queries efficiently even if it involves exploring a large state space.
Secondly, the alphabet Σ of an assumption A is exponential in its support set of
variables. Since L∗ explicitly enumerates Σ during learning, we need a technique
to curb this alphabet explosion. We address these problems by proposing a SAT-
based implementation of the teacher and a lazy algorithm based on alphabet
clustering and iterative partitioning (Section 4).

3.1 SAT-Based Assume-Guarantee Reasoning

We now show how the teacher can be implemented using SAT-based model
checking. The teacher needs to answer membership and candidate queries.

Membership Query. Given a trace t, we need to check if t ∈ L(WA) which
corresponds to checking if M1 ‖ {t} � P holds. To this end, we first convert t into
a language-equivalent STS Mt, obtain M = M1 ‖ Mt and perform a single BMC
check BMC(M, k) (cf. Section 2.1) where k is the length of trace t. Note that
since Mt accepts only at the depth k, we can remove the final state constraints at
all depths except k. The teacher replies with a true answer if the above formula
instance is UNSAT; otherwise a false answer is returned.

Candidate Query. Given a deterministic CFA A, the candidate query involves
checking the two premises of NC, i.e., whether both M1 ‖ A � P and M2 � A
hold. The latter check maps to SAT-based UMC (cf. Section 2.1) in a straightfor-
ward way. Note that since A is deterministic, complementation does not involve
a blowup. For the previous check, we first obtain an STS M = M1 ‖ MA where
the STS MA is language-equivalent to A (cf. Section 2) and then use SAT-based
UMC for checking M � P .

In our implementation, we employ both induction and interpolation for SAT-
based UMC. Although the interpolation approach requires a small number of
iterations, computing interpolants, in many cases, takes more time in our imple-
mentation. The induction-based approach, in contrast, is faster if it converges
2 Although we focus our presentation on NC rule, our results can be applied to a

circular rule C presented in literature [7, 22] in a straightforward way. We implement
and experiment with both the rules (cf. Section 5).
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within small number of iterations. Using the above SAT-based query implemen-
tations, automated AGR is carried out in the standard way [12, 22, 28]. Note
that the support variable set for the assumption A is initialized to that of the
weakest assumption WA, i.e., XM1 ∪ XP . Also, in practice, the AGR procedure
terminates with an assumption A with significantly fewer states than WA.

4 Lazy Learning

This section presents our new lazy learning approach to address the alphabet
explosion problem (cf. Section 1); in contrast to the eager BDD-based learning
algorithm [4], the lazy approach (i) avoids use of quantifier elimination to com-
pute the set of edges and (ii) introduces new states and transitions lazily only
when necessitated by a counterexample. We first propose a generalization of the
L∗ [26] algorithm and then present the lazy l∗ algorithm based on it. Due to
lack of space, we omit the full details of our generalization here. The details can
be found in the technical report [28].

Notation. We represent the empty trace by ε. For a trace u ∈ Σ∗ and symbol
a ∈ Σ, we say that u · a is an extension of u. The membership function �·� is
defined as follows: if u ∈ LU , �u� = 1, otherwise �u� = 0. We define a follow
function follow : Σ∗ → 2Σ, where follow(u) consists of the set of alphabet
symbols a ∈ Σ that u is extended by, in order to form u · a. A counterexample
trace ce is positive if �ce� = 1, otherwise, it is said to be negative.

Generalized L∗. Given an unknown language LU defined over alphabet Σ, L∗

maintains an observation table T = (U,UA, V, T ) consisting of trace samples
from LU , where U ⊆ Σ∗ is a prefix-closed set, V ⊆ Σ∗ is a set of suffixes, UA
contains extensions of elements in U and T is a map so that T (u, v) = �u · v� for
some u ∈ U ∪UA and v ∈ V . In contrast to L∗, which extends each u ∈ U by the
full alphabet Σ to obtain UA, the generalized algorithm only allows each u to be
extended by the elements in the corresponding follow set, follow(u). The follow
sets may vary for different u ∈ U . We assume that a procedure Close Table
makes T closed by introducing new elements u into U and adding extensions of
u on elements in follow(u) to UA. Note that with follow(u) = Σ, the generalized
algorithm is able to compute a deterministic and complete hypothesis CFA C
from a closed table T . Given any t ∈ Σ∗, we define its representative trace
[t]r to be the unique u ∈ U corresponding to the final state q of a run on t in
C. Also, the procedure Learn CE analyzes a counterexample ce obtained from
the teacher, obtains a split ce = ui · vi with distinguishing suffix vi using the
classification function αi = �[ui]r · vi�, and adds vi to V [26, 28]. An illustration
of the algorithm can be found in the extended version.

Lazy l∗ Algorithm. The main bottleneck in generalized L∗ algorithm is due
to alphabet explosion, i.e., it enumerates and asks membership queries on all
extensions of an element u ∈ U on the (exponential-sized) Σ explicitly. The
lazy approach avoids this as follows. Initially, the follow set for each u contains
a singleton element, the alphabet cluster true, which requires only a single
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enumeration step. This cluster may then be partitioned into smaller clusters in
the later learning iterations, if necessitated by a counterexample. In essence, the
lazy algorithm not only determines the states of the unknown CFA, but also
computes the set of distinct alphabet clusters outgoing from each state lazily.

More formally, l∗ performs queries on trace sets, wherein each transition cor-
responds to an alphabet cluster. We therefore augment our learning setup to
handle sets of traces. Let Σ̂ denote the set 2Σ and concatenation operator · be
extended to sets of traces S1 and S2 by concatenating each pair of elements from
S1 and S2 respectively. The follow function is redefined as follow : Σ̂∗ → 2Σ̂

whose range now consists of alphabet cluster elements (or alphabet predicates).
The observation table T is a tuple (U,UA, V, T ) where U ⊆ Σ̂∗ is prefix-closed,
V ⊆ Σ̂∗ and UA contains all extensions of elements in U on elements in their
follow sets. T (u, v) is defined on a sets of traces u and v, so that T (u, v) = �u ·v�
where the membership function �·� is extended to a set of traces as follows: given
a trace set S, �S� = 1 iff ∀t ∈ S. �t� = 1. In other words, a �S� = 1 iff S ⊆ LU .
This definition is advantageous in two ways. Firstly, the SAT-based teacher (cf.
Section 3.1) can answer membership queries in the same way as before by con-
verting a single trace set into the corresponding SAT formula instance. Secondly,
in contrast to a more discriminating 3-valued interpretation of �S� in terms of
0, 1 and undefined values, this definition enables l∗ to be more lazy with respect
to state partitioning.

Figure 1 shows the pseudocode for the procedure Learn CE, which learns from
a counterexample ce and improves the current hypothesis CFA C. Note that for
each u, follow(u) is set to true initially. The procedure Learn CE calls the
Learn CE 0 and Learn CE 1 procedures to handle negative and positive coun-
terexamples respectively. Learn CE 0 is the same as Learn CE in generalized L∗:
it finds a split of ce at position i (say, ce = ui ·vi = ui ·oi ·vi+1), so that αi �= αi+1
and adds a new distinguishing suffix vi+1 (which must exist by Lemma 3 below)
to V to partition the state corresponding to [ui · oi]. The procedure Learn CE 1,
in contrast, may either partition a state or partition an alphabet cluster. The
case when vi+1 is not in V is handled as above and leads to a state partition.
Otherwise, if vi+1 is already in V , Learn CE 1 first identifies states in the current
hypothesis CFA C corresponding to [ui] and [ui · oi], say, q and q′ respectively,
and the transition predicate φ corresponding to the transtion on symbol oi from
q to q′. Let ur = [ui]r. Note that φ is also an alphabet cluster in follow(ur) and
if oi = (ai, b

′
i), then φ(ai, b

′
i) holds (cf. Section 2).

The procedure Partition Table partition φ using oi (into φ1 and φ2) and up-
dates the follow set of ur. Also, it modifies the sets U and UA so that U remains
prefix-closed and UA only contains extensions of U on the new follow set [28].
Note that since all the follow sets are disjoint and complete at each iteration,
the hypothesis CFA obtained from a closed table T is always deterministic and
complete (cf. Section 2).

Example. Figure 2 illustrates the l∗ algorithm for the unknown language LU

= (a|b|c|d) · (a|b)∗. Recall that the labels a, b, c and d are, in fact, predicates
over program variables. The upper and lower parts of the table represent U and
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Init: ∀u ∈ Σ∗, set follow(u) = true

Learn CE(ce)
if ( �ce� = 0 )
Learn CE 0(ce)
else Learn CE 1(ce)

Learn CE 1(ce)
Find i so that αi = 1 and αi+1 = 0
if vi+1 �∈ V

V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)

else
Let ce = ui · oi · vi+1

Let q = [ui] and q′ = [ui · oi]
Suppose RC(q, φ, q′) and oi ∈ φ

Partition Table([ui]
r
, φ, oi)

Learn CE 0(ce)
Find i so that αi = 0 and αi+1 = 1
V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)

Partition Table(ur , φ, a)
φ1 := φ ∧ a, φ2 := φ ∧ ¬a

follow(ur) := follow(ur) ∪ {φ1, φ2} \ {φ}

Let Uext = {u ∈ U | ∃v ∈ Σ̂∗. u = ur · φ · v}
Let UAext = {u · φf | u ∈ Uext ∧ φf ∈ follow(u)}
U := U \ Uext

UA := UA \ UAext

For u ∈ {ur · φ1, ur · φ2}
UA := UA ∪ {u}
For all v ∈ V : Fill(u, v)

Fig. 1. Pseudocode for the lazy l∗ algorithm (mainly the procedure Learn CE)

UA respectively, while the columns contain elements from V . The Boolean table
entries correspond to the membership query �u · v� where u and v are the row
and column entries respectively. The algorithm initializes both U and V with
element ε and fills the corresponding table entry by asking a membership query.
Then, it asks query for a single extension of ε on cluster T (the L∗ algorithm will
instead asks queries on each alphabet element explicitly). Since ε �≡ T , in order
to make the table closed, the algorithm further needs to query on the trace T ·T .
Now, it constructs the first hypothesis (Figure 2(i)) and asks a candidate query
with it. The teacher replies with a counterexample a · a, which is then used to
partition the follow set of T into elements a and ā. The table is updated and the
algorithm continues iteratively. The algorithm converges to the final CFA using
four candidate queries; the figure shows the hypotheses CFAs for first, third and
last queries. The first three queries are unsuccessful and return counterexamples
a · a (positive), a · b (positive), a · d · c (negative). The first two counterexamples
lead to cluster partitioning (by a and b respectively) and the third one leads
to state partitioning. Note that the algorithm avoids explicitly enumerating the
alphabet set for computing extensions of elements in Σ. Also, note that the
algorithm is insensitive to the size of alphabet set to some extent: if LU is of the
form Σ · (a|b)∗, the algorithm always converges in the same number of iterations
since only two cluster partitions from state q1 need to be made.

The drawback of this lazy approach is that it may require more candidate
queries as compared to the generalized L∗ in order to converge. This is because
the algorithm is lazy in obtaining information on the extensions of elements in U
and therefore builds candidates using less information, e.g., it needs two candi-
date queries to be able to partition the cluster T on both a and b (note that the
corresponding counterexamples a·a and a·b differ only in the last transition). We
have developed a SAT-based method [28] that accelerates learning in such cases
by generalizing a counterexample ce to include a set of similar counterexamples
(ce′) and then using ce′ to perform a coarser cluster partition.
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ε

ε 0 (q0)
T 1 (q1)

T· T 0

ε

ε 0 (q0)
T 1 (q1)

T·a 1
T·b 1

T·(a|b) 0

ε c

ε 0 1 (q0)
T 1 0 (q1)

T·(a|b) 0 0 (q2)

T·a 1 0
T·b 1 0

T·(a|b)· T 0 0

q0

T

T
q1

T

(a|b)
(a|b)q0

q1 T
(a|b)

(a|b)

Tq0 q1 q2

(i) (ii) (iii)
∗ ( | | | )( | )∗

Fig. 2. Illustration of the l∗ algorithm for LU = (a|b|c|d)(a|b)∗. Rows and column rep-
resent elements of U ∪UA and V respectively. Alphabets are represented symbolically:
T = (a|b|c|d), (a|b) = (c|d).

Lemma 3. The procedure Learn CE 0 must lead to addition of at least one new
state in the next hypothesis CFA.

Lemma 4. The procedure Learn CE 1 either leads to addition of at least one
new state or one transition in the next hypothesis CFA.

Theorem 1. l∗ terminates in O(k·2n) iterations where k is the alphabet size and
n is the number of states in the minimum deterministic CFA Cm corresponding
to LU .

Optimizing l∗. Although the theoretical complexity of l∗ is high (mainly due
to the reason that l∗ may introduce a state corresponding to each subset of
states reachable at a given depth in Cm), our experimental results show that the
algorithm is effective in computing small size assumptions on real-life examples.
Moreover, in the context of AGR, we seldom need to learn Cm completely; often,
an approximation obtained at an intermediate learning step is sufficient.

5 Implementation and Experiments

We have implemented our SAT-based AGR approach based on NC and C rules
in a tool called Symoda, written in C++. The l∗ algorithm is implemented
together with related optimizations. SMV and Verilog benchmarks are translated
into an intermediate input language of the tool using automated scripts [28]. We
use the incremental SMT solver YICES [3, 13] as the main decision procedure.
Interpolants are obtained using the library interface to the FOCI tool [1]. We
represent states of a CFA explicitly while BDDs are used to represent transitions
compactly and avoid redundancy.

Experiments. All experiments were performed on a 1.4GHz AMD machine
with 3GB of memory running Linux. Table 1 compares three algorithms for
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Table 1. Comparison of BDD-based and Lazy AGR schemes. P-AGR uses a learning
algorithm for parameterized systems [8] while Lazy-AGR uses l∗. TV and GV represent
the number of total and global boolean variables respectively. The Mono column shows
the time taken with SAT-based UMC. All times are in seconds. TO denotes a timeout
of 3600 seconds.#A denotes states of the largest assumption. ’-’ denotes that data could
not be obtained due to the lack of tool support (The tool does not support the NC
rule or Verilog programs as input). The superscript i denotes that interpolant-based
UMC was used.

Example TV GV Mono BDD-AGR P-AGR Lazy-AGR

NC C NC C NC C
#A Time #A Time #A Time #A Time #A Time #A Time

s1a 86 5 0.54 2 754 2 223 3 3 3 3 3 3.5 3 1.3
s1b 94 5 0.58 2 TO 2 1527 3 3.3 3 3.3 3 3.9 3 2

guidance 122 22 129 2 196 2 6.6 1 31.5i 5 146i 1 40i 3 55i

msi(3) 57 22 1.2 2 2.1 2 0.3 1 8 * TO 1 8 3 17
msi(5) 70 25 2.2 2 1183 2 32 1 16 * TO 1 15 3 43

syncarb 21 15 3.16 - - 67 30 * TOi * TOi * TOi * TOi

peterson 13 7 0.54 - - 34 2 6 53i 8 210i 6 13 6 88i

CC(2a) 78 30 3.9 - - - - 1 8 * TO 1 8 4 26
CC(3a) 115 44 3.7 - - - - 1 8 * TO 1 7 4 20
CC(2b)i 78 30 337 - - - - * TO * TO 10 1878 5 87
CC(3b)i 115 44 526 - - - - * TO * TO 6 2037 11 2143

automated AGR: a BDD-based approach [4, 22] (BDD-AGR), our SAT-based
approach using l∗ (Lazy-AGR) and (P-AGR), which uses a learning algorithm
for parameterized systems [8]. The last algorithm was not presented in context
of AGR earlier; we have implemented it using a SAT-based teacher and other
optimizations for comparison purposes. The BDD-AGR approach automatically
partitions the given model before learning assumptions while we manually assign
each top-level module to a different partition. Benchmarks s1a, s1b, guidance,
msi and syncarb are derived from the NuSMV tool set and used in the previous
BDD-based approach [22] while peterson and CC are obtained from the VIS
and Texas97 benchmark sets [2]. All examples except guidance and CC can be
proved using monolithic SAT-based UMC in small amount of time. Note that in
some of these benchmarks, the size of the assumption alphabet is too large to
be even enumerated in a short amount of time.

The SAT-based Lazy-AGR approach performs better than the BDD-based ap-
proach on s1a and s2a (cf. Table 1); although they are difficult for BDD-based
model checking [4], SAT-based UMC quickly verifies them. On the msi exam-
ple, the Lazy-AGR approach scales more uniformly compared to BDD-AGR.
BDD-AGR is able to compute an assumption with 67 states on the syncarb
benchmark while our SAT-based approaches with interpolation timeout with
assumption sizes of around 30. The bottleneck is SAT-based UMC in the candi-
date query checks; the k-induction approach keeps unfolding transition relations
to increasing depths while the interpolants are either large or take too much
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time to compute. On the peterson benchmark, BDD-AGR finishes earlier but
with larger assumptions of size up to 34 (for two partitions) and 13 (for four
partitions). In contrast, Lazy-AGR computes assumptions of size up to 6 while
P-AGR computes assumptions of size up to 8. This shows that it is possible
to generate much smaller assumptions using the lazy approach as compared to
the eager BDD-based approach. Both the guidance and syncarb examples re-
quire interpolation-based UMC and timeout inside a candidate query with the
k-induction based approach. P-AGR timeouts in many cases where Lazy-AGR
finishes since the former performs state partitions more eagerly and introduces
unnecessary states in the assumptions. We also compare the impact of various
optimizations in the extended version [28].

6 Conclusions

We have presented a new SAT-based approach to automated AGR for shared
memory systems based on lazy learning of assumptions; alphabet explosion dur-
ing learning is avoided by representing alphabet clusters symbolically and per-
forming on-demand cluster partitioning during learning. Experimental results
demonstrate the effectiveness of our approach on hardware benchmarks. Since we
employ off-the-shelf SMT solvers, we can directly leverage future improvements
in SAT/SMT technology. Our techniques can be applied to software and other
infinite state systems provided the weakest assumption has a finite bisimulation
quotient. Future work includes investigating techniques to exploit incremental
SAT solving for discharging each AGR premise, faster counterexample detection
and obtaining good system decompositions for AGR.
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Abstract. This paper explores the concept of locality in proofs of global
safety properties of asynchronously composed, multi-process programs.
Model checking on the full state space is often infeasible due to state
explosion. A local proof, in contrast, is a collection of per-process invari-
ants, which together imply the global safety property. Local proofs can
be compact: but a central problem is that local reasoning is incomplete.
In this paper, we present a “completion” algorithm, which gradually ex-
poses facts about the internal state of components, until either a local
proof or a real error is discovered. Experiments show that local reasoning
can have significantly better performance over a reachability computa-
tion. Moreover, for some parameterized protocols, a local proof can be
used to show correctness for all instances.

1 Introduction

The success achieved by model checking [5,24] in various settings has always been
tempered by the problem of state explosion [3]. Strategies based on abstraction
and compositional analysis help to ameliorate the adverse effects of state explo-
sion. This paper explores a particular combination of the two, which may be called
“local reasoning”. The context is the analysis of invariance properties of shared-
variable, multi-process programs. Many protocols for cache coherence and mu-
tual exclusion, and multi-threaded programs, fit this program model. Other, more
complex, safety properties can be reduced to invariance by standard methods.

Model checking tools typically prove an invariance property through a reacha-
bility computation, computing an inductive assertion (the reachable states) that
is defined over the full state vector. In contrast, a local proof of invariance for an
asynchronous composition, P1//P2// . . . //Pn, is given by a vector of assertions,
{θi}, one for each process, such that their conjunction is inductive, and implies
the desired invariance property. Locality is ensured by syntactically limiting each
assertion θi to the shared variables, X , and the local variables, Li, of process Pi.
The vector θ is called a split invariant.

In recent work [20], it is shown that the strongest split invariant exists, and
can be computed as a least fixpoint. Moreover, the split invariance formulation
is nearly identical to the deductive proof method of Owicki and Gries [21] for
compositional verification.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 55–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Intuitively, a local proof computation has advantages over a reachability com-
putation. For one, each component of a split invariant can be expected to have a
small BDD representation, as it is defined over the variables of a single process.
Moreover, as the local assertions are loosely coupled—their only interaction is
through the shared variables—BDD ordering constraints are less stringent.

On the other hand, a central problem with local reasoning is that it is in-
complete: i.e., some valid properties do not have local proofs. This is because
a split invariant generally over-approximates the set of reachable states, which
may cause some unreachable error states to be included in the invariant. The
over-approximation is due to the loose coupling between local states, as a joint
constraint on Li and Lj can be enforced only via X , by θi(X, Li) ∧ θj(X, Lj).
Owicki and Gries showed that completeness can be achieved by adding auxiliary
history variables to the shared state. Independently, Lamport showed in [18]
that sharing all local state also ensures completeness. For finite-state processes,
Lamport’s construction has an advantage, as the completed program retains
its finite-state nature, but it is also rather drastic: ideally, a completion should
expose only the information necessary for a proof.

The main contribution of the paper is a fully automatic, gradual, completion
procedure for finite-state programs. This differs from Lamport’s construction
in exposing predicates defined over local variables, which can be more efficient
than exposing variables. The starting point is the computation of the strongest
split invariant. If this does not suffice to prove the property, local predicates
are extracted from an analysis of error states contained in the current invariant,
added to the program as shared variables, and the split invariance calculation
is repeated. Unreachable error states are eliminated in successive rounds, while
reachable error states are retained, and eventually detected.

The procedure is not optimal, in that it does not always produce a minimal
completion. However, it works well on a number of protocols, often showing a
significant speedup over forward reachability. It is also useful in another setting,
that of parameterized verification. In [20], it is shown that split invariance proofs
for small instances of a parameterized protocol can be generalized (assuming
a small model property) to inductive invariants which show correctness of all
instances. Completion helps in the creation of such proofs.

In summary, the main contributions of this paper are (i) a completion proce-
dure for split invariance, and (ii) the experimental demonstration that, in many
cases, the fixpoint calculation of split invariance, augmented with the comple-
tion method, works significantly better than forward reachability. Parameterized
verification, while not the primary goal, is a welcome extra!

An extended version of the paper, with complete proofs, and full experimental
results, is available from http://www.cs.bell-labs.com/who/kedar/local.html .

2 Background

This section defines split invariance and gives the fixpoint formulation of the
strongest split invariant. A more detailed exposition may be found in [20]. In
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the following, we assume that the reader is familiar with the concept of a state
transition system.

Definition 1. A component program is given by a tuple (V, I, T ), where V is a
set of (typed) variables, I(V ) is an initial condition, and T (V, V ′) is a transition
condition, where V ′ is a fresh set of variables in 1-1 correspondence with V .

The semantics of a program is given by a transition system (S, S0, R) where S is
the state domain defined by the Cartesian product of the domains of variables
in V , S0 = {s : I(s)}, and R = {(s, t) : T (s, t)}. We assume that T is left-total,
i.e., every state has a successor. A state predicate is a Boolean expression over
the program variables. The truth value of a predicate at a state is defined in the
usual way by induction on formula structure.

Inductiveness and Invariance. A state predicate ϕ is an invariant of program
M if it holds at all reachable states of M . A state assertion ξ is an inductive
invariant for M if it is initial (1) and inductive (2) (i.e., preserved by every
program transition). Here, wlp is the weakest liberal precondition transformer
introduced by Dijkstra; the notation [ψ], from Dijkstra and Scholten [8], indicates
that ψ is valid.

[IM ⇒ ξ] (1)
[ξ ⇒ wlp(M, ξ)] (2)

An inductive assertion is adequate to show the invariance of a state predicate
ϕ if it implies ϕ (condition (3)).

[ξ ⇒ ϕ] (3)

From the Galois connection between wlp and the strongest post-condition
operator sp (also known as post), condition (2) is equivalent to

[sp(M, ξ) ⇒ ξ] (4)

The conjunction of (1) and (4) is equivalent to [(IM ∨ sp(M, ξ)) ⇒ ξ]. As
function f(ξ) = IM ∨ sp(M, ξ) is monotonic, by the Knaster-Tarski theorem
(below), it has a least fixpoint, which is the set of reachable states of M .

Theorem 1. (Knaster-Tarski) A monotonic function f on a complete lattice
has a least fixpoint, which is the strongest solution to Z : [f(Z) ⇒ Z]. Over
finite-height lattices, it is the limit of the sequence Z0 = ⊥; Zi+1 = f(Zi).

Program Composition. The asynchronous composition of programs {Pi}, written
as (//i : Pi) is the program P = (V, I, T ), where the components are defined as
follows. Let V = (∪ i : Vi), and I = (∧ i : Ii). The shared variables, denoted X ,
are those that belong to Vi ∩ Vj , for a distinct pair (i, j). The local variables of
process Pi, denoted Li, are the variables in Vi that are not shared (i.e., Li =
Vi \ X). The set of local variables is L = (∪ i : Li). The transition condition Ti

of program Pi is constrained so that it leaves local variables of other processes
unchanged. I.e., Ti is extended to Ti(Vi, V

′
i ) ∧ (∀j : j 	= i : L′

j = Lj). Then T can
be defined simply as (∨ i : Ti), and wlp(P, ϕ) is equivalent to (∧ i : wlp(Pi, ϕ)).
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2.1 Split Invariance

For simplicity, we consider a two-process composition P = P1//P2; the results
generalize to multiple processes. The desired invariance property ϕ is defined over
the full product state of P . A local assertion for Pi is an assertion that is based
only on Vi (equivalently, on X and Li). A pair of local assertions θ = (θ1, θ2) is
called a split assertion. Split assertion θ is a split invariant if the conjunction
θ1 ∧ θ2 is an inductive invariant for P .

Split Invariance as a Fixpoint. The conditions for inductiveness of θ1 ∧ θ2 can
be rewritten to the simultaneous pre-fixpoint form below, based on the (sp,wlp)
Galois connection and locality. In particular, the existential quantification over
local variables encodes locality, as θi is independent of Lj , for j 	= i.

[(∃L2 : I ∨ sp(P1, θ1 ∧ θ2) ∨ sp(P2, θ1 ∧ θ2)) ⇒ θ1] (5)
[(∃L1 : I ∨ sp(P1, θ1 ∧ θ2) ∨ sp(P2, θ1 ∧ θ2)) ⇒ θ2] (6)

Let Fi(θ) refer to the left-hand side of the implication for θi. By monotonicity
of Fi in terms of (θ1, θ2) and the Knaster-Tarski theorem, there is a strongest
solution, θ∗, which is also a simultaneous least fixpoint: [θ∗i ≡ Fi(θ∗)]. For
finite-state programs, Fi(θ) can be evaluated using standard BDD operations.

Theorem 2. A split invariance proof of the invariance of ϕ exists if, and only
if, [(θ∗1 ∧ θ∗2) ⇒ ϕ].

Early Quantification. For a program with more than two processes, the general
form of F1(θ) is (∃L \ L1 : I ∨ (∨ j : sp(Pj , (∧m : θm)))). This expression
may be optimized with early quantification, as follows. Distributing ∃ over ∨
and over sp, and using the fact that the θi’s are local assertions, F1(θ) may be
rewritten to (∃L \ L1 : I) ∨ (∨ j : lsp1(Pj , θ)), which quantifies out variables as
early as possible. In this expression, lsp1(Pj , θ) is defined as follows: for j 	= 1,
it is (∃Lj : sp(Pj , θ1 ∧ θj ∧ (∧ k : k 	∈ {1, j} : (∃Lk : θk)))), and for j = 1, it is
sp(P1, θ1 ∧ (∧ k : k 	= 1 : (∃Lk : θk))).

3 The Completion Procedure

The completeness problem, and its solution, is nicely illustrated by the mutual
exclusion protocol in Figure 1(a). For a 2-process instance, the strongest split
invariant is (true, true). This includes (unreachable) states that violate mutual
exclusion, making it impossible to prove the property. On the other hand, mod-
ifying the program by adding the auxiliary variable last, which records the last
process to enter the critical section (Figure 1(b)), results in the strongest split
invariant given by θi = ((Ci ∨ Ei) ≡ ((¬x) ∧ last = i)). This suffices to prove
mutual exclusion. The completion algorithm, completion, defined below, au-
tomatically discovers auxiliary variables such as this one.

A second route to completion, which we refer to as completion-pairwise, is
to widen the scope of local assertions to pairs of processes. A split invariant is now
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x : boolean initially x = 1 x: boolean initially x = 1
last : 0..N initially last = 0

N

‖
i=1

P [i] ::

loop forever do�
����

I : Non-Critical
T : request x

C : Critical
E : release x

�
����

N

‖
i=1

P [i] ::

loop forever do�
����

I : Non-Critical
T : request x

last := i;
C : Critical
E : release x

�
����

(a) protocol mux-sem (b) protocol mux-sem-last

Fig. 1. Illustration of the (In)Completeness of Local Reasoning

a matrix of entries of the form θij(X, Li, Lj). The 1-index fixpoint algorithm is
extended to compute 2-index θ’s as follows. Instead of n simultaneous equations,
there are O(n2) equations, one for each pair (i, j) such that i 	= j. The operator,
Fij , is defined as (∃L \ (Li ∪ Lj) : I ∨ (∨ k : sp(Pk, θ̂))), where θ̂ is (∧m, n : m 	=
n : θmn). For the original program from Figure 1(a), completion-pairwise
produces the solution θij(X, Li, Lj) = ((x ⇒ ((Ii ∨ Ti) ∧ ¬Cj)) ∧ ((¬x ∧ Ci) ⇒
¬Cj)), which suffices to prove mutual exclusion. It is interesting that, in some of
our experiments, pairwise split invariance outperformed both single-index split
invariance (with completion) and reachability.

3.1 The Completion Algorithm

We first provide a description of the main steps of the algorithm completion.
The input is a concurrent program, P , with n processes, {Pi}, and a global
property ϕ. We use θi to represent the i’th approximation θi

1 ∧ θi
2 ∧ . . . ∧ θi

n.
The refinement phase (steps 3 and 4) can be optimized without violating the
correctness argument; this is discussed in the extended version of the paper.

1. If the initial condition violates ϕ, halt with “Error”.
2. Compute the split invariant using the fixed point algorithm. If, at the i’th

stage, θi violates ϕ, go to step 3. If a fixpoint is reached, halt with “Verified”
and provide the split invariant as proof.

3. Let viol = θi ∧ ¬ϕ. For each state in viol , find new essential predicates and
add auxiliary variables for these to the program. If new predicates are found,
return to step 1, which starts a new split invariance calculation; otherwise,
continue to step 4.

4. Add the immediate predecessors of viol to the error condition—i.e., modify
ϕ to ϕ ∧ ¬EX(viol )—and return to step 3.

3.2 The Refinement Phase

As θ1 ∧ θ2 ∧ ... ∧ θn is always an over-approximation of the reachable states,
completion may detect states that violate ϕ but are not actually reachable.
Those states should be identified and left out of the split invariant. To do so, once
a violating state is detected, completion computes essential predicates using a
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greedy strategy. For each local variable (from some process), the algorithm tests
whether it is relevant to the error for that state; this is considered to be the case
if an alternative value for the variable results in a non-error state. (Sometimes,
a group of variables may need to be considered together.) For example, mutual
exclusion is violated for a global state if two processes are at the critical location,
but the locations of other processes are not relevant, since they could be set to
arbitrary values while retaining the error condition.

For each relevant variable v in an error state s, a predicate of the form v = v(s)
is added to the program. This is a local predicate, as v is a local variable for some
process. To add a predicate f(Li), a corresponding Boolean variable b is added
to the shared state, and initialized to the value of f(Li) at the initial state. It is
updated as follows: for process Pi, the update is given by b′ ≡ f(L′

i), and for
process Pj , j 	= i, the update is given by b′ ≡ b. This augmentation clearly does
not affect the underlying transitions of the program: the new Boolean variables
are purely auxiliary, and the transitions enforce the invariant (b ≡ f(Li)).

Each component θi is now defined over X , Li, and the auxiliary Boolean
variables. The auxiliary variables act as additional constraints between θi and
θj , sharpening the split invariant. A rough idea of how the sharpening works is as
follows. (A precise formulation is in Section 3.4.) Consider a state s to be “fixed”
by the values of the auxiliary variables b1, . . . , bn (one for each process) if the
local state components in s form the only satisfying assignment for (∧ i : bi(s) ≡
fi(Li)). The correctness proof shows (cf. Lemmas 2 and 3) that an unreachable
error state with no predecessors is eliminated from the split invariance once it
is fixed. However, a fixed, but unreachable, error state may be detected for the
second time, if it has predecessors (which must be unreachable). In this case,
the predecessors need to be eliminated, so they are considered as error states by
modifying ϕ, and predicates are extracted from them.

Adding predecessors continues until (i) at least one new predicate is exposed,
and a new computation is initialized, or (ii) the modified ϕ violates the initial
condition – an indication that a state violating the original ϕ is reachable.

3.3 Illustration

We illustrate some of the key features of this algorithm on the mux-sem example
from Figure 1(a). For simplicity we have only two processes; thus, the safety
property is ϕ ≡ ¬(C1 ∧ C2).

Iteration 0
Step 1. The initial condition is x = 1 ∧ I1 ∧ I2. ϕ does not violate it.

Step 2. completion computes the split invariant until θ1 ∧ θ2 violates ϕ. At
this stage,

θ1 ∧ θ2 ≡ x = 1 ∧ ((I1 ∨ T1) ∧ (I2 ∨ T2))
∨ x = 0 ∧ ((I1 ∨ T1 ∨ C1) ∧ (I2 ∨ T2 ∨ C2))

Step 3. Let viol be the set of states that satisfy θ1∧θ2∧¬ϕ. The only state in viol
is the one which satisfies x = 0 ∧ C1 ∧ C2. The global predicate variables b1 and
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b2, which are associated with the essential predicates C1 and C2, respectively,
are added to the program, as described previously.

Iteration 1
Step 2. A new computation of the split invariant sets off. Once again it is
computed until θ1 ∧ θ2 violates ϕ. The description of θ1 ∧ θ2 is long, and is
omitted, but the important point is that x = 0 ∧ C1 ∧ C2 ∧ b1 ∧ b2 satisfies it.

Step 3. Since (x = 0, C1, C2) was already detected, the negations of its predeces-
sors that satisfy θ1 ∧θ2 are added to ϕ, i.e. ϕ is augmented by ¬(x = 1∧C1 ∧T2)
and ¬(x = 1 ∧ T1 ∧ C2) and the corresponding states are analyzed as well. Since
both predecessors satisfy θ1 ∧ θ2, violate ϕ, and are detected for the first time,
new global predicate variables b3 and b4, which are associated with the essential
predicates T2 and T1, respectively, are added to the program.

Iteration 2
Again, the split invariance calculation does not succeed. This time, the error
states (x = 1, C1, T2, b1, ¬b2, b3, ¬b4) and (x = 1, T1, C2, ¬b1, b2, ¬b3, b4) are part
of the split invariant.

Step 3. Since both of these states were already detected, the negations of their
predecessors that belong to θ1 ∧ θ2 are added to ϕ, i.e. ϕ is augmented by
¬(x = 1 ∧ C1 ∧ I2) and ¬(x = 1 ∧ I1 ∧ C2), and they are analyzed as well. Since
both predecessors belong to θ1 ∧θ2, violate ϕ, and are detected for the first time,
new global predicate variables b5 and b6, which are associated with the essential
predicates I2 and I1, respectively, are added to the program.

Iteration 3
The split invariance calculation succeeds, establishing mutual exclusion.

3.4 Correctness

The correctness argument has to show that the procedure will eventually termi-
nate, and detect correctly whether the property holds. The theorems are proved
for the 2-process case, the proof for the general case is similar. Lemmas 1, 2,
and 3 make precise the effect that adding auxiliary boolean variables has on
subsequent split invariance calculations. Lemma 4 shows that a split invariant
is always an over-approximation to the reachable states.

To represent the state of a 2-process instance, we use variables X, b1, b2, L1, L2,
where X represents the shared variables, L1, L2 are the local variables of pro-
cesses P1, P2 respectively, and b1, b2 are auxiliary Boolean variables added for
predicates f1(L1) and f2(L2), respectively. For a variable w, and a state s, let
w(s) denote the value of w in s.

Define states s and t to be equivalent, denoted s ∼ t, if they agree on the
values for X , b1, and b2. A set of states S is closed under ∼ if, for each state
in S, its equivalence class is included in S. A set of states is pre-closed if all
predecessors of states in S are included in S.
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Lemma 1. (Invariance Lemma) The assertion (b1 ≡ f1) ∧ (b2 ≡ f2) holds
for all states in θi

1 ∧ θi
2, for all approximation steps i.

Lemma 2. If state s is in the (i + 1)’st approximation to the split invariant,
there is an equivalent state t that is also in the (i + 1)’st approximation, and
either t is initial, or it has a predecessor in the i’th approximation.

Lemma 3. (Exclusion Lemma) Let S be a set of states that is pre-closed, closed
under ∼, and unreachable. Then S is excluded from the split invariant.

Lemma 4. (Reachability Lemma) The split invariant fixpoint is always an over-
approximation of the set of reachable states.

Theorem 3. (Soundness) (a) If ϕ is declared to be proved, it is an invariant.
(b) If ϕ is declared to fail, there is a reachable state where ϕ is false.

Proof
Part (a): If the split invariant implies ϕ, by Lemma 4, ϕ is true of all reachable
states, and is therefore invariant.

Part (b): This follows as the error states, which are initially a subset of ¬ϕ, are
enlarged by adding predecessors. Thus, if an initial state is considered to be an
error, there is a path to a state falsifying ϕ.

Theorem 4. (Completeness I) If the property ϕ is an invariant for P1//P2, it
is eventually proved.

Proof. If ϕ is an invariant, any states in the first split invariant that do
not satisfy ϕ are unreachable. Call this set error . The procedure used to add
predicates (steps 3 and 4), in the limit, extracts predicates from all states in
EF(error), as it adds predecessors to the error set. The set EF(error ) is pre-
closed, and unreachable. If this set is not ∼-closed, there are states s and t such
that s ∼ t, but s is an error state, while t is not—this triggers the addition
of a new predicate in Step 3 of the algorithm. As there are only finitely many
predicates, eventually, enough predicates are added so that the set is ∼-closed.
By Lemma 3, once ∼-closure is obtained, the set is excluded from the split
invariant. At this stage, the split invariant has no error states, and the property
is declared proved. �

Theorem 5. (Completeness II) If ϕ is not an invariant of P1//P2, this is even-
tually detected.

Proof. If the property is not invariant, there is a reachable state on which it
fails. By the Reachability Lemma, the split invariant always includes these states.
The completion procedure, at each step, will enlarge the error set, effectively
computing EF(error). At some stage (defined by the length of the shortest path
to an error state) this has a non-empty intersection with the initial states, at
which point the error is detected. �

Theorems 4 and 5 also show termination of the procedure.
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4 Experiments and Results

We implemented completion using tlv [23], a BDD-based model checker, and
tested it on protocols taken from the literature. The tests were conducted on a
2.8GHz Intel Xeon with 1GB RAM.

The primary aim of the experiments is to compare split invariance with the
two forms of completion against a forward reachability calculation on the full
state space. The split invariance calculation is uniformly faster (sometimes signif-
icantly so) than forward reachability. We also compared it against model checking
using inverse reachability (i.e., AG). In three examples (peterson’s, bakery,
and an incorrect mutual exclusion protocol), split invariance performs signifi-
cantly better than the AG calculation; in other examples, the AG calculation is
somewhat faster.

For many of these protocols, including bakery and mux-sem, the split in-
variance calculation also results in an inductive invariant that shows correctness
for all instances, using the results in [20]. Split invariance (as opposed to reach-
ability) is essential for obtaining this result.

As previously explained, completion consists of a loop with three main
phases: computing the split invariant, refining the system by exposing predicates
over local variables, and analyzing the predecessors of violating states. It is
important to point out that not all examples require the use of all three phases.

For two examples: peterson’s mutual exclusion protocol and algorithm bak-
ery, completion terminated much faster than traditional forward or backward
model checking. It appears that these examples contain sufficient global informa-
tion for computing the split invariant, without having to employ any refinements.
Table 1 compares completion, forward reachability and inverse reachability for
peterson’s mutual exclusion protocol. The run times achieved by completion
are significantly better for larger instances.

Table 1. Test results for peterson’s mutual exclusion protocol

Method Processes BDDs Bytes Time(s) Refinements New Variables
Forward Reachability 2 2k 524k 0 - -
Backward Reachability 2 1.7k 524k 0 - -

completion 2 2k 524k 0 0 0
Forward Reachability 5 23k 917k 0.05 - -
Backward Reachability 5 42k 1.2M 0.29 - -

completion 5 20k 852k 0.04 0 0
Forward Reachability 10 194k 3.7M 0.94 - -
Backward Reachability 10 13M 211M 680 - -

completion 10 173k 3.4M 0.26 0 0
Forward Reachability 20 1.8M 30M 127 - -
Backward Reachability 20 - - >2hrs - -

completion 20 1.7M 29M 9.9 0 0

Another tested example was protocol mux-sem, provided in Figure 1. When
running completion in its basic form, the obtained run times and the num-
ber of bdds were not as good as those of traditional forward model checking,
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due to the overhead of the multiple split invariance runs. However, when we
use a pairwise split invariant computation, as explained in the introduction of
Section 3, the results turn over, and the run times are in completion’s favor.
Backward reachability obtained the best results for this protocol.

All examples provided before were of correct protocols, i.e they all satisfied
their safety properties. The next and last example is of an incorrect mutual
exclusion protocol, mux-sem-try, and it illustrates the ability of completion
to cope with systems that violate their own safety property and its ability to
identify real violations. In this case, when performing the computation all three
phases had to be employed, together with several refinements in which multiple
new variables where added and the predecessors of violating states had to be
analyzed.

Table 2 compares forward and backward reachability to completion for mux-
sem-try. Both the number of bdds and the run times achieved by completion
are significantly better. When performing tests on 20 processes, what requires
more than 2 hours when using model checking is completed in 52 seconds when
using completion, and we can only assume that as the number of processes
increases - the difference increases as well.

Table 2. Test results for protocol mux-sem-try

Method Processes BDDs Bytes Time(s) Refinements New Variables
Forward Reachability 2 877 524k 0 - -

Backward Reachability 2 1.1k 524k 0 - -
completion 2 4.8k 589k 0.01 5 8

Forward Reachability 5 11k 720k 0.12 - -
Backward Reachability 5 10k 655k 0.26 - -

completion 5 10k 720k 0.16 7 14
Forward Reachability 10 337k 6M 27.7 - -

Backward Reachability 10 450k 7.8M 25.8 - -
completion 10 70k 1.7M 1.3 7 24

Forward Reachability 20 - - >2hrs - -
Backward Reachability 20 - - >2hrs - -

completion 20 1M 18M 35 7 44

5 Related Work

Early work on compositional reasoning is primarily on deductive proof methods
[7]. The pioneering methods of Owicki and Gries [21] and Lamport [18] are
extended to assume-guarantee reasoning by Chandy and Misra [2] and Jones [17].
The split invariance calculation can be viewed as mechanizing the Owicki-Gries
proof rule, while the completion algorithm is inspired by Lamport’s method.

Recent work on compositional reasoning is more algorithmic. Tools like Ca-
dence SMV provide support for compositional proofs [19,16]. “Thread-modular”
reasoning [9,10,14] computes a per-process transition relation abstraction in a
modular way. In [13], this abstraction is made more precise by including some
aspects of the local states of other processes, and extended to parameterized
verification.
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Split invariance is based on a simpler, state-based representation. A key new
aspect of this paper is that it addresses the central incompleteness problem.
While a transition relation abstraction is more precise than one based on states,
it is incomplete nonetheless [10].

The “invisible invariants” method [22] heuristically generates quantified in-
variants for parameterized protocols. This can prove correctness for many of the
protocols considered here, but it requires the user-guided addition of auxiliary
variables in several cases. One of the contributions of this paper is to automate
the addition of such auxiliaries.

The completion procedure is in the spirit of failure-based refinement meth-
ods, such as counter-example guided refinement [4]. Given a composition P =
P1// . . . //Pn, earlier refinement algorithms may be viewed as either (1) ab-
stracting P to a single process, which is successively refined; or (2) applying
compositional analysis to individual abstractions of each Pi. However, method
(2) is incomplete, though compositional; while method (1) is non-compositional,
though complete. The procedure given here achieves both compositionality and
completeness.

A different type of assume-guarantee reasoning applies machine learning to
determine the weakest interface of a process as an automaton [12,25,11,1]. This
is complete, but the algorithms are complex, and may be expensive [6].

Hu and Dill propose in [15] to dynamically partition the BDD’s arising in a
reachability computation. The partitioning is not necessarily local. A fixed local
partitioning allows a simpler fixpoint procedure, and especially a simpler termi-
nation condition. Unlike split invariance, the Hu-Dill method computes the exact
set of reachable states. As the experiments show, however, over-approximation
is not necessarily a disadvantage.

6 Conclusions and Future Work

This paper provides an algorithm—the first, to the best of our knowledge—
which address the incompleteness problem for local reasoning. The local reason-
ing strategy itself computes a split state invariant, which is a simpler object than
the transition relations or automata considered in other work.

Conceptually, local reasoning is an attractive alternative to model checking
on the full state space. Our experiments show that this is justified in practice
as well: split invariance, augmented with the completion procedure, can be a
valuable model checking tool. In many cases, a split invariance proof can be
used to show correctness of all instances of a parameterized protocol.

The completion procedure is defined for finite-state components. Extending
this method to unbounded state components (e.g., C programs) would require
a procedure that interleaves internal, per-process abstraction with split invari-
ance and completion. Other interesting questions include the design of a split
invariance procedure for synchronous composition, and the investigation of local
reasoning for liveness properties.
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Abstract. Programs typically make extensive use of libraries, including dynam-
ically linked libraries, which are often not available in source-code form, and
hence not analyzable by tools that work at source level (i.e., that analyze interme-
diate representations created from source code). A common approach is to write
library models by hand. A library model is a collection of function stubs and
variable declarations that capture some aspect of the library code’s behavior. Be-
cause these are hand-crafted, they are likely to contain errors, which may cause
an analysis to return incorrect results.

This paper presents a method to construct summary information for a library
function automatically by analyzing its low-level implementation (i.e., the li-
brary’s binary).

1 Introduction

Static program analysis works best when it operates on an entire program. In practice,
however, this is rarely possible. For the sake of maintainability and quicker development
times, software is kept modular with large parts of the program hidden in libraries.
Often, commercial off-the-shelf (COTS) modules are used. The source code for COTS
components and libraries (such as the Windows dynamically linked libraries) is not
usually available.

In practice, the following techniques are used to deal with library functions:

– stop at library calls: this approach reduces analysis coverage and leads to incom-
plete error detection;

– treat library calls as identity transformers: this approach is generally unsound;
furthermore, this approach is imprecise because the analysis models a semantics
that is different from that of the program;

– define transformers for selected library calls: this approach is not extensible:
new transformers must be hardcoded into the analyzer to handle additional calls;

– use hand-written source-code stubs that emulate some aspects of library code:
while this approach is both sound and extensible, the process of crafting stubs is
usually time-consuming and error-prone.

In this paper, we describe a static-analysis tool that automatically constructs sum-
maries for library functions by analyzing their low-level implementation (i.e., binary
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code). A library function’s summary consists of a set of error triggers and a set of sum-
mary transformers. Error triggers are assertions over the program state that, if satisfied
at the call site of the function, indicate a possibility of program failure during the func-
tion’s invocation. Summary transformers specify how the program state is affected by
the function call: they are expressed as transfer relations, i.e., the relations that hold
among the values of global variables and function parameters before and after the call.

To use the function summaries, a client analysis must approximate the set of program
states that reach the call site of a library function. The analysis should report an error if
the approximation contains states that satisfy an assertion that corresponds to some error
trigger. Summary transformers are applied as follows: the “before” values of global
variables and function parameters are restricted to those that reach the call site; the
restricted transfer relation is projected onto the “after” values to yield an approximation
for the set of program states at the function’s return point.

Our work makes the following contributions:

– It provides a way to create library summaries automatically, which frees tool devel-
opers from having to create models for standard libraries by hand.

– The library summaries obtained have applications in both verification tools and
bug-finding/security-vulnerability-detection tools, and thus help in both kinds of
code-quality endeavors.

– The library summaries obtained by our tool could be used in client analysis tools
that work on either source code or low-level code (i.e., assembly code, object code,
or binary executable code). In particular, they satisfy the needs of many source-code
bug-finding analyses, which propagate symbolic information through the program,
including the amount of memory allocated for a buffer, the offset of a pointer into
a corresponding buffer, the length of a string, etc. [25,10].

– In some cases, the tool might allow static analysis to be carried out more efficiently.
That is, the application/library division provides a natural modularity border that
could be exploited for program-analysis purposes: typically, many applications link
against the same library; summarizing the functions in that library obviates the need
to reanalyze the library code for each application, which could improve analysis
efficiency. (See §5 for a discussion of other work that has had the same motivation.)

During development, application code is changed more frequently than library code.
Because an application can be analyzed repeatedly against the same set of library sum-
maries, it is possible to recoup the cost of applying more sophisticated analyses, such
as polyhedral analysis [8], for library summarization.

Some may argue against our choice of analyzing the low-level implementation of li-
brary functions: programs link against any possible implementation of the library, pos-
sibly across different platforms. Thus, it would be desirable to verify programs against
more abstract function summaries derived, for instance, from library specifications. Be-
low, we list some of the reasons why we believe that constructing library functions from
low-level implementations deserves attention.

– Formal library specifications are hard to get hold of, while a low-level implemen-
tation for each supported platform is readily available.
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– Even if formal specification is available, there is no easy way to verify that a par-
ticular library implementation conforms to the specification.

– The analysis of an actual library implementation may uncover bugs and undesirable
features in the library itself. For instance, while summarizing memory-management
functions, we discovered that the libc implementation that came with Microsoft
Developer Studio 6 assumes that the direction flag, the x86 flag that specifies the
direction for string operations, is set to false on entry to the library. This can be a
security vulnerability if an adversary could control the value of the direction flag
prior to a subsequent call to memcpy.

The remainder of the paper is organized as follows: §2 provides an overview of our
goals, methods, and results obtained. §3 discusses the individual steps used to gener-
ate summary information for a library function. §4 summarizes two case studies. §5
discusses related work.

2 Overview

We use the function memset as the running example for this paper. The function is
declared as follows:

void * memset ( void * ptr, int value, size t num );

Its invocation sets the first num bytes of the block of memory pointed to by ptr to the
specified value (interpreted as an unsigned char). The value of ptr is returned.

In this paper, we address two types of memory-safety errors: buffer overruns and
buffer underruns. Typically, analyses that target these types of errors propagate alloca-
tion bounds for each pointer. There are many ways in which this can be done. We use the
following model. Two auxiliary integer variables are associated with each pointer vari-
able: allocf is the number of bytes that can be safely accessed “ahead” of the address
stored in the pointer variable, allocb is the number of bytes that can be safely accessed
“behind” the address stored in the pointer variable. We believe that this scheme can
be easily interfaced with other choices for representing allocation bounds. We use dot
notation to refer to allocation bounds of a pointer variable, e.g., ptr.allocf .

Analysis goals. The function summary specifies how to transform the program state at
the call site of the function to the program state at its return site. Also, it specifies condi-
tions that, if satisfied at the call site, indicate that a run-time error is possible during the
function call. Intuitively, we expect the summary transformer for the memset function
to look like this (for the moment, we defer dealing with memory locations overwritten
by memset to §3.2):

ret = ptr ∧ ret.allocf = ptr.allocf ∧ ret.allocb = ptr.allocb, (1)

where ret denotes the value that is returned by the function. We expect the sufficient
condition for the buffer overflow to look like this:

num ≥ 1 ∧ ptr.allocf ≤ num − 1. (2)

The goal of our analysis is to construct such summaries automatically.
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00401070 mov edx, dword ptr [esp + 12] edx ← count
00401074 mov ecx, dword ptr [esp + 4] ecx ← ptr
00401078 test edx, edx
0040107A jz 004010C3 if(edx = 0) goto 004010C3
0040107C xor eax, eax eax ← 0
0040107E mov al, byte ptr [esp + 8] al ← (char)value
00401082 push edi
00401083 mov edi, ecx edi ← ecx
00401085 cmp edx, 4
00401088 jb 004010B7 if(edx < 4) goto 004010B7
0040108A neg ecx ecx ← −ecx
0040108C and ecx, 3 ecx ← ecx & 3
0040108F jz 00401099 if(ecx = 0) goto 00401099
00401091 sub edx, ecx edx ← edx − ecx
00401093 mov byte ptr [edi], al ∗edi ← al
00401095 inc edi edi ← edi + 1
00401096 dec ecx ecx ← ecx − 1
00401097 jnz 00401093 if(ecx �= 0) goto 00401093
00401099 mov ecx, eax ecx ← eax
0040109B shl eax, 8 eax ← eax << 8
0040109E add eax, ecx eax ← eax + ecx
004010A0 mov ecx, eax ecx ← eax
004010A2 shl eax, 10h eax ← eax << 16
004010A5 add eax, ecx eax ← eax + ecx
004010A7 mov ecx, edx ecx ← edx
004010A9 and edx, 3 edx ← edx & 3
004010AC shr ecx, 2 ecx ← ecx >> 2
004010AF jz 004010B7 if(ecx = 0) goto 004010B7
004010B1 rep stosd while(ecx �= 0) { ∗edi ← eax; edi++; ecx--; }
004010B3 test edx, edx
004010B5 jz 004010BD if(edx = 0) goto 004010BD
004010B7 mov byte ptr [edi], al ∗edi ← al
004010B9 inc edi edi ← edi + 1
004010BA dec edx edx ← edx − 1
004010BB jnz 004010B7 if(edx �= 0) goto 004010B7
004010BD mov eax, dword ptr [esp + 8] eax ← ptr
004010C1 pop edi
004010C2 retn return
004010C3 mov eax, dword ptr [esp + 4] eax ← ptr
004010C7 retn return

Fig. 1. The disassembly of memset. The rightmost column shows the semantics of each instruc-
tion using a C-like notation.

Analysis overview. Fig. 1 shows the disassembly of memset from the C library that
is bundled with Visual C++.1 Observe that there are no explicit variables in the code;
instead, offsets from the stack register (esp) are used to access parameter values. Also,
there is no type information, and thus it is not obvious which registers hold memory
addresses and which do not. Logical instructions and shifts, which are hard to model
numerically, are used extensively. Rather than addressing all these challenges at once,
the analysis constructs the summary of a function in several phases.

Intermediate Representation (IR) recovery. First, value-set analysis (VSA) [1,2] is per-
formed on the disassembled code to discover low-level information: variables that are
accessed by each instruction, parameter-passing details, and, for each program point,

1 We used Microsoft Visual Studio 6.0, Professional Edition, Release build.
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an overapproximation of the values held in the registers, flags, and memory locations at
that point. Also, VSA resolves the targets of indirect control transfers.

In x86 executables, parameters are typically passed via the stack. The register esp
points to the top of the stack and is implicitly updated by the push and the pop instruc-
tions. VSA identifies numeric properties of the values stored in esp and maps offsets
fromesp to the corresponding parameters. To see that this process is not trivial, observe
that different offsets map to the same parameter at addresses 0x4010BD and 0x4010C3:
at 0x4010BD an extra 4 bytes are used to account for the push of edi at 0x401082.

Numeric Program Generation. VSA results are used to generate a numeric program that
captures the behavior of the library function. The primary challenge that is addressed in
this phase is to translate non-numeric instructions, such as bitwise operations and shifts,
into a program that numeric analysis is able to analyze. Bitwise operations are used ex-
tensively in practice to perform certain computations because they are typically more
efficient in terms of CPU cycles than corresponding numeric instructions. The ubiqui-
tous example is the use of xor instruction to initialize a register to zero. In Fig. 1, the
xor at 0x40107C is used in this way.

The generation phase also introduces the auxiliary variables that store allocation
bounds for pointer variables. A simple type analysis is performed to identify variables
and registers that may hold addresses. For each instruction that performs address arith-
metic, additional statements that update corresponding allocation bounds are generated.
Also, for each instruction that dereferences an address, a set of numeric assertions are
generated to ensure that memory safety is not violated by the operation. The assertions
divert program control to a set of error program points.

Numeric Analysis and Summary Construction. The generated numeric program is fed
into an off-the-shelf numeric analyzer. We use a numeric analysis that, instead of ap-
proximating sets of reachable program states, approximates program transfer functions.
That is, for each program point, the analysis computes a function that maps an approx-
imation for the set of initial states at the entry of the program to an approximation for
the set of states that arise at that program point. The numeric-analysis results are used
to generate a set of error triggers and a set of summary transformers for the library
function. The transfer functions computed for program points corresponding to the re-
turn instructions form a set of summary transformers for the function. Error triggers
are constructed by projecting transfer functions computed for the set of error program
points onto their domains.

The summary obtained for memset. Memset uses two loops and a “rep stosd”
instruction, which invokes a hardware-supported loop. The “rep stosd” instruction
at 0x4010B1 is the workhorse; it performs the bulk of the work by copying the value in
eax (which is initialized in lines 0x40107C–0x40107E and 0x401099–0x4010A5 to con-
tain four copies of the low byte of memset’s value parameter) into successive 4-byte-
aligned memory locations. The loops at 0x401093–0x401097 and 0x4010B7–0x4010BB
handle any non-4-byte-aligned prefix and suffix. If the total number of bytes to be ini-
tialized is less than 4, control is transfered directly to the loop at 0x4010B7.
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memset(ptr, value, num)
00401070 edx ← count;
00401074 ecx ← ptr; ecx.allocf ← ptr.allocf ; ecx.allocb ← ptr.allocb;
00401078-7A if(edx = 0) goto L5;
0040107C-82 ...
00401083 edi ← ecx; edi.allocf ← ecx.allocf ; edi.allocb ← ecx.allocb;
00401088 if(edx < 4) goto L3;
0040108A ecx ← −ecx;
0040108C ecx ←?; assume(0 ≤ ecx ≤ 3);
0040108F if(ecx = 0) goto L2;
00401091 edx ← edx − ecx;
00401093 L1: assert(edi.allocf >= 1); assert(edi.allocb >= 0);
00401095 edi ← edi + 1; edi.allocf ← edi.allocf − 1; edi.allocb ← edi.allocb + 1;
00401096 ecx ← ecx − 1;
00401097 if(ecx �= 0) goto L1;
00401099-A5 L2: ...
004010A7 edx.rem4 =?; edx.quot4 =?;

assume(0 ≤ edx.rem4 ≤ 3); assume(edx = 4 × edx.quot4 + edx.rem4);
ecx ← edx; ecx.quot4 ← edx.quot4; ecx.rem4 = edx.rem4;

004010A9 edx ← edx.rem4;
004010AC ecx ← ecx.quot4;
004010AF if(ecx = 0) goto L3;
004010B1 assert(edi.allocf >= 4 × ecx); assert(edi.allocb >= 0);

edi ← edi + 4 × ecx;
edi.allocf ← edi.allocf − 4 × ecx; edi.allocb ← edi.allocb + 4 × ecx;

004010B3-B5 if(edx = 0) goto L4;
004010B7 L3: assert(edi.allocf >= 1); assert(edi.allocb >= 0);
004010B9 edi ← edi + 1; edi.allocf ← edi.allocf − 1; edi.allocb ← edi.allocb + 1;
004010BA edx ← edx − 1
004010BB if(edx �= 0) goto L3;
004010BD L4: eax ← ptr; eax.allocf = ptr.allocf ; eax.allocb ← ptr.allocb;
004010C2 return eax, eax.allocf , eax.allocb;
004010C3 L5: eax ← ptr; eax.allocf = ptr.allocf ; eax.allocb ← ptr.allocb;
004010C7 return eax, eax.allocf , eax.allocb;

Fig. 2. The numeric program generated for the code in Fig. 1; parts of the program that are not
relevant for the summary construction are omitted

The application of our technique to the code in Fig. 1 yields exactly the summary
transformer we conjectured in Eqn. (1). The situation with error triggers is slightly
more complicated. First, observe that there are three places in the code where the buffer
is accessed: at addresses 0x401093, 0x4010B1, and 0x4010B7. Each access produces a
separate error trigger:

0x401093 : num ≥ 4 ∧ ptr.allocf ≤ 2
0x4010B1: num ≥ 4 ∧ ptr.allocf ≤ num − 1
0x4010B7: num ≥ 1 ∧ ptr.allocf ≤ num − 1

Note that the first trigger is stronger than the one conjectured in Eqn. (2): it gives a
constant bound on allocf ; furthermore, the bound is less than 3, which is the smallest
bound implied by the conjectured trigger. The issue is that the instruction at 0x401093
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accesses at most three bytes. In case ptr.allocf is equal to 3, memset will generate a
buffer overrun at one of the other memory accesses. The other two triggers are similar
to the trigger conjectured in Eqn. (2) and differ only in the value of num.

3 Library Code Analysis

3.1 Intermediate Representation Recovery

The IR-recovery phase recovers intermediate representations from the library’s binary
that are similar to those that would be available had one started from source code. For
this phase, we use the CodeSurfer/x86 analyzer that was developed jointly by Wiscon-
sin and GrammaTech, Inc. This tool recovers IRs that represent: control-flow graphs
(CFGs), with indirect jumps resolved; a call graph, with indirect calls resolved; infor-
mation about the program’s variables; possible values of pointer variables; sets of used,
killed, and possibly-killed variables for each CFG node; and data dependences. The
techniques employed by CodeSurfer/x86 do not rely on debugging information being
present, but can use available debugging information (e.g., Windows .pdb files) if di-
rected to do so.

The analyses used in CodeSurfer/x86 (see [1,2]) are a great deal more ambitious
than even relatively sophisticated disassemblers, such as IDAPro [15]. At the technical
level, they address the following problem: Given a (possibly stripped) executable E
(i.e., with all debugging information removed), identify the procedures, data objects,
types, and libraries that it uses, and, for each instruction I in E and its libraries, for
each interprocedural calling context of I , and for each machine register and variable
V , statically compute an accurate over-approximation to the set of values that V may
contain when I executes.

Variable and Type Discovery. One of the major stumbling blocks in analyzing exe-
cutables is the difficulty of recovering information about variables and types, especially
for aggregates (i.e., structures and arrays).

When debugging information is absent, an executable’s data objects are not easily
identifiable. Consider, for instance, a data dependence from statement a to statement b
that is transmitted by write/read accesses on some variable x. When performing source-
code analysis, the programmer-defined variables provide us with convenient compart-
ments for tracking such data manipulations. A dependence analyzer must show that
a defines x, b uses x, and there is an x-def-free path from a to b. However, in exe-
cutables, memory is accessed either directly—by specifying an absolute address—or
indirectly—through an address expression of the form “[base + index × scale + off-
set]”, where base and index are registers and scale and offset are integer constants. It
is not clear from such expressions what the natural compartments are that should be
used for analysis. Because, executables do not have intrinsic entities that can be used
for analysis (analogous to source-level variables), a crucial step in IR recovery is to
identify variable-like entities.

The variable and type-discovery phase of CodeSurfer/x86 [2], recovers information
about variables that are allocated globally, locally (i.e., on the run-time stack), and dy-
namically (i.e., from the heap). An iterative strategy is used; with each round of the
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analysis—consisting of aggregate structure identification (ASI) [19,2] and value-set
analysis (VSA) [1,2]—the notion of the program’s variables and types is refined. The
net result is that CodeSurfer/x86 recovers a set of proxies for variables, called a-locs (for
“abstract locations”). The a-locs are the basic variables used in the method described
below.

3.2 Key Concepts of Numeric Program Generation

The generation of a numeric program is the central piece of our work. We strive as much
as possible to generate a sound representation of the binary code.2 The target language
is very simple: it supports assignments, assumes, asserts, if-statements, and gotos. The
expression “?” selects a value non-deterministically. The condition “*” transfers control
non-deterministically.

Translating x86 instructions. Due to space constraints, we only describe several trans-
lation issues that are particularly challenging. The numeric instructions, such as mov,
add, sub, lea, etc., are directly translated into the corresponding numeric statements:
e.g., the instruction “sub edx,ecx” at 0x401091 in Fig. 1 is translated into numeric
statement edx ← edx − ecx.

The bitwise operations and shifts typically cannot be precisely converted into a sin-
gle numeric statement, and thus pose a greater challenge. Several numeric statements,
including ifs and assumes, may be required to translate each of these instructions. At
first we were tempted to design universal translations that would work equally well
for all possible contexts in which the instruction occurs. In the end, however, we no-
ticed that these instructions, when used for numeric computations, are only used in
a few very specific ways. For instance, bitwise-and is often used to compute the re-
mainder from dividing a variable by a power of two. The instruction “and ecx,3” at
0x40108C in Fig. 1 is used to compute ecx mod 4. The translation treats these special
cases with precision; other cases are treated imprecisely, but soundly. The instruction
“and op1, op2” is translated into “op1 ← ?; assume(0 ≤ op1 ≤ op2);” if op2 is an
immediate operand that has a positive value; otherwise, it is translated into “op1 ← ?;”.

Recovering conditions from the branch instructions. An important part of numeric
program generation is the recovery of conditional expressions. In the x86 architecture,
several instructions must be executed in sequence to perform a conditional control trans-
fer. The execution of most x86 instructions affects the set of flags maintained by the
processor. The flags include the zero flag, which is set if the result of the currently
executing instruction is zero, the sign flag, which is set if the result is negative, and
many others. Also, the x86 architecture provides a number of control-transfer instruc-
tions each of which performs a jump if the flags are set in a specific way. Technically,
the flag-setting instruction and the corresponding jump instructions do not have to be
adjacent and can, in fact, be separated by a set of instructions that do not affect the flags
(such as mov instruction.

We symbolically propagate the expressions that affect flags to the jump instructions
that use them. Consider the following sequences of instructions and their translation:

2 Currently, we assume that numeric values are not bounded. In the future, we hope to add
support for bounded arithmetic.
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cmp eax,ebx
mov ecx,edx ecx ← edx;
jz label if(eax − ebx = 0) goto label;

We derive a flag-setting expression eax − ebx from the cmp instruction; the mov in-
struction does not affect any flags; the jz instruction transfers control to label if the
zero flag is set, which can only happen if the expression eax − ebx is equal to zero.
Note, however, that if the intervening move affects one of the operands in the flag-
setting expression, that expression is no longer available at the jump instruction. This
can be circumvented with the use of a temporary variable:

cmp eax,ebx
mov eax,edx temp ← eax − ebx; eax ← edx;
jz label if(temp = 0) goto label;

Allocation bounds. As we mentioned above, each variable var that may contain a
memory address is associated with two auxiliary variables that specify allocation
bounds for that address. The auxiliary variable var.allocf specifies the number of bytes
following the address that can be safely accessed; the auxiliary variable var.allocb spec-
ifies the number of bytes preceding the address that can be safely accessed. These aux-
iliary variables are central to our technique: the purpose of numeric analysis is to find
constraints on the auxiliary variables that are associated with the function’s parameters
and return value. These constraints form the bulk of the function summaries.

The updates for the auxiliary variables are generated in a straightforward way. That
is, the translation of the mov instruction contains assignments for the corresponding
allocation bounds. The instructions add, sub, inc, dec, and lea, as well as the x86
string-manipulation instructions, are translated into affine transformations on variables
and their associated allocation bounds.

The auxiliary variables are used to generate memory-safety checks: checks for buffer
overflows and checks for buffer underflows. We generate these checks for each indirect
memory access that does not access the current stack frame. As mentioned in §3.1,
general indirect memory accesses in x86 instructions have the form “[base + index ×
scale + offset]”, whose base and index are registers and scale and offsets are constants.
Let size denote the number of bytes to be read or written. The following checks are
generated:

– Buffer-overflow check: assert(base.allocf ≥ index ∗ scale + offset + size)
– Buffer-underflow check: assert(base.allocb + index ∗ scale + offset ≥ 0)

The checks generated for the x86 string-manipulation instructions, such as stos and
movs are only slightly more complicated and are omitted for brevity.

Type Analysis. Maintaining allocation bounds for all variables is unnecessarily expen-
sive. For this reason, we only associate allocation bounds with variables that can hold
memory addresses. To identify this set of variables, we construct an affine-dependence
graph (ADG): a graph in which the nodes correspond to program variables and the edges
indicate that the value of the destination variable is computed as an affine transforma-
tion of the value of the source variable. The construction of the ADG is straight-forward:
e.g., instruction “mov foo, bar” generates an edge from the node that corresponds
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to variable bar to the node that corresponds to foo, etc. To determine the set of pointer
variables, we start with nodes that correspond to variables that are used as base pointers
in memory-safety checks and mark as pointers all the variables whose corresponding
nodes are reached by a backward traversal through the graph.

Note that the precision of the ADG does not affect the soundness of the overall anal-
ysis: if some dependences are not present in the graph, then some allocation bounds will
not be tracked and the overall analysis will be less precise. If some non-existing depen-
dences are present in the graph, then some useless allocation bounds will be tracked
and the analysis will be slowed down.

In contrast to variables, which keep the same type throughout their lifetime, registers
are reused in different contexts, and can have a different type in each context. Limiting
each register to a single node in the ADG generates many “spurious” dependences be-
cause all of the contexts in which the register is used are collapsed together. Thus, when
constructing the ADG, we create a separate node for each register’s live-range.

Handling integer division and remainders. Memory functions, such as memset,
rely heavily on integer division and remainder computations to improve the efficiency
of memory operations. In low-level code, the quotient and remainder from dividing
by a power of two are typically computed with a shift-right (shr) instruction and a
bitwise-and (and) instruction, respectively. In Fig. 1, the two consecutive instructions
at 0x4010A9 establish the property: edx0 = 4×ecx+edx, where edx0 denotes the value
contained in edx before the instructions are executed. This property is essential for in-
ferring precise error triggers for memory accesses at 0x4010B1 and 0x4010B7. However,
polyhedral analysis is not able to handle integer division with sufficient precision.

We overcome this problem by introducing additional auxiliary variables: each vari-
able var that may hold a value for which both a quotient and remainder from division
by k are computed is associated with two auxiliary variables var.quotk and var.remk,
which denote the quotient and the remainder, respectively. To identify such variables,
we use the ADG: we look for the nodes that are reachable by backward traversals from
both the quotient and remainder computations. The auxiliary variables are associated
with all of the nodes that are visited by the traversals up to the first shared node. For
the above example, the starting point for the “quotient” traversal is the use of ecx
at 0x4010AC, and the staring point for the “remainder” traversal is the use of edx at
0x4010A9: at these points, we generate assignments that directly use the corresponding
auxiliary variables. The first shared node is the use of edx at 0x4010A7: at that point,
we generate numeric instructions that impose semantic constraints on the values of
auxiliary variables (see Fig. 2). The intermediate updates for the auxiliary variables are
generated in a straightforward way. Polyhedral analysis of the resulting program yields
precise error triggers for both memory accesses.

Modeling the environment. The goal of our technique is to synthesize the summary
of a library function by looking at its code in isolation. However, library functions
operate in a larger context: they may access memory of the client program that was
specified via their parameters, or they may access global structures that are internal
to the library. The IR-recovery phase has no knowledge of either the contents or the
structure of that memory: they are specific to the client application. As an example, from
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the IR-recovery perspective, memset parameter ptr may contain any memory address.
Thus, from the point of view of numeric-program generation, a write into ∗ptr may
potentially overwrite any memory location: local and global variables, a return address
on the stack, or even the code of the function. As the result, the generated numeric
program, as well as the function summary derived from it, will be overly conservative
(causing the client analysis to lose precision).

We attempt to generate more meaningful function summaries by using symbolic con-
stants to model memory that cannot be confined to a specific a-loc by the IR-recovery
phase. A unique symbolic constant is created for each unresolved memory access. From
numeric-analysis perspective, a symbolic constant is simply a global variable that has a
special auxiliary variable addr associated with it. This auxiliary variable represents the
address of a memory location that the symbolic constant models. If the memory loca-
tion may hold an address, the corresponding symbolic constant has allocation bounds
associated with it. We illustrate this technique in §4.

3.3 Numeric Analysis and Summary Generation

Our numeric analyzer is based on the Parma Polyhedral Library (PPL) and the WPDS++
library for weighted pushdown systems (WPDSs) and supports programs with multiple
procedures, recursion, global and local variables, and parameter passing. The analy-
sis of a WPDS yields, for each program point, a weight, or abstract state transformer,
that describes how the program state is transformed on all the paths from the entry
of the program to that program point. Linear-relation analysis [8] is encoded using
weights that maintain two sets of variables: the domain describes the program state at
the entry point; the range describes the program state at the destination point. The re-
lationships between the variables are captured with linear inequalities. Given a weight
computed for some program point, its projection onto the range variables approximates
the set of states that are reachable at that program point. Similarly, its projection onto
the set of domain variables approximates the precondition for reaching that program
state.

Function summaries are generated from the numeric-analysis results. Summary
transformers are constructed from the weights computed for the program points corre-
sponding to procedure returns. Error triggers are constructed by back-projecting
weights computed for the set of error program points.

4 Case Studies

We used our technique to generate summaries for library functionsmemsetand lseek.
The IR-recovery and numeric-program generation was done on 1.83GHz Intel Core Duo
T2400 with 1.5Gb of memory. The numeric analysis was done on 2.4GHz Intel Pentium
4 with 4Gb of memory.

The summary obtained for memset. The detailed description of memset, as well
as the analysis results, were given in §2 and §3. It took 70 seconds to both execute the
IR-recovery phase and generate a numeric program for memset. The resulting numeric
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mov eax, dword ptr [4×ecx + 0424DE0h]
assume(mc1.addr = 0x424DE0 + 4 ∗ ecx);
eax ← mc1; eax.allocf = mc1.allocf ; eax.allocb = mc1.allocb;

movsx ecx, byte ptr [eax + 8×edx + 4]
assert(eax.allocf ≤ 8 ∗ edx + 5); assert(eax.allocb + 8 ∗ edx + 4 ≥ 0);
assume(mc2.addr = eax.allocb + 8 ∗ edx + 4 ≥ 0); ecx ← mc2;

Fig. 3. Symbolic memory modeling: the symbolic constants mc1 and mc2 model the memory
location accessed by mov and movsx instructions, repsectively

program has one procedure with 8 global variables and 11 local variables. The numeric
analysis took 1 second.

The summary obtained for lseek. the function lseek moves a file pointer to a
specified position within the file. It is declared as follows:

off t lseek(int fd, off t offset, int origin);

fd is a file descriptor; offset specifies the new position of the pointer relative to either its
current position, the beginning of the file, or the end of the file, based on origin.

A recurring memory-access pattern in lseek is to read a pointer from a global table
and then dereference it. Fig. 3 shows a portion of lseek that contains a pair of such
memory accesses: the first mov instruction reads the table entry, the second dereferences
it. The registers ecx and edx hold the values fd/32 and fd mod 32, respectively. The
global variable uNumber gives the upper bound for the possible values of fd. Symbolic
constants mc1 and mc2 model the memory locations accessed by the first and second
mov instructions, respectively. Our technique synthesizes the following buffer-overrun
trigger for the second mov instruction:

0x424DE0 ≤ mc1.addr ≤ 0x424DE0 + (uNumber − 1)/8 ∧ mc1.allocf <= 251

The above trigger can be interpreted as follows: if any of the addresses stored in the
table at 0x424DE0 point to a buffer of length that is less than 252 bytes, there is a
possibility of a buffer-overrun error. The error trigger is sufficient for a client analysis
to implement sound error reporting: if the client analysis does not know the allocation
bounds for pointers in the table at 0x424DE0, it should emit an error report for this
trigger at the call site to lseek. However, we hope that the summary generated by our
technique for the library-initialization code will capture the proper allocation bounds
for the pointers in the table at 0x424DE0. Thus, the analysis will not emit spurious error
reports. The error triggers for other memory accesses look similar to this one.

The analysis took about 70 seconds to recover intermediate representation and gen-
erate a numeric program. The generated program has 41 global variables (22 of which
are used for symbolic memory modeling) and contains three procedures with 21, 8, and
2 local variables, respectively. The numeric analysis of the program took 117 seconds.

5 Related Work

Summary functions have a long history, which goes back to the seminal work by Cousot
and Halbwachs on linear-relation analysis [8] and the papers on interprocedural analysis
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of Cousot and Cousot [7] and Sharir and Pnueli [24]. Other work on analyses based
on summary functions includes [16,20,3], as well as methods for pushdown systems
[11,4,5,21], where summary functions arise as one by-product of an analysis.

A substantial amount of work has been done to create summary functions for alias
analysis or points-to analysis [18,26,14,6,22], or for other simple analyses, such as lock
state [27]. Those algorithms are specialized for particular problems; more comprehen-
sive approaches include the work on analysis of program fragments [23], componential
set-based analysis [12], and use of SAT procedures [27].

Some of the work cited above explicitly mentions separately compiled libraries as
one of the motivations for the work. Although the techniques described in the afore-
mentioned papers are language-independent, all of the implementations described are
for source-code analysis.

Guo et al. [13] developed a system for performing pointer analysis on a low-level
intermediate representation. The algorithm is only partially flow-sensitive: it tracks reg-
isters in a flow-sensitive manner, but treats memory locations in a flow-insensitive man-
ner. The algorithm uses partial transfer functions [26] to achieve context-sensitivity,
where the transfer functions are parameterized by “unknown initial values”.

Kruegel et al. [17] developed a system for automating mimicry attacks. Their tool
uses symbolic-execution techniques on x86 binaries to discover attacks that can give
up and regain execution control by modifying the contents of the data, heap, or stack
so that the application is forced to return control to injected attack code at some point
after a system call has been performed. Cova et al. [9] used this platform to apply static
analysis to the problem of detecting security vulnerabilities in x86 executables. In both
of these systems, alias information is not available.

In our work, we make use of a-locs (variable proxies), alias information, and other
IRs that have been recovered by the algorithms used in CodeSurfer/x86 [1,2]. The re-
covered IRs are used as a platform on which we implemented a relational analysis that
synthesizes summary functions for procedures.

Acknowledgements. We thank D. Vitek for sharing with us his insights on the problem
of creating function summaries.
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Abstract. In many industries, the share of software components provided by
third-party suppliers is steadily increasing. As the suppliers seek to secure their
intellectual property (IP) rights, the customer usually has no direct access to the
suppliers’ source code, and is able to enforce the use of verification tools only
by legal requirements. In turn, the supplier has no means to convince the cus-
tomer about successful verification without revealing the source code. This pa-
per presents a new approach to resolve the conflict between the IP interests of
the supplier and the quality interests of the customer. We introduce a protocol
in which a dedicated server (called the “amanat”) is controlled by both parties:
the customer controls the verification task performed by the amanat, while the
supplier controls the communication channels of the amanat to ensure that the
amanat does not leak information about the source code. We argue that the proto-
col is both practically useful and mathematically sound. As the protocol is based
on well-known (and relatively lightweight) cryptographic primitives, it allows
a straightforward implementation on top of existing verification tool chains. To
substantiate our security claims, we establish the correctness of the protocol by
cryptographic reduction proofs.

1 Introduction

In the classical verification scenario, the software author and the verification engineer
share a common interest to verify a piece of software; the author provides the source
code to be analyzed, whereon the verification engineer communicates the verification
verdict. Both parties are mutually trusted, i.e., the verification engineer trusts that he
has verified production code, and the author trusts that the verification engineer will not
use the source code for unintended purposes.

Industrial production of software-intensive technology however often employs sup-
ply chains which render this simple scenario obsolete. Complex products are being
increasingly assembled from multiple components whose development is outsourced
to supplying companies. Typical examples of outsourced software components com-
prise embedded controller software in automobiles and consumer electronics [1,2] as
well as Windows device drivers [3]. Although the suppliers may well use verification

� Supported by the European FP6 project ECRYPT, the DFG grant FORTAS, and the Predictable
Assembly from Certifiable Components (PACC) initiative at the Software Engineering Insti-
tute, Pittsburgh, USA.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 82–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Verification Across Intellectual Property Boundaries 83

Fig. 1. A High-Level View of the Amanat Protocol

techniques for internal use, they are usually not willing to reveal their source code,
as the intellectual property (IP) contained in the source code is a major asset for their
company.

This setting constitutes a principal conflict between the supplier Sup who owns the
source code, and the customer Cus who purchases o n l y the executable. While both
parties share a basic interest in producing high quality software, it is in the customer’s
interest to have the source code inspected, and in the supplier’s interest to protect the
source code. More formally, this amounts to the following basic requirements:

(a) Conformance. The customer must be able to validate that the purchased executable
was compiled from successfully verified source code.

(b) Secrecy. The supplier must be able to validate that no information about the source
code other than the verification result is revealed to the customer.

The main technical contribution of this paper is a new cryptographic verification proto-
col tailored for IP-aware verification. Our protocol is based on standard cryptographic
primitives, and provably satisfies both the above requirements with little overhead in
the system configuration. Notably, the proposed scheme applies not only to automated
verification in a model checking style, but also encompasses a wide range of validation
techniques, both automated and semi-manual.

Our solution centers around the notion of an amanat. This terminology is derived
from the historic judicial notion of amanats, i.e., noble prisoners who were kept hostage
as part of a contract. Intuitively, our protocol applies a similar principle: The amanat is
a trusted expert of the customer who settles down in the production plant of the supplier
and executes whatever verification job the customer has entrusted on him. The supplier
accepts this procedure because (i) all of the amanat’s communications are subject to the
censorship of the supplier, and, (ii) the amanat will never return to the customer again.
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It is evident that clauses (i) and (ii) above make it impossible for a human inspector to
act as the amanat; instead, our protocol will utilize a dedicated server Ama for this task.
The protocol guarantees that Ama is simultaneously controlled by both parties: Cus
controls the verification task performed by Ama, while Sup controls the communication
channels of Ama. To convince Cus about conformance, the verification tool executed on
Ama produces a cryptographic certificate which proves that the purchased executable
is derived from the same source file as the verification verdict.

To achieve this goal, we use public key cryptography; the amanat uses the secret
private key of the customer, and signs outgoing information with this secret key such
that no additional information can be hidden in the signature. This enables the supplier
to inspect (and possibly block) all outgoing information, and simultaneously enables
the customer to validate that the certificate indeed stems from the amanat. Thus, the
amanat protocol achieves the two requirements above. Figure 1 presents a high-level
illustration of the protocol.

Verification by Model Checking and Beyond. Motivated by discussions with indus-
trial companies, our primary intention for the protocol was to facilitate software model
checking across IP boundaries in a B2B setting where the supplier and the customer
are businesses. Our guiding examples for this B2B setting have been Windows device
drivers and automotive controller software, for which our protocols are practically fea-
sible with state-of-the-art technology.

Software model checking is now able to verify important properties of simply struc-
tured code [4,5,6]. Most notably, SLAM/SDV is a fully automatic tool for a narrow
application area, and we expect to see more such tools. Note that SDV has built-in spec-
ifications because the device drivers access and implement a clearly defined API. Other
tools such as Terminator [7] and Slayer [8] do not require specifications as they are built
to verify specific critical properties – termination and memory-safety, respectively. Au-
tomotive software is similar to device drivers in that it also accesses standardized APIs.

For less standardized software and more specific properties, it may be necessary for
the customer and the supplier to negotiate about the formulation of the specification
without revealing the source code. In the course of this negotiation, the supplier can
decide to reveal a blueprint of the software, and the amanat can certify the accuracy of
the blueprint by a mutually agreed algorithm.

The example of blueprints shows that the amanat protocol is not restricted to model
checking, because the amanat can run any verification/validation tool whose output
does not compromise the secrecy of the source code. For example, in future work and
applications, Ama can:

1. apply static analysis tools such as ASTREE [9] and TVLA [10].
2. check the correctness of a manual proof provided by Sup, e.g., in PVS, ISABELLE,

Coq or another prover [11].
3. evaluate worst case execution times experimentally [12] or statically [13].
4. generate white box test cases, and execute them.
5. validate that the source code comes with a set of test cases which satisfies previ-

ously agreed coverage criteria.
6. check that the source code is syntactically safe, e.g. using LINT.
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7. compute numerical quality and quantity measures which are agreed between Sup
and Cus, e.g. nesting depth, LOC, etc.

8. compare two versions of the source code, and quantify the difference between them;
this is important in situations where Sup claims charges for a reimplementation.

9. check if third party IP is included in the source code, e.g. libraries etc.
10. ensure that certain algorithms are (not) used.
11. check that the source is well documented.
12. ensure a certain senior programmer has put his name on the source code.
13. validate the development steps by analyzing the CVS or SVN tree.
14. ensure compatibility of the source code with language standards.

We note that in all scenarios the code supplier bears the burden of proof: either the
supplier has to write the source code in such a way that it is accepted by Ama as is, or
the supplier has to provide auxiliary information (e.g. proofs, command line options,
abstraction functions, test cases, etc.) which help the amanat in the verification without
affecting correctness.

Security of the Amanat Protocol. In Section 4, we present a cryptographic proof for
the secrecy and conformance of the amanat verification protocol. Stronger than term-
based proofs in the Dolev-Yao model, these proofs assure that under standard crypto-
graphic assumptions, randomized polynomial time attacks against the protocol (which
may involve e.g. guessing the private keys) can succeed only with negligible probabil-
ity [14]. The practical security of the protocol is also ensured by the simplicity of our
protocol: As the protocol is based on well-known cryptographic encryption and signing
schemes, it can be readily implemented.

The IP boundary between the supplier and the customer makes is inevitable that the
amanat owns a secret unknown to the supplier, namely the private key of the customer;
this secret enables the amanat to prove its identity to the customer and to compute
the certificate. Consequently, the cryptographic proofs need to assume a system con-
figuration where Ama can neither be reverse-engineered, nor closely monitored by the
supplier. Thus, from the point of view of the supplier, Ama is a black box with input
and output channels. For secrecy, the supplier requires ownership of Ama to make sure
it will not return to the customer after verification. There are two natural scenarios to
realize this hardware configuration:

A Ama is physically located at the site of a trusted third party. All communication
channels of Ama are hardwired to go through a second server, the communication
filter of the supplier, cf. Figure 1.

While scenario A involves a trusted third party, its role is limited to providing physical
security for the servers. Thus, the third party does not need any expertise beyond server
hosting. For the supplier, scenario A has the disadvantage that the encrypted source
code has to be sent to the third party, and thus, to leave the supplier site.

B Ama is physically located at the site of the supplier, but in a sealed location or
box whose integrity is assured through (i) regular checks by the customer, (ii) a
third party, (iii) a traditional alarm system, or (iv) the use of sealed hardware. All
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communication channels of Ama are hardwired to the communication filter of the
supplier.

In scenarios B(ii) and B(iii), the third party again plays a very limited role in that it only
ensures physical integrity of the amanat. We believe that in our B2B settings, scenario
B is realistic. We do not require custom-made hardware, but just a sealed location at the
supplier’s site, e.g. a locked room. Off-the-shelf hardware ensures that neither party can
evade the protocol by radio transmission etc. In the B2B setting, it is realistic that before
final deployment of a new controller software (but after the verification), the integrity
of the seal is checked. Thus, there is no business incentive for the supplier to break the
seal.

The supplier has total control over the information leaving the production site. Thus,
it can also prevent attempts by the amanat to leak information by sending messages at
specific time points. Because the supplier can read all outgoing messages, there is also
a convincing argument for the supplier’s non-technical management that no sensitive
information is leaking. In our opinion, this simplicity of the amanat protocol is a major
advantage for practical application.

Organization of the Paper. In Section 2, we survey related work and discuss alterna-
tive approaches to the amanat protocol. The protocol is described in detail in Section 3,
and the correctness is addressed in Section 4. The paper is concluded in Section 5.

2 Related Work and Alternative Solutions

The last years have seen renewed activity in the analysis of executables from the verifi-
cation and programming languages community. Despite remarkable advances (see e.g.
[15,16,17,18]), the computer-aided analysis of executables remains a hard problem; nat-
ural applications are reverse engineering, automatic detection of low level errors such
as memory violations, as well as malicious code detection [19,20]. The technical diffi-
culties in the direct analysis of executables are often exacerbated by code obfuscation
to prevent reverse engineering, or, in the case of malware, recognition of the malicious
code. Although dynamic analysis [21] and black box testing [22,23] are relatively im-
mune to obfuscation, they only give a limited assurance of system correctness.

The current paper is orthogonal to executable analysis. We consider a scenario where
the software author is willing to assert the quality of the source code by formal methods,
but not willing or able to make the source code available to the customer. It is evident
that the visibility of the source code to the amanat and the cooperation of the software
author/supplier significantly increase the leverage of formal methods.

Proof-Carrying Code [24] is able to generate certificates directly from binaries, but
only for a restricted class of safety policies. It is evident that a proof for a non-trivial
system property will for all practical purposes explain the internal logic of the binary.
Thus, publishing this proof is tantamount to losing intellectual property.

The current paper takes an engineer’s view on computer security. The results of the
paper are quite specific to verification, as it exploits the conceptual difference between
the source code and the executable. While we are aware of advanced methods such as
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secure multiparty computation [25] and zero-knowledge proofs [26], we believe that
they are not practicable for our problem. To implement secure multiparty computation,
it would be necessary to convert significant parts of the model checking tool chain into
a Boolean circuit which is not a realistic option. To apply zero-knowledge proofs, one
would require the verification tools to produce highly structured and detailed formal
proofs. Except for the provers in item 2 of the list in Section 1, it is impractical to
obtain such proofs by state of the art technology. More generally, we believe that any
advanced method for which secrecy is not intuitively clear to the supplier will be hard
to establish in practice. Thus, we are convinced that the conceptual simplicity of our
protocol is an asset for practical applicability.

3 The Amanat Protocol

The amanat protocol aims to resolve the conflict between the code customer Cus who
wants to verify the source code, and the code supplier Sup who needs to protect its IP.
To this end, the amanat Ama computes a certificate which contains enough information
to assure the correctness of the program. On the other hand, to secure the IP of Sup,
the certificate must not reveal any information beyond the intentionally communicated
correctness properties.

3.1 Requirements and Tool Landscape

To make the protocol requirements more precise, we fix some notation and assumptions
about the tool landscape. Note that all tools are available to all involved parties.

The compiler Compiler takes an input source and computes an executable exec =
Compiler(source). Note that Compiler does not take any other input. In practice, this
means that source can be thought of as a directory tree containing a make file, and
Compiler stands for the tool chain composed of the make command, the compiler, the
linker etc.

The verification tool Verifier also takes the input source and computes two verifica-
tion verdicts, logSup and logCus. Here, logSup is the “internal” verdict for the supplier
which may contain, for example, detailed IP-critical information such as counterexam-
ples or witnesses for certain properties. The second output logCus in contrast contains
only uncritical verification verdicts about which Sup and Cus have agreed beforehand.
Similar as for the compiler, we assume that Verifier does not take any other input pa-
rameters. In particular, this means that the specifications are part of source, i.e., they are
agreed between the parties and output into logCus together with the verification result.
Moreover, all auxiliary information necessary for a successful run of Verifier– com-
mand line parameters, code annotations, abstraction functions etc. – are provided by
Sup as part of source.

Before we formally describe the cryptographic primitives for signing and verifying
messages, we note that the underlying algorithms are not deterministic but randomized.
This randomization is a countermeasure to attacks against naive implementations of
RSA and other schemes which exploit algebraically related messages, see for exam-
ple [27]. In most applications, the randomization is not important for the protocol, as
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each participant can locally generate random values. In our protocol however, we have
to make sure that the signatures generated by Ama do not contain hidden information
for Cus. The way for Ama to leak information to Cus would be to replace the ran-
dom bits by specifically chosen bits which describe (part of) the source code, similar
to steganography [28]. Then, Cus could try to reconstruct the bits from the received
message. To exclude this possibility, our protocol will enforce Ama to commit its ran-
dom bits before it sees the source code. Thus, in our description of the cryptographic
primitives, we have to treat the random values explicitly.

We also note that in our discussions of randomized algorithms, we usually describe
the behavior of the algorithm as it occurs in all but a negligible fraction of the executions
of the algorithm [29].

– All parties employ the same asymmetric encryption and signing scheme [30] which
is based upon RSA [31] and SHA [32]. Given a key pair 〈Kpri, Kpub〉 and a mes-
sage m, we write c = Kpub(m) for the encryption of m with key Kpub yielding
the cipher text c. Similarly, m = Kpri(c) denotes the decryption of the cipher text
c with key Kpri resulting again in the original message m. Furthermore, we write
s = csign(Kpri, m, R) for the signature s of a message m signed with key Kpri

and generated with random seed R. If a signature s is valid and has been generated
with seed R, then cverify(Kpub, m, s, R) will succeed and fail otherwise. In situa-
tions where the random seed is of no concern, we can also use cverify(Kpub, m, s)
which succeeds if s is a valid signature. 1 The algorithms for encryption, decryption,
signature generation and signature verification are assumed to require polynomial
time with respect to the length of their inputs.

– Communication Channels. We assume that the channels between Sup, Cus and
Ama are secure, i.e., the protocol is not concerned with eavesdropping on these
channels. Moreover, all ingoing and outgoing information for Ama is controlled by
Sup, i.e., Sup can manipulate all data exchanged between Ama and Cus.

Having fixed the environment and the notation, we can paraphrase the requirements
in a more precise manner:

1. Conformance enables Cus to validate that exec and logCus have been produced from
the same source.

2. Secrecy prevents Cus from extracting, by any tractable process, any IP of Sup ex-
cept exec and logCus.

We note that some of the possible verification tasks discussed in Section 1 – in par-
ticular 7, 10, 11, 12 – are concerned with non-functional properties of the source code
which do not affect the executable produced by the compiler. The conformance prop-
erty proves to the customer that at the time of compilation, a source with the required
properties did exist. Thus, in the case of a legal conflict, a court can require the supplier
to provide a source code which (i) compiles into the purchased executable, and (ii) pro-
duces the same verification output logCus. There is no mathematical guarantee however,
that the revealed code will be identical to the original code. This stronger property can
be achieved by requiring Verifier to compute a hash of source, and output it into logCus.

1 The existence of the 4-parameter variant of cverify is specific to the chosen scheme [30].
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3.2 Summary Description of the Protocol

Our protocol is based on the principle that Cus trusts Ama, and thus, Cus will believe
that a verification verdict logCus originating from Ama is conformant with a correspond-
ing binary exec. Therefore, Cus and Sup install Ama at Sup’s site such that Sup can use
Ama to generate trusted verification verdicts subsequently. On the other hand, Sup con-
trols all the communication to and from Ama and consequently Sup is able to prohibit
the communication of any piece of information beyond the verification verdict, i.e., Sup
can enforce the secrecy of its IP. To ensure that Sup does not alter the verdict of Ama,
Ama signs the verdicts with a key which is only known to Ama and Cus but not to Sup.
Also, to ensure that the tools Compiler and Verifier given to Ama are untampered, Sup
must provide certificates which guarantee that these tools have been approved by Cus.

A protocol based on this simple idea does indeed ensure the conformance property,
but a naive implementation with common cryptographic primitives may fail to guaran-
tee the secrecy property: As argued above, the certificates generated by Ama involve
random seeds, and Sup cannot check that these random seeds do not carry hidden in-
formation. In our protocol, to prohibit such hidden transmission of information, Ama is
not allowed to generate the required random seeds after it has accessed source. Instead,
Ama generates a large supply of random seeds before it has access to source, and sends
them to Sup. In this way, Ama commits to the random seeds, because later, Sup will
check that Ama actually uses the random values which it has sent before. Thus, Ama is
not able to encode any information about source into these seeds.

The only remaining problem is that Sup is not allowed to know the random seeds in
advance, since it could use this knowledge to compromise the cryptographic security
of the certificates computed by Ama. Thus, Ama encrypts the random seeds before
transmitting them to Sup. Each random seed is encrypted with a specific key, and each
time a random seed is used by Ama, the corresponding key is revealed to Sup.

3.3 Detailed Protocol Description

Our protocol consists of three phases, namely the installation, the session initialization,
and the certification.

Installation Phase. Cus initializes Ama with a master key pair 〈Km
Cus,K

m
Pub〉 which will

be used later to exchange a session key pair. Then, Ama is transported to and installed
at Sup’s site. All further communication between Ama and Cus will be controlled by
Sup.

I1 Master Key Generation [ Cus ]
Cus generates the master keys 〈Km

Cus,K
m
Pub〉 and initializes Ama with 〈Km

Cus,K
m
Pub〉.

I2 Installation of the Amanat [ Sup, Cus ]
Ama is installed at Sup’s site and Sup receives Km

Pub.

Session Initialization Phase. After installation, Sup and Cus must agree on a specific
Verifier and Compiler. Once Verifier and Compiler have been fixed, the session initial-
ization phase starts: First, Cus generates a new pair of session keys 〈KCus,KPub〉 and
sends them to Ama via Sup. Then, the new session keys are used to produce certificates
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certVerifier and certCompiler for Verifier and Compiler, respectively. Sup checks the con-
tents of the certificates and uses them, if they are indeed valid certificates for Verifier
and Compiler, to setup Ama with Verifier and Compiler. Ama in turn accepts Verifier
and Compiler if their certificates are valid.

In the last step of the initialization, Ama generates a supply of random seeds
R1, . . . , Rt for t subsequent executions of the certification phase. It also generates a se-
quence of key pairs 〈KR1

Cus,KR1
Pub〉, . . . , 〈KRt

Cus,KRt
Pub〉 for each random seed Ri.

Ama finally encrypts each random seed to obtain and send KRi
Pub(Ri) to Sup. Ama

and Sup both keep a variable round which is initialized to 0 and will be incremented by
1 for each execution of the certification phase.

S1 Session Key Generation [ Cus, Sup ]
Cus generates the session keys 〈KCus,KPub〉 and sends Km

Pub(KCus) and KPub to
Sup. Sup forwards Km

Pub(KCus) andKPub unchanged to Ama.
S2 Generation of the Tool Certificates [ Cus ]

Cus computes the certificates
– certVerifier = csign(KCus, Verifier) and
– certCompiler = csign(KCus, Compiler).

Cus sends both certificates to Sup.
S3 Supplier Validation of the Tool Certificates [ Sup ]

Sup checks the contents of the certificates, i.e., Sup checks that
– cverify(KPub, Verifier, certVerifier) and
– cverify(KPub, Compiler, certCompiler) succeed.

If one of the checks fails, Sup aborts the protocol.
S4 Amanat Tool Transmission [ Sup ]

Sup sends to Ama both Verifier and Compiler as well as the certificates certVerifier

and certCompiler.
S5 Amanat Validation of the Tool Certificates [ Ama ]

Ama checks whether Verifier and Compiler are properly certified, i.e., it checks
whether

– cverify(KPub, Verifier, certVerifier) and
– cverify(KPub, Compiler, certCompiler) succeed.

If this is not the case, then Ama refuses to process any further input.
S6 Amanat Random Seed Generation [ Ama ]

Ama generates
– a series of random seeds R1, . . . , Rt together with a series of corresponding

key pairs 〈KR1
Cus,KR1

Pub〉, . . . , 〈KRt
Cus,KRt

Pub〉,
– encrypts the random seeds with the corresponding keys KRi

Pub(Ri) for i =
1, . . . , t, and

– initializes round counter round = 0.
Ama then sends all KRi

Pub(Ri) and KRi
Pub for i = 1, . . . , t to Sup.

Certification Phase. Ama is now ready for the certification phase, i.e., it will accept
source and produce a certified verdict on source which can be forwarded to Cus and
whose trustworthy origin can be checked by Cus.

During certification, Ama runs Verifier and Compiler on source, generates a certifi-
cate cert for the output logCus dedicated to Cus. The certificate is based upon the random
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seed Rround which Ama committed to use in this round of the certification protocol dur-
ing the session initialization phase. Ama sends the certificate cert, the outputs logSup

and logCus, and the key KRround
Cus to Sup.

To validate secrecy, Sup computes the random seed Rround =
KRround

Cus (KRPub(Rround)) which Ama supposedly used for the generation of cert. Then
Sup checks that the certificate cert is indeed a valid certificate and is based upon the
random seed Rround. If this is the case, i.e., the certificate is valid and is generated based
on the predetermined random seed, then Ama cannot hide any unintended information
in the certificates. If the checks fails, Sup aborts the protocol. Depending on the output
of the Verifier, Sup decides whether to forward the results to Cus or whether to abort
the certification phase. Finally, Cus checks conformance of output logCus using cert.

C1 Source Code Transmission [ Sup ]
Sup sends source to Ama.

C2 Source Code Verification by the Amanat [ Ama ]
Ama computes

– the verdict 〈logSup, logCus〉 = Verifier(source) of Verifier on source,
– the binary exec = Compiler(source),
– increments the round counter round, and
– computes cert = csign(KCus, 〈exec, logCus〉 , Rround).

Ama sends exec, logSup, logCus, cert, and KRround
Cus to Sup.

C3 Secrecy Validation [ Sup ]
Upon receiving exec, logSup, logCus, cert, and KRround

Cus , Sup
– decrypts the random seed Rround = KRround

Cus (KRround
Pub (Rround)), and

– verifies that cverify(KPub, 〈exec, logCus〉 , cert, Rround) succeeds.
If the checks fails, Sup concludes that the secrecy requirement was violated, and
refuses to further work with Ama.

Otherwise, Sup evaluates logCus and logSup and decides whether to deliver the
binary exec, logCus, and cert to Cus in step C4 or whether to abort the protocol.

C4 Conformance Validation [ Cus ]
Upon receiving exec, logCus, and cert, Cus verifies that
cverify(KPub, 〈exec, logCus〉 , cert) succeeds.
If the checks fails, Cus concludes that the conformance requirement was vio-
lated, and refuses to further work with Sup.

Otherwise Cus evaluates the contents of logCus and decides whether the verifi-
cation verdict supports the purchase of the product exec.

4 Protocol Correctness

In this section, we prove conformance and secrecy of our protocol using standard cryp-
tographic assumptions. Following [14], we assume that the public-key encryption is se-
mantically secure and that the used signature scheme is secure against adaptive chosen
message attacks, such as the RSA-based scheme proposed in [30]. We briefly introduce
these security properties:

Semantic security means that whatever can be learnt from the ciphertext within prob-
abilistic polynomial time, can be computed, again within probabilistic polynomial time,
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from the length of the plaintext alone. Formally, semantic security means that each
probabilistic polynomial time algorithm which takes as arguments a security parame-
ter, a public key, a number of messages encrypted with this key, the respective messages
lengths, and any further partial information on the messages, can be replaced by another
probabilistic polynomial time algorithm which only receives the security parameter, the
message lengths, and the partial information on the messages [14]. In other words, no
probabilistic polynomial time algorithm can extract any information from a set of en-
crypted messages.

An adaptive chosen message attack is an attack against a signature scheme, where
the attacker has access to an oracle which can sign arbitrary messages, and uses this
ability to sign some new message without consulting the oracle. More formally, a sign-
ing oracle S[KCus] with private key KCus is a function which takes a message m and
returns a signature s = csign(KCus, m, R) for a uniformly and randomly chosen random
seed R. An attack is a forging algorithm F which (i) knows the public key KPub and
(ii) has access to the signing oracle S[KCus], where KCus is the private key correspond-
ing to KPub. The algorithm F is allowed to query S[KCus] for an arbitrary number of
signatures. F can adaptively choose the messages to be signed, i.e., each newly chosen
message can depend on the outcome of the previous queries. At the end of the com-
putation, a successful attack F must output a message m and a signature s such that
cverify(KPub, m, s) succeeds, although m has never been sent to S[KCus]. A signature
scheme is secure against adaptive chosen message attacks, if there is no probabilistic
polynomial time algorithm F which has a non-negligible success probability.

We can now precisely state the main theorems.

Theorem 1 (Conformance). If the protocol terminates (in Step C4 of the certification
phase) with the customer Cus accepting the binary exec and the output file logCus, then
exec and logCus must be produced from the same source in all but a negligible fraction
of the protocol executions (under standard cryptographic assumptions).

Proof Sketch. Towards a contradiction, we assume that with non-negligible probability,
Sup can forge a certificate which is accepted by Cus in step C4. Thus, Sup computes
a certificate cert for a pair 〈exec, logCus〉 which has not been signed by Ama but is
accepted by Cus. Using semantic security, we show that such a malicious instance MSup
of Sup gives rise to a forging algorithm F which implements a successful adaptive
chosen message attack. This implies that the underlying signature scheme is not secure
against adaptive chosen message attacks—which is a contradiction. ��
We present a more extensive proof of Theorem 1 in [33]. We now turn to secrecy, which,
not surprisingly, is quite straight forward to prove.

Theorem 2 (Secrecy). By the execution of the protocol, Cus cannot extract any piece
of information on the source source which is not contained in exec and logCus.

Proof. During the execution of the protocol, Cus receives the binary exec, the output
file logCus, and the certificate cert. The certificate cert = csign(KCus, 〈exec, logCus〉, Ri)
can be generated from exec, logCus, the key KCus, and the underlying random seed
Ri. Cus generates KCus itself and obtains access to exec and to logCus. Thus the only
additional information communicated from Ama to Sup is the underlying random seed
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Ri. But this random seed Ri has been fixed by Ama before having access to source,
and consequently Ama cannot encode any information on the source source which is
not contained in exec and logCus into the certificate. ��

5 Conclusion

We have introduced the amanat protocol which facilitates software verification without
violating IP rights on the source code. The intended scenario for our protocol is a B2B
setting with a small numbers of customers, e.g. controller software and device drivers.

We also envision wider applications of our protocol in a B2C setting, i.e., for
commercial-off-the-shelf software. In this case, the customer party of the amanat proto-
col will not be enacted by an end customer, but by a certification agency which provides
commercial verification services. A detailed exploration of this scenario will be part of
future work.

Acknowledgments. We are thankful to Josh Berdine and Byron Cook for discussions
on the device driver scenario and to Andreas Holzer and Stefan Kugele for comments
on early draft of the paper.
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Abstract. In this paper we propose a complete chain for synthesizing controllers
from high-level specifications. From real-time properties expressed in the logic
MTL we generate, under bounded-variability assumptions, deterministic timed
automata to which we apply safety synthesis algorithms to derive a controller that
satisfies the properties by construction. Some preliminary experimental results
are reported.

1 Introduction

The problem of synthesizing controllers automatically from high-level specifications
has been posed by Church [Chu63] and solved theoretically by Büchi and Landwe-
ber [BL69, TB73]. Although the topic has been subject to further, more modern, in-
vestigations, synthesis has not enjoyed the passage from theory to practice as did the
similar and simpler problem of verification, mostly due to the practical complexity of
the proposed algorithms. Recently some improvements have been made for untimed
[PPS06, PP06] and timed [CDF+05] systems, that led to the synthesis of some non
trivial controllers. This work is a further step in this direction which attempts to give a
general feasible solution for the following problem:

Given a bounded-response temporal property ϕ defined over two distinct action al-
phabets A and B (encoded using mutually-disjoint sets of propositional variables),
build a finite-state transducer (controller) from Aω to Bω such that all of its behaviors
satisfy ϕ at all positions.

The controller in question is realized by an automaton that observes what the envi-
ronment does (some a ∈ A), changes its state accordingly and outputs some b ∈ B. The
whole situation can be viewed as a two-player zero-sum game between the controller
and its environment where one seeks a winning strategy for the controller (see [M07]
for a unified game-theoretic model). Unlike other approaches, for example those used in
the control of discrete event systems [RW89] or our previous work [MPS95, AMP95],
we do not start with a given “plant” or “arena” in a form of a transition system and an
acceptance/winning condition expressed in terms of its states. Our starting point, like
in [PR89], is a temporal logic formula which specifies constraints on the behaviors of
the players as well as desired properties of their interaction. Hence the first step in the
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synthesis procedure is to derive the automaton from the formula and then apply synthe-
sis algorithms to this automaton.

A major difficulty in such a procedure stems for the fact that synthesis algorithms
are more naturally defined over input-deterministic automata, or, to be more precise,
over automata where each non-deterministic choice can be unambiguously attributed to
one of the two players. In such automata each joint choice of the two players induces
only one transition from every state.1 In contrast, the commonly-used procedures for
translating temporal logic formulae go through non-deterministic automata whose de-
terminization leads to automata of prohibitively-large size. Another obstacle toward the
efficient realization of synthesis algorithms is the fact that the acceptance conditions in
the generated automata require a complicated fixed-point computation in order to find
the winning states and strategies.

In this work we avoid some of these problems by restricting our attention to bounded-
response properties which are known to be equivalent to safety properties. These prop-
erties represent a large part of what users are interested in (especially in hard real-time
systems) and lead to automata with simpler acceptance conditions (just avoid bad states)
and hence to a simpler synthesis procedure. Concerning the limited scope of bounded-
response properties compared to more general liveness properties, we can make the
following comments. Liveness properties typically specify something that should
“eventually” happen without specifying an upper bound on the time to elapse between
now and that eventuality. Obviously, liveness properties can be viewed as an abstrac-
tion of the real specification which requires not only that some response is eventually
forthcoming (which is often useless by itself), but also provides an upper bound on the
maximal delay on the arrival of the response. In some cases, the use of such abstractions
may be justified on various grounds. However, we hope to convince the reader that, in
many other cases, the synthesis from bounded-response properties is very relevant and
preferable and can be carried out efficiently for non-trivial problems. For such cases,
why settle for an abstraction when you can work directly with the precise specification?

The main contribution of this paper is an efficient machinery that allows one to
synthesize controllers automatically from specifications expressed using the real-time
temporal logic MTL [Koy90], often interpreted of the time domain R+. Our first contri-
bution is a transformation of such formulae, under bounded variability assumptions to
deterministic timed automata. This detrminization is of particular interest as it is based
on transforming the formula into a past formula and then applying the ideas presented
in [MNP05]. The obtained automaton is then interpreted as a timed game automaton
[MPS95, AMP95] to which we apply a synthesis algorithm to derive the controller.

The rest of the paper is organized as follows: Section 2 presents the syntax and se-
mantics of the bounded-response fragment of MTL. Section 3 shows how to translate
future bounded MTL formulae into past formulae and deterministic timed automata. Sec-
tion 4 reports some preliminary experiments in synthesizing an arbiter from its specifica-
tions, while Section 5 mentions ongoing and future efforts to improve the performance.

1 A notable exception is the case where the controller has limited observability and thus, after
observing a sequence of adversary actions it may find itself in one of several states and its
chosen action should be good with respect to all these states. In this case, the nondeterminism
plays in favor of the adversary.
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2 Signals and Their Bounded Temporal Logic

Timed behaviors can be described using either time-event sequences consisting of in-
stantaneous events separated by time durations or discrete-valued signals which are
functions from time to some discrete domain. In this work we use Boolean signals as
the semantic domain, but the extension of the results to time-event sequences (which
are equivalent to the timed traces of [AD94]) need not be a difficult exercise.

Let the time domain T be the set R≥0 of non-negative real numbers and let B =
{0, 1}. An n-dimensional Boolean signal ξ is a partial function ξ : T → B

n whose
domain of definition is an interval I = [0, r), r ∈ N ∪ {∞}. We say that the length of
the signal is r and denote this fact by |ξ| = r and let ξ[t] stand for the value of the signal
at time t. We use t⊕ [a, b] to denote [t+a, t+ b), that is, the Minkowski sum of {t} and
[a, b], and t� [a, b] = [t− b, t− a)∩T for the inverse operation with saturation at zero.
In the sequel we will restrict our attention to well-behaving signals whose variability is
bounded.

Definition 1 (Bounded Variability). A signal ξ is of (Δ, k)-bounded variability if for
every interval of the form [t, t + Δ] the number of changes in the value of ξ is at most
k. A bounded-variability signal is a signal for which such Δ > 0 and finite k exist.

Proposition 1 (Preservation of Bounded Variability). Let ξ1 and ξ2 be two infinite
bounded variability signals characterized, respectively, by (Δ, k1) and (Δ, k2), and let
ξ = ξ1 op ξ2 be a signal obtained by applying the Boolean operation op to ξ1 and ξ2.
Then, ξ is of (Δ, k1 + k2)-bounded variability.

This fact, which follows from the observation that for ξ to switch at time t, at least
one of ξ1 and ξ2 should switch, implies that if we assume bounded variability of the
propositional signals, we will also have bounded variability for the signals that indicate
the truth values of subformulae. Hence we can build the automaton corresponding to
the formula in an inductive and compositional manner based on the temporal testers
introduced in [KP05] for discrete time and extended in [MNP05, MNP06] for dense
time. In this construction bounded variability will be guaranteed at all levels.

We define the logic MTL-B as a bounded-horizon variant of the real-time temporal
logic MTL [Koy90], such that all future temporal modalities are restricted to intervals
of the form [a, b] with 0 ≤ a ≤ b and a, b ∈ N, but allow the unbounded past operator
S (since) which is not really unbounded. Note that unlike MITL [AFH96], we allow
“punctual” modalities with a = b and in this case we will use a as a shorthand for [a, a].
Another deviation from MTL is the introduction of an additional past operator precedes
(P) which is roughly the bounded until operator from the point of view of the end of
the relevant segment of the signal. This operator is not proposed for user-friendliness
purposes, but rather to facilitate the translation from future to past. The basic formulae
of MTL-B are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U [a,b]ϕ2| ϕ2 S [a,b]ϕ1| ϕ2 Sϕ1| ϕ1P[a,b]ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions corresponding naturally to
the coordinates of the n-dimensional Boolean signal considered. The future fragment
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of MTL-B uses only the U [a,b] modality while the past fragment uses only the S [a,b],
S and P[a,b] modalities. The satisfaction relation (ξ, t) |= ϕ, indicating that signal ξ
satisfies ϕ at position t, is defined inductively below. We use p[t] to denote the projection
of ξ[t] on the dimension that corresponds to variable p.

(ξ, t) |= p ↔ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) �|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2
(ξ, t) |= ϕ1 U [a,b]ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and

∀t′′ ∈ [t, t′], (s, t′′) |= ϕ1
(ξ, t) |= ϕ2 S [a,b]ϕ1 ↔ ∃t′ ∈ t � [a, b] (ξ, t′) |= ϕ1 and

∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1
(ξ, t) |= ϕ2 Sϕ1 ↔ ∃t′ ∈ [0, t] (ξ, t′) |= ϕ1 and

∀t′′ ∈ (t′, t], (ξ, t′′) |= ϕ1
(ξ, t) |= ϕ1P[a,b]ϕ2 ↔ ∃t′ ∈ t � [0, b − a] (ξ, t′) |= ϕ2 and

∀t′′ ∈ [t′ − b, t′] (ξ, t′′) |= ϕ1

It is important to note the difference between the future and the past operators (see
Figure 1): the until operator points from time t toward the future, while the since and
precedes operators point from t backwards. On the other hand, the until and precedes
operators differ from the since operators as they speak on the interval before the event
that should be observed within a bounded time interval, while the latter refers to the
interval immediately after its occurrence.

ϕ2

ϕ1

t − b t′ t − a t

ϕ1

ϕ2

ϕ1 U [a,b]ϕ2

t + bt′t + at

ϕ1P[a,b]ϕ2

ϕ1

ϕ2

tt′t − b

ϕ2 S [a,b]ϕ1

t − (b − a)

Fig. 1. The semantic definitions of until, precedes and since

From basic MTL-B operators one can derive other standard Boolean and temporal
operators, in particular the time-constrained sometime in the past, always in the past,
eventually in the future and always in the future operators whose semantics is defined
as

(ξ, t) |= � [a,b] ϕ ↔ ∃t′ ∈ t � [a, b] (ξ, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t � [a, b] (ξ, t′) |= ϕ
(ξ, t) |= � [a,b] ϕ ↔ ∃t′ ∈ t ⊕ [a, b] (s, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

Note that our definition of the semantics of the timed until and since operators differs
slightly from their conventional definition since it requires a time instant t′ where both



On Synthesizing Controllers from Bounded-Response Properties 99

(ξ, t′) |= ϕ2 and (ξ, t′) |= ϕ1. For the untimed since operator we retain the standard
semantics.

Each future MTL-B formula ϕ admits a number D(ϕ) which indicates its temporal
depth. Roughly speaking, to determine the satisfaction of ϕ by a signal ξ from any
position t, it suffices to observe the value of ξ in the interval [t, t + D(ϕ)]. This prop-
erty is evident from the semantics of the (bounded) temporal operators and admits the
following recursive definition:

D(p) = 0
D(¬ϕ) = D(ϕ)
D(ϕ1 ∨ ϕ2) = max{D(ϕ1), D(ϕ2)}
D(ϕ1 U [a,b]ϕ2) = b + max{D(ϕ1), D(ϕ2)}

Note that D is a syntax-dependent upper bound on the actual depth: the satisfiability
of a formula ϕ may be determined according to segments of ξ shorted than D(ϕ). For
example, D(� [a,b] T) = b, but the formula requires no part of ξ for its satisfiability to
be determined. At the end of the day we are interested in properties of the form � ϕ
where ϕ is any (future, past or mixed) MTL-B formula. These properties are interpreted
over infinite-duration signals and require that all segments of ξ of length D(ϕ) satisfy ϕ.

3 From MTL-B to Deterministic Timed Automata

In [MP04, MNP05] we have studied the relation between real-time temporal logics
and deterministic timed automata. It turns out that the non-determinism associated with
real-time logics has two rather independent sources described below.

– Acausality: the semantics of future temporal logics is acausal in the sense that the
satisfiability of a formula at position t may depend on the value of the sequence
or signal at time t′ > t. If the automaton has to output this value at time t, it has
no choice but to “guess” at time t and abort later at time t′ the computations that
correspond to wrong predictions (see more detailed explanation in [MNP06]). This
bounded non determinism is harmless and in the untimed case, that is, for LTL,
it can be determinized away. We conjecture that such a detrminization procedure
exists also for the timed case, but so far none has been reported. This problem does
not exist for past temporal logic whose semantics is causal and hence it translates
naturally into deterministic automata.

– Unbounded variability: when there is no bound on the variability of input signals,
the automaton needs to remember the occurrence times of an unbounded number of
events and use an unbounded number of clocks. All the pathological examples con-
cerning non-determinizability and non-closure under complementation for timed
automata [AD94] are based on this phenomenon.

In [MNP05] we have shown that the determinism of past MITL, compared to the
non-determinism of future MITL, is a result of a syntactic accident which somehow
imposes bounded variability (or indifference to small fluctuations) for the former but
not the latter. The punctual version, past MTL, remains non deterministic (and of infi-
nite memory) because the operator � a realizes an ideal delay element which requires
unbounded memory.
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The approach taken in this work in order to get rid of both sources of non determin-
ism is the following: we use full MTL, that is, allow punctual modalities, but assume
that we are dealing with signals of (Δ, k)-bounded variability, hence we can dispense
with the severe form of non determinism.2 We then transform future MTL-B formulae to
past MTL-B formula which, under the bounded variability assumption, can be translated
to deterministic timed automata. This part of the result is an extension of what we have
shown in [MNP05] for the (non-punctual) since operator.

The key idea of the transformation is to change the time direction from future to
past and hence eliminate the “predictive” aspect of the semantics. We will present an
operator Π which takes as an argument a future formula ϕ and a displacement d, and
transforms it to an “equivalent” past formula ψ such that ϕ is satisfied by a signal from
position t iff ψ is satisfied by the same signal from t + d.

Definition 2 (Pastify Operator). The operator Π on future MTL-B formulae ϕ and a
displacement d ≥ D(ϕ) is defined recursively as:

Π(p, d) = � d p
Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨ Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d − b)P[a,b]Π(ϕ2, d − b)

Note that according the this definition Π(� [a,b] ϕ, d) = � [0,b−a] Π(ϕ, d − b).

Proposition 2 (Relation between ϕ and Π(ϕ, d)). Let ϕ be a bounded future formula
and let ψ = Π(ϕ, d) with d ≥ D(ϕ). Then for every ξ and t ≥ 0 we have:

(ξ, t) |= ϕ iff (ξ, t + d) |= ψ (1)

Proof: We proceed by induction on the structure of the formula. The base case, the
atomic propositions, satisfy (1) trivially. Proceeding to the inductive case, we show
that if (1) holds for formulae with complexity (nesting of operators) m, it holds as
well for formulae of complexity m + 1. For Boolean operators this is straightforward.
Assume now that ϕ1 and ϕ2 satisfy (1) and we will show that so does ϕ = ϕ1 U [a,b]ϕ2.
Note that by definition, if D(ϕ) = d then D(ϕ1) ≤ d − b and D(ϕ2) ≤ d − b. Let
ψ1 = Π(ϕ1, d − b) and ψ1 = Π(ϕ1, d − b). The fact the (ξ, t) |= ϕ amounts to

∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 ∧ ∀t′′ ∈ [0, t′] (ξ, t′′) |= ϕ1.

According to the inductive hypothesis we have that for such t′ and t′′

(ξ, t′ + d − b) |= ψ2 and (ξ, t′′ + d − b) |= ψ1.

By letting r′ = t′ + d− b and r′′ = t′′ + d− b and substituting the constraints on t′ and
t′′ we obtain

∃r′ ∈ t + d � [0, b − a] (ξ, r) |= ψ2 ∧ ∀r′′ ∈ [t + d − b, r] (ξ, r′′) |= ψ1,

2 It is worth noting that the procedure of [T02] for subset construction on-the-fly, that is, deter-
minization with respect to a given (and hence of bounded variability) input, works due to the
same reasons.
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which is exactly the definition of (ξ, t + d) |= ψ1P[a,b]ψ2.
For the other direction assume (ξ, t + d) |= ψ1P[a,b]ψ2 which means that

∃r′ ∈ t + d � [0, (b − a)] (ξ, r′) |= ψ2 ∧ ∀r′′ ∈ [t + d − b, r′](ξ, r′′) |= ψ1.

By the inductive hypothesis such r′ and r′′ satisfy

(ξ, r′ − (d − b)) |= ϕ1 and (ξ, r′′ − (d − b)) |= ϕ1.

Letting t′ = r′ − (d − b) and t′′ = r′′ − (d − b) and substituting the constraints on r′

and r′′ we obtain

∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

which means that (ξ, t) |= ϕ1 U [a,b]ϕ2.

Corollary 1 (Equisatifaction of � ϕ and � ψ). An infinite signal ξ satisfies � ϕ iff
it satisfies � ψ where ψ = Π(ϕ, D(ϕ)).

We now proceed to the construction of a deterministic timed automaton accepting ex-
actly signals satisfying a past MTL-B formula ψ under a bounded-variability assump-
tion. The construction, inspired by [KP05], is compositional in the sense that it yields
a network of deterministic signal transducers (testers), each corresponding to a subfor-
mula of ψ. The output of every tester for ψ′ at time t equals to the satisfaction of ψ′

from t. A more formal description of this framework can be found in [MNP05, MNP06].
We first present a generic automaton, the event recorder which was first introduced in
[MNP05] for the purpose of showing that the operator � [a,b] admits a deterministic
timed automaton.

The automaton depicted in Figure 2 accepts signals satisfying � [a,b] ϕ by simply
memorizing at any time instant t the value of ϕ in the past temporal window [t − b, t].
Assuming that ϕ is of bounded variability and cannot change more than 2m times in an
interval of length b, the states of the automaton, {0, 01, . . . , (01)m0}, correspond to the
qualitative form of the value of ϕ in that time interval. Each clock xi (respectively, yi)
measures the time elapsed since the ith rising (respectively, falling) of ϕ in the temporal
window. When ϕ first becomes true, automaton moves from 0 to 01 and resets x1. When
ϕ becomes false it moves to 010 while resetting y1 and so on. When clock y1 > b,
the first 01-episode of ϕ becomes irrelevant for the satisfaction of � [a,b] ϕ and can
be forgotten. This is achieved by the “vertical” transitions which are accompanied by
“shifting” the clocks values, that is, applying the operations xi := xi+1 and yi := yi+1
for all i. This allows us to use only a finite number of clocks.

The following proposition, first observed in [MN04], simplifies the construction of
the automaton. It follows from the fact that if a bounded-variability signal is true at two
close points, it has to be true throughout the interval between them.

Proposition 3. If p is a signal of (a, 1)-bounded variability then

– (ξ, t) |= pU [a,b]q iff (ξ, t) |= p ∧ � [a,b](p ∧ q)
– (ξ, t) |= pP[a,b]q iff (ξ, t) |= � b p ∧ � [0,b−a](p ∧ q)
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y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

y1 ≥ b/s

ϕ

y1 ≤ b y1 ≤ b

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s
¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

ϕ/x1 := 0

ϕ/x2 := 0

ϕ/x3 := 0

Fig. 2. An event recorder, an automaton which has ϕ as input and � [a,b] ϕ as output. The input
labels and staying conditions are written on the bottom of each state. Transitions are decorated
by the input labels of the target states and by clock resets. The clock shift operator is denoted by
the symbol s. The automaton outputs 1 whenever x1 ≥ a.

p1

p3

p2

p

Fig. 3. Splitting p into p1 ∨ p2 ∨ p3
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Hence for a signal p satisfying this property, the automaton for P[a,b] can be constructed
from the event recorder by means of simple Boolean composition. Suppose now that p is
of (a, k)-bounded variability with k > 1. We can decompose it into k signals p1, . . . , pk

such that p = p1 ∨ p2 · · · pk, pi ∧ pj is always false for every i �= j and each pi is of
(a, 1)-bounded variability. This is achieved by letting pi rise and fall only on the jth

rising and falling of p, where j = i mod k, as is illustrated, for k = 3, in Figure 3. It
is not hard to see that for such pi’s we have

(ξ, t) |= pU [a,b]q iff (ξ, t) |=
k∨

i=1

pi U [a,b]q

and

(ξ, t) |= pP[a,b]q iff (ξ, t) |=
k∨

i=1

piP[a,b]q.

The splitting of p can be done trivially using an automaton realizing a counter modulo k.

Corollary 2 (MTL-B to Deterministic Timed Automata). Any MITL-B formulae can
be transformed, under bounded-variability assumptions, into equivalent deterministic
timed automata.

4 Application to Synthesis

4.1 Discrete and Dense-Time Tools

What remains to be done is to transform the automaton into a timed game automaton
by distinguishing controllable and uncontrollable actions and applying the synthesis
algorithm. There are currently several choices for timed synthesis tools divided into
two major families depending one whether discrete or dense time tools are used.3

– Discrete time: the logic and the automata are interpreted over the time domain N. A
major advantage of this approach is that the automaton becomes finite state and can
be subject to symbolic verification and synthesis using BDDs, which is very useful
when the discrete state space is large. On the other hand, the sensitivity of discrete
time analysis to the size of the constants is much higher and will lead to explosion
when they are large. Discrete-time synthesis of scheduler for fairly-large systems
has been reported in [KY03].

– Dense time: here we have the opposite problem, namely there is a compact sym-
bolic representation of subsets of the clock space, but the discrete states are enu-
merated. Several implementations of synthesis algorithms based on [MPS95] exist.
One is the tool SynthKro included in the standard distribution of Kronos and
described in [AT02], which works by standard fixpoint computation. Another al-
ternative, which restricts the algorithm to work only on the reachable part of the

3 Contrary to commonly-held beliefs, the important point of timed automata is not the density
of time but the symbolic treatment of timing constraints using addition and inequalities rather
than state enumeration.
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state space is the tool FlySynth which refines the reachability graph of the game
automaton according to the time-abstract bisimulation relation [TY01] yielding a
finite quotient to which untimed synthesis algorithms can be applied [TA99]. Fi-
nally, the tool Uppaal-Tiga improves upon these ideas by combining forward
and backward search, resulting in the most “on-the-fly” algorithm for timed syn-
thesis [CDF+05] and probably the most effective existing tool for timed synthesis.

We have conducted our first experiments in discrete time using a synthesis algo-
rithm implemented on top of the tool TLV, while working on the implementation of an
improved dense time algorithm combining ideas from [TY01] and [CDF+05].

4.2 Example: Deriving an Arbiter

To demonstrate our approach we present a bounded-future specification of an arbiter
module whose architectural layout is shown in Figure 4-(a). The arbiter is expected
to allocate a single resource among n clients. The clients post their requests for the
resource on the input ports r1, . . . , rn and receive notification of their grants on the
arbiter’s output ports g1, . . . , gn. The protocol of communication between each client
and the arbiter follows the cyclic behavior described in Figure 4-(b,c).

ri gi

ri gi ri gi

ri gi

d2 d1 d3

r

g

(b) (c)(a)

· · · · · ·Arbiter
r1

rn

g1

gn

Fig. 4. (a) The architecture of an Arbiter; (b) The communication protocol between the arbiter
and client i. Uncontrollable actions of the client (environment) are drawn as solid arrows, while
controllable actions which are performed by the arbiter (controller) drawn as dashed arrows; (c)
A typical interaction between the arbiter and a client.

In the initial state both ri and gi are low (0). Then, the client acts first by setting
ri to high (1) indicating a request to access the shared resource. Next, it is the turn of
the arbiter to respond by raising the grant signal gi to high. Sometimes later, the client
terminates and indicates its readiness to relinquish the resource by lowering ri. The
arbiter acknowledges the release of the resource by lowering down the grant signal gi.

We structure the specification into subformulae IE , IC , SE , SC , LE and LC de-
noting, respectively, the initial condition, safety component, and (bounded) liveness
components of the environment (client) and the controller (arbiter). They are given by

IE :
∧

i ri

IC :
∧

i gi

SE :
∧

i ri =⇒ riS(ri ∧ gi)) ∧ ∧
i(ri =⇒ ri B(ri ∧ gi))

SC :
∧

i(gi =⇒ giS(ri ∧ gi)) ∧ ∧
i(gi =⇒ gi B(ri ∧ gi))
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LE :
∧

i(gi =⇒ � [0,d1] ri)
LC :

∧
i(ri =⇒ � [0,d2] gi) ∧ ∧

i(ri =⇒ � [0,d3] gi)

The initial-condition requirements IE and IC state that initially all variables are low.
The safety requirements SE and SC ensure that the environment and arbiter conform to
the protocol as described in Figure 4-(b). In the untimed case, this is usually specified
using the next-time operator � but in dense time specify these properties using the the
untimed past S and B operators.Thus, the requirement (ri =⇒ riS(ri ∧ gi)) states
that if ri is currently high, it must have been continuously high since a preceding state
in which both ri and gi were low. The reader can verify that the combination of the
safety properties enforces the protocol.

The (bounded) liveness property gi =⇒ � [0,d1] ri requires that if gi holds then
within b time units, client Ci should release the resource by lowering ri. The property
(ri =⇒ � [0,d2] gi) specifies quality of service by saying that every client gets the
resource at most d2 time after requesting it. Finally, property ri =⇒ � [0,d3] gi

requires that the arbiter senses the release of the resource within d3 time and considers
it available for further allocations. Note that the required response delays for the various
properties employ different time constants. This is essential, because the specification
is realizable only if d2, the time bound on raising g, is at least n(d1 + d3). This reflects
the “worst-case” situation that all clients request the resource at about the same time,
and the arbiter has to service each of them in turn, until it gets to the last one.

The various components are combined into a single MTL-B formula by transforming
them to past formulae and requiring that the controller does not violate its requirements
as long as the environment does not violate hers:

(IE =⇒ IC) ∧ � (� (Π(SE) ∧ Π(LE)) =⇒ (Π(SC) ∧ Π(LC))) (2)

Below we report some preliminary experiments in automatic synthesis of the arbiter.
Table 1 shows the results of applying the procedure to Equation (2) with d3 = 1 and
d1 (the upper bound on the execution time of the client) varying between 2 and 4.
The N column indicates the number of clients, the Size column indicate the number of
BDD nodes in the symbolic representation of the transition relation of the synthesized
automaton and Time indicates the running time (in seconds) of the synthesis procedure.
As one can see, there is a natural exponential growth in N and also in d2 as expected
using discrete time.

Table 1. Results for d1 = 2, 3, 4

N d1 d2 Size Time d1 d2 Size Time d1 d2 Size Time
2 2 4 466 0.00 3 5 654 0.01 4 6 946 0.02
3 2 8 1382 0.14 3 10 2432 0.34 4 12 4166 0.51
4 2 12 4323 0.63 3 15 7402 1.12 4 18 16469 2.33
5 2 16 13505 1.93 3 20 26801 4.77 4 24 50674 10.50
6 2 20 43366 8.16 3 25 84027 22.55 4 30 168944 64.38
7 2 24 138937 44.38 3 30 297524 204.56 4 36 700126 1897.56
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5 Conclusions and Future Work

We have made an important step toward making synthesis a usable technology by sug-
gesting MTL-B as a suitable formalism that can handle a variety of bounded response
properties encountered in the development of real-time systems. We have provided a
novel translation form real-time temporal logic to deterministic timed automata via
transformation to past formulae and using the reasonable bounded-variability assump-
tion. We have demonstrated the viability of this approach by deriving a non-trivial ar-
biter from specifications.

In the future we intend to focus on efficient symbolic algorithms in the spirit of
[CDF+05] and conduct further experiments in order to characterize the relative merits
of discrete and dense-time algorithms. We also intend to apply the synthesis algorithm
to more complex specifications of real-time scheduling problems.
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Abstract. Three-color parity games capture the disjunction of a Büchi and a
co-Büchi condition. The most efficient known algorithm for these games is the
progress measures algorithm by Jurdziński. We present an acceleration technique
that, while leaving the worst-case complexity unchanged, often leads to consid-
erable speed-ups in games arising in practice. As an application, we consider
games played in discrete real time, where players should be prevented from stop-
ping time by always choosing moves with delay zero. The time progress condition
can be encoded as a three-color parity game. Using the tool TICC as a platform,
we compare the performance of a BDD-based symbolic implementation of the
progress measure algorithm with acceleration, and of the symbolic implementa-
tion of the classical μ-calculus algorithm of Emerson and Jutla.

1 Introduction

The parity acceptance condition for automata and games enjoys many interesting prop-
erties. Every ω-regular language can be recognized by a deterministic parity automa-
ton [20]. The parity accepting condition is closed under complementation, and games
with parity accepting conditions admit memoryless optimal strategies for both players.
Moreover, parity games have received a great deal of attention due to their equivalence
to the model checking of the modal μ-calculus. The complexity of this class of games
is known to be in NP ∩ co-NP [11], and even in UP ∩ co-UP [14].

We are especially interested in parity conditions with three colors. which can express
the disjunction of Büchi and co-Büchi conditions. As we shall see, 3-color parity games
occur in the solution of timed games. For 3-color parity games, the algorithm with the
best worst-case complexity is the progress measure algorithm of [13]. In this paper, we
present an acceleration technique that greatly improves the performance of this algo-
rithm in many cases, while retaining its worst-case behavior. We then show how the
algorithm can be implemented symbolically, and how it compares in performance with
more traditional, μ-calculus based algorithms [10].

We consider parity games with colors 0, 1, 2, where the goal of Player 1 is to ensure
that the minimum color visited infinitely often is even. The progress measure algorithm
works by updating a function assigning an integer value to each state of the game,
called the measure of that state. The measure of each state starts at zero; each iteration
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of the algorithm can either increase the measure at a state, or leave it unchanged. If
the measure of a state exceeds the number n1 of 1-color states, the state is losing for
Player 1. The algorithm stops when the progress measure reaches a fixpoint. Even in
the best case, the algorithm needs a number of iterations proportional to n1.

We propose an acceleration scheme based on the following result. Suppose that, at
a certain step of the algorithm, we find an integer k such that no state has measure k,
but some states have measure greater than k. Call k a “gap” in the measure. We prove
that all states having measure greater than the gap k are losing for Player 1; they can be
immediately be assigned measure n1 + 1. This enables us to solve many 3-color parity
games in much fewer than n1 iterations; as we shall see, this acceleration is especially
effective for timed games.

In the second part of this paper, we show how the acceleration technique for three-
color parity games can be applied to timed games, leading to efficient symbolic algo-
rithms. Timed games are games played in such a way as to make explicit reference
to the passage of time [15,3]. Generally, the players of a timed game specify in their
moves both the action they want to execute and the time at which they want to execute
it. Moreover, in the literature such games are usually played on timed-automata-like
arenas, so that the game state is also made time-aware by the presence of clocks. As
for standard games, the objective for a player is to obtain a game run belonging to a
given set of desired runs, called goal. Common goals for timed games include reaching
a given set of states (reachability) or staying forever in a given set of states (safety).

Most formulations of timed games allow players to “stop the progress of time” by
proposing zero, or converging, time delays. Obviously, these physically impossible be-
haviors must be ruled out in order not to obtain artificial solutions to the game. Previous
approaches differ in how they deal with this problem. Some papers make sure that non-
physical behaviors cannot arise in the first place, by placing structural restrictions on
the games they are willing to treat [3,12]. Other papers force a player to ensure time
divergence [15] as a prerequisite for winning, with the result that players are precluded
victory in many games where the goal can be achieved only with some delay. Still other
papers ignore the issue, so that their solutions work only for sub-classes of games, such
as safety [17,2] or reachability [5] games.

A technique that does not restrict the type of games that can be tackled is advo-
cated in [9,7,1]. The approach distinguishes between the original goal of the game and
the winning condition, which is a suitable modification of the goal ensuring that time-
blocking strategies are not convenient for either player. The winning condition states,
roughly, that in addition to achieving the goal, a player must ensure that either time
diverges, or that the blame for stopping time lies with the other player [2,7]. As we
shall see, for safety and reachability games, such winning condition can be captured by
a 3-color deterministic parity automaton. Thus, solving safety and reachability timed
games involves solving 3-color parity games.

We consider timed games played in discrete time, and we present a symbolic imple-
mentation of the progress measure algorithm, based on symbolic methods for updating
the progress measure, finding the gaps, and achieving acceleration. We show that the
acceleration is fundamental in achieving an efficient implementation of the progress
measure algorithm: in the examples we tested, we achieved speed-up factors of several
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hundreds. We also compare the performance of the resulting algorithms with the clas-
sical μ-calculus-based fixpoint algorithm of [10]. The running times of the two algo-
rithms were, in our experiments, within a factor of two of each other, with the classical
μ-calculus algorithm generally being the fastest. However, our results are not conclu-
sive, since minor implementation details, such as the choice of variable ordering and
differences in the encoding of the game transition relation, seem to have a large effect
on the performance of the algorithms.

2 Algorithms for 3-Color Parity Games

For an integer d > 0, a parity game with d colors is a tuple (S1, S2, E, c), where S1
and S2 are the finite sets of states of Player 1 and Player 2, respectively. We require
S1 ∩ S2 = ∅ and we set S = S1 ∪ S2. E ⊆ S2 is the set of edges, and c : S →
{0, 1, . . . , d−1} is a function assigning a color to each state. For all i = 0, . . . , d−1, we
set Ci = c−1(i). Moreover, let n = |S| and m = |E|. A strategy for player i ∈ {1, 2}
is a function π : S∗ → S such that, for all σ ∈ S∗, if the last state of σ is s ∈ Si then
(s, π(σ)) ∈ E. Let Π1 and Π2 denote the sets of strategies of Player 1 and Player 2,
respectively. A trace is an infinite path in the directed graph (S, E). Given s ∈ S,
π1 ∈ Π1 and π2 ∈ Π2, the outcome δ(s, π1, π2) of π1 and π2 from s is the unique
trace s0s1 . . . such that s0 = s and for all j > 0, sj = πi(s0s1 . . . sj−1) if and only if
sj−1 ∈ Si. We say that a strategy π1 ∈ Π1 is winning from state s iff for all π2 ∈ Π2,
the smallest color that appears infinitely often in δ(s, π1, π2) is even. We denote by
Win1 the set of states from which Player 1 has a winning strategy.

In the following, we examine two algorithms for solving parity games with three col-
ors. We consider a fixed parity game (S1, S2, E, c) with three colors. When discussing
the complexity of the algorithms, we assume an adjacency list representation for the
game.

2.1 Emerson-Jutla’s μ-Calculus Algorithm

From [10], parity games can be solved using a fixpoint computation involving the so-
called controllable predecessor operators.

Definition 1 (Controllable Predecessor Operator). For a set of states X ⊆ S,
Cpre1(X) yields all states from which Player 1 can force the game into X in one
step. Formally,

Cpre1(X) = {s ∈ S1 | ∃(s, t) ∈ E . t ∈ X} ∪ {s ∈ S2 | ∀(s, t) ∈ E . t ∈ X}.

For parity games with three colors, the set of winning states Win1 can be characterized
using the following formula [10], written in μ-calculus notation:

Win1 = νZ.μY.νX.
[
(Cpre1(X) ∩ C2) ∪ (Cpre1(Y ) ∩ C1) ∪ (Cpre1(Z) ∩ C0)

]
.

Such fixpoint can be computed by Picard iteration, using three nested loops; we will
refer to this algorithm as the EJ algorithm. An enumerative implementation of this
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algorithm takes time O(m · n2): the inner loop can be computed in time O(m) (the
computation is analogous to the one used for solving safety games), while the outer
loops can be performed at most n times each. On the other hand, a symbolic implemen-
tation requires time O(m · n3), since the computation of Cpre1 takes time O(m), and
it is performed O(n3) times.

2.2 Jurdziński’s Progress Measure Algorithm

An alternative algorithm for computing Win1 is the progress measure algorithm
from [13]. For three-color parity games, this algorithm has the best worst-case com-
plexity of all known algorithms. Let n1 = |C1| and M = {0, 1, . . . , n1+1}. A progress
measure is a function ρ : S → M . The algorithm proceeds by building a monotonically
increasing sequence (ρi)i≥0 of progress measures, until a fixpoint is reached.

For α ∈ M and j ∈ {0, 1, 2}, we define

Progr(α, j) =

⎧
⎪⎨

⎪⎩

0 if j = 0 and α < n1 + 1,

α + 1 if j = 1 and α < n1 + 1,

α otherwise.

(1)

We have ρ0(s) = 0 for all s ∈ S. For all i ≥ 0, the update from ρi to ρi+1, called lift,
is dictated by the following rule, where a � b denotes max{a, b}.

ρi+1(s) = ρi(s) �
{

min(s,t)∈E Progr(ρi(t), c(s)) if s ∈ S1,

max(s,t)∈E Progr(ρi(t), c(s)) if s ∈ S2.
(2)

Denoting ρ∗ the fixpoint of the sequence (ρi)i≥0, the set of winning states Win1 is
characterized by:

Win1 = {s ∈ S | ρ∗(s) < n1 + 1}.

Given ρi, computing ρi+1 requires time O(m). Since at each step the measure of at
least one state increases by at least one, our formulation of the algorithm requires time
O(m · n2). Notice that, by applying the complexity bound cited in Theorem 11 of [13],
we obtain a time complexity of O(m · n). The difference is due to the fact that our
formulation of the algorithm updates the progress measures for all states at once, while
the original algorithm only updates the progress measureone state at a time. Moreover,
the O(m ·n) complexity can only be achieved if we can somehow efficiently determine
which states need to be lifted. This presumably requires bookkeeping at every state and
lift propagation algorithms, that are incompatible with the symbolic implementation we
discuss in Section 5.

2.3 Gap Algorithm

We present the gap acceleration technique for the progress measure algorithm of Jur-
dziński. The resulting algorithm, which we call the gap algorithm, is often much faster
than the original progress measure algorithm, while retaining its worst case complexity.

Informally, the idea is as follows. At any step of the algorithm, let k be an integer in
{0, 1, . . . , n1} such that no state has progress measure k, but some states have progress
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measure greater than k. We call such a value of k a “gap”. We show that all states with
progress measure greater than k are losing. Therefore, we can immediately set their
measure to n1 +1, thus accelerating the convergence of the algorithm. In practice, after
each update of the progress measure, we will seek the minimum gap k, and we will set
to n1 + 1 the progress measure of all states having progress measure above the gap k.
The correctness of this optimization is proved by the following lemma and theorem.

Lemma 1. For all i ≥ 0 and k > 0, let Zk
i = {s ∈ S | ρi(s) ≥ k}. Then, for all

s ∈ Zk
i , Player 2 can enforce at least ρi(s) visits to C1. Moreover, only states in Zk

i

are visited before the first visit to C1.

Proof. Notice that, for all i ≤ j, it holds Zk
i ⊆ Zk

j . We proceed by induction on i. For
i = 0, the statement is trivially true, since ρ0(s) = 0 for all s ∈ S. For i > 0, we
distinguish the following cases.

– s ∈ C2. If s ∈ S1 (resp. s ∈ S2), then all (resp. at least one) of the successors t
of s are such that ρi−1(t) ≥ ρi(s) ≥ k; thus, t ∈ Zk

i−1. By inductive hypothesis,
Player 2 can enforce from t at least k visits to C1, and the first visit occurs before
Zk

i−1 is left. Since Zk
i−1 ⊆ Zk

i , the thesis applies to s.
– s ∈ C1. If s ∈ S1 (resp. s ∈ S2), then all (resp. at least one) of the successors

t of s are such that ρi−1(t) ≥ ρi(s) − 1 ≥ k − 1; thus, t ∈ Zk−1
i−1 . By inductive

hypothesis, Player 2 can enforce from t at least k − 1 more visits to C1. Therefore,
Player 2 can enforce from s at least k visits to C1. The first visit to C1 being s itself,
it occurs trivially without leaving Zk

i .
– s ∈ C0. Then, ρi(s) = 0 or ρi(s) = n1 + 1. If ρi(s) = 0, the result is trivial. If

ρi(s) = n1 + 1, the result follows by noticing that, if s ∈ S1 (resp. s ∈ S2), then
all (resp. at least one) of the successors t of s are such that ρi(t) = n1 + 1.

Theorem 1. Given i ≥ 0 and k > 0, assume that ρ−1
i (k − 1) = ∅. Then, each state

s ∈ Zk
i is a losing state for Player 1.

Proof. First, we show that, starting from s, Player 2 can enforce infinitely many visits
to C1, while remaining in Zk

i at all times. In particular, if s ∈ Zk
i ∩ C2, by Lemma 1,

Player 2 has a strategy to reach C1 while staying in Zk
i at all times. If instead s ∈

Zk
i ∩C1, Player 2 can enforce that the next state is still in Zk

i , as the following argument
shows. If s ∈ S1, all successors t of s satisfy ρi(t) ≥ ρi−1(t) ≥ ρi(s) − 1 ≥ k − 1.
However, since it cannot be ρi(t) = k − 1, it must be ρi(t) ≥ k, and so t ∈ Zk

i .
Finally, if s ∈ S2, let t be the successor that maximizes Progr(ρi−1(t), c(s)). We have
ρi(t) ≥ ρi−1(t) = ρi(s) − 1 ≥ k − 1. As before, it must be ρi(t) ≥ k and so t ∈ Zk

i .
It remains to be proved that, while visiting C1 infinitely often, C0 is not visited

infinitely often. Notice that for all s ∈ Zk
i ∩ C0, it holds ρi(s) = n1 + 1. Therefore, if

a state in C0 is ever visited, it is a losing state for Player 1.

It is not hard to devise an example where the gap acceleration does not decrease the
total number of iterations. For all k > 0, consider the game Gk in Figure 1(a). States
drawn as “�” belong to S1 while those drawn as “�” belong to S2. The numbers in the
states represent their color. The game Gk is a chain of k states of color one, leading to
a sink state of color zero. The lock-step algorithm requires k global lifts to reach the
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1 1· · ·10

(a) The game Gk .

2 12 21 · · ·

(b) The game H1,k.

Fig. 1. Two game families illustrating different performance gains offered by the gap acceleration

fixpoint. During the process, the progress measure exhibits no gaps, thus neutralizing
the proposed acceleration technique.

On the other hand, the gap acceleration technique can be responsible for an un-
bounded speed-up compared to both the original algorithm and our lock-step formula-
tion of it. For all k > 0, consider the game H1,k from [13], depicted in Figure 1(b).
The game is essentially a bi-directional chain made of k states of color one, alternating
with k + 1 states of color 2. As proven in [13], the original algorithm has to lift each
state k times before acknowledging that all states are losing, thus reaching a complex-
ity of O(k2). Similarly, the lock-step formulation of the algorithm requires k global
lifts, leading to a complexity of O(k2). However, after two global lifts all states have
progress measure greater than zero. Therefore, if the gap acceleration is enabled, three
lifts are enough to reach the fixpoint, for a total time complexity of O(k).

3 Timed Interfaces with Variables

In this section, we present a model of real-time interfaces which is obtained from the
sociable interfaces of [6], by adding discrete clocks in the spirit of [9].

The state space of our timed interfaces is represented by variables, interpreted over
a given domain D. Given a set of variables V , a state over V is a mapping s : V → D
that associates with each x ∈ V a value s(x) ∈ D. We denote by [[V ]] the set of all
states over V . For a set of variables V ′ ⊆ V , and a state s ∈ [[V ]], the restriction of s to
V ′ is a state s′ ∈ [[V ′]] denoted by s|V ′ . For two disjoint sets of variables V ′ and V \V ′,
and two states s′ ∈ [[V ′]] and s′′ ∈ [[V \V ′]], the operation (s′ ·s′′) concatenates the two
states resulting in a new state s ∈ [[V ]]. For two sets A and B, we write f : A ⇒ B to
indicate that f is a function with domain A and codomain 2B .

Definition 2 (Timed Interface). A timed interface is a tuple M =
(ΣM , V G

M , V L
M , CM , τI

M , τO
M , ϕI

M , ϕO
M ), where:

– ΣM is a set of actions.
– V G

M is a set of global variables, V L
M is a set of local variables, and CM is the set of

clock variables. Clock variables are interpreted over the set IN0 of natural numbers
including zero. We require CM ⊆ V L

M and V G
M ∩V L

M = ∅. We set VM = V G
M ∪V L

M .
– For all actions a ∈ ΣM , τI

M (a) : [[VM ]] ⇒ [[VM ]] is the input transition relation of
a. We require this transition relation to be deterministic w.r.t. variables in V L

M , that
is,

∀a ∈ ΣM , s ∈ [[VM ]], ∀s1, s2 ∈ τI
M (a)(s). (s1|V L

M
= s2|V L

M
).

– For all actions a ∈ ΣM , τO
M (a) : [[VM ]] ⇒ [[VM ]] is the output transition relation

of a.
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– ϕI
M ⊆ [[VM ]] is the input invariant.

– ϕO
M ⊆ [[VM ]] is the output invariant.

The set of states [[VM ]] of a timed interface M is denoted by SM . For s ∈ SM , we
denote by s + 1 the state which coincides with s, except that the clock variables have
been incremented by one. Formally, (s + 1)(v) = s(v) + 1 for all v ∈ CM , and
(s + 1)(v) = s(v) for all v ∈ VM \ CM .

The semantics of a timed interface is a game between players Input and Output. At
each step, both players propose a move and the state of the interface evolves according
to the following definitions. Each move can be (i) a state reachable from the current
one by taking an action, (ii) the request to let time advance (move Δ1), or (iii) the null
move Δ0. Each player can only play moves that maintain the player’s invariant. In the
following, we consider a fixed interface M .

Definition 3 (Moves). For all states s ∈ SM and i ∈ {I, O}, let Di(s) = {Δ1} if
s + 1 ∈ ϕi

M , and Di(s) = ∅ otherwise. The set of possible moves for player i at s is:

Γ i
M (s) =

(⋃
a∈ΣM

τ i
M (a)(s) ∩ ϕi

M

)
∪ {Δ0} ∪ Di(s).

We also define Γ i
M =

⋃
s∈SM

Γ i
M (s).

Two Boolean variables blI and blO are used for specifying whether a player lets time
elapse or not (i.e. proposes a Δ1 action). blI (blO) is true if and only if the action
proposed by the input (output) player is not Δ1. An extended state ŝ is a state s ∈ SM

augmented with the truth values for the Boolean variables blO and blI . The set of all
extended states of M is ŜM = SM × {T, F}2.

Definition 4 (Moves Outcome). For all states s ∈ SM and moves mI ∈ Γ I
M (s) and

mO ∈ Γ O
M (s), the outcome δM (s, mI , mO) of mI and mO at s is the set of extended

states defined by the following table, where rows represent choices for mI and columns
represent choices for mO .

Δ0 Δ1 s′′

Δ0 {(s, blI , blO)} {(s, blI , ¬blO)} {(s′′, ¬blI , blO)}
Δ1 {(s, ¬blI , blO)} {(s + 1, ¬blI , ¬blO)} {(s′′, ¬blI , blO)}
s′ {(s′, blI , ¬blO)} {(s′, blI , ¬blO)} {(s′, blI , ¬blO), (s′′, ¬blI , blO)}

Definition 5 (Strategy). A strategy for player i ∈ {I, O} in M is a function πi :
Ŝ∗

M → Γ i
M that associates, with every finite sequence of extended states σ whose last

state is ŝ = (s, blI , blO), a move πi(σ) ∈ Γ i
M (s). We denote by ΠI

M and ΠO
M the set

of input and output strategies in M , respectively.

Definition 6 (Strategy Outcomes). Given a state s ∈ SM , an input strategy
πI ∈ ΠI

M and an output strategy πO ∈ ΠO
M , the set of outcomes δ̂M (s, πI , πO)

of πI and πO from s consists of all infinite sequences over extended states
σ = (s0, blI0, blO0 ), . . . , (si, blIi , blOi ), . . . such that s0 = s, and for all i ≥ 0
(si+1, blIi+1, blOi+1) ∈ δM (si, π

I(σ≤i), πO(σ≤i)) where σ≤i denotes the prefix of σ

up to the i-th extended state. Notice that blI0 and blO0 are arbitrarily defined.
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In the following, we use tick as a shorthand for ¬blO ∧ ¬blI , which means that both
players propose a time elapse step. Furthermore, we use the LTL notation [16] to denote
sets of traces.

As discussed in [7], in order to take into proper account illegal behaviors that would
lead to an artificial stopping of time, if player i ∈ {I, O} has a certain goal goal , he
should actually enforce the winning condition WC i(goal ), defined as follows:

WC I(goal ) = (goal ∧ ��tick) ∨ ��blO

WCO(goal ) = (goal ∧ ��tick) ∨ ��¬blO.

Intuitively, these conditions require a player to ensure that if time diverges, the goal is
realized, and if time fails to diverge, the blame lies with the adversary. The conditions
are asymmetrical, reflecting the fact that Input and Output do not behave in fully sym-
metrical ways during composition [9]. Given s ∈ SM , a strategy πI ∈ ΠI

M is I-winning
from s w.r.t. the goal goal , iff ∀πO ∈ ΠO

M . δ̂(s, πI , πO) ⊆ WC I(goal ). Similarly, a
strategy πO ∈ ΠO

M is O-winning from s w.r.t. goal , iff ∀πI ∈ ΠI
M . δ̂(s, πI , πO) ⊆

WCO(goal ). A state s ∈ SM is I-winning (resp. O-winning) iff there exists an In-
put strategy that is I-winning (resp. O-winning) from s. The set of all I-winning (resp.
O-winning) states is denoted by WinI

M (goal ) (resp. WinO
M (goal )).

A particularly important game is the well-formedness game, where the goals of the
players are simply T, so that their winning conditions are WinI

M (T) and WinO
M (T),

respectively. Intuitively, if a player can win the well-formedness game, it means that it
can “keep the system going”, without entering dead-end states from which time cannot
progress [9,7].

4 Example: Scheduling as a Timed Game

We present an example of a periodical scheduling problem encoded as a timed interface.
In the timed interface, the actions of Input represent scheduler decisions, such as the de-
cision of starting a task. The actions of Output represent task nondeterminism, such as
the variability in task execution times. The goal of Input is to ensure that no deadline
is missed. If Input can win the game, the scheduler has a strategy that correctly sched-
ules the tasks, ensuring that no deadline is missed regardless of task nondeterminism.
Technically, the goal of not missing deadlines is a safety condition, stating that, while
the tasks’ execution has not completed, certain clocks should have values not exceed-
ing the deadlines. We take this safety condition as the Input invariant, thus saddling the
Input player, representing the scheduler, with the goal of meeting deadlines. We will
see that taking into account for time progress in the winning condition is essential, if
we wish to encode scheduling problems as timed games. Indeed, if the requirement for
time progress is disregarded, the easiest way to ensure deadlines are met is to block the
progress of time: as time cannot progress, deadlines cannot be missed!

The timed interface in Figure 2 encodes a periodical, non-preemptive scheduling
problem involving two tasks, A and B. Task A has a period of 5s (measured by clock
cA), and lasts up to 3s (measured by clock dA); task B has period 9s, and lasts up to 4s.
The output invariant enforces the fact that neither task can be active for longer than
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module Scheduling:
var cpu, activeA, activeB, doneA, doneB: bool
var cA, dA, cB, dB: clock

oinv: (activeA -> dA <= 3) & (activeB -> dB <= 5)
iinv: (cA <= 4) & (cB <= 9)

input startA : { local: ~doneA & ~activeA & ~cpu ==>
activeA’ := true, cpu’ := true, dA’ := 0 }

input startB : { local: ~doneB & ~activeB & ~cpu ==>
activeB’ := true, cpu’ := true, dB’ := 0 }

output stopA : { activeA ==> ~activeA’ & ~cpu’ & doneA’ }
output stopB : { activeB ==> ~activeB’ & ~cpu’ & doneB’ }

input periodA: {local: doneA & cA = 4 ==> cA’ := 0, doneA’ := false}
input periodB: {local: doneA & cB = 9 ==> cB’ := 0, doneB’ := false}

endmodule

Fig. 2. Timed interface representing the periodic scheduling problem of two non-preemptable
tasks

its specified maximal duration. The input invariant states that the values of the clocks
cA and cB cannot grow larger than the period lengths, namely, 5 and 9. This forces
the scheduler to reset these clocks, via actions periodA and periodB, before they go
beyond values 5 and 9. The action periodA signals the start of a new period for task
A; its guard doneA specifies that periodA can be taken only once the execution of task
A has completed. The situation for task B is similar. Therefore, to avoid violating the
input invariant, Input (the scheduler) must issue actions startA, startB, periodA,
periodB with a timing ensuring that jobs A and B terminate no later than the end of
their respective periods. An Input strategy for doing this corresponds to a scheduling
strategy for the task set.

This example illustrates why the winning condition needs to account for time di-
vergence. Had we taken T as winning condition for Input, rather than WinI(T) =
��tick∨��blO , Input could have won simply by stopping time progress, for instance,
by playing always move Δ0.

5 Symbolic Solution of the Well-Formedness Game

Consider the winning condition for the input player in the well-formedness game.

WC I(T) = ��tick ∨ ��blO.

Being the disjunction of a Büchi and a co-Büchi condition, it can be expressed as a
parity condition with three colors, assigned as follows:

C0 = ¬blI ∧ ¬blO; C1 = blI ∧ ¬blO; C2 = blO.
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If φ is a safety, reachability, Büchi, or co-Büchi formula, it is similarly possible to obtain
3-color deterministic parity automata encoding WC I(φ) and WC O(φ).

We note that C1 consists of the states where Input is forced to play either an action,
or the 0-delay move Δ0. Thus, in a timed game, the gap is related to the maximal
number of times for which Input can be forced to play without letting time advance.
This number is generally much smaller than the number of C1 states, as these chains
of forced 0-time transitions tend, in practical examples, to be fairly short (it is unusual
for them to be longer than a dozen transitions). This explains the very large speedup
provided by the gap acceleration in the analysis of timed games.

If we restrict the variable domain D to be finite, and we manage to let clock variables
also range over a finite set, we can apply the EJ and gap algorithms to the problem of
checking well-formedness of an interface. The tool TICC [8] allows the user to specify
timed interfaces using a convenient syntax based on guarded commands. The tool is in
the process of being extended to discrete real-time. In TICC, clock variables can only
be compared to (or assigned from) constants. Under this assumption, it is well known
that, for each clock x, it is sufficient to consider the range of values going from zero to
the maximum constant to which x is ever compared (or assigned from), plus one.

We implemented in TICC both the EJ and the gap algorithms; we experimented with
both algorithms for solving well-formedness games. In the tool, interfaces are internally
represented using Multi-valued Decision Diagrams [19] (MDDs) as implemented by
the CUDD library [18]. Therefore, in the following we discuss the issues regarding the
symbolic implementation of both algorithms.

5.1 Gap Algorithm

Since the progress measure algorithm is tailored to turn-based games, we have to em-
ulate the turns by providing separate transition relations for Input and Output. Input
moves from the original (or regular) states of the concurrent game, while Output moves
from intermediate virtual states. Notice that, if from a regular state s Input chooses to
reach state s′ via action a, Output in the next virtual state can decide to let a happen (by
picking move Δ0), or rather take an alternative action b from s. Thus, we have to store
in the virtual state both the start state s and the proposed destination s′. Therefore, we
end up having three copies of the state variables VM , which we call V , V ′, and V ′′. The
transition relation of Input in the turn-based game is represented by the predicate τI , of
type V → V ′, V ′′, blI . The transition relation of Output is represented by the predicate
τO , of type V ′, V ′′, blI → V, blO . We need an extra variable ρ to represent the progress
measure.

Next, we need to represent the function Progr from (1), used to update the progress
measure. For states of color one, Progr has to increment the value of the progress
measure by one. Consider the general problem of having a predicate α over the set of
variables Z , and wanting to increment by one the variable z ∈ Z , unless the value of z
is already equal to its maximum value zmax . Using standard MDD operators, this can
be achieved by having an extra variable z′ and performing the following computation:

incr (α, z) = (∃z(α ∧ z′ = z + 1))[z/z′] ∨ (α ∧ z = zmax ).
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However, the above computation leads to very poor performance: since ρ can have a
very high maximum value, the computation of the predicate ρ′ = ρ + 1 alone requires
a very large amount of time. Thus, in place of the above computation, we developed a
specific increment operator, as follows. Let z0, z1, . . . , zk be the binary variables encod-
ing variable z, ordered from the least significant (z0) to the most. For c ∈ {0, . . . , k},
and ∼∈ {<, ≤, >, ≥}, let z∼c = {zj | j ∼ c}.

function Increment(α, z)
vars: r, α, α, pos, neg : MDD

r := false
α := α ∧ (z = zmax )
α := α ∧ (z �= zmax )
for i := 0 to k do

neg := ¬z0 ∧ ¬z1 ∧ . . . ∧ ¬zi−1
pos := z0 ∧ z1 ∧ . . . ∧ zi−1
r := r ∨ (

neg ∧ zi ∧ ∃z≤i . (α ∧ pos ∧ ¬zi)
)

done
return r ∨ α

Then, in order to implement the measure update step described by (2), we need the
following symbolic operation. Let α be a predicate over the set of variables Z and
let z ∈ Z . For each assignment to the variables in Z \ {z}, α may contain several
different assignments to z. We want to preserve the minimum value of z only. We call
this predicate minz α. In set notation, we have:

minz α =
{
s ∈ α | s(z) = min{s′(z) | s′ ∈ α}}

.

No efficient implementation of min exists using standard MDD operators. We thus
developed a new “min” operator according to the following algorithm.

function Min(α, z)
vars: r : MDD

r := α
for i := k down to 0 do

r := r ∧ (
(¬zi ∧ ∃z>i . r) ∨ (zi ∧ ∀z≥i . (¬zi =⇒ ¬r))

)

done
return r

The “min” operator is also useful to determine the minimum gap in a measure. If α
is the predicate over variables (V, blI , blO, ρ) representing the measure of each regular
state in the game, the equation minρ ∀V ∀blI∀blO .¬α yields “false” if the measure has
no unused values, or otherwise a predicate of the type ρ = c, where c is the minimum
unused value of the measure (and thus a good candidate to be a gap). Such predicate
can then be used to implement the acceleration technique presented in Section 2.3.
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5.2 Emerson-Jutla’s μ-Calculus Algorithm

To apply the EJ algorithm of Section 2.1, we do not need to consider the turn-based
version of the game. Rather, we simply use as controllable predecessor operator the
following.

Definition 7 (Concurrent Controllable Predecessor Operator). CpreI : 2ŜM →
2SM assigns to each set of extended states X , the set of states from which Input can
force the game into X in one step. Formally,

CpreI(X) = {s ∈ SM | ∃mI ∈ Γ I
M (s) . ∀mO ∈ Γ O

M (s) . δM (s, mI , mO) ⊆ X}.

The transition predicates τI and τO developed in the previous section can also be used
to obtain a symbolic implementation of CpreI . Given a predicate α over variables
(V, blI , blO), we have:

CpreI(α) = ∃V ′∃V ′′∃blI . τI ∧ (∀V ∀blO . τO =⇒ α
)
.

Given the symbolic implementation of CpreI , the EJ algorithm can be implemented in
a straightforward manner, using three nested loops that compute the fixpoint by Picard
iteration.

5.3 Experimental Results

On the basis of the implementation discussed above, we compared the performance
of the EJ and gap algorithms. Our results indicate that the performance improvement
afforded by the gap acceleration is essential: for the scheduling example, for instance,
the acceleration reduces the number of iterations from at least 73,920 in the original
Jurdziński progress measure algorithm to 163 in the gap algorithm — a speed-up of
over 450. Without acceleration, we believe that the progress measure algorithm is highly
impractical for solving 3-color parity games.

Our results indicate that there is no clear winner between the EJ algorithm and the
gap algorithm. The running times of the two algorithms were, in our experiments, within
a factor of two of each other, with the EJ algorithm generally being the fastest. We sus-
pect that the BDD variable ordering, and other details of the symbolic implementation,
have a large influence on the results, so that we do not believe that our experiments are
conclusive. For the scheduling example of Section 4, the input well-formedness of the
interface can be computed in 144s with the EJ algorithm, and 302s with the gap algo-
rithm, on an AMD Athlon 64 4400+ CPU running 32-bit linux. In the gap algorithm,
the main expense occurs in the “lift” operation; we are investigating more efficient sym-
bolic implementations of this operation.

In the same paper [13] that introduced the progress measure algorithm, the following
acceleration is mentioned: in place of n1, it suffices to take the maximum number n′

1
of C1-states belonging to a strongly-connected component (SCC) of the game graph
(S, E); clearly, n′

1 ≤ n1. In an enumerative setting, both this SCC-based acceleration,
and our gap-based acceleration, are of interest, and each provides greater speed-ups on
some games. In a symbolic setting, the time required to compute SCCs must be taken
into account; the straightforward symbolic algorithm may require a quadratic number of
iterations. In contrast, our gap-based acceleration can be performed at negligible cost.
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13. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S.
(eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)
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Abstract. In 2005 we proposed the first efficient on-the-fly algorithm
for solving games based on timed game automata with respect to reach-
ability and safety properties. The first prototype presented at that time
has now matured to a fully integrated tool with dramatic improvements
both in terms of performance and the availability of the extended in-
put language of Uppaal-4.0. The new tool can output strategies or let
the user play against them both from the command line and from the
graphical simulator that was completely re-designed.

1 Introduction

For more than a decade timed, priced and hybrid games have been proposed and
studied by various researchers [AMPS98, DAHM01, MPS95, BCFL04]. Though
several decidability results and algorithms have been presented, so far only pro-
totype tools have been developed [AT02]. Uppaal-Tiga1 is the first efficient
tool supporting the analysis of timed games allowing synthesis of controllers for
control problems modelled as timed game automata and with safety or liveness
control objectives.

2 What Can Be Done with Uppaal-Tiga?

Control Problems. The modeling formalism of Uppaal-Tiga consists of a net-
work of timed game automata [MPS95] (NTGA). A timed game automaton is a
timed automaton [AD94] in which the set of actions is partitioned into control-
lable actions and uncontrollable actions. The former are actions that can be trig-
gered by the controller, the latter by the environment/opponent. The opponent has
1 http://www.cs.aau.dk/∼adavid/tiga/
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priority over the controller. Given a NTGA, we are mainly interested in two types
of control objectives:

The reachability objective: Is it possible to find a strategy for the triggering of
controllable actions guaranteeing that a given set of (goal) states of the system
is reached regardless of what and when uncontrollable actions are taken?

The safety objective: Is it possible to find a strategy for the triggering of
controllable actions guaranteeing that a given set of (bad) states of the system
are never reached regardless of what and when uncontrollable actions are taken?

Formally, control objectives are formulated as ”control: P”, where P is TCTL
formula specifying either a safety property (A[] φ or A[φ1 W φ2]) or a live-
ness property (A<> φ or A[φ1 U φ2]). Given a control objective ”control: P”
the search engine of Uppaal-Tiga will provide a strategy (if any such exists)
under which the behaviour will satisfy P. Here a (winning) strategy is simply a
function describing for each state of the system what the controller should do
either in terms of ”performing a particular controllable action” or to ”delay”.

�1

�2

�3

�4

Goal

�5

x ≤ 1;c1

x > 1;u1

x < 1
u2

x := 0

x ≥ 2;c2

x < 1
u3

c3

x ≤ 1;c4

Fig. 1. Timed game automaton
example

Example. To illustrate the use of Uppaal-Tiga,
consider the example in Fig. 1, consisting of a
timed game automaton A with one clock x. It has
two types of edges: controllable (ci) and uncon-
trollable (ui). A defines the rules of the game. In
our current example (Fig. 1), we define the simple
reachability objective “control: A<> A.Goal”.
Uppaal-Tiga searches for a winning strategy
on this game using the algorithm proposed in
[CDF+05]. Each winning condition, entered in
Uppaal-Tiga as a regular query, is marked as
“satisfied” if there exists a winning strategy and
“not satisfied” if none exists. Hence, in our ex-
ample, the query “control: A<> A.Goal” will
be marked “satisfied”. Moreover, the tool can
output the corresponding strategy from the com-
mand line or let the user play against it in the

simulator as shown in Fig. 2. For controllable games (here), Uppaal-Tiga plays
the controller and the user is the opponent. The first transition is for the con-
troller (Uppaal-Tiga), the second for the opponent (user), and the third is for
the opponent but it will be countered by the controller (Uppaal-Tiga takes the
transition to �2), hence it is greyed – the opponent cannot take this action.

Applications. Uppaal-Tiga has recently been used for an industrial case study
with the company Skov A/S specializing in climate control systems used for mod-
ern pig and poultry stables [DJLR07]. The synthesis capability of the tool has
been combined with Simulink and Real-Time Workshop to provide a complete tool
chain for synthesis, simulation, and automatic generation of production code.

Uppaal-Tiga has also been recently applied to check for (bi-)simulation be-
tween timed automata and timed game automata [CDL07]. Given two timed
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Fig. 2. View of the simulator when playing a strategy

automata, the tool can check if one (bi-)simulates the other and similarly for
timed game automata with applications for controller synthesis with partial ob-
servability. This technique has been applied to the compositional verification of
the ZeroConf protocol.

Our tool is being used in the AMAES project2, a French national project
on Advanced Methods for Autonomous Embedded Systems. Uppaal-Tiga has
been successfully applied for controlling the autonomous robot Dala [LC04] in
charge of taking pictures and transmitting them back to Earth during limited
transmission windows. It is desirable in such control problems to optimize the
moves to save power.

3 What Is New?

Input Language. The new generation of Uppaal-Tiga inherits the enriched
input language of Uppaal-4.0, with the only exception of priorities. The user
has now access to C-like syntax to declare functions, custom types, etc. In addi-
tion, users can now define more complex winning conditions by means of logical
formulas in the indicated subset of TCTL.

Strategies. Uppaal-Tiga is able to generate a strategy for the controller, which
ultimately corresponds to a control program, or a “counter-strategy” for the
opponent as a proof that the controller cannot win. These strategies can now
be output as decision graphs (hybrid BDD/CDD graphs). The discrete part of
the states is represented as a BDD and the symbolic part as a CDD [LPWY99].
Finally, Uppaal-Tiga allows the user to play against the strategy in both the
GUI3 and CLI.

Performances. Uppaal-Tiga is faster by several orders of magnitude on large
examples (more than 1000 times faster) and consumes much less memory (100
2 http://www-verimag.imag.fr/∼krichen/AMAES/
3 This is a major new feature for the next major release.



124 G. Behrmann et al.

times less) than the first prototype presented at CONCUR’05. This comes from
the full integration of the algorithm in the Uppaal-4.0 [BDH+06]4 framework.
This brings to Uppaal-Tiga some of the reliability and performances achieved
by years of Uppaal developments. Also improvements have been made on the
DBM library, in particular on subtractions, partitions, federations, specific oper-
ations for timed games (e.g. the computation of controllable predecessors w.r.t.
delay), and the essential operation of merging several difference bound matrices
(DBMs) into one.

4 Conclusion

Uppaal-Tiga is a new (and the only efficient) tool for controller synthesis for
control problems modeled as timed game automata. Its performance and usabil-
ity has greatly been improved by its integration with Uppaal-4.0. In a future
version methods for preventing synthesis of strategies generating zeno behaviour
will be provided. Also the computationally much more complex problem of syn-
thesis under partial observability is under investigation.
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Abstract. In this paper, we describe the features of the Timed Abstract State Ma-
chine toolset. The toolset implements the features of the Timed Abstract State Ma-
chine (TASM) language, a specification language for reactive real-time systems.
The TASM language enables the specification of functional and non-functional
properties using a unified language. The toolset incorporates features to create
specifications, simulate specifications, and verify formal properties of specifica-
tions. Properties that can be verified using the toolset include completeness, con-
sistency, worst-case execution time, and best-case execution time. The toolset is
being developed as part of an architecture-based framework for embedded real-
time system engineering. We describe how the features of the toolset were used
successfully to model and analyze case studies from the aerospace and automotive
communities.

1 Introduction

The Timed Abstract State Machine (TASM) specification language is a specification
language for reactive real-time systems. The TASM language aims to capture the three
key aspects of real-time system behavior, namely, functional behavior, timing behavior
and resource consumption. TASM is based on the theory of Abstract State Machines
(ASM), a method for system design that can be applied at various levels of abstrac-
tion [1]. The TASM language has formal semantics, which makes its meaning pre-
cise and enables executable specifications. The time semantics of the language revolve
around the concept of durative actions.

The TASM toolset implements the features of the TASM language through three
main components - an editor, an analyzer, and a simulator. The toolset can be used dur-
ing the early phases of development to understand behavior before the system is built, or
it can be used throughout the development of the system to guide implementation. The
type of analysis that can be performed with the toolset include verifying completeness
and consistency of the specification [2] and verifying timing properties of the specifi-
cation such as the absence of deadlocks and Worst-Case Execution Time (WCET). The
philosophy of the toolset is to reuse the state of the art in analytical engines to perform
formal verification. The TASM toolset integrates the UPPAAL tool suite [3] to verify
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timing properties of TASM specifications and uses the SAT4J SAT Solver [4] to verify
completeness and consistency of TASM specifications [5]. The TASM toolset serves as
the basis of a specification framework for real-time system engineering [6].

2 The Timed Abstract State Machine (TASM) Language

The TASM language is based on the theory of Abstract State Machines (ASM), a
method for high-level system design [1]. In the ASM formalism, behavior is specified
as the computation steps of an abstract machine and the effect of the computation steps
on the global state. The TASM language extends the ASM language by providing con-
structs and semantics for time and resource consumption. In the TASM language, time
is attached to the steps of the abstract machine in such a way that a finite amount of time
elapses before the effect of the computation step is reflected on the global state. The se-
mantics of durative actions are used to reflect the reality that actions are typically not
instantaneous. In a similar fashion, resource consumption is attached to durative steps
to denote the resources used by the machine to complete the computation step. Listing 1
shows a sample rule of a TASM machine from the production cell system describing
the action of the robot picking up a block from the press. The execution of the rule takes
between 1 and 3 time units to complete and consumes exactly 2000 units of power.

Listing 1. TASM Rule Describing the Robot Picking up a Block from the Press
R1: Pickup from Press
{

t := [1, 3];
power := 2000;

if armbpos = atpress and armb = empty and press_block = available then
press_block := notavailable;
press := empty;
armb := loaded;

}

The TASM language also contains facilities for hierarchical composition, parallel
composition, and synchronization channels. In the TASM language, completeness is
defined as a machine having a rule enabled for all classes of inputs [5]. Consistency is
defined as a machine having no more than one rule enabled for all classes of inputs [5].
Furthermore, because actions are durative in TASM, execution time refers to the time
that it takes to reach a certain reachable state from a start state. Worst-Case Execution
Time (WCET) is the maximum amount of time that the machine will take to reach a
state. Conversely, Best-Case Execution Time (BCET) is the minimum amount of time
between any two states.

3 The TASM Toolset

The TASM toolset uses literate and graphical facilities to edit, simulate, and verify
TASM specifications. The toolset includes facilities for creating and editing TASM
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specifications, through the TASM Editor. The editor enables the specification of func-
tional and non-functional behavior, with standard facilities for syntax highlighting and
syntax checking. By definition, TASM specifications are executable. The execution se-
mantics of the TASM language have been defined in [7]. The TASM Simulator enables
the graphical visualization of the dynamic behavior expressed in the specification in a
step-by-step fashion. Because time and resources can be specified using intervals, that
is, using a lower bound and an upper bound, the simulation can use different semantics
for time durations and resource consumption. For example, a given simulation can use
the worst-case time (upper bound) for all steps, to visualize the system behavior under
the longest running times. Other options include best-case time, average-case time, and
using a time randomly selected within the specified interval. The same semantics can
be selected for the resource consumption behavior.

The TASM Analyzer is the component of the TASM toolset that performs analysis of
specifications. The analyzer can be used to verify basic properties of TASM specifica-
tions such as consistency and completeness [2]. In the TASM language, completeness
ensures that for all classes of monitored variable values, a rule will be enabled. Consis-
tency ensures that for all classes of monitored variable values, one and only one rule is
enabled. In other words, verifying consistency means verifying that the rules of a given
machine are mutually exclusive. Both completeness and consistency are verified at the
machine specification level. The analysis of completeness and consistency is achieved
by translating machine rule guard expressions into a boolean formula in conjunctive
normal form [5]. The boolean formula can then be verified for satisfiability using a
SAT solver. The TASM toolset uses the SAT4J solver, an open source SAT solver [4].
The completeness and consistency problem is formulated in such a way that an incom-
plete or inconsistent specification leads to a satisfiable boolean formula. Formulating
the problem this way ensures that the SAT solver can automatically generate a coun-
terexample if the specification is inconsistent or incomplete.

The TASM analyzer is also used to verify execution time of TASM specifications.
The execution time is verified by mapping TASM specifications to the timed automata
formalism of UPPAAL. The UPPAAL tool suite is used in conjunction with an approach
we call iterative bounded liveness, to verify BCET and WCET. The approach uses the
bounded liveness temporal logic pattern [3] in an iterative fashion to converge to an
upper bound and to a lower bound from an initial time obtained through reachability
analysis. For TASM specifications, execution times are bounded. Since the reachability
problem is decidable for timed automata, verifying the execution times of TASM spec-
ifications is guaranteed to converge. The toolset is available, free of charge, from the
TASM web site (http://esl.mit.edu/tasm).

4 Case Studies

The TASM language and toolset have been used to model and analyze three case studies.
The toolset has been used to model an Electronic Throttle Controller (ETC) and to ana-
lyze the completeness and consistency of the mode switching logic of the controller [8].
The production cell, partially illustrated in Listing 1, was modeled and analyzed in the
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toolset. The production cell was analyzed to measure the minimum amount of time for
the system to process 5 blocks. Using the model and BCET analysis, the optimal solu-
tion to process 5 blocks was automatically derived. The toolset was also used to model
the Timeliner System, a scripting environment currently in use on the international space
station. The model was used to analyze the WCET of one pass of the Timeliner system.
The Timeliner system shares processor usage with other tasks using a fixed timeslice
scenario. The execution time was analyzed to ensure that the assigned timeslice is ad-
equate but not overly estimated, to ensure optimal processor usage. Future case studies
will include a modular redundant avionics system, modeled and analyzed to understand
the end-to-end latency of the system.

5 Conclusion and Future Work

The toolset and language have been used successfully to model and analyze embedded
real-time systems as found in the avionics and automotive communities. Using spec-
ifications expressed in the TASM language, the toolset can verify properties of spec-
ifications such as completeness and consistency. The analysis is performed by trans-
lating the specification and using existing solvers. For completeness and consistency,
this is achieved through a translation to boolean formulas and using the SAT4J SAT
solver to automatically verify the property. Furthermore, the execution times of specifi-
cations can be analyzed using a translation of TASM specifications to UPPAAL’s timed
automata.

Future work on the toolset will investigate the use of theorem provers to verify prop-
erties of the models that cannot be handled because of state explosion problems. Fur-
thermore, the toolset will be used to generate test cases based on TASM specifications.
This will most likely be achieved by reusing the translation to boolean formulas and the
translation to timed automata and using established algorithms to to generate test cases.
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Abstract. Regular model checking is a form of symbolic model check-
ing technique for systems whose states can be represented as finite words
over a finite alphabet, where regular sets are used as symbolic representa-
tion. A major problem in symbolic model checking of parameterized and
infinite-state systems is that fixpoint computations to generate the set of
reachable states or the set of reachable loops do not terminate in general.
Therefore, acceleration techniques have been developed, which calculate
the effect of arbitrarily long sequences of transitions generated by some
action. We present a systematic method for using acceleration in regular
model checking, for the case where each transition changes at most one
position in the word; this includes many parameterized algorithms and
algorithms on data structures. The method extracts a maximal (in a cer-
tain sense) set of actions from a transition relation. These actions, and
systematically obtained compositions of them, are accelerated to speed
up a fixpoint computation. The extraction can be done on any repre-
sentation of the transition relation, e.g., as a union of actions or as a
single monolithic transducer. Using this approach, we are for the first
time able to verify completely automatically both safety and absence of
starvation properties for a collection of parameterized synchronization
protocols from the literature; for some protocols, we obtain significant
improvements in verification time. The results show that symbolic state-
space exploration, without using abstractions, is a viable alternative for
verification of parameterized systems with a linear topology.

1 Introduction

A major approach in algorithmic verification of parameterized and infinite-state
systems is to extend the paradigm of symbolic model checking [17] by appropriate
symbolic representations; examples include Petri nets, timed automata, systems
with unbounded communication channels, integers and reals. One direction is
regular model checking, which considers systems whose states can be represented
as finite words over a finite alphabet; regular sets are used to represent sets of
states and transition relations. Regular model checking has been proposed as a
uniform paradigm for algorithmic verification of several classes of parameterized
and infinite-state systems [26,32,16,4].

In symbolic model checking of parameterized and infinite-state systems, a
major problem is that fixpoint computations that generate the set of reachable
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states or the set of reachable loops (for verifying liveness properties) do not ter-
minate in general, since there is no uniform bound on the distance (in number
of transitions) from an initial configuration to any reachable configuration. To
make fixpoint computations converge more frequently, acceleration techniques
have been developed, which calculate the effect of arbitrarily long sequences of
transitions generated by some action (i.e., a subset of the transition relation).
This has been done, e.g., for systems with unbounded FIFO channels [11,12,14,1],
systems with counters [13,18], and for parameterized systems [6]. Acceleration is
typically applied to small actions, e.g., corresponding to a single program state-
ment or simple loop, since acceleration of larger actions or the entire transition
relation is often intractable. Fixpoint computations can be sped up by using
accelerated actions in each iteration, thereby allowing the fixpoint computation
to converge in many practical cases (e.g., [1]).

For regular model checking, methods have been developed for computing the
set of reachable configurations or reachable loops [25,16,19,8]. These algorithms
typically work well for small system models, but have difficulties to cope with
large transition relations. For instance, the automata-theoretic approach for pa-
rameterized systems [3] transforms verification of a liveness property into the
problem of finding reachable loops for a system with a rather large transition
relation. There has been no systematic way to to extract actions for acceleration
from such a transition relation, and therefore liveness properties for several pa-
rameterized mutual exclusion protocols have not been proven automatically by
this class of techniques.

In this paper, we present a systematic approach for using acceleration to speed
up fixpoint computations in regular model checking. We consider unary systems,
in which each computation step changes at most one position in the word; many
models of parameterized algorithms and algorithms on data structures are unary.
Our approach is based on accelerating a class of actions (called separable) which
can be efficiently accelerated. We present techniques for

(a) systematically extracting a set of separable actions which is maximal in the
sense that any other separable action is included in some extracted one; the
extraction can be done on any representation of the transition relation, e.g.,
as a union of actions or as a single monolithic transducer,

(b) systematically composing actions to form separable actions that represent
the effect of several transitions; such compositions are analogous to program
loops; many verification examples require the acceleration of such composi-
tions, rather than single actions, for termination.

We have implemented our approach in the context of our LTL(MSO) model
checker for parameterized systems [3], and verified safety and liveness properties
of several idealized parameterized protocols from the literature, including param-
eterized algorithms for mutual exclusion (e.g., the Bakery algorithm by Lamport,
algorithms by Burns, Szymanski, and Dijkstra). The most important result is
that, for the first time, liveness properties have been successfully verified for all
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of these algorithms; previous approaches have not been successfully applied to
all of them. One should also note that our verification, following the automata
theoretic approach, does not employ any form of abstraction: it computes an
exact representation of the set of reachable states and reachable loops.

Related Work. Works on acceleration techniques in other contexts include
techniques for systems with FIFO channels [1,12,14] and systems with counter
variables [9,32]. Finkel, Leroux and colleagues have presented a systematic frame-
work for acceleration techniques for programs with a finite number of variables,
typically ranging over integers [10,23]. Their approach cannot be used for regu-
lar model checking, in which systems can not be modeled by a fixed number of
integer variables. For regular model checking, Pnueli and Shahar [28] show how
specific acceleration schemes can be defined in a version of S1S. They did not
consider composition of actions, which is necessary in many cases, and they have
reported verification of liveness for only one example, after applying a manually
supplied abstraction. In our earlier work [6], we proved safety properties of sev-
eral parameterized protocols by accelerating individual actions; this approach
did not consider composition of actions and would therefore not have been able
to verify liveness properties.

Proving liveness properties of parameterized systems has been considered also
in other approaches. Pnueli, Xu, and Zuck [29] use a version of counter abstrac-
tion to prove absence of starvation properties for Szymanski’s algorithm and the
Bakery algorithm. Their abstractions are rather coarse, and lose information so
that, e.g., safety properties can no longer be checked. Fang, Piterman, Pnueli,
and Zuck [22,21] infer a ranking function and helpful directions of a certain form,
by generalizing from the verification of finite instances. These approaches require
that a system can be verified using assertions of a certain form. In our earlier
work [5], we proved liveness properties by backwards reachability analysis from
“terminated” configurations; this technique can be combined with other tech-
niques for proving liveness, but can not be used to find counterexamples (bugs);
our technique is based on state-space exploration, which is guaranteed to report
counterexamples when they exist.

Abdulla et al. [2] verify safety properties of parameterized protocols by over-
approximation of backwards reachable states; their approach can not be used
for proving liveness properties. Other works apply abstraction [15] or regular
inference [24] directly on the automata that represent reachable states or the
transition relation.

Outline. In the next section, we introduce the framework of regular model check-
ing and the fixpoint computations that are our concern. Section 3 presents our
technique for extracting parts of a transition relation for acceleration. In Sec-
tion 4, we present how to use our systematic acceleration in the verification of
liveness properties. Experimental results from our implementation, and compar-
isons with other results are presented in Section 5. Section 6 presents conclusions
and future work directions.
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2 The Regular Model Checking Framework

Let Σ be a finite alphabet. A relation R on Σ∗ (the set of finite words over Σ)
is length-preserving if w and w′ are of equal length whenever (w, w′) ∈ R. In
this paper, we will only consider length-preserving relations on Σ∗. A relation
R on Σ∗ is regular if the set {(a1, a

′
1) · · · (an, a′

n) | (a1 · · · an, a′
1 · · ·a′

n) ∈ R} is
a regular subset of (Σ × Σ)∗. A regular relation Σ∗ can be represented by a
finite-state transducer, i.e., a finite automaton over (Σ × Σ).

Regular relations are closed under union ∪, intersection ∩, relational compo-
sition ◦, as well as concatenation · defined by R · R′ �

= {(w1 · w′
1, w2 · w′

2) |
w1 R w2 and w′

1 R′ w′
2}. For a (regular) set S of words, let S ◦ R denote the

(regular) set {w | ∃w′ ∈ S. w′ R w}. We use R+ to denote the (not necessar-
ily regular) transitive closure of R; and R∗ the reflexive-transitive closure. We
denote by Id = {(w, w′) | w = w′} the identity relation on Σ∗.

Definition 1. A regular transition system (RTS for short) over Σ is a pair
(I, R), where

I is a regular set over Σ, denoting a set of initial configurations, and
R is a regular relation on Σ∗, denoting the transition relation.

A fair regular transition system (FRTS for short) over Σ is a tuple (I, R, F),
where (I, R) is an RTS and F is a regular set over Σ, denoting the set of accepting
configurations. Transition relations and regular sets are typically represented by
transducers and automata, or by regular expressions. ��
A configuration w of an RTS (I, R) is a word a1 a2 · · · an ∈ Σ∗. A compu-
tation of (I, R) is a finite or infinite sequence w0, w1, w2, . . . of configurations
such that w0 ∈ I and wiRwi+1 for all adjacent pairs of configurations. A con-
figuration is reachable if it occurs in some computation. An infinite computation
w0, w1, w2, . . . of a FRTS is accepting if wi ∈ F for infinitely many i.

Many parameterized systems with linear or ring-shaped topologies can be
modeled as regular transition systems, by letting each position in a configuration
model the local state of a system component. As an example of a parameterized
system, we describe the mutual exclusion algorithm by Burns. In the algorithm,
an arbitrary number of processes compete for a critical section. The processes
are numbered, say from 1 to N . The local state of each process consists of a
control state ranging over the integers from 1 to 7 and one Boolean flag, flag. A
pseudo-code description of the behavior of process number i is shown in Figure 1.
For instance, according to the code on line 4, if the control state of a process i
is 4, and if the value of flag is 1 for some process j < i, then the control state
of i may be changed to 1; otherwise to 5. Line 7 represents the critical section.

To model Burns’ algorithm as an RTS, we let Σ be the set of possible lo-
cal states, e.g., represented as tuples 〈pc, f lag〉. A system configuration is a
word in Σ∗. The effect of line j can be represented by a regular relation αj .
For instance, α1 corresponds to Id · [(pc = 1) −→ (pc := 2, f lag := 0)] · Id
where the notation (pc = 1) −→ (pc := 2, f lag := 0) represents the relation
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1: flag[i] := 0
2: if ∃j < i : flag[j] = 1 then goto 1
3: flag[i] := 1
4: if ∃j < i : flag[j] = 1 then goto 1
5: await ∀j > i : flag[j] �= 1
6: flag[i] := 0
7: goto 1

Fig. 1. Burns’ mutual exclusion algorithm

{(〈pc1, f lag1〉, 〈pc2, f lag2〉) | pc1 = 1, pc2 = 2 and flag2 = 0}. To distinguish
between branches, let αja, αjb denote the if and else branch of αj , for j = 2, 4.

It is also possible to model programs that operate on linear unbounded data
structures such as queues, stacks, integers, etc. For instance, a stack can be
modeled by letting each position in the word represent a position in the stack.
The stack should initially contain an arbitrary but bounded number of empty
stack positions, which are “statically allocated”. We can then faithfully model
all finite computations of the system, by initially allocating sufficiently many
empty stack positions. We will consider two verification problems:

Reachability: Compute the set of reachable states of a given RTS (I, R), i.e.,
the set I ◦ R∗. The problem of verifying any safety property can in the
standard way be reduced to that of computing the set of reachable states of
a suitable RTS.

Repeated reachability: Does a given FRTS (I, R, F) have an infinite accept-
ing computation? The problem of verifying a liveness properties can, using
the classical automata-theoretic framework [31] adapted to regular model
checking [3], be reduced to the problem of repeated reachability of a suitable
FRTS. A repeated reachability problem can be checked by computing the
transitive closure of a transition relation, to be described in Section 4.

In general, these problems are undecidable, but techniques have been developed
which are complete for certain classes of RTSs, and also verify examples from
the literature (e.g., [25,8]).

3 Verification Using Acceleration

We can attempt to compute both reachable and repeatedly reachable config-
urations by standard fixpoint iterations. Let us describe this for the case of
reachability. A naive computation of the set I ◦ R∗ of reachable states is to
compute the sequence C0, C1, C2, · · · , where C0 = I and Ci+1 = Ci ∪ (Ci ◦R), until
a fixpoint is reached, i.e., Ck+1 = Ck for some k. This approach is guaranteed
to terminate for finite-state systems, but not in general for parameterized and
infinite-state systems, since there is no uniform bound on the number of com-
putation steps needed to reach any particular configuration. For RTSs, I ◦ R∗
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and R+ are in general not computable, but incomplete techniques have been de-
veloped [7,16,19], which are guaranteed to complete under conditions which are
typically satisfied when R is “simple”, but not when R is the entire transition
relation of an RTS. We therefore present a method to compute I ◦ R∗ or R+ by
decomposing R into “simple” parts, compute the transitive closure of each part,
and then use the results in a refined fixpoint computation.

To this end, let an action of the RTS (I, R) be any subset of R. We use α to
range over actions. By acceleration, we mean to compute α+ from α. The fixpoint
computation described in the previous paragraph is modified by instead defining
Ci+1 as the result of choosing an appropriate αi ⊆ R+, and letting Ci+1 =
Ci ∪ (Ci ◦ α+

i ). The test for convergence remains the same: is Ci = Ci ∪ (Ci ◦ R)?
The main problem is to decide how to choose the sequence of actions α0 α1 · · ·
to accelerate, in order to converge at I ◦ R∗.

We will consider the class of unary RTS, in which each computation step
changes at most one position in a configuration. This class contains many pa-
rameterized synchronization algorithms. For unary RTSs, there is a particular
class of actions (called separable) which can be accelerated efficiently.

Definition 2. A regular relation R is unary if w and w′ differ in at most one
position whenever w R w′. A RTS (I, R) is unary if R is unary. A unary relation
is separable if it is of form φL · τ · φR , where φL, φR ⊆ Id , and τ is a relation
on Σ. We call φL the left context and φR the right context of φL · τ · φR .

Separable unary actions are interesting, because there are efficient techniques
for accelerating them, which are complete when φL and φR satisfy certain
conditions that hold for a majority of separable unary actions encountered in
practice [6,25], and yield good underapproximations otherwise. Our verification
strategy is therefore to generate a sequence α0 α1 · · · of separable unary actions
to drive the above modified fixpoint computation. To avoid overapproximation,
we must obviously require αi ⊆ R∗ for each i. To make the fixpoint computa-
tion as powerful as possible, we will generate as “large” actions as possible. By
this, we will mean that any unary separable action in R is subsumed. We would
also like to require the same for any composition of such actions, but this is not
possible, since if α and α′ are separable unary actions, then in general α ◦ α′ is
not unary and α ∪α′ is not separable. We therefore define restricted versions of
these operations, separable composition ◦s and separable union ∪s, as follows

(φL · τ · φR) ◦s (φ′
L · τ ′ · φ′

R)
�
= (φL ∩ φ′

L) · τ ◦ τ ′ · (φR ∩ φ′
R)

(φL · τ · φR) ∪s (φ′
L · τ ′ · φ′

R)
�
= (φL ∩ φ′

L) · τ ∪ τ ′ · (φR ∩ φ′
R)

where the changes in α and α′ are constrained to occur in the same position.
The resulting actions are separable, and can be efficiently accelerated.

Definition 3. Let R be a regular relation. A set of actions A is separable-
complete with respect to R, if it satisfies:
(U) For any sequence α1, . . . , αn of separable unary actions, where αj ⊆ R
for j ∈ [1, n], there is an action α ∈ A such that

(α1 ◦s . . . ◦s αn)+ ⊆ α+
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If condition (U) is true for n ≤ k, for some bound k, the set is separable-complete
up to k, and k is called the composition depth. ��
As a special case, if A is separable-complete up to 1, then any separable unary
action α′ ⊆ R is subsumed by some α ∈ A.

Let us see why separable-completeness is relevant for Burns’ algorithm. Imag-
ine that we are computing I ◦ R∗ for Burns’ algorithm, using a fixpoint compu-
tation. Consider a configuration where there are arbitrarily many processes on
line 2, each with α2b enabled. It is then possible for any single process to proceed
to line 5, via lines 3 and 4. However, whenever α3 is executed by some process
i, all processes j < i are blocked. Hence, in order for arbitrarily many processes
to move from 2 to 5, they must act sequentially from higher to lower index. It
follows that we need the accelerated sequential composition (α2b ◦s α3 ◦s α4b)+,
to capture this behaviour; a fixpoint computation using only α+

2b, α
+
3 , α+

4b would
need unboundedly many computation steps. If (U) were true, we would have an
action with α+ ⊇ (α2b ◦s α3 ◦s α4b)+, allowing us to compute the set of reachable
configurations.

We are now ready to present our technique for generating actions to be ac-
celerated in the fixpoint computation; it will automatically generate a finite set
of actions which is separable-complete.

Generation Procedure. Our procedure for generating a sequence of actions that
satisfy condition (U) has three steps.

1. We obtain any finite set of separable actions A′ such that R = ∪A′.
One way to do this is to extract such actions from a representation of R
as a minimal deterministic automaton T = 〈S, Σ × Σ, s0, δ, F 〉, as follows.
Let T (s, Q) equal T but with s0 = s and F = Q. Then R is the union of
actions {φL · τ · φR} where φL = T (s0, {s}) ∩ Id , and φR = T (t, F ) ∩ Id ,
and τ = δ(s, t) for states s, t ∈ S (and φL, φR, τ �= ∅).

2. We thereafter transform A′ so that it has the property that any separable
unary action α ⊆ R is in (i.e., a subset of) the separable union of some
actions in A′. For this purpose, we define two operations on separable unary
actions:

(φL · τ · φR) �L (φ′
L · τ ′ · φ′

R)
�
= (φL ∩ φ′

L) · (τ ∩ τ ′) · (φR ∪φ′
R)

(φL · τ · φR) �R (φ′
L · τ ′ · φ′

R)
�
= (φL ∪φ′

L) · (τ ∩ τ ′) · (φR ∩ φ′
R)

Closing the set of actions under the operations �L and �R achieves the goal.
As an optimization, we delete actions that are then subsets of other actions.

3. Finally, we close the set of actions A′, from previous step, under ∪s. Again,
as an optimization, we delete actions that become subsets of other actions.

We motivate step 2 for Burns’ algorithm. Suppose step 1 is applied to a det-
erministic representation of R. We get A′ ⊇ {α, α′}, with α = φL4a · (τ3 ∪ τ) · Id ,
and α′ = φL4b · (τ3 ∪ τ ′) · Id , for some τ, τ ′. The desired property is false: α3 is
not in the separable union of α, α′ (nor of A′). The left context of α3 has been
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divided. However, α3 = (α �R α′), giving the desired property. Without step 2,
our procedure underapproximates α3 and sequential compositions involving α3.

The generated actions are separable-complete up to 1 by construction (by
steps 2 and 3). Let us now establish that they are even separable-complete. We
use the following lemma, which establishes how ◦s and ∪s are related.

Lemma 1. Let A′ = {α1, . . . , αm} be a set of separable unary actions, with
αj = φ j

L · τj ·φ j
R, for j ∈ [1, m]. Let σ = αi1 ◦s αi2 ◦s . . .◦s αin be any composition

such that each α ∈ A′ occurs at least once. Then:

σ ⊆ φ 1
L ∩ . . . ∩ φm

L · (τ1 ∪ . . . ∪ τm)+ · φ 1
R ∩ . . . ∩ φm

R ��

Theorem 1. The set of actions generated by steps 1– 3 is separable-complete.

Proof. Given any sequence α1, . . . , αn, where αj ⊆ R for j ∈ [1, n]. Let us denote
the fact that the generated actions have composition depth 1 by (U1). By (U1),
there are actions α′

1, . . . , α
′
n generated by our procedure such that αj ⊆ α′

j ,
for each j. Again by (U1), there exists a generated α = φL · τ · φR such that
α ⊇ α′

1 ∪s . . . ∪s α′
n. Now, by the lemma, α′

1 ◦s . . . ◦s α′
n ⊆ φL · τ+ · φR. Finally,

(φL · τ+ · φR)+ ⊆ α+. ��

Note on complexity. Our procedure is essentially conjoining the guards of the
actions; so an upper bound of the number of obtained actions is 2|A

′|, where A′ is
the least set satisfying the property of step 2. For our benchmark (see Section 5),
the actions can only be composed in a monotonic order, so the bound is only
|A′|2. Nonetheless, in practice, we may choose to combine actions under ∪s a
fixed number of iterations in step 3, obtaining A with composition depth k.

4 Verifying Liveness

In this section, we describe how to verify liveness properties, which are reduced
to the repeated reachability problem of a suitable FRTS. In particular, we de-
scribe how liveness properties of parameterized algorithms are verified using our
LTL(MSO) model checker [3].

Recall that the falsification of a liveness property can be reduced to checking
whether an FRTS has an infinite accepting run. Since the transition relation is
length-preserving, so that each computation can visit only a finite set of config-
urations, this problem can be solved by repeated reachability, i.e., by checking
whether there exists a reachable loop containing some configuration from F .
This is equivalent to checking whether there is a reachable configuration w in F
such that (w, w) ∈ Id ∩ R+, which can be checked as follows [27].

(1) Compute the set of reachable configurations Inv = I ◦ R∗, as described in
Section 3.

(2) Let InvF = {(w, w′) | w ∈ Inv ∩F , (w, w′) ∈ R}, i.e., the relation containing
all pairs of consecutive reachable configurations, where the first satisfies F .
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(3) Compute the relation InvF ◦ R∗ as a fixpoint, which in the acceleration-
based version constructs the sequence C0, C1, C2, · · · , where C0 = InvF and
Ci+1 = Ci ∪ Ci ◦ α+

i for a suitable action αi ⊆ R+, until Ci = Ci ∪ Ci ◦ R.
(4) If the fixpoint computation in (3) converges, a repeatedly reachable config-

uration w exists if and only if (InvF ◦ R∗) ∩ Id is non-empty.

Note that if Ci ∩ Id is non-empty for some approximation Ci, we can abort the
fixpoint computation of (3), and report that Ci contains a repeatedly reachable
configuration.

The reachability phase (1) computes a fixpoint on sets of configurations, while
the repeated reachability phase (3) computes a fixpoint on relations of configu-
rations; the latter is significantly more difficult to compute.

We next show how this procedure specializes to verifying absence of starvation
for parameterized systems. A typical liveness property, absence of starvation, is of
form � ∀i (φ(i) −→ ♦ψ(i)), where i ranges over processes modeled by positions
in the configuration. For instance, for Burns’ algorithm we check the property
� ∀i ((pc[i] = 1 ∧ i = 0) −→ ♦pc[i] = 7). This property is proven assuming weak
process fairness, i.e., that in an infinite computation, each process is infinitely
often either blocked or progressing, which can be expressed as ∀i�♦(α(i) ∨
¬En(α(i))), where α(i) is a disjunction of all actions process i can take, and
En(α(i)) is true if and only if process i is not blocked.

To verify absence of starvation using the automata-theoretic approach [31,3],
the transition relation, fairness requirements and the negation of the liveness
properties are conjoined and compiled into an FRTS, which accepts all fair
computations of the system which violate the liveness property, i.e., satisfy
♦∃i (φ(i) ∧ �¬ψ(i)). The negation of the liveness property is transformed into
an extra boolean component bviolate(i) in the local state of each position i,
such that if bviolate(i) is true, then process i satisfies �¬ψ(i). Process i may
non-deterministically set bviolate(i) to true. The weak fairness requirement is
transformed into an extra boolean component bfair(i) in the local state of each
position i and the set F of accepting configurations in which bfair(i) is 1 for all
i and bviolate(i) is 1 for some i. All components bfair(i) are set to 0 immediately
after some configuration in F was visited, and each bfair(i) is thereafter set to 1
whenever process i satisfies α(i) ∨ ¬En(α(i)). The repeated reachability prob-
lem becomes to check whether there is an infinite computation which first visits
a configuration where bviolate(i) is 1 for some i, and thereafter infinitely often
visits a configuration in F .

The above procedure can be adapted to this setting by inserting a step (1′)
between steps (1) and (2), which computes the set Inv′ = [Inv ∧ ∃i(φ(i) ∧
bviolate(i))] ◦ R′∗, where R′ is R constrained to follow the semantics of bviolate,
as described above. For the remaining steps, Inv′ and R′ take the roles of Inv
and R. For step (3), we further constrain R′ to follow the semantics of bfair. We
have also added the following optimizations to our model checker.

– Separating updates of bfair(i). We separate the updates of bfair(i) into one
action that sets it when α(i) is taken, and one action that sets it when
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¬En(α(i)); this equivalent modeling makes the acceleration work more effi-
ciently, since actions remain unary.

– One violating witness. We constrain the transition relation so that bviolate(i)
can be true for at most one process i; this simplifies the transition relation.
Note that this does not forbid other processes from violating the property.

5 Experimental Results

We have implemented the systematic acceleration method described in this paper
in our LTL(MSO) model checker [3], and used it to generate the set of reachable
states, as described in Section 3, and to check absence of individual starvation
under weak fairness for parameterized synchronization algorithms from the liter-
ature, as described in Section 4. The models are described in detail in [27], and
are available at http://user.it.uu.se/~mayanks/systematic/. For the Bak-
ery algorithm, we verified the property Ba

�
= �∀i (q[i] = w −→ ♦q[i] = cs).

All other checked liveness properties were of form �∀i (φ(i) −→ ♦ψ(i)), where
ψ(i), defined as pc[i] = cs, represents that process i is in the critical section,
and where φ(i) expresses that process i intends to reach the critical section, and
that also it is reasonable to suspect that process i is guaranteed to succeed in
doing so. For each choice of φ(i) our implementation either reports a success
in verification, or a counterexample. We checked several properties, whose φ(i)
are given below, named after the initial letters of their corresponding protocols;
Bakery, Burns, Szymanski, Dijkstra.

Bu1 : pc[i] = 1 ∧ i = 0 Sz1 : pc[i] = 1
Bu2 : pc[i] = 1 ∧ i �= 0 Sz2 : pc[i] = 2
Bu3 : pc[i] �= 1 ∧ i �= 0 Sz3 : pc[i] �= 1
Bu4 : i = 0
Di1 : p[i] ∧ flag[i] �= 0 ∧ ∀j �= i . pc[j] �= 3
Di2 : p[i] ∧ flag[i] = 0 ∧ ∀j �= i . pc[j] �= 3

We used composition depth k as a parameter, successively using higher values if
the verification did not succeed within a certain time bound. The times are given
for the best values of k, not including “too low k” time. All protocols worked
with some k ∈ [2, 5]. Dijkstra’s protocol needed 5, and Szymanski’s protocol was
significantly slower with k > 2, due to its actions using many different guards. If
the generated actions become separable-complete for parameter k, using a higher
value is not significantly slower, as testing for separable-completeness is quick. By
Lemma 1, we need not consider k higher than the number of actions generated in
step 2 of the generation procedure – that k gives the best approximation of R+,
but can be suboptimal with respect to time. To handle the fact that one action
of Dijkstra’s protocol is not unary, we extended the composition techniques to
a class of non-unary actions in the most straight-forward way. The experiments
were run on a PC with a 2.4 GHz processor and 1 GB of RAM.
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Table 1. Liveness (to the left) and safety (to the right) results

Property This work [27,3] [5]

Ba 13 23 36
Bu1 98 450
Bu2 56 (f)
Bu3 60 (f)
Bu4 144
Sz1 540 (f)
Sz2 1369 435
Sz3 1635
Di1 244 3311
Di2 1031 (f)

Protocol This work [27,3]

Bakery 4 5
Burns 15 39
Szymanski 19 34
Dijkstra 25 38

Results and Comparison with Related Work. Our verification results are pre-
sented in Table 1. The table contains time measured in seconds for the analysis,
but does not include the translation from LTL(MSO) formulas into FRTSs. False
properties, for which a counterexample was found, are marked “(f)”. In the ta-
ble, we compare our times with the works [27,3,5], as they use similar techniques,
and were in fact timed on the same system. We also present related work, in al-
phabetical order with respect to authors. Note that works [27,3,28] could only
have succeeded to verify Burns’ and Dijkstra’s protocols if the right sequential
compositions were included; but they are difficult to find manually.

[2] Abdulla et al. use overapproximation for safety properties, obtaining
times an order of magnitude better than ours (0.004–3.9 seconds), but
the technique can not be extended to liveness properties.

[5] These techniques compute states which are guaranteed to satisfy ψ(i)
using backwards reachability, thus avoiding the repeated reachability
problem. However, they are not able to produce counterexamples, and
are sometimes slower (due to requiring many accelerations).

[15] Bouajjani et al. verify liveness of Bakery, as well as safety of all listed
protocols, using counter-example guided abstractions, in 0.06–0.73
seconds.

[21,22,20] Fang et al. verify the Bakery protocol using automatically generated
ranking functions, but do not report running times.

[27,3] The works of Nilsson et al. [27,3] report times for essentially the same
technique, so we gave the best time for each protocol. The verification
setting is as ours, but without the systematic addition of sequential
compositions.

[28] Pnueli and Shahar, use user defined accelerations to verify safety prop-
erties of Szymanski’s protocol in 0.2 seconds, as well as some protocols
not in our benchmark.

[29] Pnueli et al. verify liveness of the Bakery and Szymanski protocols
using manually supplied counter abstractions, in 1 and 96 seconds re-
spectively. Their modeling of Szymanski’s protocol is slightly different
from ours, so we can not say which of the true properties were checked.
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Using the techniques of this paper, we can compute an exact representation
of the reachable loops for all the above protocols. It has, to our knowledge, never
been done for Burns’ and Dijkstra’s protocols before.

6 Conclusions and Future Work

We have presented a systematic method for using acceleration to speed up fix-
point computations in regular model checking. The method is defined for unary
transition relations, and is independent of how the transition relation is repre-
sented. We show how to accelerate a set of actions which is maximal in a cer-
tain sense, in order to make the verification as powerful as possible. Using this
approach, we have succeeded in verifying safety and liveness of parameterized
synchronization protocols, whose verification has not been reported before.

Our work shows that acceleration-based symbolic state-space exploration can
be used efficiently also in regular model checking, thus extending this approach
from other classes of systems (e.g., [1,12,14,32,10,23]). Future work includes ex-
tending the approach to non-unary transition relations, in order to handle, e.g.,
systems with synchronous communication between adjacent processes.
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Abstract. We present a simple and effective approximated backward
reachability algorithm for parameterized systems with existentially and
universally quantified global conditions. The individual processes oper-
ate on unbounded local variables ranging over the natural numbers. In
addition, processes may communicate via broadcast, rendez-vous and
shared variables. We apply the algorithm to verify mutual exclusion for
complex protocols such as Lamport’s bakery algorithm both with and
without atomicity conditions, a distributed version of the bakery algo-
rithm, and Ricart-Agrawala’s distributed mutual exclusion algorithm.

1 Introduction

We consider the analysis of safety properties for parameterized systems. A pa-
rameterized system consists of an arbitrary number of processes. The task is
to verify correctness regardless of the number of processes. This amounts to the
verification of an infinite family; namely one for each size of the system. Most ex-
isting approaches to automatic verification of parameterized systems make the
restriction that each process is finite-state. However, there are many applica-
tions where the behaviour relies on unbounded data structures such as counters,
priorities, local clocks, time-stamps, and process identifiers.

In this paper, we consider parameterized systems where the individual pro-
cesses operate on Boolean variables, and on numerical variables which range over
the natural numbers. The transitions are conditioned by the local state of the
process, values of the local variables; and by global conditions which check the
local states and variables of the other processes. These conditions are stated as
propositional constraints on the Boolean variables, and as gap-order constraints
on the numerical variables. Gap-order constraints [20] are a logical formalism
in which we can express simple relations on variables such as lower and upper
bounds on the values of individual variables; and equality, and gaps (minimal
differences) between values of pairs of variables. A global condition is either
universally or existentially quantified. An example of a universal condition is
“variable x of a given process i has a value which is greater than the value of
variable y in all other processes inside the system”. Process i is then allowed to
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perform the transition only if this condition is satisfied. In an existential con-
dition we require that some (rather than all) processes satisfy the condition.
In addition to these classes of transitions, processes may communicate through
broadcast, rendez-vous, and shared variables.

There are at least two advantages with using gap-order constraints as a lan-
guage for expressing the enabling conditions of transitions. First, they allow to
handle a large class of protocols where the behaviour depends on the relative
ordering of values among variables, rather than the actual values of these vari-
ables. The second reason is that they define a natural ordering on the set of
system configurations. In fact, it can be shown, using standard techniques (such
as the ones in [23]), that checking safety properties (expressed as regular lan-
guages) can be translated into the reachability of sets of configurations which
are upward closed with respect to this ordering.

To check safety properties, we perform backward reachability analysis us-
ing gap-order constraints as a symbolic representation of upward closed sets of
configurations. In the analysis, we consider a transition relation which is an over-
approximation of the one induced by the parameterized system. To do that, we
modify the semantics of universal quantifiers by eliminating the processes which
violate the given condition. For instance in the above example, process i is al-
ways allowed to take the transition. However, when performing the transition, we
eliminate each process j where the value of y is smaller or equal to the value of
x in i. The approximate transition system obtained in this manner is monotonic
with respect to the above mentioned ordering, in the sense that larger configura-
tions can simulate smaller ones. In fact, it turns out that universal quantification
is the only operation which does not preserve monotonicity and hence it is the
only source of approximation in the model. The fact that the approximate tran-
sition relation is monotonic, means that upward closedness is maintained under
the operation of computing predecessors. A significant aspect of the reachability
procedure is that the number of copies of variables (both Boolean and numeri-
cal) which appear in constraints whose denotations are upward closed sets is not
bounded a priori. The reason is that there is an arbitrary number of processes
each with its own local copy of the variables. The whole verification process is
fully automatic since both the approximation and the reachability analysis are
carried out without user intervention. Observe that if the approximate transition
system satisfies a safety property then we can conclude that the original system
satisfies the property, too.

Termination of the approximated backward reachability analysis is not guar-
anteed in general. However, the procedure terminates on all the examples we
report in this paper. Furthermore, termination is guaranteed in some restricted
cases such as for systems with existential or universal global conditions but with
at most one local integer variable.

In order to test our method we have selected a collection of challenging pro-
tocols in which integer variables are used either as identifiers, priorities, local
clocks, or time-stamps. Almost all of the examples are outside the class for
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which termination is guaranteed. In particular, we automatically verify safety
properties for parameterized versions of the following algorithms:

– Lamport’s bakery algorithm [19] with atomicity conditions;
– A version of Lamport’s bakery algorithm with non-atomic computation of

tickets;
– A distributed version of Lamport’s bakery in which tickets and entry con-

ditions are computed and tested non-atomically by means of a handshake
protocol run by each process;

– The Ticket mutual exclusion algorithm with a central monitor for distribut-
ing tickets [6];

– The Ricart-Agrawala distributed mutual exclusion algorithm based on the
use of logical clocks and time-stamps [21].

We also consider a bogus version of the Lamport’s bakery without atomicity
conditions in the computation of tickets. In this version, the choosing flag is
simply ignored in the entry section. For this example, our procedure returns
symbolic traces (from initial to bad states) that explain the subtle race conditions
that may arise when the flag is not tested.

Each one of these examples present challenging problems for parameterized
verification methods in the following sense:

– Their underlying logic is already hard for manual or finite-state verification.
– They are all instances of multidimensional infinite-state systems in which

processes have unbounded local variables and (apart from Ticket) an order
over identifiers is used to break the tie in the entry section. For instance,
they cannot be modelled without the use of abstractions in the framework
of Regular Model Checking [17,5,8,4].

– In all examples, global conditions are needed to model the communication
mechanisms used in the protocols (e.g. broadcasts, update, and entry condi-
tions that depend on the local integer variables of other processes).

Related Work. The multi-dimensional parameterized models studied in the
present paper cannot be analyzed without use of additional abstractions by
methods designed for networks of finite-state processes, e.g., Regular Model
Checking [17,5,8] and counter abstraction methods [12,16,13,14]. The approx-
imation scheme we apply in our backward reachability procedure works well for
a very large class of one-dimensional parameterized systems. In fact, the ver-
ification procedure used in [4] is a special case of the current one, where the
processes are restricted to be finite-state systems.

Parameterized versions of Lamport’s bakery algorithm have been tested us-
ing a semi-automated verification method based on invisible invariants in [7],
with the help of environmental abstractions for a formulation with atomicity
conditions in [11], and using heuristics to discover indexed predicates in [18]. A
parameterized formulation of the Ricart-Agrawala algorithm has been verified
semi-automatically in [22], where the STeP prover is used to discharge some
of the verification conditions needed in the proof. We are not aware of other
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attempts of fully automatic verification of parameterized versions of the Ricart-
Agrawala algorithm or of the distributed version (with no atomicity assumptions)
of Lamport’s bakery algorithm.

In contrast to the above mentioned methods, our verification procedure is fully
automated and it is based on a generic approximation scheme. Furthermore, our
method is applicable to versions of Lamport’s bakery both with and without
atomicity conditions and may return symbolic traces useful for debugging.

A parameterized formulation of an abstraction of the Ticket algorithm has
been analyzed in [9]. The verification procedure in [9] does not handle parame-
terized universally quantified global conditions. Furthermore, in the abstraction
of the Ticket algorithm studied in [9] the central monitor may forget tickets (the
update of turn is defined by a jump to any larger value). Thus, the model does
not keep the FIFO order of requests. With the help of universally quantified
guards and of our approximation, we verify a more precise model in which the
FIFO order of requests is always preserved.

In contrast to symbolic methods for finite, a priori fixed collections of processes
with local integer variables, e.g., those in [10,15], our gap-order constraints are
defined over an infinite collections of variables. The number of copies of variables
needed during the backward search cannot be bounded a priori. This feature al-
lows us to reason about systems with global conditions over any number of
processes. Furthermore, the present method covers that of [2] which also uses
gap-order constraints to reason about systems with unbounded numbers of pro-
cesses. However, [2] cannot deal with global conditions which is the main feature
of the examples considered here.

Outline. In the next two Sections we give some preliminaries and define a basic
model for parameterized systems. Section 4 and 5 describe the induced transi-
tion system and the coverability (safety) problem. In Section 6 we define the
approximated transition system. Section 7 defines the gap-order constraints and
presents the backward reachability algorithm, while Section 8 describes the op-
erations on constraints used in the algorithm. Section 9 explains how we extend
the basic model to cover features such as shared variables, broadcast and binary
communication. In Section 10 we report the results of running our prototypes on
a number of examples. Finally, in Section 11, we give conclusions and directions
for future work. In the appendix, we give some proofs and detailed descriptions
of the case studies.

2 Preliminaries

In this section, we give some preliminary notations and definitions. We use B to
denote the set {true, false} of Boolean values; and use N to denote the set of
natural numbers. For a natural number n, let n denote the set {1, . . . , n}.

For a finite set A, we write a multiset over A as a list [a1, a2, . . . , an], where
ai ∈ A for each i : 1 ≤ i ≤ n. We use a ∈ A to denote that a = ai for some i : 1 ≤
i ≤ n. For multisets M1 = [a1, . . . , am] and M2 = [b1, . . . , bn], we use M1 •M2 to
denote the union (sum) of M1 and M2 (i.e., M1 • M2 = [a1, . . . , am, b1, . . . , bn]).
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We will work with sets of variables. Such a set A is often partitioned into
two subsets: Boolean variables AB which range over B, and numerical variables
AN which range over N . We denote by B(AB) the set of Boolean formulas over
AB. We will also use a simple set of formulas, called gap formulas, to constrain
the numerical variables. More precisely, we let G(AN ) be the set of formulas
which are either of the form x = y or of the form x ∼k y where ∼∈ {<, ≤},
x, y ∈ AN ∪ N , and k ∈ N . Here x <k y stands for x + k < y. We use F(A) to
denote the set of formulas which has members of B(A) and of G(N ) as atomic
formulas, and which is closed under the Boolean connectives ∧, ∨. For instance,
if AB = {a, b} and AN = {x, y} then θ = (a ⊃ b) ∧ (x + 3 < y) is in F(A).
Sometimes, we write a formula as θ(y1, . . . , yk) where y1, . . . , yk are the variables
which may occur in θ; so we can write the above formula as θ(x, y, a, b).

Sometimes, we perform substitutions on logical formulas. A substitution is
a set {x1 ← e1, . . . , xn ← en} of pairs, where xi is a variable and ei is either
a constant or a variable of the same type as xi, for each i : 1 ≤ i ≤ n.
Here, we assume that all the variables are distinct, i.e., xi 
= xj if i 
= j. For
a formula θ and a substitution S, we use θ[S] to denote the formula we get
from θ by simultaneously replacing all occurrences of the variables x1, . . . , xn

by e1, e2, . . . , en respectively. Sometimes, we may write θ[S1][S2] · · · [Sm] instead
of θ[S1 ∪ S2 ∪ · · · ∪ Sm]. As an example, if θ = (x1 < x2) ∧ (x3 < x4) then
θ[x1 ← 3, x4 ← 2][x2 ← y] = (3 < y) ∧ (x3 < 2).

3 Parameterized Systems

In this section, we introduce a basic model for parameterized systems. The basic
model will be enriched by additional features in Section 9.

A parameterized system consists of an arbitrary (but finite) number of iden-
tical processes. Each process is modelled as an extended finite-state automaton
operating on local variables which range over the Booleans and the natural num-
bers. The transitions of the automaton are conditioned by the values of the local
variables and by global conditions in which the process checks, for instance, the
local states and variables of all the other processes inside the system. A tran-
sition may change the value of any local variable inside the process (possibly
deriving the new values from those of the other processes). A parameterized
system induces an infinite family of (potentially infinite-state) systems, namely
one for each size n. The aim is to verify correctness of the systems for the whole
family (regardless of the number n of processes inside the system).

Formally, a parameterized system P is a triple (Q, X, T ), where Q is a finite
set of local states, X is a finite set of local variables partitioned into XB (which
range over B) and XN (which range over N ), and T is a finite set of transition
rules. A transition rule t is of the form

t :
[
q → q′ � θ

]
(1)

where q, q′ ∈ Q and θ is either a local or a global condition. Intuitively, the
process which makes the transition changes its local state from q to q′. In the
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meantime, the values of the local variables of the process are updated according
to θ. Below, we describe how we define local and global conditions.

To simplify the definitions, we sometimes regard members of the set Q as
Boolean variables. Intuitively, the value of the Boolean variable q ∈ Q is true for
a particular process iff the process is in local state q. We define the set Y = X∪Q.

To define local conditions, we introduce the set Xnext which contains the
next-value versions of the variables in X . A variable xnext ∈ Xnext represents
the next value of x ∈ X . A local condition is a formula in F(X ∪ Xnext). The
formula specifies how local variables of the current process are updated with
respect to their current values.

Global conditions check the values of local variables of the current process,
together with the local states and the values of local variables of the other
processes. We need to distinguish between a local variable, say x, of the process
which is about to perform a transition, and the same local variable x of the other
processes inside the system. We do that by introducing, for each x ∈ Y , two new
variables self·x and other·x. We define the sets self·Y = {self·x|x ∈ Y } and
other·Y = {other·x|x ∈ Y }. The sets self·X , other·Xnext , etc, are defined in
the obvious manner. A global condition θ is of one of the following two forms:

∀ other 
= self · θ1 ∃ other 
= self · θ1 (2)

where θ1 ∈ F (self·X ∪ other·Y ∪ self·Xnext). In other words, the formula
checks the local variables of the process which is about to make the transition
(through self ·X), and the local states and variables of the other processes
(through other ·Y ). It also specifies how the local variables of the process in
transition are updated (through self·Xnext). A global condition is said to be
universal or existential depending on the type of the quantifier appearing in it.
As an example, the following formula

∀ other 
= self · (self·a) ∧ (self·xnext > other·x) ∧ other·q1

states that the transition may be performed only if variable a of the current
process has the value true, and all the other processes are in local state q1.
When the transition is performed, variable x of the current process is assigned
a value which is greater than the value of x in all the other processes.

4 Transition System

We describe the transition system induced by a parameterized system.
A transition system T is a pair (D, =⇒), where D is an (infinite) set of

configurations and =⇒ is a binary relation on D. We use ∗=⇒ to denote the
reflexive transitive closure of =⇒. Let � be an ordering on D. We say that
T is monotonic with respect to � if the following property is satisfied: for all
c1, c2, c3 ∈ D with c1 =⇒ c2 and c1 � c3, there is a c4 ∈ D such that c3 =⇒ c4
and c2 � c4. We will consider several transition systems in this paper.
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First, a parameterized system P = (Q, X, T ) induces a transition system
T (P) = (C, −→) as follows. A configuration is defined by the local states and
the values of the local variables in the processes. Formally, a local variable state
v is a mapping from X to B ∪N which respects variables’ types. A process state
u is a pair (q, v) where q ∈ Q and v is a local variable state. As mentioned in
Section 3, we may regard members of Q as Boolean variables. Thus, we can view
a process state (q, v) as a mapping u : Y �→ B ∪ N , where u(x) = v(x) for each
x ∈ X , u(q) = true, and u(q′) = false for each q′ ∈ Q − {q}. A configuration is
a multiset [u1, u2, . . . , un] of process states. Intuitively, the above configuration
corresponds to an instance of the system with n processes. Notice that if c1 and
c2 are configurations then so is their union c1 • c2.

We define the transition relation −→ on the set of configurations as follows.
We start by describing the semantics of local conditions. Recall that a local
condition corresponds to one process changing state without checking states of
the other processes. Therefore, the semantics is defined in terms of two local
variable states v, v′ corresponding to the current resp. next values of the local
variables of the process; and a formula θ ∈ F(X ∪ Xnext) (representing the
local condition). We write (v, v′) |= θ to denote the validity of the formula
θ [ρ] [ρ′] where the substitutions are defined by ρ := {x ← v(x)| x ∈ X} and
ρ′ := {xnext ← v′(x)| x ∈ X}. In other words, we check the formula we get by
replacing the current- resp. next-value variables in θ by their values as defined
by v resp. v′. The formula is evaluated using the standard interpretations of the
Boolean connectives, and the arithmetical relations <, ≤, =. For process states
u = (q, v) and u′ = (q′, v′), we use (u, u′) |= θ to denote that (v, v′) |= θ.

Next, we describe the semantics of global conditions. The definition is given
in terms of two local variable states v, v′, a process state u1, and a formula θ ∈
F (self·X ∪ other·Y ∪ self·Xnext) (representing a global condition). The roles
of v and v′ are the same as for local conditions. We recall that a global condition
also checks states of all (or some) of the other processes. Here, u1 represents
the local state and variables of one such a process. We write (v, v′, u1) |= θ
to denote the validity of the formula θ [ρ] [ρ′] [ρ1] where the substitutions are
defined by ρ := {self·x ← v(x)| x ∈ X}, ρ′ := {self·xnext ← v′(x)| x ∈ X},
and ρ1 := {other·x ← u1(x)| x ∈ Y }. The relation (u, u′, u1) |= θ is interpreted
in a similar manner to the case of local conditions.

Now, we are ready to define the transition relation −→. Let t be a transition
rule of the form of (1). Consider two configurations c = c1 • [u] • c2 and c′ =
c1 • [u′] • c2 where u = (q, v) and u′ = (q′, v′).We denote by c t−→ c′ that one of
the following conditions is satisfied:

1. θ is a local condition and (u, u′) |= θ.
2. θ is a universal global condition of the form of (2), and (u, u′, u1) |= θ1 for

each u1 ∈ c1 • c2.
3. θ is an existential global condition of the form of (2), and (u, u′, u1) |= θ1 for

some u1 ∈ c1 • c2.

We use c −→ c′ to denote that c t−→ c′ for some t ∈ T .
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5 Safety Properties

In this section, we introduce an ordering on configurations, and use it to define
the safety problem. Given a parameterized system P = (Q, X, T ), we assume
that, prior to starting the execution of the system, each process is in an (iden-
tical) initial process state uinit = (qinit , vinit ). In the induced transition system
T (P) = (C, −→), we use Init to denote the set of initial configurations, i.e.,
configurations of the form [uinit , . . . , uinit ] . Notice that this set is infinite.

We define an ordering on configurations as follows. Consider two configu-
rations, c = [u1 · . . . · um] and c′ = [u′

1 · . . . · u′
n], where ui = (qi, vi) for each

i : 1 ≤ i ≤ m, and u′
i = (q′i, v

′
i) for each i : 1 ≤ i ≤ n. We write c � c′ to denote

that there is an injection h : m → n such that the following four conditions are
satisfied for each i, j : 1 ≤ i, j ≤ m:

1. qi = q′h(i).
2. vi(x) = true iff v′h(i)(x) = true for each x ∈ XB.
3. vi(x) = vj(y) iff v′h(i)(x) = v′h(j)(y), for each x, y ∈ XN .
4. vi(x) <k vj(y) implies that there is a l ≥ k with v′h(i)(x) <l v′h(j)(y), for each

x, y ∈ XN .

In other words, for each process in c there is a corresponding process in c′. The
local states and the values of the Boolean variables coincide in the corresponding
processes (Conditions 1 and 2). Regarding the numerical variables, the ordering
preserves equality of variables (Condition 3), while gaps between variables in
c′ are at least as large as the gaps between the corresponding variables in c
(Condition 4).

A set of configurations D ⊆ C is upward closed (with respect to the ordering
�) if c ∈ D and c � c′ implies c′ ∈ D. For sets of configurations D, D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′.

The coverability problem for parameterized systems is defined as follows:

PAR-COV
Instance
– A parameterized system P = (Q, X, T ).
– An upward closed set CF of configurations.

Question Init ∗−→ CF ?

It can be shown, using standard techniques (see e.g. [23]), that checking safety
properties (expressed as regular languages) can be translated into instances of the
coverability problem. Therefore, checking safety properties amounts to solving
PAR-COV (i.e., to the reachability of upward closed sets).

6 Approximation

In this section, we introduce an over-approximation of the transition relation
of a parameterized system. The aim of the over-approximations is to derive a
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new transition system which is monotonic with respect to the ordering � de-
fined on configurations in Section 5. The only transitions which do not preserve
monotonicity are those involving universal global conditions. Therefore, the ap-
proximate transition system modifies the behavior of universal quantifiers in such
a manner that monotonicity is maintained. Roughly speaking, in the new seman-
tics, we remove all processes in the configuration which violate the condition of
the universal quantifier. Below we describe how this is done.

In Section 4, we mentioned that each parameterized system P = (Q, X, T )
induces a transition system T (P) = (C, −→). A parameterized system P also
induces an approximate transition system A(P) = (C, � ); the set C of con-
figurations is identical to the one in T (P). We define �= (−→ ∪ �1), where
−→ is defined in Section 4, and �1 (which reflects the approximation of uni-
versal quantifiers) is defined as follows. For a configuration c, a formula θ ∈
F (self·X ∪ other·Y ∪ self·Xnext), and process states u, u′, we use c�(θ, u, u′)
to denote the configuration derived from c by deleting all process states u1 such
that (u, u′, u1) 
|= θ. To explain this operation intuitively, we recall that a uni-
versal global condition requires that the current and next states of the current
process (described by u resp. u′) together with the state of each other process
(described by u1) should satisfy the formula θ. The operation then removes from
c each process whose state u1 does not comply with this condition.

Consider two configurations c = c1 •u•c2 and c′ = c′1 •u′•c′2, where u = (q, v)
and u′ = (q′, v′). Let t be a transition rule of the form of (1), such that θ is a
universal global condition of the form of (2). We write c t

�1 c′ to denote that
c′1 = c1 � (θ1, u, u′) and c′2 = c2 � (θ1, u, u′). We use c � c′ to denote that c t

� c′

for some t ∈ T ; and use ∗
� to denote the reflexive transitive closure of �.

Lemma 1. The approximate transition system (C, � ) is monotonic with re-
spect to �.

We define the coverability problem for the approximate system as follows.

APRX-PAR-COV
Instance
– A parameterized system P = (Q, X, T ).
– An upward closed set CF of configurations.

Question Init ∗
� CF ?

Since −→⊆�, a negative answer to APRX-PAR-COV implies a negative
answer to PAR-COV.

7 Backward Reachability Analysis

In this section, we present a scheme based on backward reachability analysis for
solving APRX-PAR-COV. For the rest of this section, we fix an approximate
transition system A(P) = (C, � ).
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Constraints. The scheme operates on constraints which we use as a symbolic
representation for sets of configurations. For each natural number i ∈ N we make
a copy Y i such that xi ∈ Y i if x ∈ Y . A constraint φ is a pair (m, ψ), where
m ∈ N is a natural number, and ψ ∈ F(Y 1 ∪Y 2 ∪· · ·∪Y m). Intuitively, a config-
uration satisfying φ should contain at least m processes (indexed by 1, . . . , m).
The constraint φ uses the elements of the set Y i to refer to the local states and
variables of process i. The values of these states and variables are constrained by
the formula ψ. Formally, consider a configuration c = [u1, u2, . . . , un] and a con-
straint φ = (m, ψ). Let h : m �→ n be an injection. We write c |=h φ to denote the
validity of the formula ψ [ρ] where ρ :=

{
xi ← uh(i)(x)| x ∈ Y and 1 ≤ i ≤ m

}
.

In other words, there should be at least m processes inside c whose local states
and variables have values which satisfy ψ. We write c |= φ to denote that c |=h φ
for some h; and define [[φ]] = {c| φ |= c}. For a (finite) set of constraints Φ, we
define [[Φ]] =

⋃
φ∈Φ [[φ]]. The following lemma follows from the definitions.

Lemma 2. For each constraint φ, the set [[φ]] is upward closed.

In all the examples we consider, the set CF in the definition of APRX-PAR-
COV can be represented by a finite set ΦF of constraints.The coverability ques-
tion can then be answered by checking whether Init ∗−→ [[ΦF ]].

Entailment and Predecessors. To define our scheme we will use two oper-
ations on constraints; namely entailment, and computing predecessors, defined
below. We define an entailment relation � on constraints, where φ1 � φ2 iff
[[φ2]] ⊆ [[φ1]]. For sets Φ1, Φ2 of constraints, abusing notation, we let Φ1 � Φ2
denote that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 � φ2. Observe that
Φ1 � Φ2 implies that [[Φ2]] ⊆ [[Φ1]].

For a constraint φ, we let Pre(φ) be a set of constraints, such that [[Pre(φ)]] =
{c| ∃c′ ∈ [[φ]] . c � c′}. In other words Pre(φ) characterizes the set of configura-
tions from which we can reach a configuration in φ through the application of
a single rule in the approximate transition relation. In the definition of Pre we
rely on the fact that, in any monotonic transition system, upward-closedness is
preserved under the computation of the set of predecessors (see e.g. [1]). From
Lemma 2 we know that [[φ]] is upward closed; by Lemma 1, (C, � ) is mono-
tonic, we therefore know that [[Pre(φ)]] is upward closed. In fact, we show in
Section 8 that this set is finite and computable. For a set Φ of constraints, we
let Pre(Φ) =

⋃
φ∈Φ Pre(φ).

Scheme. Given a finite set ΦF of constraints, the scheme checks whether
Init ∗=⇒ [[ΦF ]]. We perform a backward reachability analysis, generating a se-
quence Φ0 � Φ1 � Φ2 � · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪ Pre(Φj ). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates
when we reach a point j where Φj � Φj+1. Notice that the termination condition
implies that [[Φj ]] = (

⋃
0≤i≤j [[Φi]]). Consequently, Φj characterizes the set of all

predecessors of [[φF ]]. This means that Init ∗−→ [[ΦF ]] iff (Init
⋂

[[Φj ]]) 
= ∅.
Observe that, in order to implement the scheme (i.e., transform it into an algo-

rithm), we need to be able to (i) compute Pre; (ii) check for entailment between
constraints; and (iii) check for emptiness of (Init

⋂
[[φ]]) 
= ∅ for a constraint φ.



Parameterized Verification of Infinite-State Processes 155

8 Constraint Operations

In this section, we show how to perform the three operations on constraints
which are used in the scheme presented in Section 7. In the rest of the section,
we fix a parameterized systems P = (Q, X, T ). Recall that Y = X ∪ Q.

Entailment. Consider two constraints φ = (m, ψ), and φ′ = (m′, ψ′). Let
H(φ, φ′) be the set of injections h : m �→ m′. We use ψh to denote the formula
ψ [ρ], where ρ :=

{
xi ← xh(i)| x ∈ Y and i ∈ m

}
. The following lemma gives a

logical characterization which allows the computation of the entailment relation.

Lemma 3. Given constraints φ = (m, ψ), and φ′ = (m′, ψ′), we have φ � φ′ iff

∀y1 · · · yk. ψ′(y1, . . . , yk) ⊃
∨

h∈H(φ,φ′)

ψh(y1, . . . , yk)

Pre The following lemma describes the computation of the function Pre.
Lemma 4. For a constraint φ, we can compute Pre(φ) as a finite set of con-
straints.
The complete proof of the lemma can be found in [3]. As an example, for a tran-
sition t with a universally quantified global condition θ, Pre applied to constraint
(m, ψ) returns the constraint (m, ψ′), where

ψ′ = ∃Y •.
∧

1≤j �=i≤m

ψ
[
ρi
1
] ∧ θ′1

[
ρi,j
2

]
(3)

Here, for each variable x, the substitution ρi
1 maps variable xi to a new variable

x• in Y •, while ρi,j
2 maps self · xnext to x•, self · x to xi, and other · x to xj .

The condition θ′1 is obtained from θ by adding information on q and q′. All fresh
variables in Y • are then projected away.

Intersection with Initial States. For a constraint φ = (m, ψ), we have
(Init

⋂
[[φ]]) 
= ∅ iff [uinit , . . . , uinit ] |= φ, where the multiset [uinit , . . . , uinit ]

is of size m.

9 Additional Features

We add a number of features to the model of Section 2, namely, Binary Com-
munication, Broadcast, and Shared Variables. In Binary Communication, two
processes satisfying some global conditions change their process states simulta-
neously. In Broadcast, a process satisfying a global condition, called the initia-
tor, changes its process state, together with all other processes, called receptors,
which satisfy another global condition. Shared Variables may have unbounded
domain, and can be read and written by all processes in the system. For all
the new features, we can use the same constraint system as in Section 7; con-
sequently checking entailment and intersection with initial states need not be
modified. Also, as shown in [3], the definition of the Pre operator can be ex-
tended to cope with the new classes of guards.
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10 Experimental Results

We have built two different prototypes that implement our approximated back-
ward reachability procedure, based on an integer resp. a real solver for handling
the constraints over the process variables. The results are summarized in Figure
1. For each protocol we give the number of iterations and the time needed for
performing the verification. The experiments are performed using a Pentium M
1.6 Ghz with 1G of memory (see [3] for more details).

Model Iterations Time Safe Trace
R I R I R I R I

Simplified Bakery Alg. 6 6 0.8s 0.3s
√ √

Lamport’s Bakery Alg. 9 9 2.1s 2s
√ √

Bogus Bakery 10 6 0.8s 11s
√ √

Ticket Mutex Alg. 9 8 0.3s 1.6s
√ √

Ricart-Agrawala Distr. Mutex Alg. 9 11 3.4s 2mn40s
√ √

Lamport’s Distr. Mutex Alg. 21 27 9mn19s 146mn
√ √

Fig. 1. Experimental results. R and I stand for the real resp. integer solver. Safe and
Trace stand for checking safety properties resp. generating a counter-example.

11 Conclusion and Future Work

We have presented a method for approximate reachability analysis of systems
which consist of an arbitrary number of processes each of which is infinite-state.
Based on the method, we have implemented a prototype and automatically ver-
ified several non-trivial mutual exclusion protocols. The Bakery example de-
scribes a distributed protocol without atomicity assumptions on the transitions.
One direction for future research is to develop a methodology for automatic ver-
ification of general classes of parameterized systems with non-atomic global con-
ditions. Furthermore, our algorithm relies on an abstract ordering which can be
naturally extended to several different types of data structures. We are currently
developing similar algorithms for systems with more complicated topologies such
as trees and general forms of graphs.
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1 Introduction

Cadp(Construction and Analysis of Distributed Processes)1 [2,3] is a toolbox for
specification, rapid prototyping, verification, testing, and performance evaluation
of asynchronous systems (concurrent processes with message-passing communi-
cation). The developments of Cadp during the last five years led to a new release
named Cadp 2006 “Edinburgh” (as a tribute to the achievements in concurrency
theory of the Laboratory for Foundations of Computer Science) that supersedes
the previous version Cadp 2001.

2 Modular Integration of Verification Techniques

Cadp 2006 includes a complete range of functionalities for the design of asyn-
chronous systems: code generation, rapid prototyping, random, interactive, or
guided simulation, explicit-state verification, test case generation, and perfor-
mance evaluation. Cadp accepts as input either networks of communicating au-
tomata or higher-level specification languages, such as the Iso standard Lotos.

Many Cadp tools operate on Labeled Transition Systems (Ltss), which are
represented either explicitly, as compact binary files encoded in the Bcg (Binary
Coded Graphs) format, or implicitly, as C programs implementing the tran-
sition relation according to the Open/Cæsar Api (Application Programming
Interface). Three forms of verification are supported by Cadp: visual checking
(graphical inspection of an Lts), model checking (satisfaction of a modal μ-
calculus formula by an Lts), and equivalence checking (comparison of two Ltss
with respect to some equivalence/preorder relation).

To address the state space explosion problem, Cadp 2006 provides the fol-
lowing verification techniques2:

– Compositional verification builds the Lts of a concurrent system incremen-
tally by generating, minimizing, and recomposing the Ltss of individual

1 http://www.inrialpes.fr/vasy/cadp
2 Related verification tools are listed at http://anna.fi.muni.cz/yahoda

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 158–163, 2007.
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processes. Refined compositional verification uses interface constraints (spec-
ified manually or synthesized automatically) that restrict the behaviour of a
process depending on its environment, thus limiting the size of intermediate
Ltss.

– On-the-fly verification avoids the complete construction of an Lts by explor-
ing only the portion relevant for verification. Model checking and equivalence
checking are reformulated in terms of Boolean Equation Systems (Bess),
which are solved on-the-fly using specialized linear-time algorithms.

– Partial order reductions, performed on-the-fly, reduce the Lts size by elimi-
nating redundancies arising from the interleaving of independent transitions,
still preserving various equivalence relations (branching bisimulation, weak
trace equivalence, etc.).

– Static analysis aims at reducing the size of the Ltss generated from a system
description, still preserving strong bisimulation.

– Massively parallel verification handles very large Ltss by using the comput-
ing resources of machine clusters and grids.

A key feature of Cadp is to allow all these techniques to be combined in a
highly modular way within the same software environment. Examples of such
combinations that cumulate the reductions and scale up to larger systems are:

1. One can use a grid to generate the Lts corresponding to a Lotos specifi-
cation, while applying static analysis and on-the-fly τ -confluence reduction
simultaneously.

2. One can model check on-the-fly whether a μ-calculus formula is satisfied by
a network of communicating Ltss, while applying partial order reduction.

3. One can compare on-the-fly an Lts to a network of communicating Ltss
that have been previously generated (taking into account refined interface
constraints) and minimized for some bisimulation.

The tools of Cadp can be invoked either interactively, by using the
Eucalyptus graphical user interface, or in batch mode, by describing the de-
sired verification scenario as a script in the Svl language.

3 New and Enhanced Tools in CADP 2006

Cadp 2006 offers 42 tools and 20 generic software libraries dedicated to verifi-
cation. Numerous tools existing in Cadp 2001 were entirely rewritten or signif-
icantly improved, and 15 new tools and code libraries were added:

– Bcg Graph generates several useful kinds of Ltss in the Bcg format, such
as bags, Fifo queues, and chaos Ltss.

– Bcg Merge [5] produces a single Bcg file from a Pbg file (see the
Distributor tool below). It is equipped with a graphical tool to monitor
the Lts generation interactively.
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– Bcg Steady and Bcg Transient [7] perform steady-state and transient
analysis of an (extended) Ctmc (Continuous-Time Markov Chain) encoded
in the Bcg format.

– Bisimulator [11,1] compares two Ltss on-the-fly modulo one out of 14
behavioural relations (strong, branching, observational, τ∗.a, safety, trace,
or weak trace equivalences — and their associated preorders). The equiva-
lence checking problem is reformulated as a Bes, which is solved using the
Cæsar Solve library below. When both Ltss are not related, Bisimulator
generates a counterexample, i.e., an acyclic Lts containing distinguishing
transition sequences. Compared with former Cadp tools, Bisimulator is
more efficient and generates smaller counterexamples.

– Cæsar 7.0 [6] is a compiler for the behaviour part of Lotos. Among other
improvements, Cæsar 7.0 implements a static analysis based on live variable
analysis, which assigns a canonical value to variables that are no longer used,
thus avoiding to distinguish states that only differ by values of variables not
used in the future. Compared to its previous version 6.2, Cæsar 7.0 can
reduce Lts size by several orders of magnitude (e.g., 104), thus allowing
larger Lotos specifications to be handled.

– Cæsar.Bdd uses Binary Decision Diagrams to perform various structural
analyses on basic Petri nets, such as exploring reachable markings to deter-
mine the set of “dead” transitions and the pairs of “concurrent” units.

– Cæsar Solve [11] is a generic software library for on-the-fly resolu-
tion of Bess, represented as implicit boolean graphs similarly to Ltss in
Open/Cæsar. It offers 6 resolution algorithms, based on breadth-first search
or depth-first search (with memory-efficient variants for acyclic or disjunc-
tive/conjunctive BESs) strategies, which also generate diagnostics (boolean
subgraphs) explaining the truth value of boolean variables.

– Determinator [7] takes as input an extended Ctmc encoded in the Bcg
format and tries to extract on-the-fly a pure Ctmc (i.e., containing only
stochastic transitions). Doing so, the tool checks a sufficient condition en-
suring that the resulting Ctmc is unique, or returns an error otherwise.

– Distributor [5] performs distributed Lts generation and on-the-fly
reduction by τ -compression and τ -confluence [10] using several machines
connected by a network. It launches a remote process on each machine to
generate a fragment of the entire Lts. The result of the distributed genera-
tion is a Pbg (Partitioned Bcg Graph), i.e., a set of Lts fragments located
on remote machines. Distributor is equipped with a graphical tool to
monitor the Pbg generation in real-time.

– Evaluator 3.5 [12,11] evaluates on-the-fly, on an Lts, temporal properties
expressed in regular alternation-free μ-calculus. The model checking problem
is reformulated as a Bes, which is solved using the Cæsar Solve library.
The tool generates full diagnostics (examples and counterexamples) and op-
timizes memory consumption (i.e., does not store the transitions, but only
the states of the Lts) for a large spectrum of properties. Evaluator 3.5 is
3 times faster and consumes 3 times less memory than Evaluator 3.0.
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– Exp.Open 2.0 [8] maps communicating Ltss composed using synchroniza-
tion vectors, parallel composition operators (from Ccs, Csp, μCrl, Lotos,
and E-Lotos), and/or generalized hide, rename, and cut operators onto the
Open/Cæsar Api. It implements partial order reductions preserving vari-
ous equivalences (e.g., branching, stochastic, weak trace equivalence). It can
also translate communicating Ltss into the Pep, Tina, and Fc2 formats,
and can synthesize interface constraints for refined compositional verifica-
tion [9]. Exp.Open 2.0 uses 2 times less memory and is up to 45 times
faster than Exp.Open 1.0.

– Projector 2.0 [13] reduces an Lts on-the-fly with respect to interface con-
straints represented by another Lts and a set of labels. Among its new fea-
tures, Projector 2.0 allows to describe the set of labels more compactly by
the way of regular expressions. Experiments indicate that Projector 2.0
is up to 4 times faster than Projector 1.0.

– Reductor 5.0 reduces an Lts on-the-fly, either partially or totally, modulo
one out of 8 relations (trace, weak trace, τ∗.a, and safety equivalences, τ -
confluence, τ -compression, τ -divergence [10], and strong bisimulation), pos-
sibly displaying the equivalence classes of the quotient graph. Some of these
reductions perform a local resolution of a Bes using Cæsar Solve. The
algorithm used by Reductor 5.0 to eliminate invisible transitions has a
lower average complexity than in earlier versions.

– Seq.Open [4] maps traces onto the Open/Cæsar Api. It implements an
optimized representation of a trace as an Lts without storing the whole trace
in memory, which is also significantly more efficient (up to 50 times faster)
than converting the trace first into a Bcg file.

Notice that the Aldébaran tool (available since the origin of Cadp) was
replaced in Cadp 2006 by a (upward-compatible) shell script that invokes
Bisimulator, Bcg Info, Bcg Min, and Reductor to provide the same func-
tionalities as Aldébaran.

4 Conclusion

Cadp 2006 “Edinburgh” is the result of five years of intensive R&D in verification
technology. Four computing platforms are currently supported: Sparc/Solaris,
Intel/Linux, Intel/Windows, and PowerPC/Mac OS. As regards impact,
366 organizations have signed the Cadp license agreement already, and Cadp
has been installed on 820 machines in the world during year 2006. Cadp was
used for 94 case-studies3 and 29 research tools4 are connected to Cadp. Most
notably, in the FormalFame project, Cadp was successfully used to validate
crucial parts of Bull’s NovaScale machines, which form the core of Tera10,
Europe’s most powerful supercomputer.

Cadp will continue to be enhanced in the next years. In particular, we plan
to apply Cadp in three main areas: software environments for critical embedded
3 listed at http://www.inrialpes.fr/vasy/cadp/case-studies
4 listed at http://www.inrialpes.fr/vasy/cadp/software
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systems (French projects OpenEmbedd and Topcased), high-performance mul-
tiprocessor architectures (French project Multival), and bio-informatics (Euro-
pean project Ec-Moan, where Cadp will contribute to the understanding of a
bacterial model system).
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1 Introduction

We present jMoped [1], a test environment for Java programs. Given a Java
method, jMoped can simulate its execution for all possible arguments within a
finite range and generate coverage information for these executions. Moreover,
it checks for some common Java errors, i.e. assertion violations, null pointer
exceptions, and array bound violations. When an error is found, jMoped finds
out the arguments that lead to the error. A JUnit [2] test case can also be
automatically generated for further testing.

Initially, jMoped was developed as a text-based translator from Java bytecode
into symbolic pushdown systems (SPDS). Technical details about the translation
process can be found in [3]. Since then, we have extended the tool with two goals:

– Harnessing the model-checking technique to support testing. Model checking
can symbolically test many inputs at the same time, is useful for finding
boundary cases, and can provide coverage metrics.

– Giving more control to the user. The tool must allow users to inspect the
intermediate results and to interrupt and refine the analysis at any time.
Partial results should also be useful for further analyses.

The resulting tool has been developed as a plug-in for Eclipse [4], which is
again called jMoped. It now consists of a graphical user interface, the translator,
and Moped [5] at the back-end. Moreover, the translator itself has been improved
in many aspects. It supports not only almost all fundamental features, e.g. as-
signment, method call, and recursion, but is also able to handle inheritance,
abstraction, and polymorphism. On the other hand, it still fails to translate
negative numbers, floats, and multi-threading programs.

2 Testing and Model Checking

Traditionally, testing and model checking are seen as distinct methodologies;
testing can detect bugs but not prove their absence, and model checking seeks
to establish the absence of bugs, possibly at the cost of taking very long to
complete (or not finishing at all). Recently, several efforts have been made at
� Partially supported by the DFG-Project “Algorithms for Software Model Checking”.
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W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 164–167, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



jMoped: A Test Environment for Java Programs 165

cross-fertilising between these two areas. Our tool falls into this line of work in
the sense that we use a model checker to support the task of testing a program.

Internally, the tool translates a Java program into an SPDS, preserving the
control flow of the program, but modelling only a finite amount of data. The
size of variables and of the heap are bounded by user-defined (artificial) ranges.
Thus, the model-checking procedure can be thought of as an extended symbolic
testing procedure, which is still incomplete (because only runs within the given
bounds are considered); however, once the bounds are established, the model
checker will perform exact checks on all executions within these bounds.

We contend that this approach can complement traditional testing methods
for two reasons: First, model checkers using compact data structures (such as
BDDs) can simulate many executions at the same time, which can be more
efficient than exhaustive testing. For example, our tool can test a Quicksort
implementation for 60 array elements if each element has only one bit, whereas
exhaustive testing for these parameters is infeasible. Secondly, model checking is
suitable for finding boundary cases, i.e. inputs with special properties that are
easily forgotten during testing, but are prone to cause bugs. E.g., two boundary
cases for a sorting procedure would be an array where all elements are the same,
or an array that is already sorted. Even relatively small bounds on the inputs are
likely to contain many interesting boundary cases, and the model checker will test
all of them (and find the faulty ones). Thus, the approach can greatly enhance
the confidence in the correctness of a program, without strictly guaranteeing it.

The results of a model-checking procedure can support testing in other ways,
too. The quality of a set of test cases is usually measured by so-called coverage
metrics, e.g., counting how many lines of code were exercised by the test cases.
We observe that such metrics can also be obtained by running a model checker on
a set of inputs and checking which lines were found to be reachable. In jMoped,
the user can observe the progress of these metrics while the checker is running.
Moreover, the user may stop the checker at any time (e.g., if the attained level
of coverage is deemed satisfactory), or ask it to specifically search for inputs
that can reach a certain target in the program. Moreover, if the checker finds
that bugs are caused by certain inputs, those inputs can be saved in a library of
JUnit test cases, where they may be useful for future test runs.

3 Working with jMoped

jMoped consists of three parts: a graphical user interface, a translator from
Java bytecode into SPDS, and an SPDS model checker. The translator and the
checker are available as stand-alone tools, and the checker is capable of handling
programs with thousands of lines, provided that the data complexity is low as is
the case, for instance, with device drivers [5]. However, the graphical interface
was developed for unit testing, with smaller, more data-intensive programs in
mind. The interface is also described in more detail in [6].

The graphical interface takes the form of an Eclipse plug-in. Figure 1 shows
an example when running with a Quicksort implementation taken from [7]. The
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Fig. 1. A view of the plug-in

left-hand side is the plug-in interface, while the right-hand side shows parts of
the code and the analysis results. Users select a method from which the analysis
should start. In the example, the method sort starting at line 43 was chosen.

jMoped has two modes of operation. In the standard mode, jMoped exhaus-
tively explores the program for all inputs within the bounds provided by the
user. This is done in two steps. First, the program (which reads input from its
user) is transformed into another program that nondeterministically generates
an input. Then, the checker exhaustively explores all behaviours of the trans-
formed program. In the second mode of operation, jMoped works backwards.
Given a postcondition, jMoped computes the set of all states (within the given
bounds) from which the states of the postcondition can be reached.

During the analysis, jMoped graphically displays its progress. First, black
markers are placed in front of all statements. While the checker is running, the
parts of the state space found to be reachable are mapped back to the Java
program, and the appearance of the corresponding markers is changed. When
a black marker turns green, it means that the corresponding Java statement is
reachable from some argument values. A red marker means that an assertion
statement has been violated by some argument values. Other markers indicate
null pointer exceptions, array bound violations, and heap overflows (see below).

After the analysis, users can either create a call trace or a JUnit test case
that reaches a given statement or violates some assertion. An example of the
call trace can be seen in lower left part of Figure 1, where the assertion violation
occured when the method sort was called with the array [1,0,1].
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In a typical scenario, a user will want to achieve 100% coverage, i.e. the checker
should test a set of inputs such that every statement is exercised at least once.
The idea for achieving this is to combine the two modes of operation. First,
one uses the standard mode to cover as many instructions as possible. Say all
but three instructions were covered. Then, in a second phase, one applies three
backward searches starting from these three particular instructions. Since these
are specific searches with the “difficult” instructions as goal, the hope is that
they have better success chances than the “blind” forward search.

For performance reasons, the user starts the checker in standard mode with
small values for the parameters, in the hope of achieving a large coverage degree
quickly. However, choosing small parameters may cause some (normally reach-
able) statements to be considered unreachable. (E.g., the body of an if-statement
guarded by the condition x >= 8 would be unreachable with a specified bit size
of less than 4.) Backward search can then be used to instruct the model checker
to search for inputs that reach the remaining statements.

There are two important parameters to jMoped: the number of bits and the
heap size. These determine the bounds for the inputs and executions that are to
be tested. The number of bits restricts the range of every number that appears
in a program, including constants, integer variables, and the lengths of arrays
or strings. The heap size directly affects the number of objects that can be
instantiated. jMoped simulates the Java heap when manipulating objects. For
example, when an object is created, it occupies a part of the heap whose size
depends on the size of the object. Note that these two parameters depend on
each other, i.e. the heap size can be at most two to the number of bits minus
one. For instance, the analysis in Figure 1 was performed with 3 bits and heap
size 7. It is also possible to specify how many bits to use for individual variables,
parameters, or fields. The annotation at line 42 of Figure 1 means that the length
of array a has two bits, and each of its elements has one bit.
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Abstract. We present Hector, a software tool for combining different
abstraction methods to extract sound models of heap-manipulating im-
perative programs with recursion. Extracted models may be explored vi-
sually and model checked with a wide range of “propositional” temporal
logic safety properties, where “propositions” are formulae of a first order
logic with transitive closure and arithmetic (L). Hector uses techniques
initiated in [4,5] to wrap up different abstraction methods as modular
analysis plugins, and to exchange information about program state be-
tween plugins through formulae of L. This approach aims to achieve both
(apparently conflicting) advantages of increased precision and modular-
ity. When checking safety properties containing non-independent “propo-
sitions”, our model checking algorithm gives greater precision than a
näıve three-valued one since it maintains some dependencies.

1 Introduction

Abstraction has been proposed as the key to building systems which automati-
cally verify the correctness of software programs. Software written in everyday
languages such as Java typically has an enormous or infinite state space, but
abstraction can reduce this to a finite space of (abstract) states. The software
verification literature describes many abstraction methods; predicate abstraction
[2] and three-valued shape analysis [9] are two important examples.

This paper presents Hector, a Prolog implementation of abstraction-based
verification which allows users to experiment with three interesting new features:

F#1 Abstractions are pluggable: Abstraction methods are wrapped inside
modules called analysis plugins, which implement a common interface; algo-
rithms for constructing and checking models are generic and use whatever plug-
ins are activated. By activating several analyses together we can verify programs
with diverse behavior, e.g. those which use both linked data structures and arith-
metic. Such programs may be beyond the reach of shape analysis (which lacks
a systematic treatment of arithmetic), and also beyond the reach of predicate
abstraction (which doesn’t handle linked data structures well). But the combina-
tion of the two analyses may succeed. The modular structure of Hector makes
it easy to integrate and investigate new analyses under such cooperation.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 168–172, 2007.
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F#2 Plugins exchange information: Crucially, the interface which plugins
implement allows them to exchange information about program state, expressed
as formulae of a common logic L. This information flow between the various plu-
gins increases the precision of their respective analyses. Because there is a single
common language, modularity is not broken. The implementor of a new abstrac-
tion method only has to make his plugin “understand” the common language,
and the plugin will then automatically cooperate with existing ones.

F#3 Ad-hoc model checking: Because the abstraction process is generally
costly, we maximize the utility of each abstract model generated by allowing the
user to model check it with any property from an expressive safety language:
the LTL fragment from [10], but where “propositions” are now any constraints
on the program’s current and initial states written in L. Thus one can check for
the absence of memory errors and assertion violations, but also much more.

The first two features were proposed and discussed in [4,5], where their formal
basis is set out. We also refer to [4,5] for an account of related work. Hector’s
online version [6] can be used with plugins for monomial predicate abstraction,
trivector predicate abstraction, three-valued shape analysis and constant propa-
gation. (The predicate abstraction plugins call the theorem prover Simplify [11]
and the shape analysis plugin calls the shape analyzer TVLA [12].) The web ver-
sion offers some example programs to demonstrate various aspects; alternatively
users may experiment with programs of their own.

2 Functionality of Hector

Hector maintains a list of models of (possibly different) programs; at any time
users may build a new model, or select an existing one to draw graphically, model
check, annotate with comments or delete.

2.1 Model Construction

To create a model, there are two steps.

S1 Enter the program to be analyzed: Hector analyses imperative, object-
based programs, input as textual representations of control flow graphs (CFGs);
this input language is sufficient to naturally express many simple Java-style
programs. We currently don’t handle inheritance, exceptions or concurrency.

S2 Configure the analyses: Firstly the user chooses which plugins to use.
Secondly, the user configures each plugin; the settings for a plugin may tune the
analysis it performs as well as how much information it propagates to other plu-
gins. For the predicate abstraction plugins, for instance, a configuration consists
of a choice of which abstraction predicates to use.

Hector then builds an abstract transition system which over-approximates
the program, using a work-list algorithm which calls the selected plugins. Each
abstract state is a tuple, containing one abstract value for each of the plug-
ins; these are interpreted conjunctively. Recursion is handled by summarization,
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Fig. 1. Part of an abstract model, as generated and drawn by Hector. Program
variables n and t are used for integers, head, x and y for addresses of list nodes.

as in [1]. As stated earlier, during model construction each plugin can propa-
gate information about possible program states, expressed as formulae of the
common logic L; currently a round of propagation happens at every successor
computation. Our choice of L for this purpose is discussed in [5].

To make it easier to create a new model, the program and configuration details
can be copied from an existing model and then modified; alternatively Hector
generates reasonable default configuration options.

2.2 Drawing Abstract Models

Hector can draw the generated models in graphical form1, as in Fig. 1. Each
abstract state is drawn as a box containing a list of the formulae propagated
between plugins during successor computation, and an illustration of its com-
ponent for each plugin: (left-to-right) for constant propagation a partial map
from variables to integers, for shape analysis a three-valued heap graph, and for
trivector predicate abstraction a collection of (here four) abstraction predicates
or their negations. CFG nodes are also shown, each one being “boxed in” with
the set of abstract states collected there. The user can ask for all propagated
formulae to be shown, or (as in Fig. 1) just those that turn out to affect the
analysis. The statement shown in Fig. 1 appends a new node to a linked list,
currently of length one. The shape analysis plugin shares a fact about reachabil-
ity of nodes from the list head, enabling predicate abstraction to maintain the
constraint that reachable list nodes have nonnegative data values.
1 The Graphviz toolkit [7] is used for graph layout.
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2.3 Ad-Hoc Model Checking

Once a model has been built, safety properties can be checked against it. Our
safety language is “two-level”: we take the syntactic safety LTL fragment from
Thm. 3.1 in [10], but allow the “propositions” to be arbitrary L constraints on
the program’s current and initial states. This language can express quite a lot:
for example,

G (allocd(node, x) → G (∃Y : allocd(node, Y ) ∧ next(Y ) = x))

says that, if the variable x ever becomes a reference to a linked list node, then
forever after, x is pointed to by the next field of some list node (but not necessar-
ily the same one in each future state). For convenience, however, shortcuts are
available in Hector’s interface for commonly used idioms, such as the absence
of memory errors and assertion violations.

Model checking is performed using automata (generated by invoking scheck
[8]), where we reuse Hector’s machinery of sharing and successor computation
to look up the values of the L “propositions” in abstract states.

If a counterexample is found it is shown to the user. If no counterexample
is found, then the property holds of the original program. However (as usual
after abstraction) counterexamples may be spurious, in which case a refined
model with a better configuration may suffice to verify the property. Optionally
Hector can search for what we call a strong counterexample, one in which
the evaluation of the L “propositions” of the safety property yielded a definite
answer in every state (as opposed to the third value “unknown”). While this still
does not guarantee that the counterexample is feasible (because the existence of
transitions is still uncertain), we conjecture that a strong counterexample will
typically be more informative to the user than a weak one, even if the latter is
shorter.

Also, similarly to what was observed in [3], a näıve model checking algorithm
will lose precision if “propositions” have dependencies; our algorithm sometimes
delivers a definite answer in these cases. For an example of this see [6].

Future work may involve adding CEGAR (counterexample-guided abstraction
refinement) features to Hector. We are particularly interested in the possibility
of a generic CEGAR algorithm which would work with all plugins, perhaps along
the lines of the ideas put forward in [13].
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Abstract. We present the Why/Krakatoa/Caduceus set of tools for de-
ductive verification of Java and C source code.

1 Introduction

Why/Krakatoa/Caduceus is a set of tools for deductive verification of Java and
C source code. In both cases, the requirements are specified as annotations in
the source, in a special style of comments. For Java (and Java Card), these
specifications are given in the Java Modeling Language [1] and are interpreted
by the Krakatoa tool. For C, we designed our own specification language, largely
inspired from JML. Those are interpreted by the Caduceus tool. The tools are
available as open source software at http://why.lri.fr/.

The overall architecture is presented on Figure 1. The general approach is to
generate Verification Conditions (VCs for short): logical formulas whose validity
implies the soundness of the code with respect to the given specification. This
includes automatically generated VCs to guarantee the absence of run-time er-
rors: null pointer dereferencing, out-of-bounds array access, etc. Then the VCs
can be discharged using one or several theorem provers. The main originality of
this platform is that a large part is common to C and Java. In particular there
is a unique, stand-alone, VCs generator called Why, which is able to output VCs
in the native syntax of many provers, either automatic or interactive ones.

Figure 2 shows a short example of annotated C code. Clauses requires in-
troduces a precondition, ensures a postcondition, and assigns specifies the
set of modified memory locations. \valid is a built-in predicate which specifies
that the given pointer can be safely dereferenced, and \old denotes the value
of the given expression at the function entry. Other kind of annotations include
loop invariants and variants. VCs are generated modularly: when calling credit
from test, only the specification of credit is used. To make this possible, the
assigns clause is essential.

� This research is partly supported by ANR RNTL grant “CAT”.
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Annotated C program

Caduceus

JML-annotated Java program

KrakatoaWhy program

Why

Verification Conditions

Interactive provers
(Coq, PVS,
Isabelle, etc.)

Automatic provers
(Simplify, Yices,
haRVey, Ergo,
CVC-lite, CVC3, etc.)

Fig. 1. Platform Architecture

typedef struct purse {
int balance;

} purse;

/*@ requires \valid(p) && s >= 0
@ assigns p->balance
@ ensures p->balance ==
@ \old(p->balance) + s
@*/

void credit(purse *p,int s) {
p->balance += s;

}

/*@ requires \valid(p1) && \valid(p2)
@ && p1 != p2 && p1->balance == 0
@ ensures p1->balance == 100
@*/

void test(purse *p1, purse *p2) {
credit(p1,100);
p2->balance = 0;
return p1->balance;

}

Fig. 2. Example of annotated C source code

2 The Why Verification Condition Generator

The input syntax of Why is a specific language dedicated to program verification.
As a programming language, it is a ‘WHILE’ language which (1) has limited side-
effects (only mutable variables that cannot be aliased), (2) provides no built-in
data type, (3) proposes basic control statements (assignment, if, while) but
also exceptions (throwing and catching). A Why program is a set of functions,
annotated with pre- and postconditions. Those are written in a general purpose
specification language: polymorphic multi-sorted first-order logic with built-in
equality and arithmetic. This logic can be used to introduce abstract data types,
by declaring new sorts, function symbols, predicates and axioms.

The VCs generation is based on a Weakest Precondition calculus, incorpo-
rating exceptional postconditions and computation of effects over mutable vari-
ables [2]. Last but not least, Why provides a multi-prover output as shown on
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Figure 1. Actually Why can even by used only as a translator from first-order
formulas to the syntax of those back-end provers. This translation includes a
non-trivial removal of polymorphic sorts when the target logic does not support
polymorphism [3].

3 Krakatoa and Caduceus

The common approach to Java and C source code is to translate them into
Why programs. The Why specification language is then used both for the
translation of input annotations and for the modeling of Java objects (resp. C
pointers/structures). This model of the memory heap is defined by introducing
abstract data types together with operations and an appropriate first-order ax-
iomatization. Our heap memory models for C and Java both follow the principle
of the Burstall-Bornat ‘component-as-array’ model [4]. Each Java object field
(resp. C structure field) becomes a Why mutable variable containing a purely
applicative map. This map is equipped with an access function select so that
select(f, p) denotes the field of the structure pointed-to by p; and an update
function store so that store(f, p, v) denotes a new map f ′ identical to f except
at position p where it has value v. These two functions satisfy the so-called theory
of arrays :

select(store(f, p, v), p) = p

p �= p′ → select(store(f, p, v), p′) = select(f, p′)

For the example of Figure 2, the translation of the statement p->balance += s
into the Why language is (1) balance := store(balance, p, select(balance, p)+ s).
The translation of the postcondition balance == \old(balance)+s is
select(balance, p) = select(balance@, p) + s (where in Why, x@ de-
notes the old value of x) and its weakest precondition through (1) is
select(store(balance, p, select(balance, p)+ s), p) = select(balance, p) + s which
is a first-order consequence of the theory of arrays.

4 Past and Future Work

The heap memory models are original, in particular with the handling of as-
signs clauses [5], and C pointer arithmetic [6]. Since these publications, many
improvements have been made on the platform:

– Improved efficiency, including a separation analysis [7].
– More tools, including a graphical interface.
– Support for more provers, e.g. SMT provers (Yices, RV-sat, CVC3, etc.) and

Ergo, with encodings of polymorphic sorts as seen above.
– Enhancements of specification languages both for C and Java: ghost vari-

ables, axiomatic models
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– Specifically to Krakatoa, more support for Java Card source: transactions [8].
– Support for floating-point arithmetic [9].

Several case studies have been conducted: Java Card applets provided by Ax-
alto [10] and Trusted Logic companies; the Schorr-Waite graph-marking algo-
rithm, considered as a challenge for program verification [11]; some avionics
embedded code provided by Dassault aviation company, which leaded to an orig-
inal analysis of memory separation [7]. Our intermediate first-order specification
language was also used to design abstract models of programs [12].

To conclude, our platform is tailored to the proof of advanced behavioral
specifications and proposes an original approach based on an intermediate first-
order specification language. Its main characteristic is versatility: multi-prover
output, multi-source input, on-the-fly generation of first-order models.

Future work includes the development of an integrated user environment.
We are also designing an improved support for abstract modeling, by providing
(UML-like) higher-level models and refinement. A key issue for the future is also
the automatic generation of annotations. Long term perspective is to contribute
to Grand Challenge 6 on Verified Software Repository: a key goal for us is to
build libraries of verified software.
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Abstract. We propose a shape analysis that adapts to some of the
complex composite data structures found in industrial systems-level pro-
grams. Examples of such data structures include “cyclic doubly-linked
lists of acyclic singly-linked lists”, “singly-linked lists of cyclic doubly-
linked lists with back-pointers to head nodes”, etc. The analysis
introduces the use of generic higher-order inductive predicates describing
spatial relationships together with a method of synthesizing new param-
eterized spatial predicates which can be used in combination with the
higher-order predicates. In order to evaluate the proposed approach for
realistic programs we have performed experiments on examples drawn
from device drivers: the analysis proved safety of the data structure ma-
nipulation of several routines belonging to an IEEE 1394 (firewire) driver,
and also found several previously unknown memory safety bugs.

1 Introduction

Shape analyses are program analyses which aim to be accurate in the presence
of deep-heap update. They go beyond aliasing or points-to relationships to infer
properties such as whether a variable points to a cyclic or acyclic linked list (e.g.,
[6, 8, 11, 12]). Unfortunately, today’s shape analysis engines fail to support
many of the composite data structures used within industrial software. If the
input program happens only to use the data structures for which the analysis is
defined (usually unnested lists in which the field for forward pointers is specified
beforehand), then the analysis is often successful. If, on the other hand, the input
program is mutating a complex composite data structure such as a “singly-
linked list of structures which each point to five cyclic doubly-linked lists in
which each node in the singly-linked list contains a back-pointer to the head of
the list” (and furthermore the list types are using a variety of field names for
forward/backward pointers), most shape analyses will fail to deliver informative
results. Instead, in these cases, the tools typically report false declarations of
memory-safety violations when there are none. This is one of the key reasons
why shape analysis has to date had only a limited impact on industrial code.

In order to make shape analysis generally applicable to industrial software
we need methods by which shape analyses can adapt to the combinations of
data structures used within these programs. Towards a solution to this problem,

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 178–192, 2007.
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we propose a new shape analysis that dynamically adapts to the types of data
structures encountered in systems-level code.

In this paper we make two novel technical contributions. We first propose
a new abstract domain which includes a higher-order inductive predicate that
specifies a family of linear data structures. We then propose a method that syn-
thesizes new parameterized spatial predicates from old predicates using infor-
mation found in the abstract states visited during the execution of the analysis.
The new predicates can be defined using instances of the inductive predicate in
combination with previously synthesized predicates, thus allowing our abstract
domain to express a variety of complex data structures.

We have tested our approach on set of small (i.e. <100 LOC) examples rep-
resentative of those found in systems-level code. We have also performed a case
study: applying the analysis to data-structure manipulating routines found in a
Windows IEEE 1394 (firewire) device driver. Our analysis proved safety of the
data structure manipulation in a number of cases, and found several previously
unknown memory-safety violations in cases where the analysis failed to prove
memory safety.

Related work. A few shape analyses have been defined that can deal with more
general forms of nesting. For example, the tool described in [7] infers new in-
ductive data-structure definitions during analysis. Here, we take a different tack.
We focus on a single inductive predicate which can be instantiated in multiple
ways using higher-order predicates. What is discovered here is the predicates
for instantiation. The expressiveness of the two approaches is incomparable. [7]
can handle varieties of trees, where the specific abstraction given in this paper
cannot. Conversely, our domain supports doubly-linked list segments and lists of
cyclic lists with back-pointers, where [7] cannot due to the fact that these data
structures require inductive definitions with more than two parameters and the
abstract domain of [7] cannot express such definitions.

The parametric shape analysis framework of [9, 16] can in principle describe
any finite abstract domain: there must exist some collection of instrumentation
predicates that could describe a range of nested structures. Indeed, it could be the
case that the work of [10], which uses machine learning to find instrumentation
predicates, would be able in principle to infer predicates precise enough for the
kinds of examples in this paper. The real question is whether or not the resulting
collection of instrumentation predicates would be costly to maintain (whether in
TVLA or by other means). There has been preliminary work on instrumentation
predicates for composite structures [14], but as far as we are aware it has not
been implemented or otherwise evaluated experimentally.

Work on analysis of complex structures using regular model checking includes
an example on a list of lists [3]. The encoding scheme in [3] seems capable of
describing many of the kinds of structure considered in this paper; again, the
pertinent question is about the cost of the subsequent fixed-point calculation. It
would be interesting to apply that analysis to a wider range of test programs.

A recent paper [17] also considers a generalized notion of linear data struc-
ture. It synthesizes patterns from heap configurations in a way that has some
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similarities with our predicate discovery method, in particular in generalizing re-
peated subgraphs with a kind of list structure. However, unlike ours, the abstract
domain in [17] does not treat nested data structures such as lists of lists.

2 Synthesized Predicates and General Induction Schemes

The analysis described in this paper fits into the common structure of shape
analyses based on abstract interpretation (e.g. [15, 16]) in which a fixed-point
computation performs symbolic execution (a.k.a. update) together with focusing
(a.k.a. rearrangement or coercion) to partially concretize abstract heaps and
abstraction (a.k.a. canonicalization or blurring) to aid convergence to a fixed
point. In this work we use a representation of abstract states based on separation
logic formulæ, building on the methods of [1, 4].

There are two key technical ideas used in our new analysis:

Generic inductive spatial predicates: We define a new abstract domain which
uses a higher-order generalization of the list predicates considered in the
literature on separation logic.1 In effect, we propose using a restricted subset
of a higher-order version of separation logic [2]. The list predicate used in
our analysis, ls Λ (x, y, z, w), describes a (possibly empty, possibly cyclic,
possibly doubly-) linked list segment where each node in the segment itself
is a data structure (e.g. a singly-linked list of doubly-linked lists) described
by Λ. The ls predicate allows us to describe lists of lists or lists of structs of
lists, for example, by an appropriate choice of Λ.

Synthesized parameterized non-recursive predicates: The abstraction phase of
the analysis, which simplifies the symbolic representations of heaps, in our
case is also designed to discover new predicates which are then fed as param-
eters to the higher-order inductive (summary) predicates, thereby triggering
further simplifications. It is this predicate discovery aspect that gives our
analysis its adaptive flavor.

Example. Fig. 1 shows a heap configuration typical of a Windows device driver.
This configuration can be found, for example, in the Windows device driver sup-
porting IEEE 1394 (firewire) devices, 1394DIAG.SYS. In this figure the pointer
devObj is a pointer to a device object, defined by a Windows kernel structure
called DEVICE_OBJECT. Each device object has a pointer to a device extension,
which is used in essence as a method of polymorphism: device drivers declare
their own driver-specific device extension type. In the case of 1394DIAG.SYS, the
device extension is named DEVICE_EXTENSION and is defined to hold a number
of locks, lists, and other data. For simplicity, in Fig. 1 we have depicted only
three of the five cyclic doubly-linked lists in DEVICE_EXTENSION. Two of the
three circular lists contain nested acyclic lists, and the nodes of these two lists
have pointers back to the shared header DEVICE_EXTENSION. A subtle point is

1 In this paper we concentrate on varieties of linked list, motivated by problems in
device drivers, but the basic ideas might also be applied with other structures.
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Fig. 1. Device driver-like heap configuration

that these nested lists (via pMdl or IsochDescriptor_Mdl) can be either empty
or nonempty. This requires using a Λ in ls Λ (x, y, z, w) that covers both empty
and nonempty linked lists; in contrast, when dealing with lists without nesting,
it was possible to consider nonempty lists only [4].

There is further nesting that the kernel can see, that we have not depicted
in the diagram. Each DEVICE_OBJECT participates in two further linked lists,
one a list of all firewire drivers connected to a system, and the other a stack
containing various drivers. This yields a “lists of lists of lists” nesting structure.
More significantly, since DEVICE_OBJECT nodes participate in different linked
lists we have overlapping structures, resulting in “deep sharing” reminiscent of
that found in graphs. It is possible to write a logical formula to describe such
structures. But, as far as we are aware, a tractable treatment of deep sharing
remains an open problem in shape analysis. This paper is no different. Our
abstract domain can describe nesting of disjoint sublists, but not overlapping
structures. We state this just to be clear about this limitation of our approach.

When the abstraction step from our analysis is applied to the heap in Fig. 1
several predicates are discovered. Consider the singly-linked lists coming out of
nodes in the first and third doubly-linked lists. Fig. 1 shows six of those lists,
two of which are empty. These lists consist of C structures of type MDL, and
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ΛMDL � λ[x′, y′, z′, w′, ()]. x=w′ ∧ x′ �→ MDL(Next : z′)

ΛAsync � λ[x′, y′, z′, w′, (e′)]. x′=w′ ∧
x′ �→ ASYNC ADDRESS DATA(AsyncAddressData Blink : y′, AsyncAddressData Flink : z′,

DeviceExtension : de, pMdl : e′) ∗ ls ΛMDL (e′, , 0, )
ΛBus � λ[x′, y′, z′, w′, ()]. x′=w′ ∧ x′ �→BUS RESET IRP(BusResetIrp Blink : y′, BusResetIrp Flink : z′)

ΛIsoch � λ[x′, y′, z′, w′, (e′)]. x′=w′ ∧
x′ �→ ISOCH DETACH DATA(IsochDetachData Blink : y′, IsochDetachData Flink : z′,

DeviceExtension: de, IsochDescriptor Mdl : e′) ∗
ls ΛMDL (e′, , 0, )

H � devObj �→ DEVICE OBJECT(DeviceExtension : de) ∗
de �→ DEVICE EXTENSION(AsyncAddressData Flink : a′, AsyncAddressData Blink : a′′,

BusResetIrp Flink : b′, BusResetIrp Blink : b′′,

IsochDetachData Flink : i′, IsochDetachData Blink : i′′) ∗
ls ΛAsync (a′, de, de, a′′) ∗ ls ΛBus (b′, de, de, b′′) ∗ ls ΛIsoch (i′, de, de, i′′)

Fig. 2. Parameterized predicates inferred from the heap in Fig. 1, and the result H
of abstracting the heap with those predicates. In the predicates ΛAsync and ΛIsoch , e′

is not a parameter, but an existentially quantified variable inside the body of Λ.

they can be described by “ls ΛMDL (e′, , 0, )” for some e′. Here the predicate
ΛMDL(x′, y′, z′, w′) (shown in Fig. 2) is a predicate that takes in four parameters
(as do all parameterized predicates in this work) and then, using �→ from sepa-
ration logic, says that a cell with type MDL is allocated at the location pointed
to by x′, and that the value of the Next field is equal to z′.

Next, the three doubly-linked lists are described with further instances of ls,
obtained from predicates ΛAsync , ΛBus , and ΛIsoch in Fig. 2. ΛAsync and ΛIsoch

describe nodes which have pointers to the header de, and which also point to
nested singly-linked lists. Those predicates are built from ΛMDL, a parameterized
predicate for describing singly-linked lists.

The original heap is covered by the separation logic formula H in Fig. 2. The
separating conjunction ∗ is used to describe three distinct doubly-linked lists
which themselves are disjoint from structures de and devObj. In reading these
formulæ, it is crucial to realize that the device extension, de, is not one of the
nodes in the portion of memory described by any of the three ∗-conjuncts at
the bottom. For instance, ls ΛAsync (a′, de, de, a′′) describes a “partial” doubly-
linked list from a′ to a′′, with an incoming pointer from de to a′ and an out-
going pointer from a′′ to de. Circularity in this case is decomposed into the
∗-composition of a single node, de, and an acyclic structure. The formula H is
more abstract than the beginning heap in that the lengths of the doubly-linked
lists and of nested singly-linked lists have been forgotten: this formula is also
satisfied by heaps similar to that in Fig. 1 but of different size.

3 Symbolic Heaps with Higher-Order Predicates

We now define the abstract domain of symbolic heaps over which our analysis is
defined. Let Var be a finite set of program variables, and Var ′ be an infinite set
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of variables disjoint from Var . We use Var ′ as a source of auxiliary variables to
represent quantification, parameters to predicates, etc. Let Fld be a finite set of
field names and Loc be a set of memory locations.

In this paper, we consider the storage model given by Stack � (Var ∪ Var ′)�
Val , Heap � Loc ⇀fin (Fld ⇀ Val), and States � Stack × Heap. Thus, a state
consists of a stack s and a heap h, where the stack s specifies the values of pro-
gram (non-primed) variables as well as those of auxiliary (primed) variables. In
our model, each heap cell stores a whole structure; when h(l) is defined, it is a
partial function k where the domain of k specifies the set of fields declared in the
structure l, and the action of k specifies the values of those fields.

Our analysis uses symbolic heaps specified by the following grammar:

x ∈ Var variables
x′ ∈ Var ′ primed variables
f ∈ Fld fields

E ::= x | x′ | nil expressions
Π ::= true | E=E | E �=E | Π ∧ Π pure formulæ

Σ ::= emp | Σ ∗ Σ | E �→T (�f : �E) | ls Λ (E, E, E, E) | true spatial formulæ
H ::= Π ∧ Σ symbolic heaps
Λ ::= λ[x′, x′, x′, x′, �x′]. H par. symb. heaps

When Λ = λ[x′, y′, z′, w′, �v′]. H , we could have written Λ(x′, y′, z′, w′, �v′) = H .
We write Λ[D, E, F, G, �C] for the symbolic heap obtained by instantiating Λ’s pa-
rameters: (λ[x′, y′, z′, w′, �v′]. H)[D, E, F, G, �C] = H [D/x′, E/y′, F/z′, G/w′, �C/�v′].

The predicate “ls Λ (If , Ob, Of , Ib)” represents a segment of a (generic) doubly-
linked list, where the shape of each node in the list is described by the first pa-
rameter Λ (i.e., each node satisfies this parameter), and some links between this
segment and the rest of the heap are specified by the other parameters. Parameters
If (the forward input link) and Ib (the backward input link) denote the (externally
visible) memory locations of the first and last nodes of the list segment. The analy-
sis maintains the links from the outside to these exposed cells, so that the links can
be used, say, to traverse the segment. Usually, If denotes the address of the “root”
of a data structure representing the first node, such as the head of a singly-linked
list. The common use of Ib is similar. Parameters Ob (called backward output link)
and Of (called forward output link) represent links from (the first and last nodes
of) the list segment to the outside, which the analysis decides to maintain. Picto-
rially this can be viewed as:

....
Ib

Λ Λ
Of

Λ
Ob

If

When lists are cyclic, we will have Of=If and Ob=Ib.
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Generalized ls. The formal definition of ls is given as follows. For a parameterized
symbolic heap Λ, ls Λ (If , Ob, Of , Ib) is the least predicate that holds iff

(If = Of ∧ Ib = Ob∧emp) ∨ (∃x′, y′, �z′. (Λ[If , Ob, x
′, y′, �z′]) ∗ ls Λ (x′, y′, Of , Ib))

where x′, y′, �z′ are chosen fresh. A list segment is empty, or it consists of a node
described by an instantiation of Λ and a tail satisfying ls Λ (x′, y′, Of , Ib). Note
that Λ is allowed to have free primed or non-primed variables. They are used to
express the links from the nodes that are targeted for the same address, such as
head pointers common to every element of the list.

Examples. The generic list predicate can express a variety of data structures:

– When Λs is λ[x′, y′, z′, x′, ()]. (x′ �→ Node(Next : z′)) then the symbolic heap
ls Λs (x, y′, z, w′) describes a standard singly-linked list segment from x to
z. (Here note how we use the syntactic shorthand of including x′ twice in
the parameters instead of adding an equality to the predicate body.)

– A standard doubly-linked list segment is expressed by ls Λd (x, y, z, w) when
Λd is λ[x′, y′, z′, x′, ()]. x′ �→ DNode(Blink : y′, Flink : z′).

– If Λh is λ[x′, y′, z′, x′, ()]. x′ �→ HNode(Next : z′, Head : k), the symbolic heap
ls Λh (x, y′, nil, w′) expresses a nil-terminated singly-linked list x where each
element has a head pointer to location k.

– Finally, when Λ is

λ[x′, y′, z′, x′, (v′, u′)].
x′ �→ SDNode(Next : z′, Blink : u′, Flink : v′) ∗ ls Λd (v′, x′, x′, u′)

then ls Λ (x, y′, nil, w′) describes a singly-linked list of cyclic doubly-linked
lists where each singly-linked list node is the sentinel node of the cyclic
doubly-linked list.

Abstract domain. Let FV(X) be the non-primed variables occurring in X and
FV′(X) be the primed variables. Let close(H) be an operation which existentially
quantifies all the free primed variables in H (i.e. close(H) � ∃FV′(H). H). We
use � to mean semantic entailment (i.e. that any concrete state satisfying the
antecedent also satisfies the consequent). The meaning of a symbolic heap H
(i.e. set of concrete states H represents) is defined to be the set of states that
satisfy close(H) in the standard semantics [13]. Our analysis assumes a sound
theorem prover �, where H � H ′ implies H � close(H ′). The abstract domain
D# of our analysis is given by: SH � {H | H � false} and D# � P(SH)�. That
is, the abstract domain is the powerset of symbolic heaps with the usual subset
order, extended with an additional greatest element � (indicating a memory-
safety violation such as a double disposal). Semantic entailment � can be lifted
to D# as follows: d � d′ if d′ is �, or if neither d nor d′ is � and any concrete
state that satisfies the (semantic) disjunction

∨
d also satisfies

∨
d′.
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4 Canonicalization

As is standard, our shape analysis computes an invariant assertion for each pro-
gram point expressed by an element of the abstract domain. This computation
is accomplished via fixed-point iteration of an abstract post operator that over-
approximates the concrete semantics of the program.

The abstract semantics consists of three phases: materialization, execution,
and canonicalization. That is, the abstract post [[C]] for some loop-free concrete
command C is given by the composition materializeC ; executeC ; canonicalize .
First, materializeC partially concretizes an abstract state into a set of abstract
states such that, in each, the footprint of C (that portion of the heap that C
may access) is concrete. Then, executeC is the pointwise lift of symbolically
executing each abstract state individually. Finally, canonicalize abstracts each
abstract state in effort to help the analysis find a fixed point.

The materialization and execution operations of [1, 4] are easily modified for
our setting. In contrast, the canonicalization operator for our abstract domain
significantly departs from [4] and forms the crux of our analysis. We describe it
in the remainder of this section.

Canonicalization performs a form of over-approximation by soundly removing
some information from a given symbolic heap. It is defined by the rewriting rules
(�) in Fig. 3. Canonicalization applies those rewriting rules to a given symbolic
heap according to a specific strategy until no rules apply; the resulting symbolic
heap is called canonical .

The AppendLeft and AppendRight rules (for the two ends of a list) roll up
the inductive predicate, thereby building new lists by appending one list onto
another. Note that the appended lists may be single nodes (i.e. singleton lists).
Crucially, in each case we should be able to use the same parameterized predicate
Λ to describe both of the to-be-merged entities: The canonicalization rules build
homogeneous lists of Λ’s. The variable side-conditions on the rules are necessary
for precision but not soundness; they prevent the rules from firing too often.

The Predicate Intro rule from Fig. 3 represents a novel aspect of our canonical-
ization procedure. It requires a predicate Λ that can be used to describe similar
portions of heap, and two appropriately connected Λ nodes are removed from
the symbolic heap and replaced with an ls Λ formula. The function Preds in the
rule takes a symbolic heap as an argument and returns a set of predicates Λ. It is
a parameter of our analysis. One possible choice for Preds is “fixed abstraction”,
where a fixed finite collection of predicates is given beforehand, and Λ is drawn
from that fixed collection. Another approach is to consider an “adaptive abstrac-
tion”, where the predicates Λ are inferred by scrutinizing the linking structure in
symbolic heaps encountered during analysis. There is a tradeoff here: the fixed
abstraction is simpler and can be effective, but requires more input from the
user. We describe an approach to adaptive abstraction in the next section.

There is one further issue to consider in implementing the Predicate Intro
rule. The first has to do with the entailment H0 � – in the premise of the
rule. We require a frame inferring theorem prover [1]—a prover for entailments
H0 � H1 ∗H2 where only H0 and H2 are given and H1 is inferred. While the aim
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Define spatial(Π ∧ Σ) to be Σ.

E=x′ ∧ H � H[E/x′]
(Equality)

x′ 	∈ FV′(spatial(H))

E 	=x′ ∧ H � H
(Disequality)

FV(If , Ib) = ∅ FV′(If , Ib) ∩ FV′(spatial(H)) = ∅
H ∗ ls Λ (If , Ob, Of , Ib) � H ∗ true

(Junk 1)

FV(E) = ∅ FV′(E) ∩ FV′(spatial(H)) = ∅
H ∗ (E �→ T (�f : �E)) � H ∗ true

(Junk 2)

H0  H1 ∗ ls Λ (If , Ob, x′, y′) ∧ If 	= x′ {x′, y′} ∩ FV′(spatial(H1)) ⊆ {If , Ib}
H0 ∗ ls Λ (x′, y′, Of , Ib) � H1 ∗ ls Λ (If , Ob, Of , Ib)

(Append Left)

H0  H1 ∗ ls Λ (x′, y′, Of , Ib) ∧ x′ 	= Of {x′, y′} ∩ FV′(spatial(H1)) ⊆ {If , Ib}
H0 ∗ ls Λ (If , Ob, x′, y′) � H1 ∗ ls Λ (If , Ob, Of , Ib)

(Append Right)

Λ ∈ Preds(H0) H0  H1 ∗ Λ[If , Ob, x′, y′, �u′] ∗ Λ[x′, y′, Of , Ib, �v′]
({x

′
, y

′} ∪ �u′ ∪ �v′) ∩ FV′(spatial(H)) ⊆ {If , Ib}
H0 � H1 ∗ ls Λ (If , Ob, Of , Ib)

(Predicate Intro)

Fig. 3. Rules for Canonicalization

of a frame inferring theorem prover is to find a decomposition of H0 into H1 and
H2 such that the entailment holds, frame inference should just decompose the
formula, not weaken it (or else frame inference could always return H1 = true).
So for a call to frame inference, we not only require the entailment to hold, but
also require that there exists a disjoint extension of the heap satisfying H2, and
the extended heap satisfies H0.2

There is a progress measure for the rewrite rules, so � is strongly normal-
izing. The crucial fact underlying soundness is that all canonicalization rules
correspond to true implications in separation logic, i.e. we have that H � H ′

whenever H � H ′. This means that however we choose to apply the rules,
we will always maintain soundness of the analysis. In particular, soundness is
independent of the choice of the Preds function used in the Predicate Intro rule.

There are two sources of nondeterminism in the � relation: the choice of order
in which rules are applied, and the choice of which Λ to use in the Predicate Intro
rule. The latter appears to be much more significant in practice than the former.
In the implementation we have used a deterministic reduction strategy with no
backtracking. But changes in the strategy for choosing Λ can have a dramatic
impact on the performance and precision of the analysis algorithm.

5 Predicate Discovery

We now give a particular specification of the Preds function in the (Predicate Intro)
rule, based on the idea of similar repeated subgraphs. We emphasize that the graph
2 Different strengths of prover � can be considered. A weak one would essentially just

do graph decomposition for frame inference.
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view of a symbolic heap is intuitive but does not need semantic analysis here: as
we indicated above, soundness of the analysis is independent of Preds. We are just
describing one particular instance of Preds, which might be viewed as an heuristic
constraint on the choice of new predicates.

The idea is to treat the spatial part of a symbolic heap H as a graph,
where each atomic ∗-conjunct in H becomes a node in the graph; for instance,
E �→ T (�f : �E) becomes a node E with outgoing edges �E. The algorithm starts by
looking for nodes that are connected together by some fields, in a way that they
can in principle become the forward and/or backward links of a list. Call these
potential candidates root nodes, say El and Er. Once root nodes are found, the
procedure Preds(H) traverses the graph from El as well as from Er simultane-
ously, and checks whether those two traverses can produce two disjoint isomor-
phic subgraphs. The shape defined by these subparts is then generalized to give
the definition of the general pattern of their shape which provides the definition
of the newly discovered predicate Λ. Preds(H) returns the candidate heaps for
use in the (Predicate Intro) rule.

discover(H : symbolic heap) : predicate =
let Σ = spatial(H)
let ΣΛ = emp
let I = ∅ : set of expression pairs
let C = ∅ : multiset of expression pairs
choose (El, Er) ∈ {(El, Er) | Σ = El �→f : Er ∗ Er �→f : E ∗ Σ′}
let W = {(El, Er)} : multiset of expression pairs
do

choose (E0, E1) ∈ W
if E0 	= E1 then

if (E0, E1) /∈ C ∧ E0 /∈ rng(I) ∧ E1 /∈ dom(I) then

if Σ  P (E0, �F0) ∗ P (E1, �F1) ∗ Σ′ then
W := W ∪ {(F0,0, F1,0), . . . , (F0,n, F1,n)}
I:= I ∪ {(E0, E1)}
Σ:= Σ′

ΣΛ:= ΣΛ ∗ P (E0, �F0)
else fail

C:= C ∪ {(E0, E1)}
W := W − {(E0, E1)}

until W = ∅
let �If , �Of = [(E, F ) | ∃G. (F, G) ∈ C ∧ (E, F ) ∈ I]
let �Ib, �Ob = [(E, F ) | ∃G. (F, E) ∈ C ∧ (E, G) ∈ I]
let �x′ = FV′(ΣΛ) − FV′( �If , �Of , �Ib, �Ob)
return (λ( �If , �Ob, �Of , �Ib, �x′). ΣΛ)

Fig. 4. Predicate discovery algorithm, where Preds(H) = {P | P = discover(H)}

Fig. 4 shows the pseudocode for the discovery algorithm. So far we have, in
the interest of clarity, dealt with Λ’s with parameters such as x′, y′, z′, w′, �v′,
however in this section we admit that the analysis actually treats the more gen-
eral situation where there are multiple links between nodes, and so predicates
take parameters �x′, �y′, �z′, �w′, �v′. The algorithm is expressed as a nondeterministic
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Table 1. Example run of discovery algorithm

Input symbolic heap
H = x′

0 �→T (f : x′
1, g : y′

0) ∗ x′
1 �→T (f : x′

2, g : y′
1) ∗ x′

2 �→T (f : x′
3, g : y′

2) ∗
ls Λ1 (y′

0, nil, z′
1, nil) ∗ y′

1 �→S(f : nil, b : x′
0) ∗ ls Λ1 (y′

2, x′
1, z′

2, nil)
where Λ1 = (λ(x′

1, x′
0, x′

2, x′
1). x′

1 �→S(f : x′
2, b : x′

0))

#Iters W C I ΣΛ

0 {(x′
1, x′

2)} ∅ ∅ emp
1 {(x′

2, x′
3), (y

′
1, y′

2)} {(x′
1, x′

2)} {(x′
1, x′

2)} x′
1 �→T (f : x′

2, g : y′
1)

2 {(y′
1, y′

2)} {(x′
1, x′

2), (x
′
2, x′

3)} {(x′
1, x′

2)} x′
1 �→T (f : x′

2, g : y′
1)

3 {(x′
0, x′

1)}
{(x′

1, x′
2), (x

′
2, x′

3),

(y′
1, y′

2)}
{(x′

1, x′
2), (y

′
1, y′

2)}
x′
1 �→T (f : x′

2, g : y′
1) ∗

ls Λ1 (y′
1, x′

0, z′
1, nil)

4 ∅ {(x′
1, x′

2), (x
′
2, x′

3),

(y′
1, y′

2), (x
′
0, x′

1)}
{(x′

1, x′
2), (y

′
1, y′

2)}
x1 �→T (f : x′

2, g : y′
1) ∗

ls Λ1 (y′
1, x′

0, z′
1, nil)

Discovered predicate
λ(x′

1, x′
0, x′

2, x′
1, (y′

1, z′
1)). x′

1 �→T (f : x′
2, g : y′

1) ∗ ls Λ1 (y′
1, x′

0, z′
1, nil)

function, using choose twice. Preds then collects the set of all possible results, for
instance by enumerating through the nondeterministic choices. The set I denotes
the subgraph isomorphism between the already traversed subgraphs reachable
from the chosen root nodes. The algorithm ensures that the two traverses are
disjoint. Here dom(I) denotes the projection of I to the left traverse starting
from root node El, respectively rng(I) denotes the right traverse starting from
Er. The set C marks how often each pair of nodes is reachable from the two root
nodes. It is used for cycle detection and ensures termination of the traversal.

Whenever a new pair of nodes E0, E1 in the graph is discovered, the algo-
rithm needs to check whether they actually correspond to ∗-conjuncts of the
same shape. The simplest solution would be to check for syntactic equality. Un-
fortunately, this makes the discovery heuristic rather weak, e.g. we would not
be able to discover the list of lists predicate from a list where the sublists are
alternating between proper list segments and singleton instances of the sublist
predicate. Instead of syntactic equality our algorithm therefore uses the theorem
prover to check that the two nodes have the same shape. If they are not syntac-
tically equal, then the theorem prover tries to generalize it via frame inference:

Σ � P (E0, �F0) ∗ P (E1, �F1) ∗ Σ′ .

Here the predicate P (E, �F ) stands for either a points-to predicate or a list seg-
ment ls Λ ( �If , �Ob, �Of , �Ib) where E ∈ �If ∪ �Ib and �F = �Of , �Ob. The generalized
shape P (E0, �F0) of the node in the left traverse then contributes to the spatial
part of the discovered predicate.

Once the body of the predicate is complete the parameter list is constructed
to determine forward and backward links between instances of the predicate.
The forward and backward links between the two traverses are encoded in sets
I and C: e.g. if for a pair of nodes (F, G) ∈ C we have that F is in the right
traverse then there is a forward link going from the left traverse to node F . Thus
F is an outgoing forward link and the node E which is isomorphic to F is the
corresponding input link into the left traverse. If a pair (E, F ) is reachable from
the root nodes in more than one way, then C keeps track of all of them. Multiple
occurrences of the same pair (E, F ) in C then may contribute multiple links.
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Table 2. Experimental results on IEEE 1394 (firewire) Windows device driver rou-
tines. “�” indicates the proof of memory safety and memory-leak absence. “�”
indicates that a genuine memory-safety warning was reported. The lines of code
(LOC) column includes the struct declarations and the environment model code. The
t1394Diag PnpRemoveDevice∗ experiment used a precondition expressed in separa-
tion logic rather than non-deterministic environment code. Experiments conducted on
a 2.0GHz Intel Core Duo with 2GB RAM.

Routine LOC Space (Mb) Time (sec) Result

t1394 BusResetRoutine 718 322.44 663 �
t1394Diag CancelIrp 693 1.97 0.56 �
t1394Diag CancelIrpFix 697 263.45 724 �
t1394 GetAddressData 693 2.21 0.61 �
t1394 GetAddressDataFix 698 342.59 1036 �
t1394 SetAddressData 689 2.21 0.59 �
t1394 SetAddressDataFix 694 311.87 956 �
t1394Diag PnpRemoveDevice 1885 >2000.00 >9000 T/O

t1394Diag PnpRemoveDevice∗ 1801 369.87 785 �

Table 1 shows an example run of the discovery algorithm. The input heap H
consists of a doubly-linked list of doubly-linked sublists where the backward link
in the top-level list comes from the first node in the sublist. The discovery of
the predicate describing the shape of the list would fail without the use of frame
inference. Note that Λ1 in the input symbolic heap could have been discovered
by a previous run of the algorithm on a more concrete symbolic heap, possibly
one containing no Λ’s at all.

6 Experimental Results

Before applying our analysis to larger programs we first applied it to a set of
small challenge problems reminiscent of those described in the introduction (e.g.
“Creation of a cyclic doubly-linked list of cyclic doubly-linked lists in which the
inner link-type differs from the outer list link-type”, “traversal of a singly-linked
list of singly-linked list which reverses each sublist twice”, etc). These challenge
problems were all less than 100 lines of code. We also intentionally inserted
memory leaks and faults into variants of these and other programs, which were
also correctly discovered.

We then applied our analysis to a number of data-structure manipulating
routines from the IEEE 1394 (firewire) device driver. This was much more chal-
lenging than the small test programs. We used an implementation restricted to
a simplified, singly-linked version of our abstract domain, in order to focus ex-
perimentation with the adaptive aspect of the analysis (we do not believe this
restriction to be fundamental). As a result, our model of the driver’s data struc-
tures was not exactly what the kernel can see. It turns out that the firewire code
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happens not to use reverse pointers (except in a single library call, which we were
able to model differently) which means that our model is not too inaccurate for
the purpose of these experiments. Also, the driver uses a small amount of address
arithmetic in the way it selects fields (the “containing record idiom”), which we
replaced with ordinary field selection, and our tool does not check array bounds
errors, concentrating on pointer structures.

Our experimental results are reported in Table 2. We expressed the calling
context and environment as non-deterministic C code that constructed five cir-
cular lists with common header, three of which had nested acyclic lists, and two
of which contained back-pointers to the header; there were additionally numer-
ous other pointers to non-recursive objects. In one case we needed to manually
supply a precondition due to performance difficulties. The analysis proved safety
of a number of driver routines’ usage of these data structures, in a sequential
execution environment (see [5] for notes on how we can lift this analysis to a
concurrent setting). We also found several previously unknown bugs. As an ex-
ample, one error (from t1394 CancelIrp, Table 2) involves a procedure that
commits a memory-safety error on an empty list (the presumption that the list
can never be empty turns out not to be justified). This bug has been confirmed
by the Windows kernel team and placed into the database of device driver bugs
to be repaired. Note that this driver has already been analyzed by Slam and
other analysis tools—These bugs were not previously found due to the limited
treatment of the heap in the other tools. Indeed, Slam assumes memory safety.

The routines did scanning of the data structures, as well as deletion of a single
node or a whole structure. They did not themselves perform insertion, though the
environment code did. Predicate discovery was used in handling nesting of lists.
Just as importantly, it allowed us to infer predicates for the many pointers that
led to non-recursive objects, relieving us of the need to write these predicates
by hand. The gain was brought home when we wrote the precondition in the
t1394Diag PnpRemoveDevice∗ case. It involved looking at more than 10 struct
definitions, some of which had upwards of 20 fields.

Predicate discovery proved to be quite useful in these experiments, but further
work is needed to come to a better understanding of heuristics for its application.
And, progress is needed on the central scalability problem (illustrated by the
timeout observed for t1394Diag PnpRemoveDevice) if we are to have an analysis
that applies to larger programs.

7 Conclusion

We have described a shape analysis designed to fill the gap between the data
structures supported in today’s shape analysis tools and those used in industrial
systems-level software. The key idea behind this new analysis is the use of a
higher-order inductive predicate which, if given the appropriate parameter, can
summarize a variety of composite linear data structures. The analysis is then de-
fined over symbolic heaps which use the higher-order predicate when instantiated
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with elements drawn from a cache of non-recursive predicates. Our abstraction
procedure incorporates a method of synthesizing new non-recursive predicates
from an examination of the current symbolic heap. These new predicates are
added into the cache of non-recursive predicates, thus triggering new rewrites
in the analysis’ abstraction procedure. These new predicates are expressed as
the combination of old predicates, including instantiations of the higher-order
predicates, thus allowing us to express complex composite structures.

We began this work with the idea sometimes heard, that systems code often
“just” uses linked lists, and we sought to test our techniques on such code. We
obtained encouraging, if partial, experimental results on routines from a firewire
device driver. However, we also found that lists can be used in combination in
subtle ways, and we even encountered an instance of sharing (described in Sec-
tion 2) which, as far as we know, is beyond current automatic shape analyses.
In general, real-world systems programs contain much more complex data struc-
tures than those usually found in papers on shape analysis, and handling the full
range of these structures efficiently and precisely presents a significant challenge.
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Abstract. We present a technique for using infeasible program paths
to automatically infer Range Predicates that describe properties of un-
bounded array segments. First, we build proofs showing the infeasibility
of the paths, using axioms that precisely encode the high-level (but in-
formal) rules with which programmers reason about arrays. Next, we
mine the proofs for Craig Interpolants which correspond to predicates
that refute the particular counterexample path. By embedding the pred-
icate inference technique within a Counterexample-Guided Abstraction-
Refinement (CEGAR) loop, we obtain a method for verifying data-
sensitive safety properties whose precision is tailored in a program- and
property-sensitive manner. Though the axioms used are simple, we show
that the method suffices to prove a variety of array-manipulating pro-
grams that were previously beyond automatic model checkers.

1 Introduction

Counterexample-guided Abstraction-Refinement(CEGAR)-based techniques [8]
have proven to be effective in the verification of control-dominated properties
of software [2,15,7,16], chiefly because they precisely track only the small set of
facts required to prove the property. However, CEGAR has not had success with
data-sensitive properties which require the automatic discovery of abstractions
for reasoning about unbounded structures. Consider for example, the following
program init that initializes an array:

for(i=0;i != n; i++) M[i] = 0;
for(j=0;j != n; j++) assert(M[j] == 0);

CEGAR-based approaches fail on such programs as for each counterexample
path corresponding to an unrolling of k iterations of the upper loop, they infer
the atomic predicates: sel(M, 0) = 0,. . . ,sel(M, k − 1) = 0, which state that the
cells 0 through k − 1 of the array M have the value 0. These predicates suffice
to refute the particular path, but not other, longer paths. Thus, the inability to
infer universally quantified predicates about unbounded segments of the array
causes CEGAR-based approaches to diverge.

In this paper, we present a technique for using infeasible counterexample
paths to infer predicates that describe properties of unbounded array segments
and therefore prove many array manipulating programs correct. Our technique is

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 193–206, 2007.
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based on two ingredients. The first ingredient is the notion of a Range Predicate,
an implicitly universally quantified predicate, defined recursively as:

RP(t1, t2, p)
�
= p[t1/α] ∧ (t1 + 1 = t2 ∨ RP(t1 + 1, t2, p))

where t1 and t2 are terms, respectively called the left and right index, p is an
atomic first-order predicate, i.e., an equality, disequality or inequality, which
contains an implicitly bound variable α. Intuitively, the range predicate cap-
tures the fact that for each element t in the sequence t1, t1 + 1, (t1 + 1) + 1, . . .
upto, but not including, t2, the fact p[t/α] holds. Thus, the range predicate:
RP(0, i, sel(M, α) = 0) states that the first i elements of the array M are equal
to 0. Similarly, RP(0, n, ¬(sel(M, α) ≤ 0)) stipulates that the first n elements of
the array M are positive, and RP(i, n, (sel(M, α) ≤ sel(M, α + 1))) states that
the segment of the array M from index i through n is sorted.

For range predicates to be useful for automatic verification, we require a way
to automatically find range predicates relevant to the property being verified.
The second ingredient of our technique, is an axiom-based algorithm for automat-
ically finding relevant predicates as Craig Interpolants computed from proofs of
infeasibility of counterexample paths. We instantiate the algorithm with axioms
that precisely encode the high-level, but informal, rules with which which pro-
grammers reason about arrays, to obtain a method for automatically inferring
range predicates tailored to the property to be proved. Thus, the two ingredients
are combined to obtain a predicate inference technique which, when embedded
within a CEGAR loop [14,17], results in automatic method for verifying data-
sensitive safety properties of array-manipulating programs.

To address the challenge of computing range predicate interpolants instead of
a divergent sequence of atomic predicates describing individual array cells, our
axiom-based algorithm builds upon our previous technique of L-restricted Inter-
polation [18]. Consider the family of languages L0 ⊆ L1 ⊆ . . ., where Li is the
language of predicates containing numeric constants with absolute value at most
i. We set k to 0 and for each candidate counterexample path, try to find an inter-
polant belonging to Lk. If no such interpolant exists, we increase k and repeat.
Thus, if there is an abstraction that suffices to prove the program infeasible,
there is some k such that all the predicates of the abstraction belong to Lk, and
so the abstraction-refinement loop is guaranteed to terminate. By restricting the
language we force the solver to find interpolants (and therefore, abstraction pred-
icates) that contain small constants, if these exist. Thus, in the example above,
once the counterexample path contains more than k + 1 iterations of the first
loop, the solver cannot return the interpolant sel(M, 0) = 0, . . . , sel(M, k) = 0,
and is instead forced to find the range predicate RP(0, i, sel(M, α) = 0), which
yields an inductive invariant that proves the property.

To compute L-restricted interpolants it suffices to find L-restricted split proofs
where each deduction belongs in L, and where for each deduction, there exists a
time step such that the antecedents and consequence of the deduction are over
program variables that are in scope at that time step. In Section 3 we show a
local axiom based algorithm to generate split proofs of refutation, and therefore,
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interpolants. In Section 4 we present an instantiation of this framework using
range predicate axioms. Though the axioms for reasoning about range predicates
are simple, we present initial experiments in Section 5 that indicate that they
are expressive enough to efficiently capture a variety of idiomatic uses of arrays,
in a manner that is precise enough to prove data intensive properties.

Related Work. The problem of synthesizing abstractions and invariants for
arrays and other unbounded data structures has received much attention. One
line of research uses templates representing families of candidate loop invari-
ants (e.g. affine constraints over program variables) to generate loop invariants
[3,4,27]. These approaches use a template of quantified invariants derived from
[6], where the problem of checking a given quantified invariant is studied. A sec-
ond line of work uses abstract interpretation based techniques for shape analysis.
Examples include those based on three-valued logic [26,21] and Separation Logic
[10]. The abstract domain for arrays presented in [12] captures properties similar
to range predicates. Predicate abstraction [13] based approaches for shape anal-
ysis [11,9,5,24,20,1] can also be viewed as an instance of abstract interpretation.
In the approaches which work for unbounded structures an expert must supply
appropriate predicates or instrumentation predicates which are combined via
a fixpoint computation to obtain an inductive invariant. Several authors have
proposed using specialized rules to build decision procedures [24], and more gen-
erally, program analyses [25].

2 Overview

We begin with an overview of safety verification via interpolant-based abstrac-
tion refinement.

Notation. In this paper, we use standard first-order logic (FOL). By L(Σ)
we refer to the set of well-formed formulas over a vocabulary Σ of non-logical
symbols, and for a given formula φ we use L(φ) to denote the set of well-formed
formulas over the vocabulary of non-logical symbols occurring in φ.

We assume that for every (non-logical) symbol s, there exists a unique symbol
s′, i.e., s with one prime added. We use s with n primes added to represent the
value of s at time step n. For any formula or term φ, we write φ〈n〉 to denote
the addition of n primes to every non-logical symbol in φ. Finally, for any set of
symbols Σ, we write Σ〈n〉 to denote {s〈n〉 | s ∈ Σ} and Σ′ to denote Σ〈1〉. For
a term (resp. predicate) t we write t[e/x] to denote the term (resp. predicate)
obtained by substituting all occurrences of x in t with e.

Programs. We model programs abstractly using logical formulas, and restrict
ourselves to single-procedure programs. Let S be a set of state variables corre-
sponding to individual program variables. A state formula is a formula in L(S),
which may contain interpreted symbols like +, =, ≤ in addition to the symbols
in S. A transition is a formula in L(S ∪ S′). A program is a pair (T , Π) where
T is a finite set of transitions and Π ⊆ T ∗ is a regular language of sequences
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of transitions. Intuitively, each command (basic block or branch condition) of
the control-flow graph of the program corresponds to a transition, and the set
of paths is the regular set of syntactic control-flow paths of the program.

The following are the transitions for the program init from Section 1. For
each transition, we omit for clarity the implicit conjunction x = x′ for all pro-
gram variables x whose primed version is not explicitly shown in the transition.
T1 : i′ = 0 T2 : i �= n ∧ M ′ = upd(M, i, 0) ∧ i′ = i + 1 T3 : i �= n
T4 :j′=0 T5 :j �= n ∧ sel(M, j)=0 ∧ j′ = j + 1 T6 : j �= n ∧ sel(M, j) �= 0
The set of syntactic paths of the program that lead to the assert failure are
given by the regular expression: T1 · T ∗

2 · T3 · T4 · T ∗
5 · T6.

Path Constraints. A path π is a sequence of transitions T0, . . . , Tn in Π . For
any path π, the constraints Cons(π) is the sequence of formulas T

〈0〉
0 , . . . , T

〈n〉
n .

A path π is infeasible if the path formula
∧

Cons(π) is inconsistent, i.e., unsat-
isfiable. A program (T , Π) is infeasible if every path in Π is infeasible.

The path formula represents all possible concrete program executions that
follow the given control-flow path. A satisfying assignment for the path formula
can be mapped back to the values taken by the program variables at each time
step from 0 (the initial value) through n+1 (at the end of the path). Thus, if the
formula is satisfiable, the path corresponds to a feasible concrete execution of
the program. The left side of Figure 1 shows the path constraints corresponding
to the path where the upper and lower loops are unrolled twice. From top to
bottom, the constraints shown are the formulas: T

〈0〉
1 , T

〈1〉
2 , T

〈2〉
2 , T

〈3〉
3 , T

〈4〉
4 , T

〈5〉
5 ,

T
〈6〉
6 . Using the standard axioms for equality and arithmetic, and McCarthy’s

axioms for sel and upd , one can check that the path formula shown on the left
in Figure 1 is inconsistent.

Safety Verification. Informally, the safety verification problem is to determine
whether the program always avoids entering a set of undesirable “error” states.
We can reduce the safety verification problem to that of determining if a program
is infeasible, by intersecting Π with the set of paths leading to the “error” states.

Interpolants. For a sequence of formulas Γ = A0, . . . , An, we say that Γ̂ =
Â0, . . . , Ân+1 is an interpolant for Γ if: (1) Â0 = True and ˆAn+1 = False,
and, (2) for all 0 ≤ i ≤ n, Âi ∧ Ai implies ˆAi+1, and, (3) for all 0 ≤ i ≤ n,

ˆAi+1 ∈ L(Ai) ∩ L(Ai+1)

Interpolants are Abstractions. For any infeasible path, the sequence of
formulas of the interpolant for the path constraints overapproximate the possible
program configurations along the path in a manner that is precise enough to
demonstrate the infeasibility of the path. To see this, observe that the interpolant
for path formula T

〈0〉
0 , . . . , T

〈n〉
n is a sequence of formulas T̂0, . . . , T̂n+1, such that:

(1) T̂0 is True, representing all possible initial states and T̂n is False, indicating
that there is no possible state at the end of the path, (2) for all 0 ≤ i ≤ n,
executing the transition Ti from a state in T̂i takes the system into a state in
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Path Constraints Interpolant
True

T
〈0〉
1 : i〈1〉 = 0 i〈1〉 = 0

T
〈1〉
2 : i〈1〉 �= n ∧ M 〈2〉 = upd(M 〈1〉, i〈1〉, 0) ∧ i〈2〉 = i〈1〉 + 1 RP(0, i〈2〉, sel(M 〈2〉, α) = 0)

T
〈2〉
2 : i〈2〉 �= n ∧ M 〈3〉 = upd(M 〈2〉, i〈2〉, 0) ∧ i〈3〉 = i〈2〉 + 1 RP(0, i〈3〉, sel(M 〈3〉, α) = 0)

T
〈3〉
3 : i〈3〉 = n RP(0, n, sel(M 〈4〉, α) = 0)

T
〈4〉
4 : j〈5〉 = 0 RP(j〈5〉, n, sel(M 〈5〉, α) = 0)

T
〈5〉
5 : j〈5〉 �= n ∧ sel(M 〈5〉, j〈5〉) = 0 ∧ j〈6〉 = j〈5〉 + 1 RP(j〈6〉, n, sel(M 〈6〉, α) = 0)

T
〈6〉
6 : j〈6〉 �= n ∧ sel(M 〈6〉, j〈6〉) �= 0 False

Fig. 1. On the left, we show the path constraints generated by the path leading to the
assertion violation in init where each of the loops is unrolled twice. For i ≥ 3 the i-th
path constraint has an additional conjunct M 〈i+1〉 = M 〈i〉 omitted for brevity. The
right column shows the interpolants generated using range predicates. We write the
i + 1-th element of the interpolant sequence to the right of the i-th path constraint.
Note that the i+1-th element of the interpolant sequence is implied by the conjunction
of the i-th element and the i-th path constraint.

T̂i+1, and, (3) for all 0 ≤ i ≤ n, the set of possible states for time i is expressed
as a state formula over the values of the variables at time i.

Thus, the interpolant corresponding to an infeasible path can be used to iter-
atively refine an abstract model of the program either directly [22], or indirectly
by predicate abstraction over the set of atomic predicates appearing in the in-
terpolant [14]. This process is repeated until all paths are shown infeasible or
a feasible path is found [8]. For example, for the path constraints shown in
Figure 1, a possible interpolant is the sequence of formulas: True, (i〈1〉 = 0),
(i〈2〉 = 1), (sel(M 〈3〉, 1) = 0), (sel (M 〈4〉, 1) = 0), (sel(M 〈5〉, 1) = 0 ∧ j〈5〉 = 0),
(sel(M 〈6〉, 1) = 0 ∧ j〈6〉 = 1), False. After dropping the superscripts, we get a
set of predicates: i = 0, i = 1,sel(M, 1) = 0, j = 0,j = 1, that suffices to refute
paths where the upper loop is unrolled at most two times.

(In)Completeness. Even though the atomic predicates suffice to eliminate
the given path, more predicates may be needed for longer paths, e.g. those
corresponding to more iterations through the loop. In our example, each path
corresponding to j iterations of the upper loop will result in new predicates
constraining the first j elements of the array to be zero, but which are insufficient
to refute longer paths. As a result, the iterative abstraction-refinement diverges.

Range Predicates. We obtain the interpolant sequence shown on the right
in Figure 1, by giving the interpolating procedure axioms for reasoning about
range predicates and simultaneously restricting it to find interpolants in the lan-
guage L1 (using numeric constants of absolute value at most 1). Note that the
restriction forces the solver to return an interpolant that states that all cells
from 0 through n have have been initialized with zero for the point after the
first loop has finished. After dropping the superscripts, we obtain the set of new
abstraction predicates: i = 0, RP(0, i, sel(M, α) = 0), RP(0, n, sel(M, α) = 0),
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RP(j, n, sel(M, α) = 0). Thus, perhaps counter-intuitively [4], from a finite path
we can deduce predicates describing unbounded array segments, simply by re-
stricting the language of the interpolants. Subsequent predicate abstraction over
these predicates refutes this particular path and in fact, results in an inductive
invariant that proves the program infeasible.

3 Generating Interpolants from Axioms

We now consider the problem of using a specialized set of axioms (in addition to
the axioms belonging to the ground theories of equality, uninterpreted functions
and difference constraints) to find L-restricted interpolants for a given sequence
of formulas Γ = A0, . . . , An.

As shown in [18], this can be achieved by the following two-step process. First,
we must find an L-restricted split proof where each deduction can be mapped
to a time step i such that the antecedents and consequence of the deduction
belong to L(Ai), and if there are no antecedents, the consequence is implied by
Ai. Second, we can convert the split proof into a set of propositional clauses
(by converting each atom into a literal) and then use propositional interpolation
[23] to find an interpolant. The latter operation is polynomial in the size of the
split-proof and results in interpolants whose atoms appear in the split proof and
are thus from the restriction language L.

Split Proofs. An L-restricted split proof over a set of hypotheses Γ =
A0, . . . , An is a triple (V, E, N), where V is a set of formulas, (V, E) is a di-
rected acyclic graph, and N is a labeling function from V to [0 . . . n] such that:

– for each vertex v ∈ V , we have AN(v), {u | (u, v) ∈ E} |= v, and,
– for each edge (u, v) ∈ E, we have u, v ∈ L(AN(v)), and,
– for each edge (u, v) ∈ E, if N(u) �= N(v) then u ∈ L.

A L-restricted split refutation of Γ is an L-restricted split proof over Γ whose
unique sink vertex (no out-edges) is False.

Intuitively, a split proof is one where as before, each deduced formula (vertex)
can be localized to a particular time step (the formula’s label) – the formula is
implied by the conjunction of previously deduced facts (the vertex’s predecessors)
and the hypotheses corresponding to the formula’s time step. Moreover, if a
formula is deduced at a time step different from those at which a predecessor was
deduced, then the predecessor formula must belong to the restriction language
L. In other words, within a time step (e.g. within the constraints corresponding
to a large basic block of code), we may deduce formulas not in the restriction
language L, as these formulas will not appear in the subsequent interpolant.

We call a sequence of hypotheses Γ = A0, . . . , An strict if for all i, j such that
|i − j| > 1 we have L(Ai) ∩ L(Aj) = ∅. It is easy to check that the sequence of
hypotheses corresponding to path constraints are strict.

Theorem 1. [18] Given a strict sequence of hypotheses Γ and a propositionally
closed language L, Γ has an L-restricted interpolant iff it has a L-restricted split
refutation.
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1: Input: Local axioms A
2: Input: Hypotheses Γ = A0, . . . , An

3: Output: A split refutation of Γ
4: indexed := Seed(Γ )
5: while False �∈ pf.V do
6: choose a, I, j from A, indexed, [0, . . . , n]
7: match Project(a, I, j) with Some (I ′, Q′, c′)
8: if c′ �∈ pf.V and ∀q ∈ Q′.Query(q) then
9: pf.V := pf.V ∪ {c′}

10: pf.E := pf.E ∪ {(h, c′) | h ∈ I ′ ∪ Q′}
11: pf.N(c′) := j
12: indexed := indexed ∪ c′

13: Assert(c′)
14: return Cone(pf,False)

Fig. 2. Procedure Generate

Program Time Preds Iter
init 1.190 18 7
vararg 1.520 14 8
copy 3.650 20 11
copy-prop 9.720 38 17
find 2.240 20 12
partition 7.960 37 14
part-init 4.630 32 12
producer 45.000 39 41
insert 91.220 74 36
scull 9.180 36 14

Fig. 3. Experimental Results:
Time is the total number of
seconds spent to prove the pro-
gram safe, Preds is the num-
ber of predicates required, Iter
is the number of iterations of the
abstraction-refinement loop, Ex-
periments were run on an IBM
T42 Laptop with a 1.7GHz pro-
cessor and 512Mb RAM

Generating Proofs from Local Axioms

Thus, to find L-restricted interpolants for Γ , we need to find L-restricted split
refutations of Γ . The problem of generating L-restricted split refutations for
formulas over theories of equality, uninterpreted functions, difference bounds
and restricted use of the array operators “sel” and “upd” was addressed in [18].
Thus, we assume there is a “ground” procedure that handles the above theories
and describe how this procedure can be extended with specialized axioms.

Local Axioms. A local axiom a is a partial function that takes as input a set
of index formulas I and returns a pair of query formulas Q and a consequence
formula c, such that (1) I, Q |= c, and, (2) Q, c ∈ L(I). Intuitively, for a given set
of index formulas that is known to be true, there is a unique set of query formulas
over the ground theory which if additionally true imply the consequence formula.
To ensure that axiom instantiation results in split proofs, we require that the
queries and consequence belong to the same language as the index formulas.

Algorithm Generate. Our non-deterministic algorithm Generate for finding split
refutations for a sequence of hypotheses Γ = A0, . . . , An is shown in Figure 2.
The algorithm takes as input a set of local axioms A and a sequence of hypotheses
Γ . It maintains a set of index formulas in the variable indexed, and a split
proof pf whose vertices correspond to all the facts that have been deduced. The
overall structure of the algorithm is similar to that of saturation-based provers
[19]. First (line 4), it seeds the set of indexed formulas using the formulas that
the ground procedure derives from Γ . Next, (lines 5–13) it goes into a loop
where it repeatedly selects a set of index formulas and a candidate axiom and
attempts to derive new facts by applying the axiom to the index formulas, until
a contradiction is found (i.e., False is deduced).
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Project. The main challenge in our setting is that we need to ensure that all
the deductions can be localized to a single time step — we must ensure that
whenever we deduce a consequence c from hypotheses I, Q, there must be some
time step j ∈ 0 . . . n such that I, Q, c belong in L(Aj), i.e., contain symbols
that are local to time step j. Note that the local axiom functions are defined
only on index formulas belonging to some common time step. Thus, to make the
procedure Generate complete, we would have to undertake the expensive task
of maintaining different representatives for each formulas at each time step at
which the formula has a congruent version. We avoid this by using a procedure
Project that takes as input a set of formulas, possibly belonging to languages of
different time steps, an axiom, and a target time step j and determines whether
there is a set of formulas I ′ at time step j such that: (1) for each formula in
I, there is a congruent version in I ′, and, (2) each formula in I ′ belongs to
L(Aj), and, (3) the application of the axiom to the index formulas I ′ yields the
query formulas Q′ and a consequence c′. If a suitable I ′ exists, the procedure
updates the split proof pf with congruence proofs (using the axioms for equality
and uninterpreted functions) for the elements of I ′, and returns the tuple of
(I ′, Q′, c′).

We use the Project function in the main loop as follows. In each iteration
we choose an axiom a, a set of index formulas (from arbitrary time frames) I,
and a target time frame j (line 6), and we call Project to determine if at time
j there is a congruent version I ′ with query formulas Q′ and consequence c′,
all of which belong to time step j. If Project succeeds (line 7), we check if the
consequence c′ is not a previously known fact, and invoke the ground procedure
Query to determine whether each of the queries in Q′ is true (line 8). For each
provable query, the ground procedure updates the split proof pf with vertices
for the query formula. If all the queries Q′ are provable and the consequence c′

is new, the split proof pf is updated with the new consequence (lines 9–12) and
the consequence is asserted to the ground procedure (line 13). If this assertion
yields a contradiction i.e., causes the ground procedure to deduce False, the
algorithm returns a split refutation which is the backwards transitive closure of
False in the split proof pf.

Correctness and Termination. When the procedure Generate finishes, it re-
turns a split refutation for the hypotheses Γ . The presented procedure is ab-
stracted for clarity. In practice, by ensuring that we iterate over the indexed
formulas exhaustively we can guarantee that the procedure will find a split refu-
tation if one exists. The procedure can be terminated when it reaches a point
where no new facts in the restriction language can be deduced. Termination
follows as we restrict the language to bound the set of candidate formulas.

4 Axioms for Range Predicates

We now describe an instantiation of the framework of the previous section with
axioms for reasoning about Range Predicates which describe properties of con-
tiguous blocks of array elements. As range predicates capture facts that hold
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p

RP(t, η(t), p[α/t])
Generalize

RP(t1, t2, p) RP(t2, t3, p)

RP(t1, t3, p)
Join

RP(t1, t2, p)

p[t1/α]
Instantiate-Left

RP(t1, η(t2), p)

p[t2/α]
Instantiate-Right

RP(η(t1), t2, p) p[t1/α]

RP(t1, t2, p)
Extend-Left

RP(t1, t2, p) p[t2/α]

RP(t1, η(t2), p)
Extend-Right

RP(t1, t2, p) η(t1) �= t2

RP(η(t1), t2, p)
Shrink-Left

RP(t1, η(t2), p) t1 �= t2

RP(t1, t2, p)
Shrink-Right

RP(η(t1), t2, p) a ≤ t[t1/α] t is linear

RP(η(t1), t2, p[sel(upd(M, a, v), t)/sel(M, t)]
Preserve-Left

RP(t1, t2, p) t[t2/α] ≤ a t is linear

RP(t1, t2, p[sel(upd(M, a, v), t)/sel(M, t)]
Preserve-Right

Fig. 4. Axioms for Reasoning about Range Predicates

for sequences of array indices, we devise axioms that: generalize range pred-
icates from facts that hold about a single index, instantiate range predicates
to individual indices, extend range predicates to longer sequences, shrink range
predicates to shorter sequences, join range predicates over “adjacent” sequences,
and, preserve range predicates in the presence of array updates.

Figure 4 shows a representative subset of the axioms used for reasoning about
range predicates. We use η as an abbreviation for the map λt.t+1 from terms to
terms. Each axiom is shown as a proof rule, with the antecedents above the line
and the consequence below the line. The antecedents within boxes are the index
formulas, and those not in boxes are query formulas. Due to lack of space, we
omit the meta-theorems that show the soundness of the range predicate axioms
with respect to the recursive range predicate definition, and therefore show that
the axioms only yield semantically valid derivations.

Generalize: The axiom Generalize for creating range predicates simply takes
an ordinary formula and replaces occurrences of terms t inside the formula
with α, to obtain a range predicate that holds from t to η(t).

Instantiate: There are two rules for instantiating a range predicate: Instantiate-
Left for instantiating with the left index, and Instantiate-Right for the right
index. In either case, the consequence is p with α substituted with the ap-
propriate index.

Extend: There are two rules for extending a range predicate: Extend-Left for
extending at the left end and Extend-Right for extending at the right end. In
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either case, the axiom has an antecedent query formula that the predicate p
hold at the appropriate index.

Shrink: There are two rules for shrinking a range predicate: Shrink-Left for
shrinking at the left end and Shrink-Right for shrinking at the right end. In
either case, the axiom has an antecedent query formula that ensures that in
the result, the left and right indices are disequal. This ensures the soundness
of the instantiation axioms.

Preserve: The trickiest rules are those that ensure that an update to the array
preserves the properties captured by a given range predicate i.e., the prop-
erties continue to hold in the updated array, as long as the update happens
“outside” the range of indices of the range predicate. Both rules require a
syntactic condition that the read address t be linear, i.e., that α not appear
under any function symbol inside t. The Preserve-Right rule states that for
any linear read address t parameterized by α, if the address obtained by sub-
stituting α with the right index is less than (i.e., to the left of) the address
written to (a), then the reads return the same values in the updated array
as the update does not affect the addresses read through t. The Preserve-Left
rule is the symmetric version for writes to the left of the left index of the
range predicate.

Join: The rule Join is used to join two adjacent range predicates.

Fig. 5. Split proof generated by Foci for the path constraints from Figure 1
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Example Split Proof. Figure 5 shows a split proof generated by Foci , to
refute the path constraints from Figure 1. The constraints are simplified using
Static Single Assignment form [14], which avoids the equality constraints that
“copy” unmodified variables across a transition. In particular, we omit the copy
constraints for M after time step 3 (as the array is not updated subsequently).
For brevity, we write xi for x〈i〉. On the left side we show the formulas correspond-
ing to the split proof vertices on the right. Each square vertex is a hypothesis
labeled by the time step to which the hypothesis belongs (i.e., a hypothesis in Aj

is labeled j). Each circular vertex is a deduction, made using the range predicate
axioms or the axioms for equality, congruence or arithmetic, labeled by the time
step at which the deduction was made. The curly braces describe how sub-proofs
were generated, either by the application of a range predicate axiom (formulas
at lines 1,7,9,20,22), or via Project which uses one or more applications of the
axiom of congruence (formulas at lines 5,12,14,16,19). Notice that the formula at
line 9 contains variables that do not belong in time step 5 where the Shrink-Left
axiom can be applied, but which is congruent, and therefore is Project-ed to the
formula at line 16 which does belong at time step 5.

5 Experiences

We now describe our experiences so far with implementing the technique and
applying it to verify programs, some lessons drawn from our experiments and
some possible avenues for future work.

Implementation. We have extended the Foci split prover [18] with axioms
for range predicates. Our current implementation is specialized to the axioms
for range predicates and has an overall structure similar to procedure Generate
from Section 3, but with a few differences. First, instead of applying the gener-
alizing rule to all the atomic predicates deduced by the ground procedure, we
only generalize from a set of predicates that are obtainable by some syntactic
manipulation of the input constraints. Second, there are heuristics to bias the
prover to find simpler proofs, with more general interpolants, i.e., those which
are less specific to the particular path whose constraints are fed to the prover.
The extended prover is integrated with Blast [14]. As the predicates found re-
quire disjunctive images, we use Foci to iteratively refine the transition relation
using the method presented in [17].

Experiments. In preliminary experiments, we have applied the model checker
extended with range predicates to a variety of small array-intensive programs
hitherto beyond the grasp of automatic refinement based tools. The results are
summarized in Table 3. init is the example from Section 2. vararg is an in-
stance of the common idiom in C programs for scanning the buffer of arguments
to determine how many input parameters were passed into the program, by re-
peatedly increasing an index until a NULL cell is found, and then going backwards
(decreasing the counter) dereferencing the contents of the array to extract the
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arguments. The property proved is that in the second phase, the values deref-
erenced are non-NULL. copy(from [12]) simply copies the contents of one array
into another, and then asserts that the two are the same. copy-prop first checks
that a given source array has only non-zero elements, then copies the array into
a destination and asserts that the destination has only non-zero elements. find
(from [11]) scans the array trying to find the index at which a particular value
resides, and returns −1 if the value is not in the array. The property checks
that if −1 is returned then the value is not in the array. partition (from [4])
copies the zero and non-zero elements of a source array into two different ar-
rays and checks that the two destination arrays only have zeros and non-zeros
respectively. part-init (from [12]) copies those indices of a source array for
which the source array’s value is positive, into a target array, and checks that at
the index stored in the target array the source array’s value is indeed positive.
producer is a producer-consumer example, where a producer keeps generating
a sequence of values and writes them into increasingly larger array indices via a
head index that is incremented, while a consumer consumer uses a tail index
to read the values stored in the array. The property checked is that the sequence
of values written by the producer is the same as those read by the consumer.
insert is an in-place insertion routine, that takes a sorted array and inserts a
new element into the appropriate place by repeatedly swapping elements until
the right position is found (i.e., the inner loop in an insertion sort procedure).
The property checked is that after the insertion, the extended array is sorted.
scull is a text-book Linux device driver for which we check a property that
requires an array of devices to be appropriately initialized.

Discussion and Future Work. Our experiments show that the axioms are
expressive enough to capture many of the idiomatic uses of arrays, while yield-
ing property-sensitive abstractions. However, there are several deficiencies in the
approach that need to be remedied with future work. The main difficulty with
the approach is that the prover may find proofs which refute short paths, but
which do not generalize to longer paths, thereby delaying convergence, or worse,
cluttering the abstraction with irrelevant facts about the program causing image
computation to explode. This problem arose in our (as yet unsuccessful) attempt
to prove that an implementation of insertion-sort correctly sorted an array.
Though the range predicate axioms suffice to prove the property, Blast is over-
whelmed by irrelevant predicates generated by smaller paths. Thus, one possible
line to pursue is to find ways to make the outer loop converge more rapidly.
Finally, we view this work as first step towards an axiom-extensible technique
for verifying data-sensitive properties. To this end, we would like to implement a
generalized split-proof engine parameterized by axioms, and devise and instan-
tiate it with axioms for other data structures like lists [24,20], hash tables and
richer logical constructs like separating conjunctions [10].
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Abstract. Bounded context switch reachability analysis is a useful and efficient
approach for detecting bugs in multithreaded programs. In this paper, we address
the application of this approach to the analysis of multithreaded programs with
procedure calls and dynamic linked structures. We define a program semantics
based on concurrent pushdown systems with visible heaps as stack symbols. A
visible heap is the part of the heap reachable from global and local variables.
We use pushdown analysis techniques to define an algorithm that explores the
entire configuration space reachable under given bounds on the number of context
switches and the size of visible heaps.

1 Introduction

Automated analysis of software systems is a challenging problem. The behavior of
these systems is usually complex and hard to predict due to aspects such as concur-
rency and memory management. Reasoning about these behaviors requires considering
potentially infinite sets of configurations which makes verification problems undecid-
able in general. Therefore, approaches based on approximate analysis are needed. While
over-approximations are useful for proving properties, under-approximations are useful
for finding bugs. In this paper, we propose algorithmic (automata-based) techniques for
under-approximate analysis of multithreaded programs that manipulate dynamic linked
structures.

A simple way to get an under-approximate analysis is to bound the depth of the
explored state space and use finite-state model checking techniques. This approach is
interesting only if bugs appear after a small number of computation steps (e.g., [6]),
which is unlikely to be the case for multithreaded programs. In such a program, pro-
cesses interact through shared memory and are executed in alternation according to a
schedule. Concurrency bugs appear only after a number of context switches, i.e, points
in the execution where the active process is stopped and another one is resumed. Be-
tween context switches, a process may execute an unbounded number of computation
steps. Therefore, a natural approach for under-approximate analysis of multithreaded
program is to perform a (precise) analysis for a bounded number of context switches [9].
It has been demonstrated that this is indeed efficient for detecting bugs in multithread
programs since they appear in many cases after a small number of context switches [7].

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 207–220, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



208 A. Bouajjani, S. Fratani, and S. Qadeer

However, bounding the number of context-switches does not allow the use of finite-
state model checkers since each process may be infinite-state, and unbounded computa-
tions are possible between context switches. For example, in concurrent programs with
procedure calls, each process may have an unbounded stack. In [9,2], automata-based
techniques for symbolic analysis of pushdown systems have been used in order to define
bounded context switch analysis of programs with finite data domains. In this paper, we
consider the more general case of concurrent programs (with procedure calls) which
can create shared objects and manipulate references to them.

In the spirit of under-approximate analysis, we could bound the heap size and reduce
this verification problem to the case with finite data domains. This simple approach is
unlikely to be effective at getting good state-space coverage for real programs, in which
many heap-allocated objects are used either as local variables or for passing parameters
to a called procedure. For such programs, it is better to bound only the visible heap, i.e.,
the part of the heap that is reachable from the global variables and the local variables
of the running procedure in the active process. Indeed, a program’s global heap might
be unbounded in spite of its visible heap being bounded due to unbounded nesting of
procedure calls.

It is nontrivial to obtain an algorithm for reachability analysis of multithreaded pro-
grams based on bounding the number of context switches and the size of the visible
heap. In [10,11,8], the idea of visible heaps was used for interprocedural analysis of
sequential programs; these techniques are based on procedure summarization and can-
not be used for multithreaded programs since the (infinite) sets of stack configurations
reached by processes must be stored at each context switch. Moreover, [10,11] consider
abstract semantics, whereas we must consider an exact - sound and complete - seman-
tics. Nevertheless, the idea of visible heaps can be used to define a program semantics
where the heap is manipulated implicitly and not as a shared global structure: each pro-
cedure executed by some process manipulates a local heap structure which is a copy of
its visible heap. Such an approach leads to a program model based on stack machines
where locally visible heaps constitute the (potentially infinite) stack alphabet. To simu-
late correctly the “real” heap, our algorithm synchronizes the local views of procedures
and processes at each procedure call or return and at each context switch. We prove that
our new semantics is correct and use it to define an automata-based symbolic reachabil-
ity analysis algorithm for bounded context switches and bounded visible heap. For lack
of space, the proofs of our theorems are omitted here. They can be found in [3].

The contribution of our paper, although theoretical, has important practical applica-
tions. Since our algorithm constructs the set of reachable stack configurations, it allows
the verification of reachability queries that require stack inspection. This expressiveness
is important for specifying various resource-usage scenarios, e.g., user-space buffers
are accessed by an operating system kernel only within the scope of an appropriate ex-
ception handler, or certain operations on security-critical objects are invoked only if a
certain privileged procedure is present on the call stack. Our algorithm allows the veri-
fication of such expressive queries for multithreaded programs upto the context-switch
and visible heap bounds and for single-threaded programs upto the visible heap bound.
Of course, our algorithm can be used iteratively by systematically increasing the bounds
in each iteration.
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2 Multithreaded Programs with Dynamic Memory

We consider programs with multiple threads and procedure calls, which can dynami-
cally create objects and manipulate pointers on these objects. A sequential program is
given as a collection of control flow graphs, one graph for each of its procedures, de-
fined by a set of control nodes N, and a set of transitions between these nodes labeled
with actions and tests on the memory heap. We assume that the control flow graph of
each procedure p has a unique initial control location np

init and a unique termination
location np

end reachable after executing a return action. A multithread program consists
of a parallel composition of a fixed number of sequential programs sharing the heap.

Let A be a countable (infinite) domain of memory addresses (pointers), and assume
that A contains a special element ⊥ representing the null address and a special ele-
ment � representing an undefined address. Then, consider a class of objects where
each object contains n successor fields s1, . . . ,sn ranging over the pointer domain A. Let
S = {s1, . . . ,sn}. (We omit aspects related to data manipulation. Data values over finite
data domains can of course be encoded in the successor fields.)

We assume that a program has a set of global pointer variables G ranging over A.
These variables are shared by all parallel threads, and all procedures. Moreover, we
consider that each procedure has a set of local pointer variables (also ranging over A).
We assume w.l.o.g. that all the procedures have the same set of local variables L. Given
a (global/local) pointer variable v and a successor field s ∈ S, we denote by v.s the
pointer stored in the field s of the object pointed by v. This notation can be extended
to sequences of successor fields σ ∈ S∗ in the obvious manner. When σ is the empty
sequence, we consider that v.σ is identical to v.

Programs can perform the following operations on heaps: v.σ := v′.σ′ (pointer as-
signment), v.σ := null (pointer annihilation), and v.σ := new (object creation), where
v,v′ are pointer variables, and σ ∈ S ∪ {ε}, σ′ ∈ S∗. They can also perform the fol-
lowing tests: v.σ#v′.σ′ with # ∈ {=, 	=} (equality/disequality test). In addition, they
can perform the following actions: call(p,v1.σ1, . . . ,vm.σm) (procedure call with pa-
rameters), and return (termination of a procedure call), where p is a procedure name,
v1, . . . ,vm are pointer variables, and σ1, . . . ,σm ∈ S∗. The effect of executing a state-
ment call(p,v1.σ1, . . . ,vm.σm) is to call the procedure p after initialization of its local
variables �1, . . . , �m with the pointer values v1.σ1, . . . ,vm.σm respectively where the vari-
ables v1, . . . ,vm are either global variables or local variables of the calling procedure.

3 Program Semantics

Heaps as labeled graphs: A global heap is a finite directed graph where vertices
correspond to memory addresses, edges are labeled by elements of S, and each element
of G appears as a label of some vertex. Formally, a global heap is a tuple GH = (A,Δ,Γ)
where (1) A is a finite subset of A containing ⊥ and �, (2) Δ : S → (A → A) associates
with each s ∈ S a successor mapping, and (3) Γ : G → A associates with a global variable
g an object address. We assume that ∀s ∈ S. Δ(s)(⊥) = � and Δ(s)(�) = �, and ∀a ∈ A,
Δ(s)(a) is defined.
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Given σ = si1 · · · sim ∈ S∗, we denote by Δ(σ) the mapping Δ(sim)◦ · · · ◦Δ(si1). When
σ is the empty sequence, we consider that Δ(σ) is the identity mapping over A. Then,
we define the reachability mapping to be ReachΔ =

�
σ∈S∗ Δ(σ).

Then, we consider that a heap is a global heap augmented by a mapping associating
with each local variable an address. Formally, a heap is a pair H = (GH,Λ), where
GH = (A,Δ,Γ) is a global heap and Λ : L → A.

Programs as concurrent heap pushdown systems: We associate with multithreaded
programs concurrent stack machines which act on a (global) shared heap. The behavior
of such concurrent stack machines is as follows: at each moment, there is one process
which is running and has access to the heap through the global variables (shared by all
processes), and its own local variables. Notice that due to nested procedure calls, the
heap may be accessible from the local variables of the currently running procedure, and
also from the local environments (of the pending procedure executions) stored in the
stack of the process. While this process is running, all the other parallel processes are in
an idle mode. When a context switch occurs, the active process is interrupted and some
other one is resumed, becoming the new active process.

Let us sketch here the construction of the models associated with programs (details
can be found in [3]). Let Σ be the (infinite) set of all pairs 〈n,Λ〉, where n ∈ N and
Λ ∈ [L → A]. We associate with each sequential program (given by a control flow graph)
a heap pushdown system (H-PDS) which is a stack machine whose control states are
global heaps, and whose stack alphabet is Σ: The semantics of basic operations and tests
is defined by a transition relation op−−→ between heaps, and procedure calls and returns
are modeled as usual by push and pop operations on the stack. Then, we associate with
a multithreaded program with m parallel threads an m-dim concurrent heap pushdown
system (CH-PDS). Control states of such a model are pairs (i,GH), where i ∈ [1,m] is
the index of the active process, and GH is a global heap. A configuration of a CH-PDS
is a tuple ((i,GH), [u1, . . . ,um]) where u1, . . . ,um ∈ Σ∗ are the local configurations of
each of the threads, i.e., the contents of their stacks. A transition relation ⇒ is defined
between configurations: computations steps are either local to a process (the process i
in the global state (i,GH)), or correspond to a context switch (i.e., substitution of i by
some j 	= i in the global state (i,GH)).

Bounded heap depth programs: Let k ≥ 1. Let c = ((i,GH), [u1, . . . ,um]) be a con-
figuration, where GH = (A,Δ,Γ). Then, c is k-bounded iff for every 〈n,Λ〉 appearing
in any ui, for any i ∈ {1, . . . ,m}, we have |ReachΔ(Γ(G) ∪ Λ(L))| ≤ k. A program is
k-bounded for a set of initial configurations C iff every ⇒-reachable configuration from
C is k-bounded. A program has bounded heap depth if it is k-bounded for some k ≥ 1.

Notice that a heap with a bounded depth may have an unbounded size. Indeed, due
to unbounded nesting of procedure calls, it is possible to have an unbounded stack of
environments each of them pointing to a different but bounded part of the heap.

4 Program Semantics Based on Locally Visible Heaps

We define in this section a program semantics in terms of concurrent pushdown systems.
The difference with the CH-PDS based semantics of the previous section is that the
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heap is not manipulated explicitly as a global shared structure, but rather implicitly:
each procedure executed by some process manipulates a local heap structure which is a
copy of the reachable part of the heap from its local and global variables. Therefore, we
can associate with programs stack machines where locally visible heaps constitute the
stack alphabet. However, to simulate correctly operations on the “real” heap, procedures
and processes must exchange (pass/update) their local informations about the heap at
each procedure call/return and context switch. These manipulations of the local heaps
are quite delicate. Let us give an informal description of the main ideas behind them.

Consider first the case of a sequential program. At each procedure call, the caller
passes to the callee a copy of a part of its local heap. At the return of the call, the callee
gives back its new local heap, the last one before termination, to the caller which updates
accordingly its own local heap (which corresponds to its view of the heap just before
the call). To perform correctly these caller/callee communications, a relation between
vertices in different copies of a same piece of the “real” heap must be maintained,
relating vertices which are copies of each other, representing the same address in the
heap. Moreover, since pointer manipulation may disconnect some vertices from the
visible part of a procedure during its execution, the deletion of these vertices from the
local structure can be problematic since these vertices may still be relevant for further
executions of procedures in the call stack. To handle this problem, we introduce a notion
of cut points: when a heap is passed from the caller to the callee, cut points represent
the first vertices in the visible part by the callee which are reachable from the caller or
from other procedures in the call stack. Then, during the execution of the procedure,
a vertex can be removed from the locally visible heap only if it becomes unreachable
from the local variables, the global variables, and the cut points.

In the case of parallel programs, an additional but similar mechanism has to be intro-
duced for passing/updating locally visible heaps at context switches. Intuitively, parallel
processes synchronize their views of the heap at each context switch. The active process
passes its local heap to all of the other processes which can update accordingly their lo-
cal heaps (corresponding to the configuration at the previous context switch), taking
into account the modifications on the heap performed by the active process while they
were idle. For that, the active process maintains in its control state, which is a global
state for all its procedures, a relation between its current local heap and its initial local
heap corresponding to the configuration at the last context switch, allowing to deter-
mine for each vertex in the (old) local heaps whether it has a copy in the (new) local
heap returned by the active process. Also, to deal with vertex deletion, it is necessary
to extend the use of cut points by considering the reachable vertices from the stacks of
each process. In fact, each process needs to distinguish his own cut points from the ones
of the other processes.

We prove that the new semantics is correct (sound and complete) w.r.t. the original
semantics (in section 3) in the sense that they define bisimilar transition systems. An
important property allowing to prove this fact is that isomorphism between locally vis-
ible heaps preserves bisimilarity (i.e., substitution of isomorphic local heaps does not
modify behaviors). This holds because the performed operations and tests on the heaps
do not refer to the precise values of the addresses. (Notice that there is an infinite num-
ber of isomorphic heaps of a same size since the address domain is infinite). Then, we
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consider a normalization operation for visible heaps which associates to each of them
an equivalent heap modulo isomorphism, and we prove that the semantics based on
normalized visible heaps is also correct w.r.t. the original semantics. Our normalization
operation matches all the isomorphic visible heaps to a finite number of representatives.
(We do not have a unique representative due to the presence of cut points.) Therefore,
for sequential programs, our pushdown model construction terminates for bounded heap
depth programs. For concurrent programs, the construction terminates for a finite num-
ber of a context switches, given a bound on the heap depth.

4.1 Locally Visible Heaps

A cut heap is a tuple CH = (A,Δ,Γ,Λ,
−→
C ) where (A,Δ,Γ,Λ) is a heap and

−→
C ∈ (2A)m

is a vector of sets of cut points. For each i ∈ {1, . . . ,m},
−→
C (i) is the set of cut points

reachable from the local environments (of the pending procedure executions) stored in
the stack of the process i. Then, a visible heap is a cut heap such that A = ReachΔ(Γ(G)∪
Λ(L)∪�m

i=1
−→
C (i)∪{⊥}), i.e., it is a cut heap without garbage. We define an operation

of garbage elimination allowing to obtain a visible heap from a cut heap: given a cut
heap CH = (A,Δ,Γ,Λ,

−→
C ), the visible heap Clean(CH) is given by (A′,Δ′,Γ,Λ,

−→
C )

where A′ = A ∩ ReachΔ(Γ(G) ∪ Λ(L) ∪�m
i=1

−→
C (i)∪ {⊥}) and ∀s ∈ S. Δ′(s) = Δ(s)∩

[A′ → A′], i.e., the restriction of Δ(s) to A′.
We define an equivalence relation � between visible heaps which is essentially graph

isomorphism modulo renaming of vertices. Let VH1 = (A1,Δ1,Γ1,Λ1,
−→
C1) and VH2 =

(A2,Δ2,Γ2,Λ2,
−→
C2) be two visible heaps and let β : A1 → A2 be a bijection s.t. β(�) = �

and β(⊥) =⊥. Then, VH1 �β VH2 iff (i) ∀s ∈ S. ∀a ∈ A1. β(Δ1(s)(a)) = Δ2(s)(β(a)),
(ii) ∀v ∈ G. Γ2(v) = β(Γ1(v)), and ∀v ∈ L. Λ2(v) = β(Λ1(v)), and (iii) ∀i ∈ [1,m],−→
C2(i) = {β(c) : c ∈ −→

C1(i)}. Then, VH1 � VH2 if there is a β s.t. VH1 �β VH2.

4.2 Sequential Programs as Pushdown Systems

Let us define an environment to be a tuple e = 〈n,VH,π〉 where n ∈ N, VH is a visible
heap, and π ⊆ A×A is an injective function (π relates vertices in the heap of the caller
procedure with vertices in the current visible heap VH). Let V be the set of all envi-
ronments. Then, we associate with each sequential process a visible heap pushdown
system (VH-PDS) which is a stack machine whose stack alphabet is V and whose con-
trol states are injective functions from A to A. These functions are used to maintain a
link between the current visible heap of the running sequential process and its initial
visible heap since its last activation (at the initial configuration of the system or at the
last context switch). This information is needed at the next context switch for updating
the visible heaps of the idle processes. (Informations in control states can be omitted in
the case of a purely sequential program.) Now, let i be the index of a sequential process.
We define the (infinite) set of transition rules Ri of the stack machine associated with
process i by means of the three inference rules given hereafter.

Basic operations and test: We extend the relation
op−−→ defined on heaps (see section

3) to a relation on visible heaps (which also informs about the correspondence between
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vertices in the original and final heaps). Let VH1 = (H1,
−→
C1), and VH2 = (H2,

−→
C2) be

two visible heaps. For every function π : A×A, we have VH1
op−−→π VH2 iff there exists

a heap H ′
2 s.t. H1

op−−→H ′
2 and Clean(H ′

2,
−→
C1) �π V H2. Then:

n1
op−−→n2 V H1

op−−→π VH2

(Π,〈n1,V H1,π1〉) ↪→ (Π ◦ π,〈n2,VH2,π1 ◦ π〉) ∈ Ri
HeapOp

Procedure calls: Let i ∈ [1,m] be the index of the active sequential process, let VH1 =
(A1,Δ1,Γ1,Λ1,

−→
C1) be the visible heap of the caller procedure, and let v1.σ1, . . . ,vk.σk

be the effective parameters which must be assigned respectively to the local variables
�1, . . . , �k of the called procedure (considered as its formal parameters). The visible heap
passed to the callee procedure (of the process i) is obtained as follows: (1) construct first
the cut heap CutPassi(VH1) which is a copy of VH1, where local variables of the callee
procedure are assigned with their new values, and local variables of the caller procedure
are memorized as cut points, (2) then determine the new vector of sets of cut points:
cut points of processes j 	= i stay unchanged, cut points of the process i are the first
addresses reachable from cut points of CutPassi(VH1) in the sub-heap corresponding
to reachable addresses from the new local variables, the global variables, and the cut
points of all processes, (3) finally remove the garbage of CutPassi(V H1) according to
the new set of cut points.

Let us define formally the operation CutPassi. Let VH = (A,Δ,Γ,Λ,
−→
C ) be a visi-

ble heap. Then, CutPassi(VH, [�1,v1.σ1], . . . , [�k,vk.σk]) is the cut heap (A,Δ,Γ,Λ′,
−→
C′)

where (1) ∀ j ∈ [1,k],Λ′(� j) = Δ(σ j)((Λ∪Γ)(v j)) and Λ′(�) = � for all other variables

� ∈ L, (2) ∀ j ∈ [1,m], j 	= i, we have
−→
C′( j) =

−→
C ( j), and (3)

−→
C′(i) =

−→
C (i)∪Λ(L).

We give now the formal definition of the visible heap passed by the caller to the
callee. Consider CH = (A,Δ,Γ,Λ,

−→
C ) to be any cut heap. Let A′ = ReachΔ(Γ(G) ∪

Λ(L) ∪� j 	=i
−→
C ( j)) (the set A′ is the visible part of the heap from local and global

variables and from cut points in
−→
C ( j), for j 	= i), and let Δ′ be the restriction of Δ to

vertices in A′. Then, let Visiblei(CH) = Clean(A,Δ,Γ,Λ,
−→
C′) where, for every j ∈ [1,m]

s.t. j 	= i,
−→
C′( j) =

−→
C ( j), and

−→
C′(i) = (A′ ∩ReachΔ(

−→
C (i)))\Δ′(S)(ReachΔ(

−→
C (i))). The

set
−→
C′(i) contains the first vertices in A′ which are Δ-reachable from

−→
C (i). The cleaning

operation removes all vertices which are Δ-reachable only from
−→
C (i), i.e., the set of

vertices in Visiblei(CH) is precisely A′.
Finally, given a visible heap VH, we define Passi(VH, p,v1.σ1, . . . ,vk.σk) to be

the set of pairs (VHπ,π) such that Visiblei(CutPassi(VH, [�1,v1.σ1], . . . , [�k,vk.σk])) �π
VHπ. The injective relation π allows to relate addresses in the visible heap of the caller
with addresses in the new visible heap. It is used to update the heap of the caller after
termination of the callee procedure. Then, we consider the inference rule:

n1
call(p,v1.σ1,...,vk.σk)−−−−−−−−−−−→n2

(VH2,π2) ∈ Passi(VH1, p,v1.σ1, . . . ,vk.σk)

(Π,〈n1,V H1,π1〉) ↪→ (Π ◦ π2,〈np
init ,V H2,π2〉〈n2,VH1,π1〉) ∈ Ri

Call
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Procedure returns: Given the current visible heap VH2 of the terminating procedure
and the visible heap VH1 of the caller procedure stored in the stack, we define an oper-
ation updating VH1 according to the effect of the procedure call on the heap.

Let π2 ⊆ A1 × A2 be an injective relation giving the correspondence between the
vertices of VH1 and V H2 (i.e., if (a1,a2) ∈ π and (a′

1,a2) ∈ π, then a1 = a′
1). We suppose

that A1 ∩A2 = {�, ⊥} (otherwise, instead of V H2 and π2, consider a new visible heap
VH ′

2 and π2 ◦ π for some π s.t. VH2 �π VH ′
2).

Then, let B1 = {a ∈ A1 : 	 ∃a′ ∈ A2. (a,a′) ∈ π2}, let B2 = {a ∈ A1 : ∃a′ ∈ A2. (a,a′) ∈
π2}, and let B3 = {a′ ∈ A2 : 	 ∃a ∈ A1. (a,a′) ∈ π2}.

Intuitively, B1 is the set of vertices in A1 such that either they were not reachable
in the initial visible heap passed to the called procedure, and therefore they should be
restored in the heap of the caller procedure after the call return, or they became invisible
during the call execution due to garbage deletion and therefore they should not appear in
the heap after the call return since they were not reachable from cut points. (We explain
below how to get rid of the vertices in this second category). Vertices in B2 are those
which were present before the call, and which are still present after termination of the
call. Finally, B3 is the set of the created vertices during the call.

It can be easily seen that these three sets are disjoint. Moreover, we have B3 ∪
π2(B2) = A2. Let us consider the bijection β : A2 → B2 ∪ B3 defined in the obvious
way (for every a ∈ A2, if a ∈ B3 then β(a) = a, otherwise β(a) = π2

−1(a)).
Let (A′

1,Δ
′
1,Γ

′
1,Λ

′
1,

−→
C′

1) be the cut heap such that (1) A′
1 = B1 ∪ B2 ∪ B3, (2) ∀g ∈

G. Γ′
1(g) = β(Γ2(g)), (3) ∀� ∈ L, Λ′

1(�) = Λ1(�), (4)
−→
C1

′(i) =
−→
C1(i) and ∀ j 	= i,

−→
C′

1( j) =
β(

−→
C2( j)), and (5) ∀s ∈ S, (i) ∀a ∈ B1. Δ′

1(s)(a) = Δ1(s)(a), (ii) ∀a ∈ B2. Δ′
1(s)(a) =

β(Δ2(s)(π2(a))), and (iii) ∀a ∈ B3. Δ′
1(s)(a) = β(Δ2(s)(a)).

Then, we define Update-seqi(V H1,VH2,π2) to be the set of all pairs (VHπ,π) such

that Clean(A′
1,Δ

′
1,Γ

′
1,Λ

′
1,

−→
C′

1) �π VHπ.
Notice that (1) the cleaning operation removes the vertices of A1 which were garbage

collected during the procedure call, and (2) for every V H ′
2, and every β s.t. VH2 �β VH ′

2,
Update-seqi(V H1,V H2,π2) = Update-seqi(V H1,VH ′

2,π2 ◦ β).
Then, we consider the inference rule:

n return−−−−→nend (VH ′
1,π

′) ∈ Update-seqi(VH1,VH2,π2)
(Π,〈n,V H2,π2〉〈n′,VH1,π1〉) ↪→ (Π ◦ π′,〈n′,V H ′

1,π1 ◦ π′〉) ∈ Ri
Return

4.3 Multithreaded Programs as Concurrent Pushdown Systems

We associate with a multithreaded program with m parallel threads an m-dim concurrent
visible heap pushdown system (CVH-PDS). The stack alphabet is V, and the (infinite)
set of control states is S = {(i,

−→
Π) : i ∈ [1,m],

−→
Π = (

−→
Π(1), . . . ,

−→
Π(m)),

−→
Π( j) : A−→A}.

We define hereafter the set of transition rules R of the model.

Local transitions: Transitions of each sequential process are obviously transitions of
the whole system. For every i ∈ [1,m], let Ri be the set of transition rules associated
with the process of index i (defined in the previous subsection). Then, we have:
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(Πi,wi)↪→(Π′
i,w

′
i)∈Ri

−→
Π(i)=Πi

−→
Π′(i)=Π′

i ∀ j 	=i. w j∈V and
−→
Π( j)=

−→
Π′( j)

((i,
−→
Π), [w1, . . . ,wi, . . . ,wm]) ↪→ ((i,

−→
Π′), [w1, . . . ,w′

i, . . . ,wm]) ∈ R
Local

Context switches: Finally, consider the case of a context switch. Assume that process
i was the last active process and let VHi = (Ai,Δi,Γi,Λi,

−→
Ci ) be its last visible heap.

At the context switch, process i communicates to all the other ones (which were idle)
informations about the new heap configuration. For that, the part which is shared by all
processes is extracted from VHi and passed to them. Then, each process j 	= i updates
accordingly its old visible heap (which corresponds to the heap configuration at the
previous context switch) before the next active process starts its computation.

Formally, let us define Sharedi(V Hi) = Visiblei(CutPassi(VHi,∀� ∈ L. [�,�])), and

assume that Sharedi(VHi) = (A′
i,Δ′

i,Γ′
i,Λ′

i,
−→
C′

i ). Notice that we remove from Ai only

vertices that are reachable from local variables in L or from cut points in
−→
Ci (i), but

which are not reachable from global variables, nor from cut points of other threads.
These vertices are not visible from other threads and therefore they do not belong to

the shared part of the heap. The cut points in
−→
C′

i (i) allow to know which vertices in the
shared part are reachable from local variables in the stack of the current thread. The
removed vertices will be added to the heap when the current process will resume later.
This is done by an updating operation described below.

Let j ∈ [1,m], let VHj = (A j,Δ j,Γ j,Λ j,
−→
Cj) be the visible heap of the process j, and

suppose Π ⊆ A j × A′
i is an injective relation connecting vertices in VHj with vertices

in Sharedi(VHi). We suppose that Ai ∩A j = {�, ⊥} (otherwise, instead of V Hj and Π,
consider VH ′

j and Π ◦ π for some π s.t. V Hj �π VH ′
j).

Then, let B1 = {a ∈ A j : 	 ∃a′ ∈ A′
i. (a,a′) ∈ Π}, let B2 = {a ∈ A j : ∃a′ ∈ A′

i. (a,a′) ∈
Π}, and let B3 = {a′ ∈ A′

i : 	 ∃a ∈ A j. (a,a′) ∈ Π}. These sets are disjoint and we have
B3 ∪Π(B2) = A′

i. Then, consider the bijection β j : A′
i → B2 ∪B3 defined in the obvious

way (for every a ∈ A′
i, if a ∈ B3 then β j(a) = a, otherwise β j(a) = Π−1(a)).

We define the operation Update-par j, for j ∈ [1,m], which updates the local heap of

process j using the shared heap passed by process i. For j 	= i, let (A′
j,Δ′

j,Γ′
j,Λ′

j,
−→
C′

j)
be the cut heap s.t. (1) A′

j = B1 ∪ B2 ∪ B3, (2) ∀g ∈ G. Γ′
j(g) = β j(Γ′

i(g)), (3) ∀� ∈ L,

Λ′
j(�) = Λ j(�), (4)

−→
C′

j( j) =
−→
Cj( j), and ∀k 	= j,

−→
C′

j(k) = β j(
−→
C′

i (k)), and (5) ∀s ∈ S, (i)
∀a ∈ B1. Δ′

j(s)(a) = Δ j(s)(a), (ii) ∀a ∈ B2. Δ′
j(s)(a) = β j(Δ′

i(s)(Π(a))), and (iii) ∀a ∈
B3. Δ′

j(s)(a) = β j(Δ′
i(s)(a)). Then, Update-par j(VHj,VHi,Π) is defined to be the set of

all (V H ′
j,π,Π j) such that (1) Clean(A′

j,Δ′
j,Γ′

j,Λ′
j,

−→
C′

j) �π VH ′
j, and (2) Π j = π−1 ◦β−1

j .
Moreover, for every mapping Πi : A → A, we define Update-pari(V Hi,VHi,Πi) to be
the set of all (VH ′

i ,π,π−1) such that VHi �π V H ′
i . Then, we consider the inference rule:

i,k∈{1,...,m} i 	=k ∀ j∈{1,...,m}. w j=〈n j,V Hj,π j〉
∀ j∈{1,...,m}. (V H ′

j,π
′
j,Π j)∈Update-par j(V Hj,V Hi,

−→
Π( j)◦−→Π(i))

∀ j∈{1,...,m}. w′
j=〈n j,V H ′

j,π j◦π′
j〉

((i,
−→
Π), [w1, . . . ,wm]) ↪→ ((k,(Π1, . . . ,Πm)◦ Πk

−1), [w′
1, . . . ,w

′
m]) ∈ R

Switch

with the notational convention (Π1, . . . ,Πm)◦ Π = (Π1 ◦ Π, . . . ,Πm ◦ Π).
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4.4 Associated Transition System and Correctness of the Semantics

A configuration of a CVH-PDS is a tuple ((i,
−→
Π ), [v1, . . . ,vm]) ∈ S × [V∗]m where i ∈

[1,m] is the index of the active process, and v1, . . . ,vm ∈ V
∗ are the local configurations

of all the processes. Let C be the set of all configurations.
Given r = ((i1,

−→
Π1), [u1, . . . ,um]) ↪→ ((i2,

−→
Π2), [u′

1, . . . ,u
′
m]) ∈ R , let �→r⊆ C× C be

the relation s.t. b �→r b′ iff b = ((i1,
−→
Π1), [v1, . . . ,vm]), b′ = ((i2,

−→
Π2), [v′

1, . . . ,v
′
m]), and

∀k ∈ [1,m], ∃wk ∈ V
∗ s.t. vk = ukwk and v′

k = u′
kwk.

Let �→loc (resp. �→sw) be the union of all relations �→r where r is a Local rule (resp.
Switch rule), and let �→ be the union of all the relations �→r, for r ∈ R . Then, we consider
the relation � = �→∗

loc ◦ �→sw. For each K ≥ 1, the relation �K (Kth power of �)
corresponds to �→-reachability with K −1 context switches (or K consecutive contexts).

We extend the equivalence relation � defined on visible heaps to environments in V:
we consider that 〈n1,VH1,π1〉 �β 〈n2,VH2,π2〉 iff (1) n1 = n2, and (2) β is a bijection
from A1 to A2 such that VH1 �β VH2 and π2 = π1 ◦ β. Given two environments e1, e2,
we write e1 � e2 iff there exists β such that e1 �β e2. We extend this equivalence relation
to sequences of environments in the obvious manner (e1 · · ·e j � e′

1 · · ·e′
k iff j = k and

for every i ∈ [1, j], ei � e′
i).

Finally, we extend � to configurations: let b = ((i,
−→
Π), [e1α1, . . .emαm]) and b′ =

(( j,
−→
Π′), [e′

1α′
1, . . . ,e

′
mα′

m]) be two configurations. Then, b � b′ iff (1) i = j, (2) ∀k ∈
[1,m], αk � α′

k, and (3) ∃πk : A → A s.t. e′
k �πk ek and

−→
Π′(k)◦ πk =

−→
Π(k).

Proposition 1. For every configurations b0,b,b′, if b0 �→∗ b and b′ � b, then b0 �→∗ b′.

We prove that given a multithreaded program, its associated CH-PDS and CVH-PDS
are bisimilar. For that, we exhibit a bisimulation relation between configurations of the
two systems. Intuitively, this relation maps a configuration of the CVH-PDS to a config-
uration of the CH-PDS by applying the updating operations through the configuration.
(Indeed, visible heaps stored in the stacks of the CVH-PDS model are not up to date
since they correspond to views of the heap at the moment of their memorization.)

Theorem 1. The relations ⇒ and �→ define bisimilar transition systems.

4.5 Program Semantics Based on Normalized Visible Heaps

Normalized visible heaps: Visible heaps in normal form are obtained by numbering
nodes according to a depth-first traversal of the heap, for a given ordering of global and
local variables, and the fixed order on the successor fields {s1, . . . ,sn}.

Let us consider a bijection η : L ∪ G → [1, |L ∪ G|]. Then, given an environment
〈n,VH,π〉 with VH = (A,Δ,Γ,Λ), we define the class [[〈n,VH,π〉]]η to be the set of all
environments 〈n,VH ′,π ◦ β〉 with VH ′ = (A′,Δ′,Γ′,Λ′) s.t. (1) VH �β VH ′, (2) A′ =
[1, |A|], and (3) in the graph (V,Δ′

V ) where V = ReachΔ′(Λ′(L)∪Γ′(G)) and Δ′
V = Δ′ ∩

[S → (V → V )], vertices correspond to the depth-first-traversal induced by the order η
on root nodes (and the fixed order on successor fields labeling the edges of the graph).

Notice that, if all vertices in VH are reachable from L ∪ G, then [[〈n,VH,π〉]]η con-
tains a single element. Otherwise, there must be cut points (and may be other vertices
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reachable from them) which are not reachable from L ∪ G. In that case, [[〈n,VH,π〉]]η
contains environments (with identical reachable parts from L∪G) corresponding to dif-
ferent permutations of the vertices reachable from cut points but not from L∪G.

Proposition 2. For every η, the set [[〈n,VH,π〉]]η is finite (if VH is finite).

Concurrent pushdown systems on normalized visible heaps: Let us fix η. We define
a program semantics where visible heaps are considered modulo the η-equivalence.
Let Vη be the set of all [[e]]η, for e ∈ V. We consider the set of transition rules Rη
corresponding to the restriction of the set R to the alphabet Vη:

Rη = {((i,
−→
Π), [α1, . . . ,αm]) ↪→ (( j,

−→
Π′), [α′

1, . . . ,α′
m]) ∈ R | ∀ j, α j,α′

j ∈ Vη
∗}.

Let Cη be the set of all configurations ((i,
−→
Π), [α1, . . . ,αm]) such that ∀ j, α j ∈ Vη

∗.
Then, let �→r,η be the restriction of the transition relation �→r to configurations in Cη.
Let �→η be the union of the relations �→r,η for all transition rules r. The relations �→loc,η,
�→sw,η, and �η are also defined as previously in terms of the restricted relations �→r,η.

Theorem 2. The relations �→ and �→η define bisimilar transition systems.

5 Reachability Analysis

Bounded visible heap depth programs: Let k ∈ N. A visible heap V H=(A,Δ,Γ,Λ,C)
is k-bounded if (1) |ReachΔ(Λ(L)∪Γ(G))| ≤ k, and (2) ∀i ∈ [1,m]. |ReachΔ(C(i))| ≤ k.
Notice that k-boundedness does not imply that |A| ≤ k since there may exist vertices
which are reachable from cut points but not from local/global variables. A sequence
〈n1,V H1,π1〉 . . . 〈n j,VHj,π j〉 ∈ V

∗ is k-bounded iff ∀i ∈ [1, j], VHi is k-bounded. A

configuration ((i,
−→
Π), [α1, . . . ,αm]) is k-bounded iff ∀ j ∈ [1,m], α j is k-bounded.

Theorem 3. Given k ≥ 1, for every k-bounded ⇒-computation in the CH-PDS model
of a program there is a bisimilar k-bounded �→-computation in its CVH-PDS model.

Bounded heap depth reachability analysis of sequential programs: We extend to
VH-PDS the automata-based construction of post∗/pre∗ images for pushdown systems
(see, e.g., [1,5,4]). We assume in the sequel that visible heaps are in normal form ac-
cording to some fixed ordering η on local and global variables. Sets of configurations
are recognized by finite-state automata over the alphabet of normalized environments
called Conf-automata. More precisely, initial states in these automata correspond to
mappings Π, and edges are labeled by elements of Vη. Then, a configuration (Π,α) is
accepted by the automaton if starting from the initial state Π there is an accepting run
for the sequence α ∈ V

∗
η.

Given k ≥ 1, and a regular set of k-bounded (local) configurations recognized by a
Conf-automaton A , we apply a saturation based algorithm Closureη(A ,k) which con-
structs a sequence of Conf-automata with increasing languages, each of them being
obtained from the previous one using one of the transition rules of the pushdown sys-
tem. The difference here with the existing constructions for pushdown systems is that
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the stack alphabet of the built automata may increase at each step. Therefore, we restrict
the construction to the k-bounded environments. Then, by Proposition 2, the algorithm
terminates and produces a finite Conf-automaton representing all (forward/backward)
reachable configuration by k-bounded �→η-computations, which is a subset of the set of
all reachable configurations from L(A) (by Theorems 1 and 2), and which contains the
set of all reachable configurations by k-bounded ⇒-computations (by Theorem 3).

Reachability analysis of concurrent programs: Let us first introduce some defini-
tions and notations: A special Conf-automaton is a Conf-automaton for which there
exists a pair (Π,e) such that, for every local configuration (Π′,α) ∈ L(A), Π′ = Π and
there exists α′ ∈ V

∗
η such that α = eα′, i.e., all words accepted by A start with (Π,e).

The pair (Π,e) is then denoted Â . An aggregate is a tuple (A1, . . . ,Am) of special Conf-
automata. Such an aggregate defines the set of global configurations L(A1, . . . ,Am) =
{((i,

−→
Π), [α1, . . . ,αm]) : i ∈ [1,m],∀ j ∈ [1,m]. (

−→
Π( j),α j) ∈ L(A j)}. A finite set of ag-

gregates defines the union of the languages defined by all its elements.
Given a Conf-automaton A and (Π,e) with e ∈ Vη, let A(Π,e) be an automaton rec-

ognizing the language L(A)∩(Π×eVη
∗). Clearly, A(Π,e) is a special automaton. Given

(Π,e) and a special automaton A , we denote by (Π,e)� A the special automaton rec-
ognizing the language {(Π,eα) | (Π′,e′α) ∈ L(A)}, i.e., the language of A where the
first symbol of every word is replaced by e and the initial state is replaced by Π.

We consider w.l.o.g. that the reachability analysis starts from a single initial con-
figuration where the heap is empty and all pointer variables are equal to null: For
each i ∈ [1,m], let A i

/0 be the special automaton recognizing the (singleton) language
{(Id{�,⊥},〈ni

init ,VH/0, Id{�,⊥}〉)}, where ni
init is the entry node of the main procedure of

process i, and VH/0 = ({�,⊥},Δ�,Γ⊥,Λ⊥,
−→
/0 ) with Δ� being the function mapping �

to each address for all successor fields, Γ⊥ (resp. Λ⊥) being the functions mapping ⊥
to each global (resp. local) variable, and

−→
/0 being the vector of functions mapping an

empty set of cut points to each process.
Finally, given h1, . . . ,hm such that for every � ∈ [1,m], h� = (

−→
Π(�),e�), and given

i, j ∈ [1,m], i 	= j, we denote by Updatei, j(h1, . . . ,hm) the set of tuples (h′
1, . . . ,h

′
m)

such that: (1) for every � ∈ [1,m], h′
� = (

−→
Π′(�),e′

�), and (2) ((i,
−→
Π ), [e1, . . . ,em]) ↪→sw

(( j,
−→
Π′), [e′

1, . . . ,e
′
m]), where ↪→sw refers to the Switch inference rule (see section 4.3).

We are now ready to present our bounded reachability analysis algorithm. The algo-
rithm is given in Figure 1. The input is a CVH-PDS, the bound on context switches K,
and the bound on the size of visible heaps k. The algorithm computes (in Reach) the
set of all reachable configurations by k-bounded �η

K-computations: A set of tasks is
maintained in a structure todo. A task is a triple (�, i,A) where � is the number of con-
text switches done so far, i is the index of the process chosen to be active, and A is an
aggregate. Initially, todo contains the initial configuration of the program with all pos-
sible starting active process (lines 2-3). Then, the treatment of a task is as follows: if �
has already reached K then A is added to Reach (lines 6-7). Otherwise, the set of reach-
able k-bounded configurations from A by process i is computed (line 9), and then new
tasks are produced corresponding to all possible context switches from i to some other
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Input: An m-dim CVH-PDS, and two integers K,k ≥ 1
Output: The set of reachable configurations by k-bounded �K

η -computations.

1 Reach ← /0;
2 for all i ∈ {1, . . . ,m}
3 todo ← {(0, i,A1

/0 , . . . ,Am
/0 )};

4 while todo 	= /0 do
5 pop (level, i,A1, . . . ,Am) from todo with minimal level;
6 if level = K then
7 Reach ← Reach∪{(A1, . . . ,Am)};
8 else
9 let Bi = Closureη(Ai,k) in

10 for all (Π,e′
i) such that L(B(Π,e′

i)
i ) 	= /0

11 for all j ∈ {1, . . . ,m} such that j 	= i

12 for all (h1, . . . ,hm) ∈ Updatei, j(Â1, . . . ,(Π,e′
i), . . . , Âm)

13 todo ← (level +1, j,h1 �A1, . . . ,hi �B(Π,e′
i)

i , . . . ,hm �Am);
14 return Reach

Fig. 1. Algorithm for bounded context-switch/heap depth reachability on CVH-PDS

process j (lines 10-13). For that, a case splitting is performed according to all possible
visible heaps reached by process i (line 10), corresponding to head environments of its
possible stacks. Then, the local heaps of all processes are updated, and tasks (where �
is incremented) are defined for all possible next active processes j 	= i (lines 11-12) and
added to todo (line 13).
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Abstract. TVLA is a parametric framework for shape analysis that can be eas-
ily instantiated to create different kinds of analyzers for checking properties of
programs that use linked data structures. We report on dramatic improvements in
TVLA’s performance, which make the cost of parametric shape analysis compa-
rable to that of the most efficient specialized shape-analysis tools (which restrict
the class of data structures and programs analyzed) without sacrificing TVLA’s
parametricity. The improvements were obtained by employing well-known tech-
niques from the database community to reduce the cost of extracting information
from shape descriptors and performing abstract interpretation of program state-
ments and conditions. Compared to the prior version of TVLA, we obtained as
much as 50-fold speedup.

1 Introduction

In this paper, we review recent improvements to TVLA (Three-Valued-LogicAnalyzer),
a system for automatically generating a static-analysis implementation from the opera-
tional semantics of a given program [1,2]. In TVLA, a language’s small-step structural
operational semantics is written in a meta-language based on First-Order Logic with
Transitive Closure (FO(TC)). The main idea is that program states are represented as
logical structures, and the program’s transition system is defined using first-order log-
ical formulas. The abstraction is controlled using a set of Instrumentation Predicates,
which are defined using FO(TC) formulas and dictate what extra information is tracked
for each program state. Integrity constraints can be provided in the form of FO(TC)
formulas; these express invariant properties of the operational semantics (e.g., each
program pointer can point to at most one concrete location).

TVLA is a parametric framework based on the theory of [2]. Given the concrete
operational semantics, instrumentation predicates, and integrity constraints, TVLA au-
tomatically generates the abstract semantics, and, for each program point, produces a
conservative abstract representation of the program states at that point. TVLA is in-
tended as a testbed in which it is easy to try out new ideas for shape abstractions.
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A unique aspect of TVLA is that it automatically generates the abstract transformers
from the concrete semantics; these transformers are (i) guaranteed to be sound, and
(ii) rather precise—the number of false alarms reported in our applications is very small.
The abstract transformers in TVLA are computed in 4 stages:

(i) Focus—a partial concretization operation in which each heap cell that will be up-
dated is materialized as a singleton (non-summary) individual, so that it is possible to
perform a strong update; (ii) Update — in which the update formulas are evaluated us-
ing Kleene semantics on the abstract structure to achieve a sound abstract transformer;
(iii) Coerce — a semantic reduction in which an internal Datalog-style constraint solver
uses the instrumentation predicates and integrity constraints to improve the precision of
the analysis; and (iv) Blur—in which the abstraction function is re-applied (which en-
sures that the analyis terminates).

Compared to specialized shape-analysis approaches, the above operations incur in-
terpretative overhead. In this paper, we show that using techniques taken from the realm
of databases, such as semi-naive evaluation and query optimization [3], TVLA reduces
this overhead, and thereby achieves performance comparable to that of state-of-the-art
specialized shape analysis without changing TVLA’s functionality.

Our technical report [4] contains more details about the implementation and related
work; the new version of TVLA is available at [5].

2 Key Improvements

The bottleneck in previous versions of TVLA has been Coerce, which needs to consider
interactions among all the predicates. The complexity of Coerce stems from the fact that
the number of constraints is linear in the size of the program, and the number of tuples
that need to be considered during the evaluation of a constraint is exponential in the
number of variables in the constraint.

Coerce translates the definitions of instrumentation predicates and the integrity con-
straints to Datalog-like constraint rules of the form ϕ ⇒ ψ, where ϕ is called the base
of the rule and is a conjunction of general formulas, and ψ is called the head of the
rule and is a literal. The head and the conjuncts of the base are called atoms. Each atom
induces a relation of the tuples that satisfy it. Coerce then applies a constraint by search-
ing for assignments to the free variables of the rule such that the base is known to hold
(i.e., evaluates to 1), and the head either does not hold (i.e., evaluates to 0) or may not
hold (i.e., evaluates to 1

2 ). In the first case it safely discards the structure as inconsistent,
and in the second case it attempts to coerce the value to 1 (more details can be found in
[2]). This process continues until a fixed point is reached in a way similar to evaluation
of Datalog rules in databases [3].

View Maintenance with Semi-Naive Evaluation. Semi-naive evaluation is a well-known
technique in database view maintenance to speed up the bottom-up evaluation of Dat-
alog rules [3]. On each iteration of the algorithm, it evaluates the rules in incremental
fashion; i.e., it only considers variable assignments containing relation tuples that were
changed during the previous iteration. All other assignments must have been examined
during the previous iteration and thus cannot contribute any new information. Because
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the number of changed tuples is usually small compared to the size of the relation, this
avoids a considerable amount of computation.

We take this idea one step further by using properties of the TVLA abstract trans-
former step to avoid fully evaluating the constraints even once: all of the constraints
hold before the Focus and Update steps, and thus the set of violating assignments for
the structure is initially empty. Any assignment that violates the constraints must there-
fore be due to a tuple changed by Focus or Update. We save the structure before and
after the potentially violating step, and calculate the difference. This delta structure is
used during the first iteration of Coerce.

Multi-Constraint Evaluation. TVLA integrity constraints are often symmetric, i.e., give
rise to a set of rules, all consisting of the same atoms, such that for each such rule a
different atom serves as the (negated) head of the rule and the rest remain in the base.

We introduced the notion of a multi-constraint to represent a set of rules that have
the same set of atoms. Instead of evaluating these rules one-by-one, we can evaluate
them all at once at a cost comparable to that of a single rule evaluation.

A constraint is violated when all of the atoms in the base evaluate to 1 while the
negated head evaluates to either 1 or 1

2 . Similarly, a multi-constraint is violated when
all of its atoms evaluate to 1, except at most one atom that evaluates to 1

2 and is the head
of some rule.

We evaluate the multi-constraint efficiently by keeping count of the number of 1
2

values for an assignment while enumerating the relations’ tuples.
This technique usually cuts the effective number of constraints in half, and affects

the running time of Coerce accordingly.

Other Improvements. Many other improvements and techniques were introduced into
TVLA, including the following: optimizing the query-evaluation order; precomputing
information that only depends on constraint structure, such as atom types and depen-
dencies; tracking modified predicates in each structure for quick constraint filtering;
caching and on-demand recomputation of transitive closure; caching of recently-used
predicate values and tuple lists for predicate negation.

In addition, we did extensive re-engineering and optimization of the TVLA core
geared toward improved performance.

3 Experimental Results

We incorporated the above-mentioned techniques into TVLA. The empirical results
from running the new tool on various benchmark examples are presented in Table 1.
Table 1 compares the running time of each analysis with both the previously available
TVLA version, as well as some specialized shape-analysis tools [6,7].

The benchmark suite consisted of the following examples: singly-linked lists op-
erations, including Merge and Reverse; sorting of linked lists, including insertion sort,
bubble sort, and a recursive version of Quicksort (using the extension of [8]); sorted-tree
insertion and deletion; analysis of set data structures from [9]; analysis of the Lindstrom
scanning algorithm [10,11]; insertion into an AVL tree [12].

For each program, Table 1 uses the following shorthand to indicate the set of prop-
erties that the analysis established: CL—cleanness, i.e., absence of memory leaks and
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null-pointer dereferences; DI—data-structure invariants were maintained (e.g., treeness
in the case of a tree-manipulation program); IS—the output result is isomorphic to the
input; TE—termination; SO—the output result is sorted. The column labeled “Structs”
indicates the total number of (abstracted) logical structures attached to the program’s
control-flow graph at the end of the analysis. “N/A” denotes absence of available em-
pirical data for the tool. “B/S” denotes that the analysis is beyond the scope of the tool.
The tests were done on a 2.6GHz Pentium PC with 1GB of RAM running XP.1

Table 1. Running time comparison results

Program Properties Structs New TVLA Old TVLA [6] [7]
LindstromScan CL, DI 1285 8.21 63.00 10.85 B/S
LindstromScan CL, DI, IS, TE 183564 2185.50 18154.00 B/S B/S
SetRemove CL, DI, SO 13180 106.20 5152.80 B/S B/S
SetInsert CL, DI, SO 299 1.75 22.30 B/S B/S
DeleteSortedTree CL, DI 2429 6.14 47.92 4.22 B/S
DeleteSortedTree CL, DI, SO 30754 104.50 1267.70 B/S B/S
InsertSortedTree CL, DI 177 0.85 1.94 0.89 B/S
InsertSortedTree CL, DI, SO 1103 2.53 12.63 B/S B/S
InsertAVLTree CL, DI, SO 1855 27.40 375.60 B/S B/S
Merge CL, DI 231 0.95 4.34 0.45 0.15
Reverse CL, DI 57 0.29 0.45 0.07 0.06
InsertSort CL, DI 712 3.02 23.53 0.09 0.06
BubbleSort CL, DI 518 1.70 8.45 0.07 N/A
RecQuickSort CL, DI 5097 3.92 16.04 B/S 0.30
RecQuickSort CL, DI, SO 5585 9.22 75.01 B/S B/S

Table 1 shows that our techniques indeed resulted in considerable speedup vis-a-vis
the old version of TVLA: most of the examples run an order of magnitude faster, and in
one case a factor of 50 is achieved. Moreover, the new tool’s performance is comparable
with that of specialized analysis tools, especially on larger examples.

More detailed explanations of the various algorithmic improvements, as well as addi-
tional data about the level of improved performance that we obtained, are available in a
technical report [4]. The use of semi-naive-evaluation techniques improves the running
time of Coerce by a factor of 2, and the total running time by about 50% (Table 2, page
9 of [4]). Various query-optimization techniques (Section 2.4 of [4]) also improve the
running time significantly. An additional factor of about 3–4 in the running time comes
from extensive engineering changes and code optimization (Section 2.2 of [4]).
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Abstract. We present new techniques for fast, accurate and scalable static data
race detection in concurrent programs. Focusing our analysis on Linux device
drivers allowed us to identify the unique challenges posed by debugging large-
scale real-life code and also pinpointed drawbacks in existing race warning gen-
eration methods. This motivated the development of new techniques that helped
us in improving both the scalability as well as the accuracy of each of the three
main steps in a race warning generation system. The first and most crucial step is
the automatic discovery of shared variables. Towards that end, we present a new,
efficient dataflow algorithm for shared variable detection which is more effective
than existing correlation-based techniques that failed to detect the shared vari-
ables responsible for data races in majority of the drivers in our benchmark suite.
Secondly, accuracy of race warning generation strongly hinges on the precision
of the pointer analysis used to compute aliases for lock pointers. We formulate
a new scalable context sensitive alias analysis that effectively combines a divide
and conquer strategy with function summarization and is demonstrably more ef-
ficient than existing BDD-based techniques. Finally, we provide a new warning
reduction technique that leverages lock acquisition patterns to yield provably bet-
ter warning reduction than existing lockset based methods.

1 Introduction

The widespread use of concurrent software in modern day computing systems ne-
cessitates the development of effective debugging methodologies for multi-threaded
software. Concurrent programs, however, are behaviorally complex involving subtle in-
teractions between threads which makes them hard to analyze manually. This motivates
the use of automated formal methods to reason about such systems. Particularly notori-
ous to catch are errors arising out of data race violations. A data race occurs when two
different threads in a given program can simultaneously access a shared variable, with
at least one of the accesses being a write operation. Checking for data races is often a
critical first step in the debugging of concurrent programs. Indeed, the presence of data
races in a program typically renders its behavior non-deterministic thereby making it
difficult to reason about it for more complex and interesting properties.

In this paper, we develop techniques for data race detection that are efficient, scalable
and accurate. In order to identify the practical challenges posed by the debugging of
large-scale real-life code, we focused our analysis on detecting data races in Linux
device drivers. A careful study of bug reports and CVS logs at kernel.org revealed
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that the two main reasons for the presence of data races in drivers are incorrect locking
and timing related issues. Since timing related data races are hard to analyze at the
software level, we chose to focus only on locking related bugs.

The classical approach to data race detection involves three steps. The first and most
critical step is the automatic discovery of shared variables, i.e., variables which can
be accessed by two or more threads. Control locations where these shared variable are
read or written determine potential locations where data races can arise. In fact, lock-
ing related data races arise if a common shared variable is accessed at simultaneously
reachable program locations in two different threads where disjoint sets of locks are
held. Since locks are typically accessed via pointers, in order to determine these lock-
sets at program locations of interest, in the second step, a must-pointer alias analysis
is carried out. Finally, the main drawback of static analysis is that a large number of
bogus data race warnings can often be generated which do not correspond to true bugs.
The last step, therefore, is to use warning reduction and ranking techniques in order to
either filter out bogus warnings or prioritize them based on the degree of confidence.

The challenge lies in carrying out race detection while satisfying the conflicting goals
of scalability and accuracy both of which depend on various factors. Key among them
are (i) accuracy of shared variable discovery, and (ii) accuracy and scalability of the alias
analyses for determining shared variables (may aliases) and locksets (must aliases).
Wrongly labeling a variable as shared renders all warnings generated for it bogus. On
the other hand, if we miss reporting a variable as shared then we fail to generate warn-
ings for a genuine data race involving this variable.

Considerable research have been devoted to automatic shared variable discovery
[7,14]. However, most existing techniques are based on the underlying assumption that
when accessing shared variables, concurrent programs almost always follow a locking
discipline by associating with each shared variable v a lock lv which needs to be ac-
quired before any access to v. Existing techniques focus on computing this association
between locks and variables. Towards that end, various correlation based techniques
have been developed – both statistical [7] and constraint based [14]. An advantage of
statistical techniques is that they are scalable and do not depend on an alias analysis
which can often be a bottleneck. However, the failure of correlation based techniques
to detect the shared variables responsible for data races in majority of the drivers (8 out
of 10) in our suite exposed the fact that their main weakness turns out to be this very
reliance on the existence of locking discipline. Indeed, many data races arise precisely
when the locking discipline is violated. Furthermore, it turns out that in most of the
drivers that we considered, the original implementations correctly followed lock disci-
pline. Data race bugs were introduced only when the programs were later modified by
adding new code either for optimization purposes or in order to fix bugs. Typically, this
newly added code was a “hack” that introduced lock-free accesses to shared variables
that weren’t present in the original code. Since the only occurrences of these variables
were in regions unguarded by locks, no meaningful correlations could be developed for
them and was the key reason why correlation-based techniques [7,14] failed to identify
these variables as shared.

In order to ensure that no shared variable fails detection, we use a very liberal cri-
terion to categorize variables as such. Our shared variable detection routine is based
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on the premise that all shared variables are either global variables of threads, aliases
thereof, pointers passed as parameters to API functions or escape variables. Further-
more, we are only interested in identifying precisely the subset of variables from the
above set that are written to in the given program as only these can participate in a data
race. The main challenge here is that since global variables can be accessed via local
pointers we need to track aliasing assignments leading to such local pointers. An ad-
ditional complication is that not all assignments to aliases of global variables result in
meaningful updates to global variables. Indeed, in a sequence of pointer assignments
p1 = p, ..., q = pk, starting at a pointer p to a global structure S, say, we see that
assignments in the above sequence merely pass aliasing information without updating
the value of any (scalar) variable. If, however, the above sequence is followed by an
assignment of the form q → f = exp to a field f of S, then it is a genuine update
to f thus making it a variable of interest. We show that such update sequences can be
detected via an efficient dataflow analysis. In fact, in most Linux drivers, data global to
a thread is usually stored as global structures having a large number number of fields –
typically 50 to 100. Only a small fraction of these are actually used for storing shared
data which our new algorithm was able to isolate with high precision. Declaring all the
fields of a global structure as shared would simply generate too many bogus warnings.

The second step in static race detection is to accurately determine locksets at pro-
gram locations where shared variables are accessed. Since locks are typically accessed
via pointers, this requires computation of must-aliases for these lock pointers. The ac-
curacy of warning generation is therefore directly dependent on the precision of the
must-alias pointer analysis. Moreover, for the sake of accuracy it is imperative that lock
aliases be computed context sensitively. This is because most must-aliases in C pro-
grams arise from parameter passing of pointer arguments in functions, which alias to
different pointers in different contexts. The result is that a context sensitive alias analy-
sis produces drastically lesser bogus warnings than a context insensitive one. However,
the key drawback of a context sensitive alias analysis is scalability as the number of
possible contexts in a large program can easily explode. In recent years, considerable
research has been devoted to ameliorating this problem by storing contexts symboli-
cally using data structures like BDDs. Implementation of BDD-based context sensitive
pointer analysis like BDDBDDB [18] have been shown to give good results for Java
programs [13,12]. However, C programs, which are less structured than Java programs,
typically have too many pointer variables and complex aliasing relations between them
which, in our experience, became hard to handle using BDDBDDB as the program
size grew. We therefore propose a new technique for scalable context sensitive pointer
analysis that combines:

(i) Divide and Conquer which leverages the fact that we can partition the set of all
pointers in a program into disjoint classes such that each pointer can only alias to a
pointer within its class. While, in general, aliasing is not an equivalence relation, many
widely used pointer analyses like Steensgaard [16] generate equivalence relations that
are over-approximations of aliasing. Since we use this initial pointer analysis only for
partitioning, scalability is more critical than accuracy and this is precisely what Steens-
gaard’s analysis offers. There are two important consequences of this partitioning. First,
since we are only interested in lock pointers, and since lock pointers can only alias to
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other lock pointers, we can ignore non-lock pointers. This drastically cuts down on
the number of pointers we need to consider for our analysis. Secondly, since a given
lock pointer can, in general, be aliased to a small subset of the total set of lock pointers,
Steensgaard analysis provides us with a further decomposition of the set of lock pointers
into yet smaller partitions. A second and more accurate context-sensitive alias analysis
in then carried out on these final partitions and even though expensive in general, it
becomes scalable on these small classes.

(ii) Procedure Summarization which exploits locality of reference, viz., the fact that
locks and shared variables are accessed in a small fraction of functions. Our new sum-
marization based must alias analysis procedure therefore needs to compute summaries
only for these small number of functions thereby making our approach applicable to
large programs. We emphasize that procedure summarization is extremely important in
making any static analyses scalable. Indeed, typical real-life code has a large number of
small functions that can be called from many different contexts. A non-summarization
based technique like BDDBDDB can be overwhelmed as the program size grows. It is
important to note that it is the synergy resulting by combining the two techniques that
enables us to achieve scalability. Indeed, it is divide and conquer which allows us to
exploit locality of reference thereby making summarization viable.

Finally, one of the main weaknesses of using static race detection techniques is that a
large number of (bogus) race warnings can often be generated. In this paper, we show
that tracking lock acquisition patterns, instead of locksets, results in a warning reduc-
tion technique that is more accurate than existing lockset based techniques [8] in two
ways. First, by leveraging acquisition histories in addition to locksets we can filter out
warnings generated by lockset based technique at the warning generation stage itself.
Secondly, once the warnings are generated, we can use a dominator-based technique
that leverages acquisition histories to give provably better warning reduction than [8].
Additionally, by using ranking, we can guarantee that our reduction technique is sound,
viz., will not drop real data races in favor of bogus ones.

2 Shared Variable Discovery

So as not to miss any shared variable we use a very liberal definition of when a variable
is declared as such. Essentially, we are interested in all genuine modifications to global
variables, aliases thereof, pointers passed as parameters to API functions and escape
variables. A global variable of a thread that is directly written to is declared as shared.
Such variables can be determined merely by scanning through the program code. How-
ever, a global variable may also be accessed via a local pointer. Such a pointer q could
occur at the end of a chain of pointer assignments p1 = p, p2 = p1, ..., q = pk starting
at a pointer p to, say, a global structure S, which is either global or passed as a parameter
to an API function. Then any variable v modified via an access through p is also a vari-
able of interest. However, simply declaring all pointers occurring in such sequence as
shared could lead to a lot of bogus warnings. Indeed, in the above sequence, the assign-
ments are not genuine updates but merely serve to propagate the values of fields of S. If,
however, the above sequence is followed by an assignment of the form q → f = exp,
where exp is either a local variable or an expression other than simple propagation of
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a data value, it is a genuine update and should be declared a shared variable of interest.
The above discussion motivates the following definition.

Algorithm 1. Dataflow Analysis for Shared Variable Detection

1: Initialize Vsh = ∅, G to the set of global variables of thread T , in to the entry statement of
T , worklist W to the set {(in, G)}, and the set of processed tuples Pr to {(in, G)}.

2: repeat
3: Remove a tuple tup = (st, Psh) from W .
4: if st is of the form v = w where v and w are program variables then
5: if w ∈ Psh then
6: set Psh = Psh ∪ {v}
7: else if v ∈ Psh then
8: set Vsh = Vsh ∪ {v}.
9: end if

10: else if st is of the form v = exp where exp is an expression other than a simple variable
then

11: if v ∈ Psh then
12: set Vsh = Vsh ∪ {v}.
13: end if
14: end if
15: for each successor statement st′ of st do
16: if there does not exist a tuple in Pr of the form (st′, S), where Psh ⊆ S, then
17: add (st′, Psh) to both W and Pr.
18: end if
19: end for
20: until W is empty
21: return Vsh

Definition 1. A sequence of assignments p1 = p, p2 = p1, ..., q = pk is called a
complete update sequence from p to q iff for each i, there do not exist any assignments
to pi (in the given program) after it is written and before it is read in the sequence.

Thus our goal is to detect complete update sequences from p to q that are followed by
the modification of a scalar variable accessed via q, where p either points to a global
variable or is passed as a parameter to an API function. We determine such sequences
using our new dataflow analysis formulated as algorithm 1. Essentially, the procedure
propagates the assignments in complete update sequences as discussed above till it hits
a genuine update to a variable which is declared as shared. The algorithm keeps track
of the potential shared variable as the set Psh. To start with, Psh contains variables of
the given thread T that are pointers to global variables or passed as parameters to API
functions. A separate variable Vsh keeps track of variables involving genuine updates
which are therefore declared as shared. Each assignment of the form v = w is a propa-
gation if w ∈ Psh. Thus if v �∈ Psh it is added to Psh (lines 4-6). A variable v ∈ Psh is
included in Vsh only if there is an assignment of the form v = w, where v is potentially
shared but w is not and is therefore a local variable (lines 7-9), or v = exp, where exp
is a genuine update as discussed above (lines 10-14).
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3 Scalable Context Sensitive Alias Analysis

As noted in the introduction, once the shared variables have been identified, the key
bottleneck in generating accurate lockset based warnings is a scalable context-sensitive
must alias analysis which is required to determine locksets at control locations where
shared variables are accessed. In this section, we propose a new technique for scal-
able context sensitive alias analysis that is based on effectively combining a divide and
conquer strategy with function summarization in order to leverage the benefits of both
techniques.

3.1 Divide and Conquer Via Partitioning

We exploit the fact that, even though aliasing is not, in general, an equivalence relation,
many alias analyses like Steensgaard’s compute relations that are over-approximations
of aliasing but are, importantly, equivalence relations. Additionally, an equally critical
feature of Steensgaard’s analysis is that it is highly scalable. This makes it ideally suit-
able for our purpose which is to partition the set of all pointers in the given program
into disjoint classes that respect the aliasing relation, i.e., a pointer can only be aliased
to pointers within the class to which it belongs. A drawback of Steensgaard’s analysis
is lack of precision. However, this is addressed next by focusing a more refined analy-
sis on each individual Steensgaard partition. Indeed, partitioning, in effect, decomposes
the pointer analysis problem into much smaller sub-problems where instead of carry-
ing out the pointer analysis for all the pointers in the program, it suffices to carry out
separate pointer analyses for each equivalence class. The fact that the partitioning re-
spects the aliasing relation guarantees that we will not miss any aliases. The small size
of each partition then offsets the higher computational complexity of a more precise
analysis. As noted in the introduction, the Steensgaard generated equivalence class for
a lock pointer typically contains only a small subset of lock pointers (typically 2-3) of
the given program thus ensuring scalability of a context-sensitive alias analysis on each
such partition.

3.2 Exploiting Locality of Reference Via Summarization

Using decomposition, once the set of pointers under consideration have been restricted
to small sets of lock pointers, we can further exploit locality of reference which then
allows us to effectively leverage procedure summarization for scalable context sensi-
tive pointer analysis. Indeed, typically in real-life programs, shared variables, and as
a consequence locks, are accessed in a very small number of functions. Thus instead
of following the BDDBDDB approach that pre-computes aliases for all pointers in all
contexts, it is much more scalable to instead use procedure summarization to capture
all possible effects of executing a procedure on lock pointers. The reason it is more
scalable is that we need to compute these summaries only for the small fraction of
functions in which lock pointers are accessed. Once we have pre-computed the sum-
maries, the aliases for a lock pointer at a program location in a given context can be
generated efficiently on demand. We emphasize that it is the above decomposition that
allows us to leverage locality of reference. Indeed, without decomposition we would
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have to compute summaries for each function with a pointer access, viz., practically
every function in the given program. Additionally, for each function we would need
to compute the summary for all pointers modified in the function not merely the lock
pointers which could greatly increase the termination time of the algorithm. Thus by
combining divide and conquer with summarization we can exploit the synergy between
the two techniques.

3.3 Computing Procedure Summaries for Context-Sensitive Pointer Analysis

In order to formulate our new summarization based technique for demand driven con-
text sensitive pointer analysis we need the following definition

Definition 2 ( Maximally Complete Update Sequence). Let λ : l1, ..., lm be a se-
quence of successive program locations and let π be the sequence li1 : p1 = p,
li2 : p2 = a1,..., lik

: pk = ak−1, lik+1 : q = ak of pointer assignments occurring
along λ with li1 = l1 and lik+1 = lm. Then π is called a maximally complete update
sequence from p to q leading from locations l1 to lm iff it is the sequence of maximum
length having the following properties (i) for each j, aj = pj (semantically) at lij+1 ,
(ii) for each j, there does not exist any assignment to pointer aj between locations lij

and lij+1 along λ, and (iii) p is not modified between locations li1 and lik+1 along λ.

Then we have the following important observation.

Proposition 3. Pointers p and q are aliased at control location l iff there exists a se-
quence λ of successive control locations starting at the entry location l0 of the given
program and ending at l such that either (i) there exists a complete update sequence
from p to q along λ, or vice versa, or (ii) there exists a pointer a such that there exist
maximally complete update sequences from a to both p and q along λ.

A corollary of the above result is that in order to compute must-aliases of pointers,
we need to construct function summaries that enable us to track maximally complete
update sequences. The formal notion of function summaries that we use for our pointer
analysis is given below.

Definition 4. The summary for a function f in a given program is the set of all tuples
of the form (p, l, A), where p is a pointer written to at location l in f and A is set of all
pointers q such that there is a complete update sequence from q to p along each path
starting at the entry location of f and ending at l. The set A is denoted by Sum(f, p, l).

As an example, consider the program in figure 1 with global pointers p and q. We see
that g3 ∈ Sum(goo, 2c, p) and g4 ∈ Sum(goo, 2c, q). Similarly, g4 ∈ Sum(goo, 5c, q)
but g5 �∈ Sum(goo, 5c, p). This is because the control flow branches at location 3cwith
p being set to g5 in one branch and retaining the old value g3 in the other. Statically, there
is no way of deciding whether g3 and g5 are the same pointer. Thus Sum(goo, 5c, p) =
∅. Thus, Sum(foo, 2a, p) = {g1} and Sum(foo, 2a, q) = {g2}, whereas Sum(foo,
3a, p) = ∅ and Sum(foo, 3a, q) = {g4}.

Note that we do not need to cache the summary tuples for each program location of
a function. Indeed, given a context con resulting from the sequence of function calls
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foo(){
1a: p = g1;
2a: q = g2;
3a: bar();
4a: ... ;

}

bar(){
1b: goo();

}

goo(){
1c: p = g3;
2c: q = g4;
3c: if(global var)
4c: p = g5;
5c: u = 1 ;

}
Fig. 1. An Example Program

f1, ..., fn, for function fi, where 1 ≤ i ≤ n− 1, all we need are the summary tuples for
the locations where fi+1 is called. In addition, we also need to cache the summary tuple
for the exit location as it might be required while performing the dataflow analysis. For
the last function fn in con, we need the summary tuples for each location in the function
where a lock pointer is accessed. Since the number of such locations are typically few,
the sizes of the resulting summaries are small.

The Algorithm. Given a pointer p and location l in function f , we perform a backward
traversal on the CFG of the given program starting at l and track the complete update
sequences as tuples of the form (m, A), where m is a program location and A is a set of
lock pointers q such that there is a complete update sequence from q to p starting from
m and ending at l. The algorithm maintains a set W of tuples that are yet to processed
and a set P of tuples already processed. Initially, W contains the tuple (l, {p}) (line 2).
Note that before processing a tuple (m, A) from W , since our goal is to compute must-
aliases we need to make sure that each successor m′ of m from which there exists a
path in the CFG leading to l has already been processed during the backward traversal,
viz., W currently has no tuples of the form (m′, D). Such a tuple is called ready (line
4) (Note that if there are strongly connected components in the given CFG, the notion
of a ready tuple is not well-defined. In that case, we first compute a spanning tree of
the CFG on which the procedure is run while ignoring the back edges. Next we refine
the tuples by processing each of the back edges one-by-one which may result in the
(over approximated) aliases getting smaller till a fixpoint is reached. Since, in a given
Steensgaard partition, the number of lock pointers is usually small (typically 2-3), this
refinement step terminates quickly). If the statement at m is of the form t = r, where
t ∈ A, then in processing (m, A), let A′ be the set that we get from A by replacing t
with r else A′ = A (lines 5-7).

In order to propagate the pointers in A′ backwards, there are two cases to consider.
First, assume that m is a return site of a function g that was called from within f .
Then we have to propagate the effect of executing g backwards on each pointer in A′.
Towards that end, we first check whether the summary tuples for g have already been
computed for each of the pointers in A′ for the exit location exitg of g. If they have,
then we form the new tuple (m′, B), where m′ is the call site of g corresponding to
the return site m and B =

⋃
r∈A′ Sum(g, r, exitg) (lines 12-14). If, on the other hand,

the summary tuples have not been computed, we introduce the new tuple (exitg, A
′)

in the worklist (line 16). For the second case, we assume that, m is not a function call
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Algorithm 2. Summary Computation for Lock Pointer Analysis

1: Input: Lock Pointer: p, Control Location l, Function f .

2: Initialize W to (l, {p}).
3: repeat
4: Remove a ready tuple tup = (m, A) from W . Set A′ = A.
5: if lock pointer t ∈ A and the statement at location m is of the form t = r then
6: A′ = (A \ {t}) ∪ {r}
7: end if
8: NewTuples = ∅
9: if m is the entry location of function f then

10: add (p, A) to the summary
11: else if m is the call return site of a function call for g then
12: if the summary tuples have already been computed for all lock pointers in A′ for the

exit location exitg of g then
13: B =

�
t∈A′ Sum(g, exitg, t), where Sum(g, exitg, t) is the summary of pointer t

with respect to exitg if t is written to in g else it is t
14: Let NewTuples = {(m′, B)}, where m′ is the call site of g corresponding to m
15: else
16: Add (exitg, A

′) to W
17: end if
18: else
19: NewTuples =

�
m′∈Pred{(m′, A′)}, where Pred is the set of predecessors of m

20: end if
21: for each tuple (l, B) ∈ NewTuples that has not already been processed do
22: if there exists a tuple of the form (l, C) in W then
23: replace (l, C) by (l, C ∩ B)
24: else
25: Add (l, B) to W
26: end if
27: end for
28: until W is empty

return site, we consider the set Pred of all the predecessor locations of m in f (line
19). For each m′ ∈ Pred, we form the tuple (m′, A′). If tuple (m′, A′) has already
been processed no action is required. Else, if there already exists a tuple of the form
(m′, C) in W , then we have discovered a new backward path to location m′. Since we
are computing must aliases, viz., intersection of aliases discovered along all backwards
CFG paths, we replace the tuple (m′, C) with the tuple (m′, A′ ∩ C) (line 23). If there
exists no such tuple, then we simply add the new tuple (m′, A′) to W .

4 Leveraging Acquisition Histories for Warning Reduction

We present two new race warning reduction techniques that are based on tracking lock
acquisition patterns and are provably more accurate than existing lockset-based ones
[8]. Our new reduction technique proceeds in two stages. In the first stage, we make
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use of the notion of consistency of lock acquisition histories which governs whether
program locations in two different threads are simultaneously reachable. This allows
us to discard, in a sound fashion, those warnings wherein lock acquisition histories are
inconsistent even though disjoint locks are held at the corresponding program locations.
Lockset based techniques alone could not remove such warnings. In the second stage,
we use yet another warning reduction technique complementary to the first one which
is based on defining an acquisition history based weaker than relation on the remaining
warnings that is more refined than the lockset based weaker than relation defined in [8].

The lockset based weaker than relation technique of [8] defines an access event as
a 4-tuple of the form (v, T, L, a, c), where v is a shared variable accessed at control
location c of thread T with lockset L and a denotes the type of accesses, i.e., whether it
is a read or a write. Let e1, e2 and e3 be access events such that e2 and e3 occur along
same local computation path of a thread. Then if the occurrence of a race between e1
and e2 implies the occurrence of a race between e1 and e3, we need not generate a
warning for the pair (e1, e2). In this case, the event e3 is said to be weaker than e2,
denoted by e3 � e2. The relation � is hard to determine precisely without exploring
the state space of the given program which, in general, may not be scalable. Instead, it
is typically over-approximated via static analysis. A lockset based approximation, �l,
given in [8] is defined below.

Definition 5 (Lockset Based Weaker Than [8]). For access event p = (v, T, L1, a1,
c1 ) occurring before access event q = (v, T, L2, a2, c2) along a common local compu-
tation x of thread T , p �l q iff L1 ⊆ L2 and either a1 = a2 or a1 is a write operation.

4.1 Acquisition History Based Warning Reduction

We motivate our technique with the help of a simple concurrent program CP comprised
of the two threads T1 and T2 shown in figure 2 that access shared variable x. Let e1,
e2, e3 and e4 denote accesses to x at locations 6a, 6b, 9b and 2b, respectively. Note
that the locksets at control locations 6b and 9b are L2 = {lk2} and L3 = {lk2},
respectively. Since L2 ⊆ L3, e2 �l e3 and so the lockset based reduction technique
would drop (e1, e3) in favor of (e1, e2).

However, control locations 6a and 6b are not simultaneously reachable whereas 6a
and 9b are, even though in both cases disjoint locksets are held at the two locations.

1a: a = 1;
2a: lock(lk1);
3a: lock(lk2);
4a: y = 1;
5a: unlock(lk2);
6a: x = 3;
7a: unlock(lk1);

1b: lock(lk2);
2b: x = 0;
3b: lock(lk1);
4b: b = 2;
5b: unlock(lk1);
6b: x = 2;
7b: unlock(lk2);
8b: lock(lk2);
9b: x = 1;

Fig. 2. Threads T1 and T2 with shared variable x
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The key reason is that simultaneous reachability of two control locations in separate
threads depends not merely on the locks held at these locations but also on the patterns
in which they were acquired in the individual threads. Indeed, in order for T2 to reach
6b it needs to execute the statements at locations 3b and 5b, viz., acquire and release
lock lk1. Note, however, that once T1 acquires lk1 at location 2a it does not release it
until after it has exited 6a. Thus in order for the two threads to simultaneously reach
6a and 6b, T2 must first acquire and release lk1, viz., must already have executed 5b
before T1 executes 2a. However, in that case T2 holds lock lk2 (via execution of 1b)
which it cannot release, thus preventing T2 from executing 3a and transiting further.
This proves our claim. The simultaneous reachability of 6a and 9b, on the other hand,
is easy to check. Thus the �l-based reduction of [8] drops a warning corresponding
to a real data race in favor of a bogus one. In general, when testing for reachability
of control states c and c′ of two different threads we need to test whether there exist
paths x and y in the individual threads leading to states c and c′ holding lock sets L and
L′ which can be acquired in a compatible fashion so as to prevent the scenario above.
Compatibility can be captured using the notion of acquisition histories defined below.
Let Lock-Set(Ti, c) denote the set of locks held by thread Ti at control location c.

Definition 6 (Acquisition History) [9]. Let x be a global computation of a concurrent
program CP leading to global configuration c. Then for thread Ti and lock l of CP such
that l ∈ Lock-Set(Ti, c), we define AH(Ti, l, x) to be the set of locks that were acquired
(and possibly released) by Ti after the last acquisition of l by Ti along x.

If L is the set of locks, each acquisition history AH is a map L → 2L associating which
each lock a lockset, i.e., the acquisition history of that lock. We say that acquisition
histories AH1 and AH2 are consistent iff there do not exist locks l1 and l2, such that
l1 ∈ AH2(l2) and l2 ∈ AH1(l1). Then the above discussion can formalized as follows.

Theorem 7 (Decomposition Result) [9]. Let CP be a concurrent program comprised of
the two threads T1 and T2. Then for control states a1 and b2 of T1 and T2, respectively,
a1 and b2 are simultaneously reachable only if there are local computations x and y of
threads T1 and T2 leading to control states a1 and b2, respectively, such that (i) Lock-
Set(T1, s) ∩ Lock-Set(T2, t) = ∅, and (ii) the acquisition histories AH1 and AH2 at a1
and b2, respectively, are consistent. If the threads communicate solely via nested locks
then the above conditions are also sufficient.

These acquisition histories can be tracked via static analysis much like locksets. To
leverage the Decomposition result, we therefore define an ah-augmented access event
as a tuple of the form (v, T, L, AH, a, c), where (v, T, L, a, c) is an access event and
AH is the current acquisition history. Our warning reduction proceeds in two stages.

Stage I. Since consistency of acquisition histories is a necessary condition for simulta-
neous reachability, we drop all warnings (e1, e2), where ei = (v, T, Li, AHi, ai) and
AH1 and AH2 are inconsistent. In our example, (e1, e3) will be dropped at this stage.

Stage II. On the remaining warnings, we impose a new acquisition history based
weaker than relation �a. Towards that end, given two acquisition histories AH1 and
AH2, we say that AH1 � AH2 iff for each lock l, AH1(l) ⊆ AH2(l). An immediate,
but important, consequence is the following
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Proposition 8. Given acquisition history tuples AH , AH1 and AH2, such that AH1 �
AH2, AH is consistent with AH2 implies that AH is consistent with AH1.

Definition 9 (Acquisition History based Weaker Than). For access event e1 = (v, T,
L1, AH1, a1, c1) occurring before e2 = (v, T, L2, AH2, a2, c2) along a common com-
putation of thread T , e1 �a e2 iff L1 ⊆ L2, AH1 � AH2 and either a1 = a2 or a1 is
a write operation.

In our example, the acquisition histories for events e1, e3 and e4 are AH1 = {(lk1, {lk2
} ) }, AH3 = {(lk2, ∅)} and AH4 = {(lk2, ∅)}, respectively. Clearly, AH4 � AH3,
and so e4 �a e3. Thus we drop (e1, e3) and retain (e1, e4). The intuition behind this is
that any local computation of T2 leading to accesses e3 has to pass through the access
e4. Moreover, since AH3 � AH4, it follows that if AH1 and AH3 are consistent then
so are AH1 and AH4. Thus, since T1 and T2 communicate only via nested locks, by
the decomposition result, if there is a computation realizing the data race corresponding
to the warning (e1, e3), then there also exists one realizing (e1, e4). Thus we may drop
(e1, e3) is favor of (e1, e4).

Acquisition History-based Covers. Note that is general there might be multiple paths
leading to an access event ek, in which case before dropping a pair (ei, ek), we need
to make sure that along each path in the program leading to ek there exists an accesses
event ej �a ek. This can be accomplished by using the notion of a cover for an access
event. Given an access event e, a Cover for e is a set of access events c such that c �a e.
Such a cover can be easily determined via a backwards dataflow analysis from the
program location corresponding to e.

Making Reduction Sound via Ranking. Finally, we note that if the thread synchro-
nization is not merely lock based, a reduction strategy based on either �a or �l is not
sound. In [8], a manual inspection routine is proposed in order to identify real warnings
that may have been dropped which may not be practical. We propose using ranking in
order to ensure soundness. Towards that end, we do not drop any warning based on �a

but merely rank them lower. Then whether a warning lower in the order in inspected is
contingent on the fact that the warning higher in the order turns out to be a bogus one.

5 Experimental Results

The experimental results for our suite of 10 Linux device drivers downloaded from
kernel.org are tabulated below. The results clearly demonstrate (i) the effectiveness
of our shared variable discovery routine, (ii) the scalability and efficiency (Time column)
of our new summary based pointer analysis, and (iii) the effectiveness and hence the
importance of leveraging warning reduction techniques. The Time column refers to the
time taken (not including the time taken for building the CFG - typically less than a
minute) when using our new summary based technique for must-alias analysis. The
BDDBDDB engine was run only on the first three drivers and took respectively, 15min,
1 hr and 30 min, respectively, thus clearly demonstrating the improvement in running
time when using our new alias analysis. The columns labeled War and Aft. Red. refer,
respectively, to the total number of warnings generated originally and after applying
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reduction based on the �a relation. Even after applying these reductions, there could
still be a lot of warnings generated as Linux drivers usually have a large number of
small functions resulting a large number of contexts. Thus the same program location
may generate many warnings that result from essentially the same data race but different
contexts. The column Aft. Con. refers to the number of warnings left after generating
only one warning for each program location and abstracting out the contexts.

Driver KLOC # ShVars #War #Aft.Red. #Aft.Con. Time(secs)

hugetlb 1.2 5 4 1 1 3.2
ipoib multicast 26.1 10 33228 6 6 7
plip 13.7 17 94 51 51 5
sock 0.9 6 32 21 13 2
ctrace comb 1.4 19 985 218 58 6.7
autofs expire 8.3 7 20 8 3 6
ptrace 15.4 3 9 1 1 15
tty io 17.8 1 6 3 3 4
raid 17.2 6 23 21 13 1.5
pci gart 0.6 1 3 1 1 1

6 Conclusion and Related Work

Data race detection being a problem of fundamental interest has been the subject of
extensive research. Many techniques have been leveraged in order to attack the problem
including dynamic run-time detection, static analysis and model checking.

Early work on dynamic data race detection includes the Eraser data race detector [15]
which is based on computing locksets. There has been much work that improves upon
the basic Eraser methodology. One such approach [8] leverages the use of static analysis
to reduce the number of data race warnings that need to be validated via a run-time
analysis. Other run-time detection tools based on Lamport’s happened before model
restrict the number of interleavings that need be explored [6,11]. The advantage of run-
time techniques is the absence of false warnings. On the other hand, the disadvantages
are the extra cost incurred in instrumenting the code and poor coverage both of which
become worse as the size of code increases especially in the context of concurrent
programs. Additionally, run time detection techniques presume that the given code can
be executed which may not be an option for applications like device drivers.

Model Checking [3], which is an efficient exploration of the state space of the given
program, is another powerful technique that has been employed in the verification of
concurrent programs [1,4]. However, the state space explosion has made it hard to verify
concurrent programs beyond 10K lines of code and is thus not, with the current state-
of-the-art, an option for debugging large-scale real-life code.

Recently, there has been a spurt of activity in applying static analysis techniques
for data race detection [5,10,17,2,13,12,7,14,8]. An advantage of such techniques is
that they can be made to scale to large programs. The key disadvantage is that since
static analysis works on heavily abstracted versions of the original program, they are
not refined enough and can produce a large number of false warnings.



Fast and Accurate Static Data-Race Detection for Concurrent Programs 239

A credible approach is to strengthen static analysis to make it more refined with the
goal of reducing the number of bogus warnings. The key steps to an accurate race detec-
tion procedure are (i) accurate shared variable discovery, (ii) scalable context sensitive
pointer analysis to determine must locksets, and (iii) effective warning reduction. In
this paper, we have proposed a new shared variable detection analysis that can be used
to enhance existing correlation based techniques [7,14]. Secondly, we have proposed a
new scalable context sensitive must alias analysis which is critical in ensuring both scal-
ability and accuracy of our race detection analysis. Prior context-sensitive alias analysis
techniques have been shown to be more successful for Java [13,12,18] than C, whereas
other techniques [7] simply do not use any pointer analysis which limits their accuracy.
Finally, we have proposed a new two stage acquisition history based warning reduction
technique which is provably more accurate than existing lockset based techniques given
in [8]. Experimental results on a suite of Linux drivers demonstrate the efficacy, viz.,
both the accuracy and scalability, of our new techniques.
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Abstract. Happen-before causal partial orders have been widely used in concur-
rent program verification and testing. This paper presents a parametric approach
to happen-before causal partial orders. Existing variants of happen-before rela-
tions can be obtained as instances of the parametric framework. A novel causal
partial order, called sliced causality, is then defined also as an instance of the
parametric framework, which loosens the obvious but strict happen-before re-
lation by considering static and dynamic dependence information about the pro-
gram. Sliced causality has been implemented in a runtime predictive analysis tool
for Java, named jPredictor, and the evaluation results show that sliced causality
can significantly improve the capability of concurrent verification and testing.

1 Introduction

Concurrent systems are notoriously difficult to verify, test and debug due to their in-
herent nondeterminism. The happen-before causality, first introduced in [14], provides
an effective way to analyze the potential dynamic behaviors of concurrent systems and
has been widely used in concurrent program verification and testing [21,16,18,19,9].
Approaches based on happen-before causality extract causal partial orders by analyz-
ing process or thread communication at runtime; the extracted causal partial order can
be regarded as an abstract model of the runtime behaviors of the program and thus can
be checked against the desired property. This way, one analyzes a class of executions
that are characterized by the same causal partial order. Therefore, for verification, the
state space to explore can be reduced, while for testing, one can predict potential errors
without re-execute the program. Happen-before based approaches are sound (no false
alarms) and can handle general purpose properties, e.g., temporal ones.

Several variants of happen-before causalities have been introduced for applications
in different domains [14,16,19]. Although these notions are similar in principle, there
is however no adequate unifying framework for all of them. A proof of soundness has
to be re-done for every variant of happen-before causality, which typically involves
sophisticate details of the specific domain. This may slow future developments, in par-
ticular defining new, or domain-specific causalities. The first contribution of this paper
is a parametric framework for causal partial orders, which is purposely designed to
facilitate defining and proving correctness of happen-before causalities. The proof of
correctness of a happen-before relation is reduced to proving a simple, easy to check
closed local property of causal dependence. Existing variants of happen-before relations
can be obtained and proved sound as instances of our parametric framework.
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The second contribution of this paper consists of using the above framework to define
a novel causal partial order relation, called sliced causality, which aims at improving
coverage of analysis without giving up soundness or genericity of properties to check:
it works with any monitorable (safety) properties, including regular patterns, tempo-
ral assertions, data-races, atomicity, etc. Previous approaches based on happen-before
(such as [16,18,19]) extract causal partial orders from analyzing exclusively the dy-
namic thread communication in executions. Since they consider all interactions among
threads, e.g., all reads/writes of shared variables, the obtained causal partial orders are
rather restrictive, or rigid, in the sense of allowing a reduced number of linearizations
and thus of errors that can be detected. In general, the larger the causality (as a binary
relation) the fewer linearizations it has, i.e., the more restrictive it is.

Main Thread:

resource.authenticate()
flag.set = true;

Task Thread:

if (! flag.set)
flag.wait();

resource.access();

Fig. 1. Multi-threaded execution

Let us consider a simple and common
safety property for a shared resource, that
any access should be authenticated. Figure 1
shows a buggy multi-threaded program using
the shared resource. The main thread authen-
ticates and then the task thread uses the au-
thenticated resource. They communicate via
the flag variable. Synchronization is unnec-
essary, since only the main thread modifies
flag. However, the developer makes a (rather common [7]) mistake by using if in-
stead of while in the task thread. Suppose now that we observed a successful run of
the program, as shown by the arrow. The traditional happen-before will not be able
to find the bug because of the causality induced by write/read on flag. But since
resource.access() is not controlled by if, our technique will be able to correctly
predict the violation from the successful execution. When the bug is fixed by replac-
ing if with while, resource.access() will be controlled by while because it is a
non-terminating loop; then no violation will be reported by our technique.

In summary, based on an apriori static analysis, sliced causality drastically cuts the
usual happen-before causality by removing unnecessary dependencies; this way, a sig-
nificantly larger number of consistent runs can be inferred and thus analyzed. Experi-
ments show that, on average, the sliced causality relation has about 50% direct inter-
thread causal dependencies compared to the more conventional happen-before partial
order (Section 5). Since the number of linearizations of a partial order tends to be ex-
ponential with the size of the complement of the partial order, any linear reduction in
size of the sliced causality compared to traditional happen-before relations is expected
to increase exponentially the coverage of the corresponding analysis, still avoiding
any false alarms. Indeed, the use of sliced causality allowed us to detect concurrency
errors that would be very little likely detected using the conventional happen-before
causalities.

This paper is organized as follows. Section 2 introduces existing happen-before
causalities. Section 3 defines our parametric framework. Section 4 proposes sliced
causality. Section 5 discusses the evaluation of sliced causality and Section 6 concludes.
Most proofs are omitted because of limited space; they can be found in [4].
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2 Happen-Before Causalities

The first happen-before relation was introduced almost 3 decades ago by Lamport [14],
to formally model and reason about concurrent behaviors of distributed systems. Since
then, a plethora of variants of happen-before causal partial order relations have been
introduced in various frameworks and for various purposes. The basic idea underly-
ing happen-before relations is to observe the events generated by the execution of a
distributed system and, based on their order, their type and a straightforward causal
flow of information in the system (e.g., the receive event of a message follows its cor-
responding send event), to define a partial order relation, the happen-before causality.
Two events related by the happen-before relation are causally linked in that order.

When using a particular happen-before relation for (concurrent) program analysis,
the crucial property of the happen-before relation is that, for an observed execution
trace τ, other sound permutations of τ, also called linearizations or linear extensions or
consistent runs or even topological sortings in the literature, are also possible compu-
tations of the concurrent system. Consequently, if any of these linearizations violates
or satisfies a property ϕ, then the system can indeed violate or satisfy the property, re-
gardless of whether the particular observed execution that generated the happen-before
relation violated or satisfied the property, respectively. For example, [6] defines formu-
lae Definitely(ϕ) and Possibly(ϕ), which hold iff ϕ holds in all and, respectively, in some
possible linearizations of the happen-before causality.

The soundness/correctness of a happen-before causality can be stated as follows:
given a happen-before causal partial order extracted from a run of the concurrent system
under consideration, all its linearizations are feasible, that is, they correspond to other
possible execution of the concurrent system. To prove it, one needs to formally define
the actual computational model and what a concurrent computation is; these definitions
tend to be rather intricate and domain-specific. For that reason, proofs need to be redone
in different settings facing different “details”, even though they follow conceptually the
same idea. In the next section we present a simple and intuitive property on traces,
called feasibility, which ensures the desired property of the happen-before causality
and which appears to be easy to check in concrete situations.

To show how the various happen-before causalities fall as special cases of our para-
metric approach, we recall two important happen-before partial orders, one in the con-
text of distributed systems where communication takes place exclusively via message
passing, and another in the context of multithreaded systems, where communication
takes place via shared memory. In the next section we show that their correctness [2,19]
follow as corollaries of our main theorem. In Section 4 we define another happen-before
causality, called sliced causality, which non-trivially uses static analysis information
about the multithreaded program. The correctness of sliced causality will also follow as
a corollary of our main theorem in the next section.

In the original setting of [14], a distributed system is formalized as a collection of
processes communicating only by means of asynchronous message passing. A process
is a sequence of events. An event can be a send of a message to another process, a
receive of a message from another process, or an internal (local) event.
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P1 P2

e1: send(g, P2)

e2: receive(g, P1)

e3

(A) HB in distributed systems

T1 T2

e1: access(x)

e2:access(x)

e3

(B) HB in multi-threaded systems

e1 or e2 is write

Fig. 2. Happen-before partial-order relations

T1 T2

e1: write(x)

e2:read(x)

T3

e3:write(x)

Fig. 3. Happen-before causality in
multi-threaded systems

Definition 1. Let τ be an execution trace of a distributed system consisting of a se-
quence of events as above. Let E be the set of all events appearing in τ and let the
happen-before partial order “→” on E be defined as follows:

1. if e1 appears before e2 in some process, then e1 → e2;
2. if e1 is the send and e2 is the receive of the same message, then e1 → e2;
3. e1 → e2 and e2 → e3 implies e1 → e3.

A space-time diagram to illustrate the above definition is shown in Figure 2 (A), in
which e1 is a send message and e2 is the corresponding receive message; e1 → e2 and
e1 → e3, but e2 and e3 are not related. It is easy to prove that (E,→) is a partial order.
The soundness of this happen-before relation, i.e., all the permutations of τ consistent
with → are possible computations of the distributed system, was proved in [2] using
a specific formalization of the global state of a distributed system. This property will
follow as an immediate corollary of our main theorem in the next section.

Happen-before causalities have been devised in the context of multithreaded systems
for various purposes. For example, [15,16] propose datarace detection techniques based
on intuitive multi-threaded variants of happen-before causality, [19] proposes a happen-
before relation that drops read/read dependencies, and [20] even drops the write/write
conflicts but relates each write with all its subsequent reads atomically.

Finding appropriate happen-before causalities for multithreaded systems is a non-
trivial task. The obvious approach would be to map the inter-thread communication
in a multi-threaded system into send/receive events in some corresponding distributed
system. For example, starting a new thread generates two events, namely a send event
from the parent thread and a corresponding receive event from the new thread; releasing
a lock is a send event and acquiring a lock is a receive event. A write on a shared vari-
able is a send event while a read is a receive event. However, such a simplistic mapping
suffers from several problems related to the semantics of shared variable accesses. First,
every write on a shared variable can be followed by multiple reads whose order should
not matter; in other words, some “send” events now can have multiple corresponding
“receive” events. Second, consider the example in Figure 3. Since e3 may write a dif-
ferent value into x other than e1, the value read at where e2 occurs may change if we
observe e3 after e1 but before e2 appears. Therefore, e1e3e2 may not be a trace of some
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feasible execution since e2 will not occur any more. Hence, a causal order between e2

and e3 should be enforced, which cannot be captured by the original definition in [14].
The various causalities for multithreaded systems address these problems (among

others). However, each of them still needs to be proved correct: any sound permutation
of events results in a feasible execution of the multithreaded system. If one does not
prove such a property for one’s desired happen-before causality, then one’s analysis
techniques can lead to false alarms. We next recall one of the simplest happen-before
relations for multi-threaded systems [19]:

Definition 2. Let τ be an execution of a multithreaded system, let E be the set of all
events in τ, and let the happen-before partial order “�” on E be defined as follows:
1. if e1 appears before e2 in some thread, then e1 � e2;
2. if e1 and e2 are two accesses on the same shared variable such that e1 appears

before e2 in the execution and at least one of them is a write, then e1 � e2;
3. e1 � e2 and e2 � e3 implies that e1 � e3.

In Figure 2 (B), e1 � e2 and e1 � e3, but e2 and e3 are not comparable under�.

3 Parametric Framework for Causality

We here define a parametric framework that axiomatizes the notion of causality over
events and feasibility of traces in a system-independent manner. We show that proving
the feasibility of the linearizations of a causal partial order extracted from an execution
can be reduced to checking a simpler “closure” local property on feasible traces.

Let Events be the set of all events. A trace τ is a finite ordered set of (distinct)
events {e1 < e2 < · · · < en}, usually identified with the Events∗ word e1 · · · en. Let
ξτ = {e1, e2, . . . , en} be called the alphabet of τ and <τ be the total order on ξτ induced
by τ. Let Traces denote the set of all such traces. Given a set X, let PO(X) denote the
set of partial orders defined on subsets of X, that is, the set of pairs (ξ, <) where ξ ⊆ X
and <⊆ ξ × ξ is a partial order.

Definition 3. A causality operator is a partial function C : Traces→◦ PO(Events) s.t.:
1. If C(τ) = (ξ, <), then ξ = ξτ and <⊆<τ; and
2. For any τ = τ1e1e2τ2 such that C(τ) = (ξ, <) with e1 ≮ e2, C(τ1e2e1τ2) is also

defined and equal to C(τ).
Let Dom(C) denote the domain of C.

Note that condition (ii) in the definition above is closely related to that of trace equiva-
lence introduced by Mazurkiewicz in [11]. However, the theory of Mazurkiewicz traces
starts with a given dependency relation on events and considers equivalence of traces
according to that fixed dependency, while in our framework, we prefer to associate a
separate dependency relation to each trace, assuming that only at runtime we can get
enough information about the causality for a given trace; for example, acquiring lock l
and writing shared variable x can be or not dependent events, depending on the partic-
ular execution of the program. This allows us to be more precise while still using part
of the generic Mazurkiewicz trace theory to simplify our correctness proofs.

Any concurrent system can produce only a particular subset of feasible traces, which
are in the following relationship with the corresponding causality operator:
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Definition 4. Given a causality operator C, a set F of traces is C-feasible iff C is
defined on F and for any τ ∈ F with C(τ) = (ξ, <), F contains all the linearizations of
C(τ) (i.e., all traces τ′ such that ξτ′ = ξ and<⊆<τ′).
Theorem 1. Dom(C) is C-feasible, More precisely, if C(τ) = (ξ, <) then for any τ′,
C(τ′) = C(τ) if and only if ξτ′ = ξ and <⊆<τ′ .
Corollary 1. F is C-feasible iff C is defined on F and for any τ = τ1e1e2τ2 such that
C(τ) = (ξ, <), e1 ≮ e2 implies τ1e2e1τ2 ∈ F .

The two variants of happen-before relations discussed in Section 2 can be captured
as instances of our parametric framework. For the happen-before relation defined in
Definition 1, let Eventshb be the set of all the send, receive and internal events.

Corollary 2. For an observed trace τ, any permutation of τ consistent with → is a
possible computation of the distributed system.

Proof: Let Chb be the partial function Traceshb→◦ PO(Eventshb) with Chb(τ) = (ξτ,→)
for any τ ∈ Traceshb. Let Fhb be the set of computation traces of the distributed system
as defined in [2]. The result follows from Corollary 1, noticing that Chb is a causality
operator and Fhb is Chb-feasible. �

For the happen-before relation in Definition 2, let Eventsmhb be the set of all the write
and read events on shared variables as well as all internal events.

Corollary 3. For an observed trace τ of a multi-threaded system, any permutation of τ
consistent with� is a possible execution of the multi-threaded system.

Proof: Let Cmhb be the partial function Tracesmhb→◦ PO(Eventsmhb) with Cmhb(τ) =
(Eτ,�) for any τ ∈ Tracesmhb. Let Fmhb be the set of traces that are generated by all
feasible executions of the multi-threaded system (see, e.g., [19] for a formalization of
multi-threaded systems). The result follows from Corollary 1, noticing that Cmhb is a
causality operator and Fmhb is Cmhb-feasible. �

4 Sliced Causality

Without additional information about the structure of the program that generated the
event trace τ, the least restrictive causal partial order that an observer can extract from
τ is the one which is total on the events generated by each thread and in which each
write event of a shared variable precedes all the corresponding subsequent read events.
This is investigated and discussed in detail in [20]. In what follows we show that one
can construct a much more general causal partial order, called sliced causality, by mak-
ing use of dependence information obtained statically and dynamically. Briefly, instead
of computing the causal partial order on all the observed events like in the traditional
happen-before based approaches, our approach first slices τ according to the desired
property and then computes the causal partial order on the achieved slice; the slice
contains all the events relevant to the property, as well as all the events upon which
the relevant events depend. This way, irrelevant causality on events is trimmed without
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breaking the soundness of the approach, allowing more permutations of relevant events
to be analyzed and resulting in better coverage of the analysis.

We employ dependencies among events to assure the correct slicing. The dependence
discussed here somehow relates to program slicing [12], but we focus on finer grained
units here, namely events, instead of statements. Our analysis keeps track of actual
memory locations in every event, available at runtime, avoiding inter-procedural anal-
ysis. Also, we need not maintain the entire dependence relation, since we only need to
compute the causal partial order among events that are relevant to the property to check.
This leads to an effective vector clock (VC) algorithm ([3]).

Intuitively, event e′ depends upon event e in τ, written e � e′, iff a change of e
may change or eliminate e′. This tells the observer that e should occur before e′ in
any consistent permutation of τ. There are two kinds of dependence: (1) control de-
pendence, written e �ctrl e′, when a change of the state of e may eliminate e′; and (2)
data-flow dependence, written e �data e′, when a change of the state of e may lead to
a change in the state of e′ . While the control dependence only relates events generated
by the same thread, the data-flow dependence may relate events generated by different
threads: e may write some shared variable in a thread t, which is then read in another
thread t′.

4.1 Events and Traces

Events represent atomic steps observed in the execution of the program. In this paper,
we focus on multi-threaded programs and consider the following types of events (other
types can be easily added): write/read of variables, beginning/ending of function invo-
cations, acquiring/releasing locks, and starts and exits of threads. A statement in the
program may produce multiple events. Events need to store enough information about
the program state in order for the observer to perform its analysis.

Definition 5. An event is a mapping of attributes into corresponding values. A trace is
a sequences of events. We let τ, τ′, etc., denote traces. From now on in the paper, we
assume an arbitrary but fixed trace τ and let ξ denote ξτ (recall ξτ = {e | e ∈ τ}) for
simplicity; events in ξ are called concrete events.

For example, one event can be e1 : (counter = 8, thread = t1, stmt = L11, type =
write, target = a, state = 1), which is a write on location a with value 1, produced at
statement L11 by thread t1. One can easily include more information into an event by
adding new attribute-value pairs. We use key(e) to refer to the value of attribute key of
event e. The attribute state contains the value associated to the event; specifically, for
the write/read on a variable, state(e) is the value written to/read from the variable; for
ending of a function call, state(e) is the return value if there is one; for the lock oper-
ation, state(e) is the lock object; for other events, state(e) is undefined. To distinguish
among different occurrences of events with the same attribute values, we add a desig-
nated attribute to every event, counter, collecting the number of previous events with
the same attribute-value pairs (other than the counter). This way, all events appearing
in a trace can be assumed different.
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4.2 Control Dependence on Events

i>0

x = 1 y = 1

z = x

C1

S1 S2

S3

T F

Fig. 4. Control dependence

Informally, if a change of state(e) may affect the
occurrence of e′, then we say that e′ has a control
dependence on e, and write e �ctrl e′. For exam-
ple, in Figure 4, the write on x at S 1 and the write
on y at S 2 have a control dependence on the read
on i at C1, while the write on z at S 3 does not have
such control dependence. Control dependence oc-
curs inside of a thread, so we first define the total
order within one thread:

Definition 6. Let < denote the union of the total orders on events of each thread, i.e.,
e < e′ iff thread(e) = thread(e′) and e <τ e′.

The control dependence among events in sliced causality is parametric in a control de-
pendence relation among statements. In particular, one can use off-the-shelf algorithms
for classic [8] or for weak [17] control dependence. We chose to use the termination-
sensitive control dependence (TSCD) introduced in [5] in our implementation of jPre-
dictor[3]. Nevertheless, all we need to define sliced causality is a function returning the
control scope of any statement C, say scope (C), which is the set of statements whose
reachability depends upon the choice made at C, that is, the statements that control
depend on C, for some appropriate or preferred notion of control dependence. Our ap-
proach also regards the lock acquire statement as a control statement that controls all the
following statements, since the thread has to wait for the lock to continue its execution.

We assume that any control statement generates either a read event (the lock acquire
is regarded as a read on the lock) or no event (the condition is a constant) when check-
ing its condition. For the control statement with a complex condition, e.g., involving
function calls and side effects, we can always transform the program to simplify its
condition to a simple check of a boolean variable: one can compute the original condi-
tion before the control statement, store its result in a fresh boolean variable, and then
modify the control statement to check only that variable in its condition.

Definition 7. e �ctrl e′ iff e < e′, stmt(e′) ∈ scope(stmt(e)), and e is “largest” with this
property, i.e., there is no e′′ such that e < e′′ < e′ and stmt(e′) ∈ scope(stmt(e′′)).

Intuitively, an event e is control dependent on the latest event issued by some statement
upon which stmt(e) depends. For example, in Figure 4, a write of x at S 1 is control
dependent on the most recent read of i at C1 and not on previous reads of i at C1.

The soundness of analysis based on sliced causality is contingent to the correctness
(no false negatives) of the employed control dependence: the analysis produces no false
alarms when the scope function returns for each statement at least all the statements
that control-depend on it. An extreme solution is to include all the statements in the
program in each scope, in which case sliced causality becomes precisely the classic
happen-before relation. As already pointed out in Section 1 and empirically shown in
Section 5, such a choice significantly reduces the coverage of analysis. A better solu-
tion, still over-conservative, is to use weak dependence when calculating the control
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scopes. If termination information of loops is available, termination-sensitive control
dependence can be utilized to provide correct and more precise results. One can also try
to use the classic control dependence instead, but one should be aware that false bugs
may be reported (e.g., when synchronization is implemented based on “infinite” loops).

4.3 Data Dependence on Events

If a change of state(e) may affect state(e′) then we say e′ has a data dependence on e
and write e �data e′. Formally,

Definition 8. For events e and e′, e �data e′ iff e <τ e′ and one of the following holds:

1. e < e′, type(e) = read and stmt(e′) uses target(e) to compute state(e′);
2. type(e) = write, type(e′) = read, target(e) = target(e′), and there is no other e′′

with e <τ e′′ <τ e′, type(e′′) = write, and target(e′′) = target(e′);
3. e < e′, type(e′) = read, stmt(e′) � scope (stmt(e)), and there exists a statement S in

scope (stmt(e)) such that S can change the value of target(e′).

The first case in this definition encodes the common data dependence. For example, for
an assignment x := E, the write of x has data dependence on the reads generated by the
evaluation of E. The second case in Definition 8 captures the interference dependence
[13] in multithreaded programs, saying that a read depends on the most recent write
of the same memory location. For instance, in Figure 4, if the observed execution is
C1S 1S 3 then the read of x at S 3 is data dependent on the most recent write of x at
S 1. We treat lock release as a write on the lock and lock acquire as a read. The third
case in Definition 8 is more intricate and relates to the relevant dependence in [10].
Assuming another execution of Figure 4, say C1S 2S 3, no data dependence defined in
cases 1 and 2 can be found in this run. However, the change of the value of the read of
i at C1 can potentially change the value of the read of x at S 3: if the value of i changes
then C1 may choose to execute the branch of S 1, resulting in a new write of x that
may change the value of the read of x at S 3. Therefore, we say that the read of x at
S 3 is data dependent on the read of i at C1, as defined in case 3. Note that although
this dependence is caused by a control statement, it can not be caught by the control
dependence; for example, the read of x at S 3 is not control dependent on the read of
i at C1 since S 3 � scope(C1). Aliasing information is needed to correctly compute
dependence defined in case 3, which one can obtain using any available techniques.

An important observation of Definition 8 is that there are no write-write, read-read,
read-write data dependencies. Specifically, case 2 only considers the write-read data de-
pendence, enforcing the read to depend upon only the latest write of the same variable.
In other words, a write and the following reads of the same variable form an atomic
block of events. This captures in a more general setting the work in [20].

4.4 Slicing Causality Using Relevance

When checking a trace τ against a property ϕ, not all the events in τ are relevant to ϕ;
for example, to check dataraces on a variable x, accesses to other variables or function
calls are irrelevant. Moreover, the state attributes of some relevant events may not be
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relevant; for example, the particular values written to or read from x for datarace (on x)
detection. We next assume a generic filtering function that can be instantiated, usually
automatically, to concrete filters depending upon the property ϕ under consideration:

Definition 9. Let α: Events→◦ Events be a partial function, called a filtering function.
The image of α, that is α(Events), is written more compactly Eventsα; its elements are
called abstract relevant events, or simply just relevant events. All thread start and exit
events are relevant: α(e) defined whenever type(e) = start or type(e) = exit.

Let us assume an arbitrary but fixed property ϕ in what follows. Intuitively, α(e) is
defined if and only if e is relevant to ϕ; if α(e) is defined, then key(α(e)) = key(e) for
any attribute key � state, while state(α(e)) is either undefined or equal to state(e).

Definition 10. Let α(τ), written more compactly as τα, be the trace of relevant events
achieved by applying α on events in τ. Let ξα denote ξτα for simplicity.

This relevance-based abstraction plays a crucial role in increasing the predictive power
of our analysis approach: in contrast to the concrete event set ξ, the corresponding
abstract event set ξα allows more permutations of abstract events; instead of calculating
permutations of ξ and then abstracting them into permutations of ξα like in traditional
happen-before based approaches, we will calculate valid permutations of a slice of ξ∪ξα
that contains only events (directly or indirectly) relevant to ϕ. This slice is defined using
the dependence on concrete and abstract events.

Definition 11. All dependence relations are extended to abstract relevant events:
If e < / �ctrl / �data e′ then also α(e) < / �ctrl / �data e′, e < / �ctrl / �data α(e′),
and α(e) < / �ctrl / �data α(e′), whenever α(e) and/or α(e′) is defined;
�data is extended only when state(α(e′)) is defined.

We next define a novel dependence relation, called relevance dependence, which is con-
cerned with potential occurrences of relevant events. Consider Figure 4 again. Suppose
that relevant events include writes of y and z. For the execution C1S 1S 3, only one rele-
vant event is observed, namely the write of z at S 3 (e′), which is not control dependent
on the read of i generated at C1 (e). Consider now another execution C1S 2S 3; in addi-
tion to e′, a new relevant event will be generated, namely the write of y at S 2, caused
by the different choice made at C1. Hence, a change of state(e) may affect the number
of generated relevant events. Formally, we define relevance dependence as follows:

Definition 12. For e ∈ ξ, e′ ∈ ξα, we write e �rlvn e′ iff e < e′, stmt(e′)� scope(stmt(e)),
and there is a statement S ∈ scope(stmt(e)) that may generate a relevant event.

Intuitively, if e �rlvn e′ then e′ is not control dependent on e, but when state(e) changes,
some new relevant events may occur before e′. This may invalidate some permutations
of ξα since valid permutations should preserve the exact number of relevant events.

Definition 13. Let � be the relation (�data ∪ �ctrl ∪ �rlvn)+. If e and e′ are concrete or
relevant events such that e � e′, then we say that e′ depends upon e.

Definition 14. Let ξα ⊆ ξ ∪ ξα be the relevant slice of events, extending ξα with events
e ∈ ξ such that e � e′ for some e′ ∈ ξα. Let τα be the abstract trace of τ, i.e., the
permutation of ξα consistent with <τ.
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Intuitively, ξα contains all the events that are directly or indirectly relevant to the prop-
erty α. Our goal here is to define an appropriate notion of causal partial order on ξα and
then to show that any permutation consistent with it is sound. Recall that we fixed a
trace τ; in what follows, τ′ is used to refer to any arbitrary trace.

Definition 15. Let ≺τ⊆ ξα × ξα be the relation (< ∪ �)+, which we call the sliced
causality (or sliced causal partial order) of τ.

From here on, by “causal partial order” we mean the sliced one. We next show that
sliced causality is an instance of the parametric framework in Section 3.

Definition 16. Let Cα: Traces→◦ PO(Events) be the partial function defined as Cα(τ′)
= (ξτ′ ,≺τ′) for each τ′ ∈ Traces. Let Fα ⊆ Traces be the set of all possible abstract
traces: for each τF ∈ Fα, there is some execution generating τ′ such that τ′α = τF .

Theorem 2. Cα restricted to Fα is total and a causality operator. That is, for any ab-
stract trace τF ∈ Fα, each liniearization of ≺τF corresponds to some possible execution
of the multi-threaded system.

Proof (Sketch). The first condition of the causality operator definition can be easily
verified. The more intricate part is to show that the trace obtained by permuting two
consecutive independent events in an abstract trace is in Fα, that is, it corresponds to a
possible execution. This is achieved by definning partial executions and feasible prefix
traces, i.e., (abstract) traces corresponding to partial executions. The technical details
of this proof can be found in the companion technical report.

We can therefore analyze the permutations of relevant events consistent with sliced
causality to detect potential violations without re-executing the program.

5 Evaluation

We implemented a vector clock algorithm for computing sliced causality as part of jPre-
dictor, a prototype tool for concurrency error detection of Java programs. To measure
the effectiveness of sliced causality in contrast with more conventional happen-before
causalities, we also implemented the algorithm in [19] for extracting happen-before
causality from Java programs. Interested readers are referred to [3] for more details
about the algorithm and the implementation of jPredictor. jPredictor has been eval-
uated on several concurrent programs. Two measurements were used during the eval-
uation to compare the sliced causality with the conventional happen-before causality,
namely the size of the partial order and the prediction capability to detect data races.
The results of our evaluation are shown in Table 1.

The first part of Table 1 shows the benchmarks that we used, along with their size
(LOC abbreviates “lines of code”), number of shared variables (S.V.), and number of
threads created during their executions. Banking and Http-Server are two simple ex-
amples showing relatively classical concurrent bug patterns discussed in detail in [7].
Elevator, sor, and tsp come from [22]. Daisy is a small highly concurrent file system
proposed to challenge and evaluate software verification tools. Raytracer is a program
from the Java Grande benchmark suite, and SystemLogHandler and WebappLoader are
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Table 1. Evaluation of sliced causality

Benchmarks Causality Size Races
Program LOC S. V. Threads H.B. S.C. S.C. H.B.

Banking 150 10 11 18 2 1 1
Http-Server 170 2 7 22 2 2 1

Elevator 530 20 4 240 2 0 0
sor 600 42 4 21 8 0 0
tsp 1.1k 15 3 5 2 1 0

Daisy 1.5K 312 3 41 23 1 0
Raytracer 1.8k 4 4 7 3 1 1

SystemLogHandler 320 3 3 2 1 1 0
WebappLoader 3k 10 3 9 5 3 0

two components of Tomcat 5.0.28. The property under verification is the datarace of
the shared variable. The test cases used in experiments were manually generated using
fixed inputs. More bugs could be found if more effective test generation techniques were
employed, but that was not our objective here.

The second part of the table shows the coverage improvement of the analysis when
using sliced causality versus the happen-before causality. A more precise measure of
coverage would be the number of all the sound linearizations of the causal partial order;
unfortunately, counting sound linearizations is a #P-complete problem [1], so it may
be no easier than the problem of generating them. Note that a fully constrained partial
order, that is, a total order, admits only one linearization, while a fully unconstrained
partial order, that is, a set, admits an exponential number of linearizations. Extrapo-
lating, even though it should not be taken as an absolute measure in all situations, we
can say that the fewer causal dependencies a partial order has, the larger the number
of sound permutations; moreover, we can also say that the number of linearizations is
exponential in the number of unordered elements in the partial order. This simplistic
and admittedly informal reasoning leads us to an important insight: any reduction in the
number of causal dependencies may have a significant impact on coverage; in particu-
lar, a linear reduction of the number of causal dependencies can lead to an exponential
increase in the coverage of the analysis. Since the total orders on the events of each
thread are enforced by both sliced causality and happen-before, we only measure the
causal dependencies due to direct inter-thread communication. Therefore, the follow-
ing dependencies are counted, their number declared the size of the causality, and then
used as a measurement metric: e1 � e2, thread(e1) � thread(e2), and there is no e3 such
that e1 � e3 and e3 � e2. Our experiments illustrate that sliced causality is significantly
smaller than the conventional happen-before, indicating a magnificent increase in the
number of covered potential executions.

The third part of Table 1 directly compares the effectiveness of race detection us-
ing sliced causality versus happen-before. The first column in this part is the number
of races detected by sliced causality, while the second column gives the number of
races detected by the standard, unsliced happen-before causality using the same ex-
ecution traces. As expected, sliced causality is more effective in detecting dataraces,
since it covers more potential runs. Even though, in theory, the standard happen-before
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technique may also be able to detect, through many executions of the system, the er-
rors detected from one run using sliced causality, we were not able to find any of the
races in some programs, e.g., in tsp and Tomcat, without enabling the sliced causality.
Moreover, in these experiments, sliced causality did not produce any false alarms and,
except for Tomcat, it found all the previously known dataraces. For Tomcat, two bugs
were revealed from the detected dataraces, both of which had been submitted to and
confirmed by the developers of Tomcat. More details can be found in [3].

6 Conclusion

We presented a parametric approach to happen-before causal partial orders, which fa-
cilitates defining and proving correctness of happen-before relations. Existing variants
of happen-before causalities can be obtained as instances of this parametric framework.
A novel causal partial order relation, called sliced causality, was also defined and shown
correct within our parametric framework. Sliced causality employs static and dynamic
analysis to filter out unnecessary dependencies on events in order to improve the cov-
erage of analysis without losing soundness. Evaluation shows that sliced causality can
significantly increase the coverage of concurrent program analysis and testing.
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3. Chen, F., Roşu, G.: Predicting concurrency errors at runtime using sliced causality. Technical
Report UIUCDCS-R-2005-2660, Department of Computer Science at UIUC (2005)
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1 Introduction

Recently, there are a lot of tools that have been considered for software verification. We
can for example mention BLAST [HJMS02], SLAM [BR01], KISS [QW04,QR05],
ZING [QRR04], and MAGIC [CCG+03,CCG+04,CCK+06]. However, none of these
tools can deal with parallelism, communication between parallel processes, dynamic
process creation, and recursion at the same time. The tool we propose, called SPADE,
allows to analyse automatically boolean programs presenting all these features. As far
as we know, this is the first software model checking tool based on an expressive model
that accurately models all these aspects in programs.

SPADE checks safety properties of programs by iteratively refining abstractions of
the sets of the program execution paths that violate the property. Since property check-
ing is undecidable for programs presenting all the features mentioned above, the SPADE

refinement algorithm may not converge. In case of convergence, it can either find a bug
in the program and returns a counterexample to the user, or certify that the program is
correct.

We have applied SPADE to different case studies. Our results are encouraging and are
reported in Section 4. In particular, we were able to automatically find two bugs in two
versions of a Windows NT Bluetooth driver. The bugs were already found in [CCK+06].
But there, the verification was not completely automatic since the authors needed to
guess the number of processes for which the bugs occur. Whereas with SPADE, the
verification process was done in a completely automatic manner. Indeed, we don’t need
to make any guess since our tool handles dynamic creation of processes.

The current version of SPADE is available at http://www.liafa.jussieu.fr/∼sighirea/spade.

2 The Underlying Techniques

SPADE is based on the SPAD model [Tou05]. A SPAD is a finite set of rules of the
form t a−→ t ′, where a is a synchronisation action, t and t ′ are terms built up from the

� This work has been supported by the French Governement program ACI Jeunes Chercheurs,
Contract No.02 2 0205.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 254–257, 2007.
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null process “0”, a finite number of variables (X), the sequential composition “·”, and
the asynchroneous parallel composition “||”, where the operators “·” and “||” are re-
spectively associative and associative/commutative, and where each action a has its
corresponding co-action ā. Intuitively, the process “0” represents termination, a process
variable X corresponds to a control point of the program, and a process term t describes
the control structure of the program. A procedure call is represented by a rule of the
form X → Y · Z, where the program at control point X calls the procedure Y and goes
to control point Z. This control point Z becomes active when Y terminates. Dynamic
creation of parallel processes is modeled by rules of the form X →Y ||Z, expressing that
a process in control point X can create two parallel processes in control points Y and Z,
respectively. Finally, handshakes between parallel processes are represented according
to the CCS style by rules of the form t1

a−→ t ′1 and t2
ā−→ t ′2, meaning that two parallel

processes t1 and t2 can synchronize and move simultaneously to t ′1 and t ′2, respectively.
SPADE deals with rechability queries for SPAD models. More precisely, given two

(possibly infinite) sets of configurations Init and Bad, the problem is to know whether
the set of bad configurations Bad can be reached from the initial configurations Init. The
approach implemented in SPADE consists in computing abstractions of the execution
path language that leads form Init to Bad and iteratively refining these abstractions
[Tou05]. Our techniques are based on (1) the representation of the sets of configurations
with binary tree automata, (2) the use of these automata to compute a set of constraints
whose least fixpoint characterize the set of execution paths of the program, and (3) the
resolution of this set of constraints in an abstract domain. Our algorithm is generic and
can deal with different abstract domains. In particular, we considered the domains Dn

of finite action words of length less or equal to n. These domains allow to compute
abstractions of the execution paths that are exact up to the depth n. These abstractions
are called n-prefix abstractions. The refinement step consists in considering a “more
precise” abstract domain by incrementing the depth n.

3 The SPADE Tool

SPADE has two inputs. The first input is an ASCII file describing (1) the SPAD model of
the program (names of processes, names of actions, rewriting rules), (2) the (possibly
infinite) set of initial configurations Init (given by a tree automaton), and (3) the bad
configuration Bad (a tree automaton). The second input is optional and consists of an
integer that represents the depth n of the prefix abstraction. If this parameter is not
given by the user, the tool starts with a prefix abstration of depth one, and automatically
increases the abstraction depth until either an error is found or the program is proven to
be correct.

SPADE outputs (a) the language reachn representing the n-prefix abstraction of the
paths between Init and Bad, and (b) the result of the intersection of reachn with the
set of good execution paths. This result may be either (CANNOT) if the intersection is
empty (i.e., the n-prefix abstraction does not allow to find an execution leading from
Init to Bad), (MAYBE) if the intersection is not empty but the path found has been cut
by the abstraction, (CAN) if a real path (i.e., not cut by abstraction) has been found
between Init and Bad.
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SPADE implements in OCAML the algorithm described in [Tou05]. OCAML pro-
vides a rich and efficient built-in library of data structures (e.g., hash tables, maps,
sets), a powerful system of modules, and garbage collection facilities. Due to these
features, the algorithm is implemented as a generic module parameterized by two sig-
natures (interfaces): the first signature collects types and operations dealing with tree
automata, and the second signature collects types and operations of the abstract domain
of execution paths. The current version of SPADE instantiates the first parameter of the
algorithm with the OCAML implementation of tree automata provided by the TIMBUK

tool [GT01]. This implementation provides a large list of operations on tree automata
(union, intersection, emptiness test, minimization, etc) and an easy access to the states
and the transitions of automata. For the second parameter, we implemented in OCAML a
library for the abstract domain Dn (i.e., finite sets of finite words of length less or equal
to n). The library provides efficient implementation of operations intensively used by
the algorithm: union, concatenation, shuffle, prefix, and inclusion.

4 Summary of the Results

SPADE has been applied to several examples. The performances are given in Table 1.
The experiments were obtained on a 4GHz Pentium IV with 4GB of memory.

Table 1. Performances of SPADE

Example Time Space

BlueTooth v1 1623mn28s 50 MB
BlueTooth v2 1216mn28s 46 MB

ConcVector v1 7s 3.4 MB
ConcVector v2 14s 14.8 MB

Lock/unlock 8s 3.6MB

The BlueTooth v1 is the SPAD model of the BlueTooth driver program used by Win-
dows NT and given in [QW04]. We were able to find a bug in this program. To find this
error, the [QW04] authors needed to guess the number of driver’s requests for which the
error occurs, and then run their tool; whereas with SPADE, the verification was done in a
completely automatic manner, since we did not have to guess the number of requests for
which the error occurs because our tool can deal with dynamic creation of processes.

The BlueTooth v2 is a corrected version of BlueTooth v1 proposed by the authors
of [QW04]. SPADE finds an error in this version as well. This bug was already found in
[CCK+06]. Again, to be able to find the bug, the authors of [CCK+06] needed to guess
the number of requests that causes the bug before running their tool, whereas SPADE

did not need to perform this guess.
ConcVector is a SPAD model of a multithreaded program using concurrently meth-

ods of the class java.util.Vector from the Java Standard Collection Framework.
The program’s threads create and remove the elements of a Vector object. Wand and
Stoller [WS03] reported a high-level data race that occurs on such programs because
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the constructor of the Vector class is not atomic. SPADE found this bug for a program
with an unbounded number of threads (ConcVector v1). Version v2 fixes the bug by
taking an atomic implementation of the constructor. SPADE was able to prove that this
version is correct.

The Lock/unlock example is a system that handles an arbitrary number of concurrent
insertions on a binary search tree. The algorithm was proposed in [KL80], and can be
applied to handle simultaneous insertions (done by several users) into a database, or to
reduce the time necessary for a single insertion. We considered a buggy version of the
algorithm where one or several processes do not adhere to the required lock and unlock
policy. This version was considered in [CCK+06], where the bug was found only for
systems where the number of concurrent processes is less or equal to 7. With SPADE,
we were able to check this buggy program for arbitrary number of concurrent insertion
processes.
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Abstract. We present the tool ANZU. ANZU takes a formal specification of a de-
sign and generates a functionally correct system if one exists. The specification
is given as a set of linear temporal logic (LTL) formulas belonging to the class
of generalized reactivity of rank 1. Such formulas cover the majority of the for-
mulas used in practice. ANZU is an implementation of the symbolic reactive(1)
approach to synthesis by Piterman, Pnueli, and Sa’ar. If the specification is re-
alizable ANZU provides the user with a Verilog module that represents a correct
finite-state system.

1 Introduction

Automatically constructing a system from a logical specification has been one of the
more ambitious dreams in computer science for almost half a century [Chu62]. Given
a specification over the signals I ∪ O the Synthesis Problem is to construct a reac-
tive system with input signals I and output signal O such that all infinite input-output
sequences produces by this system adhere to ϕ, in case such a system exists.

Rabin [Rab69] and Büchi and Landweber [BL69] were the first to provide solutions
to the Synthesis Problem for S1S. Pnueli and Rosner [PR89] reconsidered the problem
for specifications in linear temporal logic (LTL) and provided an algorithm to construct
open systems, systems that behave correctly independent of the surrounding environ-
ment. Furthermore, they proved that synthesis of LTL formulas is 2EXPTIME-complete
[Ros92].

In order to overcome the complexity issues, research concentrated in part on subsets
of LTL. Recently, Pnueli, Piterman, and Sa’ar [PPS06] proposed an efficient symbolic
algorithm to synthesize specification of reactive(1) designs, in time N3 where N is the
size of the state space of the design. ANZU implements this approach and extends it to
generate compact circuits.

Anzu can be found at http://www.ist.tugraz.at/staff/jobstmann/anzu/

2 Case Studies

We start by describing our case studies as we will use parts of them to show how ANZU

works. We have tried ANZU on two examples. The first is an arbiter for ARM’s AMBA
Advanced High-Performance Bus (AHB). The AHB is an on-chip bus that connects
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[INPUT_VARIABLES]
RtB0;
...

[ENV_INITIAL]
...

[ENV_TRANSITIONS]
G((BtR0=1 * RtB0=1) -> X(RtB0=1));
G( BtR0=0 -> X(RtB0=0));
...

[ENV_FAIRNESS]
...

[OUTPUT_VARIABLES]
BtR0;
...

[SYS_INITIAL]
...

[SYS_TRANSITIONS]
G((RtB0=1 * BtR0=1) -> X(BtR0=1));
G( RtB0=1 -> X(BtR0=0));
...

[SYS_FAIRNESS]
...

Fig. 1. Part of the input file to synthesis GenBuf with ANZU

components like processor cores, DMA controllers, and cache. It has up to 16 masters,
which initiate transfers, and up to 16 clients, which are mostly passive. The AHB sup-
ports different transfer types, including different length bursts. From the official speci-
fication for the bus [ARM99], which is written in English, we have distilled a set of 4
assumptions and 11 guarantees.

The second case study is a generalized buffer (henceforth GenBuf ) from IBM1. This
design forwards data from n senders to two receivers using a handshake protocol on
either side and a FIFO to store data temporarily. The design is used at IBM and came
with a very clear and relatively complete (although not fault-free) formal specification.
Our full specification consists of 13 guarantees and 5 assumptions.

3 Technical Approach

ANZU is written in Perl and the symbolic algorithms rely on PerlDD, a Perl extension of
the the CUDD BDD Package [Som]. We use the handshake protocol between GenBuf
and a receiver to illustrate a specification. Genbuf communicates with receiver i using
the signals BtoRi and RtoBi. The handshake between GenBuf and a receiver consists
of four phases: (1) GenBuf requests receiver i (by raising BtoRi) and may not cancel
the request. (2) Receiver i eventually answers the request (by raising RtoBi). (3) In the
next step, GenBuf lowers the request, and (4) after a further step the receiver deasserts
the signal RtoBi. In order to ensure a correct handshake, GenBuf and the receiver have
to meet the following requirements. GenBuf has to guarantee

∧
i∈{0,1}(G((BtoRi ∧

¬RtoBi) → X BtoRi) ∧ G(RtoBi → X¬BtoRi)). Receiver i has to fulfill G(BtoRi →
F RtoBi)∧G((BtoRi∧RtoB) → X RtoBi)∧G(¬BtoRi → X¬RtoBi). Fig.1 shows part
of the requirements as we write them for ANZU.

ANZU takes a text file holding the definitions of the input and output signals (see
Fig.1, Line 1-3) and a specification in a subset of LTL. The specification needs to com-
ply with simple syntax rules [PPS06]: A specification consists of two parts: assumptions
on the environment (Fig.1, Col.1) and guarantees the system has to keep, if the envi-
ronment fulfills its assumptions (Fig.1, Col.2). Each part is defined by a set of LTL
formulas over input signals I and output signals O. The signals in I are controlled by

1 See http://www.haifa.ibm.com/projects/verification/RB Homepage/tutorial3/.
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the environment, signals in O are controlled by the system. An assumption or a guaran-
tee defines either allowed initial states, possible transitions, or fairness obligations that
all accepting runs have to fulfill.

A formula that does not fall in one of these three classes can usually (but not al-
ways) be transformed to a suitable format by using deterministic monitors. For such a
formula we construct a deterministic Büchi word automaton We create a Boolean en-
coding of the state space of the automaton using a new set of variables, and describe
its behavior using an initial constraint, a constraint on the transition relation, and a
fairness constraint, as before. For instance, for the formula G(BtoR0 → F RtoB0) we
add a variable s and encode a corresponding deterministic monitor with the formu-
las ¬s, G((¬s ∧ (¬BtoR0 ∨ RtoB0)) → X ¬s), G((¬s ∧ BtoR0 ∧ ¬RtoB0) → X s),
G((s ∧ ¬RtoB0) → X s), G((s ∧ RtoB0) → X¬s), and GF¬s.

ANZU follows the approach of [PPS06]: it builds a transition system over the in-
put and output variables from the formulas restricting the transitions. On the transition
system ANZU searches for states from which the system can force an accepting run
independent of the input values the environment chooses. A run is accepting if either a
fairness obligation of the environment is violated or all fairness obligation of the system
are fulfilled. If the initial states belong to this set of states, the specification is realizable
and ANZU builds a BDD representing a set of possible implementations. Otherwise,
ANZU reports that the specification is not realizable and quits. From the BDD, ANZU

extracts a circuit with |I|+ |O| flip flops and combinational logic expressed on the gate
level. The relation between the variables of the specification and the signals of the cir-
cuit are depict in Fig.2. (Primed variables denote next-state values.) The construction of
the combinational circuitry turns out to be the most time consuming part of synthesis.
We have tried approaches based on [KS00] and on the use of cofactors [BGJ+07] and
we are actively researching better ways of constructing the circuits.

Results. We have synthesized GenBuf for upto 10 senders. (Ten senders seem enough
considering that the original circuit handles only four.) The specification for 10 senders
consists of 13 fairness formulas (2 for the environment and 11 for the system) and 121
guarantees and 27 assumptions that restrict the transition relation. Figure 3 shows how
the size of the circuit grows as a function of the number of senders for two different

I′ I

I′

O′

O

O′
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Logic

FFs
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|I|

|O|

Fig. 2. Design of the generated circuits
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methods of constructing the circuit. (The y axis shows the “standard cell grid count”
for the synthesized circuit, which allows for a fair comparison of the sizes of different
circuits, even though the absolute values may not be very informative.) Note that even
with the cofactor method, the circuit is still about a factor of 10 larger than a hand-
written one. The number of latches needed in the circuit grows from 13 to 40 and
synthesis goes through in under a minute for 10 masters.

The AHB arbiter is harder. We are able to synthesize it for up to 10 masters, after
which our tool runs out of memory. The case study is described in detail in [BGJ+07].
The number of latches needed for the largest arbiter is 60 and the time for synthesis is
6.5 hours, 85% of which is spent reordering BDDs.

4 Benefits and Drawbacks of Synthesis

The generalized reactivity(1) framework in which we stated the specification turned
out to be expressible enough for anything we wanted state. Deciding realizability is
relatively simple in comparison to building a circuit. Furthermore, the specifications
are relatively small and easy to read.

On the other hand, writing a (complete!) formal specification is sometimes hard,
although the introduction of new signals usually helped. (We see great potential for
tools that help the user debug the specification.) Furthermore, the performance of the
tool depends heavily on the formulation of the specification. The circuits produced by
ANZU are relatively large and their size depends heavily on the value of the parameter,
much more strongly than is expected for manually coded circuits.

Concluding, ANZU allows for synthesis of real, though modest sized, industrial ex-
amples from specifications and ANZU’s performance is improving rapidly.

Acknowledgments. The authors would like to thank Karin Greimel and Milan Milinkovic
for their help with the implementation, and Nir Piterman and Amir Pnueli for interesting
discussions.
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Abstract. Formal languages are increasingly used to describe the functional re-
quirements of circuits. Although formal requirements can be hard to understand
and subtle, they are seldom the object of verification. In this paper we present
our requirement analysis tool, RAT. Our tool supports quality assurance of for-
mal specifications. A designer can interactively explore the requirements’ seman-
tics and automatically check the specification against assertions (which must be
satisfied) and possibilities (which describe allowed corner-case behavior). Using
RAT, a designer can also investigate the realizability of a specification. RAT was
successfully examined in several industrial projects.

1 Introduction

Formal specifications are becoming increasingly important, not only for verification,
but also to describe design intent.

Traditionally, the verification effort focuses mainly on the design. A design is verified
using either a golden model or a set of properties. This can be done either by simulation
or by static verification. Either requires a large amount of effort on behalf of the user
and is a time consuming part of the design cycle. Requirements, however, are seldom
the object of verification. This is somewhat surprising, since industrial data show that
about 50 percent of product defects originate in flawed requirements and that around 80
percent of rework effort can be traced back to requirement defects [12].

The use of formal requirements is a first and substantial step towards high qual-
ity specifications, but is obviously not enough to ensure the desired quality. RAT, our
requirements analysis tool, supports the designer in the crucial task of writing high
quality formal requirements of circuits. (We use specifications as a synonym for for-
mal functional requirements.) RAT can be downloaded from http://rat.itc.it.
It supports PSL [1], and provides a convenient graphical interface for the develop-
ment, analysis, and management of a specification. Our current version draws from
complementary techniques to explore requirement semantics, assure system traits, and
check for realizability: property simulation [10], property assurance [10], and property
realizability.

In the remainder of this paper we show how these techniques integrate, present a
methodological guideline, give technical details, and report feedback from industry.
� Supported by the European Commission under contract 507219 (PROSYD).
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2 Requirements Analysis

Property Simulation provides the designer with an interactive method to understand the
semantics of formal requirements by exploring their behavior one trace at a time. A
designer can ask for an example behavior, constrain it by fixing the value of any signal
for any given time step, and then check whether the altered trace is still allowed by
the requirements. If not, the designer can ask for a different trace that is correct and
adheres to the user-specified constraints. Although a property does not differentiate be-
tween inputs and outputs, the designer may do so. Based on such a classification she
can perform a “what-if” analysis by setting inputs and asking to be presented with cor-
responding outputs. Dually, a “how-can” analysis can be performed by setting output
signals and asking how, if at all, these outputs can be achieved. We provide an expla-
nation of derived traces in the form of the property syntax tree plus the truth values of
each subformula at every step. This helps the designer to understand how the subformu-
las and the property itself are evaluated along the trace. In a way, property simulation
allows for a reverse-engineering of the property semantics much like a hardware design
would be simulated.

Property Assurance provides the designer with a general means to assess whether
she has written the right set of properties. First, property assurance can check that the
requirements are consistent and do not contain a contradiction. Second, the designer
can provide two sets of properties: ΦA, a set of assertions that must be guaranteed,
and ΦP , a set of possibilities that describes corner cases that must be allowed by the
requirements. Using assertions, a designer can check whether the requirements are strict
enough to exclude any undesired behavior. With possibilities, she can check that they
are not overly strict, and desirable behavior is allowed.

Property Realizability aims to verify whether there is a system that behaves accord-
ing to the specification for any provided input sequence. To decide realizability, we split
the requirements into assumptions on the environment and guarantees on the system
behavior. Then we check for the existence of a system which can provide correct out-
puts for any inputs that are consistent with the environment assumptions. This problem
can be seen as a two player game (the players being the environment and the system),
where we have to determine a winning strategy (an implementation) for the system. Re-
alizability is much more demanding than logical consistency. Indeed, there are logical
consistent specifications that are unrealizable.

Figure 1 depicts a requirements analysis process that integrates the three proposed
techniques. First, the designer comes up with initial approximations of the requirements
Γ , assertions ΦA, and possibilities ΦP . We propose an iterative approach, checking
whether the requirements are consistent, whether they allow for all possibilities stated
in ΦP , and whether they do not contradict any assertion in ΦA. For any problem, the
designer is presented with diagnosis information, and consequently refines Γ , ΦA, and
ΦP to fix it. After any change, the requirements are verified again for consistency and
for adherence to ΦA and ΦP . Finally, realizability of the specification is checked. If the
requirements are unrealizable, the designer is requested to revise the specification.
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3 Technical Aspects

Property simulation and assurance rely on Automata-based and Bounded Model Check-
ing (BMC) techniques [9,3]. For both approaches we derive an automaton and check its
language for emptiness, for a (bounded) witness or counterexample for the task at hand.

To decide the realizability of a specification we construct a two-player game between
the system and the environment [11]. The goal of the system is to satisfy the specifica-
tion by delivering correct outputs considering the so far encountered input, regardless
of the input sequence provided by the environment. Realizability can be decided by
checking whether this game is winning for the system or the environment. For a winning

Fig. 3. RAT’s GUI
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environment, the specification is unrealizable and must be modified. If the system wins,
the specification is realizable: an implementation can be constructed.

The concepts presented in the previous sections have been used in the design and de-
velopment of RAT [10]. Figure 2 depicts a high level architecture of RAT. An example
of the graphical user interface can be found in Figure 3. RAT’s verification capabilities
currently rely on the NUSMV [7] and VIS [6] model checkers, extended to provide
the devised functionalities [4,8]. However, RAT has been designed and implemented
for an easy plug in of other verification engines, to support further languages and ver-
ification algorithms. Additional information on RAT can be obtained from its web site
http://rat.itc.it

4 Experimental Analysis

In [2] IBM, Infineon, STMicroelectronics, and OneSpin examined several new tech-
niques and tools for property-based requirements specification, including a RAT proto-
type supporting property simulation and assurance. The case studies included transport
frontends, protocols, a bridge, SOC interconnects, and other industrial design blocks.

Although our tool was a prototype when the case studies were done, our technol-
ogy appeals to designers: “We found the concept of property simulation attractive as it
allows a developer to debug her/his own PSL code easily, quickly and independently”.
Several bugs in the properties were found, and property assurance has been “used effec-
tively in specific cases to prove that one set of properties can be substituted by another”.
The interface and usability features provided by RAT “make the development process
easier and provide an enjoyable development experience”. IBM’s experience with the
tool prompted them to start “to design and develop a feature similar to property sim-
ulation in RuleBasePE soon after starting this case study”. One of the projects also
quantified an economical benefit; estimated 1.5 person months for property debugging
shrank to 0.5 person months using RAT.

Regarding realizability, in [5] the realizability proof of real system-on-chip designs
has been shown using the same algorithms implemented in RAT [8].

Acknowledgements
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Abstract. Symbolic state-space generators are notoriously hard to par-
allelise, largely due to the irregular nature of the task. Parallel languages
such as Cilk, tailored to irregular problems, have been shown to offer ef-
ficient scheduling and load balancing. This paper explores whether Cilk
can be used to efficiently parallelise a symbolic state-space generator on
a shared-memory architecture. We parallelise the Saturation algorithm
implemented in the SMART verification tool using Cilk, and compare it
to a parallel implementation of the algorithm using a thread pool. Our
experimental studies on a dual-processor, dual-core PC show that Cilk
can improve the run-time efficiency of our parallel algorithm due to its
load balancing and scheduling efficiency. We also demonstrate that this
incurs a significant memory overhead due to Cilk’s inability to support
pipelining, and conclude by pointing to a possible future direction for
parallel irregular languages to include pipelining.

1 Introduction

Automated verification, such as temporal-logic model checking [8], relies on effi-
cient algorithms for computing state spaces of complex system models. To avoid
the well-known state-space explosion problem, symbolic algorithms working on
decision diagrams, usually BDDs, have proved successful in practise [7, 16]. Sev-
eral efforts have been made to implement these algorithms on parallel com-
puter platforms, most notably on networks of workstations and on PC clus-
ters [11, 12, 13, 17, 19]. The efforts range from simple approaches that essentially
implement BDDs as two-tiered hash tables [17, 19], to sophisticated approaches
relying on slicing BDDs [12] and techniques for workstealing [11]. However, the
resulting implementations show only limited speedups.

While parallel implementations of symbolic model checkers are often success-
ful in increasing available memory, limited speedups can largely be attributed
to the irregular nature of the state-space generation task and the resulting high
parallel overheads such as load imbalance and scheduling of small computations.
When combined with the extra overheads incurred from synchronisation on the
symbolic data structure, it is possible for irregularity to severely decrease run-
time efficiency. Irregular problems have been addressed in the parallel literature,
� Research funding was provided by the EPSRC under grant no. GR/S86211/01.
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resulting in languages such as Cilk [1, 10] for shared memory architectures. Cilk
has been shown to alleviate the irregular overheads by offering efficient schedul-
ing and load balancing. When successfully applied, it offers potential improve-
ments in time efficiency, and a large reduction in effort with respect to deriving
and implementing scheduling and load balancing techniques. To date, Cilk has
been used for other irregular problems involving searches, but overlooked for
parallelising state-space generation, which underlies model checking.

Saturation [5], as implemented in the verification tool SMART [4], is a sym-
bolic state-space generation algorithm with unique features (cf. Sec. 2). It is
intended for asynchronous system models with interleaving semantics, and ex-
ploits the local effect of firing events on state vectors by locally manipulating
MDDs, which are a generalisation of BDDs [14]. Saturation has proved to be or-
ders of magnitude more time-efficient and memory-efficient than other symbolic
algorithms [5], including the one in NuSMV [7], when applied to asynchronous
system models. Like other symbolic algorithms, Saturation is irregular in nature
and suffers from high parallelisation overheads. Hence, the question arises as to
whether using a proven parallel language for irregular problems is beneficial to
the time efficiency of a parallel implementation of Saturation. A previous ap-
proach to parallelising Saturation [2] on a PC cluster used a message-passing
library, but not a language tailored to irregular problems.

This paper investigates the parallelisability of the Saturation algorithm for
shared-memory architectures using Cilk and reports on our experiences made.
Our implementation (cf. Sec. 3) focuses on shared-memory architectures, but
due to the increasing popularity of distributed shared-memory libraries, our re-
sults are also of significance for parallelisations of Saturation on PC clusters. To
put our results into context, we contrast our Cilk algorithm with our own thread
pool parallelisation of Saturation for shared memory architectures [9], which is
based on the POSIX Pthreads library [15], and compare run-time and memory
efficiency. We extend our investigation to optimise the parallel ordering in which
the state space is generated, and determine the effects on run-time and memory
for both parallel implementations. Our experimental studies (cf. Sec. 4) using a
PC with two dual-core Intel processors show that the efficiency of Cilk improves
the run-time of the parallel algorithm when compared to our thread pool imple-
mentation, but incurs a significant increase in memory due to Cilk’s inability to
support pipelining. Our experiences show how parallel irregular languages can be
considered when parallelising symbolic state-space generators, and we conclude
by pointing to a potential future direction within the parallel community which
may allow parallel irregular languages to improve the time-efficiency of parallel
state-space generation without severely impacting on memory (cf. Sec. 6).

2 Background

A discrete-state model is a triple (Ŝ, s0, N ), where Ŝ is the set of potential states
of the model, s0 ∈Ŝ is the initial state, and N : Ŝ →2 �S is the next-state function
specifying the states reachable from each state in one step. Assuming that the
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model contains K submodels, a (global) state i is a K-tuple (iK ,...,i1), where ik
is the local state of submodel k, for K ≥ k ≥ 1, and Ŝ = SK × · · · × S1 is the
cross-product of K local state-spaces. This allows us to use symbolic techniques
based on decision diagrams to store sets of states. We decompose N into a
disjunction of next-state functions, so that N (i) =

⋃
e∈E Ne(i), where E is a

finite set of events and Ne is the next-state function for event e. We seek to
build the reachable state-space S ⊆ Ŝ, the smallest set containing s0 and closed
with respect to N : S = {s0} ∪ N (s0) ∪ N (N (s0)) ∪ · · · = N ∗(s0), where “∗”
denotes reflexive and transitive closure and N (X ) =

⋃
i∈X N (i).

Symbolic Encodings of S and N . In the sequel, we assume that each Sk is
finite and known a priori. In practise, the local state spaces Sk can actually be
generated on-the-fly by interleaving symbolic global state-space generation with
explicit local state-space generation [6]. Without loss of generality, we assume
that Sk = {0, 1, . . . , nk−1}, with nk = |Sk|. We then encode any set X ⊆ Ŝ in
a (quasi-reduced ordered) MDD over Ŝ. Formally, an MDD is a directed acyclic
edge-labelled multi-graph where:

– Each node p belongs to a level k ∈ {K, ..., 1, 0}, denoted p.lvl .
– There is a single root node r at level K.
– Level 0 can only contain the two terminal nodes Zero and One.
– A node p at level k > 0 has nk outgoing edges, labelled from 0 to nk−1. The

edge labelled by ik points to a node q at level k−1; we write p[ik] = q.
– Given nodes p and q at level k, if p[ik] = q[ik] for all ik ∈ Sk, then p = q,

i.e., there are no duplicates.

The set encoded by an MDD node p at level k > 0 is B(p) =
⋃

ik∈Sk
{ik} ×

B(p[ik]), letting X × B(0) = ∅ and X × B(1) = X for any set X
For storing N , we adopt a representation inspired by work on Markov chains.

This requires the model to be Kronecker consistent [5], a restriction that can
often be automatically satisfied by concurrency models such as Petri nets. Each
Ne is conjunctively decomposed into K local next-state functions Nk,e, for K ≥
k ≥ 1, satisfying Ne(iK , . . . , i1) = NK,e(iK) × · · · × N1,e(i1), in any global state
(iK , . . . , i1) ∈ Ŝ. Using K · |E| matrices Nk,e ∈ {0, 1}nk×nk with Nk,e[ik, jk] =
1 ⇔ jk ∈ Nk,e(ik), we encode Ne as a boolean Kronecker product: j ∈ Ne(i) ⇔⊗

K≥k≥1 Nk,e[ik, jk] = 1, where ⊗ indicates the Kronecker product of matrices.
The Nk,e matrices are extremely sparse; when encoding a Petri net, for example,
each row contains at most one nonzero entry.

Saturation-Based Iteration Strategy. In addition to efficiently representing
N , the Kronecker encoding allows us to recognise event locality [5] and employ
Saturation [5]. We say that event e is independent of level k if Nk,e = I, the
identity matrix. Let Top(e) denote the highest level for which Nk,e 
= I. An
MDD node p at level k is saturated if it is a fixed point with respect to all Ne

such that Top(e) ≤ k, i.e., SK ×· · ·×Sk+1×B(p) = N≤k(SK ×· · ·×Sk+1×B(p)),
where N≤k =

⋃
e:Top(e)≤k Ne. To saturate MDD node p once all its descendants
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are saturated, we update it in place so that it encodes also any state in Nk,e ×
· · ·×N1,e(B(p)), for all events e such that Top(e) = k. This can create new MDD
nodes at levels below k, which are saturated immediately, prior to completing
the saturation of p. If we start with the MDD encoding the initial state s0 and
saturate its nodes bottom up, the root r will encode S = N ∗(s0) at the end, as
shown in [5].

Saturation consists of many “lightweight” nested fixed-point iterations and
is completely different from the traditional breadth-first approach that employs
a single “heavyweight” global fixed-point iteration. The algorithm contains two
main mutually recursive functions (cf. Sec. 3): Saturate calls Fire to recursively
perform the event firings while saturating nodes, while Fire calls Saturate to
saturate nodes that are created as a result of event firings. The algorithm also
uses supporting functions for creating and deleting nodes, performing a union
on two nodes, storing saturated nodes by checking them into a hash table, and
caching results to previous calls of Fire. Experimental results reported in [3, 5, 6]
consistently show that Saturation outperforms breadth-first symbolic state-space
generation by orders of magnitude in both memory and time, making it arguably
the most efficient state-space generation algorithm for globally-asynchronous
locally-synchronous discrete event systems.

Cilk. Symbolic state-space generation algorithms incur significant overheads
from parallelisation, making gains in time-efficiency difficult to achieve. The
main overheads are synchronisation overheads due to frequent locking on the
symbolic structure (i.e., nodes stored in hash tables), load imbalance from the
irregular sizes of computations during state-space generation, and scheduling
overheads since state-space generation computations can be small. Parallel tools
to reduce these overheads are thus desirable. To the best of our knowledge,
Cilk [1, 10] is the only parallel language that offers both efficient scheduling and
load balancing. The Cilk language simplifies parallel programming by allowing
the use of C-based functions to express control over the parallelism of a program.
The language is powerful enough to facilitate mutually recursive algorithms such
as Saturation [5]. It is designed to run efficiently on symmetric processors, e.g.,
those found in shared-memory machines, and includes a scheduler employing ran-
domised work-stealing, that is theoretically and practically efficient. To achieve
efficiency, Cilk employs its own model of multithreaded computation.

Cilk uses call/return semantics to enable parallelism, and provides keywords
that enable the programmer to easily express parallelism. A Cilk function can
be specified by using the keyword cilk in front of a C function, and can be
spawned to run in parallel by using the keyword spawn when calling it. The
C function semantics is preserved by allowing the return value of the spawned
function to be stored by the parent. Multiple functions can be spawned within
the calling function, and the calling function continues its computation while
the spawned functions work in parallel. To permit controlled synchronisation of
spawned threads, the sync keyword prevents the calling function from continuing
its computation until all of its spawned functions have completed. Cilk functions
contain an implicit sync before they are allowed to return.
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The return value of the calling function can either be stored by the parent
once the function completes, or can be handled by the parent in a more complex
way via the use of an inlet. An inlet can be specified as an internal function
to a Cilk function, which handles the result of a spawned function. To preserve
atomicity, only one completed Cilk function can be handled at a time by the
inlet, and further computation by the parent is prevented until the inlet has
returned. The spawn and sync keywords cannot be used within an inlet. This
restriction arises from Cilk’s inability to support pipelining, making it difficult
to express producer/consumer problems such as state-space generation.

3 Parallel Saturation

Using Cilk we can easily interpret Saturation as a parallel algorithm in divide
and conquer format. The algorithm in Fig. 1 shows the original Saturation algo-
rithm [5] expressed as a parallel algorithm in Cilk. The algorithm is parallelised
via task parallelism in exactly the same way as in our thread pool implementation
using POSIX Pthreads [9], where the Fire function is defined as a parallel task,
so that event firings can execute in parallel. We therefore choose to spawn the
function Fire on line 16 of the algorithm, while the return value of the spawned
function is handled using an inlet we call DoUnion , specified in lines 1 to 9 of
the algorithm. The inlet performs the Union on the node being saturated if the
firing returns a non-zero node. The calling function synchronises on the spawned
firings in line 17 of the Cilk algorithm using the keyword sync. The firing loop
continues again when all of the currently spawned firings have completed. Access
to the hash table and caches is granted on a per-level basis via a mutex lock that

cilk Saturate(in k:lvl , p:node)

Update p, a node at level k not in the hash table,
in–place, to encode N∗

≤k(B(p)).

declare pCng : bool; e : event; i, j : lcl;
declare L : set of lcl; u : node;
1. inlet void DoUnion(f : lcl) {
2. if f �= 0 then
3. foreach j ∈ Nk,e(i) do
4. u ⇐ Union(k−1, f, p[j]);
5. if u �=p[j] then
6. p[j] ⇐ u; pCng = true;
7. if Nk,e(j) �= 0 then
8. L=L ∪ {j};
9. }

10. repeat
11. pCng ⇐ false;
12. for each e ∈ Ek do
13. L = Locals(e,k ,p);
14. while L �= ∅ do
15. i = Pick(L);
16. DoUnion(spawn Fire(e, k−1, p[i]));
17. sync;
18. until pCng = false;

cilk Fire(in e:event, l:lvl, q:node):node

Build an MDD rooted at level l, encoding
N∗

≤l(Ne(B(q))).

declare L : set of lcl;
declare i, j : lcl;
declare f , u, s : node;
declare sCng : bool;
1. if l < Last(e) then return q;
2. if Find(FireCache[l], {q, e}, s) return s;
3. s ⇐ NewNode(l); sCng ⇐ false;
4. L ⇐ Locals(e, l, q);
5. while L �= ∅ do
6. i ⇐ Pick(L);
7. f ⇐ Fire(e, l−1, q[i]);
8. if f �= 0 then
9. foreach j ∈ Nl,e(i) do

10. u ⇐ Union(l−1, f, s[j]);
11. if u �=s[j] then
12. s[j] ⇐ u; sCng ⇐ true;
13. if sCng then Saturate(l, s);
14. CheckIntoHashTable(l, s);
15. Insert(FireCache[l]{q, e}, s);
16. return s;

Fig. 1. Cilk based Saturation using inlets
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Fig. 2. Calling order for spawns

can be specified in Cilk. We argued the correctness of this way of parallelising
Saturation in [9].

Unfortunately, this parallelisation approach creates a load imbalance since all
firings must be completed before performing the union operation. The ordering
can be shown in Fig. 2(a), where function Saturate must wait for the two spawned
Fire calls to synchronise before spawning more work. It would be more efficient
to perform the union operation and then immediately spawn new work using the
ordering in Fig. 2(c).

Expressing a Producer/Consumer Problem. The call/return semantics of
Cilk means that we cannot elegantly deal with a spawned function as soon as
it has completed, since we cannot tell when an individual firing has completed
outside of an inlet. It is desirable to use an inlet to spawn off more work as soon
as a firing completes; however, inlets are restricted to prevent new functions
being spawned from within them. We could attempt to let the calling function
know when a firing has completed via an inlet through the use of a flag or a
queue, but Cilk does not allow us to suspend the calling function outside of a
sync statement, which means that the calling function would have to continue
monitoring for completed child functions. It is undesirable to tie up the processor
with a function that is polling in this manner, since it largely performs useless
work. This means that the ordering of work shown in Fig. 2(c) cannot be achieved
using Cilk, due to the restrictions arising from Cilk’s lack of pipelining in its
multithreaded computational model.

We can rewrite the algorithm to continue spawning firings when they have
completed by utilising the spawn keyword, without exploiting the call/return
semantics of Cilk. An example algorithm is shown in Fig. 3, which breaks the
original Saturation function into sub-functions. Once a spawned firing has been
completed, it performs the union in DoUnion and then immediately spawns fur-
ther firings on the updated state. Expressing our producer/consumer problem by
bypassing the call/return semantics is not ideal. When the functions complete,
they do not have any further work to do, yet they are left on the Cilk func-
tion stack after spawning more work, waiting for it to complete. This ordering
is shown in Fig. 2(b). A large number of functions can be unnecessarily left on
the stack during the state-space generation process, which potentially increases
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cilk Saturate(in k:lvl , p:node)

Update p, a node at level k not in the hash table,
in–place, to encode N∗

≤k(B(p)).

declare i : lcl;
1. foreach i ∈ Sk do
2. if p[i] �= 0 then
3. spawn FireEvents(k, p, i);

cilk FireEvents(in k:lvl , p:node, i:lcl)

Fire e on p[i] when Nk,e(i) �= 0.

declare e : event;
1. foreach e ∈ Ek do
2. if Nk,e(i) �= 0 then
3. spawn FireEvent(k, p, i, e);

cilk FireEvent(in k:lvl , p:node , i:lcl , e:event)

Fire e on node p[i] at level k.

declare j : lcl; f : node;
1. f ⇐ Fire(e, k−1, p[i]);
2. if f �= 0 then
3. foreach j ∈ Nk,e(i) do
4. spawn DoUnion(k, p, j, f);

cilk DoUnion(in k:lvl , p:node, j:lcl , f :node)

Fire events on p[j] when p[j] changes.

declare u : node;
1. u ⇐ Union(k−1, f, p[j]);
2. if u �=p[j] then
3. p[j] ⇐ u; spawn FireEvents(k, p, j);

Fig. 3. Cilk based Saturation without exploiting call/return semantics

the amount of memory required for the process. The problem is compounded
because of the mutually recursive calls between Saturate and Fire.

Using a Thread Pool. To achieve the ideal ordering in Fig. 2(c), we must re-
linquish functions from the stack while spawned work executes. Since a function
frame requires its own storage, a smaller amount of memory could be used by
storing only the variables that are required once a spawned child is complete,
instead of storing the calling function. We can use a thread pool for load balanc-
ing purposes, an auxiliary structure to store required variables, and structure
our algorithm to relinquish functions, leaving the child functions to complete
the work of the calling function. In our thread pool algorithm [9], we store the
variables in upward arcs in the MDD structure. Children can be spawned using
tasks allocated to threads in the thread pool via the use of a FIFO queue. An
available thread will pick up a task from the queue and execute it. Tasks can
restore the status of their calling function using the upward arcs, which allows
calling functions to terminate, leaving spawned tasks to complete their work.

A snippet of the pseudo-code from the thread pool algorithm is shown in
Fig. 4. The algorithm behaves (or acts) in much the same way as the sequen-
tial Saturation algorithm, except that, when a firing is performed in function
Fire, an upward arc is set to the node that needs to be updated as a result
of the firing. This allows the Fire call to terminate since the upward arc con-
tains the information required for spawned tasks to complete the Fire function.
The mutual recursion on the function stack is broken as Fire spawns Saturate
tasks, i.e., once the node created by Fire is ready to be saturated, a saturation
task is added to the queue and Fire terminates. To determine whether a node
has been saturated, the number of tasks performing computations on the node
needs to be stored. When all tasks have completed, the node is saturated and
the function NodeSaturated is called. NodeSaturated picks up where Fire left off,
updating any of the nodes which have upward arcs set to them, and continues
to fire events on any updated node until the node is saturated.
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Saturate(in k:lvl , p:node)

declare i : lcl;

1. foreach i ∈ Sk do
2. if p[i] �= 0 then
3. FireEvents(k, p, i);
4. if Tasks(k, p) = 0 then
5. NodeSaturated(k, p);

FireEvents(in k:lvl , p:node, i:lcl)

declare e : event;

1. foreach e ∈ Ek do
2. if Nk,e(i) �= 0 then
3. Fire(e, k, p, p[i], i);

Fire(in e:event , k:lvl , p:node , q:node , i:lcl):node
declare s : node; j : lcl;
...
4. s=CreateNode(k−1);
5. foreach j ∈ Nk,e(i) do
6. AddTask(k, p); SetUpArc(k−1, s, j, p);...

14. AddQueue(Saturate(k−1, s));
...

NodeSaturated(in k:lvl , p:node)
declare q : node;
1. while GetUpArc(k, p, i, q)
2. DoUnion(k+1, q, i, p);
3. if Tasks(k+1, q) = 0 then
4. NodeSaturated(k+1, q);

Fig. 4. Thread pool Saturation [9]

The use of upward arcs introduces its own overheads [9]: additional locks, task
management, and the thread pool queue. The upward arcs also require extra
memory for both the arcs and the locks to synchronise the arcs. The thread pool
is not as efficient as Cilk, due to the time required to add and remove a task
from the queue. When we compare Cilk to a thread pool using the functionally
lightweight Fibonacci problem in [10] on a dual-processor, dual-core machine,
Cilk reports a 3× speedup whereas the thread pool reports a 2× slowdown due
to the time spent adding and removing tasks from the queue. Our thread pool
is, however, very efficient compared to creating threads on demand, where the
allocation of work to a thread is over 10× faster than creating one. [9].
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Fig. 5. The effect of events with Top = k on the states {0, 1, 2, 3, 4, 5} of Sk

Optimising the Ordering of Events. The study of the thread pool algorithm
in [9] revealed that the ordering in which events are fired in parallel can signifi-
cantly affect Saturation’s run-time and memory requirements. Fig. 5 shows the
effect of events e1, e2, and e3, with Top(e1) = Top(e2) = Top(e3) = k, on the
local states at level k (these events may of course affect lower levels as well).
When saturating a node p at level k, we must repeatedly fire e1, e2, and e3 in p,
until no more new states are found, i.e., until p encodes a fixed point. However,
Saturation does not dictate the order in which these events should be fired. For
example, firing 0 e1−→1 followed by 1 e3−→0 might be sub-optimal, since we might
have to fire 1 e3−→0 again once 0 e2−→1 has been fired, if this causes p[1] to point
to a different node encoding more states. Similarly, if we fire 1 e1−→2 before firing
0 e2−→1, all transitions in SCC#2 may have to be fired again.
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To address this problem, we use the chaining heuristic of [3], which extracts
the strongly connected components (SCCs) from a dynamic transition graph
that is built from the static graph of Fig. 5 and the dynamic pattern of non-zero
children of node p. We use these SCCs to enhance the order of parallel event
firings. However, while this chaining heuristic tends to improve run-time and
memory in a sequential implementation, it also reduces the potential parallelism
and introduces time and memory overheads due to storing the SCC graphs,
traversing them and managing parallel access.

4 Experimental Results

We implemented four experimental algorithms, two using Cilk and two utilising
a thread pool, which either fire events using the unoptimised ordering or the
chaining heuristic. Our thread pool algorithms were implemented using C and
the POSIX Pthreads library [15]. The machine used for this evaluation is a dual-
processor, dual-core PC with 2GB of memory and Intel Xeon CPU 3.06GHz
processors with 512KB cache sizes, running Redhat Linux AS 4, Redhat kernel
2.6.9-22.ELsmp, with glibc 2.3.4-2.13. We applied the algorithms to a set of
parameterised models previously used to evaluate Saturation [3, 5, 6], where
the parameter controls the size of a model’s state space. One of our models is
the Runway Safety Monitor (RSM) designed by Lockheed Martin and NASA
to reduce aviation accidents [18]. For each model, Table 1 shows the run-time
and memory when executing our experimental algorithms on four cores, where
N is the parameter and |S| is the approximate size of the final state space.
The thread pool algorithms are denoted by TP, the Cilk algorithms are denoted
by Cilk, and a C at the end of these names indicates the use of chaining. We
ran only non-chained versions of the algorithms on the FMS and Philosophers
models since the SCC graphs using the chaining heuristic were too large to fit
into memory.

The run-time speedup shows the comparative speed of the parallel algorithms
against the sequential version, where a value greater (less) than 1 indicates a
speedup (slowdown). The ideal speedup on our machine is approximately 3.2,
since the speedup obtained from a secondary core is less than that of a secondary
processor. A speedup greater than 3.2 is a superlinear speedup, which occurs
when the parallelism introduced into an algorithm causes it to be more optimal
than its sequential counterpart. It is difficult to achieve an ideal speedup for
any parallel search algorithm due to the search overhead factor. For Saturation
this includes synchronisation overheads on the symbolic structure, where the
MDD has to be locked frequently, and model specific factors such as how small
the computations are. In contrast to standard breadth-first state exploration
techniques, Saturation is heavily optimised. Hence, many of its computations
are extremely small and are thus difficult to parallelise efficiently [9].

Our experimental results reflect these overheads and model specific factors,
since only seven of the models exhibit parallelism, varying from small speedups
of just over 1 to a superlinear speedup of over 4. The results, however, also show
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Table 1. Run-time and memory results on a dual-processor, dual-core machine

N |S| Run-time speedup Memory increase
Seq (s) Tp TpC Cilk CilkC Seq (b) Tp TpC Cilk CilkC

Slotted ring network protocol (Slot) N = no. of nodes in the network

90 5.9 × 1094 6.79 0.26 0.31 0.28 0.42 5923040 11.84 5.55 2.52 1.40
120 5.1 × 10126 15.80 0.29 0.33 0.29 0.44 13405440 12.00 5.67 2.68 1.44
150 4.5 × 10158 30.84 0.30 0.37 0.31 0.45 25441840 12.10 5.88 2.73 1.52

Round robin mutex protocol (Robin) N = no. of processors

180 6.2 × 1056 7.94 0.94 0.49 1.15 0.69 1165764 1.88 1.82 18.01 17.51
210 7.8 × 1065 15.43 0.96 0.50 1.18 0.70 1574304 1.91 1.90 18.10 17.58
240 9.5 × 1074 41.71 0.99 0.50 1.22 0.72 2044044 1.94 1.92 18.13 17.59

Kanban manufacturing system (Kanban) N = no. of each type of parts

25 7.6 × 1012 2.79 0.65 0.57 0.22 0.65 7334600 1.92 1.22 1.48 1.16
30 5.0 × 1013 5.07 0.69 0.57 0.24 0.66 13784976 2.00 1.27 1.49 1.18
35 2.5 × 1014 10.25 0.71 0.58 0.25 0.66 23957940 2.08 1.31 1.54 1.19

Flexible manufacturing system (FMS) N = no. of each type of parts

11 1.1 × 109 12.22 2.11 N/A 2.19 N/A 3148980 1.72 N/A 22.89 N/A
13 5.8 × 109 55.54 2.18 N/A 2.35 N/A 8173844 1.88 N/A 23.56 N/A
14 1.3 × 1010 119.87 2.26 N/A 2.47 N/A 12591300 1.97 N/A 24.35 N/A

Queen problem (Queens) N = no. of queens on an N × N chessboard

11 166926 1.78 0.52 0.53 1.22 0.60 4248776 1.91 2.05 17.68 17.99
12 856189 19.38 0.56 0.54 1.52 0.62 19920672 2.01 2.15 18.27 18.20
13 4674890 438.59 0.61 0.59 2.48 0.67 99807456 2.24 2.56 19.01 18.62

Runway safety monitor (RSM) Targets = 1, Speeds = 2, X=N , Y=3, Z=2

3 1.3 × 1010 5.41 0.49 0.78 0.54 0.93 6267568 2.21 1.63 16.22 15.95
5 3.8 × 1010 37.62 0.55 1.42 0.84 1.75 23307704 2.36 1.72 16.91 16.55
8 1.0 × 1011 316.77 0.67 2.99 0.93 4.47 74024440 2.55 1.89 17.67 16.93

Aloha network protocol (Aloha) N = no. of nodes in the network

40 2.3 × 1013 2.69 0.79 0.71 1.55 0.80 15879556 1.52 1.44 12.14 11.91
70 4.3 × 1022 22.20 0.86 0.84 1.69 0.89 82907316 1.66 1.63 13.22 12.90

100 6.5 × 1031 66.28 0.87 0.85 1.74 0.91 239179076 1.78 1.75 14.38 14.33

Randomised leader election protocol (Leader) N = no. of processors

6 1.9 × 106 3.72 0.48 0.71 0.89 0.97 2422704 2.81 2.01 14.34 13.71
7 2.4 × 107 24.34 0.44 0.65 0.81 1.1 7063232 3.29 2.17 15.89 14.43
8 3.0 × 108 128.08 0.43 0.63 0.82 1.24 16107968 3.61 2.52 16.70 15.61

Bounded open queueing network (BQ) N = no. of customers

30 2.4 × 108 2.1 0.36 0.41 0.82 0.90 2241036 2.08 1.96 18.66 17.59
50 4.6 × 109 24.25 0.39 0.44 0.85 0.91 15112996 2.14 2.05 18.93 17.92
70 3.3× 1010 146.01 0.41 0.45 0.87 0.94 54895356 2.50 2.23 19.20 18.36

Dining philosophers (Philosophers) N = philosophers, phil./level = 6

20 3.5 × 1012 14.82 1.12 N/A 1.26 N/A 569608 1.82 N/A 14.07 N/A
40 1.2 × 1025 33.32 1.13 N/A 1.32 N/A 1097560 1.96 N/A 14.40 N/A
80 1.4 × 1050 77.35 1.19 N/A 1.35 N/A 2321768 2.28 N/A 14.93 N/A



278 J. Ezekiel, G. Lüttgen, and G. Ciardo

that the efficient load balancing and scheduling of Cilk is superior to our thread
pool in exploiting parallelism where parallelism exists. In comparison, Cilk is able
to obtain a speedup for seven of the models instead of three for the thread pool.
Where models can be parallelised, the larger the size of the model, the greater
the parallelism. The models of particular interest due to their comparatively high
speedups against the other models, are the Queens, FMS, and RSM models. On
a four processor 2.4GHz Intel Operon machine, the speedups for these models
increase to over 3 for the Queens and FMS models and over 5 for the RSM
model, demonstrating that all of the cores are being utilised. The RSM model
exhibits a superlinear speedup due to the combined effects of chaining and the
effective parallelisation using Cilk.

Chaining is practically effective in improving the run-time on both the RSM
and Leader models, although it may conceptually hinder run-time due to the
synchronisation overhead from managing access and updates to the chaining
graphs. This is because chaining can also decrease the overall amount of work by
finding an event ordering that leads to firing fewer events. This effect also leads to
the use of less memory across all of the models, as shown in the memory increase
column indicating the relative increase in memory for the parallel algorithms
against the sequential version. The column also shows that the Cilk algorithms
require significantly more memory than the sequential algorithm, due to the size
of the Cilk stack. The only model where Cilk requires less memory than the
thread pool algorithm when using chaining is the slotted ring model. For this
model, chaining helps the thread pool algorithm, halving the memory used by the
non-chained version. Overall, however, the thread pool algorithm significantly
outperforms the Cilk algorithm regarding memory, which is due to the fact that
it does not have to allocate memory for a waiting stack.

Our results show that Cilk is more effective in exploiting parallelism than our
hand-crafted thread pool algorithm, but incurs a significant memory overhead
due to its lack of support for pipelining. This is a relevant and timely observation
due to the increasing popularity of multi-core machines. However, the scalability
of our algorithm across a larger number of processors (or processor cores) requires
further study in order to fully understand the impact of the synchronisation
overhead introduced by each processor (core). We leave this to future work.

5 Related Work

Research on symbolic model checking has primarily focused on networks of
workstations (NOWs) [2, 11, 12, 13, 17, 19], using message-passing libraries
to communicate between workstations. None of the existing approaches uses
a parallel language to facilitate scheduling and load balancing; approaches to
dealing with these overheads are implemented by hand. Also, most work on
parallel state-space generation considers how to parallelise the underlying data
structure. These approaches target the increased memory available on a NOW
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by slicing data structures and distributing them across processors. The structure
of decision diagrams has previously been sliced horizontally [2] and vertically [13,
17, 19]. Horizontal slicing scales well but prevents significant speedups, since each
slice has to complete its work before the next slice can begin.

Grumberg, Heyman, Ifergan, and Schuster [11] parallelised symbolic state-
space generation algorithms to gain speedups by developing vertical slices on
different processors of a NOW. If the algorithm controlling the slices has to fre-
quently synchronise on the application of the next-state function, each round of
computation is only as fast as the slowest time it takes for a slice to develop on
a processor. To achieve speedups, the parallel algorithm allows slices to develop
asynchronously while the next-state function is applied to create more work.
The algorithm is load-balanced using workstealing techniques implemented by
hand [12]. For very large circuits, these techniques can lead to efficient paralleli-
sation, showing up to an order of magnitude improvement in time-efficiency.

Our approach is unique in that we consider how to functionally decompose
the Saturation algorithm rather than its data structures. In comparing a proven
efficient parallel language to our own hand-crafted approach, we determined
how efficient both implementations are in terms of run-time and memory. We
expect that our observations can be extrapolated to PC clusters when utilising
distributed shared-memory (DSM) techniques.

6 Conclusions

We investigated whether the parallel language Cilk could improve the efficiency
of a parallel variant of the MDD-based Saturation algorithm for computing
reachable state spaces of asynchronous systems on shared-memory architec-
tures, such as modern multi-processor multi-core PCs. Our experimental studies
showed that Cilk is much more effective than a hand-crafted implementation for
addressing load balancing and scheduling. However, while the usage of Cilk led
to considerable improvements in time-efficiency, the restrictions imposed by the
Cilk language implied an enormous memory overhead.

The results from running our hand-crafted solution demonstrated that
preventing idle functions from inhabiting the stack removes this memory
overhead. Pipelining is therefore an essential feature of any language for par-
allelising symbolic state-space generators. To the best of our knowledge, there
is currently no parallel language fitting this description. However, a possible
future direction of parallel irregular languages extending the Cilk model of mul-
tithreaded computation to include pipelining is proposed in [20]. This would en-
able the truly efficient parallelisation of symbolic state-space generators, thereby
making significant progress in utilising parallel architectures in automated
verification.
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Abstract. We show how to adapt an existing non-DFS-based accepting
cycle detection algorithm OWCTY [10,15,29] to the I/O efficient setting
and compare its I/O efficiency and practical performance to the existing
I/O efficient LTL model checking approach of Edelkamp and Jabbar [14].
The new algorithm exhibits similar I/O complexity with respect to the
size of the graph while it avoids quadratic increase in the size of the graph.
Therefore, the number of I/O operations performed is significantly lower
and the algorithm exhibits better practical performance.

1 Introduction

Model checking became one of the standard technique for verification of hard-
ware and software systems even though the class of systems that can be fully
verified is fairly limited due to the well known state explosion problem [12]. The
automata-theoretic approach [33] to model checking finite-state systems against
linear-time temporal logic (LTL) reduces to the detection of reachable accepting
cycles in a directed graph. Due to the state explosion problem, the graph tends to
be extremely large and its size poses real limitations to the verification process.
Many more-or-less successful techniques have been introduced [12] to reduce the
size of the graph advancing thus the frontier of still tractable systems. Never-
theless, for real-life industrial systems these techniques are not efficient enough
to fit the data into the main memory. An alternative solution is to increase the
computational resources available to the verification process. The two major ap-
proaches include the usage of clusters of workstations and the usage of external
memory devices (disks).

Regarding external memory devices, the goal is to develop algorithms that
minimize the number of I/O operations an algorithm has to perform to complete
its task. This is because the access to information stored on an external device
is orders of magnitude slower than the access to information stored in the main
memory. Thus the complexity of I/O efficient algorithms is measured in the
number of I/O operations [1].

A lot of effort has been put into research on I/O efficient algorithms working
on explicitly stored graphs [11,20,24,25]. For an explicitly stored graph, an I/O
efficient algorithm typically has to perform a random access operation every
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time it needs to enumerate edges incident with a given vertex. However, in
model checking, the graphs are often given implicitly which means that the
edges incident with a given vertex are computed on demand from the vertex
itself. Thus, an algorithm working on an implicitly given graph may save up
to |V | random access operations, which may have significant impact on the
performance of the algorithm in practice.

A distinguished technique that allows for an I/O efficient implementa-
tion of a graph traversal procedures is the so called delayed duplicate detec-
tion [21,22,26,32]. A traversal procedure has to maintain a set of visited vertices
to prevent their re-exploration. Since the graphs are large, the set cannot be
completely kept in the main memory and must be stored on the external mem-
ory device. When a new vertex is generated it is checked against the set to avoid
its re-exploration. The idea of the delayed duplicate detection technique is to
postpone the individual checks and perform them together in a group for the
price of a single scan operation.

Unfortunately, the delayed duplicate detection technique is incompatible with
the depth-first search (DFS) of a graph [14]. Therefore, most approaches to I/O
efficient (LTL) model checking suggested so far, have focused on the state space
generation and verification of safety properties only. The first I/O efficient al-
gorithm for state space generation has been implemented in Murϕ [32]. Later
on, several heuristics for the state space generation were suggested and imple-
mented in various verification tools [16,18,23]. The first attempt to verify more
than safety properties was described in [19], however, the suggested approach
uses the random search to find a counterexample to a given property. Therefore,
it is incomplete in the sense that it is not able to prove validity of the property.

To the best of our knowledge, the only complete I/O efficient LTL model
checker was suggested by Edelkamp and Jabbar in [14] where the problematic
DFS-based algorithm was avoided by the reduction of the accepting cycle
detection problem to the reachability problem [7,31] whose I/O efficient solution
was further improved by using the directed (A∗) search and parallelism. The
algorithm works in the on-the-fly manner meaning that only a part of the
state space is constructed, which is needed in order to check the desired
property. The reduction transforms the graph so that the size of the graph
after the transformation is asymptotically quadratic with respect to the original
one. More precisely, the size of the resulting graph is |F | × |G|, where |G|
is the size of the original graph and |F | is the number of accepting vertices.
As the external memory algorithms are meant to be applied to large scale
graphs, the quadratic increase in the size of the graph is significant and,
according to our experience, it often aborts due to the lack of space. This
is especially the case when the model is valid and the entire graph has
to be traversed to prove the absence of an accepting cycle. The approach
is thus mainly useful for finding counterexamples in the case a standard
verification tool fails due to the lack of memory. However, completeness is a
very important aspect of LTL model checking as well. A typical scenario is that if
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the system is invalid and the counterexample found, the system is corrected and
the property verified again. In the end, the graph must be traversed completely
anyway.

Since DFS-based algorithms cannot be used for I/O efficient solution to the
accepting cycle detection, a non-DFS algorithm is required. The situation very
much resembles a similar one encountered in cluster-based approach to LTL
model checking [2]. The main problem of the approach is that the optimal se-
quential algorithm (e.g. Nested DFS [17]) is inherently sequential and hence dif-
ficult to be parallelized [30]. Consequently, several new parallel algorithms that
do not build on top of the depth-first search have been introduced [3,4,8,9,10].

In this paper we show how to adapt a parallel enumerative version of the One
Way Catch them Young Algorithm (OWCTY) [10,15,29] to the I/O efficient
setting and compare its I/O efficiency and practical performance with the I/O
efficient LTL model checking algorithm by Edelkamp and Jabbar [14].

2 I/O Efficient OWCTY Algorithm

As discussed above, an I/O efficient solution to LTL model checking has to build
upon a non-DFS algorithm. A particularly suitable algorithm for enumerative
LTL model checking was described in [10]. The goal of the algorithm is to com-
pute the set of vertices that are reachable from a vertex on an accepting cycle. If
the set is empty, there is no accepting cycle in the graph, otherwise the presence
of an accepting cycle is ensured [15,29].

The algorithm repeatedly computes approximations of the target set until
a fixpoint is reached. All reachable vertices are inserted into the approxima-
tion set (ApproxSet) within the procedure Initialize-ApproxSet. After that,
vertices violating the condition are gradually removed from the approximation
set using procedures Elim-No-Accepting and Elim-No-Predecessors. Pro-
cedure Elim-No-Accepting removes those vertices from the approximation
set that have no accepting ancestors in the set, i.e. vertices that lie on lead-
ing non-accepting cycles. Procedure Elim-No-Predecessors removes vertices
that have no ancestors at all, i.e. leading vertices lying outside a cycle. The
pseudo-code is given as Algorithm 1.

Algorithm 1. DetectAcceptingCycle

Require: Implicit definition of G=(V,E,ACC)
1: Initialize-ApproxSet()
2: oldSize ← ∞
3: while (ApproxSet.size �= oldSize) ∧ (ApproxSet.size > 0) do
4: oldSize ← ApproxSet.size
5: Elim-No-Accepting()
6: Elim-No-Predecessors()
7: return ApproxSet .size > 0
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The approximation set induces an approximation graph. The in-degree of a
vertex in the approximation graph corresponds to the number of its immediate
predecessors in the approximation set. To identify vertices without ancestors in
the approximation set, the in-degree is maintained for every vertex of the ap-
proximation graph. Procedure Elim-No-Predecessors then works as follows.
All vertices from the set with a zero in-degree are moved to a queue from where
they are dequeued one by one. Dequeued vertices are eliminated from the set,
and the in-degrees of its descendants are updated. If an in-degree drops to zero,
the corresponding vertex is inserted into the queue to be eliminated as well.
The procedure eliminates vertices in a topological order and hence the queue
becomes empty as soon as all vertices preceding a cycle are eliminated.

Procedure Elim-No-Accepting works as follows. If a vertex has an accepting
ancestor in the approximation set, it has to be reachable from some accepting
vertex in the set. Therefore, the procedure first removes all non-accepting vertices
from the set and sets the numbers of predecessors of all vertices remaining in
the set to zero. Then a forward search is performed starting from the vertices
remaining in the set. During the search all visited vertices are re-inserted to the
approximation set and the numbers of immediate predecessors of vertices in the
set are re-counted.

There are three major data structures used by the algorithm. These are
Candidates , ApproxSet , and Open. Candidates is the set of vertices strictly kept
in memory that is used for the delayed duplicate detection technique. It keeps
vertices that have been processed and are waiting to be checked against the set of
vertices stored on the external device. ApproxSet is the set of vertices belonging
to the current approximation set. It is implemented as a linear list and stored ex-
ternally. Together with Candidates , it is used as the set of vertices already visited
during the forward exploration of the graph in procedure Elim-No-Accepting.
For that purpose, both Candidates and ApproxSet data structures are modified
to keep not only vertices, but also the corresponding numbers of relevant imme-
diate predecessors. The number associated with a particular vertex s is referred
to as the appendix of the vertex and is set and read with methods setAppendix(s)
and getAppendix(s), respectively. Finally, the data structure Open is a queue
of vertices. It is used to keep open vertices during the breadth-first exploration
of the graph within procedure Elim-No-Accepting, and vertices to be elim-
inated (vertices without any predecessors) during the execution of procedure
Elim-No-Predecessors. The data structure Open is stored in the external
memory, the vertices are, however, inserted into and taken from it in a strict
FIFO manner. Thus, a possible I/O overhead could be minimized using an ap-
propriate buffering mechanism.

In some of its phases, the algorithm performs a scan through the externally
stored set of vertices (ApproxSet) and decides about every vertex if it should be
removed from the set or not. To preserve the I/O efficiency of such an operation,
a temporary external data structure ApproxSet’ is introduced. In particular,
vertices that should remain in the set are copied to the temporary structure.
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Algorithm 2. Merge

1: if mode = Elim-No-Accepting then
2: for all s ∈ ApproxSet do
3: if s ∈ Candidates then
4: app ← Candidates .getAppendix(s)
5: app’ ← ApproxSet .getAppendix(s)
6: Candidates ← Candidates \ {s}
7: ApproxSet .setAppendix(s, app + app’ )
8: for all s ∈ Candidates do
9: Open.pushBack(s)

10: ApproxSet ← ApproxSet ∪ {s}
11: else
12: ApproxSet’ ← ∅
13: for all s ∈ ApproxSet do
14: app’ ← ApproxSet .getAppendix(s)
15: if s ∈ Candidates then
16: app ← Candidates .getAppendix(s)
17: if (app + app’ ) = 0 then
18: Open.pushBack(s)
19: else
20: ApproxSet’ ← ApproxSet’ ∪ {s}
21: ApproxSet’ .setAppendix(s, app + app’ )
22: else
23: ApproxSet’ ← ApproxSet’ ∪ {s}
24: ApproxSet’ .setAppendix(s, app’ )
25: ApproxSet ← ApproxSet’
26: Candidates ← ∅

Once the scan is complete, the content of the original ApproxSet is discarded
and replaced with the content of the temporary structure ApproxSet’ .

Having described the data structures we are ready to introduce several aux-
iliary subroutines. The most important one is procedure Merge that is re-
sponsible for merging information about vertices stored in the internal memory
(Candidates) and vertices stored externally (ApproxSet). The procedure can op-
erate in two different modes according to the value of the variable mode. The
two modes correspond to the top most procedures Elim-No-Accepting and
Elim-No-Predecessors. In the mode Elim-No-Accepting, vertices from set
Candidates are merged with vertices from ApproxSet and the result is stored ex-
ternally to ApproxSet . For already visited vertices the corresponding appendices
are just combined and stored externally. Moreover, newly discovered vertices
are inserted into the queue of vertices to be further processed (Queue). In the
mode Elim-No-Predecessors, no new vertices are discovered, hence only the
appendices are combined. Vertices with zero in-degree are removed from the ex-
ternal memory and in-degree of their immediate descendants is appropriately
decreased. For the details see Algorithm 2.
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Algorithm 3. StoreOrCombine

Require: s, app
1: if s ∈ Candidates then
2: app’ ← Candidates .getAppendix(s)
3: Candidates .setAppendix(s , app+app’ )
4: else
5: Candidates ← Candidates ∪ {s}
6: Candidates .setAppendix(s, app)
7: if MemoryIsFull() then
8: Merge()

Another auxiliary procedure is procedure StoreOrCombine whose purpose
is to insert a vertex into the candidate set if the vertex is not yet present in the
set, or update the corresponding appendix of the vertex, otherwise. Once the
main memory becomes full, vertices from the candidate set are processed and
the candidate set is emptied by procedure Merge.

Algorithm 4. OpenIsNotEmpty

1: if Open.isEmpty() then
2: Merge()
3: return ¬Open.isEmpty()

The last auxiliary function is a function for checking the emptiness of the
queue of vertices to be processed (Open). If the queue is empty, procedure
OpenIsNotEmpty calls procedure Merge to perform the delayed duplicate
detection. The procedure returns False, if Open is empty and merging has not
brought any new vertices to be processed.

Algorithm 5 and Algorithm 6 give pseudo-codes of the two main
procedures. Note that algorithm DetectAcceptingCycle uses functions
GetInitialVertex, GetSuccessors, and IsAccepting to traverse the graph
and to check whether a vertex is accepting or not. These functions are part of
the implicit definition of the graph. Procedure Elim-No-Accepting has actu-
ally two goals. First, to eliminate those vertices from the approximation set that
are unreachable from accepting vertices in the set, and second, to properly count
the in-degrees in the approximation graph. Procedure Elim-No-Predecessors
employs the in-degrees to recursively remove vertices without predecessors from
the approximation set.

An important observation is that it is not necessary to initialize the approxi-
mation set with the set of all vertices. Since the first procedure in the very first
iteration of the while loop performs forward exploration of the graph starting
from accepting vertices in the set, it is enough to initialize the set with ”leading”
accepting vertices only, i.e. those accepting vertices that have no accepting
ancestors. Such vertices can be identified with a simple forward traversal that is
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Algorithm 5. Elim-No-Accepting

1: mode ← Elim-No-Accepting
2: ApproxSet’ ← ∅
3: for all s ∈ ApproxSet do
4: if IsAccepting(s) then
5: Open.pushBack(s)
6: ApproxSet’ ← ApproxSet’ ∪ {s}
7: ApproxSet’ .setAppendix(s, 0)
8: ApproxSet ← ApproxSet’
9: while OpenIsNotEmpty() do

10: s ← Open .popFront()
11: for all t ∈ GetSuccessors(s) do
12: StoreOrCombine(t , 1)

Algorithm 6. Elim-No-Predecessors

1: mode ← Elim-No-Predecessors
2: ApproxSet’ ← ∅
3: for all s ∈ ApproxSet do
4: if ApproxSet .getAppendix(s) = 0 then
5: Open.pushBack(s)
6: else
7: ApproxSet’ ← ApproxSet’ ∪ {s}
8: ApproxSet ← ApproxSet’
9: while OpenIsNotEmpty() do

10: s ← Open .popFront()
11: for all t ∈ GetSuccessors(s) do
12: StoreOrCombine(t , −1)

Algorithm 7. Initialize-ApproxSet

1: mode ← Elim-No-Accepting
2: Candidates ← ∅
3: s ← GetInitialVertex()
4: ApproxSet ← {s}
5: if ¬ IsAccepting(s) then
6: Open .pushBack(s)
7: while OpenIsNotEmpty() do
8: s ← Open .popFront()
9: for all t ∈ GetSuccessors(s) do

10: if IsAccepting(t) then
11: ApproxSet ← ApproxSet ∪ {t}
12: else
13: StoreOrCombine(t , 0)
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allowed to explore descendants of non-accepting vertices only. See the pseudo-
code given as Algorithm 7.

3 Complexity Analysis

A widely accepted model for the analysis of the complexity of I/O algorithms is
the model of Aggarwal and Vitter [1], where the complexity of an I/O algorithm
is measured in terms of the numbers of external I/O operations only. This is mo-
tivated by the fact that a single I/O operation is by approximately six orders of
magnitude slower than a computation step performed in the main memory [34].
Therefore, an algorithm that does not perform the optimal amount of work but
has a lower I/O complexity, may be faster in practice compared to an algorithm
that performs the optimal amount of work, but has a higher I/O complexity.
The complexity of an I/O algorithm in the model of Aggarwal and Vitter is
further parametrized by M , B, and D, where M denotes the number of items
that fits into the internal memory, B denotes the number of items that can be
transferred in a single I/O operation, and D denotes the number of blocks that
can be transferred in parallel, i.e. the number of independent parallel disks avail-
able. The abbreviations sort(n) and scan(n) stand for θ(N/(DB)logM/B(N/B))
and θ(N/(DB)), respectively. In this section we give the I/O complexity of our
algorithm and compare it with the complexity of the algorithm from [14].

We use the following notation. BFS tree is a tree given by the graph traversal
from the initial set of vertices in the breadth-first order. Its height hBFS is called
BFS height, its levels are called BFS levels. SCC graph is a directed acyclic graph,
whose vertices are maximal strongly connected components of the graph and the
edges are given according to the reachability relation between the components.
Let lSCC denote the length of the longest path in the SCC graph. The I/O
complexity of the algorithm is given in Theorem 1. The proof of the complexity
can be found in the full version of the paper [6].

Theorem 1. The I/O complexity of algorithm DetectAcceptingCycle is

O(lSCC · (hBFS + |pmax| + |E|/M) · scan(|V |)),
where pmax is the longest path in the graph going through trivial strongly con-
nected components (without self-loops).

For the purpose of comparison we denote our new algorithm as DAC and the
algorithm of Edelkamp and Jabbar [14] as EJ. Theorem 1 of [14] claims that
EJ is able to detect accepting cycles with I/O complexity O(sort(|F ||E|) + l ·
scan(|F ||V |)), where |F | is the number of accepting states and l is the length of
the shortest counterexample.

The complexity of EJ is not easy to compare with our results, because the two
algorithms use different ways to maintain the set of candidates. The candidate
set can be either stored externally (EJ ) or internally (DAC ). In the case that the
candidate set is stored externally, it is possible to perform the merge operation
on a BFS level independently of the size of the main memory. Therefore, this
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approach is suitable for those cases where memory is small or the graph is by
orders of magnitude larger. The disadvantage of the approach is that it needs sort
operations and it cannot be combined with heuristics, such as bit-state hashing
and a lossy hash table [16]. Fortunately, both EJ and DAC are modular enough
to be able to work in both modes. Table 1 gives I/O complexities of all four
variants, where EJ’ denotes algorithm EJ modified so that the candidate set
is kept in the internal memory, and DAC’ denotes algorithm DAC modified so
that the candidate set is stored externally.

Table 1. I/O complexity of algorithms for both modes of storage of the candidate set

Candidate set in the main memory:

EJ’ O((l + |F ||E|/M) · scan(|F ||V |))
DAC O(lSCC · (hBF S + |pmax| + |E|/M) · scan(|V |))

Candidate set in the external memory:

EJ O(l · scan(|F ||V |) + sort(|F ||E|))
DAC’ O(lSCC · ((hBF S + |pmax|) · scan(|V |) + sort(|E|)))

In the worst case the values of lSCC , |pmax|, and hBFS are equal to |V |. Thus
the worst case I/O complexity of DAC is better than that of EJ’ and the worst
case I/O complexity of DAC’ is equal to that of EJ, provided that l = |V | and
|F | = |V |.

Note that for graphs of verified systems the numbers lSCC , |pmax|, and hBFS

are typically smaller by several orders of magnitude than the number of ver-
tices. lSCC (giving the upper bound to the number of iterations of the loop of
Algorithm 1) usually ranges from 1 to 20 [15]. hBFS is not proportional to the
size of the state space and oscillates around several hundreds [27], so the |pmax|
according to our own measurements. However, the number of accepting vertices
(F ) is quite often in the same order of magnitude as the number of vertices.
Therefore, EJ’ and EJ suffer from the graph blow-up and perform much more
I/O operations compared to DAC and DAC’, respectively. On the other hand,
EJ’ and EJ work on-the-fly and can thus outperform DAC and DAC’ on the
graphs with small number of accepting vertices and short counterexamples. Nev-
ertheless, short counterexamples are also easy to find using on-the-fly internal
memory model checkers which outperform both external memory approaches.

Regarding space complexity, DAC is more space efficient than EJ. Since EJ’
needs to remember all visited pairs of vertices, where a pair consists of one
accepting and one arbitrary vertex, the space complexity of the algorithm is
O(|F ||V |), i.e. asymptotically quadratic in the size of the graph. On the other
hand, the space complexity of DAC is O(|V |), as it only maintains the approxi-
mation set, queue and the candidate set whose sizes are always bounded by the
number of vertices. The same holds for the pair EJ and DAC’.
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4 Experimental Evaluation

In order to obtain experimental evidence about how our algorithm behaves in
practice, we implemented both algorithms and compared them mutually as well
as with the model checker SPIN with all the default reduction techniques (in-
cluding partial order) turned on.

Algorithm DetectAcceptingCycle (DAC ) has been implemented upon DiVinE
Library [5], providing the state space generator, and STXXL Library [13], provid-
ing the necessary I/O primitives. Algorithm EJ was implemented as a procedure
that performs the graph transformation as suggested in [14] and then employs
I/O efficient breadth-first search to check for the counterexample. Note that our
implementation of [14] does not have the A∗ heuristics and so it can be less
efficient in the search for the counterexample. The procedure is referred to as
Liveness as Safety with BFS (LaS-BFS ).

We have measured run times and a memory consumption of SPIN, LaS-BFS
and DAC on a collection of systems and their LTL properties taken from the
BEEM project [28]. The models were selected so that the state spaces generated
by SPIN and DiVinE were exactly of the same size. The experimental results
are listed in Table 2. Note that just before the unsuccessful termination of LaS-
BFS due to exhausting the disk space the size of BFS levels exhibited growing

Table 2. Run times and memory consumption on a single workstation with 2 GB of
RAM and 60 GB of available hard disk space. The time is given in hh:mm:ss format.

SPIN LaS-BFS DAC

States Time RAM Time Disk Time Disk

Phils(16,1),P3 61,230,206 Out of memory Out of disk space 02:01:11 5.5 GB
MCS(5),P4 119,663,657 Out of memory Out of disk space 03:32:41 8 GB
Szymanski(5),P4 419,183,762 Out of memory Out of disk space 44:49:36 32 GB
Elevator2(16),P4 76,824,540 Out of memory Out of disk space 11:37:57 9.2 GB
Leader Fil.(7),P2 431,401,020 00:01:35 1369 MB Out of disk space 32:03:52 42 GB

Valid properties on large models.

SPIN LaS-BFS DAC

States Time RAM Time Disk Time Disk

Lamport(3),P4 56,377 00:00:01 18 MB 00:55:34 799 MB 00:00:19 6,1 MB
Anderson(4),P2 58,205 00:00:01 20 MB 00:11:11 153 MB 00:00:18 6,1 MB
Peterson(4),P4 2,239,039 00:00:08 85 MB Out of disk space 00:04:44 159 MB

Valid properties on small models.

SPIN LaS-BFS DAC

States Time RAM Time Disk Time Disk

Bakery(5,5),P3 506,246,410 00:00:01 16 MB 01:34:13 5,4 GB 69:27:58 38 GB
Szymanski(4),P2 4,555,287 00:00:01 18 MB 00:59:00 203 MB 00:19:55 205 MB
Elevator2(7),P5 43,776 00:00:01 17 MB 00:01:15 121 MB 00:00:18 6,1 MB

Invalid properties.
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tendency. This suggests that the computation would last substantially longer if
sufficient disk space was available. For the same input graphs, algorithm DAC
manage to perform the verification using a few GBs of space only.

Measurements on large systems with valid formulas demonstrate that DAC is
able to successfully prove the correctness of systems, on which SPIN and LaS-
BFS fail. However, there are systems and valid formulas, which take a long time
to verify by our algorithm, but can be verified quickly using SPIN (e.g. model
Leader Filters). This is due to the partial order reduction technique, which is
extraordinarily efficient in this case. Results on small systems show the state
space blow-up in case of LaS-BFS. E.g. on the model Lamport, 6,1 MB of disk
space is enough for DAC to store the entire state space while LaS-BFS needs
799 MB. As for systems with invalid formulas, the new algorithm is slow, since it
does not work on-the-fly. Nevertheless, it is able to finish if the state space fits in
the external memory. Moreover, it is faster than LaS-BFS on systems with long
counterexamples as the space space blow-up takes effect when LaS-BFS has to
traverse a substantial part of the state space (e.g. model Elevator2 ).

In summary, the new algorithm is especially useful for verification of large
systems with valid formulas where SPIN fails due to the limited size of the main
memory and LaS-BFS runs out of the available external memory because of a
large amount of accepting states. On systems with invalid formulas, algorithm
DAC finishes if the state space fits in the external memory, but it may take quite
a long time as it does not work on-the-fly.

5 Conclusions and Future Work

In this paper we presented a new I/O efficient algorithm for accepting cy-
cle detection on implicitly given graphs. The algorithm exhibits linear space
complexity while preserving practically reasonable I/O complexity. Another in-
direct contribution of the paper is that it introduces an I/O efficient proce-
dure to compute the topological sort on implicitly given graphs (procedure
Elim-No-Predecessors).

Our experimental evaluation confirmed that the new algorithm is able to fully
solve instances of the LTL model checking problem that cannot be solved either
with the standard LTL model checker SPIN or using so far the best I/O efficient
approach of Edelkamp and Jabbar [14]. The approach of [14] fails especially if
the verified formula is valid, which is because after the transformation, the graph
becomes too large to be kept even in the external memory.

On the other hand, unlike SPIN and the approach of [14] our algorithm does
not work on-the-fly. The on-the-fly algorithms are particularly successful if the
property is violated and the counterexample can be found early during the state
space exploration.

As our algorithm is based on the algorithm which can be easily paral-
lelized [10], it is straightforward to develop a parallel version of the algorithm that
can further speed up verification of large systems. It also seems promising to de-
sign I/O efficient variants of other BFS-based verification algorithms [3,4,8,9,10].
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Some of them work on-the-fly and hence could outperform both the new algo-
rithm and the algorithm of Edelkamp and Jabbar.

An open problem for which we still do not know a practically good solution,
is the inefficiency of the delayed duplicate detection technique as used in proce-
dure Elim-No-Predecessors. Since procedure Merge is called every time a
BFS level is explored, merging a small level into a large set can slow down the
exploration speed of a few vertices per minute. The question is, if this can be
avoided.
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28. Pelánek, R.: BEEM: BEnchmarks for Explicit Model checkers (February 2007)
http://anna.fi.muni.cz/models/index.html

29. Ravi, K., Bloem, R., Somenzi, F.: A Comparative Study of Symbolic Algorithms
for the Computation of Fair Cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.)
FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)

30. Reif, J.H.: Depth-First Search is Inherrently Sequential. Information Processing
Letters 20(5), 229–234 (1985)

31. Schuppan, V., Biere, A.: Efficient Reduction of Finite State Model Checking to
Reachability Analysis. International Journal on Software Tools for Technology
Transfer (STTT) 5(2–3), 185–204 (2004)

32. Stern, U., Dill, D.L.: Using Magnetic Disk Instead of Main Memory in the Murphi
Verifier. In: CAV’98, pp. 172–183 (1998)

33. Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Program
Verification. In: Logic in Computer Science (LICS’86), pp. 332–344. IEEE Com-
puter Society Press, Los Alamitos (1986)

34. Vitter, J.: External Memory Algorithms and Data Structures: Dealing with Mas-
sive Data. ACM Comput. Surv. 33(2), 209–271 (2001)

http://anna.fi.muni.cz/models/index.html


C32SAT: Checking C Expressions

(Tool Paper)

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

{robert.brummayer,armin.biere}@jku.at

Abstract. C32SAT is a tool for checking C expressions. It can check
whether a given C expression can be satisfied, is tautological, or always
defined according to the ISO C99 standard. C32SAT can be used to de-
tect nonportable expressions where program behavior depends on the
compiler. Our contribution consists of C32SAT’s functional representa-
tion and the way it handles undefined values. Under-approximation is
used as optimization.

1 Introduction

Formal verification of C programs is an active area of research [6,7,8,11]. C32SAT1

addresses a verification problem not explicitly considered by other verification
tools. It detects situations where, according to the C99 standard [9], the behav-
ior upon an operation on certain values is undefined, e.g. the behavior upon di-
viding an integer by zero. The C99 standard [9] describes undefined behavior as
“behavior, upon use of a nonportable or erroneous program construct or of erro-
neous data, for which this International Standard imposes no requirements” [9].
The execution of such an undefined operation ranges from ignoring the situation
to terminating the execution in the worst case.

In contrast to other programming languages, e.g. Java, there are many cases in
the C programming language where undefined behavior can occur. This situation
makes it hard to write secure and portable programs where the behavior is fully
defined and does not depend on compiler semantics.

If the behavior upon an operation is undefined, then C32SAT raises a flag that
marks the result to be undefined. This flag propagates and can only be masked
out by short circuit evaluation of the logical conjunction &&, logical disjunction
|| and the conditional operator ?:. Note that except for these three operations
the order of evaluation of subexpressions is undefined as in the C99 standard.

C32SAT takes as input one C expression. It can check whether it can be sat-
isfied, is tautological or always defined according to the C99 standard. C32SAT
supports all main C operators, including multiplication, division and modulo.
Additionally, C32SAT supports logical implication and equivalence. Pointer re-
lated operators are scheduled as future work.
1 http://fmv.jku.at/c32sat/
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2 System Architecture

The core of C32SAT version 1.4 consists of approximately 7500 lines of C code.
Figure 1 shows the core components of C32SAT. The frontend mainly consists of
the components Parser and Parse Tree. The remaining components are part
of the backend. The architecture is similar to that of a compiler except that the
backend generates a Conjunctive Normal Form (CNF) instead of machine code.

Parse TreeParse Tree Transformation

Parser

Parse Tree Analysis

SAT Solver Adapter

AIG Transformation

AIG Vector

AIG

CNF

Fig. 1. Core architecture of C32SAT

3 Internal Functionality

C32SAT treats the type of every variable as signed integer. The bit width w ∈
{4, 8, 16, 32, 64} can be globally configured. A variable is internally represented
by a vector of And-Inverter Graphs (AIGs) [10] where every AIG represents
exactly one bit.

Each C operator is mapped to a circuit that takes the AIG vector operands
as input. For example the result of the word level XOR operator ^ is an AIG
vector where the AIG vectors of the operands are bitwise combined by boolean
XOR. This functional representation is in contrast to COGENT [8], which uses
a relational representation. Our approach allows the application of sophisticated
circuit simplification techniques like local two-level AIG rewriting [4] and the
application of structural SAT solvers.

Every integer is actually represented by w + 1 AIGs. The additional AIG
represents the undefined value. In general an expression is undefined when a
subexpression is undefined. The only exception is short-circuit evaluation of &&,
|| and ?:.

Regarding C32SAT’s set of operators the result of every operation is either
fully defined or fully undefined. It is never the case that only a part of the bits
is undefined while the remaining bits are defined. Therefore, C32SAT handles
undefined values on the AIG vector level and not on the AIG level.

The general flow of C32SAT is the following. C32SAT parses the input ex-
pression and builds a parse tree, which is analyzed and transformed into an AIG.
Afterwards, the AIG is transformed into Conjunctive Normal Form (CNF) using
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Tseitin Transformation [12] and passed to a SAT solver. Alternatively, the AIG
can be dumped in the AIGER 2 format.

The default SAT solver of C32SAT is PicoSAT [2]. Additionally, C32SAT
supports the SAT solvers NanoSAT [1], BooleForce and CompSAT [3] 3. The
SAT solver computes if the CNF is satisfiable or not and returns a model in the
satisfiable case. C32SAT uses this model to generate a word level model, which
is printed out as part of the result. As an example consider the C expression
y != 0 => x / y. We want to determine if there exists an assignment to x
and y, for which the result of the expression is undefined. C32SAT generates a
corresponding CNF, which is passed to the SAT solver. If the SAT instance is
unsatisfiable, then the result of the expression is always defined. However, if the
SAT instance is satisfiable, then C32SAT can use the satisfying assignment to
generate a useful counter example.

Actually, C32SAT shows that unrestricted division can lead to an overflow. If
we divide INT MIN by -1, then we get a signed integer overflow, because in two’s
complement the negation of INT MIN is undefined, as the behavior upon signed
integer overflow is undefined in the C99 standard.

Note that if we added the constraint y != -1 to the premise of the implication,
then the result of the expression would always be defined.

4 Under-Approximation Optimization

Inspired by [5], we added an under-approximation optimization technique to the
latest version of C32SAT. Instead of encoding an n-bit integer variable with n
AIGs, we simply restrict the number of AIGs used for encoding. For example
we encode a 32 bit integer variable in the following way. We represent the least
significant bit by one AIG variable and all other bits by another. This AIG vector
represents the values from -2 to 1 instead of -2147483648 to 2147483647.

If the under-approximated SAT instance is satisfiable, then also the original
formula is satisfied by the same assignment. However, if the under-approximated
SAT instance is unsatisfiable, then the approximation has to be refined. In this
case C32SAT doubles the precision of the under-approximation. In the worst case
no satisfying assignment can be found during under-approximation and C32SAT
has to generate the full CNF.

Using this under-approximation technique leads to smaller AIGs. This results
in a smaller CNF, which is typically easier to solve. Beside speeding up the
search for satisfying assignments, the under-approximation technique produces
assignments that are easier to interpret.

5 Conclusion

We presented C32SAT, a tool for checking C expressions. It can be used to de-
tect nonportable expressions where program behavior depends on the compiler.
2 http://fmv.jku.at/aiger/
3 The SAT solvers are available at http://fmv.jku.at/software/

http://fmv.jku.at/aiger/
http://fmv.jku.at/software/
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We presented C32SAT’s functional representation, the way it handles undefined
values and its under-approximation optimization technique. As future work we
want to support pointers and over-approximation techniques.
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Abstract. CVC3, a joint project of NYU and U Iowa, is the new and latest ver-
sion of the Cooperating Validity Checker. CVC3 extends and builds on the func-
tionality of its predecessors and includes many new features such as support for
additional theories, an abstract architecture for Boolean reasoning, and SMT-LIB
compliance. We describe the system and discuss some applications and continu-
ing work.

1 Introduction

Like its predecessors, SVC [5], CVC [12], and CVC Lite [1], CVC3 is an automatic
theorem prover for the Satisfiability Modulo Theories (SMT) problem: given an input
formula φ in first order logic, CVC3 attempts to determine the validity (or dually, the
satisfiability) of φ with respect to one or more background theories.

CVC3 builds on the architecture and features of the successful CVC and CVC Lite
systems, but it also differs in important ways. First of all, the project is under new man-
agement: it is being developed at NYU and the University of Iowa (unlike its prede-
cessors, all of which were hosted at Stanford University). Second, the system is mature
enough now that it seemed best to drop the “Lite” moniker. It is called CVC3 because it
is the third major release of a system with the CVC name. Most importantly, many new
features have been added and most of the code has been revised or rewritten. For these
reasons, a new major release and accompanying system description seemed appropriate.

2 System Description

A high-level view of CVC3’s architecture is shown in Fig. 1. CVC3 provides several
different user interfaces including high-level API’s for both C and C++, an interac-
tive command-driven interface, and a file interface. The Main API supports two main
types of operations: formula creation and methods for validity/satisfiability checking.
The main deduction engine is called the Search Engine. Its role is to link the Boolean
reasoning capabilities of the DPLL engine with the theory reasoning capabilities of the
Theory Solver. The DPLL engine relies on a Boolean SAT solver to do its work and the
Theory Solver relies on a set of decision procedures, one for each supported theory.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 298–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

barrett@cs.nyu.edu
tinelli@cs.uiowa.edu


CVC3 299

Because of space limitations, we focus on new features in this paper, referring the
reader to previous work for a discussion of the more basic features of the system. The
new features can be broadly partitioned into three categories: the search engine, new
theories, and enhanced usability.

Main API

Theory 1 Theory N

Search

SAT Solver

Theory
SolverEngine

DPLL
Engine

User Interface

Fig. 1. CVC3 System design

2.1 The Search Engine

CVC3 features a new Search Engine. The Search Engine processes incoming queries,
first using standard techniques to convert them into equisatisfiable formulas in con-
junctive normal form. The Boolean structure is then fed to the DPLL Engine. One of
the primary reasons for developing a new Search Engine was to make it easy to plug
in different implementations of the DPLL Engine. To do this, a simple abstract API
was developed based on the Extended Abstract DPLL Modulo Theories framework [3].
Ideas developed in this theoretical framework, such as theory propagation and splitting
on demand, made it possible to implement a simple API that was rich enough to be
practical and efficient. Implementations of this API are largely shielded from the rest
of the system and communicate with the Search Engine using a simple minimal in-
terface which references only basic data-structures for Boolean variables, literals, and
clauses.

One measure of success is that we were quickly able to integrate two different SAT
solvers. In fact, our experience has been that the main difficulty is not in implementing
the API, but in adapting the SAT solvers to support necessary features like dynamic
addition of clauses and variables. The SAT solvers currently available in CVC3 are
zchaff [11] and MiniSat [7]. Another measure of success is that with the new Search
Engine, CVC3 outperforms CVC Lite on nearly all benchmarks, typically by a factor
of 2 or 3, but by up to an order of magnitude on benchmarks with significant Boolean
structure.
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2.2 New Theories

Abstract Data Types. While its predecessors could reason about simple aggregate data
types like records and tuples, CVC3 has the ability to reason about arbitrary recursive
and mutually recursive data types. A simple example of a recursive data type is the list
type from LISP with constructors null and cons and selectors car and cdr. A simple
example of a query that CVC3 can solve over this type is: ∀x : list. x = null∨∃yz. x =
cons(y,z). The implementation is based on our abstract decision procedure described
in [4].

Bitvectors. Support for a theory of bitvectors was a late addition to the CVC Lite sys-
tem. In CVC3, the bitvector theory has been largely reworked with a resulting substan-
tial improvement in performance. However, the implementation is still rather naive and
based on a simple combination of pre-processing and bit-blasting. We consider improv-
ing the efficiency of bitvector reasoning to be an important research challenge.

Quantifiers. CVC3 treats quantified formulas as if they belonged to a separate “quan-
tifier” theory. This convenient mechanism allows CVC3 to use a special strategy for
quantified formulas: existential formulas are skolemized and then passed back to the
main theory solver for additional processing; universal formulas are accumulated and a
set of heuristics is used to instantiate the formulas with ground terms from other literals
known to the theory solver. CVC3 contains a new instantiation mechanism that extends
the “matching” techniques of the Simplify theorem prover [6]. CVC3 is significantly
better than CVC Lite on formulas with quantifiers and our experiments on the SMT-
LIB benchmarks indicate that it can solve more problems than other instantiation-based
systems [9].

2.3 Enhanced Usability

SMT-LIB. In order to support the SMT-LIB initiative, a powerful translation module
was added to CVC Lite. It has been updated and improved in CVC3. This module is
capable of translating benchmarks to and from the SMT-LIB format. The most difficult
part of this is inferring the correct SMT-LIB logic based on syntactic properties of the
benchmark. CVC3 has been used to verify the correct logic categorization of all bench-
marks currently in the SMT-LIB library, and it is currently the standard for checking
the syntax and categorization of new benchmarks submitted to the library.

Model Generation. An important feature of CVC3 is that it can produce concrete mod-
els after a satisfiable query. For example, instead of reporting x �= y, CVC3 can assign
actual values to x and y, such as x = 0 and y = 1. This is useful for tools that use CVC3
as a back-end and need to provide meaningful feedback to the user. It should be men-
tioned that this feature was already present in CVC Lite, but it was added after the
system description was published and so is worth emphasizing here.

Incremental Use. It has always been possible to use the CVC tools incrementally using
a stack-based push and pop mechanism. Several new features have been added to aid
incremental use. First of all, the Minisat implementation of the DPLL Engine has been
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enhanced to be incremental. This means that it is possible to reuse lemmas learned from
one query in another related query. Second, it is possible to search for additional models
after a model has been found by using a “continue” command. Finally, it is also possible
to search for models that satisfy an additional assumption. This is implemented with a
command called “restart”. The restart command is is useful for refining abstractions
and has been implemented in such a way that the work done in finding the first model
can be reused, which is important for efficiency.

3 Conclusion

CVC3 aims to continue the tradition of its predecessors by providing a free, robust,
automatic, and feature-rich tool suitable for a variety of research and industrial ap-
plications. Some applications of previous versions of CVC include a proof-producing
decision procedure for HOL Light [10]; a verification tool for C programs [8], a trans-
lation validator for optimizing compilers [2], and a study on the verification of clock
synchronization algorithms [13].

We expect that these and similar future applications will find CVC3 even more use-
ful. In particular, we currently have collaborations in place with research groups at the
University of Dublin, Microsoft Research, and Rockwell-Collins on using CVC3 re-
spectively within an extended static checker for Java, an automated unit test generator
for .NET programs, and a model checker for programs written in the dataflow language
Lustre.

There is still much that we plan to do to improve CVC3. Current work includes
improvements to the arithmetic, bitvector, and quantifier theories. New theories under
consideration include a theory of strings, a theory of sets, and a theory of subtypes.
One important enhancement we expect to make soon is to allow user-defined symbols
to have polymorphic types. We also plan to improve the current support for proofs and
models. Finally, of course, we would like to continue to improve overall performance
of the system.

CVC3 has an active user and development community. More information, including
instructions for downloading and installing the tool, can be found on the CVC3 web
site at http://www.cs.nyu.edu/acsys/cvc3 .
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Abstract. While effective methods for bit-level verification of low-level proper-
ties exist, system-level properties that entail reasoning about a significant part of
the design pose a major verification challenge. We present the Bit-level Analy-
sis Tool (BAT), a state-of-the-art decision procedure for bit-level reasoning that
implements a novel collection of techniques targeted towards enabling the ver-
ification of system-level properties. Key features of the BAT system are an ex-
pressive strongly-typed modeling and specification language, a fully automatic
and efficient memory abstraction algorithm for extensional arrays, and a novel
CNF generation algorithm. The BAT system can be used to automatically solve
system-level RTL verification problems that were previously intractable, such as
refinement-based verification of RTL-level pipelined machines.

1 Introduction

The Bit-level Analysis Tool (BAT) [5] is a system for verifying bit-level problems aris-
ing from hardware, software, and security domains. BAT implements a state-of-the-art
decision procedure for solving quantifier-free formulas over the extensional theory of
fixed-size bit-vectors and fixed-size bit-vector arrays (memories). BAT is a publicly
available tool that can be downloaded from the BAT Webpage [5].

Our primary goal in developing BAT is to enable the verification of high-level prop-
erties of complex systems described at the bit-level, such as the verification of bit-level
pipelined machine models. We have been able to use BAT to verify a 32-bit 5 stage
pipelined machine in approximately 2 minutes [4]. Key features of BAT that enable the
verification of complex systems such as pipelined machines are a fully automatic and
efficient algorithm for abstracting bit-level memories [4] and a novel method for gener-
ating CNF (Conjunctive Normal Form) from a high-level circuit representation [6].

2 The BAT Specification Language

The BAT specification language is a strongly typed, Lisp-like language whose types
include bit-vectors, bit-vector memories, and sequences over these types (multiple value
� This research was funded in part by NSF grants CCF-0429924, IIS-0417413, and CCF-

0438871.
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Fig. 1. The Bit-level Analysis Tool (BAT) decision procedure

types). We invested much effort in designing a powerful, general, and usable language
that can be the target for synthesizable subsets of VHDL or Verilog. The language
also allows for a clear separation of concerns between models and specifications, a
feature that drastically simplifies the effort required to describe system-level properties
of complex hardware models such as pipelined machines.

An important feature of the BAT language is that memories are treated as first class
objects. Memories can be compared for equality and inequality in all contexts, and they
can be passed as arguments to functions and returned by functions. Other key features
of the language include a type inference algorithm that can determine the type of any
expression; this alone finds many silly mistakes, especially when one is experiment-
ing with parametrized modes. The language allows users to define functions that can be
used not only to model systems, but to specify their correctness. BAT also provides mul-
tiple value types, i.e., users can create a sequence of any types. Finally, BAT provides
support for easily defining parametrized models.

The BAT language supports a variety of bit-vector operations including bit-vector
comparisons such as equality, less than, and greater than; various types of shift opera-
tions; arithmetic operations including modular and machine addition, subtraction, and
multiplication; bitwise operations such as bitwise conjunction, disjunction, negation,
implication. The language also supports temporal operators AG and AF. Applicative
functions for reading and updating memories are also supported.

3 The BAT Decision Procedure

BAT can be used as a decision procedure, a bounded model checker, or as a k-induction
engine. BAT takes a specification described using the BAT language as input, and com-
piles this specification to a SAT problem in four high-level steps. The SAT problem is
then checked with a SAT solver. If a bug is found, BAT generates a counterexample
in terms of the original BAT specification. The compilation to CNF is performed us-
ing a novel data structure for representing circuits, known as the NICE dag, because it
contains Negations, Ites, Conjunctions, and Equivalences.

We now describe the four high-level compilation steps. First, BAT inlines functions,
propagates constants, and performs a simplification step to transform the original spec-
ification to a NICE dag extended with next operators (used to specify the transition
relation) and memory operators. Second, the transition relation is unrolled, resulting
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in a NICE dag extended with memory operations. Third, the memories are abstracted
using BAT’s memory reduction algorithm and the memory operations for the resulting
reduced memories are replaced with their equivalent Boolean circuits, resulting in a
NICE dag. Fourth, the NICE dag is translated to a SAT problem in CNF. Note that BAT
can make a decision after any of the above steps. For example, during simplification,
BAT may simplify the problem to true or false.

3.1 Memory Abstraction

BAT implements a sound, complete, fully automatic, and efficient memory abstraction
algorithm that can deal with an extensional theory of finite bit-vector memories [4]. The
use of memory abstraction is crucial in bit-level verification problems as the presence
of large memories would otherwise lead to intractable SAT problems.

The key idea of the BAT memory abstraction algorithm is to reduce memories to
manageable sizes in a sound and complete way. This is possible because, even for very
large memories, correctness conditions tend to refer to only a relatively small collection
of memory references, which can be to any part of memory, however.

The complexity of the resulting verification problem depends heavily on the size of
the abstracted memory, which is based on the number of unique memory accesses. Our
memory abstraction algorithm includes term-rewriting techniques that are very effective
in simplifying expressions containing memory operations. This allows us to recognize
when syntactically distinct expressions correspond to the same memory address, which
leads to more efficient memory abstractions and eventually to simpler SAT problems.

We deal with extensionality by keeping the abstract memories around. The intuition
is that this allows us to compare memories for equality or inequality by comparing
the abstract memories directly. To make this sound and efficient, a more sophisticated
analysis is required, which is presented in our previous work on memory abstraction [4].

3.2 Efficient Translation to CNF

BAT uses a novel and efficient approach to generate SAT problems based on the use
of NICE dags, a new data structure for representing circuits [6]. This is an important
problem because, while modern SAT solvers have become proficient at solving Boolean
satisfiability problems in CNF, these problems mostly arise from general Boolean cir-
cuits that are then translated to CNF. Furthermore, the CNF translation algorithm can
significantly impact verification times. Experimental evaluation based on over 8,000
benchmarks showed that our CNF generation algorithm leads to significant time sav-
ings over both the widely used Tseitin algorithm [7] and Jackson and Sheridan’s state-
of-the-art algorithm [2]. For example, Minisat2 was able to handle all the SAT problems
generated by the BAT CNF translation algorithm, whereas, it timed out on many of the
SAT problems generated by both the Tseitin and Jackson/Sheridan algorithms.

4 Applications

BAT is the first bit-level reasoning tool that has been used successfully to verify non-
trivial bit-level pipelined machines automatically [4]. Pipelined machine verification
entails showing that the pipelined machine refines its instruction set architecture. This
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is a computationally demanding problem as it requires reasoning about a large part of
the control logic of the system. The problem also involves comparing large memories
for equality. With previous work, it was only possible to automatically solve pipelined
machine verification problems at the term-level.

Using BAT we have been able to prove automatically that a 32-bit 5 stage pipelined
machine refines its ISA in about 125 seconds. Other state-of-the-art tools that we have
tried, including Yices [1] (winner of the 2006 SMT competition), cannot solve simple
2-stage pipelined machine problems. Such problems can be solved with BAT in less
than a second. We have also been able to use BAT in a compositional verification flow
to check complex pipelined machines with as many as 10 stages [3].

5 Conclusions

We have presented the Bit-level Analysis Tool (BAT), a state-of-the-art decision pro-
cedure for bit-level reasoning. We have used BAT to solve system-level verification
problems, including the verification of pipelined machine which cannot be handled
by other verification tools. For example, BAT can be used to verify that a 32-bit 5-
stage pipelined machine model refines its instruction set architecture in approximately
2 minutes. The BAT language is feature-rich and enables users to effectively model
systems and to specify properties. From an algorithm point of view, we described two
key advances that are implemented in BAT. One is an efficient, automatic, sound, and
complete memory abstraction algorithm for extensional arrays that is further improved
with term-rewriting techniques. The second is a novel circuit to CNF conversion al-
gorithm that provides significant improvements over other available CNF conversion
algorithms. For future work, we plan to extend BAT with a counterexample guided
abstraction-refinement framework, explore the use of more advanced term-rewriting
techniques, and consider methods for automatically abstracting data paths.
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1 Introduction

The mechanization of many verification tasks relies on efficient implementa-
tions of decision procedures for fragments of first-order logic. Interactive the-
orem provers like pvs also make use of such decision procedures to increase
the level of automation. Our tool lira1 implements decision procedures based
on automata-theoretic techniques for first-order logics with linear arithmetic,
namely, for FO(N, +), FO(Z, +, <), and FO(R, Z, +, <).

The theoretical foundations for using automata to decide logics like Presburger
arithmetic, i.e., FO(N, +) were laid in the 1960s [4]: For Presburger arithmetic,
the elements of the domain are represented by finite words, and for a given
formula, one constructs recursively over the formula structure an automaton
that accepts precisely the words that represent the natural numbers that satisfy
the formula. Automata constructions handle the logical connectives and quanti-
fiers. A similar approach works for FO(Z, +, <) and FO(R, Z, +, <). To represent
reals, one uses infinite words. In [2], it is shown that weak deterministic Büchi
automata (wdbas) suffice to decide FO(R, Z, +, <). wdbas are a restricted class
of Büchi automata, which can be handled algorithmically almost as efficiently
as deterministic finite automata (dfas).

lira also provides an automata library that efficiently represents and manip-
ulates dfas and wdbas. lira’s automata library can be compared to a bdd li-
brary for representing and manipulating finite sets encoded by booleans. Instead
of bdds, lira uses dfas to represent and manipulate sets that are definable in
FO(N, +) and FO(Z, +, <), and uses wdbas for sets definable in FO(R, Z, +, <).
Efficiently representing and manipulating such definable sets has applications be-
yond deciding these logics efficiently. For instance, in the safety verification of
integer-counter systems and hybrid systems one has to cope with such sets. Fur-
thermore, approaches like regular model checking rely on manipulating automata
efficiently. lira’s automata library can be used in all these applications.

Closely related to lira are lash [13], prestaf [5], and mona [12]. Like lira’s
automata library, lash provides operations for automata over finite and infinite
� This work was supported by the German Research Foundation (DFG) and the Swiss
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words. lira outperforms lash by several orders of magnitude. One reason for
the speedup are novel automata constructions. prestaf’s and mona’s automata
libraries only support automata over finite words and can only handle Presburger
definable sets. Moreover, mona’s automata library is not tailored to the repre-
sentation and manipulation of Presburger definable sets. The omega library [14]
is related to lira since it allows one to represent and manipulate sets definable
in FO(Z, +, <). In contrast to lira, it does not support the reals and uses a
formula-based set representation, which does not have a canonical form. Heuris-
tics are used to simplify the set representations. smt solvers like mathsat [3]
and yices [9] are also related to lira since they provide decision procedures for
fragments of linear arithmetic over the integers and reals. However, these solvers
do not handle quantifiers at all or only in a limited way. Note that most current
smt solvers also handle other fragments of first-order theories and combinations
thereof.

In the following, in §2, we give implementation details and list some features
of lira, and in §3, we report on applications and performance.

2 Implementation Details and Features

lira is implemented in C++. Given a formula, lira’s decision procedures con-
struct the minimal dfa or wdba according to the selected logic. By analyzing
the automaton, lira determines whether the formula is satisfiable. Additionally,
it can output a satisfying assignment and a counterexample if they exist, or it
can output the constructed automaton.

lira defines a flexible high-level api for the decision procedures. A formula
is represented as a tree structure and generic functions implement syntactic
transformations on such a tree representation. lira’s decision procedures use the
high-level api to generate from such a tree representation a sequence of abstract
operations. The decision procedures can easily be modified and extended to
generate sequences that exploit domain specific information or include certain
heuristics. The sequence of operations is then executed by using lira’s automata
library to check whether the given formula is satisfiable. lira’s automata library
provides efficient implementations of standard automata constructions for dfas
and wdbas and specific automata constructions for the supported logics, like
for equations and inequations. The automata library is accessible through a
low-level api.

lira uses a similar automata representation as mona [12], where shared multi-
terminal binary decision diagrams (mtbdds) are used to compactly represent the
transition function of an automaton. In our implementation we use cudd [6] to
represent and to manipulate these mtbdds. We benefit here from cudd’s cache-
optimized algorithms. Similar to mona, our automata representation supports
boolean variables. Our automata representation also utilizes don’t care states,
which were introduced in [11] for dfas and can also be used for wdbas. The
advantage of don’t care states is that automata constructions usually become
conceptually cleaner and more efficient.
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To reduce the number of states of a wdba, we use don’t care words as de-
scribed in [10]. We use an automaton construction that handles quantifiers in
FO(R, Z, +, <) more efficiently than previous proposed constructions: it copes
with don’t care words efficiently and is based on the powerset construction for
dfas instead of the more involved breakpoint construction for determinizing
co-Büchi automata (see [8] for details).

3 Applications and Performance

We carried out the following case studies to evaluate lira’s applicability and
performance.2

(1) We ran lira and the frontends of prestaf and lash on randomly gen-
erated formulas with a quantifier prefix ∃ and ∀∃. lira outperformed prestaf
and lash. Moreover, lira succeeded to build the automaton for all given for-
mulas whereas prestaf and lash sometimes exceeded the time limit or ran out
of memory.

(2) We tested lira on formulas that arise in the verification of hybrid systems.
The test formulas have one quantifier alternation and are generated by a model
checker when accelerating the reachability computation [7]. Although some of the
formulas are large (the formula sizes range from under 1Mbyte up to 39Mbytes),
the constructed wdbas remain rather small and lira handles the quantifiers
quickly. Note that in [7] another data-structure, based on and-inverter graphs
(aigs), is used to represent and manipulate the formulas. In contrast to dfas and
wdbas, this data-structure does not have a canonical form and heuristics are
applied for minimization. Their representations usually grow with the number
of applied operations and contain redundancies.

(3) We wrote a plugin for the model checker fast [1] that uses lira’s au-
tomata library. We used fast’s benchmark suite to compare the running times
of our plugin with other fast plugins based on mona, prestaf, lash, and the
omega library. The plugins based on mona, prestaf, and lira have competi-
tive performance, lira is in most cases the fastest, whereas the lash plugin is
on all examples significantly slower. The omega plugin has, on few examples,
competitive running times. However, on most examples it is either outperformed,
exceeds the time limit, or crashes.

Acknowledgements. We thank Stefan Disch, Florian Pigorsch, and Viorica
Sofronie-Stokkermans for providing benchmark formulas from the domain of
hybrid system verification. We also thank Jérôme Leroux and Gérald Point for
assisting us with prestaf and fast related issues.
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Abstract. This paper proposes a novel abstraction technique for conti-
nuous-time Markov chains (CTMCs). Our technique fits within the realm
of three-valued abstraction methods that have been used successfully
for traditional model checking. The key idea is to apply abstraction on
uniform CTMCs that are readily obtained from general CTMCs, and
to abstract transition probabilities by intervals. It is shown that this
provides a conservative abstraction for both true and false for a three-
valued semantics of the branching-time logic CSL (Continuous Stochastic
Logic). Experiments on an infinite-state CTMC indicate the feasibility
of our abstraction technique.

1 Introduction

Continuous-time Markov chains (CTMCs) are an important class of stochas-
tic processes that are extensively used in a wide range of application domains
ranging from planning of production lines and safety-critical systems to sys-
tems biology. Model checking of CTMCs has been proved to extend and comple-
ment long-standing analysis techniques for Markov processes. Tools for stochastic
Petri nets such as SMART [8] and GreatSPN [9], the PEPA Workbench [12] (a
stochastic variant of the CWB), and Statemate [7] have adopted model checkers
to analyse CTMCs, and temporal logics for Markov chains became prominent
property specification techniques in performance and dependability analysis.

Like for traditional model checking, one of the main challenges in the au-
tomated verification of CTMCs is the state-space explosion problem. This pa-
per proposes a novel abstraction technique for CTMCs. Abstraction amounts to
obtain smaller models by collapsing sets of concrete states to abstract states.
In two-valued semantics, abstraction is typically conservative in the sense that
affirmative verification results for abstract models carry over to concrete mod-
els. False negatives may occur due to overapproximation. Promising results in
traditional model checking have been obtained for a three-valued semantics of
temporal logic formulae, i.e., an interpretation in which a formula evaluates to
either true, false or indefinite. In this setting, abstraction is conservative for both
� The research has been partially funded by the DFG Research Training Group 1298
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positive and negative verification results. Only if the verification of the abstract
model yields an indefinite answer, the validity in the concrete model is unknown.
The abstraction technique proposed here follows this three-valued approach.

We consider abstractions for the branching-time logic CSL [3], a real-time
probabilistic variant of CTL. CSL is a powerful logic for expressing quantitative
time-bounded constrained reachability properties such as the probability to reach
a set of goal states (by avoiding bad states) within a maximal time span exceeds
7
8 . Existing abstraction techniques in this setting that have been applied in
practice consider either bisimulation [16], matrix bounding [6], simulation [24]
or symmetry reduction [19]. (Due to the absence of nondeterminism, techniques
such as partial-order reduction do not yield substantial reductions.) Despite the
fact that fairly large reductions have recently been reported, more aggressive
abstraction techniques are needed. Such techniques would also be useful to obtain
finite abstractions for a larger class of infinite-state CTMCs.

In traditional model checking, abstract models contain may and must transi-
tions as over- and under-approximation, respectively of the concrete transition
relation. This concept can be lifted to discrete-time Markov chains (DTMCs)
in a rather natural way [11,14,15] by replacing transition probabilities by in-
tervals where lower and upper bounds act as under- and over-approximation,
respectively. In this paper we investigate such techniques for CTMCs. The main
technical complication is that besides transition probabilities, one has to deter-
mine the residence time of an abstract state that results from concrete states
with distinct residence times. We show that intervals of transition probabilities,
intervals on residence times (or combinations thereof) are not satisfactory in
terms of precision. Instead, we suggest to overcome this imprecision by using
uniform CTMCs, i.e., CTMCs in which all states have equal residence times
and use transition probability intervals. Note that this is not a restriction, as
any CTMC can be transformed into a weak bisimilar uniform CTMC in linear
time. The abstraction is shown to preserve simulation: concrete states are sim-
ulated by their abstract counterparts. Then we show that extreme schedulers
suffice, i.e., schedulers that only consider lower- and upper bounds. This allows
to compute reachability probabilities up to a given tolerance ε rather efficiently
[2]. Using a three-valued semantics of CSL it is shown that the abstraction is
indeed conservative for affirmative and negative verification results. Besides, we
show the relationship with the approach in [11] for DTMCs. The feasibility of
the approach is shown by considering abstractions of different granularity for an
unbounded stochastic Petri net.

Related work. Abstraction-refinement has been applied to reachability problems
in MDPs [10], partial-order reduction techniques using Peled’s ample-set method
have been generalised to MDPs [13], abstract interpretation has been applied to
MDPs [20], and various bisimulation equivalences and simulation pre-orders al-
low model aggregation prior to model checking, see e. g., [4,23]. Recent techniques
that have been proposed include abstraction of MDPs by two-player stochastic
games [18], and symmetry reduction [19]. To our knowledge, three-valued ab-
straction of continuous-time stochastic models has not been considered.
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2 Preliminaries

Let X be a finite set. For Y, Y ′ ⊆ X and function Q : X × X → R≥0 let
Q(Y, Y ′) =

∑
y∈Y,y′∈Y ′ Q(y, y′). The function Q(x, ·) is given by x′ �→ Q(x, x′)

for all x′ ∈ X . Furthermore a function f is called a distribution on X iff f :
X → [0, 1] and f(X) :=

∑
x∈X f(x) = 1. Let AP be a fixed, finite set of atomic

propositions and B2 = {⊥, �} the two-valued truth domain.

Definition 1 (DTMC). A DTMC is a tuple (S,P, L) with a finite non-empty
set of states S, transition probability function P : S × S → [0, 1] satisfying
P(s, S) = 1 for all s ∈ S, and labeling function L : S × AP → B2.

P(s, s′) is the one-step probability to move from s to s′ and L(s, a) states if
atomic proposition a holds in s. A DTMC is time-abstract; in contrast, CTMCs
are time-aware, as they have an explicit reference to time, in the form of exit
rates which determine, together with the transition probabilities, the stochastic
evolution of the system in time.

Definition 2 (CTMC). A CTMC M is a tuple (S,P, E, L) with S, P and L
as before, and exit rate E : S → R>0.

The quantity E(s) determines the random residence time of s, i.e. 1 − e−E(s)·t

is the probability to take a transition emanating from s within the next t time
units. (Note that self-loops are admitted.) The probability to move from s to s′

within t time units is now given by P(s, s′, t) := P(s, s′)·(1 − e−E(s)·t).
The time-abstract probabilistic behaviour of CTMC M is described by its

embedded DTMC. The embedded DTMC of CTMC M = (S,P, E, L) is simply
given by emb(M) = (S,P, L). A CTMC is uniform if all its states have the
same exit rate, i.e., E(s) = E(s′) = e for all states s, s′ ∈ S. Each CTMC can
be transformed into a uniformized CTMC by adding self-loops:

Definition 3 (Uniformisation). Let M = (S,P, E, L) be a CTMC and let
(uniformisation rate) e ∈ R>0 such that e ≥ maxs∈S E(s). Then, unif (M) =
(S,P, E, L) is a uniform CTMC with E(s) = e for all s ∈ S and

P(s, s′) = P(s, s′)·E(s)
e for s′ 	= s and P(s, s) = 1 − P(s, S\{s}).

The minimal appropriate value of e is determined by the state in M with the
shortest mean residence time1. In unif (M) all rates of self-loops are “normal-
ized” with respect to e. Thus, transitions occur with an average “pace” of e,
uniform for all states. A CTMC is weak bisimilar to its uniformized CTMC [4].

Continuous Stochastic Logic. CSL [1,3] extends CTL by replacing existential
and universal path quantification by a probability operator (as in PCTL) and
by equipping the until-operator with a time bound (as in timed CTL):

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P �� p(Ψ) Ψ ::= ϕ UIϕ

1 Strictly speaking, we should write unif e(M) as the uniformization depends on e.



314 J.-P. Katoen et al.

Table 1. Semantics of CSL

�s, true� = � �s, a� = L(s, a)
�s, ϕ1 ∧ ϕ2� = �s, ϕ1� � �s, ϕ2� �s,¬ϕ� = �s, ϕ�c

�s, P �� p(Ψ)� = �, iff Prob({σ ∈ PathsM
s | �σ, Ψ� = �}) �� p

�σ, ϕ1UIϕ2� = �, iff ∃ t ∈ I : (�σ@t, ϕ2� = � ∧ ∀ t′ ∈ [0, t) : �σ@t′, ϕ1� = �)

where �� ∈ {<, ≤, ≥, >}, p ∈ [0, 1], I = [0, t) | [0, t] | [0, ∞) for t ∈ R>0 and
a ∈ AP . ϕ is a state-formula, whereas Ψ is a path-formula. State formulas are
ranged over by ϕ, ψ, . . . and path formulas are ranged over by Ψ, Φ, . . . .

A path in a CTMC is an alternating sequence σ = s0 t0 s1 t1 s2 . . . with
P(si, si+1) > 0 and ti ∈ R>0 for all i. The time stamps ti denote the amount
of time spent in state si. σ@t denotes the state of σ occupied at time t, i.e.
σ@t = si with i the smallest index such that t <

∑i
j=0 tj . Let Prob denote the

unique probability measure on sets of paths and let PathsMs denote the set of all
paths of M, starting in s. The subscript s is omitted when s is clear from the
context; the same applies to superscript M. Note that the probability measure
of the set of infinite paths s0t0s1t1 . . . with

∑∞
i=0 ti is converging, is zero [3].

The semantics of CSL is given in Table 1. � and ⊥ form a complete lattice
such that ⊥ < � and meet  as well as complement ·c are defined as usual.

Measures of interest can now be expressed as CSL formula in a convenient
way. For example, the liveness property to reach a down state in a system within
52 time units, via premium states, with probability at most 0.01 would be for-
mulated as P≤0.01(premium U [0,52]down). Another typical example would be to
check, if some designated goal state is reachable at all times: P>0(trueU [0,∞)goal).

As in our abstraction, states may be grouped that satisfy distinct atomic
propositions, we resort to a three-valued interpretation. Let B3 = {⊥, ? , �}
with ordering ⊥ < ? < � and let ? c = ? . When a formula evaluates to ⊥ or �,
the result is definitely true or false respectively, otherwise it is indefinite.

3 Abstraction

Our aim is to provide an abstraction of CTMCs which is conservative for both
positive and negative verification results of CSL formulas. This is established by
adopting a three-valued interpretation. The basic principle is to collapse sets of
concrete states into single abstract states such that concrete states are simulated
by abstract ones. As opposed to abstract interpretation only disjoint sets of con-
crete states are collapsed. That is, we consider a partitioning A = {A1, . . . , An}
of the state space S of a CTMC M = (S,P, E, L). The probability to evolve from
abstract state Ai to Aj , i, j ∈ {1, . . . , n} within some time interval is represented
by the functions: P(Ai, Aj) = {P(s, s′, ·) | s ∈ Ai, s

′ ∈ Aj}.
Taking minimal and maximal probabilities as under- and over-approximation,

respectively, suggests to define
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Fig. 1. Abstraction for non-uniform CTMCs

Pl(Ai, Aj , t) = inff∈P(Ai,Aj) f(t) and Pu(Ai, Aj , t) = supf∈P(Ai,Aj) f(t).

The functions Pl(Ai, Aj , t) and Pu(Ai, Aj , t) (considered as functions ranging
over t) are in general not of the form p·(1− e−E·t) for fixed p ∈ [0, 1] and E > 0.

Example 1. Consider the non-uniform CTMC M = ({s, u1, u2, u3, v},P, E, L)
in Fig. 1 (left). We focus on the transition probabilities of the states u1, u2, u3 (in-
dicated as labeled edges) and their exit rates which appear above the correspond-
ing vertices. Further details of M are omitted in Fig. 1. Let A = {As, Au, Av}
with Au = {u1, u2, u3}, As = {s} and Av = {v}. The set P(Au, Av) = {f, f ′, f ′′}
is plotted in Fig. 1 (right). Note that Pl(Au, Av, t) and Pu(Au, Av, t) are not of
the form p·(1− e−E·t). In general, the complexity of these functions grows when
the number of transitions between states aggretated to Au and Av increases.

One might combine the infimum (supremum) of an abstract state’s exit rates
with the infimum (supremum) of the one-step transition probabilities to define an
appropriate under- and over-approximation, yielding a rather coarse abstraction
as indicated in Fig. 1 (right) which shows the plot of the functions g and g′

resulting from this approach. But increasing the number of parameters to obtain
a more accurate approximation results in a far too complex abstraction.

Therefore, we propose to abstract a CTMC by generating its uniformised
CTMC (cf. Def. 3), and apply abstraction on the uniform CTMC, i.e., CTMCs
in which all exit rates are equal to, say, Eunif . The advantage of uniform CTMCs
is that pl·(1− e−Eunif·t) ≤ pu·(1− e−Eunif·t) iff pl ≤ pu where pl, pu are the lower
and upper bounds of time-abstract transition probabilities. Note that CTMC
M and unif(M) are weak bisimilar, and as weak bisimulation preserves CSL
equivalence2 [4], the shift to the uniformized CTMC is correct for CSL. Our
abstract model now becomes:

Definition 4 (Abstract CTMC). An abstract CTMC (ACTMC for short)
is a tuple M = (S,Pl,Pu, Eunif, L) with a non-empty finite set of states S,

2 Recall that we consider the fragment of CSL without the next-step operator.
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transition probability functions Pl,Pu : S × S �→ [0, 1] such that Pl(s, S) ≤ 1 ≤
Pu(s, S) componentwise for all s ∈ S. Eunif ∈ R>0 is the (global) exit rate for
all states, and L : S × AP �→ B3 is a labeling function.

An ACTMC M has a finite state space and is equipped with a pair of functions
describing the lower and upper bound, respectively for the one-step transition
probabilities. In contrast to CTMCs, states in an ACTMC may be labeled with
? . The set of transition probability functions is given by

PM = {P̄ : S × S �→ [0, 1] | Pl ≤ P̄ ≤ Pu and P̄(s, S) = 1 for all s ∈ S},

where ≤ is to be interpreted element-wise. We may drop subscript M if M is
clear from the context and write P(s, ·) for the set {P̄(s, ·) | P̄ ∈ P}.

An ACTMC (S,Pl,Pu, Eunif, L) with Pl = Pu and L(s, a) ∈ B2 for any s ∈ S
and a ∈ AP is a uniform CTMC.

Definition 5 (Abstraction). For ACTMC M = (S,Pl,Pu, Eunif, L), parti-
tioning A = {A1, . . . , An} of S and 1 ≤ i, j ≤ n, the abstraction of M induced
by A is the ACTMC abstr(A, M) := (A, P̃l, P̃u, Eunif, L̃) given by:

– P̃l(Ai, Aj)=mins∈Ai Pl(s, Aj) and P̃u(Ai, Aj)=min{1, maxs∈Ai Pu(s, Aj)},

– L̃(Ai, a) =

⎧
⎪⎨

⎪⎩

� if L(s, a) = � for all s ∈ Ai, a ∈ AP,

⊥ if L(s, a) = ⊥ for all s ∈ Ai, a ∈ AP,

? otherwise.

Example 2. Consider the CTMC in Fig. 2
(left) with exit rate 12, AP = {a},
L(s0, a) = L(s1, a) = � and L(s′0, a) =
L(s2, a) = ⊥. The ACTMC induced
by partition {{s0, s

′
0}︸ ︷︷ ︸

=A0

, {s1}
︸︷︷︸
=A1

, {s2}
︸︷︷︸
=A2

} is de-

picted in Fig. 2 (right) with L(A0, a) = ? ,
L(A1, a) = �, L(A2, a) = ⊥.
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Fig. 2. Abstracting a CTMC

The probability to move from s to s′ in an ACTMC may be any proba-
bility in [Pl(s, s′),Pu(s, s′)] and is chosen nondeterministically. As for Markov
decision processes, schedulers are used to resolve nondeterminism. We consider
(time-abstract) history-dependent schedulers that given a time-abstract path
nondeterministically select a transition probability function from the set P.

Definition 6 (Scheduler). A history-dependent scheduler for ACTMC M is
a function D : Pathsabs(M) �→ PM.

Here, Pathsabs(M) denotes the set of time-abstract paths in M. A time-abstract
path in M is a finite sequence of states s0s1s2 . . . sn such that P̄(si, si+1) > 0
for some P̄ ∈ P for all i ∈ {0, 1, . . . , n}. The set of history-dependent schedulers
for ACTMC M is denoted by SchedM.

If only lower and upper bounds on transition probabilities are given, it may
happen that not every combination is possible. For instance, in Example 2, a
possible choice in state A0 is to select A1 with 1

4 and A2 with 2
3 , but 1

4 + 2
3 < 1.
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Definition 7 (Delimited ACTMC). An ACTMC M = (S,Pl,Pu, Eunif, L)
is delimited iff for any s, s′ ∈ S and p ∈ [Pl(s, s′),Pu(s, s′)], there exists P̄ ∈ P
with P̄(s, s′) = p.

In the following, we define an operation, called cut, that transforms a given
ACTMC into a delimited one. It basically strips off combinations of probabilities
in the intervals that do not yield transition probabilities. A similar function has
been defined for abstractions of DTMCs (see Def. 11) in [11].

Definition 8 (Cut). Let M = (S,Pl,Pu, Eunif, L) be an ACTMC. We define
the functions cut(Pl,Pu) = (P̃l, P̃u) by P̃l(s, s′) = max{Pl(s, s′), 1 − Pu(s, S \
{s′})} and P̃u(s, s′) = min{Pu(s, s′), 1 − Pl(s, S \ {s′})} for all s, s′ ∈ S.

The cut of M is defined as cut(M) = (S, P̃l, P̃u, Eunif, L).

Lemma 1. For ACTMC M, cut(M) is delimited and SchedM = Sched cut(M).

A finite subset of the transition probability distributions, which will prove useful
when considering lower and upper bounds of reachability properties, is the set
of extreme distributions. Intuitively they result from a one by one minimisa-
tion/maximisation of transition probabilities. Note that different priorities for
minimising/maximising yield different minimal/maximal probabilities. Actually,
the number of extreme distributions grows exponentially in the state space size.

Definition 9 (Extreme distributions). Let s ∈ S and S′ ⊆ S. We define
extr(Pl,Pu, S′, s) ⊆ P such that μ ∈ extr(Pl,Pu, S′, s) iff either S′ = ∅ and
μ = Pl(s, ·) = Pu(s, ·) or one of the following conditions is true3

∃s′ ∈ S′ : μ(s′) = Pl(s, s′) and μ ∈ extr(Pl,Pu[s′ �→ μ(s′)], S′ \ {s′}, s)
∃s′ ∈ S′ : μ(s′) = Pu(s, s′) and μ ∈ extr(Pl[s′ �→ μ(s′)],Pu, S′ \ {s′}, s)

We call μ ∈ P(s, ·) an extreme distribution if μ ∈ extr(Pl,Pu, S, s).

To compare the behavior described by two ACTMCs, we introduce the notion of
probabilistic simulation which is a variant of probabilistic simulation for CTMCs
as it can be found in [4].

Definition 10 (Probabilistic simulation). Let M = (S,Pl,Pu, Eunif, L) be
an ACTMC. We call R ⊆ S × S a probabilistic simulation iff sRs′ implies:

1. L(s′, a) 	= ? ⇒ L(s′, a) = L(s, a) for all a ∈ AP .
2. For all distributions μ ∈ P(s, ·), there is a distribution μ′ ∈ P(s′, ·) and a

weight function Δ : S × S → [0, 1] with:
(a) Δ(u, v) > 0 ⇒ uRv, (b) Δ(u, S) = μ(u), (c) Δ(S, v) = μ′(v).

State s is simulated by s′ (written s � s′) if there exists a probabilistic simulation
R with (s, s′) ∈ R. We lift � to the union of two ACTMCs in the usual way.

3 Here, f [s �→ x] denotes the function that agrees everywhere with f except at s where
it is equal to x.
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Theorem 1. For ACTMC M with state space S, and A a partitioning on S
inducing the ACTMC abstr(A, M) with state space A

s ∈ A ⇒ s � A for all s ∈ S, A ∈ A
Example 3. Consider the CTMC in Fig. 2(a), the partitioning leading to 2(b)
(see Ex. 2) with R = {(s0, A0), (s′0, A0), (s1, A1), (s2, A2)}. Note that Ai should
be considered as a single abstract state. We have s0RA0 because condition 1 of
Def. 10 is trivially fulfilled since L(A0, a) = ? . For condition 2 we observe that
in s0 there is only one possible distribution μ = (0, 0, 1

4 , 3
4 ) to choose. The only

distribution in P(A0, ·), for which there is a weight function Δ fulfilling condition
2, is μ′ = (0, 1

4 , 3
4 ) with Δ(s1, A1) = 1

4 , Δ(s2, A2) = 3
4 and 0 otherwise. The

conditions of Def. 10 can be checked for the remaining elements of R similarly.

In the following we show that our abstraction of CTMCs can be regarded as a
conservative extension of abstraction of DTMCs as recently proposed in [11].

Definition 11 (Abstract DTMC). An abstract DTMC (ADTMC) is a tuple
(S,Pl,Pu, L) with S, Pl, Pu, and L as before.

Abstract DTMCs are thus abstract CTMCs without exit rates. The theorem
below shows that the following diagram commutes:

M Mabstr Mdel

N Nabstr Ndel

abstr. cut

embedded
abstr. cut

embedded

∑y
x} (A)CTMCs

∑y
x} (A)DTMCs

Theorem 2. For delimited uniform CTMC M and partitioning A:

emb(cut(abstr(A, M))) = cutADTMC(abstrDTMC(A, emb(M)))

where cutADTMC and abstrDTMC are the counterparts of cut and abstr in the
setting of (A)DTMCs [11].

4 Model Checking Three-Valued CSL

Now, we develop a three-valued version of CSL which is interpreted overACTMCs.
The simulation relation allows us to reason about more concrete systems.

For an ACTMC M, every scheduler D ∈ SchedM induces a probability space
with a probability measure ProbD in the same manner as for CTMCs (see [3]
for details). When interested in the infimum of probabilities of measurable sets
with regard to all schedulers, it suffices to consider only extreme distributions.
A scheduler which only chooses such distributions is an extreme scheduler. The
set of all extreme schedulers for M is denoted as SchedMextr.

Theorem 3. Let M = (S,Pl,Pu, Eunif, L) be an ACTMC. For every measur-
able set Q of the induced probability space:

infD∈SchedM
extr

ProbD(Q) = infD∈SchedM ProbD(Q).
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The proof for the above theorem is rather technical and goes along the structure
of the generated Borel field of the induced probability space. Note that the
number of choices at a state is finite for extreme schedulers, whereas this is
uncountable for arbitrary schedulers.

Before discussing CSL, let us first consider time-dependent reachability prob-
abilities in ACTMCs, i. e., the probabilities to reach some state in set B within
t time units, formally Reach≤t(s, B) = {σ ∈ PathsMs | σ@t′ ∈ B for some
t′ ∈ [0, t]}. When computing the semantics of CSL formulas, the main challenge
is to determine lower bounds of reachability properties, as we will see. There-
fore, we will now analyse how to compute infD∈SchedM ProbD(Reach≤t(s, B)).
Probl(Q) will be used as abbreviation for infD∈SchedM ProbD(Q).

We start with an algorithm for the approximation of probability bounds for
timed reachability properties in uniform CTMDPs (see [2]). By Theorem 3, it
suffices to consider extreme schedulers if one is interested in lower bounds. We
interpret an ACTMC as a CTMDP, where each extreme distribution can be
chosen by some action. From [2], we know that an ε-approximation of transient
probabilities q0 can efficiently be computed in an iterative way4:

q0 = ψEunif,t(0) · iB + q1
qi = ψEunif,t(i) · iB + Pi · qi+1, for i ∈ {1, ..., k(ε, Eunif, t)},
qk(ε,Eunif,t)+1 = 0, where k(ε, Eunif, t) is a proper truncation point,

and ψEunif,t(n) is the probability that
n events occur in a Poisson process of rate Eunif·t

Therefore, instead of checking for all extreme distributions in each iteration,
we can find a minimizing distribution in polynomial time, by minimizing the
vector-product Pi(s, ·) ·qi+1 with additional constraint qi+1(S) = 1. This can be
done by successively assigning as much proportion as possible to the transition
leading to the successor s′ for which qi+1(s′) is minimal. For N := |S|, sorting the
q-vector can be done in O(N log(N)) and assertion of probabilities takes O(N3)
since the cut has to be applied N times and the cut itself has a complexity of
O(N2). This yields a worst-case complexity of O(N2 · (N log(N) + N3) + N) =
O(N5) for every iteration step.

The following theorem, which states that the above algorithm yields an ε-
accurate approximation of reachability properties, follows directly from [2].

Theorem 4. For ACTMC M = (S,Pl,Pu, Eunif, L), s ∈ S, B ⊆ S, t ∈ R>0
and error margin ε:

Probl(Reach≤t(s, B)) − ε ≤ q0(s) ≤ Probl(Reach≤t(s, B))

Three-valued CSL-semantics. We define the satisfaction function � · � : (S ∪
PathsM) × CSL → B3 inductively as shown in Table 2, where Probl(s, Φ, α) =
Probl({σ ∈ PathsMs | �σ, Φ� = α}) for α ∈ B3.

4 The truncation point k(ε,Eunif, t) depends linearly on Eunif and t and can easily be
computed on-the-fly.
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Table 2. Three-valued semantics of CSL

�s, true� = � �s, false� = ⊥ �s, a� = L(s, a)
�s,ϕ1 ∧ ϕ2� = �s, ϕ1� � �s, ϕ2� �s, ¬ϕ� = �s, ϕ�c

�σ, ϕ1UIϕ2� =

��
�

� if ∃ t ∈ I : (�σ@t,ϕ2� = � ∧ ∀ t′ ∈ [0, t) : �σ@t′, ϕ1� = �)
⊥ if ∀ t ∈ I : (�σ@t,ϕ2� = ⊥ ∨ ∃ t′ ∈ [0, t) : �σ@t′, ϕ1� = ⊥)
? otherwise

�s,P�p(Ψ)� =

��
�

� if Probl(s, Ψ, �) � p
⊥ if Probl(s, Ψ, ⊥) � 1 − p
? otherwise

� ∈ {>, ≥}, � =

�
> if � = ≥
≥ if � = >

�s,P�p(Ψ)� =

��
�

� if 1 − p � Probl(s, Ψ, ⊥)

⊥ if p � Probl(s, Ψ, �)
? otherwise

� ∈ {<, ≤}, � =

�
< if � = ≤
≤ if � = <

Let us have a closer look at the semantics. For the propositional fragment the
semantics is clear. A path σ satisfies until-formula ϕ1 U [0,t]ϕ2 if ϕ1 holds for sure
until ϕ2 holds for sure at the latest at time t. The until-formula ϕ1 U [0,t]ϕ2 is
violated, if either before ϕ2 holds, ϕ1 is violated, or if ϕ2 is violated for sure.
Otherwise, the result is indefinite.

To determine the satisfaction of P≤p(Ψ) we consider the probability of the
paths for which Ψ is surely violated. If this probability is greater than 1 − p,
then paths where Ψ holds may have measure at most p. Similarly, to show that
P≤p(Ψ) is violated, we have to consider the measure of all paths surely satisfying
Ψ . If this measure is greater than p, then obviously P≤p(Ψ) is violated. The
semantics of P�p(Ψ) for � ∈ {<, >, ≥} follows from a similar argumentation.

Example 4. Consider the CTMC in Fig. 2(a). Starting in s0 (s1), the probability
to reach a non-a-state in 0.3 time units is about 0.9037 (0.9328, respectively).
Thus, formula ϕ = a → P≥0.9(true U≤0.3¬a) is true in all states. Consider the
abstraction in Fig. 2(b): The lower and upper probability bounds to reach a non-
a-state in 0.3 time units from A0 are about 0.8807 respectively 0.9037. Hence,
�A0, a → P≥0.9(true U≤0.3¬a)� = ? � �t0, P≥0.9(true U≤0.3¬a)� = ?� ? = ? . For
P≥0.88 instead of P≥0.9, the formula would have been satisfied in the abstraction
as well, while for P≥0.91 the result would still be ? since ? � ⊥ = ? .

The following theorem states that our framework developed so far can indeed
be used for abstraction based model checking. It can be shown by structural
induction on the CSL formulas. Intuitively, the theorem asserts that the result
of checking a CSL formula in the abstract CTMC agrees with the one for the
more concrete model, unless it is indefinite.

Theorem 5 (Preservation of CSL). Let s and s′ be two states of an ACTMC
M with s � s′. Then for all CSL formulas ϕ:

�s′, ϕ� 	= ? implies �s, ϕ� = �s′, ϕ�.
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Observe that the 3-valued CSL semantics on a CTMC (viewed as ACTMC)
coincides with the 2-valued CSL semantics for CTMCs (see Section 2), showing
that our abstraction is conservative for positive and negative verification results.

Model checking. As for CTL, model checking works bottom-up the parse tree of
the CSL formula ϕ. Boolean combinations of formulas as well as the P-formulas
are evaluated, as expected. For the latter, however, we need the lower probability
bounds for the satisfaction/violation of an until-formula, which remains the only
operator to discuss.

The idea of dealing with until-operators is similar as in [11]: For getting the
measure of paths surely satisfying Ψ = ϕ1 U [0,t]ϕ2, it suffices to compute the
measure of reaching states satisfying ϕ2 in time bounded by t along paths of
states satisfying ϕ1. By induction, we know which states do not satisfy ϕ1. Re-
moving these from the CTMC, a path satisfies ϕ1U [0,t]ϕ2 iff a state ϕ2 is reached
within time bound t. In other words, it remains to solve a time-bounded reach-
ability problem in the reduced graph. Getting the measure of paths violating Ψ
for sure, is done similarly by exchanging � and ⊥ in the argumentation above.

Recall that the given algorithm for computing time-bounded reachability ap-
proximates only with error margin ε. However, it can easily be guaranteed that
the error due to approximation only yields ? in cases where a definite value could
be obtained given a smaller error margin.

Theorem 6. Given an ACTMC M, a CSL formula ϕ, and an error margin
ε, we can approximate �M, ϕ� in time polynomial in size of M and linear in
size of ϕ, Eunif and the highest time bound t occurring in ϕ (dependency on ε is
omitted as ε is linear in Eunif · t). In case the approximation yields � or ⊥, the
result is correct, while ? is correct with an error of at most ε.

5 Case Study: Quasi-Birth-Death Processes

Let us consider a simple system with a fixed number m of available processors and
an infinite queue for storing job requests. The processing speed of the processors
is described by an exponential distribution with rate γ and λ is the incoming rate
of jobs. When all processors are being utilized, new jobs are added to the infinite
queue. As soon as processors are getting available again, jobs from the queue
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Fig. 3. (a) SPN, (b) uniformized underlying infinite CTMC, (c) finite abstraction
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are processed. To model these spontaneous transitions, we choose a high rate
ε � λ. In our experiments about 10 times the incoming rate for tasks has been a
sufficiently precise approximation. The system initially has no job to process, i.e.
all three processors are available and the queue is empty. For m = 3, this is being
formally described by the stochastic Petri net (SPN) [5] in Fig. 3(a). Numbers at
edges denote that the corresponding transition consumes or produces the given
number of tokens and can not be fired until there are enough token to consume.
The semantics of this SPN is equal to an infinite CTMC. Uniformization with
rate E results in the infinite uniform CTMC (Fig. 3(b)). For E, x, y, z ∈ R≥0, we
shortly write Ex

yz = Ex
y − z, Ex

y = Ex − y and Ex = E − x. State si,j represents
the marking of the SPN, where i tokens are at idle, m− i at busy and j at queue.
Aggregating {si,j | j ≥ n} by si,≥n for all i ∈ {0, ..., m} yields Fig. 3(c) (n = 1).

Consider ϕ = (〈l1 = 0〉 ∧ 〈l2 = 0〉) → P≤p(true U [0,t](〈l1 = m〉 ∧ 〈l2 = 0〉))
where 〈l1 = i〉, 〈l2 = j〉 ∈ AP hold in all states si,j of the infinite CTMCs.

In Fig. 4, for λ ∈ {1, ..., 6}, lower and upper probability bounds for ϕ for
abstractions with n ∈ {1, ..., 9} are plotted. As expected, by increasing n, lower
and upper bounds are closer, i.e. the accuracy of the abstraction improves.

Fig. 4. Probability bounds for ϕ

Increasing m improves
the system performance.
The probability for which
ϕ holds decreases for in-
creasing m. If the system
is upgraded with m′ addi-
tional processors then the
requirement is not about
m jobs anymore, but about
m + m′. Note that CSL
model-checking algorithms
for quasi-birth-death pro-
cesses have also been con-
sidered in [21]. Our abstrac-
tion technique, though, is
not restricted to these (reg-
ular) infinite CTMCs.

6 Conclusion

This paper presented a three-valued abstraction technique for CTMCs that is
conservative for true and false results of CSL. The idea is to abstract uniform
CTMCs and replace transition probabilities by intervals. A polynomial-time ap-
proximative model-checking algorithm for 3-valued CSL has been provided.

Although our approach intends to combat the state-space explosion problem,
model checking of probabilistic interval models is of interest in its own, when
the exact values are not known and e.g., estimated by experiments, cf. [22].
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Our experiments indicate that—like for most other abstraction techniques—
the partitioning of the state space determines the accuracy of the abstraction;
e.g., merging “slow” and “fast” states typically yields too coarse abstractions.
To conduct more experiments, we currently incorporate the abstraction into the
model checker MRMC [17]. Besides we plan to work on refinement techniques
to improve abstractions when the verification yields indefinite results.
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Abstract. We present a novel abstraction technique which allows the analysis of
reachability and safety properties of Markov decision processes with very large
state spaces. The technique, called magnifying-lens abstraction, (MLA) copes
with the state-explosion problem by partitioning the state-space into regions, and
by computing upper and lower bounds for reachability and safety properties on
the regions, rather than on the states. To compute these bounds, MLA iterates
over the regions, considering the concrete states of each region in turn, as if one
were sliding across the abstraction a magnifying lens which allowed viewing the
concrete states. The algorithm adaptively refines the regions, using smaller re-
gions where more detail is needed, until the difference between upper and lower
bounds is smaller than a specified accuracy. We provide experimental results on
three case studies illustrating that MLA can provide accurate answers, with sav-
ings in memory requirements.

1 Introduction

Markov decision processes (MDPs) provide a model for systems with both probabilis-
tic and nondeterministic behavior, and they are widely used in probabilistic verification,
planning, optimal control, and performance analysis [13,4,26,8,10]. MDPs that model
realistic systems tend to have very large state spaces, and the main challenge in their
analysis consists in devising algorithms that work efficiently on such large state spaces.
In the non-probabilistic setting, abstraction techniques have been successful in cop-
ing with large state-spaces: abstraction enables to answer questions about a system by
considering a smaller, more concise abstract model. This has spurred research into the
use of abstraction techniques for probabilistic systems [7,18,22,19]. We present a novel
abstraction technique, called magnifying-lens abstraction (MLA), for the analysis of
reachability and safety properties of MDPs with very large state spaces. We show that
the technique can lead to substantial space savings in the analysis of MDPs.

An MDP is defined over a state space S. At every state s ∈ S, one or more actions
are available; with each action is associated a probability distribution over the successor
states. We focus on safety and reachability properties of MDPs. A safety property spec-
ifies that the MDP’s behavior should not leave a safe subset of states T ⊆ S; a reach-
ability property specifies that the behavior should reach a set T ⊆ S of target states.
A controller can choose the actions available at each state so as to maximize, or min-
imize, the probability of satisfying reachability and safety properties. MLA computes
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converging upper and lower bounds for the maximal reachability or safety probability;
the minimal probabilities can be obtained by duality. In its ability to provide both upper
and lower bounds for the quantities of interest, MLA is similar to [19].

In the analysis of large MDPs, the main challenge lies in the representation of the
value v(s) of the reachability or safety probability at all s ∈ S. In contrast, actions
and transition probabilities from each state s can usually be either computed on the
fly, or represented in a compact fashion, via Kronecker representations or probabilis-
tic guarded commands [23,10,17]. The goal of MLA is to reduce the space required
for storing v and, secondarily, the running time of the analysis. To this end, MLA par-
titions the state space S of the MDP into regions; for each region r, it stores upper
and lower bounds v+(r), v−(r) for the maximal reachability or safety probability. The
values v+(r), v−(r) constitute bounds for all states s ∈ r. In order to update these
estimates, MLA iterates over the regions, “magnifying” one of them at a time. When
the region r is magnified, MLA computes v+(s), v−(s) at all concrete states s ∈ r via
value iteration, and then summarizes these results by setting v+(r) = maxs∈r v+(s)
and v−(r) = mins∈r v−(s). Figuratively, MLA slides a magnifying lens across the ab-
straction, enabling the algorithm to see the concrete states of one region at a time when
updating the region values. Given a desired accuracy ε for the answer, MLA periodi-
cally splits regions r with v+(r) − v−(r) > ε into smaller regions. In this way, the
abstraction is refined in an adaptive fashion: smaller regions are used where finer de-
tail is needed, guaranteeing the convergence of the bounds, and larger regions are used
elsewhere, saving space. When splitting regions, MLA takes care to re-use information
gained in the analysis of the coarser abstraction in the evaluation of the finer one. MLA
can be adapted to the problem of computing a control strategy by recording the optimal
actions for the concrete states of interest, when they are magnified.

Related work on MDP abstraction. Compared with other approaches to MDP abstrac-
tion, MLA has two distinctive features:

1. it clusters states based on value, rather than based on the similarity in their transition
function;

2. it updates the valuation of abstract states by considering the concrete states associ-
ated with the abstract states, rather than by considering an abstract model only.

The second of the above points underlines how MLA is a semi-abstract, rather than fully
abstract, approach to verification: the abstract computation still involves consideration
of the concrete states, even though this is done in a way that provides space savings.

For the most part, approaches to MDP abstraction in the literature have followed an-
other route, which we call very broadly the full abstraction approach: an abstract model
is constructed, and then analyzed on the basis of an abstract transition structure, without
further reference to the concrete model. These fully abstract approaches generally rely
on clustering states that are similar not only in value, but also in transition structure: in
this way, every region of concrete states can be summarized via an abstract state with
an associated abstract transition structure. The abstract transition structure may, or may
not, be similar to the concrete one. For instance, [19] bases the abstract transition struc-
ture on games, rather than MDPs: in this fashion, player 1 can represent the choice of
action of the MDP, and player 2 can represent the uncertainty about the concrete state
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corresponding to the abstract state. This approach enables the computation of lower and
upper bounds for properties of interest, similarly to MLA. In a somewhat related spirit,
but using entirely different technical means, [14] proposes to abstract Markov chains
into abstract Markov chains whose transitions are labeled with intervals of probability,
representing the uncertainty about the concrete state. Clustering states based on the sim-
ilarity in their transition probabilities has also been used in [12], which proposes to find
the coarsest refinement of an MDP where for each action, states in the same region have
the same probability of going to other regions. An approach for the verification of prob-
abilistic reachability properties via abstraction has been proposed in [7]. The abstrac-
tion is built through successive refinements starting from a coarse partition based on the
property. Several other approaches also, in fact, rely on constructing MDP abstractions
based on simulation or abstract interpretation [18,22,21]; all of these approaches rely
on clustering states with similar transition structure, and representing these clusters of
states, and their transition structures, via compact abstract representations.

The full-abstraction approach outlined above, and the partial value-based approach
followed by MLA, each have advantages. The full-abstraction result can handle un-
bounded, and (depending on the specific approach) even infinite state spaces. In con-
trast, the space savings afforded by MLA are limited to a square-root factor (a system of
size n can be studied in O(

√
n) space), due to the need to consider the concrete states

corresponding to each abstract one. Furthermore, the full-abstraction approaches typi-
cally need to construct the abstract model only once; in contrast, MLA needs to refer to
concrete states (albeit not all of them at once) during the computation.

On the other hand, the ability of MLA to cluster states based on value only, dis-
regarding differences in their transition relation, can lead to compact abstractions for
systems where full abstraction provides no benefit. We will give below an example sup-
porting this. Furthermore, in MLA the abstraction is refined dynamically, depending on
the required accuracy of the analysis; there is no need to “guess” the right state partition
in advance. In our experience, MLA is particularly well-suited to problems where there
is a notion of locality in the state space, so that it makes sense to cluster states based
on variable values — even though their transition relations may not be similar. Many
planning and control problems are of this type. MLA instead is not as well-suited to
problems where clustering states based on variable values is less effective. Approaches
based on predicate abstraction could lend the MLA approach more generality.

An example of Magnifying-Lens Abstraction. To illustrate MLA, and its potential ben-
efits, we give a simple example. We consider the problem of navigating an n × n mine-
field. The minefield contains m mines, each with coordinates (xi, yi), for 1 ≤ i ≤ m,
where 1 ≤ xi < n, 1 ≤ yi < n. We consider the problem of computing the maximal
probability with which a robot can reach the target corner (n, n), from all n × n states.
At interior states of the field, the robot can choose among four actions: Up, Down, Left,
Right; at the border of the field, actions that lead outside of the field are missing. From
a state s = (x, y) ∈ {1, . . . , n}2 with coordinates (x, y), each action causes the robot
to move to square (x′, y′) with probability q(x′, y′), and to “blow up” (move to an ad-
ditional sink state) with probability 1 − q(x′, y′). For action Right, we have x′ = x+ 1,
y′ = y; similarly for the other actions. The probability q(x′, y′) depends on the prox-
imity to mines, and is given by
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Fig. 1. Initial, and final refined abstraction, for the problem of motion planning in a 24 × 24
minefield. The circles denote the mines

q(x′, y′) =
∏m

i exp
(−0.7 · (

(x′ − xi)2 + (y′ − yi)2
))

.

The problem, for n = 24, is illustrated in Figure 1.
Intuitively, it is desirable to group the 8×8 states in the top-middle area into a single

region r0: since no mines are nearby, the robot can freely roam in r0, so that the maximal
probability of reaching the target corner is essentially constant across r0. Indeed, to a
human trying to determine a best path to the target corner, the states in r0 are essentially
equivalent. When the 8 × 8 concrete states are grouped in r0, MLA leads to accurate
results, since it can analyze the dynamics inside r0 when r0 is magnified. We also note
how, in this example, the ability of MLA to refine the abstraction adaptively is crucial.
As shown in Figure 1(b), MLA is able to use small regions close to mines, and large
regions elsewhere. If we insisted on a uniform region size, then we would have to adopt
the smallest size throughout, and no space savings would be possible.

On the other hand, the full-abstraction approaches described earlier, such as [7,22,19],
based on probabilistic simulation [27], are not well suited to this example. Such tech-
niques would associate with an abstract state, such as r0, a summary of the transition
structure from states s ∈ r0, and use that summary to analyze the abstraction. The prob-
lem is that the states in r0, while similar in value, are not similar in transition structure:
the states on the border of r0 can transition outside of r0, while those in the interior can-
not. In the abstraction, the probability of going from r0 to the region at the right hand
side will be modeled as being in an interval [0, q], for some q close to 1 (all mines are far
away). Consequently, previous techniques would have yielded a lower bound of 0, and
an upper bound close to 1, for the maximum probability of reaching the target corner.
Similarly, the technique of [12] would lead to recursively splitting the MDP, until the
regions consisted of only one concrete state each.

Other related work. MLA is reminiscent to methods that represent value functions
via ADDs or MTBDDs [6,1] with an approximation factor used to merge leaves. The
similarity, however, is superficial: MLA leads to far more precise results in the analysis;
we discuss this in the conclusions, where the appropriate notation will be available.

MLA is also loosely reminiscent of adaptive mesh refinement (AMR) methods used
in the solution of partial differential equations [3]. There are, however, two important
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differences between MLA and AMR. In AMR, separate lower and upper bounds are not
kept. AMR methods perform computation at the finest mesh sizes only where needed. In
MLA, due to the discrete nature of MDPs, we have no way of computing over a “coarse
mesh” only: to update valuations over a region, we need to “magnify” the region to its
individual states. Thus, MLA is forced to consider the individual states over the whole
system, and it summarizes and returns the results in terms of lower and upper bounds,
which are well-suited to answering verification questions.

2 Preliminary Definitions and Algorithms

For a countable set S, a probability distribution on S is a function p : S �→ [0, 1] such
that

∑
s∈S p(s) = 1; we denote the set of probability distributions on S by D(S). A

valuation over a set S is a function v : S �→ R associating a real number v(s) with every
s ∈ S. For x ∈ R, we denote by x the valuation with constant value x; for T ⊆ S, we
indicate by [T ] the valuation having value 1 in T and 0 elsewhere. For two valuations
v, u on S, we define ||v − u|| = sups∈S |v(s) − u(s)|.

A partition of a set S is a set R ⊆ 2S , such that
⋃{s|s ∈ R} = S, and such that for

all r, r′ ∈ R, if r �= r′ then r ∩ r′ = ∅. For s ∈ S and a partition R of S, we denote by
[s]R the element r ∈ R with s ∈ r. We say that a partition R′ is finer than a partition R
if the elements of R can be written as unions of the elements of R′.

A Markov decision process (MDP) M = 〈S, A, Γ, p〉 consists of the following com-
ponents:

– A finite state space S.
– A finite set A of actions (moves),
– A move assignment Γ : S → 2A \ ∅.
– A probabilistic transition function p : S × A → D(S).

At every state s ∈ S, the controller can choose an action a ∈ Γ (s); the MDP then
proceeds to the successor state t with probability p(s, a, t), for all t ∈ S. A path of G
is an infinite sequence s = s0, s1, s2, . . . of states of S; we denote by Sω the set of all
paths, and we denote by sk the k-th state sk of s = s0, s1, s2, . . ..

We model the choice of actions, on the part of the controller, via a strategy (strategies
are also variously called schedulers [26] or policies [13]). A strategy is a mapping
π : S+ �→ D(A): given a past history σs ∈ S+ for the MDP, a strategy π chooses
each action a ∈ Γ (s) with probability π(σs)(a); we obviously require π(σs)(b) = 0
for all b ∈ A \ Γ (s). Thus, strategies can be both history-dependent, and randomized.
We denote by Π the set of all strategies.

We consider safety and reachability goals. Given a subset T ⊆ S of states, the reach-
ability goal ♦T = {s ∈ Sω | ∃k.sk ∈ T } consists in the paths that reach T , and
the safety goal �T = {s ∈ Sω | ∀k.sk ∈ T } consists in the paths that stay al-
ways in T . These sets of paths are measurable [28], so that given a strategy π ∈ Π ,
we can define the probabilities Prπs (♦T ), Prπs (�T ) of following a path in these sets
from an initial state s ∈ S under strategy π. By choosing appropriate strategies, the
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Algorithm 1. ValIter(T, f, g, εfloat) Value iteration

1. v := [T ]
2. repeat
3. v̂ := v

4. for all s ∈ S do v(s) := f
�
[T ](s), g

��
s′∈S p(s, a, s′) · v̂(s′)

�� a ∈ Γ (s)
��

5. until ||v − v̂|| ≤ εfloat

6. return v

controller can maximize or minimize these probabilities. Thus, we consider the problem
of computing, at all s ∈ S, the quantities:

V max
�T (s) = max

π∈Π
Prπs (�T ) V max

♦T (s) = max
π∈Π

Prπs (♦T )

V min
�T (s) = min

π∈Π
Prπs (�T ) V min

♦T (s) = min
π∈Π

Prπs (♦T ).

The fact that on the right-hand side we have max, min rather than sup, inf is a conse-
quence of the existence of optimal (and memoryless) strategies [13]. In the remainder
of the paper, unless explicitly noted, we present algorithms and definitions for a fixed
MDP M = 〈S, A, Γ, p〉.

Reachability and safety probabilities on an MDP can be computed via a classical
value-iteration scheme [13,4,11]. The algorithm, depicted as Algorithm 1, is
parametrized by two operators f, g ∈ {max, min}. The operator f specifies how to
merge the valuation of the current state with the expected next-state valuation; we use
f = max for reachability goals, and f = min for safety ones. The operator g specifies
whether to select the action that maximizes, or minimizes, the expected next-state valua-
tion; we use g = max to compute maximal probabilities, and g = min to compute min-
imal probabilities, The algorithm is also parametrized by εfloat > 0: this is the threshold
below which we consider value iteration to have converged. The following facts are
well-known (see, e.g., [13,8,9]). For all εfloat > 0 and for all f, g ∈ {min, max}, the
call ValIter(T, f, g, εfloat) terminates. Moreover, consider any g ∈ {max, min} and any
� ∈ {�,♦}, and let f = min if � = �, and f = max if � = ♦. Then, for all δ > 0,
there is εfloat > 0 such that, at all s ∈ S:

v(s) − δ ≤ V g
�T (s) ≤ v(s) + δ

where v = ValIter(T, f, g, εfloat). We note that can replace statement 1 of Algorithm 1
with the following initialization: if f = max then v := 0 else v := 1.

3 Magnifying-Lens Abstraction

Magnifying-lens abstractions (MLA) is a technique for the analysis of reachability and
safety properties of MDPs. Let v∗ be the valuation on S that is to be computed: v∗ is one
of V min

�T , V max
�T , V min

♦T , V max
♦T . Given a desired accuracy εabs > 0, MLA computes upper
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Algorithm 2. MLA(T, f, g, εfloat, εabs) Magnifying-Lens Abstraction

1. R := some initial partition.
2. if f = max then u− := 0; u+ := 0 else u− := 1; u+ := 1
3. loop
4. repeat
5. û+ := u+; û− := u−;
6. for r ∈ R do
7. u+(r) := MagnifiedIteration(r, R, T, û+, û−, û+, max, f, g, εfloat)
8. u−(r) := MagnifiedIteration(r, R, T, û−, û−, û+, min, f, g, εfloat)
9. end for
10. until ||u+ − û+|| + ||u− − û−|| ≤ εfloat

11. if ||u+ − u−|| ≥ εabs

12. then R, u−, u+ := SplitRegions(R, u−, u+, εabs)
13. else return R, u−, u+

14. end if
15. end loop

and lower bounds for v∗, spaced less than εabs. MLA starts from an initial partition R
of S, and computes the lower and upper bounds as valuations u− and u+ over R. The
partition is refined, until the difference between u− and u+, at all regions, is below a
specified threshold. To compute u− and u+, MLA iteratively considers each r in turn,
and performs a magnified iteration: it improves the estimates for u−(r) and u+(r) using
value iteration on the concrete states s ∈ r.

The MLA algorithm is presented as Algorithm 2. The algorithm has parameters T ,
f , g, which have the same meaning as in Algorithm ValIter. The algorithm also has
parameters εfloat > 0 and εabs > 0. Parameter εabs indicates the maximum difference
between the lower and upper bounds returned by MLA. Parameter εfloat, as in ValIter,
specifies the degree of precision to which the local, magnified value iteration should
converge. MLA should be called with εabs greater than εfloat by at least one order of
magnitude: otherwise, errors in the magnified iteration can cause errors in the estima-
tion of the bounds. Statement 2 initializes the valuations u− and u+ according to the
property to be computed: reachability properties are computed as least fixpoints, while
safety properties are computed as greatest fixpoints [11]. A useful time optimization,
not shown in Algorithm 2, consists in executing the loop at lines 6–9 only for regions r
where at least one of the neighbor regions has changed value by more than εfloat.

Magnified iteration. The algorithm performing the magnified iteration is given as Al-
gorithm 3. The algorithm is very similar to Algorithm 1, except for three points.

First, the valuation v (which here is local to r) is initialized not to [T ], but rather,
to u−(r) if f = max, and to u+(r) if f = min. Indeed, if f = max, value iteration
converges from below, and u−(r) is a better starting point than [T ], since [T ](s) ≤
u−(r) ≤ v∗(s) at all s ∈ r. The case for f = min is symmetrical.

Second, for s ∈ S \ r, the algorithm uses, in place of the value v(s) which is
not available, the value u−(r′) or u+(r′), as appropriate, where r′ is such that s ∈
r′. In other words, the algorithm replaces values at concrete states outside r with the
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Algorithm 3. MagnifiedIteration(r, R, T, u, u−, u+, h, f, g, εfloat)
v: a valuation on r
1. if f = max
2. then for s ∈ r do v(s) = u−(r)
3. else for s ∈ r do v(s) = u+(r)
4. repeat
5. v̂ := v
6. for all s ∈ r do

v(s) = f

�
[T ](s), g

�	
s′∈r

p(s, a, s′) · v̂(s′) +
	

s′∈S\r

p(s, a, s′) · u([s]R)

���� a ∈ Γ (s)


�

7. until ||v − v̂|| ≤ εfloat

8. return h{v(s) | s ∈ r}

“abstract” values of the regions to which the states belong. To this end, we need to be
able to efficiently find the “abstract” counterpart [s]R of a state s ∈ S. We use the follow-
ing scheme, similar to schemes used in AMR [3]. Most commonly, the state-space S of
the MDP consists in value assignments to a set of variables X = {x1, x2, . . . , xl}. We
represent a partition R of S, together with the valuations u+, u−, via a binary decision
tree. The nodes of the tree are labeled by 〈y, i〉, where y ∈ X is the variable according
to which we split, and i is the position of the bit (0 =LSB) of the variable according
to whose value we split. The leaves of the tree correspond to regions, and they are la-
beled with u−, u+ values. Given s, finding [s]R in such a tree requires time logarithmic
in |S|.

Third, once the concrete valuation v is computed at all s ∈ r, Algorithm 3 returns
the minimum (if h = min) or the maximum (if h = max) of v(s) at all s ∈ r, thus
providing a new estimates for u−(r), u+(r), respectively.

Adaptive abstraction refinement. We denote the imprecision of a region r by Δ(r) =
u+(r) − u−(r). MLA adaptively refines a partition R by splitting all regions r having
Δ(r) > εabs. This is perhaps the simplest possible refinement scheme. We experi-
mented with alternative refinement schemes, but none of them gave consistently better
results. In particular, we considered splitting the regions with high Δ-value, all whose
successors, according to the optimal moves, have low Δ-value: the idea is that such re-
gions are the ones where precision degrades. While this reduces somewhat the number
of region splits, the total number of refinements is increased, and the resulting algorithm
is not clearly superior, at least in the examples we considered. We also experimented
with splitting all regions r ∈ R with Δ(r) > δ, for a threshold δ that is initially set
to 1

2 , and that is then gradually decreased to εabs. This approach, inspired by simulated
annealing, also failed to provide consistent improvements.

In the minefield example, each region is squarish (horizontal and vertical sizes dif-
fer by at most 1); we split each such squarish region into 4 smaller squarish regions.
In more general cases, the following heuristic for splitting regions is widely applica-
ble, and has worked well for us. The user specifies an ordering x0, x1, . . . , xl for the
state variables X defining S: this specifies a priority order for splitting regions. As
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previously mentioned, we represent a partition R via a decision tree, whose leaves cor-
respond to the regions. In the refinement phase, we split a leaf according to the value
of a new variable (not present in that leaf), following the variable ordering given by
the user. Precisely, to split a region r, we look at the label 〈xj , i〉 of its parent node. If
i > 0, we split according to bit i − 1 of xj ; otherwise, we split according to the MSB
of xj+1. A refinement of this technique allows the specification of groups of variables,
whose ranges are split in interleaved fashion. Once a region r has been split into re-
gions r1, r2, we set u−(rj) = u−(r) and u+(rj) = u+(r) for all j = 1, 2. A call to
SplitRegions(R, u+, u−, εabs) returns a triple R̃, ũ−, ũ+, consisting of the new partition
with its upper and lower bounds for the valuation.

Correctness. The following theorem summarizes MLA correctness.

Theorem 1. For all MDPs M = 〈S, A, Γ, p〉, all T ⊆ S, and all εabs > 0, the follow-
ing assertions hold.

1. Termination. For all εfloat > 0, and for all f, g ∈ {min, max}, the call MLA
(T, f, g, εfloat, εabs) terminates.

2. (Partial) correctness. Consider any g ∈ {max, min}, any εabs > 0, and any � ∈
{�,♦}, and let f = min if � = �, and f = max if � = ♦. The following holds.
For all δ > 0, there is εfloat > 0 such that:

∀r ∈ R : u+(r) − u−(r) ≤ εabs

∀s ∈ S : u−([s]R) − δ ≤ V g
�T (s) ≤ u+([s]R) + δ

where (R, u−, u+) = MLA(T, f, g, εfloat, εabs).

We note that the theorem establishes the correctness of lower and upper bounds only
within a constant δ > 0, which depends on εfloat. This limitation is inherited from the
value-iteration scheme used over the magnified regions. If linear programming [13,4]
were used instead, then MLA would provide true lower and upper bounds. However, in
practice value iteration is preferred over linear programming, due to its simplicity and
great speed advantage, and the concerns about δ are solved — in practice, albeit not in
theory — by choosing a small εfloat > 0.

4 Experimental Results

In order to evaluate the time and space performance of MLA, we have implemented
a prototype, and we have used it for three case studies: the minefield navigation prob-
lem, the Bounded Retransmission Protocol [7], and the ZeroConf protocol for the au-
tonomous configuration of IP addresses [5,19].

When comparing MLA to ValIter, we compute the space needs of the algorithms
as follows. For ValIter, we take the space requirement to be equal to |S|, the do-
main of v. For MLA, we take the space requirement to be the maximum value of
2 · |R| + maxr∈R |r| that occurs every time MLA is at line 4 of Algorithm2: this gives
the maximum space required to store the valuations u+, u−, as well as the values v for
the largest magnified region. Since maxr∈R |r| ≥ (|S|/|R|), the space complexity of
the algorithm is (lower) bounded by a square-root function

√
8 · |S|.
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Algorithm Space Time
ValIter 16,384 21.97
MLA 7,926 123.54

MLA Iteration Details
#Abs |R| D Time

1 144 0.994 9.21
2 576 0.837 38.48
3 2,312 0.663 47.36
4 3,256 0.645 11.39
5 3,566 0.020 14.59
6 3,899 0.007 2.52
(a) n = 128, m = 128

Algorithm Space Time
ValIter 65,536 130.18
MLA 7,944 185.13

MLA Iteration Details
#Abs |R| D Time

1 256 0.983 49.48
2 985 0.656 76.27
3 1,513 0.776 12.61
4 2,341 0.605 17.58
5 3,844 0.007 29.19
(b) n = 256, m = 128

Algorithm Space Time
ValIter 262,144 1,065.36
MLA 30,180 3,199.31

MLA Iteration Details
#Abs |R| D Time

1 576 0.999 299.02
2 2,295 0.777 1648.67
3 4,347 0.777 206.64
4 7,171 0.659 228.95
5 11,678 0.525 362.70
6 14,862 0.007 453.33
(c) n = 512, m = 512

Fig. 2. Comparison between MLA and ValIter for n×n minefields with m mines, for εabs = 10−2

and εfloat = 10−4. Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512. All times
are in seconds. #Abs is the number of abstraction steps (number of loops 3–15 of MLA), and
D = maxr∈R(u+(r) − u−(r)).

Algorithm Space Time
ValIter 16,384 20.51
MLA 3,672 54.51

(a) n = 128, m = 128

Algorithm Space Time
ValIter 65,536 130.08
MLA 4,548 126.40

(b) n = 256, m = 128

Algorithm Space Time
ValIter 262,144 1,065.65
MLA 15,476 1,853.01

(c) n = 512, m = 512

Fig. 3. Comparison between MLA and ValIter for n×n minefields with m mines, for εabs = 10−1

and εfloat = 10−2. Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512. All times are
in seconds.

4.1 Minefield Navigation

We experimented with different-size minefields in the mine-field example. In all cases,
the mines were distributed in a pseudo-random fashion across the field. The perfor-
mance of algorithms ValIter and MLA, for εabs = 0.01, are compared in Figure 2. As
we can see, the space savings are 2.06 for a mine density of 1/64, and an average of
8.47 for a mine density of 1/512. This comes at a cost in running time, which is of
5.67 for a mine density of 1/64, and 1.42 to 3.00 for a mine density of 1/512. Espe-
cially for lower mine densities, MLA provides space savings that are larger than the
incurred time penalty. The space savings are even more pronounced when we decrease
the desired precision of the result to εabs = 0.1, as indicated in Figure 3.

4.2 The ZeroConf Protocol

The ZeroConf protocol [5] is used for the dynamic self-configuration of a host joining a
network; it has been used as a testbed for the abstraction method considered in [19]. We
consider a network with 4 existing hosts, and 32 total IP addresses; protocol messages
have a certain probability of being lost during transmission. We consider the problem
of determining the worst-case probability of a host eventually acquiring an IP address:
this is a probabilistic reachability problem.
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N MAX ValIter #Reachable MLA MLA
time states space time

16 3 0.08 1,966 918 27.38
32 5 0.21 5,466 2,604 140.79
64 5 0.40 10,650 5,380 266.53

Fig. 4. Comparison between MLA and ValIter for BRP. N denotes number of chunks and MAX
denotes the maximum number of retransmissions. All times are in seconds.

The abstraction approach of [19] reduces the problem from 26, 121 concrete reach-
able states to 737 abstract states. MLA reduces the problem to 131 regions, requiring
a total space of 1267 (including also the space to perform the magnification step) for
εabs = 10−3 and εfloat = 10−6. We cannot compare the running times, due to the ab-
sence of timing data in [19].

4.3 Bounded Retransmission Protocol

We also considered the Bounded Retransmission Protocol described in [7]. We com-
pared the performance of algorithms ValIter and MLA on “Property 1” from [7], stating
that the sender eventually does not report a successful transmission. The results are
compared in Figure 4, for εabs = 10−2 and εfloat = 10−4. MLA achieves a space saving
of a factor of 2, but at the price of a great increase in running time.

4.4 Discussion

From these examples, it is apparent that MLA does well on problems where there is
some notion of “distance” between states, so that “nearby” states have similar values for
the reachability or safety property of interest. These problems are common in planning
and control. As we discussed in the introduction, many of these problems do not lend
themselves to abstraction methods based on the similarity of transition relations, such
as [19,7], and other methods based on simulation. We believe the MLA algorithm is
valuable for the study of this type of problems. We note that each mine affects a region
of size 5×5 by more than the desired precision εabs = 10−2. Therefore, while the mine
density is only 1/512, the ratio of “disturbed” vs. “undisturbed” state space is 25/512,
or 1/20. This is a typical value in planning problems with sparse obstacles.

On the other hand, for problems where simulation-based methods can be used, these
methods tend to be more effective than MLA, as they can construct, once and for all, a
small abstract model on which all properties of interest can be analyzed.

5 Conclusions

A natural question about MLA is the following: why does MLA consider the concrete
states at each iteration, as part of the “magnification” steps, rather than constructing an
abstract model once and for all, and then analyze it, as other approaches to MDP ab-
straction do [7,18,22,19]? The answer has two parts. First, we cannot build an abstract
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model once and for all: our abstraction refinement approach would require the computa-
tion of several abstractions. Second, we have found that the cost of building abstractions
that are sufficiently precise, without resorting to a “magnification” step, is substantial,
negating any benefits that might derive from the ability to perform computation on a
reduced system.

To understand the performance issues in constructing precise abstractions, consider
the problem of computing the maximal reachability probability. To summarize the max-
imal probability of a transition from a region r to r1, we need to compute P+

r (r1) =
mins∈r maxπ∈Π Prπs (r U r1), where U is the “until” operator of linear temporal logic
[20]; this quantity is related to building abstractions via weak simulation [27,2,24].
These probability summaries are not additive: for r1 �= r2, we have that P+

r (r1) +
P+

r (r2) ≤ P+(r1 ∪r2), and equality does not hold in general. Indeed, these probability
summaries constitute capacities, and they can be used to analyze maximal reachability
properties via the Choquet integral [25,15,16]. To construct a fully precise abstraction,
one must compute P+

r (R′) for all R′ ⊆ R, clearly a daunting task. In practice, in the
minefield example, it suffices to consider those R′ ⊆ R that consist of neighbors of r.
To further lower the number of capacities to be computed, we experimented with re-
stricting R′ to unions of no more than k regions, but for all choices of k, the algorithm
either yielded grossly imprecise results, or proved to be markedly less efficient than
MLA.

The space savings provided by MLA are bounded by a square-root function of the
state space. We could improve this bound by applying MLA hierarchically, so that each
magnified region is studied, in turn, with a nested application of MLA.

Symbolic representations such as ADDs and MTBDDs [6,1] have been used for
representing the value function compactly [10,17]. The decision-tree structure used by
MLA to represent regions and abstract valuations is closely related to MTBDDs, and in
future work we intend to explore symbolic implementations of MLA, where separate
MTBDDs will be used to represent lower and upper bounds.
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Abstract. For two naturals m, n such that m < n, we show how to
construct a circuit C with m inputs and n outputs, that has the fol-
lowing property: for some 0 ≤ k ≤ m, the circuit defines a k-universal
function. This means, informally, that for every subset K of k outputs,
every possible valuation of the variables in K is reachable (we prove that
k is very close to m with an arbitrarily high probability). Now consider
a circuit M with n inputs that we wish to model-check. Connecting the
inputs of M to the outputs of C gives us a new circuit M ′ with m inputs,
that its original inputs have freedom defined by k. This is a very attrac-
tive feature for underapproximation in model-checking: on one hand the
combined circuit has a smaller number of inputs, and on the other hand
it is expected to find an error state fast if there is one.

We report initial experimental results with bounded model checking of
industrial designs (the method is equally applicable to unbounded model
checking and to simulation), which shows mixed results. An interesting
observation, however, is that in 13 out of 17 designs, setting m to be n/5
is sufficient to detect the bug. This is in contrast to other underapproxi-
mation that are based on reducing the number of inputs, which in most
cases cannot detect the bug even with m = n/2.

1 Introduction

Experience with model-checking of industrial hardware designs shows that when
the model violates a specification, it is frequently the case that the values of
only some of the inputs is important for triggering an erroneous behavior (as the
saying goes: “when it rains - it pours!”). Based on this observation it is appealing
to underapproximate the model, attempting to make it easier to check, yet not
eliminating the problematic behavior altogether. In other words, the challenge
is to underapproximate by finding those restrictions that do not prevent all
error states from being reached. Designing a fully automatic model-checking
algorithm based on underapproximation that is still sound and complete requires
an iterative process of underapproximation and refinement.

Automatic underapproximation/refinement for model-checking is not nearly
as popular as its dual, automated overapproximation/refinement. An
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overapproximating abstraction may result in a false negative, accompanied by
a spurious (abstract) counterexample. This counterexample can then be used
to guide the refinement process, as in the CEGAR [8,4,5,3] and proof-based [1]
frameworks (in the latter only the length of the counterexample is used). All of
these works are based on overapproximation.

An underapproximation, on the other hand, may result in a false positive:
here, good refinements are harder to achieve, as there is no equivalent to the
counterexample that can guide it. An exception to this rule is in SAT-based
Bounded Model-Checking (BMC), where the unsatisfiable core can guide the re-
finement: Grumberg et al. [6] used this fact in their work on underapproximation-
refinement for bounded model checking of multi-process systems. We are only
aware of few works on underapproximations with BDDs (e.g., [10,11,2]), all of
which are based on the size of the BDD (e.g., restricting the growth of the reach-
able state-space when the BDD size becomes too large), but none of them are
fully automatic and complete.

In this paper we focus on underapproximations that are based on reducing
the number of inputs to the model. In theory this should make the model easier
to solve, at least in the worst-case, since the number of computation paths has
exponential dependency on the number of inputs1. The most basic technique is
to restrict some of the inputs to constants. Such naive underapproximation, com-
bined with a gradual lifting of these restrictions (typically in a manual manner)
is a common practice in the industry probably from the very first days of in-
dustrial model-checking. If no user-guidance is provided, however, an automated
refinement based on some arbitrary order of lifting the restrictions has a small
chance to succeed, unless the bug is ubiquitous enough to be very simple to find.
It is enough for one of the inputs necessary for exposing the error-trace to be
falsely restricted, to potentially make the model too big for model-checking by
the time this input is released. Another option is to combine inputs (arbitrar-
ily) and refining by splitting the combined sets. In Section 2.2 we analyze these
options in more depth.

What is this article about? The current work suggests an underapproxi-
mation which reduces the number of inputs as well, but it is based on adding
circuitry to the model, while maintaining a measurable and uniform degree of free-
dom to the original inputs. This technique is automatic, easy to combine in an
underapproximation-refinement method, and is applicable to any form of model-
checking or simulation, whether it is SAT-based or BDD-based. The technique is
inspired by theoretical constructions of cryptographic circuits, the Pseudo Ran-
dom Generators (PRGs). These PRGs can expand a short truly random Boolean
sequence into a longer one, which is almost random (more details are given in Sec-
tion 2). Based on constructions of these PRGs, we build simple Boolean circuits
and prove that they have the universality property as defined below.

1 In the context of SAT this is less obvious because SAT does not distinguish between
inputs and other variables. But the reduction in the number of inputs implies that
it has a smaller upper-bound on the size of the smallest back-door set [13], namely
the inputs, which suggest a better upper-bound on the run-time.
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Consider a model M with n inputs that we wish to model-check. We build a
Boolean circuit with m inputs and n outputs, 0 < m < n, which is k-universal.
Informally, this means that the circuit implements a function such that any
valuation of at most k outputs can be reached under some assignment to the
inputs. We then connect the outputs of C to the inputs of M (see Figure 1). The
composed model M ′ has less inputs and underapproximates the original model
M . One of the challenges in such a construction is to guarantee high values of k
for a given value of m. We discuss this question in detail in Section 3.1.

Universality was also used in [7], in the context of simulation. The authors
constructed vectors that have a certain degree of universality and showed that
this indeed has a better chance to expose problems in comparison to alterative
vector sets of the same size.

in out
in out

Cm

n

M

M ′

Fig. 1. Since the attached Boolean circuit is k-universal, any assignment on any k out
of the n inputs of the original model M , can be achieved under some assignment on
the inputs of M ′

The main contribution of this paper is theoretical: we show how to construct
M ′ and derive lower-bounds on the value of k as a function of m. Since the
construction is based on a random function, the results are probabilistic. We
also define a weaker version of universality, called (k, ε)-universality, in which
for only a 1 − ε fraction of the subsets of size k, any assignment is possible
(k-universality corresponds to ε = 0). With this relaxation we prove that for
k = max(0, m − log 1

ε·δ ), where δ is the confidence level, the circuit C is (k, ε)-
universal with probability at least 1 − δ. For example, with probability 0.99, for
99% of the subsets of size k = max(0, m − 14), any assignment can be achieved.

In Section 4 we describe our experiments, which attempt to check whether
k-universality can be useful in the context of model-checking. In other words,
whether the freedom on the original inputs as guaranteed by this method is
indeed helpful in detecting bugs in real designs, in comparison to other forms of
underapproximation that have the same search-space. The answer is conclusive:
it is able to find bugs with far less inputs. The results are less conclusive, but
still positive, when it comes to comparing to a run without underapproximation
at all. This is probably due to the fact that our construction is based on a XOR
function, which is notoriously hard for SAT solvers. We conclude in Subsection
4.1 by pointing to several practical issues in applying this method that are still
open.
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2 Local Universality

2.1 k-Universal Circuits and Upper-Bound on k

Let C be a Boolean circuit with m inputs and n outputs, m ≤ n, implementing
a corresponding function C : {0, 1}m → {0, 1}n.

Definition 1 (k-universal functions). The function C is k-universal if for
every subset K ⊂ {1, . . . , n} of k outputs and every partial assignment αK ∈
{0, 1}k on K, there is a full assignment α ∈ {0, 1}m on the inputs of C such
that C(α)|K = αK . ��
In other words, any subset of k output bits can take all 2k possible assignments
in a k-universal function C.

Example 1. The following function C : {0, 1}2 → {0, 1}3 is 2-universal, since
every two output coordinates have all four values:

C(00) = 000
C(01) = 011
C(10) = 101
C(11) = 110

(1)

��
In Section 3 we present a method for constructing k-universal circuits.

2.2 Universality of Some Known Underapproximations

Underapproximations based on restricting the inputs can be seen as functions
mapping inputs of the restricted model to inputs of the original model. It is
worthwhile to check how universal these functions are. Recall that if the model
is unrestricted, it is n-universal, where n is the number of inputs.

– Underapproximation by restricting a subset of the inputs to constant val-
ues. Regardless of the method for choosing these inputs and their values, or
whether it is part of a refinement process or not, it is clear that the under-
lying set of possible assignment vectors to the restricted model is not even
1-universal, since there are inputs that cannot have both values.

– Underapproximation by combining inputs. In this method the set of inputs is
partitioned, and all inputs in the same partition class are forced to agree on
their value. Regardless of the partitioning method, this method guarantees 1-
universality, but not 2-universality, because two inputs in the same partition
class cannot have all 4 valuations.

3 The PRG-Like Construction

The structure of our k-universal circuits, as mentioned earlier, were inspired by
constructions of Pseudo Random Generators. PRG is a circuit that, given a short
sequence of truly random bits, outputs a longer sequence of pseudo random bits.
More formally:
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Definition 2 (PRG). Pseudo Random Generator (PRG) is a deterministic
polynomial time function G : {0, 1}m → {0, 1}n, where n > m, such that the
following distributions are not distinguishable by circuits of size n:

– Distribution Gn defined as the output of function G on a uniformly selected
input in {0, 1}m.

– Distribution Un defined as the uniform distribution on {0, 1}n. ��
The original motivation for constructing PRG’s was derandomizing probabilistic
algorithms2.

In this section we sketch briefly how the original PRG of [9] is constructed,
and introduce a slightly different (random) construction that, as we prove later,
provides with arbitrarily high probability, k-universal circuits. The parameter
k here is almost linear in m, with practically small coefficients. Without going
into the details, based on a result in [12] it can be shown that (2k log n ≤ 2m),
which means that an upper bound on k is m − log log n. Hence, the circuit we
construct has nearly optimal parameters.

Definition 3 (System3). A family S = (S1, S2, . . . , Sn) of equally-sized subsets
Si ⊂ {1, 2, . . . , m} is a (l, ρ, m, n)-system if

– ∀i, |Si| = l

– ∀i, j |Si ∩ Sj | ≤ ρ ��

Given a Boolean function f : {0, 1}l → {0, 1} and a system S = (S1, S2, . . . , Sn),
we construct the circuit C = C(S, f) as follows:

– IC = {i1, . . . , im} are the inputs of C.
– OC = {o1, . . . , on} are the outputs of C.
– For j ∈ {1, . . . , n},

• Let I(oj) = {ih : h ∈ Sj} be a set of l inputs chosen according to the
system S.

• Set oj = f(I(oj)).

In the original paper [9] the existence of systems with “good” parameters is
proved, and the PRG’s are constructed based on these “good” systems using
functions f that have some specific cryptographic properties. Further details are
given in the above reference.

Now we define our random systems, based on which we will build k-universal
circuits.

2 For instance, a “perfect” PRG would be a function G : {0, 1}log n → {0, 1}n. If we
have such a PRG, then we can deterministically simulate any probabilistic algorithm
by going over all 2log n = n possible seeds for G, running the probabilistic algorithm
and taking the majority vote.

3 In the original terminology this set system is called a Design. We avoid this term to
prevent ambiguity.



344 A. Matsliah and O. Strichman

Definition 4 (Random System). Let n, m be naturals such that 1 ≤ m ≤ n.
An (m, n)-Random System is a family RS = (S1, S2, . . . , Sn) of n uniformly
chosen random subsets Si ⊂ {1, 2, . . . , m}. Namely, for every 1 ≤ i ≤ n (inde-
pendently of each other), the set Si is chosen uniformly at random out of all 2m

possible subsets of {1, 2, . . . , m}. ��
Similarly to the previous construction, we build the circuit C = C(RS, f) where
we set f to be the XOR function (⊕). Formally,

– IC = {i1, . . . , im} are the inputs of C.
– OC = {o1, . . . , on} are the outputs of C.
– For j ∈ {1, . . . , n},

• Let I(oj) = {ih : h ∈ Sj} be the randomly chosen set of inputs from RS.
• Set oj = ⊕(I(oj)).

In the following section we prove that with arbitrary high probability these
circuits are k-universal for relatively high k.

3.1 Lower Bounds on k

First we prove that if the family RS has certain algebraic properties, then the
circuit C that is built from RS is k-universal.

Lemma 1. Let A be an n × m Boolean matrix defined by the family RS. For-
mally, the entry aij ∈ A is 1 if j ∈ Si and 0 otherwise. Then if every k rows of
A are linearly independent4, the circuit C = C(RS, ⊕) as above is k-universal.

Proof (of Lemma 1). First notice that the i’th output of C implements a XOR
function on the inputs that correspond to the ‘1’ entries of the i’th row in the
matrix A. So we can think of C as a linear transformation in field GF (2) (Galois
Field), induced by multiplying the matrix A with the input vector (recall that
addition in GF (2) is equivalent to the XOR operator). In other words, for every
α1α2 · · · αm ∈ {0, 1}m and β1β2 · · ·βn ∈ {0, 1}n, C(α1α2 · · · αm) = β1β2 · · · βn if
and only if the following holds:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 . . . a1m

a21 a22 . . . a2m

. .

. .

. .
an1 an2 . . . anm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

α1
α2
:
αm

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1
β2
.
.
.
βn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Let K = {o1, o2, . . . , ok} ⊂ {1, 2, . . . , n} be arbitrary set of k outputs, and let
βo1βo2 · · · βok

be any partial assignment on K. Notice that for any α1α2 · · · αm

the value C(α1α2 · · · αm) restricted to K equals βo1βo2 · · · βok
if and only if

4 Equivalently, every k rows of A form a full rank matrix.
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ao11 ao12 . . . ao1m

ao21 ao22 . . . ao2m

. .

. .

. .
aok1 aok2 . . . aokm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

α1
α2
:
αm

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

βo1

βo2

.

.

.
βok

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3)

We denote this restricted k×m matrix by B. Recall that our purpose is to prove
that such an assignment α1α2 · · · αm indeed exists. Here we use the fact that
every k rows in A are linearly independent, and thus the matrix B is invertible.
Therefore such an assignment exists, and it can be computed by:

⎛

⎜
⎜
⎜
⎝

α1
α2
...
αm

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ao11 ao12 . . . ao1m

ao21 ao22 . . . ao2m

. .

. .

. .
aok1 aok2 . . . aokm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

βo1

βo2

.

.

.
βok

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

��

The next lemma states that with probability 1 − δ (wher δ > 0 is an arbitrary
confidence parameter), in the matrix A defined by the family RS, every k rows
are linearly independent.

Lemma 2. Let k > 1, a > 1, b > 1 be natural numbers and let δ > 0 be a
fixed confidence parameter. Set b = m/k and a = n/m. Let RS be a family of
subsets in (m, n)-Random System and let A be the underlying matrix as above.
If b > log(e · ab(1/δ)1/k) + 1 then with probability at least 1 − δ every k rows in
A are linearly independent5.

Before proving the lemma, we list some known useful inequalities:

(i) Let x1, x2, . . . , xn be non negative reals. Then
n∏

i=1

(
1 − xi

)
> 1 −

n∑

i=1

xi .

(ii)
(
n
k

)
< ( en

k )k .

(iii) Let m, k be naturals such that m > k. Then
k∑

i=1

2i−m ≤ 2 · 2k−m .

Proof (of Lemma 2). According to the construction of random systems, every
row in A is a random Boolean vector of length m. Let K = {o1, o2, . . . , ok} ⊂
{1, 2, . . . , n} be any sequence of k rows in A. Now we define a sequence of “bad”
event indicators: Ij = 1 if and only if the j’th row oj ∈ K is a linear combination
of the rows o1, . . . , oj−1. Obviously if (

∑k
j=1 Ij) = 0 then the rows in K are

linearly independent. Note that in every step j, the j − 1 preceding vectors span

5 e = 2.718... is the Euler constant.
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a linear space of size at most 2j−1. Since the rows of A are chosen uniformly at
random (independently of each other), we have Pr[Ij = 0] ≥ 2m−2j−1

2m . Therefore,

Pr
[( k∑

j=1

Ij

)
= 0

]
=

k∏

j=1

2m − 2j−1

2m
= (5)

=
k∏

j=1

(1 − 2j−1−m) ≥ 1 −
k∑

j=1

2j−1−m ≥ 1 − 2k−m . (6)

The last two inequalities follow from (i) and (iii). We can now conclude that

Pr
[( k∑

j=1

Ij

)
> 0

]
≤ 2k−m . (7)

There are
(
n
k

) ≤ ( en
k )k possible sets of k rows, and by the Union Bound6 the

probability that some set of k rows is not linearly independent is at most

(
en

k
)k · 2k−m = (eab)k · 2(1−b)k ≤ (eab)k · 2− log(eab(1/δ)1/k)·k = δ . (8)

��

Sample Values of Universality. It is worthwhile to see some values of k given
n, m and δ. For instance, for n = 140, m = 70 and δ = 0.02 we can get k = 10-
universality with probability at least 0.98. This means that we can reduce the
number of inputs to the model by half, and still get 10-universality in a very
high probability.

In general δ has negligible effect on k, hence the probability of success can be
made very close to 1. The chart in Figure 2 refers to a fixed value δ = 0.02. The
chart shows the value of k for n = 100, 200, . . . , 500, where m is sampled 9 times
for each value of n, in the range n/10 . . .9n/10. It is clear from the graph that
k is close to linear in m, and that it has a constant factor of about 5. In fact,
the equation b = log(e · ab(1/δ)1/k) +1 from Lemma 2 implies that k ∼ m

log(n/k) ,
which means that k is linear in m for all practical n.

Corollary 1. Let k > 1, a > 1, b > 1 be natural numbers and let δ > 0 be a
fixed confidence parameter, such that b > log(e ·ab(1/δ)1/k)+1. Set b = m/k and
a = n/m. Then with probability at least 1−δ, a circuit C based on the family RS
of a random system as described above (with parameters m, n) is k-universal.

Proof. By Lemma 2 we know that with these parameters, in the underlying
matrix A every k rows are linearly independent with probability 1− δ or higher.
On the other hand, by Lemma 1 we know that if every k rows in A are linearly
independent, then the circuit C = C(RS, ⊕) is k-universal. ��
6 Union Bound: For a countable set A1, A2, A3, . . . of events, Pr

��
i Ai

�
≤
�

i Pr
�
Ai

�
.
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Fig. 2. The value of k for different values of m and n, and a fixed value of δ (0.02)

Based on Corollary 1, it is left to show how we construct the underapproxi-
mating model M ′. The construction is as follows:

– Let {i1, . . . , in} be the primary inputs of M . Construct the k-universal circuit
C based on a random system RS = (S1, . . . , Sn).

– For each j ∈ {1, . . . , n}, connect the j’th input of M to the j’th output of
C.

The inputs of the underapproximating model M ′ are the m inputs of C.

3.2 A Better Lower Bounds on k for “Almost” k-Universality

In practice, given n and m the parameter of universality (k) is expected to be
significantly higher than what our analytic lower bound provides. But it is quite
challenging to estimate the gap between the lower bound and the actual values
of k, since checking k universality of a circuit C : {0, 1}m → {0, 1}n is hard for
reasonably large n, m and k. But if we slightly relax our notion of universality
we can get much better bounds on k. Formally, let m, n, k and C = C(RS, ⊕)
be as above. Given a subset K ⊂ {1, . . . , n} of k outputs, we say that the subset
K is covered by C if for every partial assignment αK ∈ {0, 1}k on K, there is a
full assignment α ∈ {0, 1}m on the inputs of C such that C(α) |K= αK .

Definition 5 ((k, ε)-universality). A circuit C is (k, ε)-universal if C covers
at least (1 − ε)

(
n
k

)
subsets K ⊂ {1, . . . , n} of k outputs. ��

Recall that our previous bounds on k were valid for circuits that cover all
(
n
k

)

subsets K, i.e. (k, 0)-universal circuits. The following result is another lower-
bound, which is better than the previous one as long as ε is not too small.

Lemma 3. Let m < n be naturals and let C = C(RS, ⊕) be a circuit as defined
above. Fix 0 < δ, 0 < ε < 1 and set k = max(0, m − log 1

ε·δ ). The circuit C is
(k, ε)-universal with probability at least 1 − δ.
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Observe the implication of this result : since m is an absolute upper bound on k, it
means that with a small sacrifice of universality and confidence we obtain a value
close to this theoretical limit. For example, for δ = ε = 0.1 (and m ≥ 7), we get
k = m−7, i.e., with probability at least 0.9, the circuit C is (max(0, m−7), 0.1)-
universal. Now consider a negligible sacrifice and failure probability, such as
δ = ε = 0.01. In this case we get (k, 0.01)-universality for k = max(0, m − 14).

Proof (of Lemma 3). The proof is a simple application of Markov’s inequality7

on one of the consequences from the proof of Lemma 2. For every subset K ⊂
{1, 2, . . . , n} of size k, we define XK as a random 0, 1 variable, such that XK = 1
if and only if the subset K is not covered by C. Referring to the proof of Lemma
1, the set K is covered by C if and only if the sub-matrix B that corresponds
to K has full rank (otherwise the linear transformation is not injective). Then
from the proof of Lemma 2 we have Pr[XK = 1] ≤ 2k−m. Now let

X =
∑

K⊂{1,...,n},|K|=k

XK

be the sum of these variables. By linearity of expectation8,

E[X ] =
∑

K

E[XK ] ≤
(

n

k

)

· 2k−m , (9)

and by Markov’s inequality,

Pr
[
X ≥ ε ·

(
n

k

)]
= Pr

[
X ≥ ε · 2m−k ·

(
n

k

)

· 2k−m
]

≤ 1
ε · 2m−k

= δ . (10)

From (10) we derive k ≥ m − log 1
ε·δ . ��

4 Experimental Results

We interfaced our tool with IBM’s model-checker RuleBase. We experimented
with bounded model-checking of 17 different real designs (after Rulebase has
applied numerous optimizations on them in the front-end, hence the relatively
small number of inputs) that had previously known bugs. The tables show our
results without an automatic refinement procedure. The reason we are giving
the tables in this form is that we want to show the influence of m on run-time
and chances to find the bug with each underapproximation technique. The tables
show run-times in seconds until detecting the bug, for different values of m, where
m in all techniques represent the number of inputs to the underapproximated
7 Markov inequality: Let X be a random variable assuming only non-negative values.

Then for all c > 0, Pr
�
X ≥ c · E[X]

�
≤ 1

c
.

8 Linearity of Expectation: For any n random variables X1, . . . , Xn the following holds:

E
��n

i=1 Xi

�
=
�n

i=1 E[Xi] .
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model. A sign ‘-’ denotes that the bug was not found up to a bound of 100. ‘TO’
denotes a timeout of 6 hours.

The table in Figure 3 summarizes results with our construction, hence m is
the number of inputs to the circuit. The column S denotes run-time with no
underapproximation. It is clear from this table that while m = n/10 is too low,
m = n/5 is high enough to find the bug in 13 out of 17 cases, and typically
in less time comparing to the S column, despite the complexity of the XOR
function in the PRG-like circuit. Thus, our refinement procedure is set to begin
with this value. The last three designs indicate that there are cases in which
underapproximation does not work (in all three methods – see Figure 4 as well).
Since Rulebase activates various engines in parallel, this is not a serious issue:
the contribution of a tool is mainly measured by the number of wins rather than
by the average run-time. This is also the reason it is acceptable that such a
method has no value if the design satisfies the property.

(PRG) m = ...
Design inputs (n) S n/2 n/3 n/5 n/10

IBM#1 45 96 66 63 66 63
IBM#2 76 173 149 76 72 68
IBM#3 76 191 127 77 79 -
IBM#4 85 211 170 121 105 140
IBM#5 68 61 65 20 592 -
IBM#6 68 73 59 14 661 -
IBM#7 68 482 308 46 52 -
IBM#8 68 122 152 16 90 -
IBM#9 64 2101 1915 1966 1654 1208
IBM#10 80 1270 1392 1830 1137 -
IBM#11 83 2640 2364 2254 1845 -
IBM#12 6 8201 7191 - - -
IBM#13 60 942 453 432 351 -
IBM#14 218 965 735 778 510 396
IBM#15 52 1206 - - - -
IBM#16 157 953 - - - -
IBM#17 68 21503 TO TO TO TO

Fig. 3. Run-times with the PRG construction. The second column indicates the num-
ber of inputs in the design, i.e., n. The column ‘S’ stands for run-times without any
underapproximation.

In Figure 4 we show results for the two alternative underapproximations de-
scribed in Subsection 2.2. It is clear from these tables that universality matters:
both of these underapproximations need far more inputs than the PRG con-
struction in order to find the bug. Somewhat surprisingly even in the cases they
are able to find the bug, they do so in time comparable or longer than without
underapproximation at all. The reason seems to be that the underapproximation
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(FIX) m = ... (Group) m = ...
Design inputs (n) S n/2 n/3 n/5 n/10 n/2 n/3 n/5 n/10

IBM#1 45 96 246 - - - 223 229 227 231
IBM#2 76 173 - - - - 361 446 - -
IBM#3 76 191 373 - - - 168 317 - -
IBM#4 85 211 191 317 - - 306 289 405 -
IBM#5 68 61 - - - - 410 - - -
IBM#6 68 73 - - - - - - - -
IBM#7 68 482 - - - - 561 491 - -
IBM#8 68 122 - - - - 113 - - -
IBM#9 64 2101 1693 - - - 2150 - - -
IBM#10 80 1270 - - - - - - - -
IBM#11 83 2640 - - - - - - - -
IBM#12 6 8201 - - - - - - - -
IBM#13 60 942 1206 - - - 413 407 - -
IBM#14 218 965 - - - - 969 1102 - -
IBM#15 52 1206 - - - - - - - -
IBM#16 157 953 - - - - - - - -
IBM#17 68 21503 - - - - TO - - -

Fig. 4. Run-times when (left) fixing n − m inputs to an arbitrary value and (right)
grouping the inputs into m sets, and forcing inputs in the same set to be equal. See
Section 2.2 for more details on these underapproximations. The column ‘S’ stands for
run-times without any underapproximation.

delays the finding of the bug to deeper cycles, which in general affects negatively
the run time of SAT.

4.1 Further Directions

There are various directions in which this research can progress. First, it has
to be evaluated with unbounded model-checking and simulation. Simulation is
insensitive to the XOR circuit, which indicates that it might show a stronger
influence on the results. Second, our current implementation of refinement is
very naive, as it simply increases m. There are probably better alternatives for
refinement, and we leave it for future work to find them. In the case of SAT-based
model checking, for example, the unsatisfiable core can guide the refinement.

Finally, the fact that in Bounded Model Checking the inputs of each time-
frame are represented by different variables can be exploited for reducing m
further. The PRG construction can be attached to the unrolled circuit. This
construction will now have m inputs for 0 < m < n · K, where K is the unrolling
bound. It is very likely that errors can be found this way with a smaller set of
inputs per cycle.

Acknowledgements. We thank E. Ben-Sasson, M. Shamis and K. Yorav for
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1 NEC Laboratories America, Princeton, NJ 08540, U.S.A
2 Western Michigan University, Kalamazoo, MI 49008, U.S.A

Abstract. We present an extrapolation with care set operator to accelerate ter-
mination of reachability computation with polyhedra. At the same time, a coun-
terexample guided refinement algorithm is used to iteratively expand the care
set to improve the precision of the reachability computation. We also introduce
two heuristic algorithms called interpolate and restrict to minimize the polyhe-
dral representations without reducing the accuracy. We present some promising
experimental results from a preliminary implementation of these techniques.

1 Introduction

Static analysis based on abstract interpretation [9] and model checking [7, 27] are pop-
ular techniques for program verification. They both rely on fixpoint computation, with
the former heavily employing widening [11] to ensure termination. The precision of
a widening operator is crucial for the effectiveness of abstract interpretation. Often a
widening operator is carefully designed by the user a priori for an abstract domain, and
if it does not provide enough precision, the user either accepts the result as inconclusive
or has to redesign the operator. In this paper, we use counterexample guided refinement
developed in model checking to automatically improve the precision of reachability
computation using the polyhedral abstract domain.

Widening for convex polyhedra was introduced in [11] for numerical relational
analysis and later extended to verification of integer-valued programs [15] and linear
hybrid systems [16]. The operator was generalized in [5] and in [2] to powersets (or fi-
nite unions) of convex polyhedra. Approximation techniques were also studied in [17],
where an extrapolation operator is introduced. The difference between widening and
extrapolation is that the latter does not guarantee termination. The widening precision
can be increased by partitioning methods [20]. In [1], a widening algorithm was in-
troduced by combining several known heuristics and using convex widening as a last
resort. In all these previous works, there is no automatic refinement involved.

In model checking, counterexample guided refinement [21, 6, 3] has been used to-
gether with predicate abstraction [13] to verify software programs. Predicate abstrac-
tion relies on finite sets of predicates to define abstract domains, and therefore can be
viewed as an instance of domain refinement in abstract interpretation. However, finite
abstractions in general are not as powerful as an infinite abstract domains with widen-
ing for Turing equivalent programming languages [10]. Although our new procedure
uses a backward counterexample analysis similar to those in [3], our goal is to refine

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 352–365, 2007.
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the care set in the same abstract domain instead of creating a new abstract model (or a
new abstract domain).

In a recent work [14], Gulavani and Rajamani also proposed a counterexample driven
refinement method for abstract interpretation, which identifies the fixpoint steps at
which precision loss happens due to widening in forward fixpoint computation, and
then use the least upper bound (convex hull for convex polyhedra) instead of widening at
those steps. In effect, their refinement procedure simply skips the widening at particular
steps (the least upper bound of two consecutive sets P and Q of a fixpoint computation
is actually Q, since P � Q). Our refinement procedure does not merely skip the over-
approximation; instead, it produces a refined care set to guide the direction-of-growth
in over-approximation at the next iteration of the refinement loop.

We define a new operator called extrapolation with a care set. Given two sets P � Q
and a care set C such that Q∩C = ∅, the extrapolation of P with respect to Q under C
is a set S such that Q � S and S ∩ C = ∅. In reachability computation, the care set C
is initially empty—in this case the new operator can be substituted by normal widening
whose result S = P∇Q satisfies both Q � S and S ∩ C = ∅. If a given invariant
property ψ holds in the over-approximated reachable set, then the property is proved.
Otherwise, we intersect this over-approximated set with ¬ψ, pick a subset, and start
a precise backward analysis in order to build a counterexample. If a counterexample
can be found, then we report it as a real error; otherwise, it remains to be decided. In
the latter case, we analyze the spurious counterexample and produce a new care set
C. The expanded care set C is used with extrapolation to compute a new reachability
fixpoint. This iterative refinement process continues until either enough precision is
achieved to derive a conclusive result, or the computing resources are exhausted. Note
that the entire procedure is automatic, whereas for the existing widening techniques,
typically the user has to redesign the widening operator manually when a false bug is
reported.

We propose a set of algorithms for implementing the new operator in the domain
of convex polyhedra. For two powersets P and Q of convex polyhedra, we apply the
proposed operator to individual pairs Pi ∈ P and Qi ∈ Q only when Pi � Qi. In prac-
tice, the use of a care set can significantly increase the precision of program analysis in
the polyhedral powerset domain. We also introduce two new operators called interpo-
late and restrict to heuristically simplify the polyhedral representations. Applying these
two operators during forward and backward reachability fixpoint computations does not
cause a loss in precision.

There is an analogy between our widening criterion and the over-approximation in
interpolant-based model checking [24]. That is, both are goal-directed and may over-
approximate the reachable states by adding any state that cannot reach an error in a
given number of steps, or along a given path. Our method can benefit from other recent
improvements in widening-based approaches, such as lookahead widening [12]. Im-
proved ways of selecting extrapolation points can benefit us also. Overall, we believe
that our goal-directed approach for improving precision is complementary to these ap-
proaches based mostly on program structure.
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2 Preliminaries

2.1 Abstract Interpretation

Within the general framework of abstract interpretation [9], the abstract postcondition
and precondition operations, as well as the least upper bound, may all induce approx-
imations. Widening is used to enforce and/or to accelerate the termination of fixpoint
computations since in general the computation may not have a fixpoint or have one that
cannot be reached in a finite number of iterations.

Widening (cf. [9]). A widening operator on a partial order set (L, �) is a partial func-
tion ∇ : L × L → L such that

1. for each x, y ∈ L such that x∇y is defined, x � x∇y and y � x∇y;
2. for all ascending chains y0 � y1 � ..., the ascending chain defined by x0 := y0

and xi+1 := xi∇yi+1 for i ≥ 0 is not strictly increasing.

An operator satisfying the first condition but not the strictly increasing requirement of
the second condition is called an extrapolation [17]. In the sequel, we use ∇ to denote
both widening and extrapolation when the context is clear. Since there is more freedom
in choosing an actual implementation of an extrapolation operator than widening, it is
possible for extrapolation to produce a tighter upper-bound set than widening.

For program verification, we consider a powerset domain of convex polyhedra over
a linear target program, where only ∇ causes the precision loss (i.e., precondition, post-
condition, and least upper bound are precise). We want to compute the reachability
fixpoint F = μZ . I ∪ post(Z), where I is the initial predicate and post(Z) is the
postcondition of Z with respect to a set of transfer functions. In general, Z is a finite
union of convex polyhedra. We define ψ as a predicate that is expected to hold in the
program (i.e., the property of interest), then program verification amounts to checking
whether F � ψ. To apply widening/extrapolation in the reachability computation, let
yi+1 = xi ∪ post(xi); that is,

y0 = I x0 = I
y1 = I ∪ post(I) x1 = I ∇y1
y2 = x1 ∪ post(x1) x2 = x1∇y2
y3 = . . .

Reachability computation in the concrete domain, as is often used in symbolic model
checking [23], can be viewed as a special case (by making xi = yi for all i ≥ 0).

2.2 Polyhedral Abstract Domain

The polyhedral abstract domain was first introduced in [11] to capture numerical rela-
tions over integers. Let Z be the set of integer numbers and Z

n be the set of all n-tuples.
A linear inequality constraint is denoted by aT ·x ≤ b, where x, a ∈ Z

n are n-tuples (x
is the variable) and b ∈ Z is a scalar constant. A polyhedron P is a subset of Z

n defined
by a finite conjunction of linear inequality constraints, P = {x ∈ Z

n | ∀i : aT
i ·x ≤ bi}.

We choose to use this constraint system representation in order to be consistent with
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our actual implementation, which is based on the Omega library [25]. An alternative
would be to define P as a generator system comprising a finite set of vertices, rays, and
lines. Some implementations (e.g., [22]) choose to maintain both to take advantages of
their complementing strengths and to avoid the conversion overhead between the two.

The first widening operator for this abstract domain was introduced in [11], often
being termed as standard widening (we follow this convention for ease of reference).

Standard Widening. Let P and Q be two polyhedra such that P � Q; the widening
of P with respect to Q, denoted by P∇Q, is computed as follows: when P is empty,
return Q; otherwise, remove from P all inequalities not satisfied by Q and return.

The intuition behind standard widening is to predict the directions of growth from
P to Q and then drop any constraint of P in these directions. The finiteness of the first
polyhedron (where widening starts) ensures termination.

Widening Up-to. Let P and Q be two polyhedra such that P � Q, and let M be
a finite set of linear constraints. The widening up-to operator, denoted by P∇MQ, is
the conjunction of the standard widening P∇Q with all the constraints in M that are
satisfied by both P and Q.

The widening up-to operator was introduced in [15, 16] to improve standard widening
whenever the result is known to lie in a known subset. This subset, or up-to set M ,
is defined as a set of constraints associated with each control state of a program. For
instance, if a variable x is declared to be of subrange type 1..10, then x ≥ 1 and x ≤ 10
are added into M . If there exists a loop for (x=0; x<5; x++), then the constraint
x < 5 is also added into M . It is worth pointing out that the up-to set in [15, 16] is fixed.
It does not consider automatic refinement adaptive to the property under verification.

3 Extrapolation with a Care Set

We define the care set to be an area within which no extrapolation result should reside in
order to avoid false bugs. We use a precise counterexample guided analysis to gradually
expand the care set and therefore improve the precision of the extrapolation with care
set operator (defined below).

Definition 1. An extrapolation with a care set C on a partial order set (L, �) is a

partial function
¬C

∇ : L × L → L such that

1. for each x, y ∈ L such that x
¬C

∇ y is defined, x � x
¬C

∇ y and y � x
¬C

∇ y;
2. for all ascending chains y0 � y1 � ... such that yi ∩ C = ∅, the ascending chain

defined by x0 := y0 and xi+1 := xi

¬C

∇ yi+1 for i ≥ 0 satisfies xi ∩ C = ∅.

Definition 1 is generic since it is not restricted to any particular abstract domain. In
this paper, we consider an implementation for the domains of convex polyhedra and
their powersets. Figure 1 provides a motivating example, in which P1 and Q1 are two
polyhedra and C is the care set. P1 is represented by the shaded area in the middle, and
Q1 is represented by the solid thick lines. From P1 to Q1 there are two directions of
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¬C

∇Q1

P ′

Fig. 1. An example of using a care set with extrapolation

growth. The standard widening P1∇Q1 would generate the outer triangle that intersects
C, thereby introducing false bugs.

We prohibit the growth to the right by using the care set C in extrapolation. By

expanding only towards the left, the extrapolation result, denoted by P1
¬C

∇ Q1 on the
left, and P2 (shaded area) on the right, does not intersect C. In the next fixpoint step,
we consider the extrapolation of P2 with respect to Q2 (solid thick lines) under the care
set C. This time, the standard widening result would not intersect C. Therefore, we
prefer that the result of extrapolation with a care set is the same as P2∇Q2.

3.1 Using the Care Set

We now present an algorithm to compute the extrapolation with care set for convex
polyhedra. In the sequel, a linear inequality constraint c is also referred to as a half-
space since it represents a set {x ∈ Z

n|aT ·x ≤ b}. Let c be a constraint of a polyhedron
P , and let c′ be another constraint (may or may not be in P ); we use P c

c′ to denote
the new polyhedron after replacing c with c′ in P , and use P c

true to denote the new
polyhedron after dropping c from P .

Algorithm 1. Let P � Q be two polyhedra, and C be a non-empty powerset such that
Q ∩ C = ∅. The extrapolation of P with respect to Q under C is computed as follows:

1. build a new polyhedron P ′: for each constraint c of P whose half-space does not
contain Q, if P c

true ∩ C = ∅, then drop c.
2. build a new polyhedron Q′: drop any constraint c of Q whose half-space does not

contain P ′.

Return Q′ as the result.

An example of applying this algorithm is the extrapolation of P1 with respect to Q1
under the care set C to generate P2 in Figure 1. In this example, P ′ is the polyhedron
formed by dropping the left-most constraint of P1; then all but the left-most constraint
of Q are satisfied by P ′, so the result Q′ is the polyhedron obtained by dropping the
left-most constraint of Q1. It is clear that the result does not intersect with C. In general,
the result S of Algorithm 1 satisfies Q � S � P∇Q.

Using this algorithm together with an iterative framework to improve the care set
can guarantee that after refinement, the previous precision loss will not appear again.
However, if all the directions of growth (indicated by standard widening) are forbidden
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by the care set C, then Algorithm 1 will return Q. This may lead to postponing the
widening operation forever (which may produce a non-terminating sequence). In theory,
if desired, we could remedy the termination problem by switching from Algorithm 1
back to standard widening after a sufficiently large (but finite) number of fixpoint steps.
Another alternative is to use the widening up-to operator instead of extrapolation, by
accepting the fact that the refinement of care set may stop making progress. However,
there is a trade-off between precision and termination, since program verification in
general is undecidable in the polyhedral domain. In practice, it is often possible for the
proposed technique to achieve both termination and increased precision.

This algorithm is defined for two convex polyhedra. In program verification, we
intend to represent reachable state sets by finite unions of convex polyhedra. We extend
the extrapolation operator to the powerset domain as follows: given two powersets P
and Q, we apply Algorithm 1 only to individual convex polyhedra pairs Pi ∈ P and
Qi ∈ Q such that Pi � Qi. If Pi ∈ P is not contained in any Qi ∈ Q (no matching
pair), we simply use Pi. The extrapolation result is also a powerset. This is similar to
the approach of Bultan et al. [5], except that their work does not use the care set.

3.2 Refinement for Improving the Care Set

Let F̂ be the fixpoint of reachability computation achieved with extrapolation, and F �
F̂ be the set of actual reachable states. If the invariant property ψ holds in F̂ , then ψ
also holds in F . If there exists s ∈ (F̂ ∩ ¬ψ), it remains to be decided whether s ∈ F ,
or s is introduced because of extrapolation. If s ∈ F , then we can compute a concrete
counterexample. Otherwise, there is a precision loss due to extrapolation.

We compute F̂ by extrapolation with care set as follows,

– F̂0 = I;

– F̂i+1 = F̂i

¬C

∇ (F̂i ∪ post(F̂i)), for i ≥ 0 until fixpoint.

When the care set C is empty, the extrapolation with care set is equivalent to normal
widening. If there is an index fi such that F̂fi ∩¬ψ = ∅, we stop reachability computa-
tion and start the backward counterexample analysis (using precondition computations),

– Bfi = F̂fi ∩ ¬ψ;
– Bi−1 = F̂i−1 ∩ pre(Bi) for all i ≤ fi and i > 0, if Bi = ∅.

If B0 = ∅, we have found a concrete counterexample inside the sequence B0, . . . , Bfi.
If Bi−1 = ∅ for an index i > 0, then the set Bi is introduced by extrapolation.

Theorem 1. If there exists an index 0 < i < fi such that Bi−1 = ∅, then Bi must have
been introduced into F̂i by extrapolation during forward fixpoint computation.

Proof. Since F̂i = F̂i−1
¬C

∇ (F̂i−1 ∪ post(F̂i−1)), the set Bi ⊆ F̂i is added either by
postcondition or by extrapolation. Since Bi−1 = ∅ and Bi−1 = F̂i−1 ∩ pre(Bi), Bi is
not reached from F̂i−1 in one step. Therefore Bi is introduced by extrapolation. ��
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Fig. 2. Two examples of applying widening up-to operator: M = {¬c1, ¬c2, ¬c3}

We expand the care set (initially empty) by making C = C ∪ Bi. After that, extrapo-
lation is allowed only if it does not introduce any erroneous state in Bi. Recall that ex-
trapolation estimates directions of growth and then over-approximates growth in these
directions. Bi provides hints about directions in which over-approximation should be
prohibited. With the expanded care set C, we can re-start reachability fixpoint com-
putation from F̂i−1 where Bi−1 = ∅ and Bi = ∅. The bad states in set F̂ ∩ ¬ψ can
no longer be reached through the same counterexample. This set may either become
empty, or remain non-empty due to a different sequence of F̂i’s. In the latter case, we
keep expanding the care set until one of the following happens: (1) a concrete coun-
terexample is found and we report that the property ψ fails; (2) the set F̂ ∩¬ψ is empty
and we report that the property ψ holds; (3) the limit of computing resources (CPU time
or memory) is exceeded; in this case, the property remains undecided.

The correctness of the iterative refinement method is summarized as follows: (1)
Since F̂ remains an upper-bound of F , if a property fails in F , then it must fail in
F̂ as well. Therefore, a failing property will never be reported as true in our analysis.
(2) Since we report bugs only when the precise backward analysis reaches an initial
state, only failing properties can produce concrete counterexamples. Therefore, a pass-
ing property will never be reported as false in our analysis.

We have kept union exact in order to simplify the presentation of our refinement algo-
rithm. However, only the requirement of exact postcondition/precondition is necessary.
Union can be made less precise by, for instance, selectively merging convex polyhe-
dra in a powerset, as long as the resulting powerset does not immediately intersect the
care set. This precision loss can be recovered by using the same counterexample guided
refinement (the argument is similar to Theorem 1).

3.3 Improving the Up-to Set

Once the care set C is computed, it can be used to derive the up-to set M for the widen-
ing up-to operator. In our iterative refinement framework, the extrapolation operator can
be replaced by ∇M—this is an alternative way of implementing our iterative widening
refinement procedure. In [15, 16], the original ∇M operator relies on a fixed set M of
linear constraints, which are often derived statically from control conditions of the target
program. Given a care set C, we can negate individual constraints of its polyhedra and add
them into the up-to set M ; that is, M ={¬ci | ci is a constraint of a polyhedron in C}.

In widening up-to computation P∇MQ, the half-space of a constraint in M , or ¬ci,
does not have to contain P and Q. If ¬ci contains P and Q, the definition of ∇M
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demands that ¬ci also contains P∇MQ. However, if ¬ci does not contain P and Q,
then ¬ci does not need to contain P∇MQ either. Figure 2 shows two examples for this
computation, where C is the care set and M is the derived up-to set. In the left example,
since both ¬c1 and ¬c2 (representing areas above the two lines) contain Q (hence P ),
the result of P∇MQ is the conjunction of ¬c1, ¬c2, and standard widening P∇Q; the
constraint ¬c3 (representing the area below the line) does not contain Q. In the right
example, since none of the three constraints ¬c1, ¬c2, ¬c3 contains Q, the widening
result is simply P∇Q itself, and therefore (P∇MQ) ∩ C = ∅.

In general, the up-to set M is weaker than the care set C in restricting the ways
to perform overapproximation, so there is no guarantee that the widing up-to result
does not intersect C. Therefore, it is possible that the reachability fixpoint computation
(with widening up-to) after the refinement of care set generates a previously inspected
spurious counterexample. As a result, although each individual forward reachability
fixpoint computation always terminates, the overall iterative refinement loop may stop
making progress (a tradeoff).

4 Optimizations

Counterexample analysis using precise precondition computations may become compu-
tationally expensive. In this section, we present several optimizations to make it faster.

4.1 Under-Approximating Backward Analysis

The overhead of counterexample analysis can be reduced by under-approximating the
set Bi for i ≤ fi and i > 0; that is, at each backward step, we use a non-empty subset
B′

i � Bi. For instance, B′
i could be a single convex polyhedron when Bi is a finite

union of polyhedra. The simplified counterexample analysis is given as follows:

1. Bfi = (F̂fi ∩ ¬ψ) and B′
fi = SUBSET(Bfi);

2. Bi−1 = F̂i−1 ∩ pre(B′
i) and B′

i−1 = SUBSET(Bi−1) for all i ≤ fi, if B′
i = ∅.

The correctness of this simplification, that the proof of Theorem 1 still holds after
we replace Bi with B′

i, is due to the following two reasons. First, the precondition is
precise in our powerset domain (it would not hold, for instance, in the convex poly-
hedral lattice where LUB may lose precision). Second, the overall iterative procedure
remains correct by adding each time B′

i instead of Bi into the care set C—the differ-
ence between this simplified version and the original counterexample analysis is that
the simplified one uses a more lazy approach for refinement, and it may need more than
one refinement pass to achieve the same effect as using Bi. When using B′

i instead of
Bi to compute the care set, we may not be able to remove the spurious set Bi \ B′

i

right away. However, if spurious counterexamples leading to Bi \ B′
i appear again after

refinement, SUBSET(Bi \ B′
i) will be picked up to start computing the new care set.

Finally, if B′
0 = ∅, it guarantees that there is a real counterexample since all precon-

dition computation results, although underapproximated, are accurate. What we miss
is the guarantee to find a concrete counterexample during the earliest possible pass,
because there may be cases where Bi = ∅ but B′

i = ∅.
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Fig. 4. comparing gist with restrict

4.2 Simplifications of Polyhedral Representations

We now present two heuristic algorithms for simplifying the representations of polyhe-
dra without reducing the accuracy of fixpoint computation. These are orthogonal to the
use of extrapolation with a care set.

Definition 2 (Interpolate). Let P and Q be two sets such that P � Q. The interpolate
P �̃Q is a new set such that P � (P �̃Q) � Q.

The interpolate can be used to simplify the from set, i.e., the set for which we compute
the postcondition during the reachability computation. Let F̂i−1 � F̂i be two consec-
utive sets in this computation. We use (F̂i \ F̂i−1)�̃F̂i instead of F̂i (or the frontier
F̂i \ F̂i+1) to compute the postcondition. In principle, any set S such that P � S � Q
can be used as the from set without reducing the accuracy of the reachability result. We
prefer one with a simplier polyhedral representation.

Algorithm 2. Let P � Q be two convex polyhedra. We compute a new polyhedron S
by starting with S = P and keep dropping its constraints c as long as Sc

true � Q. We
return, between Q and S, the one with the least number of constraints.

This heuristic algorithm tries to minimize the representation of P by inspecting every
constraint greedily. Figure 3 (a) gives an example for applying this algorithm, where
dropping any constraints in P �̃Q makes the result grow out of Q.

We note that similar ideas and algorithms exist for BDDs [4] and are routinely used
in symbolic model checking [23]. Our definition of �̃ is a generalization of these ideas
for abstract domains. Also note that since the purpose here is heuristic simplification,
any cheap convex over-approximation technique (instead of a tight convex-hull) can be
used to first compute a convex set from F̂i \ F̂i+1.

Definition 3 (Restrict). Let P and Q be two sets. The restrict P ↓ Q is defined as the
new set {x ∈ Z

n | x ∈ P ∩ Q, or x ∈ Q}.

Restrict computes a simplified set S for P such that (1) its intersection with Q, or
S ∩ Q, equals P ∩ Q and (2) S may contain an arbitrary subset of ¬Q. Restrict can
be used to simplify the from set in precondition computation, with respect to a known
F̂ . In counterexample analysis, when computing Bi−1 = F̂i−1 ∩ pre(B′

i), we use
pre(B′

i ↓ F̂ ) instead of pre(B′
i). As is shown in Figure 3 (b), adding s ∈ ¬F̂ does not

add any erroneous states into F̂k for 0 ≤ k < (i − 1).
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Algorithm 3. Let P and Q be convex polyhedra. We define the computation of (P ↓ Q)
as follows: If P = Z

n or if Q = ∅, return Z
n. Otherwise, in the recursive step, choose

a constraint c from P : if ¬c ∩ Q is empty, return (P c
true ↓ Q), else return c ∩ (P c

true ↓
(Q ∩ c)).

This algorithm is inspired by the gist operator [26], which itself is a restrict operator
on polyhedra. In particular, gist P given Q returns a conjunction containing a minimal
subset of constraints in P such that (gist P given Q) ∩ Q = P ∩ Q. However, gist
in its original form is expensive and not suitable for fast heuristic simplification. In
Algorithm 3, we have safely dropped the minimal subset requirement by checking the
emptiness of ¬c ∩ Q (instead of P c

¬c ∩ Q as in [26]). This may sometimes produce a
less compact representation: in Figure 4, for example, P ↓ Q (right) has two constraints
while the gist result has only one. However, the computation of P ↓ Q is more efficient
and the result remains a generalized cofactor [29].

5 Application in Program Verification

We have implemented the proposed techniques in the F-SOFT [19, 18] platform. F-
SOFT is a tool for analyzing safety properties in C programs by using both static anal-
ysis and model checking. Static analysis is used to quickly filter out properties that can
be proved in a numerical abstract domain [28]. Unresolved properties are then given to
the model checker. Despite the combination of different analysis engines, in practice
there are still many properties that (1) cannot be proved by static analysis techniques
with standard widening, and (2) symbolic model checking takes a long time to terminate
because of the large sequential depth and state explosion. Our work aims at resolving
these properties using extrapolation with an iteratively improved care set.

Implementation. We incorporated the proposed technique into a symbolic analysis
procedure built on top of CUDD [30] and the Omega library [25], as described in [32].
It begins with a C program and applies a series of source-level transformations [18],
until the program state is represented as a collection of simple scalar variables and each
program step is represented as a set of parallel assignments to these variables (each
program step corresponds to a basic block). The transformations produce a control flow
structure that serves as the starting point for both static analysis and model checking.
We use BDDs to track the control flow logic (represented as Boolean functions) and
polyhedral powersets to represent numerical constraints of the target program.

The reachable sets (e.g. F̂i) are decomposed and maintained as powersets at the
individual program locations (basic blocks), so that each location l is associated with a
subset F l

i . Each location l is also associated with a care set Cl. Extrapolation with the
care set Cl is applied only locally to F l

i and F l
i ∪ postl(Fi), where postl(Fi) denotes

the subset of postcondition of Fi that resides at the program location l.
During forward reachability computation, we apply extrapolation selectively at cer-

tain program locations: We identify back-edges in the control flow graph whose removal
will break all the cycles in the control flow. Tails of back-edges serve as the synchro-
nization points in the fixpoint computation. A lock-step style [32] fixpoint computation
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Table 1. Comparing methods for computing reachability fixpoint (? means unknown)

Test Program Analysis Result Total CPU Time (s)
name loc vars blks widen extra MIX BDD widen extra MIX BDD

only refine m.c. m.c. only refine m.c. m.c.

bakery 94 10 26 ? true true true 18 5 13 2
tcas-1 1652 59 133 ? true true true 18 34 128 433
tcas-2 1652 59 133 ? true true true 18 37 132 644
tcas-3 1652 59 133 ? true true true 18 49 135 433
tcas-4 1652 59 133 ? true true true 18 19 137 212
tcas-5 1652 59 133 ? false false false 18 80 150 174
appl-a 1836 78 307 true true ? ? 17 22 >1800 >1800
appl-b 1836 78 307 ? false false ? 11 94 277 >1800
appl-c 1836 78 307 ? false false ? 13 111 80 >1800
appl-d 1836 78 307 ? false false ? 13 68 78 >1800

is conducted as follows: we use transfer functions on the forward-edges only in the fix-
point computation until it terminates; we propagate the reached state set simultaneously
through the back-edges; we then perform forward computation again. Inside this reach-
ability computation framework, we apply extrapolation only at the tails of back-edges
and only when we propagate the state sets through back-edges.

Experiments. Our experiments were conducted on a set of control intensive C pro-
grams. Among the test cases, bakery is a C model of Leslie Lamport’s bakery protocol,
with a mutual exclusion property. The tcas examples are various versions of the Traffic
alert and Collision Avoidance System [8] with properties originally specified in linear
temporal logic; we model these properties by adding assertions to the source code to
trap the corresponding bugs, i.e., an error exists only if an unsafe statement becomes
reachable. The appl examples are from an embedded software application for a portable
device. Most of the properties cannot be resolved directly by conventional static analy-
sis techniques (due to the low widening precision).

Our experiments were conducted on a Linux machine with 3 GHz Pentium 4 CPU
and 2GB of RAM. The results are given in Table 1, wherein we list in Columns 1-4
the name, the lines of C code, the number of variables, and the number of basic blocks.
These numbers are collected after the test programs have been aggressively simplified
using program slicing and constant value propagation. Columns 5-8 indicate the analy-
sis result of four different methods: widen-only denotes an implementation of the stan-
dard widening algorithm, extra-refine denotes our new iterative refinement method with
the use of care set, MIX-mc denotes a model checking procedure using a combination
of BDDs and finte unions of polyhedra [32], and BDD-mc denotes a symbolic model
checker using only BDDs that has been tuned specifically for sequential programs [31].
We have tried SAT-based BMC also, but our BDD-based algorithm outperforms BMC
on these examples (experimental comparison in [31, 32]). Columns 9-12 compare the
runtime of different methods.

Among the four methods, widen-only is the fastest but also the least precise in terms
of the analysis result—it cannot prove any of true properties except appl-a. BDD and



Using Counterexamples for Improving the Precision 363

MIX are symbolic model checking algorithms, which often take a longer time to com-
plete and are in general less scalable. In contrast, the new method extra-refine achieves
a runtime comparable to widen-only and at the same time is able to prove all these true
properties. For false properties, widen-only always reports them as “potential errors.”
The other three methods, extra-refine, MIX, and BDD, are able to produce concrete
counterexamples if they complete. Due to state explosion and the large sequential depth
of the software models, BDD does not perform well on these properties. Both MIX
and extra-refine find all the counterexamples, due to their use of Integer-level represen-
tations internally. The method extra-refine has a run time performance comparable to
(often slightly better than) that of MIX on these properties, although in appl-c it takes
more time to produce a counterexample than MIX due to the overhead of performing
multiple forward-backward refinement passes.

Unlike common programming errors such as array bound violations, most proper-
ties in the above examples are at the functional level and are harder to prove by using
a general-purpose static analyzer only. Although our new method is also based on ab-
stract interpretation, the precision of its extrapolation operator is adaptive and problem-
specific, i.e., it adapts to the property at hand through use of counterexamples.

6 Conclusions

We have presented a new refinement method to automatically improve the precision of
extrapolation in abstract interpretation by iteratively expanding a care set. We propose,
for the polyhedral domain, a set of algorithms for implementing extrapolation with a
care set and for refining the care set using counterexample guided analysis. Our prelim-
inary experimental evaluation shows that the new extrapolation based method can retain
the scalability of static analysis techniques and at the same time achieve an accuracy
comparable to model checking. For future work, we plan to investigate the use of care
sets in other numerical abstract domains including the octagon and interval domains.
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Abstract. Precise software analysis and verification require tracking the exact
path along which a statement is executed (path-sensitivity), the different con-
texts from which a function is called (context-sensitivity), and the bit-accurate
operations performed. Previously, verification with such precision has been con-
sidered too inefficient to scale to large software. In this paper, we present
a novel approach to solving such verification conditions, based on an auto-
matic abstraction-checking-refinement framework that exploits natural abstrac-
tion boundaries present in software. Experimental results show that our approach
easily scales to over 200,000 lines of real C/C++ code.

1 Introduction

Verification conditions (VCs) are logical formulas, constructed from a system and de-
sired correctness properties, such that the validity of verification conditions corresponds
to the correctness of the system. Proving validity of verification conditions is an essen-
tial step in software verification, and is the focus of this paper.

In general, proving software VCs requires interprocedural analysis, e.g. of the propa-
gation of data-flow facts. Some properties, like proper nesting of lock-unlock calls, tend
to be localized to a single function and are amenable to simpler analysis. Many others,
especially pointer-related properties, tend to span through many function calls.

To handle the complexity of interprocedural analysis, the software analysis com-
munity has developed a number of increasingly expensive abstractions. For instance,
path-insensitive analysis does not track the exact path along which a certain statement
is executed, while context-insensitive analysis does not differentiate the contexts from
which a function is called. These abstractions work well in optimizing compilers, but
are not precise enough for verification purposes. Software verification analysis has to
be both path- and context-sensitive (*-sensitive) to keep the number of false errors low.

Precise *-sensitive software verification has two components: (1) we need an analysis
that takes a piece of software as input and computes VCs as logical formulas in some
logic, and (2) once the VCs are computed, we need to check their validity. This paper
proposes a novel approach to checking the validity of *-sensitive VCs.

Our approach is an abstraction-checking-refinement framework that exploits the nat-
ural function-level abstraction boundaries present in software. Programmers organize
code into functions and use them as abstractions. They tend to ignore the details of the
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effects of the function on the caller’s context — the easiest invariant to remember is
to remember no invariant at all. Analogously, our approach initially treats individual
effects of a function call as unconstrained variables and incrementally adds constraints
corresponding to the effects of the function call. We demonstrate that such a structural
refinement approach works well, even on large general-purpose C/C++ applications.

1.1 Related Work

Interprocedural analysis can have many forms, and is commonly based on some form
of summarization. Usually, the more expressive the summaries are, the higher the com-
putational complexity. For instance, if the set of data-flow facts is a finite set, and the
data-flow functions distribute over the confluence, interprocedural data-flow analysis
can be done in polynomial time [21]. If the summaries are composed of predicates over
arbitrary logic the analysis gets more complex, depending on the underlying logic.

If the number of predicates is relatively small, predicate abstraction [14] makes it
possible to represent summaries compactly as BDDs [5]. This approach has been ef-
fectively used in SLAM [3] and BLAST [15,16]. Predicate abstraction is very coarse,
and hasn’t been shown to scale well to large applications for data-intensive properties.
Its advantage is that the VCs given to the theorem prover are relatively simple, cor-
responding to a conjunction of conditions on some path in the program. Saturn [25]
handles lock-properties in a similar way — by computing summaries as projections
onto a set of predicates, with the difference that it does not abstract VCs before passing
them to the theorem prover. In contrast to the above-mentioned approaches, the tech-
nique presented in this paper allows summaries to be arbitrary expressions, rather than
just projections onto a set of predicates.

Livshits and Lam [20] proposed a path- and context-sensitive points-to analysis and
used it for simple security checks. Their summaries represent definition-use chains
required for tracking pointers interprocedurally. They demonstrated their analysis on
small programs up to 13 thousand lines of code. Whaley and Lam [23] stressed the im-
portance of context-sensitive analysis and proposed a brute force approach to context-
sensitive, inclusion-based pointer alias analysis. Their analysis, implemented in the
bddbdd system, represents input-output relations as BDDs [5]. The BDD-based ap-
proach seems to work well for tracking a set of locations, but it is not applicable to ver-
ification of assertions because BDDs are known to suffer from exponential blow-up on
multiplication, division, and barrel shifters — all frequent operations in software. Both
works focused on the software analysis side, while our focus is on proving *-sensitive
VCs. We believe that our results could improve the scalability of their approach.

The CBMC tool [7,6] verifies C programs, to bounded depth, with bit-accuracy and
*-sensitivity. The approach is direct symbolic execution of the C into a SAT instance,
unrolling all loops and inlining all function calls, so solving the generated VC is the
performance bottleneck for large software. Our results address that bottleneck.

In the domain of programs limited to static memory allocation, Astrée [4] has been
successfully applied to verification of mission-critical software systems. Although
context-sensitive over the chosen abstract domain(s), Astrée was designed for systems
that contain no goto statements, no dynamic memory allocation, no recursive calls, no
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recursive data structures, and no pointer arithmetic. Since our focus is verification of
assertions in general purpose software, these constraints were not acceptable.

Context-sensitivity is only one component of the problem. Path-sensitivity is the
other. The BLAST and SLAM software model checkers enumerate paths one-by-one,
hoping that refinement will refute many paths with each added predicate. For each path,
the model checker constructs an abstracted theorem prover query, which can corre-
spond to a path that spans through many functions. Such path enumeration during the
abstraction-checking-refinement loop seems wasteful — SAT solvers are extremely ef-
ficient in path enumeration and refutation of infeasible paths, so we believe that path
enumeration should be left to the SAT solver.

Others have realized the importance of letting the theorem prover enumerate the
paths as well. For instance, software verification systems like Boogie [18] and ESC/Java
[12] do construct a single formula and let the theorem prover enumerate the paths.
However, these systems rely on the user to provide interface abstractions, and do not
attempt to abstract the formulas before calling the theorem prover.

Our approach to proving *-sensitive VCs merges both SAT-solver-based path enu-
meration and abstraction, yielding a precise, but practically efficient alternative to pre-
vious methods.

2 A Review of Verification Condition Generation

Traditionally, VCs are computed by Dijkstra’s weakest precondition transformer [10],
as is done for example in ESC/Java [12] and Boogie [18]. A naı̈ve representation of VCs
computed by the weakest precondition can be exponential in the size of the code frag-
ment being checked, but this blow-up can be avoided by the introduction of fresh vari-
ables to represent intermediate expressions [22,13,19]. Here, we give a quick overview
of weakest-precondition-based VC computation to illustrate the process, some common
problems, and an efficient representation.

Consider the following simple program (modified from [19]):

S1 : i f ( x < 0) { y = −2∗x − y ; }
S2 : y = x + y ;
S3 : a s s e r t (0 <= y ) ;

The VC can be computed as the weakest liberal precondition wlp() of a sequential
composition of those three statements with respect to true, giving:

wlp(S1;S2;S3,true) = wlp(S1,wlp(S2,wlp(S3,true))) (1)

= wlp(S1,wlp(S2,0 ≤ y)) (2)

= wlp(S1,0 ≤ x + y) (3)

= 0 ≤ ITE(x < 0,−(x + y),x + y) (4)

where ITE is the if-then-else operator. Obviously, continuous application of wlp() can
lead to exponential blowup in the size of the formula. To avoid the blowup, we can
perform renaming, which guarantees a single point of definition for each variable (as in
Single Static Assignment (SSA) form [9]):
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Fig. 1. Graph Representation of the Verification Condition. Non-leaf nodes are labeled with op-
erators; leaf nodes, with variables and constants. Operator nodes are connected to their operands
by edges.

S1 : i f ( x0 < 0) { y1 = −2∗x0 − y0 ; } e l s e { y1 = y0 ; }
S2 : y2 = x0 + y1 ;
S3 : a s s e r t (0 <= y2 ) ;

Since each variable has a single point of definition, assignments can be replaced with
equivalences (passive commands in [19]), and then wlp(S1;S2;S3,0 ≤ y2) boils down
to:

(x0 < 0 ⇒ (y1 ≡ −2x0 − y0)) ∧ (x0 ≥ 0 ⇒ (y1 ≡ y0)) ∧ (y2 ≡ x0 + y1) ∧ (0 ≤ y2)

Exponential blowup is avoided at the expense of introduction of fresh variables.
The same VC can be represented in the form of a graph. In particular, we simply

represent a logical formula as a directed, acyclic graph, in which non-leaf nodes are
labeled with operators, their children are their operands, and the leaves are labeled with
variables or constants. A graph representation of a logical formula such that all common
subexpression nodes have been merged will be called a maximally-shared graph. Figure
1 depicts a maximally shared graph representation of the computed VC in Eq. 4. The
advantage of using maximally-shared graphs for VC representation is that the elimina-
tion of common subexpressions is simple, while the graph is still linear in the size of
the code fragment.

The work in this paper is to support our static checker CALYSTO, which is being de-
signed to be a general-purpose, bit-precise assertion checker. CALYSTO implements an
efficient interprocedural symbolic execution algorithm [1] that converts SSA (computed
using the LLVM compiler framework [17]) into function summaries and VCs in the
form of acyclic maximally-shared graphs. For each location that a function modifies,
CALYSTO computes the resulting expression in terms of the function inputs (includ-
ing globals). Each such expression is represented as a separate summary expression,
which gives fine-grained control during the refinement process (Sec. 3.2). Like other
static checkers, CALYSTO makes a few unsound approximations. For example, loops
are unrolled a fixed number of times, with the additional assumption that the loop test
fails at the loop exit, as is done in ESC/Java [12], Saturn [25], and older versions of
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Boogie [18]. We could also handle loops soundly by using loop invariants (computed
by any technique), as is done in Boogie. Similarly, CALYSTO handles non-constant
array indices by unsoundly replacing them with constant indices. In addition, CA-
LYSTO makes the unsound assumption that pointers passed as function parameters are
not aliased, as in [20,25]. However, CALYSTO’s computed VCs are *-sensitive, fully
bit-accurate, and support all standard operators (e.g., signed/unsigned division and mul-
tiplication on bit-vectors, etc.), except that floating-point arithmetic is not yet imple-
mented.

3 Exploiting Natural Abstraction Boundaries

We begin with an example that provides intuition about how our approach solves *-
sensitive VCs. The code used in the example is a simplified and slightly modified piece
of code from a real application.1 To prove an assertion, we need to prove either that the
assertion itself is unreachable, or that it always evaluates to true. Through the example,
we shall follow a sequence of steps needed to prove the assertion on line 22.

1 i n t g l o b a l 1 , g l o b a l 2 ;
2

3 / / I f ∗data <0, r e t u r n s t r u e and computes ∗ data=abs (∗ data ) .
4 bool f l i p ( i n t ∗ d a t a ) {
5 i f (∗ d a t a < 0) {
6 ∗ d a t a = −(∗ d a t a ) ;
7 re tu rn tru e ;
8 }
9 re tu rn f a l s e ;

10 }
11

12 / / Assume i n i t i s a pure f u n c t i o n ( no s i d e−e f f e c t s ) .
13 i n t i n i t ( i n t x ) {
14 / / Some e x p e n s i v e c o m p u t a t i o n . . .
15 }
16

17 / / I f g l o b a l 1 i s p o s i t i v e and g l o b a l 2 i s n e g a t i v e , s c a l e s
18 / / g l o b a l 1 by abs ( g l o b a l 2 ) .
19 void s c a l e ( ) {
20 g l o b a l 2 = i n i t ( g l o b a l 1 ) ;
21 i f ( f l i p (& g l o b a l 2 ) ) {
22 a s s e r t ( g l o b a l 2 != 0 ) ; / / Div by z e r o .
23 g l o b a l 1 /= g l o b a l 2 ;
24 }
25 }

(5)

1 The example is modified from our modular arithmetic theorem prover SPEAR.
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Fig. 2. Sequence of Refinements of the Computed VC. Summary nodes are structurally refined in
the following sequence: flip:ret, flip:global2, and finally init:ret. The subgraph
obtained by the refinement of init:ret is represented by a triangle. For simplicity, these fig-
ures do not show pointer references and dereferences.

As mentioned earlier, the symbolic execution will compute a graph representing each
effect of each function in terms of its parameters (and globals). For example, the func-
tion flip has two effects: a boolean return value and its effect on the location pointed
to by its parameter. At the caller’s side, the symbolic execution initially denotes effects
of a function call by a placeholder operator node. For example, the return value of a
call to flip will be an operator node labeled f lip : ret whose child is the argument to
flip.

The VC will be an implication: if line 22 is reachable, then the asserted condition
must hold. Let us ponder the structure of the computed VC. The antecedent contains
two nested function calls. The consequent is a simple comparison of zero with the effect
of flip on the global variable. Observe that the expression is written in terms of the
initial values of all involved variables, facilitating common subexpression elimination
by simple graph rewriting. Graphically, the VC can be represented as a maximally-
shared graph (Fig. 2a). Summaries of the individual effects of each called function are at
first represented as unconstrained fresh variables. Those nodes will be called summary
nodes. Interpretation of a summary node corresponds to replacing the node with a node
that represents the summarized expression. Such expansion corresponds to a round of
inlining.

To be fully context-sensitive, the obvious approach is to completely inline all calls.
Such inlining leads to exponential blow-up even on small applications. We found that
aggressive inlining of non-recursive function calls works only on several very small
applications, resulting in roughly 50-180X increase in the size of the code.

A better approach is to track the individual effects of a function separately. This fine-
grained approach makes it possible to expand only the slice of the called function that is
actually in the cone of influence of the verified property. We consider this approach to be
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the state of the art and shall use it as the base case for comparison with our abstraction-
based approach in Sec. 4. Together with the common subexpression elimination, this
approach is more scalable, but does not offer satisfactory performance.

The crux of the problem is that interprocedural analysis can’t decide when to stop
inlining. After only three refinements, *-sensitive analysis would expand computation-
ally expensive init, rendering the problem much harder for the decision procedure.
However, the VC can be proved to be valid after only two refinements

Let x = init : ret(global1)
x < 0 ⇒ ITE(x < 0,−x,x) �= 0

which simplifies to true, no matter what init returns. Cases like this appear frequently
in practice, especially during *-sensitive verification of data-intensive properties, like
checking of assertions or global pointer properties.

Our approach gradually refines the maximally-shared graph, until the VC becomes
valid, or the decision procedure finds a falsifying assignment that does not depend on
any summary nodes. The rest of this section gives the details of our approach.

3.1 Algorithm Overview

The proposed approach follows the general paradigm of automatic, counter-example-
guided, abstraction refinement [8], but unlike typical CEGAR approaches, our ab-
straction and refinement operations are entirely structural, and the refinement works
incrementally on abstract counterexamples (rather than concretizing the abstract coun-
terexample, proving it spurious, and then analyzing the proof). Locations modified by
a function call (either indirectly through a pointer, or directly via returned values) are
initially considered to be unconstrained variables. Those unconstrained variables are
incrementally refined until the formula represented by the graph becomes valid, or the
falsifying assignment does not depend on any unconstrained variables. In our case,
incremental refinement is structural refinement on the maximally-shared graph. The re-
finement step replaces an unconstrained variable with a subgraph that represents the
summary expression and the edges that were pointing to the unconstrained variable
are relinked to point to the newly constructed expression. We shall say that refinement
expands summary nodes.

Algorithm 1. Main abstraction-checking-refinement loop.
1: Let F be a node in the maximally-shared graph representing some VC.
2: f = encode(F)
3: while ¬solve( f ) do � solve returns false if a solution (falsifying assignment) is found.
4: if ¬REFINE(F,current solution) then
5: Report solution and exit.

6: Report VALID and exit.

An abstract rendition of our algorithm is given in Alg. 1. The checked verification
condition is represented by a root F in the maximally-shared graph. The algorithm en-
codes F on the fly into formula f and passes it to the decision procedure (solve()). In
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our case, F is bit-accurately translated to CNF by the standard Tseitin transform [22],
but from the maximally shared graph after common subexpressions have been elimi-
nated. Summary nodes are encoded as unconstrained variables. If the decision proce-
dure proves f valid, we are done. Otherwise, refinement takes F and the table of current
assignments to variables represented by nodes in the support of F , and returns true if
the graph was refined, and false otherwise. If the graph was not refined, then all the
summary nodes related to the falsifying assignment have been expanded, and the main
loop terminates. Otherwise, the abstraction-checking-refinement cycle continues. Since
maximally-shared graphs are acyclic, the algorithm necessarily terminates.

The algorithm interacts gracefully with incremental decision procedures — each ex-
pansion of a summary node replaces only a single node with the expression represented
by the summary node, monotonically increasing the set of constraints.

Our lazy approach to interpretation of function summaries resembles the intuition
behind lazy proof explication [11], a technique used to bridge between different theo-
ries in a theorem prover. The shared intuition is to abstract away expensive reasoning
— expanding a function summary or solving a sub-theory query — as unconstrained
variables, and then constrain them lazily, only as needed to refute solutions to the ab-
stracted problem. The specifics of what to abstract and how to refine, of course, are
different, since we are solving different problems.

Since critical software bugs (e.g. [2]) are often caused by the finite nature of bit-
vector arithmetic, it is important to maintain the bit-level behavior of the verified soft-
ware. CALYSTO computes bit-precise VCs, which are translated to CNF directly —
even expensive 64-bit arithmetic operations, like division and remainder, are handled
precisely. The bit-vectors are represented with the same bit-width as in the compiled
code. In our case that means that integers and pointers are represented with 64 bits.

Path enumeration is completely left to the SAT solver. We found that it is important
for the SAT solver to process the variables in an order that roughly corresponds to
reverse preorder traversal (all predecessors are visited before the successors). If the
opposite traversal is used, the solving phase typically requires 7-10X more time. This
supports our conclusion that most of the paths become infeasible close to the VC root
node.

3.2 Structural Refinement

The first few iterations of the main loop of Alg. 1 will likely return false counterexam-
ples, since the initial abstraction is usually very crude. So, the refinement algorithm has
to identify very quickly a set of summary nodes that are relevant to the found solution.

The algorithm attempts to minimize the number of expanded summaries to avoid
expensive computation. Given a falsifying assignment, our refinement scheme searches
the graph and selects a single summary node to expand, thereby refining the model.
In particular, the algorithm starts traversing the formula from the VC root. During the
traversal, the algorithm detects don’t-care values — values that are irrelevant to the
current solution and can therefore be ignored.2 To formalize the concept of don’t-care
values, we define absorptive element as:

2 The anonymous reviewers noted a connection between our analysis and strictness analysis in
functional programming, as well as the work of Wilson and Dill [24]. The commonality is
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Definition 1 (Absorptive Element). If there exists an element a for some operator �,
such that ∀x : a�x = a, then a is an absorptive element of �, denoted as abelem(�) = a.

For instance, abelem(∧) = false,abelem(∗) = 0, and so on.
If the decision procedure returns a falsifying assignment, each node F in the graph

representing the checked VC has some assigned value, which we shall denote as val(F).
If F is an operator �, our algorithm checks val(x) for each operand x of F . If val(x) is an
absorptive element of �, it is a sufficient explanation of the value of F in the falsifying
assignment (the other operand is a don’t-care). Hence, it suffices to refine only x. Our
refinement procedure is given in Alg. 2. As is usual for graph traversal, visited nodes
are marked during traversal to avoid re-visiting nodes; marking is not shown in the
pseudocode.

Algorithm 2. Structural Refinement Algorithm. F is a node in the maximally-shared
graph, and x and y are its operands. The return value indicates whether a summary has
been expanded.
1: function REFINE(graph node F , values assigned to nodes)
2: if F is a summary node then
3: expand the summary for F ; return true
4: else if F is a leaf node then
5: return false
6: else if F ≡ x�y then
7: if val(x) = abelem (�) then
8: return REFINE(x)
9: else if val(y) = abelem(�) then

10: return REFINE(y)
11: else
12: return REFINE(x) or REFINE(y)
13: (The or is lazy: if either call succeeds, the other is skipped.)
14: (The order is arbitrary. Either x or y can be refined first.)

Some operators (like implication and if-then-else) do not have absorptive elements,
but allow similar don’t-care analysis. Our implementation performs such reductions
according to the rules in Alg. 3.

Returning to the example in Fig. 2, in 2a, the checker treats the placeholder nodes as
unconstrained variables and finds a falsifying assignment where f lip : ret is true and the
!= is false. Alg. 3 will derive the refinement in 2b, where a possible falsifying solution
gives the init : ret node a negative value. Next, the algorithm might choose to expand
the f lip : global2 node, yielding the refinement in 2c, which is valid. We were able to
avoid the expensive expansion of the init : ret node.

the goal of finding cases in which a value is not used or needed. For example, in an ITE in a
functional programming language, the condition argument is strict because it is always evalu-
ated, whereas the other two arguments are non-strict. In our case, we are refining a falsifying
solution, so we have much more don’t-care information available, e.g., we know the value of
the condition argument, so we know exactly which branch need not be refined.
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Algorithm 3. Additions to the Basic Refinement Algorithm

1: if F ≡ (x ⇒ y) and val(x) ≡ false then return REFINE(x)
2: else if F ≡ (x ⇒ y) and val(y) ≡ true then return REFINE(y)
3: else if F ≡ (x ⇒ y) return REFINE(x) or REFINE(y)
4:
5: if F ≡ ITE(c,x,y) and val(c) ≡ true return REFINE(c) or REFINE(x)
6: else if F ≡ ITE(c,x,y) return REFINE(c) or REFINE(y) � val(c) must be true or false.

Unlike other approaches, our approach to refinement does not require a theorem
prover. The downside is that our refinement might be less precise and result in more
refinement cycles. However, each refinement cycle only adds additional constraints to
the decision procedure incrementally, making the solving phase more efficient as well.

4 Experimental Results

To test our approach, we used CALYSTO to generate VCs for six real-world, publicly-
available C/C++ applications, ranging in size from 9 to 228 thousand lines of code
(KLOC) before preprocessing. The benchmarks are the Dspam spam filter, our boolean
satisfiability solver HYPERSAT, the Licq ICQ chat client, the OpenLDAP implemen-
tation of the Lightweight Directory Access Protocol, the Wine Windows OS emulator,
and the Xchat IRC client. For each program, for each pointer dereference, we generated
a VC to check that the pointer is non-NULL (omitting VCs that were solved trivially
by our expression simplifier).

CALYSTO has a simple, non-recursive expression simplifier that runs during sym-
bolic execution. The simplifier rules are numerous, but straightforward. We noticed
that performing constant propagation during the simplification reduces the memory
footprint, but does not drastically speed-up the solving phase because our modular
arithmetic theorem prover SPEAR (like many others) performs aggressive constant
propagation on its own. Other, slightly more complex rules, like ITE(c,x,¬c ∧ y) ≡
ITE(c,x,y) do speed up the solving phase, but not drastically.

As the basis for comparison, we also solved the VCs using eager expansion of sliced
summaries (described in Sec. 3). The approaches were tested under equal conditions:
the same simplification and common subexpression elimination were applied to both
approaches after every summary expansion, before calling the SAT solver. The same
SAT solver was used for both the base case and our approach.

Table 1 and Fig. 3 summarize the results. In a large majority of cases, the struc-
tural abstraction approach is superior to the eager approach, which suffers 81% more
timeouts, and 75% longer runtime. There are some cases, however, where the eager
approach performs significantly better. Analyzing those cases, we found that occasion-
ally our simplifier can simplify some expanded summaries to trivial constants, which
in turn can make the VC trivially easy to solve. For example, the most frequent case
we have seen is when an expanded summary, which is an antecedent in an implication,
trivially simplifies to false, rendering the whole implication true. A priori, there is no
way to know whether or not an expanded summary will drastically simplify the VC
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Table 1. The first column gives the name and version of the benchmark, KLOC is the number of
source code lines (in thousands) before preprocessing, and #VCs is the number of checked VCs.
The next four columns give the total run time in seconds (including timeouts) and the number
of timeouts, for the base approach and for our new structural abstraction and refinement method.
The timeout limit was 300 seconds. Experiments were performed on a dual-processor AMD X2
4600+ machine with 2 GB RAM, running Linux 2.6.15.

Benchmark KLOC #VCs Base Approach with Struct. Abs./Ref.
Time (sec) Timeouts Time (sec) Timeouts

Dspam v3.6.5 37 8003 4451 12 3758 10
HyperSAT v1.7 9 427 32602 108 27025 81
Licq v1.3.4 20 5165 24103 50 4072 4
OpenLDAP v2.3.30 228 4935 738 0 572 0
Wine v0.9.27 126 8831 2598 0 2145 0
Xchat v2.6.8 76 24045 18914 13 10024 6

Total 496 55583 83406 183 47596 101
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Fig. 3. Results presented as scatter plots. Timeouts are plotted at 300secs.

(akin to the classic debate of eager vs. lazy constraint propagation in SMT solvers).
Our experimental results, though, show that for solving software VCs, laziness wins.

Overall, our structural abstraction-checking-refinement approach is able to quickly
verify *-sensitive, bit-accurate VCs from large software. Moving forward, we believe
there is additional structure to be exploited, and that is the direction of future work.
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5 Discussion

We believe there are two main reasons behind the success of our approach: efficient
path enumeration and exploiting natural abstraction boundaries in software.

In our experience, path enumeration dominates the cost of software verification, even
when the loops are abstracted away. In the worst case, any path-sensitive analysis has to
analyze all the paths. We use our SAT-solver-based prover SPEAR to enumerate paths ef-
ficiently, but the order in which any SAT solver processes constraints is important. Most
solvers add variables to the decision queue in the order in which the variables are found
in the clauses. So, by starting the SAT solver from a root of the VC graph and letting it
enumerate paths, we explore paths in a breadth-first manner. In analyzing several open-
source applications, we realized that most paths in an average program are infeasible,
and this breadth-first path exploration prunes more paths more quickly. Contemporary
software model checkers do not exploit this fact, but rather rely on depth-first search,
performing numerous calls to the theorem prover through a counterexample-driven re-
finement process, just to refute a path that is most likely to be infeasible anyway. Sim-
ilarly, the lazy summary expansion prunes obviously infeasible paths before function
summaries are expanded and analyzed, decreasing the number of paths that need to be
explored even further.

The proposed abstraction-refinement approach exploits the natural abstraction
boundaries in software that correspond closely to the programmer’s mental model. To
manage complexity, programmers tend to organize code into structural units (functions)
and use them as abstractions — whatever a function returns, the rest of the code should
work. This common programming tactic, which reduces the mental load on the pro-
grammer, inspired our approach. To the extent that programmers use functions effec-
tively as abstractions, our refinement algorithm can avoid expanding the details that
were abstracted away.

Our simple abstraction does not rely on the standard abstraction domains. Hence, the
contributions of this paper can be applied to a wide range of software analysis tools that
require interprocedural analysis and a decision procedure. If further complexity reduc-
tion is needed, we believe our approach should be compatible with classical abstract
domains and other abstraction techniques.
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2. Babić, D., Musuvathi, M.: Modular Arithmetic Decision Procedure. Technical Report TR-

2005-114, Microsoft Research Redmond (2005)
3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic Predicate Abstraction of C

Programs. Programming Language Design and Implementation, pp. 203–213 (2001)
4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
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Abstract. We describe an abstract domain for representing useful in-
variants of heap-manipulating programs (in presence of recursive data
structures and pointer arithmetic) written in languages like C or low-level
code. This abstract domain allows representation of must and may equal-
ities among pointer expressions. Pointer expressions contain existentially
or universally quantified integer variables guarded by some base domain
constraint. We allow quantification of a special form, namely ∃∀ quan-
tification, to balance expressiveness with efficient automated deduction.
The existential quantification is over some dummy non-program vari-
ables, which are automatically made explicit by our analysis to express
useful program invariants. The universal quantifier is used to express
properties of collections of memory locations. Our abstract interpreter
automatically computes invariants about programs over this abstract
domain. We present initial experimental results demonstrating the effec-
tiveness of this abstract domain on some common coding patterns.

1 Introduction

Alias analysis attempts to answer, for a given program point, whether two pointer
expressions e1 and e2 are always equal (must-alias) or may be equal (may-
alias). Keeping precise track of this information in the presence of recursive
data-structures is hard because the number of expressions, or aliasing relation-
ships, becomes potentially infinite. The presence of pointer arithmetic makes
this even harder.

We describe an abstract domain that can represent precise must and may-
equalities among pointer expressions that are needed to prove correctness of
several common code patterns in low-level software. It is motivated by the early
work on representing aliasing directly using must-alias and may-alias pairs of
pointer expressions [2,15,4,5]. However, there are two main differences. (a) The
language of our pointer expressions is richer: The earlier work built on con-
structing pointer expressions from (pre-defined) field dereferences; however our
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struct List {int Len, *Data; List* Next;}
ListOfPtrArray(struct List* x)

1 for (y := x; y �= null; y := y→next)
2 t :=?; y→len := t; y→data := malloc(4t);
3 for (y := x; y �= null; y := y→next)
4 for (z := 0; z < y→len; z := z + 1) y→data→(4z) := ...;

Fig. 1. An example of a pattern of initializing the pairs of dynamic arrays and their
lengths inside each list element and later accessing the array elements

expressions are built from dereferencing at arbitrary integer (expression) offsets.
This gives our abstract domain the ability to handle arrays, pointer arithmetic,
and recursive structures in one unified framework. (b) Apart from the integer
program variables, we also allow integer variables (in our expressions) that are
existentially or universally quantified. This allows our abstract domain to rep-
resent nontrivial properties of data-structures in programs. 1

We allow only a special form of quantification in our abstract domain, namely
∃∀ quantification, to balance expressiveness with potential for automated deduc-
tion. The quantification is over integer variables that are not program variables.
The existentially quantified variables can be seen as dummy program variables
that are explicitly needed to express common program invariants. The univer-
sally quantified variables describe properties of (potentially unbounded) collec-
tions of memory locations.

Our abstract domain uses only two base predicates, must and may equality,
unlike the common approach of using a pre-defined set of richer predicates [13,20,
19,14]. As a result, reasoning in our abstract domain does not require any special
deduction rules, thereby yielding comparative simplicity and easier automation.

Consider, for example, the program shown in Figure 1. The input variable
x points to a list (unless qualified, list refers to an acyclic singly-linked list in
this paper), where each list element contains two fields, Data and Len, apart
from the Next field. Data is a pointer to some array, and Len is intended to be
the length of that array. In the first while loop, the iterator y iterates over each
list element, initializing Data to point to a newly created array and Len to the
length of that array. In the second while loop, the iterator y iterates over each
list element accessing the array pointed to by Data. The proof of memory safety
of this commonly used code pattern requires establishing the invariant that for
all list elements in the list pointed to by x, Len is the length of the array Data.
This quantified invariant is expressed in our abstract domain as

∃i.List(x, i, next)∧∀j[0≤j<i ⇒ Array(x→nextj→data, 4 × x→nextj→len)] (1)

where x→nextj is an (pointer) expression in our language that denotes the mem-
ory location obtained by performing j dereferences at offset next starting from
x. The predicates List and Array are abbreviations for the following definitions.
1 A limited form of quantification over integer variables was implicitly hidden in the

set representation used for representing may-aliases in the work by Deutsch [5].
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List(x, i, next) ≡ i≥0 ∧ x→nexti =null∧ ∀j[0 ≤ j < i ⇒ Valid(x→nextj)]
Array(x, t) ≡ ∀j[(0 ≤ j < t) ⇒ Valid(x + j)]

Intuitively, List(x, i, next) denotes that x points to a list of length i (with next
as the next field) and Array(x, t) denotes that x points to a region of memory of
length t. The predicate Valid(e) is intended to denote that e is a valid pointer
value, which is safe to dereference (provided the subexpressions of e are safe to
dereference)2, and can be encoded as the following must-equality:

Valid(e) ≡ e→β = valid

where β is a special symbolic integer offset that is known to not alias with any
other integer expression, and valid is a special constant in our expression lan-
guage.We automatically generate invariants, like the one described in Equation 1,
by performing abstract interpretation (whose transfer functions are described in
a full version of this paper [11]) over our abstract domain.

This paper is organized as follows. Section 2 describes our program model,
which closely reflects the memory model of C modulo some simple assumptions.
We then formally describe our abstract domain and present its semantics in
relation to our program model (Section 3). We then describe the procedure
to check implication in this abstract domain (Section 4). Section 5 discusses
preliminary experimental results, while Section 6 describes some related work.

2 Program Model

Values. A value v is either an integer, or a pointer value, or is undefined. A
pointer value is either null or a pair of a region identifier and a positive offset.

v ::= c | 〈r, d〉 | null | ⊥
Program State. A program state ρ is either undefined, or is a tuple 〈D, R, V, P 〉,
where D represents the set of valid region identifiers, R is a region map that
maps a region identifier in D to a positive integer (which denotes size of that
region), V is a variable map that maps program variables to values, and P is
a memory that maps non-null pointer values to values. We say that a pointer
value 〈r, d〉 is valid in a program state 〈D, R, V, P 〉 if r ∈ D and 0 ≤ d < R(r).
We say that a pointer value is invalid if it is neither valid nor null.

Expressions. The program expressions e that occur on the right side of an as-
signment statement are described by the following language.

e ::= c | x | e1 ± e2 | c × e | e1→e2 | null | ?

2 This assumption is important because we want to treat Valid as an uninterpreted
unary predicate, which allows us to encode it as a simple must-equality. However
this necessitates that validity of all valid subexpressions be described explicitly.
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[[null]]ρ = null
null

[[e1]]ρ = 〈r, d〉 [[e2]]ρ = c r ∈ D 0 ≤ d + c < R(r)

[[e1→e2]]ρ = P (〈r, d + c〉)
deref

[[e1]]ρ and [[e2]]ρ are ints

[[e1 ± e2]]ρ = [[e1]]ρ + [[e2]]ρ
intArith

[[x1]]ρ and [[x2]]ρ are ints

[[x1 rel x2]]ρ = [[x1]]ρ rel [[x2]]ρ
IntCompare

[[c]]ρ = c
cons

rel ∈ {�=, =} [[x1]]ρ, [[x2]]ρ are null or valid pointers

[[x1 rel x2]]ρ = [[x1]]ρ rel [[x2]]ρ
ptrCompare

[[e1]]ρ = 〈r, d〉 [[e2]]ρ = int c

[[e1 ± e2]]ρ = 〈r, d ± c〉
ptrArith

V (y) = 〈r, i〉 r ∈ D 0 ≤ i < R(r)

[[free(y)]]ρ = 〈D − {r}, R, V, P 〉
Free

Let c be a non-det int

[[?]]ρ = c
nonDet

[[x := e]]ρ = 〈D, R, V [x 
→ [[e]]ρ], P 〉
varUpdate

[[x]]ρ = V (x)
var

V (x) = 〈r, i〉 [[e1]]ρ = j r ∈ D 0 ≤ i + j < R(r)

[[x→e1 := e2]] ρ = 〈D, R, V, P [〈r, i + j〉 
→ [[e2]]ρ]〉
MemUpdate

[[e]]ρ ≥ 0 Let r be some fresh region identifier

[[x := malloc(e)]]ρ = 〈D ∪ {r}, R[r 
→ [[e]]ρ], V [x 
→ 〈r, 0〉], P 〉
Malloc

Fig. 2. Semantics of Expressions, Predicates, and Statements in our language. ρ denotes
the state 〈D, R, V, P 〉. In a program state, an expression is evaluated to a value, a
predicate is evaluated to a boolean value, and a statement is evaluated to a program
state. Evaluation of an expression, or statement in a state s.t. none of the above rules
apply yields a ⊥ value or ⊥ state respectively.

e1→e2 represents dereference of the region pointed to by e1 at offset e2 (i.e.,
∗(e1 +e2) in C language syntax). The above expressions have the usual expected
semantics with the usual restrictions that it is not proper to add or subtract two
pointer values, and that only a valid pointer value can be dereferenced. ? denotes
a non-deterministic integer and is used to conservatively model other program
expressions whose semantics we do not precisely capture (e.g., those that involve
bitwise arithmetic). Given a program state ρ, an expression e evaluates to some
value, denoted by [[e]]ρ, according to the formal semantics given in Figure 2.

Statements. The assignment statements, x := e and ∗x := e, have standard
semantics. The memory allocation assignment, x := malloc(e), assigns a pointer
value with a fresh region identifier to x. The statement free(e) frees the region
pointed to by e. The formal semantics of these statements is given in Figure 2.

Predicates. The predicates that occur in conditionals are of the form x1 rel x2,
where rel ∈ {<, ≤, �=, =}. Without loss of any generality, we assume that x1 and
x2 are either program variables or constants. These predicates have the usual
semantics: Given a program state ρ, a predicate evaluates to either true or
false. Pointer-values can be compared for equality or disequality, while integer
values can be compared for inequality too; see Figure 2.
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Memory Safety and Leaks. We say that a procedure is memory-safe and leak-free
under some precondition, if for any program state ρ satisfying the precondition,
the execution of the procedure yields program states ρ′ that have the following
properties respectively: (a) ρ′ �= ⊥, (b) if ρ′ = 〈D, R, V, P 〉, then for all region
identifiers r ∈ D, there exists an expression e s.t. [[e]]ρ′ = 〈r, d〉.

Intuitively, a procedure is memory-safe if all memory dereferences and free
operations are performed on valid pointer values. Observe that our definition of
memory safety precludes dangling pointer dereferences also. Similarly, a procedure
is leak-free if all allocated regions can be traced by means of some expression.

Relation with C programs. The semantics of our program model closely reflects
the C language semantics under the following assumptions: (a) All memory ac-
cesses are at word-boundaries and the size of each object read or written is at
most a word. (b) The free(x) call frees a valid region returned by malloc even if
x points somewhere in middle of that region (some implementations of C insist
that x point to the beginning of a region returned by malloc). Our program
model can be easily adapted to capture other possible semantics of C while not
depending on the above assumptions. The current choice has been made to sim-
plify presentation. We can thus test if a C program is memory-safe and leak-free
by checking for the respective properties in our model.

3 Abstract Domain

The elements of our abstract domain describe must and may equalities between
expressions. However, we need a richer language of expressions (as compared to
the language of program expressions described in Section 2) to describe useful
program properties. Hence, we extend the expression language as follows:

e ::= c | x | e1 ± e2 | c × e | e1→ee3
2 | valid | null

valid is a special constant in our domain that satisfies valid �= null. The
constant valid is used to represent that certain expressions contain a valid
pointer value (as opposed to null or uninitialized or dangling etc) in the Valid
predicate defined on Page 381 in Section 1.

The new construct e1→ee3
2 denotes e3 de-references of expression e1 at offset

e2, as is formalized by following semantics (If e3 is 1, we write e1→ee3
2 as e1→e2).

[[e1→ee3
2 ]]ρ =

⎧
⎪⎨

⎪⎩

[[e1]]ρ if [[e3]]ρ = 0
[[(e1→e2)→ee3−1

2 ]]ρ if [[e3]]ρ > 0
⊥ otherwise

Must-equality is a binary predicate over pointer expressions denoted using
“=” and is used in an infix notation. This predicate describes equalities between
expressions that have the same value at a given program point (in all runs of
the program). May-equality is also a binary predicate over pointer expressions.
It is denoted using “∼” and is used in an infix notation. This predicate describes
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an over-approximation of all possible expression equalities at a given program
point (in any run of the program). Disequalities are deduced from absence of
(transitive closure of) may-equalities. The reason for keeping may-equalities in-
stead of disequalities is that the former representation is often more succinct in
the common case when most memory locations are not aliased (i.e., have only
one incoming pointer).

3.1 Abstract Elements

An abstract element F in our domain is a collection of must-equalities M , and
may-equalities Y , together with some arithmetic constraints C on integer expres-
sions. Apart from the program variables, the expressions in M , Y , and C may
contain extra integer variables that are existentially or universally quantified.
Each must-equality and may-equality is universally quantified over integer vari-
ables Uf that satisfy some constraints Cf. The collection of these must-equalities
M , may-equalities Y and constraints C may further be existentially quantified
over some variables. Thus, the abstract element is a ∃∀ formula. The constraints
C and Cf are arithmetic constraints on expressions in a base constraint domain
that is a parameter to our algorithm.

F ::= ∃U : C, M, Y

M ::= true | M ∧ ∀Uf(Cf ⇒ (e1 = e2))
Y ::= true | Y ∧ ∀Uf(Cf ⇒ (e1 ∼ e2))

The existentially quantified variables, U , can be seen as dummy program vari-
ables that are needed to express the particular program invariant. The universal
quantification allows us to express properties of collections of entities (expres-
sions in our case).

Formal Semantics of Abstract Elements. An abstract element F represents a
collection of program states ρ, namely those states ρ that satisfy F (as defined
below). A program state ρ = 〈D, R, V, P 〉 satisfies the formula F = ∃U : C, M, Y
(denoted as ρ |= F ) if there exists an integer substitution σ for variables in U
such that the following holds: If ρe = 〈D, R, V σ, P 〉, (where V σ denotes the
result of mapping v to σ(v), for all v, in V ) then,

– ρe |= C, i.e., for each predicate e1 rel e2 ∈ C, [[e1 rel e2]]ρe evaluates to true.
– ρe |= M , i.e., for all facts (∀Uf(Cf ⇒ (e1 = e2))) ∈ M , for every integer

assignment σf to variables in Uf, if ρf |= Cf then [[e1]]ρf = [[e2]]ρf, where
ρf = 〈D, R, V σσf , P 〉. In the special case when e1 = e2 is of the form
e→β = valid, then [[e]]ρf = 〈r, c〉, r ∈ D, and 0 ≤ c + [[β]]ρf < R(r).

– For all expressions e1 and e2, if there is a state ρ′ s.t. ρ′ |= C, ρ′ |= Y
(treating may-equality as must-equality and using the above definition of
|=), [[e1]]ρ′ �= ⊥, [[e2]]ρ′ �= ⊥, and [[e1]]ρ′ �= [[e2]]ρ′, then [[e1]]ρe �= [[e2]]ρe.
Informally, if e1 ∼ e2 is not implied by Y , then [[e1]]ρe �= [[e2]]ρe.
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The top element � in our abstract domain is represented as:
∧

x,y

∀i1, i2, j1, j2[(x→ij11 ) ∼ (y→ij22 )]

In standard logic with equality and disequality predicates, this would be rep-
resented as true. However, since we represent the disequality relation by rep-
resenting its dual, we have to explicitly say that anything reachable from any
variable x may be aliased to anything reachable from any variable y.

Observe that the semantics of must-equalities and may-equalities is liberal
in the sense that a must-equality e1 = e2 or may-equality e1 ∼ e2 does not
automatically imply that e1 or e2 are valid pointer expressions. Instead the
validity of an expression needs to be explicitly stated using Valid predicates
(defined on Page 381 in Section 1).

Observe that there cannot be any program state that satisfies a formula whose
must-equalities are not a subset of (implied by the) may-equalities. Hence, any
useful formula will have every must-equality also as a may-equality. Therefore,
we assume that in our formulas all must-equalities are also may-equalities, and
avoid duplicating them in our examples.

3.2 Expressiveness

In this section, we discuss examples of program properties that our abstract
elements can express.
(a) x points to an (possibly null) acyclic list: ∃i : List(x, i, next). The predicate
List is as defined on Page 381.
(b) x points to a region (array) of t bytes: Array(x, t). The predicate Array is
as defined on Page 381.
(c) x points to a cyclic list: ∃i : i ≥ 1 ∧ x = x→nexti ∧ ∀k(0 ≤ k < i ⇒
Valid(x→nextk))
(d) Lists x and y share a common tail: ∃i, j : i ≥ 0∧j ≥ 0∧x→nexti = y→nextj

(e) y may point to some node in the list pointed to by x.

∃i : x→nexti ∼ y or, equivalently, ∀i(x→nexti ∼ y)

Observe that existential quantification and forall quantification over may-equalities
has the same semantics.
(f) The (reachable) heap is completely disjoint, i.e., no two distinct reachable
memory locations point to the same location: true. Observe that disjointedness
comes for free in our representation, i.e., we do not need to say anything if we
want to represent disjointedness.
(g) y may be reachable from x, but only by following left or right pointers.
Such invariants are useful to prove that certain iterators over data-structures
do not update certain kinds of fields. The expression language described above
is insufficient to represent this invariant precisely. However, a simple extension
in which disjunctions of offsets (as opposed to a single offset) are allowed can
represent this invariant precisely as follows: ∀i ≥ 0 : x→(left‖right)i ∼ y. The
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semantics of the abstract domain can be easily extended to accomadate disjunc-
tive offsets as above. A formal treatment of disjunctive offsets was avoided in
this paper for the purpose of simplified presentation.

Regarding limitations of the abstract domain, we can not express arbitrary
disjunctive facts and invariants that requires ∀∃ quantification (such as the in-
variants required to analyze the Schorr-Waite algorithm [12]). We plan to enrich
our abstract domain in the future.

4 Automated Deduction over the Abstract Domain

In this section, we briefly describe the key ideas behind our sound procedure for
checking implication in our abstract domain.3 For lack of space, the remaining
transfer functions (namely, Join, Meet, Widen, and Strongest Postcondition
operations) needed for performing abstract interpretation over our abstract do-
main are described in a full version of this paper [11].

The first step in deciding if F implies F ′, where F, F ′ are abstract elements, is
to instantiate the existentially quantified variables in F ′ in terms of existentially
quantified variables in F . We do this by means of a heuristic that we have
found to be effective for our purpose. After this step, we can treat the existential
variables as constants. Now consider the simpler problem of checking whether
F implies e1 = e2 or whether F implies e1 �= e2. For the former, we compute
an under-approximation of must-aliases of e1 from the must-equalities of F and
then check whether e2 belongs to that set. For that latter, we compute an over-
approximation of may-aliases of e1 from the may-equalities of F and then check
whether e2 does not belong to that set.

The function MustAliases(e, F ) returns an under-approximation A of all
must-aliases of expression e such that for every e′ ∈ A, we can deduce that F ⇒
e = e′. Similarly, the function MayAliases(e, F ) returns an over-approximation
A of all may-aliases of expression e such that if F ⇒ e ∼ e′, then e′ ∈ A. Since
these alias sets may have an infinite number of expressions, we represent the alias
sets of an expression e using a finite set of pairs (C, e′), where (C, e′) denotes all
expressions e′ that satisfy the constraint C. 4

The pseudo-code for MustAliases and MayAliases is described in Figure 3.
The key idea in our algorithm for MustAliases is to do a bounded number of
transitive inferences on the existing must-equalities. The key idea in MayAliases

3 We have not investigated decidability of the entailment relation in our abstract
domain. Results about ∃∀ fragment of first-order logic are not directly applicable
because of integer variables in our terms. In this work, the focus was on obtaining
an abstract domain for building a sound abstract interpreter that can generate useful
invariants. Theoretical issues, such as decidability, are left for future work.

4 This representation is motivated by the one used by Deutsch [5] except that the
constraints in his formalism were pure linear arithmetic facts with no support for un-
interpreted function subterms, and the expressions did not have support for pointer
arithmetic. Moreover Deutsch used this representation only for computing may-
aliases, and there was no support for must-aliases in his framework.
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MustAliases(e, F )
A := {〈true, e〉}
While change in A and not tired
Forall (∀V (C ⇒ e1 = e2)) ∈ F and

〈C′, e′〉 ∈ A
If ((σ, γ) := MatchExpr(e′, e1) �= ⊥)

A := A ∪ {〈C′ ∧ Cσ, (e2σ)→γ〉}
return A

MayAliases(e, F )
A := {〈true, e〉}
While change in A
Forall (∀V (C ⇒ e1 ∼ e2)) ∈ F and

〈C′, e′〉 ∈ A
If ((σ, γ) := MatchExpr(e′, e1) �= ⊥)

A := A ∪ {〈C′ ∧ Cσ, (e2σ)→γ〉}
A := OverApprox(A)

return A

Inputs:

e = x
F1 = {x = x→nj}
F2 = {∀i((0 ≤ i < j) ⇒

x→ni = x→ni+1→p)}
Outputs:

MustAliases(e, F1) =
{x→nj , x→n2j}

MustAliases(e, F2) =
{x→n→p, x→n→p→n→p}

MayAliases(e, F1) =
{x→nt | t ≥ j}

MayAliases(e, F2) =
{x→(n‖p)t | 0 ≤ t} or
{x→(t1)

t2 | 0 ≤ t2 ∧ � ≤ t1 ≤ u}
where � = min(n, p), u = max(n, p)

(a) Algorithm (b) Examples

Fig. 3. The functions MustAliases and MayAliases. In (b), the first choice for
MayAliases(e, F2) is better than the second choice (if the n and p fields are not laid out
successively), but will be generated only if we allow disjunctive offsets, as addressed in
Section 3.2. Even though MayAliases is a conservative overapproximation it helps us
prove that x does not alias with, for example, x→data.

is to do transitive inferences on may-equalities until fixed-point is reached. A
function, OverApprox, for over-approximating the elements in the set is used to
guarantee termination in a bounded number of steps. (Similar widening tech-
niques have been used for over-approximating regular languages [21].) Due to
the presence of universal variables, the application of transitive inference re-
quires matching and substitution, as in the theory of rewriting. The function
MatchExpr(e′, e1) returns either ⊥ or a substitution σ (for the universally quan-
tified variables in e1) and a subterm γ s.t. e′ and e1σ→γ are syntactically equal.

Observe that the above algorithm for MustAliases lacks the capability for
inductive reasoning. For example, even if the transitive inference goes on forever,
it cannot deduce, for example, that x→ni→pi is a must-alias of x, for any i, given
F2 of Figure 3. However, such inferences are not usually required.

5 Experiments

We have implemented a tool that performs an abstract interpretation of pro-
grams over the abstract domain described in this paper. Our tool is implemented
in C++ and takes two inputs: (i) some procedure in a low-level three-address
code format (without any typing information) (ii) precondition for the inputs of
that procedure expressed in the language of our abstract domain.
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Program Property Discovered (apart from memory safety) Precondition Used

ListOfPtrArray Input is a list

ListReverse Reversed list has length n Input is list of size n

List2Array Corresponding array and list elmts are same Input is a list

Fig. 4. Examples on which we performed our experiments. Our prototype implementa-
tion took less than 0.5 seconds for automatic generation of invariants on these examples.
We also ran our tool in a verification setting in which we provided the loop invariants
and the tool took less than 0.1 seconds to verify the invariants.

Our experimental results are encouraging. We chose the base constraint do-
main to be the conjunctive domain over combination of linear arithmetic and
uninterpreted function terms [10]. We were successfully able to run our tool on
the example programs shown in the table in Figure 4. These examples have
been chosen for the following reasons: (i) These examples represent very com-
mon coding patterns. (ii) We do not know of any automatic tool that can verify
memory safety of these programs automatically in low-level form, where pointer
arithmetic is used to compute array offsets and even field dereferences.

ListOfPtrArray. This is the same example as described in Figure 1. Our tool gen-
erates the following non-trivial loop invariant required to establish the property
in Equation 1, which is required to prove memory safety in the second loop.

∃i, j′ : List(x, i, next) ∧ 0 ≤ j′ ≤ i ∧ y = x→nextj′ ∧
∀j[(0 ≤ j < j′) ⇒ Array(x→nextj→data, 4 × (x→nextj→len))]

We now briefly describe how the above invariant is automatically generated.
We denote Array(x→nexti→data, 4 × (x→nexti→len)) by the notation S(i).
For simplicity, assume that the length of the list x is at least 1 and the body
of the loop has been unfolded once. The postcondition operator generates the
following must-equalities F l and F r (among other must-equalities) before the
loop header and after one loop iteration respectively.

F l = (y = x→next ∧ S(0)) F r = (y = x→next2 ∧ S(0) ∧ S(1))

Our join algorithm computes the join of these must-equalities as

∃j′ : 1 ≤ j′ ≤ 2 ∧ y = x→nextj′ ∧ ∀j(0 ≤ j < j′ ⇒ S(j))

which later gets widened to the desired invariant. Note the power of our join
algorithm [11] to generate quantified facts from quantifier-free inputs.

ListReverse. This procedure performs an in-place list reversal. The interesting
loop invariant that arises in this example is that the sum of the lengths of the list
pointed to by the iterator y (i.e., the part of the list that is yet to be reversed)
and the list pointed to by the current result result (i.e., the part of the list that
has been reversed) is equal to the length n of the original input list.

∃i1, i2 : i1 + i2 = n ∧ List(y, i1, next) ∧ List(result, i2, next)
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List2Array(x)
struct {int Data, *Next}*x;

1 � := 0;
2 for(y := x; y �= null; y := y→n)
3 � := � + 1;
4 A := malloc(4�); y := x;
5 for(k := 0; k < �; k := k + 1)
6 A→(4k) := y→d; y := y→n;
7 return A

π Invariant at π

1 ∃i : List(x, i, n)
2 ∃i : � = 0, List(x, i, n)

3 ∃i : 0 ≤ � < i, List(x, i, n), y = x→n�

4 List(x, �, n)
5 List(x, �, n), Array(A, 4�)

6 List(x, �, n), Array(A, 4�), 0 ≤ k < �, y = x→nk

∀j((0 ≤ j < k) ⇒ x→nj→d = A→(4j + d)
7 List(x, �, n), Array(A, 4�), y = null

∀j((0 ≤ j < �) ⇒ x→nj→d = A→(4j + d))

Fig. 5. List2Array example. We assume that the structure fields Data and Next are
at offsets d = 0 and n = 4 respectively. The table on the right lists selected invariants
at the corresponding program points that were discovered by our implementation. The
List and Array predicates are as defined on Page 381.

List2Array. This example flattens a list into an array by using two congruent
loops - one to compute the length of the input list to determine the size of the
array, and the second to copy each list elements in the allocated array. Figure 5
describes this example and the useful invariants generated by our tool.

This example reflects a common coding practice in which memory safety re-
lies on inter-dependence between different loop iterations. In this example, it is
crucial to compute the invariant that � stores the length of the input list.

6 Related Work

Alias/Pointer analysis. Early work on alias analysis used two main kinds of ap-
proximations to deal with recursive data-structures: summary nodes that group
together several concrete nodes based on some criteria such as same allocation
site (e.g., [2]), or k-limiting which does not distinguish between locations obtained
after k dereferences (e.g., [15]), or a combination of the two (e.g., [4]). However,
such techniques had limited expressiveness and precision. Deutsch proposed re-
ducing the imprecision that arises as a result of k-limiting by using suitable
representations to describe pointer expressions (and hence alias pairs) with po-
tentially unbounded number of field dereferences [5]. The basic idea was to use
new variables to represent the number of field dereferences and then describe
arithmetic constraints on those variables. Deutsch analysis did not have any
must information.

Most of the new techniques that followed focused on defining logics with
different kinds of predicates (other than simple must-equality and may-equality
predicates, which were used by earlier techniques) to keep track of shape of heap-
structures [13, 20, 19, 14]. There is a lot of recent activity on building abstract
interpreters using these specialized logics [6,17,9]. In this general approach, the
identification of the “right” abstract predicates and automation of the analysis
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are challenging tasks. In some cases, the analysis developer has to provide the
transfer functions for each of these predicates across different flowchart nodes.

Additionally, the focus of the above mentioned techniques has been on recur-
sive data structures, and they do not provide good support for handling arrays
and pointer arithmetic. Recently though, there has been some work in this area.
Gopan, Reps, and Sagiv have suggested using canonical abstraction [20] to cre-
ate a finite partition of (potentially unbounded number of) array elements and
using summarizing numeric domains to keep track of the values and indices of
array elements [8]. However, the description of their technique has been limited
to reasoning about arrays of integers. Calcagno et al. have used separation logic
to reason about memory safety in presence of pointer arithmetic, albeit with use
of a special predicate tailored for a specific kind of data-structure (multi-word
lists) [1]. Chatterjee et al. have given a formalization of the reachability pred-
icate in presence of pointer arithmetic in first-order logic for use in a modular
verification environment where the programmer provides the loop invariants [3].

The work presented in this paper tries to address some of the above-mentioned
limitations. Our use of quantification over two simple (must and may-equality)
predicates offers the benefits of richer specification as well as the possibility of
automated deduction. Additionally, our abstract domain has good support for
pointer arithmetic in presence of recursive data structures.

Data-structure Specifications. McPeak and Necula have suggested specifying and
verifying properties of data-structures using local equality axioms [18]. For ex-
ample, the invariant associated with the program List2Array (after execution of
the first loop) in Figure 5 might be specified at the data-structure level as saying
that the field Len is the length of the array field Data. Similar approaches have
been suggested to specify and verify properties of object-oriented programs [16],
or locking annotations associated with fields of concurrent objects [7].

These approaches might result in simpler specifications that avoid universal
quantification (which has been made implicit), but they also have some disad-
vantages: (a) They require source code with data-structure declarations, while
our approach also works on low-level code without any data-structure decla-
rations. (b) Sometimes it may not be feasible to provide specifications at the
data-structure level since the related fields may not be local (i.e., not present in
the same data-structure). (c) Programmers have to provide the intended spec-
ifications for the data-structures which can be a daunting task for large legacy
code-bases, (d) It is not clear what such a specification would mean when these
fields are set only after some computation has been performed. Perhaps some-
thing like pack/unpack of Boogie methodology [16] or the temporary invariant
breakage approach [18] may be used for a well-defined semantics, but this re-
quires additional annotations for updates to additional (non-program) variables.

7 Conclusion and Future Work

This paper describes an abstract domain that gives first-class treatment to
pointer arithmetic and recursive data-structures. The proposed abstract domain
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can be used to represent useful quantified invariants. These quantified invari-
ants can be automatically discovered by performing an abstract interpretation
of programs over this domain - without using any support in the form of user-
specified list of predicates. Future work includes performing more experiments
and extending these techniques to an interprocedural analysis.
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Abstract. Symmetry reduction is a technique to counter state explosion
for systems of regular structure. It relies on idealistic assumptions about
indistinguishable components, which in practice may only be similar.
In this paper we present a generalized algebraic approach to symmetry
reduction for exploring a structure without any prior knowledge about its
global symmetry. The more behavior is shared among the components,
the more compression takes effect. Our idea is to annotate each encoun-
tered state with information about how symmetry is violated along the
path leading to it. Previous solutions only allow specific types of asym-
metry, such as up to bisimilarity, or seem to incur large overhead before
or during the verification run. In contrast, our method appeals through
its balance between generality and simplicity. We include analytic and
experimental results to document its efficiency.

1 Introduction

Symmetry reduction is a well-investigated technique to reduce the impact of
state-explosion in temporal logic model checking [2,5]. It has been applied mainly
to models of concurrent systems of processes, such as communication and mem-
ory consistency protocols. In an ideal scenario, symmetry reduction makes it
possible to verify a model over a reduced quotient model, which is not only
much smaller, but also bisimulation-equivalent to the original.

The aforementioned ideal scenario is characterized by a transition relation
that is invariant under any interchange of the components. In other words, con-
sistently renaming components in both source and target state of any transi-
tion must again yield a valid transition in the structure. This condition can be
formally violated by systems that nevertheless seem to be approximately sym-
metric. For example, consider a perfectly symmetric system that evolves into
an asymmetric one simply by customizations on some components. The num-
ber of transitions that would have to be added or removed in order to make it
symmetric is small compared with the total number of transitions.

In this paper we present a new approach to verifying systems of processes with
similar behavior. Intuitively, similarity can be expected if many transitions of the
system remain valid under many permutations of the processes. Our approach
is to annotate each state, space-efficiently, with information about whether and
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how symmetry is violated along the path to it. More precisely, the annotation is
a partition of the set of all component indices: if the path to the state contains a
transition that distinguishes two components, their indices are put into different
partition cells. Only components in the same cell can be permuted during future
explorations from the state—the algorithm adapts to the state’s history.

Suppose a given state can be reached along two paths: one with many asym-
metric transitions and one with only symmetric ones. This state thus appears
twice, once annotated with a fine partition, once with a coarse one. In order
to analyze the state’s future, we can assume that we reached it along the sym-
metric path and thus take full advantage of symmetry. The annotated state
with the fine partition can be ignored; we say it is subsumed by the other one.
Subsumption allows us to collapse many states during the exploration. The price
we have to pay is that the adaptive algorithm, by its own means, is only suitable
for reachability analysis. Throwing away a state subsumed by another leads to
an implicit reduced structure that is not bisimulation-equivalent to the original.
This price is worth paying since it allows us to improve the analysis of systems
with respect to safety properties, a significant and frequent type of formula.

We present an exact and efficient algorithm for reachability analysis, suitable
especially on an approximately fully symmetric Kripke structure. The property
to be verified may be asymmetric, i.e. it may distinguish between components.
Errors are discovered at minimum distance from the initial state, and paths
to them can be recovered, provided a breadth-first search order. Following the
presentation of the technical details of our method, we give analytic and practical
results substantiating its usefulness.

2 Related Work

There are many publications on the use of symmetry for state space exploration
and model checking, both of fundamental nature [2,5] and specific for tools [7,8].
One of the first to apply symmetry reduction strategies to partially symmetric
systems is [6]. The authors present the notions of near and rough symmetry,
which are defined with respect to a Kripke structure; especially for rough sym-
metry it is unclear how to verify it on a high-level system description. Examples
are limited to versions of the Readers-Writers problem.

This work was generalized in [4] to virtual symmetry, the most general con-
dition that allows a bisimilar symmetry quotient. A limitation of all preceding
approaches is the existence of a strict precondition for their principle applicabil-
ity. As with [6], it is left open whether virtual symmetry can be verified efficiently;
the techniques presented in [4] seem to incur a cost proportional to the size of
the unreduced Kripke structure. On the other hand, bisimilarity makes these
approaches suitable for full μ-calculus model checking, whereas the adaptive
technique trades “property coverage” in for “system coverage”.

Symmetry detection solves the problem of suspected but formally unknown
symmetry by inferring structure automorphisms from the program text [3]. This
approach is principally different from ours. A structure automorphism is global
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in character, being defined over the transition relation. It ignores the possibil-
ity of a large part of the state space being unaffected by symmetry breaches.
The adaptive approach, which can be viewed as on-the-fly symmetry violation
detection, operates directly on the Kripke structure. As such, it can reduce local
substructures with more symmetry than revealed by global automorphisms.

Closest in spirit to our work is that by P. Sistla and P. Godefroid [9], who
also target arbitrary systems and properties. A guarded annotated quotient is
obtained from a symmetric super-structure by marking transitions that were
added to achieve symmetry. As an advantage, this method can handle arbitrary
CTL* properties. In our work, annotations apply to states, not edges, and seem
more space-efficient; in [9] there can be multiple annotations to a quotient edge.
Further, the adaptive method does not require any preprocessing of the program
text, such as in order to determine a symmetric super-structure.

3 An Example

Consider the variant of the Readers-Writers problem shown in figure 1. There
are two “reader” processes (indices 1, 2) and one “writer” (3). In order to access
some data item, each process must enter its critical section, denoted by local
state C. The edge from (the non-critical section) N to (the trying region) T is
unrestricted, as is the one from C back to N . There are two edges from T to C.

Ti Ci

∀j : sj �= C

i < 3 ∧ s3 �= C

Ni

Fig. 1. Local state transition diagram of process i for an asymmetric system

The first is executable whenever no process is currently in its critical section
(∀j : sj �= C, for current state s). The second is available only to readers (i < 3),
and the writer must be in a non-critical local state (s3 �= C). Intuitively, since
readers only read, they may enter their critical section at the same time, as long
as the writer is outside its own.

With each process starting out in local state N , the induced Kripke structure
has 22 reachable states. The adaptive method, however, constructs a reacha-
bility tree of only 9 abstract states (figure 2).An abstract state of the form
XYZ represents the set of concrete states obtained by permuting the local state
tuple (X, Y, Z). Consider, for example, the abstract state NNT , representing
(N, N, T ), (N, T, N) and (T, N, N). Guard ∀j : sj �= C of the first edge from T
to C is satisfied in all three states. Executing this edge leads to the successor
states (N, N, C), (N, C, N), (C, N, N), succinctly written as NNC in figure 2.
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NNN

NNC

NTT

NTC

TTT TTC

CC |T
NNT

CC |N

Fig. 2. Abstract reachability tree for the model induced by figure 1

Now consider the abstract state NTC . None of the six concrete states it
represents satisfies the condition ∀j : sj �= C. Thus, regarding steps from T to C,
we have to look at the second—asymmetric—edge, guarded by i < 3 ∧ s3 �= C.
Of the six represented states, two satisfy this condition with an index i < 3 such
that si = T , namely (T, C, N) and (C, T, N). In both cases, the edge leads to
state (C, C, N). We now have to make a note that this state is reached through
an asymmetric edge. The edge’s guard is invariant under the transposition (1 2),
but not under any permutation displacing index 3. We express this succinctly
in figure 2 as abstract state CC |N . Intuitively, permutations across the “|” are
illegal; this abstract state hence represents neither (N, C, C) nor (C, N, C).

We finally remark that the induced structure is not virtually symmetric and
hence not nearly or roughly so. To see this, consider the (valid) transition
(T, C, T ) → (C, C, T ). Applying transposition (2 3) to it we obtain transition
(T, T, C) → (C, T, C), which is invalid, but belongs to the structure’s sym-
metrization [4]. Virtual symmetry requires a way to permute the target state
that makes the transition valid, which is impossible here. As a corollary, this
structure is not bisimilar to its natural symmetry quotient.

4 Preliminaries: Permutations, Symmetry, Partitions

Consider a Kripke structure M = (S, R) modeling a system of n concurrently
executing processes. Let Symn be the group of permutations on [1..n] and let
π ∈ Symn operate on a state s ∈ S in the form π(s1, . . . , sn) = (sπ(1), . . . , sπ(n)).
M is said to be fully symmetric if for every π ∈ Symn,

(s, t) ∈ R iff (π(s), π(t)) ∈ R . (1)

A symmetric structure can be reduced to a bisimilar and smaller quotient struc-
ture based on the orbit relation: s ≡ t iff ∃π : π(s) = t. More details of symmetry
reduction are available in the literature [2,5].

A partition of [1..n] is a set of disjoint, non-empty subsets, called cells, that
cover [1..n]. We use a notation of the form | 1, 4 |2, 5 | 3, 6 | to represent the parti-
tion into the three cells {1, 4}, {2, 5} and {3, 6}. The coarsest partition | 1, . . . , n |
consists of a single cell, the finest partition | 1 | . . . | n | consists of n singleton cells.
A partition P induces an equivalence relation on [1..n]: we write i ≡P j exactly
if i and j belong to the same cell of P.

We say a partition P of [1..n] generates all permutations π on [1..n] such
that for all i, i ≡P π(i). These permutations form a group, denoted by 〈P〉.
For example, the partition | 1, 4 | 2, 5 | 3, 6 | generates a group of six permutations.
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The coarsest partition | 1, . . . , n | generates the entire symmetry group Symn .
The finest partition | 1 | . . . | n | generates only the identity permutation.

5 Computational Model

We assume a system is modeled as a local state transition diagram. This level
of abstraction is fully expressive for shared-memory systems and lets us focus
on synchronization aspects. Precisely, the system is specified as a number n of
processes and a graph with local states as nodes. Local transitions, called edges,
have the form

A
φ,Q−→ B . (2)

φ is a two-place predicate taking a state s and an index i. State s defines the
context in which the edge is to be executed [1]. The intended semantics is that
φ(s, i) returns true exactly if in state s process i is allowed to transit from local
state A to local state B. Predicate φ can be written in any efficiently decidable
logic, such as propositional logic with simple arithmetic over state variables and
index i. In figure 1 we have seen the predicate

φ(s, i) = i < 3 ∧ s3 �= C . (3)

It is asymmetric (and thus is the edge) since we can find s, i and a permutation π
such that φ(s, i) �= φ(π(s), π(i)). On the other hand, asymmetric edges are often
symmetric with respect to a subgroup of Symn. For instance, predicate (3) is
invariant under the transposition σ = (1 2), i.e. φ(s, i) = φ(σ(s), σ(i)) for all s, i.
In common variants of the r-readers/(n − r)-writers problem, the asymmetric
edges are immune to any products of permutations of [1..r] and [r+1..n]. Such
permutations are generated by the partition | 1..r | r+1..n |.

Symbol Q in equation (2) stands for a partition generating the automorphism
group of the edge, i.e. a set of permutations that preserve predicate φ. For the
asymmetric edge in (3), we choose Q = | 1, 2 | 3 |. In approximately symmetric
systems, Q is for most edges the coarsest partition, generating Symn. For the re-
maining edges—those that destroy the symmetry—we expect the user to provide
a suitable Q. The high-level description of the edge often suggests a group of au-
tomorphisms; see section 9 for an example. If needed, a propositional SAT-solver
can aid the verification of the automorphism property.

Letting l be the number of local states, an asynchronous semantics of the
induced n-process concurrent system is given by the following Kripke structure:
S := [1..l]n, and R is the set of transitions (s1, . . . , sn) → (t1, . . . , tn) with the
property that there is an index i ∈ [1..n] such that

1. there exists an edge si
φ,Q−→ ti with φ((s1, . . . , sn), i) = true and

2. ∀j : j �= i : sj = tj .

Note that Q is irrelevant for the definition of the Kripke structure; it is in-
stead part of the syntax of an edge. Extending the method to work with shared
variables or with a synchronous execution semantics is fairly straightforward.
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6 Orbits and Subsumption

The goal of this paper is an efficient exploration algorithm for the Kripke struc-
ture defined in the previous section. The algorithm accumulates states annotated
with partitions that indicate how symmetry was violated in reaching this state.
Thus, the formal search space of the exploration is the set Ŝ := [1..l]n × Partn,
where Partn is the set of all partitions of [1..n]. The partition is used to de-
termine which permutations can be applied to the state in order to obtain the
concrete states it represents. These permutations are those that do not permute
elements across cells, i.e. those generated by the partition (see end of section 4):

Definition 1. Let π be a permutation on [1..n]. For an n-tuple s = (s1, . . . , sn),
let π(s) denote the expression (sπ(1), . . . , sπ(n)). We extend π to operate on an
element ŝ = (s, P) of Ŝ in the form

π(s, P) =
{

(π(s), P) if π ∈ 〈P〉
(s, P) otherwise.

This mapping defines a bijection on Ŝ. Note that π never changes the partition
associated with a state; if π is not generated by P, it does not affect (s, P) at all.

In standard symmetry reduction, algorithms operate on representative states
of orbit equivalence classes. Systems with asymmetries require a generalized
notion of an orbit that defines the relationship between states in Ŝ and in S:

Definition 2. The orbit of a state ŝ = (s, P) ∈ Ŝ is defined as

orbit(s, P) = {t ∈ S : ∃π ∈ 〈P〉 : π(s) = t} .

We say that ŝ represents t if t ∈ orbit(ŝ).

Examples. For n = 4, consider the following states and the sizes of their orbits:

ŝ = (s, P) orbit size
(ABCD, | 1, 2, 3, 4 |) 4! = 24 (standard symmetry)
(ABCD, | 1, 2 |3, 4 |) 2 × 2 = 4
(ABCD, | 1, 2 |3 | 4 |) 2 × 1 × 1 = 2
(ABCD, | 1 | 2 | 3 | 4 |) 1 × 1 × 1 × 1 = 1

If P is the coarsest partition | 1, . . . , n |, then orbit(s, P) reduces to the equivalence
class that s belongs to under the standard orbit relation.

Subsumption. Orbits in standard symmetry reduction are equivalence classes
and as such either disjoint or equal. In contrast, the new orbit definition is not
based on an equivalence relation. Indeed, the orbits of the four example states
in the table above form a strictly descending chain. It is therefore unnecessary
to remember all four states if encountered during exploration: the first subsumes
the others.

Definition 3. State ŝ ∈ Ŝ subsumes t̂ ∈ Ŝ, written ŝ � t̂, if orbit(ŝ) ⊇ orbit(t̂).
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Examples. For n = 3, consider the following states and examples of what they
subsume and don’t subsume (Q is arbitrary):

ŝ = (s, P) ŝ subsumes: ŝ does not subsume:
(ABC, | 1, 2, 3 |) (ABC, Q), (BCA, Q) (ABB, Q)
(ABC, | 1, 3 |2 |) (ABC, | 1 | 2 | 3 |), (CBA, | 1 | 2 | 3 |) (BAC, Q)
(ABC, | 1 | 2 | 3 |) itself only (ABC, | 1, 3 | 2 |)

Definition 3 provides no clue about how to efficiently detect subsumption. An
alternative characterization is the following. Recall that i ≡P j iff i and j belong
to the same cell within P.

Theorem 4. State ŝ = (s, P) subsumes state t̂ = (t, Q) exactly if

1. i ≡Q j ⇒ (i ≡P j ∨ ti = tj) is a tautology, and
2. t ∈ orbit(ŝ).

Remark. Condition 1 is slightly weaker than the condition i ≡Q j ⇒ i ≡P j,
which states that P is coarser than Q. As a hint why ti = tj is needed for an
equivalent characterization of subsumption, consider ŝ = (AA, | 1 | 2 |), which has
a finer partition than t̂ = (AA, | 1, 2 |), but subsumes t̂.

Condition 1 can, using appropriate data structures for partitions, be decided in
O(n2) time. In practice, violations are often detected much faster using heuristics
such as comparing the cardinalities of P and Q. Condition 2 requires checking
whether P generates a permutation π that satisfies π(s) = t. This can be decided
in O(n) time by treating each cell P ∈ P separately: we project both s and t to
the positions in P and use a counting argument to verify that the projections
are the same up to permutation.

Algebraic Properties of Subsumption. Relation � is a preorder : it is reflexive and
transitive. It is, however, neither symmetric (e.g. (AB, | 1, 2 |) �(AB, | 1|2 |) but
not vice versa) nor anti-symmetric (e.g. (AB, | 1, 2 |) and (BA, | 1, 2 |) subsume
each other but differ). Thus, it is neither an equivalence nor a partial order.

We can derive an equivalence relation from a preorder by making it bidirec-
tional: write ŝ �� t̂ if ŝ � t̂ ∧ t̂ � ŝ. How is this equivalence related to the orbit
relation on Ŝ, written ŝ ≡ t̂ if there exists π such that π(ŝ) = t̂ ?

Lemma 5. For any ŝ, t̂ ∈ Ŝ, ŝ ≡ t̂ implies ŝ �� t̂.

According to the lemma, the orbit relation achieves less compression than sub-
sumption: the latter is coarser, i.e. it relates more states. We note that in per-
fectly symmetric systems, where each state is (implicitly) annotated with the
coarsest partition | 1, . . . , n |, the three relations �, �� and ≡ coincide.

7 State Space Exploration Under Partial Symmetry

We are now ready to present an algorithm for state space exploration on the
(partially symmetric) structure M = (S, R). The goal is to compute the set of
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Algorithm 1. State space exploration under partial symmetry

Input: initial state s0 ∈ S
1: Reached := Unexplored := {(s0, | 1, . . . , n |)}
2: while Unexplored �= ∅ do
3: let ŝ = (s,P) ∈ Unexplored ; remove ŝ from Unexplored

4: for all edges e = A
φ,Q−→ B do

5: R := glb(P, Q)
6: U := unwind(s, P, Q)
7: for all states u ∈ U do
8: for all cells R ∈ R do
9: if ∃i ∈ R : ui = A ∧ (u, i) |= φ then

10: v := (u1, . . . , ui−1, B, ui+1, . . . , un)
11: canonicalize(v)
12: update(v, R)

states reachable under R from some initial state s0 ∈ S. Technically, the algo-
rithm operates on elements of Ŝ; we later present a one-to-one correspondence
between the states reachable in M and the states found by algorithm 1.

In line 1, the initial state is annotated with the coarsest partition (indicating
absence of symmetry violations so far) and put on the Unexplored and Reached
lists. While available, one state ŝ is selected from Unexplored for expansion.

Successors of ŝ are found by iterating through all edges (line 4). We now have
to reconcile two partitions: P, expressing symmetry violations on the path to s,
and Q, expressing violations to be caused by e. Routine glb in line 5 determines
the partition R such that 〈R〉 = 〈P〉 ∩ 〈Q〉. R can be computed as the greatest
lower bound (meet) of P and Q in the complete lattice of partitions, which uses
“finer-than” as the partial order relation.

Edge predicate φ may not be invariant under permutations from 〈P〉, but it
is under permutations from 〈Q〉 and thus from 〈R〉. We account for this fact by
unwinding s into a set of states to be annotated by R whose orbits exactly cover
the orbit of ŝ = (s, P), i.e. into a set U ⊂ S that satisfies

⋃

u∈U

orbit(u, R) = orbit(s, P) . (4)

The objective is of course to find a small set U with this property. In line 6,
routine unwind returns the set U = {s} ∪ {π(s) : π ∈ 〈P〉 \ 〈Q〉}, which is easily
seen to satisfy (4). This step can be a bottleneck; we discuss in section 8 how to
avoid it in most cases and alleviate it in the remaining ones.

Processes with indices in different cells of R are distinguishable; we must con-
sider these cells separately (line 8). Edge e can be executed if there is a process i
in local state A such that (u, i) satisfies φ. If so, we let the process proceed,
resulting in a new state v (line 10). In line 11, v is canonicalized within R:
the sequence of local states with indices in R is lexicographically sorted.

The update function determines whether to add a new state v̂ to the lists
Unexplored and Reached (algorithm 2). If some state in Reached subsumes v̂,
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Algorithm 2. Updating Unexplored and Reached : update(v, R)

Input: newly computed state v̂ = (v, R)
1: if no state in Reached subsumes v̂ then
2: check whether v̂ represents a concrete error state
3: remove from Unexplored each ŵ such that v̂ � ŵ
4: add v̂ to Unexplored and to Reached

nothing needs to be done; this also covers the case v̂ ∈ Reached . Otherwise
(line 2), v̂ is checked for errors (discussed below). Then, states that v̂ subsumes
are removed from Unexplored : such states are implicitly explored as part of v̂
and are thus redundant. Finally, v̂ is added to both lists.

States reachable from s0 in M are related to states in Reached as follows.

Theorem 6. Let s0 ∈ S and Reached as computed by algorithm 1. A state s ∈ S
is reachable from s0 in M exactly if there exists ŝ ∈ Reached that represents s.

Error conditions to be checked in line 2 of algorithm 2 need not be symmetric.
For example, suppose the claim is that process 3 never enters local state X .
Given v̂ = (v, R), we determine the unique cell R ∈ R such that 3 ∈ R. An error
is reported exactly if the property ∃i ∈ R : vi = X evaluates to true.

If M has an error at distance d from s0, then algorithm 1, if organized in a
breadth-first fashion, detects it at distance d from the root of the abstract reach-
ability tree. Using back-edges from each encountered node to its predecessor,
a shortest error path can be reconstructed and lifted to a concrete path as usual.

Regarding line 3 of algorithm 2, the only reason not to remove ŵ from Reached
(but only from Unexplored) is to retain the ability to trace encountered errors
back to the initial state, for which those states may be needed. They are not
needed for just finding errors or for termination detection.

8 Implementation and Efficiency

We discuss essential refinements of algorithm 1 and derive analytic results.
In approximately symmetric systems, most edges are symmetric, resulting

in a search that annotates many states with the coarsest partition | 1, . . . , n |.
We encode this partition space-efficiently using the empty string. Further, a sym-
metric edge e in line 4 of algorithm 1 allows dramatic simplifications: Lines 5, 6
and 7 can be removed, as R equals P and U reduces to {s}. The test (u, i) |= φ
can be factored out of the loop in line 8 (replacing i with 0), since it is indepen-
dent of i (due to φ’s symmetry). Almost the same simplifications apply if e is
asymmetric but Q is coarser than P (〈Q〉 ⊇ 〈P〉), which is easy to test.

If Q is finer than P, we must compute U = {s} ∪ {π(s) : π ∈ 〈P〉 \ 〈Q〉}.
Doing this by enumerating 〈P〉 \ 〈Q〉 is inefficient and unnecessary: state s likely
contains redundancy in the form of duplicate local states (especially if there are
more processes than local states). Thus, many permutations of 〈P〉 \ 〈Q〉 result
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in the same state when applied to s. This redundancy can be avoided up front
using buckets, i.e. sets of process counters for each local state, separately in each
cell of Q. Permutations outside 〈Q〉 are applied to s by changing the contents of
the buckets. As a result, the complexity of unwind is proportional to |U |, which
is usually much smaller than |〈P〉 \ 〈Q〉|. The set U itself is large only when Q is
very fine, which is not typical for approximately symmetric systems.

To make the update function in algorithm 2 efficient, the list Reached is sorted
such that states with local state vectors that are permutations of each other are
adjacent, for example states of the forms (AAB, P1), (AAB, P2), (BAA, P3).
Given the newly reached v̂ = (v, R), we first use binary search to identify the
range in which to look for candidates for subsumption as the contiguous range
of states in Reached whose local state vectors are permutations of v. The search
in line 1 of algorithm 2 for states subsuming v̂ can now be limited to this range.

We present complexity bounds for the adaptive exploration technique. Con-
sider the abstract state space Ŝ = S × Partn, which is conceivably much bigger
than S. Our algorithm, however, only explores states not subsumed by others.
Comparing the adaptive technique to standard symmetry reduction and to plain
exploration oblivious to symmetry, our informal goal is to show that

complexity(adaptive) ≤ complexity(standard) < complexity(plain) . (5)

If the automorphism group of the structure induced by a program is non-trivial,
standard symmetry reduction is guaranteed to achieve some compression.1 The
meaning of “≤” in (5) is that this compression is preserved by our technique.

To demonstrate this, we first quantify the effect of standard symmetry reduc-
tion on a program in our input syntax. Call two processes friends if they are
not distinguished by any edge, i.e. for each edge A

φ,Q−→ B there is a cell Q ∈ Q

containing both processes. Friendship is an equivalence relation on [1..n]. Each
class of friends induces a group of permutations that can be extended to auto-
morphisms of the program’s Kripke structure. The orthogonal product of these
groups is the largest symmetry group that can be derived from the program text.

Friends enjoy the following property:

Theorem 7. Let F be a set of friends. Algorithm 1 reaches at most
� |F | + l − 1

|F |
�

local state tuples over the indices in F .

The quantity in theorem 7 equals the number of representative states under
standard symmetry reduction over the group Sym F of all permutations of F .
As a special case, if all n processes are friends, algorithm 1 reduces to standard
symmetry reduction and introduces nearly no search overhead.

Whether the “≤” in (5) is actually “<” or “�” depends on the way symmetry
is violated and is hard to quantify analytically. We observe, however, that for the
adaptive technique, the notion of friends can be extended to include processes
not distinguished by edges that are actually followed during the exploration.
1 We overlook the pathological case in which only symmetric states are reachable.
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Unreachable asymmetric edges reduce the automorphism group, but have no ef-
fect on our algorithm. This observation is supported by our experimental results.

9 Experimental Evaluation

We tested the adaptive method in a variety of experiments. We borrow a re-
source controller example from the work by Sistla and Godefroid [9, p. 729ff.].
In short, process indices are partitioned into intervals of equal priority. In case
of simultaneous requests, a server grants the resource to one of the highest-
priority processes, thus introducing asymmetry. For a process belonging to the
priority interval [lc..uc], we annotate each asymmetric edge with the partition
| 1, . . . , lc−1 | lc, . . . , uc | uc+1, . . . , n |, separating higher, equal and lower priority.

In a first set of experiments, we compare the memory use of the adaptive
technique to plain exploration oblivious of symmetry. Memory is measured by
the (reproducible) number of reached states (memory in bytes is linear in this
number, including the overhead due to the annotations). Figure 3 plots this
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Fig. 3. Comparing the adaptive technique (small dots) to plain exploration (large
circles): reached states for n/2 small priority classes (left) and two large classes (right)

number over various process counts n for the adaptive technique (small dots) and
plain exploration (large circles) on a logarithmic scale. The graphs on the left and
on the right differ in the priority scheme used. For n = 18, the plain algorithm
reaches 1, 310, 716 states on the left and 3, 808, 000 on the right, whereas our
algorithm reaches only 505 abstract states on the left and 316 on the right.
The right scheme allows more compression due to larger priority classes; the 316
abstract states reached by our algorithm very compactly represent the 3, 808, 000
concrete ones. In all cases, the adaptive algorithm took nearly zero time; for the
plain algorithm the largest time measured is 7:16min.

In a second set of experiments, we compare the memory use of the adaptive
technique with standard symmetry reduction, based on the induced structure’s
automorphism group (figure 4). For the highly fragmented scheme on the left,
the standard algorithm does quite poorly (thus again the logarithmic scale):
for n = 18, it reaches 78, 729 states, compared with 505 adaptively. The maxi-
mum symmetry group is the product of the 9 transpositions (1 2) through (17 18),
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Fig. 4. Comparing the adaptive technique (small dots) to standard symmetry reduction
(large circles); priority schemes as in figure 3

yielding a group size and expected compression factor of only 29 = 512. This ef-
fect is much less severe for the less fragmented scheme on the right (linear scale),
as is clearly revealed by the graph.

In a third set of experiments, we directly investigate how the adaptive method
scales with increasing fragmentation; the idea to do this is again borrowed
from [9]. The resource controller example with k priority classes is run with
a large number of 80 processes. The objective is to look for states where a pro-
cess holds the resource while the resource is globally recorded to be free. In a first
variant, denoted “1, 1, . . . , rest”, all priority classes but the last contain a single
process; the last contains the rest. In a second variant, denoted “2, 2, . . . , rest”,
all classes but the last contain two processes; the last contains the rest. We see
from table 1 that the number of reached states grows roughly linearly with k;

Table 1. Adaptive symmetry reduction against increasing fragmentation

“1, 1, . . . , rest” “2, 2, . . . , rest”
k n

Time # states Time # states

2 80 1s 558 1s 789

3 80 2s 792 4s 1245

5 80 4s 1251 13s 2121

7 80 8s 1698 24s 2949

“1, 1, . . . , rest” “2, 2, . . . , rest”
k n

Time # states Time # states

10 80 14s 2346 45s 4101

15 80 28s 3366 83s 5781

20 80 44s 4311 118s 7161

25 80 62s 5181 151s 8241

computation times are very reasonable. For fixed k, the fragmentation grows
with increasing size of the initial k classes (1 vs. 2), since then the final class
(hosting the majority of the processes) becomes smaller.

For k ≤ 5, data obtained with the GQS-based method were provided in [9].
Those running times are an order of magnitude higher, although they of course
depend on the machine used. Reproducible memory data for these examples
(such as the number of reached states) were not given in [9].

10 Summary

We presented a new adaptive method for exhaustive state space exploration. It is
intended for, and efficient with, approximately fully symmetric systems, where
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many transitions are shared by most processes. Verification of this feature is not
required; the method is exact for any input. We introduced the notion of sub-
sumption: a state subsumes another if its orbit contains that of the other one.
Subsumption induces a quotient structure with an identical set of reachable
states. We focused on full symmetry, since this type is the most frequent and
profitable in practice. The adaptive method can be implemented as well for
rotation groups; critical is the ability to represent and manipulate groups suc-
cinctly. Our implementation uses an explicit state representation. We believe the
algorithm can be incorporated into the Murϕ model checker [8] and extend its
applicability to asymmetric systems.

The subsumption relation benefits reachability analysis by aggressively sup-
pressing re-emerging states, even non-equivalent ones. This behavior is too crude
for general model checking; how to extend the method is part of our future work.
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Abstract. Liveness temporal properties state that something “good” eventually
happens, e.g., every request is eventually granted. In Linear Temporal Logic
(LTL), there is no a priori bound on the “wait time” for an eventuality to be
fulfilled. That is, Fθ asserts that θ holds eventually, but there is no bound on the
time when θ will hold. This is troubling, as designers tend to interpret an eventu-
ality Fθ as an abstraction of a bounded eventuality F≤kθ, for an unknown k, and
satisfaction of a liveness property is often not acceptable unless we can bound
its wait time. We introduce here PROMPT-LTL, an extension of LTL with the
prompt-eventually operator Fp. A system S satisfies a PROMPT-LTL formula ϕ
if there is some bound k on the wait time for all prompt-eventually subformulas of
ϕ in all computations of S. We study various problems related to PROMPT-LTL,
including realizability, model checking, and assume-guarantee model checking,
and show that they can be solved by techniques that are quite close to the standard
techniques for LTL.

1 Introduction

Since the introduction of temporal logic into computer science [11], temporal logic, in
its many different flavors, has been widely accepted as an appropriate formal framework
for the description of on-going behavior of reactive systems [10]. Temporal proper-
ties are traditionally classified into safety and liveness properties [2]. Intuitively, safety
properties assert that nothing bad will ever happen during the execution of the system,
and liveness properties assert that something good will happen eventually. Temporal
properties are interpreted with respect to systems that generate infinite computations.
In satisfying liveness properties, there is no bound on the “wait time”, namely the time
that may elapse until an eventuality is fulfilled. For example, the LTL formula Fθ is
satisfied at time i if θ holds at some time j ≥ i, but j − i is not a priori bounded.

In many applications, it is important to bound the wait time. This has given rise to
formalisms in which the eventually operator F is replaced by a bounded-eventually
operator F≤k. The operator is parameterized by some k ≥ 0, and it bounds the wait
time to k [4,9]. Since we assume that time is discrete, the operator F≤k is simply a
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syntactic sugar for an expression in which the next operator X is nested. Indeed, F≤kθ
is just θ ∨ X(θ ∨ X(θ∨ k−4. . . ∨Xθ)).

A drawback of the above formalism is that the bound k needs to be known in advance,
which is not the case in many applications. For example, it may depend on the system,
which may not yet be known, or it may change, if the system changes. In addition, the
bound may be very large, causing the state-based description of the specification (e.g.,
an automaton for it) to be very large too. Thus, the common practice is to use liveness
properties as an abstraction of such safety properties: one writes Fθ instead of F≤kθ
for an unknown or a too large k.

For some temporal logics, the abstraction is sound, in the sense that if a system S
satisfies a liveness property ψ, then there is a bound k, which depends on S, such that
S also satisfies the formula obtained from ψ by replacing all occurrences of F in ψ by
F≤k. For example, it is shown in [9] that in the case of CTL, taking k to be the number
of states in S does it. Thus, if a state s satisfies AFθ, then it also satisfies AF≤kθ, for
k = |S|, and similarly for EFθ. Intuitively, since θ is a state formula, a wait time that is
greater than |S| indicates that the wait time may also be infinite (by looping in a cycle
that ought to be taken during the wait time), and may also be shortened to at most |S|
(by skipping such cycles).

So the abstraction of safety properties by liveness properties is sound for CTL. Is
it sound also for the linear temporal logic LTL? Consider the system S described in
Figure 1 below. While S satisfies the LTL formula FGq, there is no k ≥ 0 such that S
satisfies F≤kGq. To see this, note that for each k ≥ 0, the computation that first loops
in the first state for k times and only then continues to the second state, satisfies the
eventuality Gq with wait time k + 1.

S : q ¬q q

Fig. 1. S satisfies FGq but does not satisfy F≤kGq, for all k ≥ 0

It follows that the abstraction of safety properties by liveness properties is not sound
in the linear-time approach (which is more popular with users, cf. [7]). This is troubling,
as designers tend to interpret eventualities as bounded eventualities, and satisfaction of
a liveness property is often not acceptable unless we can bound its wait time.1

In this work we introduce and study an extension of LTL that addresses the above
problem. In addition to the usual temporal operators of LTL, our logic, PROMPT-LTL,
has a new temporal operator that is used for specifying eventualities with a bounded
wait time. We term the operator prompt eventually and denote it by Fp. Let us define
the semantics of PROMPT-LTL formally. For a PROMPT-LTL formula ψ and a bound
k ≥ 0, let ψk be the LTL formula obtained from ψ by replacing all occurrences of Fp

by F≤k. Then, a system S satisfies ψ iff there is k ≥ 0 such that S satisfies ψk.

1 Note that the reduction of liveness to safety as described in [3] is performed by squaring the
state space rather than trying to bound the wait time of eventualities. Thus, it is not related to
the discussion in this paper.
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Note that while the syntax of PROMPT-LTL is very similar to that of LTL, its seman-
tics is defined with respect to an entire system, and not with respect to computations.
For example, while each computation π in the system S from Figure 1 has a bound
kπ ≥ 0 such that Gq is satisfied in π with wait time kπ, there is no k ≥ 0 that bounds
the wait time of all computations. It follows that, unlike linear temporal logics, we can-
not characterize a PROMPT-LTL formula ψ over a set AP of atomic propositions by a
set of computations Lψ ⊆ (2AP )ω such that a system S satisfies ψ iff the language of
S is contained in Lψ. On the other hand, unlike branching temporal logics, if two sys-
tems agree on their languages, then they agree also on the satisfaction of all PROMPT-
LTL formulas. Thus, PROMPT-LTL intermediates between the linear and branching
approaches: as in the linear approach, the specification refers to the set of computations
of the system rather than its computation tree; as in the branching approach, we cannot
consider these computations individually.

As further motivation to a prompt eventuality operator, consider the formula Fa →
Fb. A system may satisfy G¬a ∨ Fb but have no bound on the wait time to the satis-
faction of the eventuality. When a user checks Fa → Fb, it is quite likely that what he
has in mind is G¬a ∨ Fpb. The user may not know a bound k such that G¬a ∨ X≤kb
should be checked. It is also possible that what the user has in mind is ”assume Fa;
assert Fb”, where the bound for b ought to depend on the bound for a. Our semantics
distinguishes these three different understandings of Fa → Fb.

We study the basic problems of PROMPT-LTL. Consider a PROMPT-LTL formula ψ
over AP . The set AP may be partitioned to sets I and O of input and output signals.
Consider also a system S. We study the following problems: realizability (is there a
strategy f : (2I)∗ → 2O such that all the computations generated by f satisfy ψ?),
model checking (does S satisfy ψ?), and assume-guarantee model checking (given an
additional PROMPT-LTL formula ϕ, is it the case that for all systems S′, if S‖S′ satisfies
ϕ, then S‖S′ also satisfies ψ?). Since a system that satisfies a PROMPT-LTL formula
may consist of a single regular computation, the satisfiability problem for prompt-LTL
can be easily reduced to LTL satisfiability (simply replace all occurrences of Fp by F).
For the other problems, similar reductions do not work, and we have to develop a new
technique in order to solve them. Let us describe our technique briefly.

Consider a prompt-LTL formula ψ over AP . Let p be an atomic proposition not in
AP . Think about p as a description of one of two colors, say green (p holds) and red
(p does not hold). Each computation of the system can be partitioned to blocks such
that states of the same block agree on their color. We show that a system S satisfies a
PROMPT-LTL formula ψ iff there is some bound k ≥ 0 such that we can color each
computation π of S so that the induced blocks are of length k, and whenever a suffix of
π has to satisfy an eventuality, the eventuality is fulfilled within two blocks. Indeed, the
latter condition holds iff all eventualities have wait time at most 2k.

The key idea behind our technique is that rather than searching for a bound k for
the prompt eventualities, which can be quite large, it is enough to make sure that there
is a coloring in which all blocks are of a (not necessarily bounded) finite length, and
then use some regularity argument in order to conclude that the size of the blocks could
actually be bounded. Forcing the blocks to be of a finite length can be done by requir-
ing the colors to alternate infinitely often. As for regularity, in the case of realizability,
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regularity follows from the finite-model property of tree automata. In the case of
(assume-guarantee) model checking, regularity follows from the finiteness of the
system.

The complexities that follow from our algorithms are encouraging: reasoning about
PROMPT-LTL is not harder than reasoning about LTL: realizability is 2EXPTIME-
complete, and model checking and assume-guarantee model checking are PSPACE-
complete. For LTL, many heuristics have been studied and applied. Some of them are
immediately applicable for PROMPT-LTL (c.f., optimal translations of formulas to au-
tomata), and some should be extended to the prompt setting (e.g., bad-cycle detection
algorithms). We also study some theoretical aspects of PROMPT-LTL, such as the abil-
ity to translate PROMPT-LTL formulas to branching-temporal logics (a translation to the
μ-calculus is always possible, but may involve a significant blow up), and the ability to
determine whether a PROMPT-LTL formula has an equivalent LTL formula (PSPACE-
complete).

2 Prompt Linear Temporal Logic

The logic PROMPT-LTL extends LTL [11] by a prompt-eventually operator Fp. The
syntax of PROMPT-LTL formulas (in negation normal form) is given by the gram-
mar below, for a set AP of atomic propositions: ϕ ::= AP | ¬AP | ϕ ∨ ϕ | ϕ ∧
ϕ | Xϕ | Fpϕ | ϕUϕ | ϕRϕ. The semantics of a PROMPT-LTL formula is defined with
respect to an infinite word w = w0, w1, . . . over the alphabet 2AP , a position i ≥ 0 in
w, and a bound k ≥ 0. We use (w, k, i) |= ϕ to indicate that ϕ holds in location i of w
with bound k. The relation |= is defined by induction on the structure of ϕ as follows.

– For propositions, Boolean connectives, and LTL temporal operators, the definition
is independent of k and coincides with the one for LTL.2

– (w, i, k) |= Fpϕ iff there exists j such that i ≤ j ≤ i + k and (w, j, k) |= ϕ.

We use Fθ and Gθ to abbreviate trueUθ and falseRθ, respectively. Note that the nega-
tion of Fp is not expressible in PROMPT-LTL, thus the logic is not closed under nega-
tion. Given a PROMPT-LTL formula ϕ, let live(ϕ) be the LTL formula obtained from ϕ
by replacing every prompt-eventually operator Fp by a standard eventually operator F.

A (labeled) transition system is S = 〈AP, S, ρ, s0, L〉, where AP is a finite set of
atomic propositions, S is a finite set of states, ρ ⊆ S × S is a total transition relation,
s0 ∈ S0 is an initial state, and L : S → 2AP maps each state s to the set of propositions
that hold in s. When ρ(s, s′), we say that s′ is a successor of s, and s is a predecessor
of s′. A computation of S is an infinite sequence of states π = s0, s1, . . . ∈ Sω such
that for all i ≥ 0, we have ρ(si, si+1). The computation π induces the trace L(π) =
L(s0) · L(s1) · · ·.

Given a system S and a PROMPT-LTL formula ϕ over AP , we say that S satisfies
ϕ, denoted S |= ϕ, if there exists some k ≥ 0 such that for all traces w of S, we have
(w, 0, k) |= ϕ. We then say that S satisfies ϕ with bound k. Note that when S �|= ϕ,
then for every k ≥ 0, there exists a trace w such that (w, 0, k) �|= ϕ.

2 Recall that in LTL we have that π, i |= θRψ iff for all j ≥ i, if π, j �|= ψ, then for some k,
i ≤ k < j, we have π, k |= θ.
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In [1], Alur et al. study an extension of LTL in which the temporal operators F and
G are replaced by the operators F≤x,F>y,G≤x, and G>y, for variables x and y (the
same variable may be used in different operators, but, to ensure decidability, the same
variable cannot participate in both a lower and an upper bound). Given a system S and
a formula in their logic, one can ask whether there is an assignment to the variables for
which the system satisfies the formula, with the expected interpretation of the bounded
operators.3 Our logic can be viewed as a special case of the logic studied in [1], in
which only eventualities are parameterized, and only with upper bounds. The algorithms
suggested by Alur et al. are rather involved. By giving up the operators F>y,G≤x, and
G>y , whose usefulness is debatable, we get a much simpler model-checking algorithm,
which is also similar to the classical LTL model-checking algorithm. We are also able
to a solve the realizability and the assume-guarantee model checking problems.

The Alternating-Color Technique. We now describe the key idea of our technique
for reasoning about PROMPT-LTL formulas. Let p be an atomic proposition not in AP .
We think about p as a description of one of two colors, say green (p holds) and red (p
does not hold). Each computation of the system can be partitioned to blocks such that
states of the same block agree on their color. Our technique is based on the idea that
bounding the wait time of prompt eventualities can be reduced to forcing all blocks to
be of a bounded length, and forcing all eventualities to be fulfilled within two blocks,
We now make this intuition formal.

Consider a word w = σ0, σ1, . . . ∈ (2AP )ω. Let p be a proposition not in AP . A
p-coloring of w is a word w′ = σ′

0, σ
′
1, . . . ∈ (2AP∪{p})ω such that w′ agrees with w

on the propositions in AP ; i.e., for all i ≥ 0, we have σ′
i ∩ AP = σi. We refer to the

assignment to p as the color of location i and say that i is green if p ∈ σ′
i and is red

if p �∈ σ′
i. We say that p changes at i if either i = 0 or the colors of i − 1 and i are

different (that is, p ∈ σ′
i−1 iff p /∈ σ′

i). We then call i a p-change point. A subword
σ′

i, . . . , σ
′
i′ is a p-block if all positions in the subword have the same color, and i and

i′ + 1 are p-change points. We then say that i and i′ + 1 are adjacent p-change points.
For k ≥ 0, we say that w′ is k-spaced, k-bounded, and k-tight (with respect to p) if
w′ has infinitely many blocks, and all the blocks are of length at least k, at most k, and
exactly k, respectively.

Consider the formula altp = GFp ∧ GF¬p. It requires that the proposition p alter-
nates infinitely often. Given a PROMPT-LTL formula ϕ, let relp(ϕ) denote the formula
obtained from ϕ by (recursively) replacing each subformula of the form Fpψ by the
LTL formula (p → (pU(¬pUψ))) ∧ (¬p → (¬pU(pUψ))). Note that the definition
is recursive, thus relp(ϕ) may be exponentially larger than ϕ. The number of sub-
formulas of relp(ϕ), however, is linear in the number of subformulas of ϕ, and it is
this number that plays a role in the complexity analysis (equivalently, the size of the
DAG-presentation of relp(ϕ) is linear in the size of the DAG presentation of ϕ). For
a PROMPT-LTL formula ϕ, we define c(ϕ) = altp ∧ relp(ϕ). Thus, c(ϕ) forces the
computation to be partitioned into infinitely many blocks, and requires each prompt

3 The work in [1] studies many more aspects of the logic, like the problem of deciding whether
the formula is satisfied with all assignments, the problem of finding an optimal assignment, and
other decidability issues.
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eventuality to be satisfied in the current or next block or in the position immediately
after the next block (within two blocks, for short),

Lemma 1. Consider a PROMPT-LTL formula ϕ, a word w, and a bound k ≥ 0.

1. If (w, 0, k) |= ϕ, then (w′, 0) |= c(ϕ), for every k-spaced p-coloring w′ of w.
2. If w′ is a k-bounded p-coloring of w such that (w′, 0) |= c(ϕ), then (w, 0, 2k) |= ϕ.

The alternating-color technique sets the basis to reasoning about a PROMPT-LTL for-
mula ϕ by reasoning about the LTL formula c(ϕ). The formula c(ϕ), however, does
not require the blocks in the colored computation to be of a bounded length. Indeed, the
conjunct altp only forces the colors to be finite, and it does not prevent, say, a p-coloring
in which each block is longer than its predecessor block, and which is not k-bounded,
for all k ≥ 0. Thus, the challenge of forcing the p-coloring to be k-bounded for some k
remains, and we have to address it in each of the decision procedures described in the
following sections.

3 Realizability

Given an LTL formula ψ over the sets I and O of input and output signals, the re-
alizability problem for ψ is to decide whether there is a strategy f : (2I)∗ → 2O

such that all the computations generated by f satisfy ψ [13]. Formally, a computation
w ∈ (2I∪O)ω is generated by f if w = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all
j ≥ 0, we have oj = f(i0 · i1 · · · ij). Thus, the interaction is initiated by the environ-
ment that generates i0, and the first state in the computation is labeled i0 ∪ f(i0). Then,
the environment generates i1, and the second state in the computation is i1 ∪ f(i0 · i1),
and so on. It is known that if some strategy that realizes ψ exists, then there also exists
a regular strategy (i.e, a strategy generated by a finite-state transducer) that realizes ψ
[6]. Formally, a transducer is D = 〈I, O, Q, η, q0, L〉, where I and O are the sets of
input and output signals, Q is a finite set of states, η : Q × 2I → Q is a deterministic
transition function, q0 ∈ Q is an initial state, and L : Q → 2O maps each state to a set
of output signals. The transducer D generates f in the sense that for every τ ∈ (2I)∗,
we have f(τ) = L(η(τ)), with the usual extension of η to words over 2I .

We first show that PROMPT-LTL realizability of a formula ϕ cannot be simply re-
duced to the realizability of live(ϕ). Thus, we describe a formula ϕ such that live(ϕ) is
realizable, but for every strategy f that realizes ϕ and for every candidate bound k ≥ 0,
there is a computation w generated by f such that (w, 0, k) �|= ϕ. Let I = {i} and
O = {o}. We define ϕ = o ∧ (G(i → o)) ∧ ((X¬o)Ri) ∧ (FpGo).

Thus, a computation satisfies ϕ if o holds in the present and whenever i holds, when-
ever i does not hold in some position, then o does not hold in this position or in an
earlier one, and the computation prompt-eventually reaches a position from which o
holds everywhere. It is not hard to see that live(ϕ) is realizable. Indeed, the strategy
that sets o to true everywhere except in the first time that i is false realizes live(ϕ).
On the other hand, ϕ is not realizable. To see this, note that the position in which the
input i is set to false can be delayed arbitrarily by the environment, forcing a delay also
in the fulfillment of the Go eventuality. Thus, for every candidate bound k ≥ 0, the
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input sequence in which i is false at the (k + 1)-th position cannot be extended to a
computation that satisfies FpGo with bound k.

The good news is that while realizability of ϕ cannot be reduced to the realizability
of live(ϕ), it can be reduced to the realizability of c(ϕ). Intuitively, it follows from the
fact that in a regular strategy, the fact that all blocks are of a finite length does imply
that they are also of a bounded length. Formally, we have the following.

Theorem 1. A PROMPT-LTL formula ϕ over input signals I and output signals O is
realizable iff the LTL formula c(ϕ) over input signals I and output signals O ∪ {p} is
realizable.

Since LTL realizability is 2EXPTIME-complete and every LTL formula is also a
PROMPT-LTL formula, we can conclude:

Theorem 2. The problem of prompt realizability is 2EXPTIME-complete in the size of
the formula.

As demonstrated above, the alternating-color technique is very powerful in the case of
realizability. Indeed, the challenge of forcing the p-coloring to be k-bounded for some k
is taken care of by the regularity of the strategy. We now proceed to the model-checking
problem, where a reduction to c(ϕ) is not sufficiently strong.

4 Model Checking

In this section we describe an algorithm for solving the model-checking problem for
PROMPT-LTL. An alternative algorithm is described for the richer parameterized linear
temporal logic in [1]. Our algorithm is much simpler, and it deviates from the standard
LTL model-checking algorithm only slightly. In addition, as we show in Section 6, the
idea behind our algorithm can be applied also in order to solve assume-guarantee model
checking, which is not known to be the case with the algorithm in [1]. Our algorithm
is based on the automata-theoretic approach to LTL model-checking, and we first need
some definitions.

A nondeterministic Büchi word automaton (NBW for short) is A = 〈Σ, S, δ, s0, α〉,
where Σ is a finite alphabet, S is a finite set of states, δ : S × Σ → 2S is a transition
function, s0 ∈ S is an initial state, and α ⊆ S is a Büchi acceptance condition. A run
of A on a word w = w0 · w1 · · · is an infinite sequence of states s0, s1, . . . such that s0
is the initial state and for all j ≥ 0, we have sj+1 ∈ δ(sj , wj). For a run r = s0, s1, . . .,
let inf(r) = {s ∈ S | s = si for infinitely many i’s} be the set of all states occurring
infinitely often in the run. A run is accepting if inf(r) ∩ α �= ∅. That is, the run visits
infinitely many states from α. A word w is accepted by A if there exists some accepting
run of A over w. The language of A, is the set of words accepted by A.

Theorem 3. [17] For every LTL formula ϕ over AP there exists an NBW Aϕ over the
alphabet 2AP such that Aϕ accepts exactly all words that satisfy ϕ. The number of
states of Aϕ is at most exponential in the number of subformulas of ϕ.

In order to check whether a system S satisfies an LTL formula ϕ, one takes the product
of S with the NBW A¬ϕ and tests the product for non-emptiness [16]. Indeed, a path in
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this product witnesses a computation of S that does not satisfy ϕ. As discussed in Sec-
tion 1, in the case of PROMPT-LTL we cannot translate formulas to languages. More-
over, we also cannot simply apply the alternating-color technique: even if we check
the nonemptiness of the product of the system (an augmentation of it in which the
proposition p behaves nondeterministically, thus all p-colorings are possible) with the
automaton for altp ∧ ¬relp(ϕ), a path in this product only implies that for some bound
k ≥ 0, the formula ϕ is not satisfied in S with bound k. For proving that S does not
satisfy ϕ we have to prove something stronger, namely, that ϕ is not satisfied in S with
bound k, for all bounds k ≥ 0. For that, we do take the product of the system with the
automaton for altp ∧ ¬relp(ϕ), but add a twist to the nonemptiness check: we search
for a path in the product in which each p-block contains at least one state that repeats.
Such a state indicates that for all bounds k ≥ 0, the p-block can be pumped to a p-block
of length greater than k, implying that ϕ cannot be satisfied in S with bound k. We now
formalize this intuition.

A colored Büchi graph is a tuple G = 〈{p}, V, E, v0, L, α〉, where p is a proposition,
V is a set of vertices, E ⊆ V × V is a set of edges, v0 ∈ V is an initial vertex,
L : V → 2{p} describes the color of each vertex, and α ⊆ V is a set of accepting states.
A path π = v0, v1, v2, . . . of G is pumpable if all its p-blocks have at least one state that
repeats. Formally, if i and i′ are adjacent p-change points, then there are positions j and
j′ such that i ≤ j < j′ < i′ and vj = vj′ . Also, π is fair if it visits α infinitely often.
The pumpable nonemptiness problem is to decide, given G, whether is has a pumpable
fair path.

Let c(ϕ) = altp ∧ ¬relp(ϕ). That is, we relativize the satisfaction of Fp to the new
proposition p, negate the resulting formula, and require the proposition p to alternate in-
finitely often. Let Ac(ϕ) = 〈2AP∪{p}, Q, δ, q0, α〉 be the NBW for c(ϕ) per Theorem 3.
Consider a system S = 〈AP, S, ρ, s0, L〉. We now define the product of S with Ac(ϕ)
by means of a colored Büchi graph. Note that S does not refer to the proposition p, and
we duplicate its state space in order to have in the product all possible p-colorings of
computations in S. Thus, the product is P = 〈{p}, S × {{p}, ∅}× Q, M, 〈s0, {p}, q0〉,
L, S ×{{p}, ∅}×α〉, where M(〈s, c, q〉, 〈s′, c′, q′〉) iff ρ(s, s′) and q′ ∈ δ(q, L(s)∪c),
and L(〈s, c, q〉) = c.

It is not hard to see that a path π = 〈s0, c0, q0〉, 〈s1, c1, q1〉, 〈s2, c2, q2〉, . . . in P
corresponds to a computation s0, s1, s2, . . . of S, a p-coloring L(s0) ∪ c0, L(s1) ∪
c1, L(s2) ∪ c2, . . . of the trace that the computation induces, and a run q0, q1, q2, . . .
of Ac(ϕ) on this p-coloring.

Theorem 4. The system S does not satisfy ϕ iff the product of S and Ac(ϕ) is pumpable
nonempty.

In Section 5, we study the problem of deciding whether a colored Büchi graph is
pumpable-nonempty, and prove that it is in NLOGSPACE and can also be solved in
linear time. This, together with Theorems 3 and 4, imply the upper bound in the fol-
lowing theorem. The lower bound follows from the known lower bound for LTL.

Theorem 5. The model-checking problem for PROMPT-LTL is PSPACE-complete and
can be solved in time exponential in the length of the formula and linear in the size of
the system.
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Note that while the pumpable nonemptiness problem to which PROMPT-LTL model-
checking is reduced is a variant of the nonemptiness problem to which LTL model
checking is reduced, the construction of the product is almost the same. In particular,
the extensive work on optimal compilation of LTL formulas to NBW (see survey in
[15]), is applicable to our solution too.

Remark 6. The model-checking algorithm of the parametric linear temporal logic of
[1] is based on the observation that if a PROMPT-LTL formula ϕ is satisfied in a system
S, then it is satisfied with bound k, for some k that is exponential in ϕ and polynomial
in S. One cannot hope to improve this bound. Indeed, for every n ≥ 1, we can define a
PROMPT-LTL formula ψn of size linear in n such that a systems satisfies ψn iff in all its
computations, the atomic proposition q corresponds to an n-bit counter, and the value
of the counter promptly eventually reaches 2n − 1. Clearly, ψn is promptly satisfied,
but the minimal bound k with which ψn is satisfied with bound k (in some system) is
exponential in n.
The algorithm in [1] can also be used in order to find the minimal bound. It is an open
question whether the minimal bound can be found using our simplified algorithm.

5 Algorithms for Colored Büchi Graphs

In Section 4 we reduced model-checking for PROMPT-LTL to pumpable nonemptiness
problems for colored Büchi graphs. In this section we solve this problems, and provide
space and time bounds.

Theorem 7. The pumpable nonemptiness problem for colored Büchi graphs is
NLOGSPACE-complete and can be solved in linear time.

Proof: Let G = 〈{p}, V, E, v0, L, α〉. We start with the space complexity. Essen-
tially, as with standard Büchi nonemptiness, the pumpable nonemptiness problem can
be solved by a sequence of reachability tests. In addition to reaching a vertex v in α
that is reachable from itself, the algorithm should make sure that the paths from v0
to v and from v to itself are pumpable. Thus, in each p-block, the algorithm should
guess a repeated vertex (and check that it indeed repeats). Also, an easy reduction from
reachability shows hardness in NLOGSPACE.

We now move to the time complexity. For standard Büchi nonemptiness, one looks
for a reachable nontrivial strongly connected component that intersects α. In the colored
case, we should further check that each p-block in the path can be pumped. We do
this by making sure that every green p-block contains at least one vertex that belongs
to a nontrivial strongly connected component in the graph of the green vertices, and
similarly for the red p-blocks.

Consider the graph Gg = 〈Vg, Eg〉 obtained from G by restricting attention to green
vertices. Thus, Vg = {v ∈ V | L(v) = {p}} and Eg = E ∩ (Vg ×Vg). The graph Gr =
〈Vr, Er〉 is defined similarly. We can find the maximal strongly connected components
(MSCC) of Gg and Gr in linear time [14] (note we are interested also in MSCCs that
are not reachable from v0 in Gg and Gr). Let Sg ⊆ Vg and Sr ⊆ Vr denote the union
of all non-trivial MSCCs in Gg and Gr, respectively.
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Let backg(Sg) be the vertices that can reach some vertex in Sg , and let e-backg(Sg)
be the edges that are used to reach these vertices. We tag the vertices in backg(Sg) \ Sg

by the tag B. Formally, we define backg
0(Sg) = Sg and backg

i+1(Sg) = {v ∈ Vg | ∃v′ ∈
backg

i (Sg) and (v, v′) ∈ E}. Then, backg(Sg) = Sg ∪ (
⋃

i≥1 backg
i (Sg)) × {B}. For

a vertex u ∈ backg(Sg), let ver (u) be the vertex in V that induces u; that is, the
vertex obtained from u by ignoring its tag, if exists. Then, e-backg(Sg) = {〈u, u′〉 :
E(ver (u), ver(u′)) and there is i ≥ 0 such that u ∈ backg

i+1(Sg) and u′ ∈ backg
i (Sg)}.

In a similar way, we define forwardg(Sg) to be the set of vertices that are reachable from
some vertex in Sg (with vertices not in Sg tagged with F) and define e-forwardg(Sg)
to be the edges that are used to reach these vertices. The sets backr, e-backr, forwardr,
and e-forwardr are defined similarly. Another type of edges we need are edges between
p-blocks. Let Eg→r = {〈u, u′〉 : E(ver(u), ver (u′)), u ∈ forwardg(Sg), and u′ ∈
backr(Sr)} be the set of edges along which the color changes from green to red, and
let Er→g be the set of edges along which the color changes from red to green.

Consider now the graph G′ = 〈V ′, E′〉, where V ′ = backg(Sg) ∪ forwardg(Sg) ∪
backr(Sr)∪forwardr(Sr), and E′ = e-forwardg(Sg)∪e-forwardr(Sr)∪e-backg(Sg)∪
e-backr(Sr) ∪ Eg→r ∪ Er→g . Note that the vertices in Sg and Sr appear in G′ with no
tag. Other vertices (these in Vg that can reach an MSCC in Sg along green vertices and
can also be reached from a different MSCC in Sg along green vertices, and similarly
for Vr) may appear in G′ with both tags, thus the number of vertices in G′ is at most
twice the number of vertices in G.

Intuitively, the graph G′ contains exactly all the pumpable computations of G. In-
deed, along each p-block, there must exists a vertex that belongs to an MSCC of the
graph of the corresponding color. In the full version, we prove that G is pumpable
nonempty iff G′ has some non-trivial MSCC that is reachable from v0 (possibly tagged
with B) and contains a vertex from α.

We analyze the time it takes to construct G′ and to check whether it has a non-trivial
MSCC that intersects α. Clearly, the MSCC decomposition of Gg and Gr can be done
in linear time. The search for backg and forwardg is done by backward (resp. forward)
propagation from Sg , during which the edges in e-backg and e-forwardg can be marked.
The case of backr and forwardr is similar. This stage can be completed in linear time
as well. Finally, the MSCC decomposition of G′ is completed again in linear time, thus
the overall running time is linear.

We note than our algorithm is based in MSCC-decomposition. It is an open question
whether a linear-time algorithm based on nested depth-first-search can be found (see
discussion of these types of algorithms in [15]).

Remark 8. The algorithm described above are explicit. A symbolic PROMPT-LTL
model checking algorithm follows from the translation of PROMPT-LTL to the
μ-calculus described later in Theorem 14. The translation, however, involves a signifi-
cant blow up. A symbolic algorithm that performs well on the colored Büchi graphs is
left open. For standard Büchi graphs, algorithms can be classified as ones that are based
on a nested fixed point that calculates the set of states that can reach α infinitely often
[8], and ones that calculate symbolically the MSCC of the graph [5]. We believe that
algorithms of the second type can be extended to colored graphs.
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6 Assume-Guarantee Model Checking

For two systems S = 〈AP, S, ρ, s0, L〉 and S′ = 〈AP, S′, ρ′, s′0, L
′〉, the parallel com-

position of S with S′, denoted S‖S′, is the system that contains all the joint behaviors
of S and S′. Formally, S‖S′ = 〈AP, S′′, ρ′′, s′′0 , L′′〉, where S′′ ⊆ S × S′ contains ex-
actly all pairs that agree on their label, that is 〈s, s′〉 ∈ S′′ iff L(s) = L′(s′). Then, s′′0 =
〈s0, s

′
0〉 and ρ′′(〈s, s′〉, 〈t, t′〉) iff ρ(s, t) and ρ′(s′, t′). Finally, L′′(〈s, s′〉) = L(s).

An assume-guarantee specification for a system S is a pair of two specifications ϕ1
and ϕ2. The system S satisfies the specification, denoted 〈ϕ1〉S〈ϕ2〉, if it is the case that
for all systems S′, if S‖S′ satisfies ϕ1, then S‖S′ also satisfies ϕ2 [12]. In the context
of LTL it is not hard to see that 〈ϕ1〉S〈ϕ2〉 iff S |= ϕ1 → ϕ2. Intuitively, since the ‖
operator amounts to taking the intersection of the languages of S and S′, it is sound to
restrict attention to systems S′ that correspond to single computations of S. In the case
of PROMPT-LTL, we can also restrict attention to single computations, but we have to
take the bounds into an account. Formally, we have the following.

Lemma 2. Consider a system S and PROMPT-LTL formulas ϕ1 and ϕ2. The specifi-
cation 〈ϕ1〉S〈ϕ2〉 does not hold iff there is a bound k1 ≥ 0 such that for every bound
k2 ≥ 0, there is a trace w of S such that (w, 0, k1) |= ϕ1 but (w, 0, k2) �|= ϕ2.

Since refuting assume-guarantee specifications refer to two bounds, we extend the
alternating-color technique to refer to two sets of colors. The atomic proposition p par-
titions the computation to blocks that bound k1, and a new atomic proposition q does
the same for k2. According to Lemmas 1 and 2, refuting 〈ϕ1〉S〈ϕ2〉 amounts to finding
a bound k1 ≥ 0 such that for all bounds k2 ≥ 0, there is a computation w of S such that
w has a k1-bounded p-coloring that satisfies altp ∧relp(ϕ1), but w also has a k2-spaced
q-coloring that satisfies altq ∧ ¬relq(ϕ2). Indeed, such a computation satisfies ϕ1 with
bound k1, and does not satisfy ϕ2 with bound k2.

We now show that the pumpable nonemptiness technique developed in Section 4 for
solving the model-checking problem can be used also for solving the assume-guarantee
model-checking problem, only that now the corresponding colored Büchi graphs are
colored with two sets of colors, one for ϕ1 and one for ϕ2. Also, the definition of when
a path in the graph is pumpable corresponds to the intuition above.

A colored Büchi graph of degree two is a tuple G = 〈{p, q}, V, E, v0, L, α〉. It is
similar to a colored Büchi graph, only that now there are two sets of colors, described
by p and q. Accordingly, L : V → 2{p,q}. Also, α is a generalized Büchi condition
of index 2, thus α = {α1, α2}. A path π = v0, v1, v2, . . . of G is pumpable if we can
pump all its q-blocks without pumping its p-blocks. Formally, if i and i′ are adjacent
q-change points, then there are positions j, j′, and j′′ such that i ≤ j < j′ < j′′ < i′,
vj = vj′′ and p ∈ L(vj) iff p /∈ L(vj′). Also, π is fair if it visits both α1 and α2
infinitely often. The pumpable nonemptiness problem is to decide, given G, whether it
has a pumpable fair path.

Let c(ϕ1) = altp ∧ relp(ϕ1) and c(ϕ2) = altq ∧ ¬relq(ϕ2), and let Ac(ϕ1) =
〈2AP∪{p}, Q1, δ1, q

1
0 , α1〉, and Ac(ϕ2) = 〈2AP∪{q}, Q2, δ2, q

2
0 , α2〉 be the correspond-

ing NBWs (per Theorem 3). We define the product P of S with Ac(ϕ1) and Ac(ϕ2)

as the colored Büchi graph of degree two. Thus, P = 〈{p, q}, S × 2{p,q} × Q1 ×
Q2, M, 〈s0, {p, q}, q1

0, q
2
0〉, L, {S × 2{p,q} × α1 × Q2, S × 2{p,q} × Q1 × α2}〉, where
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M(〈s, c, q1, q2〉, 〈s′, c′, q′1, q′2〉) iff ρ(s, s′), q′1 ∈ δ1(q1, L(s) ∪ (c ∩ {p})), and q′2 ∈
δ2(q2, L(s) ∪ (c ∩ {q})). Finally, L(〈s, c, q1, q2〉) = c.

Theorem 9. The specification 〈ϕ1〉S〈ϕ2〉 does not hold iff the product of S with Ac(ϕ1)
and Ac(ϕ2) is pumpable nonempty,

As detailed in the full version, solving the nonemptiness of colored Büchi graphs of de-
gree two requires a slight modification of the algorithms in Section 5; we have to add the
requirement that every q-block includes more than one p-block. The complexities stay
the same, NLOGSPACE-complete and in linear time. This, together with Theorems 3
and 9, imply the upper bound in the following theorem. The lower bound follows from
the known lower bound for LTL.

Theorem 10. The assume-guarantee model-checking problem for PROMPT-LTL is
PSPACE-complete and can be solved in time exponential in the length of the formu-
las and linear in the size of the system.

Remark 11. For LTL, fairness constraints about the system can be specified in the
formula. Thus, checking that ϕ2 holds in all computations that satisfy the fairness con-
straint ϕ1 can be reduced to model checking ϕ1 → ϕ2. A fairness assumption can also
be specified in PROMPT-LTL. Here, however, one has to allow the fairness assump-
tion and the specification to be satisfied with different bounds. Thus, fairness should be
reduced to checking 〈ϕ1〉S〈ϕ2〉.

For two formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2 iff for every system S, if S
satisfies ϕ1, then it also satisfies ϕ2. In the case of LTL, ϕ1 implies ϕ2 iff the formula
ϕ1 → ϕ2 is valid. In the case of PROMPT-LTL, ϕ1 implies ϕ2 iff 〈ϕ1〉U〈ϕ2〉, where
U is the universal system (a clique over 2AP that contains all traces over AP ). Indeed,
since for every system S we have that S‖U = S, then 〈ϕ1〉U〈ϕ2〉 does not hold iff
there is a system S such that if S satisfies ϕ1 but S �|= ϕ2. Since U is exponential in
AP , and the PSPACE complexity of assume-guarantee model checking originates from
an algorithm that is polynomial in the formulas and only logarithmic in the system,
we have the following (the lower bound follows from the PSPACE hardness of LTL
implication).

Theorem 12. The implication problem for PROMPT-LTL is PSPACE-complete.

7 Expressiveness

In this section we study expressiveness aspects of PROMPT-LTL. We show that a
PROMPT-LTL formula ϕ has an equivalent LTL formula iff ϕ and live(ϕ) are equiv-
alent, thus the problem of deciding whether ϕ can be translated to LTL is PSPACE-
complete. Since the semantics of PROMPT-LTL is defined with respect to a system, a
natural question is whether we can translate PROMPT-LTL formulas to branching tem-
poral logics. We show that indeed, all PROMPT-LTL formulas can be translated to the
μ-calculus.

All our results refer to finite-state systems. Thus, we say that two formulas ϕ and ϕ′

are equivalent iff for all finite systems S, we have that S |= ϕ iff S |= ϕ′.
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Some PROMPT-LTL formulas ϕ are equivalent to the LTL formula live(ϕ). For ex-
ample, it is not hard to see that Fpr is equivalent to Fr, for an atomic proposition r. On
the other hand, as demonstrated in Section 1, the PROMPT-LTL formula FpGr is not
equivalent to the LTL formula FGr. Is FpGq equivalent to another LTL formula? A
negative answer follows from the fact that for every PROMPT-LTL formula ϕ, there is
some LTL formula equivalent to ϕ iff ϕ is equivalent to live(ϕ). Since the implication
live(ϕ) → ϕ can be checked in PSPACE (the other direction is always valid), we have
the following. The lower bound is proven by a reduction from LTL satisfiability.

Theorem 13. Deciding whether a PROMPT-LTL formula has an equivalent LTL for-
mula is PSPACE-complete.

It is not hard to prove that the PROMPT-LTL formula FpGq is equivalent to the CTL
formula AFAGq. Indeed, a system satisfies both formulas iff there is a bound k ≥ 0
such that all the computations may visit a state in which q does not hold only in the first
k positions. One may wonder whether this argument can be generalized, leading to a
simple translation of PROMPT-LTL formulas to CTL � formulas: given a PROMPT-LTL
formula ϕ, translate it to a CTL� formula ϕ′ by (recursively) replacing all subformulas
of the form Fpθ by FAθ (and adding an external A). To see that the reduction does
not hold in general, consider the PROMPT-LTL formula ϕ = Fp(Xq ∨ Gq). While
the system S from Figure 1 satisfies ϕ (with bound 3), the system S does not satisfy
the CTL� formula ϕ′ = AFA(Xq ∨ Gq). The question whether PROMPT-LTL can be
expressed in CTL� is open. On the other hand, the two-color technique can be used in
order to translate a PROMPT-LTL formula over P to alternating parity tree automaton
over the alphabet 2P∪{p}, and then to the μ-calculus over P . Formally, we have the
following.

Theorem 14. Every PROMPT-LTL formula has an equivalent μ-calculus formula of
exponential length.
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Abstract. We describe a method for computing an exact minimal au-
tomaton to act as an intermediate assertion in assume-guarantee rea-
soning, using a sampling approach and a Boolean satisfiability solver.
For a set of synthetic benchmarks intended to mimic common situations
in hardware verification, this is shown to be significantly more effective
than earlier approximate methods based on Angluin’s L* algorithm. For
many of these benchmarks, this method also outperforms BDD-based
model checking and interpolation-based model checking.

1 Introduction

Compositional verification is a promising approach for alleviating the state-
explosion problem in model checking. This technique decomposes the verification
task for the system into simpler verification problems for the individual compo-
nents of the system. Consider a system M composed of two components M1 and
M2, and a property P that needs to be verified on M . The assume-guarantee
style for compositional verification uses the following inference rule:

〈true〉 M1 〈A〉
〈A〉 M2 〈P 〉

〈true〉 M1 ‖ M2 〈P 〉
(1)

This rule states that P can be verified on M by identifying an assumption A
such that: A holds on M1 in all environments and M2 satisfies P in any environ-
ment that satisfies A. In a language-theoretic framework, we model a process as
a regular language, specified by a finite automaton. Process composition is inter-
section of languages, and a process satisfies a property P when its intersection
with L(¬P ) is empty. The above inference rule can thus be written as:

L(M1) ⊆ L(A)
L(A) ∩ L(M2) ∩ L(¬P ) = ∅

L(M1) ∩ L(M2) ∩ L(¬P ) = ∅
(2)

Let us designate the intersection of L(M2) and L(¬P ) as M ′
2. The problem of

constructing an assume-guarantee argument then amounts to finding an automa-
ton A that separates L(M1) and L(M ′

2), in the sense that L(A) accepts all the
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strings in L(M1), but rejects all the strings in L(M ′
2). Clearly, we would like

to find an automaton A with as few states as possible, to minimize the state-
explosion problem in checking the antecedents of the assume-guarantee rule.

For deterministic automata, the problem of finding a minimum-state sep-
arating automaton is NP-complete. It is reducible to the problem of finding a
minimal-state implementation of an Incomplete Deterministic Finite Automaton
(IDFA), shown to be NP-complete by Pfleeger [Pfl73]. To avoid this complex-
ity, Cobleigh et al. proposed a polynomial-time approximation method [CGP03]
based on a modification of Angluin’s L* algorithm [Ang87, RS89] for active
learning of a regular language. The primary drawback of this approach is that
there is no approximation bound; in the worst case, the algorithm will return the
trivial solution L(M1) as the separating language, and thus provide no benefit in
terms of state space reduction that could not be obtained by simply minimizing
M1. Alur et al. [AMN05] have presented a symbolic implementation of this ap-
proach, which suffers from the same drawback. In fact, in our experiments with
hardware verification problems, the L*-based approach failed to produce a state
reduction for any of our benchmark problems.

In this paper, we argue that it may be worthwhile to solve the minimal sep-
arating automaton problem exactly. Since the overall verification problem is
PSPACE-complete when M1 and M ′

2 are expressed symbolically, there is no
reason to require that the sub-problem of finding an intermediate assertion be
solved in polynomial time. Moreover, the goal of assume-guarantee reasoning is
a verification procedure with complexity proportional to |M1|+ |M ′

2| rather than
|M1| × |M ′

2|, where |M | denotes the textual size of M . If this is achieved, it may
not matter that the overall complexity is exponential in |A|, provided A is small.

With this rationale in mind, we present an exact approach to the minimal sep-
arating automaton problem, suited to assume-guarantee reasoning for hardware
verification. We apply the sampling-based algorithm used by Pena and Oliveira
[PO98] for the IDFA minimization problem. This algorithm iteratively generates
sample strings in L(M1) and L(M ′

2), computing at each step a minimal automa-
ton consistent with the sample set. Finding a minimal automaton consistent
with a set of labeled strings is itself an NP-complete problem [Gol78], and we
solve it using a Boolean Satisfiability (SAT) solver. We use the sampling ap-
proach here because the standard techniques for solving the IDFA minimization
problem [KVBSV97] require explicit state representation, which is not practical
for hardware verification.

For hardware applications, we must also deal with the fact that the alphabet
is exponential in the number of Boolean signals connecting M1 and M ′

2. This
difficulty is also observed in L*-based approaches, where the number of queries
is proportional to the size of the alphabet. We handle this problem by learning
an automaton over a partial alphabet and generalizing to the full alphabet using
Decision Tree Learning [Mit97] methods.

Using a collection of synthetic hardware benchmarks, we show that our ap-
proach is effective in producing exact minimal intermediate assertions in cases
where the approximate L* approach yields no reduction. In some cases, our
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method also provides a substantial reduction in overall verification time com-
pared to direct model checking using state-of-the-art methods.

2 Preliminaries

2.1 Deterministic Finite Automaton

Definition 1. A Deterministic Finite Automaton (DFA) M is a tuple
(S, Σ, s0, δ, F ) where: (1) S is a finite set of states, (2) Σ is a finite alpha-
bet, (3) δ : S × Σ → S is a transition function, (4) s0 ∈ S is the initial state,
and (5) F ⊆ S is the set of accepting states.

Definition 2. An Incomplete Deterministic Finite Automaton (IDFA) M is a
tuple (S, Σ, δ, s0, F, R) where: (1) S is a finite set of states, (2) Σ is a finite
alphabet, (3) δ : S × Σ → (S ∪ {⊥}) is a partial transition function, (4) s0 ∈ S
is the initial state, (5) F ⊆ S is the set of accepting states, and (6) R ⊆ S is
the set of rejecting states.

Intuitively, an IDFA is incomplete because some states may not have outgoing
transitions for the complete alphabet, and some states are neither accepting nor
rejecting. If there is no transition from state s on symbol a then δ(s, a) = ⊥. For
both DFA’s and IDFA’s we extend the transition function δ in the usual way to
apply to strings. That is, if π ∈ Σ∗ and a ∈ Σ then δ(s, πa) = δ(δ(s, π), a) when
δ(s, π) �= ⊥ and δ(s, πa) = ⊥ otherwise.

A string s is accepted by a DFA M if δ(s0, s) ∈ F , otherwise s is rejected by
M . A string s is accepted by an IDFA if δ(q0, s) ∈ F . A string s is rejected by
an IDFA M if δ(q0, s) ∈ R.

Given two languages L1, L2 ⊆ Σ∗, we will say that a DFA or IDFA separates
L1 and L2 when it accepts all strings in L1 and rejects all strings in L2. A min-
imal separating automaton (MSA) for L1 and L2 is an automaton with minimal
number of states separating L1 and L2 (we will apply this notion to either DFA’s
or IDFA’s as the context warrants).

3 The L* Approach

For comparison purposes, we first describe the L*-based approximation method
for learning separating automata [CGP03]. In the L* algorithm, a learner infers
the minimal DFA A for an unknown regular language L by posing queries to a
teacher. In a membership query, the learner provides a string π, and the teacher
replies yes if π ∈ L and no otherwise. In an equivalence query, the learner
proposes an automaton A, and the teacher replies yes if L(A) = L and otherwise
provides a counterexample. The counterexample may be positive (i.e., a string
in L \ L(A)) or negative (i.e., a string in L(A) \ L). Angluin [Ang87] gave an
algorithm for the learner that guarantees to discover A in a number of queries
polynomial in the size of A.
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Cobleigh et al. [CGP03] modified this procedure to learn a separating automa-
ton for two languages L1 and L2. Their procedure differs from the L* algorithm
in the responses provided by the teacher. In the case of an equivalence query, the
teacher responds yes if A is a separating automaton for L1 and L2. Otherwise, it
provides either a positive counterexample as a string in L1 \ L(A) or a negative
counterexample as a string in L2 ∩ L(A). To a membership query on a string π,
the teacher responds yes if π ∈ L1 and no if π ∈ L2. If π is in neither L1 nor L2,
the choice is arbitrary. Since the teacher does not know the minimal separating
automaton, it cannot provide the correct answer, so it simply answers no. Thus,
in effect, the teacher is asking the learner to learn L1, but is willing to accept
any guess that separates L1 and L2. Using Angluin’s algorithm for the learner,
we can show that the learned separating automaton A has no more states that
the minimal automaton for L1. This can, however, be arbitrarily larger than the
minimal separating automaton.

As in Angluin’s original algorithm, the number of queries is polynomial in the
size of A, and in particular, the number of equivalence queries is at most the
number of states in A. In the assume-guarantee application, L1 = L(M1) and
L2 = L(M ′

2). For hardware verification, M1 and M ′
2 are Nondeterministic Finite

Automata (NFA’s) represented symbolically (the nondeterminism arising from
hidden inputs and from the construction of the automaton for ¬P ). Answer-
ing a membership query is therefore NP-complete (essentially a bounded model
checking problem) while answer an equivalence query is PSPACE-complete (a
symbolic model checking problem). Thus, in practice the execution time of the
algorithm is singly exponential in |M1| and |M ′

2|.

4 Solving the Minimal Separating Automaton Problem

To find an exact MSA for two languages L1 and L2, we will follow the general
approach of Pena and Oliveira [PO98] for minimizing IDFA’s. This is a learning
approach that uses only equivalence queries. It relies on a subroutine that can
compute a minimal DFA separating two finite sets of strings. Although Pena
and Oliveira’s work is limited to finite automata, the technique can be applied
to any languages L1 and L2 that have a regular separator, even if L1 and L2 are
themselves not regular.

The overall flow of our procedure for computing the MSA for two languages
is shown in Algorithm 1. We maintain two sets of sample strings, S1 ⊆ L1 and
S2 ⊆ L2. The main loop begins by computing a minimal DFA A that separates
S1 and S2 (using the SampleMSA algorithm described below). The learner then
performs an equivalence query on A. If A separates L1 and L2, the procedure
terminates. Otherwise, we obtain a counterexample string π from the teacher.
If π ∈ L1 (and consequently, π �∈ L(A)) we add π to S1, else we add π to S2.
This procedure is repeated until an equivalence query succeeds. In the figure, we
test first for a negative counterexample, and then for a positive counterexample.
This order is arbitrary, and in practice we choose the order randomly for each
query to avoid biasing the result towards L1 or L2.
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Algorithm 1. Computing an MSA for two languages
LangMSA (L1, L2)
1: S1 = {}; S2 = {};
2: while (1) do
3: Let A be an MSA for S1 and S2;
4: if L1 ⊆ L(A) then
5: if L(A) ∩ L2 = ∅ then
6: return true; (A separates L1 and L2, property holds)
7: else
8: Let π ∈ L2 and π ∈ L(A); (negative counterexample)
9: if π ∈ L1 then

10: return false; (L1 and L2 are not disjoint, property fails)
11: else
12: S1 = S1 ∪ {π};
13: else
14: Let π ∈ L1 and π �∈ A; (positive counterexample)
15: if π ∈ L2 then
16: return false; (L1 and L2 are not disjoint, property fails)
17: else
18: S2 = S2 ∪ {π};

The teacher in this procedure can be implemented using a model checker. That
is, the checks L1 ⊆ L(A) and L(A) ∩ L2 = ∅ are model checking problems. In
our application, L1 and L2 are the languages of symbolically represented NFA’s,
and we use symbolic model checking methods [McM93] to perform the checks
(note that testing containment in L(A) requires complementing A, but this is
straightforward since A is deterministic).

Theorem 1. Let L1, L2 ⊆ Σ∗, for finite Σ. If L1 and L2 have a regular sepa-
rator, then Algorithm LangMSA terminates and outputs a minimal separating
automaton for L1 and L2.

Proof. Let A′ be a minimal-state separating automaton for L1 and L2 with
k states. Since S1 ⊆ L1 and S2 ⊆ L2, it follows that A′ is also a separating
automaton for S1 and S2. Thus, A has no more than k states (since it is a
minimal separating automaton for S1 and S2). Thus, if the procedure terminates,
A is a minimal separating automaton for L1 and L2. Moreover, there are finitely
many DFA’s over finite Σ with k states. At each iteration, one such automaton
is ruled out as a separator of S1 and S2. Thus, the algorithm must terminate. �

It now remains only to find an algorithm to compute a minimal separating
automaton for the finite languages S1 and S2. This problem has been studied
extensively, and is known to be NP-complete [Gol78]. To solve it, we will borrow
from the approach of Oliveira and Silva [OS98].

Definition 3. An IDFA M = (S, Σ, s0, δ, F, R) is tree-like when the relation
{(s1, s2) ∈ S2 | ∃a. δ(s1, a) = s2} is a directed tree rooted at s0.
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Given any two disjoint finite sets of strings S1 and S2, we can construct a tree-like
IDFA that accepts S1 and rejects S2, which we will call TreeSep(S1, S2).

Definition 4. Let S1, S2 ⊆ Σ∗ be disjoint, finite languages. The tree-like sep-
arator TreeSep(S1, S2) for S1 and S2 is the tree-like DFA (S, Σ, s0, δ, F, R)
where S is the set of prefixes of S1 ∪S2, s0 is the empty string, F = S1, R = S2,
and δ(π, a) = πa if πa ∈ S else δ(π, a) = ⊥.

Oliveira and Silva [OS98] showed that every IDFA A that separates S1 and S2
is homomorphic to TreeSep(S1, S2) in a sense we will define. Thus, to find a
separating automaton A of k states, we have only to guess a map from the states
of TreeSep(S1, S2) to the states of A and construct A accordingly. We will call
this process folding.

Definition 5. Let M = (S, Σ, s0, δ, F, R) and M ′ = (S′, Σ, s′0, δ′, F ′, R′) be two
IDFA’s over alphabet Σ. The map φ : S → S′ is a folding of M onto M ′ when :

– φ(s0) = s′0,
– for all s ∈ S, a ∈ Σ, if δ(s, a) �= ⊥ then δ′(φ(s), a) = φ(δ(s, a)),
– for all s ∈ F , φ(s) ∈ F ′, and
– for all s ∈ R, φ(s) ∈ R′.

The following lemma says that every separating IDFA for S1 and S2 can be
obtained as a folding of the tree-like automaton TreeSep(S1, S2). The map is
easily obtained by induction over the tree.

Lemma 1 (Oliveira and Silva). Let T = (S, Σ, s0, δ, F, R) be a tree-like
IDFA, with accepting set S1 and rejecting set S2. Then IDFA A over Σ is a
separating automaton for S1 and S2 if and only if there exists a folding φ from
T to A.

Now we will show how to construct a folding of the tree T by partitioning its
states. If Γ is a partition of a set S, we will denote by [s]Γ the element of Γ
containing element s of S.

Definition 6. Let M = (S, Σ, s0, δ, F, R) be an IDFA over Σ. A consistent
partition of M is a partition Γ of S such that

– for all s, t ∈ S, a ∈ Σ, if δ(s, a) �= ⊥ and δ(t, a) �= ⊥ and [s]Γ = [t]Γ then
[δ(s, a)]Γ = [δ(t, a)]Γ , and

– for all s ∈ F and t ∈ R, [s]Γ �= [t]Γ .

Definition 7. Let M = (S, Σ, s0, δ, F, R) be an IDFA and let Γ be a consistent
partition of S. The quotient M/Γ is the IDFA (Γ, Σ, s′0, δ

′, A′, R′) such that

– s′0 = [s0]Γ ,
– δ′(s′, a) = �{δ(s, a) | [s]Γ = s′},
– F ′ = {[s]Γ | s ∈ F}, and
– R′ = {[s]Γ | s ∈ R}.
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In the above definition, � represents the least upper bound in the lattice with
partial order � ; containing the bottom element ⊥, the top element � and the
elements of S; such that for all s, t ∈ S if s �= t then s �� t. Consistency guarantees
that the least upper bound is never �.

Theorem 2. Let T be a tree-like IDFA with accepting set S1 and rejecting set
S2. There exists an IDFA of k states separating S1 and S2 exactly when T has
a consistent partition Γ of cardinality k. Moreover, T/Γ separates S1 and S2.

Proof. Suppose Γ is a consistent partition of S(T ). It follows that the function
φ mapping s to [s]Γ is a folding of T onto T/Γ . Thus, by the lemma, T/Γ is
separates S1 and S2, and moreover it has k states. Conversely, suppose A is an
IDFA of k states separating S1 and S2. By the lemma, there is a folding φ from
T to A. By the definition of folding, the partition induced by φ is consistent and
has (at most) k states. �

According to this theorem, to find a minimal separating automaton for two
disjoint finite sets S1 and S2, we have only to construct a corresponding tree-
like automaton T , and then find the minimal consistent partition Γ of S(T ).
The minimal automaton A is then T/Γ .

We use a SAT solver to find the minimal partition, using the following en-
coding of the problem of existence of a consistent partition of k states. Let
n = �log2k�. For each state s ∈ S(T ), we introduce a vector of Boolean variables
v̄s = (v0

s . . . vn−1
s ). This represents the number of the partition to which s is

assigned (and also the corresponding state of the quotient automaton). We then
construct a set of Boolean constraints that guarantee that the partition is consis-
tent. First, for each s, we must have v̄s < k (expressed over the bits of v̄s). Then,
for every pair of states s and t that have outgoing transitions on symbol a, we
have a constraint v̄s = v̄t ⇒ v̄δ(s,a) = v̄δ(t,a) (that is, the partition must respect
the transition relation). Finally, for every pair of states s ∈ F and t ∈ R, we have
the constraint v̄s �= v̄t (that is, a rejecting state and an accepting state cannot be
put in the same partition). We call this set of constraints SatEnc(T ). A truth as-
signment ψ satisfies SatEnc(T ) exactly when the partition Γ = {Γ0, . . . , Γk−1}
is a consistent partition of T where Γi = {s ∈ S | v̄s = i}. Thus, from a satisfying
assignment, we can extract a consistent partition.

Algorithm 2 outlines our approach for computing a minimal separating au-
tomaton for two finite languages. Note that the quotient automaton T/Γ is an
IDFA. We can convert this to a DFA by completing the partial transition func-
tion δ in any way we choose (for example, by making all the missing transitions
go to a rejecting state), yielding an DFA that separates S1 and S2.

This completes the description of our LangMSA procedure for computing
an MSA for two languages L1 and L2. To find an intermediate assertion for
assume-guarantee reasoning, we have only to compute an MSA for L(M1) and
L(M ′

2), using LangMSA.
Let us now consider the overall complexity of assume-guarantee reasoning

using the LangMSA algorithm. We will assume that M1 and M ′
2 are expressed

symbolically as Boolean circuits with textual size |M1| and |M ′
2| respectively. The
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Algorithm 2. Computing an MSA for two finite languages, using SAT encoding
SampleMSA (S1, S2)
1: Let T = TreeSep(S1, S2);
2: Let k = 1;
3: while (1) do
4: if SatEnc(T ) is satisfiable then
5: Let ψ be a satisfying assignment of SatEnc(T );
6: Let Γ = {{s ∈ S(T ) | v̄s = i} | i ∈ 0 . . . k − 1};
7: Let A = T/Γ ;
8: Extend δ(A) to a total function;
9: return DFA A

10: Let k = k + 1;

number of states of these DFA’s is then O(2|M1|) and O(2|M
′
2|) respectively. Let

|A| be the textual size of the MSA (note this is proportional to both the number
of states and the size of Σ). Each iteration of the main loop involves solving
the SAT problem SatEnc(T ) and solving two model checking problems. The
SAT problem can, in the worst case, be solved by enumerating all the possible
DFA’s of the given size, and thus is O(2|A|). The model checking problems are
O(|A| × 2|M1|) and O(|A| × 2|M

′
2|). The number of iterations is at most 2|A|,

the number of possible automata, since each iteration rules out one automaton.
Thus the overall run time is O(2|A|(2|A| + |A| × (2|M1| + 2|M

′
2|))). This is singly

exponential in |A|, |M1| and |M ′
2|, but notably we do not incur the cost of

computing the product of M1 and M2. Fixing the size of A, we have simply
O(2|M1| + 2|M

′
2|).

Unfortunately, |A| is worst-case exponential in |M1|, since in the worst case
we have L(A) = L(M1). This means that the overall complexity is doubly ex-
ponential in the input size. It may seem illogical to apply a doubly exponential
algorithm to a PSPACE-complete problem. However, we will observe that in
practice, if there is a small intermediate assertion, this approach can be more
efficient than singly exponential approaches. In the case when the alphabet
is large, however, we will need some way to compactly encode the transition
function.

4.1 Optimizations

We use two optimizations to the above approach that effectively reduce the size
of the search space when finding a consistent partition of T . First, we exploit
the fact that L(M1) is prefix closed in the case of hardware verification (on the
other hand L(M ′

2) may not be prefix closed, since it includes the negation of
the property P ). This means that if string π is in the accepting set of T , we
can assume that all its prefixes are accepted as well. This allows us to mark the
ancestors of any accepting state of T as accepting, thus reducing the space of
consistent partitions. In addition, since M1 is prefix closed, it follows that there
is a prefix closed intermediate assertion and we can limit our search to prefix
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closed languages. These languages can always be accepted by an automaton with
a single rejecting state. Thus, we can group all the rejecting states into a single
partition, again reducing the space of possible partitions.

Our second optimization is to compute the consistent partition incrementally.
We note that each new sample obtained as a counterexample from the teacher
adds one new branch to the tree T . In our first attempt to obtain a partition
we restrict all the pre-existing states of T to be in the same partition as in the
previous iteration. Only the partitions of the new states of T can be chosen. This
forces us, if possible, to maintain the old behavior of the automaton A for all
the pre-existing samples and to change only the behavior for the new sample. If
this problem is infeasible, the restriction is removed and the algorithm proceeds
as usual. Heuristically, this tends to reduce the SAT solver run time in finding a
partition, and also tends to reduce the number of samples, perhaps because the
structure of the automaton remains more stable.

5 Generalization with Decision Tree Learning

As mentioned earlier, in hardware verification, the size of the alphabet Σ is
exponential in the number of Boolean signals passing between M1 and M2. This
means that in practice the samples we obtain of L(M1) and L(M ′

2) can contain
only a minuscule fraction of the alphabet symbols. Thus, the IDFA A that we
learn will also contain transitions for just a small fraction of Σ. We therefore
need some way to generalize from this IDFA to a DFA over the full alphabet in a
reasonable way. This is not a very well-defined problem. In some sense we would
like to apply Occam’s razor, inferring the “simplest” total transition function
that is consistent with the partial transition function of the IDFA. There might
be many ways to do this. For example, if the transition from a given state on
symbol a is undefined in the IDFA, we could map it to the next state for the
nearest defined symbol, according to some distance measure.

The approach we take here is to use decision tree learning methods to try to
find the simplest generalization of the partial transition function as a decision
tree. Given an alphabet symbol, the decision tree branches on the values of the
Boolean variables that define the alphabet, and at its leaves gives the next state
of the automaton. We would like to find the simplest decision tree expressing
a total transition function consistent with the partial transition function of the
IDFA. Put another way, we can think of the transition function of any state
as a classifier, classifying the alphabet symbols according to which state they
transition to. The partial transition function can be thought of as providing
“samples” of this classification and we would like to find the simplest decision
tree that is consistent with these samples. Intuitively, we expect the intermediate
assertion to depend on only a small set of the signals exchanged between M1
and M2, thus we would like to bias the procedure toward transition functions
that depend on few signals. To achieve this, we use the ID3 method for learning
decision trees from examples [Qui86].
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This allows us (line 8 of Algorithm 2) to generalize the IDFA to a symbolically
represented DFA that represents a guess as to what the full separating language
should be, based on the samples of the alphabet seen thus far. If this guess is
incorrect, the teacher will produce a counterexample that refutes it, and thus
refines the next guess.

6 Results

We have implemented our techniques on top of Cadence SMV [McM]. The user
specifies a decomposition of the system into two components. We use Cadence
SMV as our BDD-based model checker to verify the assumptions, and also as
our incremental BMC engine to check whether counterexamples are real. We
use an internally developed SAT solver. We implemented a variant of the ID3
[Qui86] algorithm to generate decision trees. We also implemented the L*-based
approach (Lstar) proposed by Cobleigh et al. [CGP03], using the optimized
version of the L* algorithm suggested by Rivest and Schapire [RS89]. All out
experiments were carried on a 3GHz Intel Xeon machine with 4GB memory,
running Linux. We used a timeout of 1000s for our experiments. We compared
our approach against Lstar, and the Cadence SMV implementation of standard
BDD-based model checking and interpolation-based model checking.

We generated two sets of benchmarks for our experiments. For all our bench-
marks, the property is true and all the circuit elements are essential for proving
the property. Therefore localization-based verification techniques will not be ef-
fective. These benchmark sets are representative of the following typical scenario.
A component of the system is providing a service to the rest of the system. The
system is feeding data into the component and is reading data from the com-
ponent. The verification task is to ensure that the data flowing through the
system is not corrupted. This property can be verified by using a very simple
assumption about the component. The assumption essentially states that the
component does not corrupt the data. For example: consider a processor and
memory communicating over a bus. In order to prove the correctness of the be-
havior of the processor on some instruction sequence, the only assumption that
the bus needs to satisfy is that it transfers that data correctly. Any buffering or
arbitration that happens on the bus is irrelevant.

Each circuit in the first benchmark set consists of a sequence of 3 shift reg-
isters: R1, R2 and R3, such that R1 feeds into R2 and R2 feeds into R3. The
property that we want to prove is that we see some (fixed) symbol a at the out-
put of R3 only if it was observed at the input of R1. We varied the lengths and
widths of the shift registers. Our results are shown in Table 1. For the circuit
S m n o, m is the width of the shift registers, n is the length of R2, and o is the
length of R1 and R3. In our decomposition, M1 consists of R2, and M2 consists
of R1 and R2. We compare our approach against Lstar. These benchmarks
were trivial (almost 0s runtime) for BDD-based and interpolation-based model
checking. For Lstar, we report the total running time (Time), the number of
states in the assumption DFA (States), and the number of membership queries
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Table 1. Comparison of LangMSA against Lstar on simple shift register based bench-
marks

Circuit Lstar LangMSA

Time(s) States Queries Iter MC(s) Max(s) Chk(s) States Time(s)

S 1 6 3 338.81 65 16703 9 0.28 0.04 0.00 3 0.35

S 1 8 4 80 25679 9 0.37 0.04 0.00 3 0.44

S 1 10 4 78 24413 9 0.28 0.04 0.00 3 0.37

S 2 6 3 45 32444 27 1.31 0.04 0.01 3 1.29

S 2 8 4 43 29626 27 1.56 0.08 0.01 3 1.77

S 2 10 4 41 26936 27 1.83 0.09 0.01 3 2.11

S 3 6 3 24 35350 91 5.46 0.09 0.03 3 7.48

S 3 8 4 22 30997 90 10.68 0.28 0.03 3 14.36

S 3 10 4 21 26899 90 21.39 0.69 0.04 3 27.23

(Queries). In case of a timeout, we report the number of states, and queries made,
for the last generated DFA. For our approach, we report the number of model
checking calls (Iter), time spent in model checking (MC), maximum time spent
in a model checking run (Max), time spent in counterexample checks (Chk),
number of states in the assumption DFA (States), and the total running time
(Time). A ’ ’ symbol indicates a timeout. On this benchmark set, our approach
clearly outperforms Lstar both in the total runtime and in the size of the as-
sumption automaton. Our approach identifies the 3 state assumption, which says
that a can be seen at the output of M1 only if a has been inputted into M1.
Lstar only terminates on S 1 6 3, where it learns the assumption of size 65,
which is the same as M1.

For the second benchmark set, we replaced the shift registers with circular
buffers. We also allowed multiple parallel circular buffers in R2. Our results are
shown in Table 2. For the circuit C m n o p, m is the width of the circular
buffers, n is the number of parallel circular buffers in R2, o is the length of

Table 2. Comparison of LangMSA against BDD-based model checking and Lstar
on circular buffer based benchmarks

Circuit BDD Lstar LangMSA

Time(s) States Queries Iter MC(s) Max(s) Chk(s) States Time(s)

C 1 1 6 3 23.61 78 22481 29 2.09 0.17 0.05 3 2.42

C 1 1 8 4 198.36 78 22481 27 2.84 0.21 0.05 3 3.09

C 1 1 10 5 78 22481 33 3.99 0.42 0.89 3 4.41

C 1 2 6 3 57 16433 33 8.68 3.43 0.76 3 8.96

C 1 2 8 4 57 16433 26 531.92 521.89 0.05 3 532.14

C 2 1 6 3 30 26893 128 21.27 0.52 0.10 3 23.55

C 2 1 8 4 30 26893 102 25.62 3.21 0.06 3 26.48

C 2 1 10 5 30 26893 152 63.39 5.75 0.17 3 65.79

C 3 1 6 3 12 33802 427 569.50 19.90 0.23 3 622.15
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the buffers in R2, and p is the length of R1 and R3. We report the total run-
ning time (Time) of BDD-based model checking. Lstar and interpolation-based
model checking timed-out for all these benchmarks. On this benchmark set, our
approach learns the smallest separating assumption and can scale to much larger
designs compared to Lstar, interpolation-based model checking and BDD-based
model checking.

7 Conclusion and Future Work

We have presented an automated approach for assume-guarantee reasoning that
generates the smallest assumption DFA. Our experiments indicate that this tech-
nique can outperform existing L*-based approaches for computing an assumption
automaton that is not guaranteed to be minimal. For many of our benchmarks,
our approach performed better than state-of-the-art non-compositional methods
as well.

There are many directions for future research: (1) Our framework only uses
equivalence queries. Can membership queries be used for enhancing our tech-
nique? (2) Can the performance of our algorithm be improved by imposing
additional restrictions on the assumption? For example: if we assume that the as-
sumption language is stuttering closed, it can prune out long repeating sequences
from the counterexamples. (3) Which generalization techniques (besides decision
tree learning) would be effective in out framework? (4) Can we learn a parallel
composition of DFAs?
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of ω-Automata for Model Checking of Step-Discrete

Linear Hybrid Models�
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Abstract. For the verification of reactive hybrid systems existing approaches do
not scale well w.r.t. large discrete state spaces, since their excellence mostly ap-
plies to data computations. However, especially control dominated models of in-
dustrial relevance in which computations on continuous data are comprised only
of subsidiary parts of the behavior, these large discrete state spaces are not un-
common. By exploiting typical characteristics of such models, the herein pre-
sented approach addresses step-discrete linear hybrid models with large discrete
state spaces by introducing an iterative abstraction refinement approach based
on learning reasons of spurious counterexamples in an ω-automaton. Due to the
resulting exclusion of comprehensive classes of spurious counterexamples, the
algorithm exhibits relatively few iterations to prove or disprove safety properties.
The implemented algorithm was successfully applied to parts of industrial models
and shows promising results.

Keywords: automata construction, counterexample guidance, iterative abstrac-
tion refinement, model-checking, step-discrete hybrid systems.

1 Introduction

For the analysis of discrete control systems, formal verification has already been suc-
cessfully applied in recent years on industrial-sized controllers. However, the analysis of
hybrid systems still represents a challenge, particularly with regard to controller models
modeled and validated with CASE tools such as Statemate, Scade, Ascet and Simulink,
which are typically open-loop discrete-time models combining a large discrete state
space with a nontrivial number of floating point variables.

Among other approaches, a rich set of different abstraction techniques were devel-
oped for verifying hybrid models, transforming the inherently infinite state system into
a finite-state model. The more sophisticated ones are usually based on iterative refine-
ment techniques eliminating spurious counterexamples by refining the abstracted model
for subsequent iterations, and by thus making the observed counterexample impossible
to occur again in future runs. A prominent representative is, e.g., [CFH+03] where path
fragments in the discrete state space are excluded. Other techniques limit the continuous
dynamics to simple abstractions based on rectangular inclusions or polyhedrons such
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tract SFB/TR 14 AVACS, see www.avacs.org.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 433–448, 2007.
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Table 1. Open-loop industrial versus closed-loop academic models

Industrial models discrete
states

continuous variables
total/input/state

regulation
laws

Window lifting system (Ascet,BMW) 226 27/2/5 ∼ 60
Flight controller (Scade,Verilog) 251 423/7/25 ∼ 80
Desante, casts abstracted (Scade,Hispano-Suiza) 21055 358/14/0 8

Academic models
Cruise Control System [SFHK04] 24 6/0/6 ∼ 24
Distributed Robot Control [AHH96] 29 12/0/12 < 1000
Mutual Exclusion example [ADI02] 26 3/0/3 ∼ 16

as in HYTECH [HH94], PHAVER [Fre05], Checkmate [SK00] or d/dt [ADM02]. Their
typical target models are hybrid systems where the continuous computations dominate
while the discrete part of the system is only in charge of distinguishing between differ-
ent modes such that the system can react by, e.g., applying different continuous control
laws. Consequently, the existing approaches reflect these characteristics by focusing on
the continuous items only, not considering the discrete fragment as a problem.

However, as Table 1 shows, industrial hybrid models might comprise considerable
discrete fragments as well. A huge number of discrete states is to be seen alongside of
only few different applied regulation laws. This effect is inevitably connected to the us-
age of discrete timers, validation- and error counters, different clocks and especially the
parallel composition of interacting subcomponents including discrete ones such as state
machines or communication protocols, which every bigger model naturally consists of.
Such industrial models require algorithms capable of large discrete systems as well, an
aspect that has been neglected by most research activities.

The approach presented in the following deals with such models by exploiting the
relatively small number of different regulation laws. This is done by applying an iter-
ative abstraction refinement that eliminates a comprehensive class of counterexamples
represented by the spurious one by generalizing regulation law violations, leading to a
considerable amount of refinement in each step and keeping the overall number of it-
erations needed to confirm or reject a safety property quite small. Since many different
traces are spurious for equal reasons being the same or similar continuous computation
sequences only starting in different discrete states, this is possible by excluding these
continuous computation sequences in general, not only single discrete path fragments.
The abstraction technique is conservative, meaning that no property gets a wrong affir-
mative result. The procedure is a semi-decision one, i.e. it might fail to prove a property
in a bounded number of iteration steps, whereas bounded counterexamples can always
be found.

As shown schematically in Figure 1, the procedure starts with a simple abstraction,
a discrete automaton A0 having the same structure as the hybrid automaton H. In each
iteration, the spurious counterexample is analyzed, and minimal infeasible subsets (con-
flicts) of the computation on continuous items being implied by the counterexamples
projection on the concrete hybrid model are determined. These subsets are sequences
of applied regulation laws consisting of conjunctions of formulas guarding and de-
scribing the continuous state space transformations of transitions. By incrementally
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Fig. 1. Schematic overview on iterative refinement process

constructing a simple structured ω-automaton AC with no fairness constraints that al-
lows all runs except the ones containing any of the infeasible subsets detected so far,
we get an automaton that prohibits all classes of known spurious counterexamples.
With the parallel composition of ACi+1 being constructed based on the known conflicts
in the ith step and A0 being the starting point of the iteration, we get the automaton
Ai+1 = ACi+1 × A0 to be checked in the next iteration. Thus, we directly refine only ACi+1

and create the parallel composition Ai+1 in each step, refining the overall model Ai+1

indirectly.
The presented technique called ω-CEGAR (Counter-example guided abstraction re-

finement) was developed and advanced in the industrial context of the SafeAir project
[GGB+03], which motivated the specialization to the practically important step-discrete
hybrid automata, i.e. classical automata controlling continuous state variables without
time-continuous evolution, thus following the synchrony hypothesis. Such automata
are modeled by industrially applied CASE-tools such as SCADE, STATEMATE, ASCET,
SILDEX, etc., and the herein presented abstraction refinement approach has already
been extended to these as well. The abstraction approach shows promising results in
parts of industrial case studies.

The paper is organized as follows: In Section 2 some mathematical definitions are
introduced. Section 3 describes in detail the basic approach of the abstraction refinement
based on ω-automata construction, followed by Section 4 presenting an enhancement
of the approach. After presenting experimental results and discussing related work in
Section 5 the paper is concluded with Section 6.

2 Preliminaries

2.1 Step-Discrete Hybrid Automata

Models developed with the previously mentioned CASE tools follow the synchrony
hypothesis and assume that all computations are instantaneous. Therefore we consider
step-discrete hybrid systems in the following. The definitions in this section originate
from [CFH+03] and were adapted to step-discrete systems accordingly.

Definition 1 (Step-discrete Hybrid Automaton). A step-discrete hybrid automaton is
a tuple H = (Z, z0, X, X0, T, g, j) where
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– Z is a finite set of locations.
– z0 ∈ Z is an initial location.
– X ⊆ Rn is the continuous state space.
– X0 ⊆ X is the set of initial continuous states. The set of initial hybrid states of H is

thus given by the set of states {z0} × X0.
– T ⊆ Z × Z is the set of discrete transitions between locations1.
– g : T → 2X assigns a guard set g((z1, z2)) ⊆ X to (z1, z2) ∈ T.
– j : T → (X → 2X) assigns to each pair (z1, z2) ∈ T a jump function that assigns to

each x ∈ g((z1, z2)) a jump set j((z1, z2))(x) ⊆ X.

We denote the set of all guard sets with G = {g(t)|t ∈ T } and the set of all jump set
functions with J = { j(t)|t ∈ T }. Note that both G and J are finite.

2.2 Semantics

The corresponding semantics is defined with the notion of transition systems:

Definition 2 (Transition System). A transition system is a triple TS = (S , S 0, E) with
a (possibly infinite) state set S , an initial set S 0 and a set of transitions E ⊆ S × S . We
denote the set of all transition systems as T.

Definition 3 (Path). A path π of a transition system TS = (S , S 0, E) is a (possibly
finite) sequence (s0, s1, s2, ...) with s0 ∈ S 0, each si ∈ S and each pair of successive

states (si, si+1) ∈ E. We denote the set of all paths of a transition system TS with
−→
TS :=

⋃
m∈N{(s0, s1, s2, ..., sm)|s0 ∈ S 0, si ∈ S , (si, si+1) ∈ E}.

During the iterative refinement itself only finite paths can occur as false negatives, since
we restrict ourselves to safety properties. Thus infinite paths do not have to be consid-
ered in this paper.

Definition 4 (Semantics). The translational semantics of a step-discrete hybrid au-
tomaton H is a transition system TSH = (S , S 0, E) with:

– S = Z × X being set of all hybrid states (z, x) of H,
– S 0 = {z0} × X0 being the set of initial hybrid states and
– E = (Z × X) × (Z × X) being the set of transitions with ((z1, x1), (z2, x2)) ∈ E, iff
∃(z1, z2) ∈ T : x1 ∈ g((z1, z2)) ∧ x2 ∈ j((z1, z2))(x1).

2.3 Safety Properties

The presented procedure aims at the verification of safety properties, i.e. computes the
reachability of a subset of states that are not considered safe. Let S U ⊆ S denote the
unsafe states within a transition system TS = (S , S 0, E). Then the model-checker has to
compute whether

1 For simplicity reasons, only one transition between two states is allowed. By doubling states,
multiple transitions can easily be projected on such a restricted model.
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– the system is safe w.r.t. S U (TS |= AG¬S U ), formally �π ∈ −→TS : π = (s0, . . . , sm),
s0 ∈ S 0, si ∈ S , sm ∈ S U or

– the system is unsafe w.r.t. S U (TS �|= AG¬S U ), formally ∃π ∈ −→TS : π = (s0, . . . , sm),
s0 ∈ S 0, si ∈ S , sm ∈ S U .

If the model-checker is able to find an answer, it is either a path π showing a simulation
run leading to an unsafe state s ∈ S U , or the confirmation of TS to be safe w.r.t. the
unsafe states S U .

2.4 Abstraction

We use abstraction to get a purely discrete model to be checked by a finite state model-
checker. In general an abstraction of a transition system TS is a transition system A that
allows at least as much behavior as TS :

Definition 5 (Abstraction). A transition system A = (Ŝ , Ŝ 0, Ê) is an abstraction of a
system TS = (S , S 0, E), denoted A 	 TS , iff there exists a relation α ⊆ S × Ŝ such that:

– Ŝ 0 = {ŝ0|∃s0 ∈ S 0 : (s0, ŝ0) ∈ α} and
– Ê = {(ŝ1, ŝ2)|∃s1, s2 ∈ S : (s1, s2) ∈ E ∧ {(s1, ŝ1), (s2, ŝ2)} ⊆ α}

Lemma 1. For a transition system TS and its abstraction A, formally A 	 TS , the
following condition always holds, if ∀s0 ∈ s0 : ∃ŝ0 ∈ Ŝ 0 : α(s0, ŝ0):

∀π = (s0, s1, . . . , sn) : π ∈ −→TS → ∃π̂ = (ŝ0, ŝ1, . . . , ŝn) ∈ −→A ,∀0≤i≤n(si, ŝi) ∈ α
This entails A |= AG¬Ŝ U =⇒ TS |= AG¬S U , Ŝ U = {ŝ ∈ Ŝ |∃s ∈ S U : (s, ŝ) ∈ α}.
The previous lemma directly follows from the property of α. However, we cannot con-
clude A �|= AG¬Ŝ U =⇒ TS �|= AG¬S U .

3 The ω-Automaton Based Iterative Abstraction Approach

3.1 Path Projection

During the analysis phase we need to retrieve the guard sets and jump set functions that
are to be applied to the continuous state space if a path found in the abstract transition
system is to be concretized. We achieve this by ensuring that any state ŝ ∈ Ŝ of our
abstract transition system A can be projected to a discrete location z ∈ Z of H by a
function α̃−1 : Ŝ → Z which allows to reconstruct the transitions along with their asso-
ciated guard- and jump set functions such that we can project paths of A to sequences
of guard-/jump set function pairs.

Definition 6 (Guard-/Jump-set Sequence). A guard-/jump-set sequence (abbrev. GJ-
sequence) is defined by ((γ0, ζ0), (γ1, ζ1), . . . , (γn, ζn)), γi ∈ G, ζi ∈ J. We denote the set
of all finite guard-/jump-set sequences with C =

⋃
n∈N(G×J)n.
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Definition 7 (Projecting Paths to GJ-sequences). From a path π̂ = (ŝ0, ..., ŝn) of A =
(Ŝ , ŝ0, T̂ ) derived from TSH by an abstraction relation α we compute the underlying

GJ-sequence c ∈ C with θ :
−→
A→C:

c = θ(π̂) = ((γ1, ζ1), ..., (γn, ζn)) with
γi = g(ti), ζi = j(ti), ti = α̃−1((ŝi, ŝi+1)) := (α̃−1(ŝi), α̃−1(ŝi+1))

In the following we refine the iterative abstraction process in Figure 1.

3.2 Initial Abstraction

Definition 8 (Initial Abstraction α0). The initial abstraction A0 = (Ẑ, ẑ0, Ê) of TSH of
H with Ẑ � Z, ẑ0 � z0 and Ê � T is defined by a function α0 : S → Ẑ such that for any
state zk ∈ Z there exists a state ẑk ∈ Ẑ with

α0((zk, x)) = ẑk

The structure of transition system A0 is isomorphic to the structure of H w.r.t. discrete
locations and transitions while any conditions or operations on the continuous state
space are omitted. Trivially by definition of A0, A0 	 TSH.

Now A0 can be analyzed by any standard model checker such as the vis model-
checker [RGA+96] in our case, to check if a given safety property as defined in Section
2.3 is fulfilled. If no bad state in Ŝ U is reachable we can conclude that also in TSH no
bad state in S U is reachable, according to Lemma 1. Otherwise if we get a path π̂, we
proceed with the following analysis phase.

3.3 Analyzing Counterexamples

Given a path π̂ we need to analyze whether it is a valid or a spurious counterexample
and in the latter case we need to refine our transition system.

For this analysis, we first convert π̂ = (ẑ0, ẑ1, . . . , ẑn) into a guard-/jump-set sequence
c = θ(π̂) = ((γ1, ζ1), ..., (γn, ζn)), which describes the step-wise transformations on the
initial continuous state space X0. Following the semantical definition of TSH in Defi-
nition 4, the alternating application of an intersection with guard set γi and a transfor-
mation by jump set ζi on the state space Xi in the ith step leads to a sequence Xseq =

(X0, X1, . . . , Xn) ∈ 2Xn+1
of continuous state spaces with Xi = {x′|∃x ∈ (Xi−1 ∩ γi) ∧ x′ ∈

ζi(x)}. If Xn � ∅ then ∃(x0, x1, . . . , xn), xi ∈ Xi and consequently there exists also a com-

plying trace π ∈ −−→TSH with π = ((α̃−1(ẑ0), x0), (α̃−1(ẑ1), x1), . . . , (α̃−1(ẑn), xn)) represent-
ing a valid counterexample. For subsequent reuse we define the functionL :C×2X→2X

to compute Xn for a GJ-sequence c of length n and an initial continuous state space X̃
according to the previous explanation.

In practice we use the solver lp solve [BEN04] to implementL′ :C×2X→B that com-
putes whether ∃(x0, x1, . . . , xn) ∈ Xn+1, x0 ∈ X0, x1 ∈ X1, . . . , xn ∈ Xn, (X0, X1, . . . , Xn) =
Xseq and the function L̃′ : C×2X → B×Xn+1 to include the discovered solution vector
in the results as well. This is the point where we restrict ourselves to linear Hybrid
Systems. However instead we could use e.g. flow-pipe approximation approaches to
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Algorithm 1. r :C→2C×2C . Computing reduced conflict sets Cini and Cinv from a conflict
c⊥ = ((γ0, ζ0), . . . , (γn, ζn)).

(i, k,Cini,Cinv) := (0, 0, ∅, ∅)
while Cinv ∪Cini = ∅ do

while i + k ≤ n do
if i = 0 ∧ L′(((γ0, ζ0), . . . , (γi+k, ζi+k)), X0) = f alse then

Cini := Cini ∪ {((γ0, ζ0), . . . , (γi+k, ζi+k))}
if i > 0 ∧ L′(((γ0, ζ0), . . . , (γi+k, ζi+k)), X) = f alse then

Cinv := Cinv ∪ {((γi, ζi), . . . , (γi+k, ζi+k))}
i := i + 1

end
if Cinv ∪Cini = ∅ then k := k + 1, i := 0

end
return (Cini,Cinv) % rini :C→2C returns Cini, rinv :C→2C returns Cinv

address non-linear models as well, without any other impact on the herein presented
approach.

If π̂was a spurious counterexample indicated byL(θ(π̂), X0) = ∅, we extract conflicts
from it as a basis for refining A through AC as shown in Figure 1.

Definition 9 (Conflict). A conflict c⊥ is a GJ-sequence with L(c⊥, X̃) = ∅, X̃ ⊆ X. If
X̃ = X the conflict is termed invariant, if X̃ = X0 the conflict is termed initial.

To get more comprehensive classes of conflicts, the shortest guard-/jump-set sequences
still being initial or invariant conflicts are isolated by a reduction function r :C→2C×2C

defined by Algorithm 1, resulting in a pair of initial and invariant conflict sets.

3.4 Consideration of Refinement Strategy

As mentioned in the introduction, we construct an automaton AC to be combined with
A0 in order to rule out comprehensive classes of all previously detected initial and in-
variant conflicts, C⊥ini and C⊥inv, with

AC |= ¬
⎛
⎜⎜⎜⎜⎜⎜⎝

∨

ci∈C⊥ini
λ(ci)

⎞
⎟⎟⎟⎟⎟⎟⎠ ∧ ¬F

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

cv∈C⊥inv
λ(cv)

⎞
⎟⎟⎟⎟⎟⎟⎠ (1)

with λ generating the LTL-Formula λ(c) = ((γ0, ζ0) ∧ X((γ1, ζ1) ∧ X(... ∧ X(γn, ζn))))
for a conflict c = ((γ0, ζ0), (γ1, ζ1), ..., (γn, ζn)), using (γi, ζi) ∈ G × J as atomic names of
characters of an alphabet Σ = G × J.

Due to the important observation that for industrial models, guard-/jump-set se-
quences associated with a path π̂ and even more so smallest parts of them are replicated
multiple times on other paths as well, this approach is reasonable. For a hybrid system
dominated by discrete transitions, we have a huge state space with only few different
guard-/jump-set pairs constituting the regulation laws replicated all over the transition
system, formally:

{(g(t), j(t))|t ∈ T }| � |Z| � |T | (2)
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Table 1 shows the relationship between the amount of states2 and guard-/jump-set pairs
(regulation laws) for some examples. For the industrial models the number of pairs was
determined empirically by observed occurrences in simulation runs and iterative refine-
ments. This property of control dominated systems in practice is fundamental for the
presented approach in this paper and is exploited extensively by ruling out all replica-
tions of conflicting guard-/jump-set sequences in the abstract model in one sweep.

3.5 Construction of ω-Automaton

To construct an ω-automaton AC satisfying (1) we could apply existing LTL-to-Bchi
translation algorithm such as [SB00]. However, since our formulas have a special struc-
ture, we can apply a dedicated incremental algorithm generating a very small co-1-
accepting ω-automaton. As table 2 shows later, such a dedicated algorithm is much
more efficient and generates significant smaller automata.

We apply the following algorithm for constructing an ω- and a regular automaton
ACω and ACR addressing invariant and initial conflicts each and compose the final ω-
automaton AC of both of them afterwards.

The ω-automaton is a Bchi automaton ACω = (Qω, qω0 , Σ, Tω, Fω) ∈ B, with Qω
being the set of states, qω0 being the initial state, Σ = G × J consisting of all guard-
/jump set function pairs, Tω ⊆ Qω×Σ×Qω being the transition relation and Fω ⊆ Qω
being the set of accepting states. The regularACR = (QR, qR0 , Σ, TR, FR) ∈ R is a similar
tuple, applying the classical acceptance condition for final words.

During construction, the automaton will have non-deterministic auxiliary transitions
required to inherit transitions from other states tracking shorter words with matching
prefixes. To identify such transitions a partial order < on states is introduced based on a
distance-to-default-state metrics. Such information can be efficiently locally computed
and maintained for each state throughout construction. Based on such information we
define the function tgrt : Q×Σ → Q to return the most distant state q reachable by a
transition (p, δ, q) for a given δ.

Starting with the automaton ACω = ({q0}, q0, Σ, {(q0, δ, q0)|δ ∈ Σ}, {q0}) with the de-
fault state q0 accepting any infinite word, Algorithm 2 is used to incrementally add finite
words (δ0, δ1, . . . , δn) such that ACω |= ¬F(δ0 ∧ X(δ1 ∧ X(· · · ∧Xδn))).

After all sequences have been added, auxiliary transitions are removed by a function
strip : B→ B, keeping only the transitions {(p, δ, q) ∈ T |q = tgrt(p, δ)}.

Finally, the automaton is efficiently minimized by Algorithm 3. The size of this ω-
automaton is not monotonically increasing since adding conflicts might enable new
minimization possibilities leading even to reduction. An extension of the algorithm not
being described in detail due to space constraints exploits this observation by probing
potential sequences that would have such a benefit. If confirmed as conflicts, they are
added to the automaton as well, reducing its size while covering more conflicts at the
same time.

2 Since guard-/jump-set pairs are replicated over transitions and not states, statistics on transi-
tions would have been more accurate, but are not accessible for technical reasons. However
since the number of transitions always outnumbers the number of (reachable) states, the latter
is a safe lower bound.



Abstraction and Counterexample-Guided Construction of ω-Automata 441

Algorithm 2. Addω :B×Σ∗→B. Adding (δ0, δ1, . . . , δn) to ACω = (Q, q0, Σ, T, F)

p := q0

for 0 ≤ i ≤ n do
q := tgrt(p, δi)
if p < q ∨ q � F then

p := q
else

Q := Q ∪ {q′} with q′ being a new state
Hp := {h|∃p′ ∈ Q, δ ∈ Σ : {(p′, δ, p), (p′, δ, h)} ⊆ T, p < h}
Lq′ := {l|(p, δi, l) ∈ T, l < q′}
T := T ∪⋃h∈Hp∪{p}{(h, δi, q′)} ∪⋃l∈Lq′ {(q′, δ, r)|∃(l, δ, r) ∈ T }
if i � n then F := F ∪ {q′}
p := q′

end
return (Q, q0, Σ,T,F)

Algorithm 3. Minimization of regular- and ω-automaton (Q, q0, Σ, T, F)

M � {Q\F}
foreach Mk ∈ M do

foreach qi, qj ∈ Mk, qi � qk do
if ∀p ∈ Q, δ ∈ Σ : ∃(qi, δ, p) ∈ T ⇔ ∃(qj, δ, p) ∈ T then

T � T ∪ {(p, δ, qi)|∃(p, δ, qj) ∈ T }
T � T \ ({(p, δ, qj) ∈ T } ∪ {(qj, δ, p) ∈ T })
F � F \ {qj}
Q � Q \ {qj}
M � (M \ {Mk}) ∪ {p|∃δ ∈ Σ : (p, δ, qi) ∈ T }

end
end
return (Q, {q0}, Σ,T, F)

The regular automaton for conflicts of C⊥ini is constructed with a similar algorithm
AddR : R × Σ∗ → R by starting from ACR = ({q0, fin}, q0, Σ, {(q0, δ, fin)|δ ∈ Σ}, {q0, fin}),
using T � (T\{(p, δi, fin)}) ∪ {(p, δi, q)} ∪ {(p, δ, fin)|δ ∈ Σ\{δi} ∧ �(p, δ, r) ∈ T } as
transitions computation, making the auxiliary sets Hp and Lq′ obsolete.

Cross Product. Both automata ACR and ACω are composed in parallel to a cross-product
automaton AC = (Q, q0, Σ, TC , F) with Q = QR × Qω, q0 = (qR0 , qω0), F = FR × Fω and
TC = {((qR1 , qω1), σ, (qR2 , qω2 ))|(qR1, σ, qR2) ∈ TR, (qω1 , σ, qω2 ) ∈ Tω}, which is the basis
for the final composition of A.

Consideration of Partitioning. The partitioning P = {Xq1 , . . . , Xqn } ⊆ 2X of the con-
tinuous state space X can be envisioned as n = |Q| partitions induced by the states Q of
AC . Let Cq be the set of all GJ-sequences leading to state q = (qR, qω) ∈ Q. Then each
partition Xq ∈ P is described by χ : Q→ X with
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Fig. 2. Simplified example of abstraction refinement. Given an unsafe state z2, the counterexam-
ples π̂ = (ẑ0, ẑ1, ẑ2) and π̂ = (ẑ0, ẑ1, ẑ1, ẑ2) are ruled out in Ai+1 starting from (ẑ0, q0). AC is the
conflict Bchi automaton, AC |= ¬F((a ∧ Xc) ∨ (a ∧X(b ∧Xc))), with a = ({x|0 > x}, x �→ 0), b =
({x|0 ≤ x ≤ 2}, x �→ x + 1), c = ({x|x > 2}, x �→ x).

χ(q) =

⎧
⎪⎪⎨
⎪⎪⎩

⋃
c∈Cq
L(c, X0) if qR � fin

⋃
c∈Cq
L(c, X) if qR = fin

Proof: Let HC be the isomorphic mapping of AC to a step-discrete Hybrid automaton.
Then its semantics is a transition system TS HC with states Q × X. It is obvious that any
path in TS HC leading to a state (q, x) ∈ Q × X entails a GJ-sequence c ∈ Cq. Since L
was derived from the translational semantics, by its definition Xq = L(c, X) describes
exactly the set of reachable continuous states Xq such that (q, x), x ∈ Xq.

3.6 Refinement of Ai+1

For equation (1) to be valid not only for AC j but also for A j, we compose A0 = (Ẑ, Ẑ0, Ê)
and AC j in parallel by using a cross-product-similar combination of both: ×̇ : T×B→ T
such that A = A0×̇AC = (Ŝ , Ŝ 0, T̂ ) with

– Ŝ = Ẑ × Q
– Ŝ 0 = Ẑ0 × {q0}
– T̂ = {((ẑ1, q1), (ẑ2, q2))|(ẑ1, ẑ2) ∈ Ê∧(q1, σ, q2) ∈ TC∧∃t ∈ T : t = α̃−1((ẑ1, ẑ2)∧σ =

(g(t), j(t)) ∧ q2 ∈ F}
Algorithm 4 summarizes all previously detailed steps, and Figure 2 shows a very simple
example of the abstraction refinement for one iteration.

With the previous construction approach for a state (z, x) ∈ Z × X = S of the infinite
state space of the trace transition system TSH of H and a state (ẑ, q) ∈ Ẑ × Q = Ŝ of A j

the general abstraction relation α is given by

α = {((z, x), (ẑ, q)) ∈ (Z×X)×(Ẑ×Q)|α̃−1(ẑ) = z ∧ x ∈ χ(q)}
This follows directly from the construction of A j and the partitioning χ. It is obvious
that this relation fulfills Definition 5, thus A j 	 TSH.
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Algorithm 4. ω-CEGAR process, returns true or path π = (s0, . . . , sn) ∈ −−→TSH, sn ∈ S U

ACR � ({q0, fin}, q0, Σ, {(q0, δ, fin)|δ ∈ Σ}, {q0, fin})
ACω � ({q0}, q0, Σ, {(q0, δ, q0)|δ ∈ Σ}, {q0})
A � A0

while A �|= AG¬Ŝ U do % Model-Checker run
π̂ = (ẑ0, ẑ1, . . . , ẑn), ẑn ∈ Ŝ U % Path from Model-Checker
(result, (x0, x1, . . . , xn)) := L̃′(θ(π̂), X0)
if result = f alse then % spurious counterexample

foreach c⊥ ∈ rini(θ(π̂)) do ACR � AddR(ACR , c⊥) end
foreach c⊥ ∈ rinv(θ(π̂)) do ACω � Addω(ACω , c⊥) end
A � (Minimize(strip(ACR )) × Minimize(strip(ACω ))×̇A0)

else return π � ((α̃−1(ẑ0), x0), (α̃−1(ẑ1), x1), . . . , (α̃−1(ẑn), xn)) % valid path
end
return true % TSH |= AG¬S U

H

/y=0∧x=x+1
x>0.0x≤0.0∧x>y

/y=y+1∧x=y

x>0.0∧x>y
/y=y+1∧x=x+1

/y=0∧x=0
x>0.0

x≤0.0
/y=y+1∧x=y

t1

t2

t3

t4t5

γ̃1 = {x|x > 0}
γ̃2 = {x|x ≤ 0}
γ̃3 = {x|x > y}

ζ̃x1 = (x �→0)
ζ̃x2 = (x �→y)
ζ̃x3 = (x �→x+1)

ζ̃y1 = (y �→0)
ζ̃y2 = (y �→y+1)

γ̃1 ⊇ (g(t1) ∪ g(t3) ∪ g(t4))
γ̃2 ⊇ (g(t2) ∪ g(t5))
γ̃2 ⊇ (g(t3) ∪ g(t5))

ζ̃x1 �→ {j(t1)}
ζ̃x2 �→ {j(t2), j(t5)}
ζ̃x3 �→ {j(t3), j(t4)}
ζ̃y1 �→ {j(t1), j(t4)}
ζ̃y2 �→ {j(t2), j(t3), j(t5)} 

Fig. 3. Simple example for syntactic creation of guard supersets and and jump set projections

4 Further Generalization of Conflicts

By using subsets (γ̃, ζ̃) ∈ Σ′ ⊆ 2G×J instead of elements (γ, ζ) ∈ Σ ⊆ G× J, we can gen-
eralize conflicts having common reasons. Different guard sets γ1, . . . , γm are subsumed
by guard supersets γ̃ such that γ̃ ⊇ (γ1 ∪ · · · ∪ γm). Jump sets ζ are generalized by
their projection ζ̃ on fewer or single dimensions. Such ζ̃ comprise all ζ1, . . . , ζk having
the same projection. As the example in figure 3 shows, reasonable guard supersets and
jump set projections can even be computed syntactically.

With a function r extended accordingly to further generalize the conflicts with the
introduction of (γ̃, ζ̃) characters as described above, this generalization leads to dramat-
ically reduced iteration numbers, since many similar conflicts are now comprised by
one single sequence of sets of guard-/jump sets.

With the previously described construction of AC , this automaton is no longer de-
terministic, since each (γ, ζ) might map to several of the sets described above. We
determinate it with a transformation intuitively considering AC as a directed graph
with attributed edges with a new operational semantics where each node q j ∈ Q =
{q0, q1, . . . , qn} represents a boolean variable b j ∈ B being computed by a function
b∗ : {0, . . . , n} × Σ × Bn → B with
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b∗( j, δ, (b0, b1, . . . , bn)) =

⎧
⎪⎪⎨
⎪⎪⎩

1 iff j = 0
∨

qi∈Q:(qi ,δ′ ,qj)∈T,[qj]= j,δ∈δ′ ,qi<qj
b[qi] iff j > 0

using a function [] : Q → N with [qi] = i. Thus we use the structure of AC =

(Q, q0, Σ, T, F) to create a deterministic automaton A∗C such that A∗C = (Q∗, q∗0, Σ, T
∗, F∗)

with Q∗ = {(1, b1, b2, . . . , bn)|bi ∈ B}, q∗0 = (1, 0, ..., 0), the transitions T ∗ � {((b0, . . . ,
bn), δ, (b′0, . . . , b

′
n)) ∈ Q∗ × Σ × Q∗|b′ j = b∗( j, δ, (b0, . . . , bn))} and the accepting states

F∗ � {(1, b1, . . . , bk, . . . , bn) ∈ Q∗|∀k ∈ N, p ∈ Q \ F : [p] = k =⇒ bk = 0}.

Table 2. Comparison of ω-automaton construction and general LTL-to-Bchi automata construc-
tion implementation Wring 1.1.0 based on [SB00]

ω-construction Wring 1.1.0
LTL formula states time[s] states time[s]

¬F(a∧X(b∧X(b∧Xc))) 8 0.1 20 0.6
¬F(a∧X(b∧Xc) ∨ b∧X(e∧X( f∧Xd))) 32 0.1 180 100.2
¬F(a∧X(b∧Xc) ∨ b∧X(e∧X( f∧Xd)) ∨ x∧Xc) 64 0.1 288 551
¬F(a∧X(b∧Xc) ∨ b∧X(e∧X( f∧Xd)) ∨ c∧X( f∧X(g∧Xh))) 256 0.1 2160 161871

This is the automaton referred to in Table 2 being compared to other LTL-to-Bchi
translations, which also have non-mutual exclusive atomic propositions. A∗C is certainly
no longer minimal and of considerable size. However, we will see that this conflict
generalization dramatically reduces the required iterations.

5 Experimental Results and Related Work

The ω-CEGAR approach was successfully applied to industrial examples ranging up
to a hundred state bits and dozens of continuous variables. Table 3 gives an overview
for two example models. The car window lifting system is a model from BMW which
is modeled in ASCET. Depending on HMI interface and sensors it controls the engine
lifting the car window, also maintaining its current position. The reachability of cer-
tain window positions was computed. The Flight Controller example is modeled with
SCADE and controls the altitude depending on pilot command and sensor readings. The
model contains three-dimensional vectors for positions and velocities, including plau-
sibility computation. Here, various reachability analyses refering to expected reactions
to pilot commands in a Normal Operations Mode (NO) were made. For two of these,
Figure 4 (a) and (b) shows typical evolutions of quantities during the iteration process.

Figure 4 (c) shows the process for the same proof as (a), but without using sequences
of sets of GJ-pairs as introduced in the previous section. The difference clearly reveals
the benefit of such a conflict generalization.

Considering the size of the discrete state space |Z| in the examples, we have remark-
ably few iterations until getting valid traces. Especially the case where the safety prop-
erty was fulfilled and the bad state was not reachable as, e.g., in Proof 3 of the Flight
Controller system deserves some attention. Here, after only 7 iterations and 13 gener-
alized conflicts, the approach was able to prove the non-reachability. Considering the
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Table 3. Experimental results using conflict generalization. Numbers refer to cone-reduced mod-
els. Table shows number of discrete locations, number of continuous dimensions (inputs+state-
based), size of Σ/ Σ′, number of conflicts, iterations, final path length, size of Q representing state
bits of A∗C and total runtime including integration overhead.

Model / Proof |Z| dimensions |Σ |/|Σ′ini|/|Σ′inv| —Cini|/|Cinv| iter |π| |Q| time

Flight Controller System
1 AG(NO =⇒ p), p := (Δvx=0) 235 5+18 41/2/43 1/24 21 13 33 16 min
2 AG(NO∧p =⇒ Xp) 235 5+18 67/2/60 1/36 29 514 78 75 min
3 Proof 2 on corrected model 231 5+18 26/2/22 1/13 7 �π 12 4 min

Car Window Lifting System
4 EF(pos1 ≤ poswindow ≤ pos2) 226 2+3 92/12/63 14/79 59 10 41 52 min
5 EF(poswindow > pos3) 226 2+3 59/11/42 13/35 32 �π 18 19 min

diameter of 513 of that model meaning that internally, the model checker had to an-
alyze that many steps of the model until the fix-point was reached, the result is quite
remarkable and demonstrates the power of the approach when it comes to certification
issues.

Related Work. Among the various approaches on abstraction refinement to model-
check hybrid models, most commonalities with the herein presented approach seem
to be shared by two of them. First, there is the INFINITE-STATE-CEGAR algorithm
[CFH+03] which also uses a fully automated iterative refinement technique. For any
spurious counterexample identified as such by a polyhedral over-approximation of suc-
cessor states, the corresponding path fragment of length n in the abstract model is ruled
out by replicating up to n−1 states and modifying concerned transitions accordingly
such that any other trace not containing the spurious path fragment is still observable.
However, this does not prevent false negatives in other areas of the model where the
same GJ-sequence is linked to different locations. According to the previously made
observation in equation (2), this omission might lead to a huge number of iterations
with false negatives caused by reasons already detected. The advantage of a slowly
growing abstract model size is easily turned down by the huge number of iterations
required for the herein targeted model class.

By including source- and target states in the alphabet characters, Σ = {(z1, z2, g(t),
j(t))|t = (z1, z2) ∈ T }, we modify our algorithm to exclude exactly the same path frag-
ments that would be ruled out in [CFH+03], making a direct comparison w.r.t. abstrac-
tion refinement iterations possible. Figure 4 (d) shows the different evolution of a still
uncompleted iteration process. Being compared to (a), it confirms the above statements
w.r.t. the given example.

Second, an analysis via predicate abstraction approach described in [ADI02] con-
structs an automaton with 2k states which is composed in parallel with the abstract
model to rule out spurious counterexamples. Based on a set of k predicates, it is com-
puted in advance which transitions in the added automaton are possible. The fixed size
of the automaton results from the reservation of one boolean variable per predicate,
encoding its truth-value. Refinement is realized by manually adding additional predi-
cates, making the approach only half-automatic with no counterexample guidance. The



446 M. Segelken

Fig. 4. Evolutions of iterative refinement, x-coordinate shows iteration steps

approach exploits the model characteristics of equation (2), but besides the required
manual intervention, the predicates are only state-expressions with no temporal op-
erators, making it impossible to directly rule out spurious counterexamples based on
multi-step conflicts. Disregarding problems of manual intervention and automaton con-
struction, an extension with LTL-formula predicates would make that approach more
similar to the herein presented one. However, recent research activities described in
[ADI03] automate the process of finding new predicates by looking for predicates for
separation of polyhedra, thus following a different strategy.

6 Conclusion

In this paper an iterative abstraction refinement approach called ω-CEGAR for veri-
fying step-discrete hybrid models exploiting the characteristics of control dominated
models being observed in industrial practice was presented. The small number of ap-
plied regulation laws leading to vast cases of recurrence of continuous state space com-
putations throughout different discrete transition sequences is exploited by forbidding
impossible continuous computation sequences globally if only a single representative
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is detected. The construction of an ω-automaton being composed in parallel with the
coarsely abstracted original model realizes this in an efficient way. Many iterations of
model-checker and path validation runs being the most costly operations can be saved.
The application of the ω-CEGAR approach on parts of industrial models already shows
its efficacy on the targeted class of models, especially in comparison to the INFINITE-
STATE-CEGAR approach.
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[SB00] Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

[SFHK04] Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control
system using counterexample-guided search. In: Control Engineering Practice, El-
sevier, Amsterdam (2004)

[SK00] Silva, B.I., Krogh, B.H.: Formal verification of hybrid systems using checkmate:
a case study. In: Proceedings of the American Control Conference, pp. 1679–1683
(2000)



Test Coverage for Continuous and Hybrid

Systems

Tarik Nahhal and Thao Dang

VERIMAG, 2 avenue de Vignate
38610 Gières, France

Abstract. We propose a novel test coverage measure for continuous and
hybrid systems, which is defined using the star discrepancy notion. We
also propose a test generation method guided by this coverage measure.
This method was implemented in a prototype tool that can handle high
dimensional systems (up to 100 dimensions).

1 Introduction

Hybrid systems have been recognized as a high-level model appropriate for em-
bedded systems, since this model can describe, within a unified framework, the
logical part and the continuous part of an embedded system. Due to the gap be-
tween the capacity of exhaustive formal verification methods and the complexity
of embedded systems, testing is still the most commonly-used validation method
in industry. Its success is probably due to the fact that testing suffers less from
the ‘state explosion’ problem. Indeed, the engineer can choose the ‘degree of
validation’ by the number of tests. In addition, this approach can be applied to
the real system itself and not only to its model. Generally, testing of a reactive
system is carried out by controlling the inputs and checking whether its behavior
is as expected. Since it is impossible to enumerate all the admissible external
inputs to the hybrid system in question, much effort has been invested in defin-
ing and implementing notions of coverage that guarantee, to some extent, that
the finite set of input stimuli against which the system is tested is sufficient for
validating correctness. For discrete systems, specified using programming lan-
guages or hardware design languages, some syntactic coverage measures can be
defined, like exercising every statement or transition, etc. In this work, we treat
continuous and hybrid systems that operate in a metric space (typically R

n)
and where there is not much inspiration coming from the syntax to the coverage
issue. On the other hand, the metric nature of the state space encourages more
semantic notions of coverage, namely that all system trajectories generated by
the input test patterns form a kind of dense network in the reachable state space
without too many big unexplored ‘holes’.

In this work we adopt a model-based testing approach. This approach allows
the engineer to perform validation during the design, where detecting and cor-
recting errors on a model are less expensive than on an implementation. The
main contributions of the paper can be summarized as follows. We propose a
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test coverage measure for hybrid systems, which is defined using the star dis-
crepancy notion from statistics. This coverage measure is used to quantify the
validation ‘completeness’. It is also used to guide input stimulus generation by
identifying the portions of the system behaviors that are not adequately exam-
ined. We propose an algorithm for generating tests from hybrid systems models,
which is based on the RRT (Rapidly-exploring Random Tree) algorithm [8] from
robotic motion planning and guided by the coverage measure. The rest of the
paper is organized as follows. We first describe our test coverage measure and its
estimation. We then present our test generation algorithm. In Section 5 we de-
scribe an implementation of the algorithm and some experimental results. Before
concluding, we discuss related work.

2 Testing Problem

As a model for hybrid systems, we use hybrid automata. Note that a continuous
system can be modeled as a hybrid automaton with only one discrete state. A
hybrid automaton is an automaton augmented with continuous variables that
evolve according to some differential equations. Formally, a hybrid automaton is
a tuple A = (X , Q, F, I, G, R) where X ⊆ R

n is the continuous state space; Q
is a (finite) set of locations (or discrete states); E ⊆ Q × Q is a set of discrete
transitions; F = {Fq | q ∈ Q} is a set of continuous vector fields such that for
each q ∈ Q, Fq = (Uq, fq) where Uq ⊂ R

p is a set of inputs and fq : R
n×Uq → R

n;
I = {Iq ⊆ R

n | q ∈ Q} is a set of staying conditions; G = {Ge | e ∈ E} is a
set of guards such that for each discrete transition e = (q, q′) ∈ E, Ge ⊆ Iq;
R = {Re | e ∈ E} is a set of reset maps. For each e = (q, q′) ∈ E, Re :
Ge → 2Iq′ defines how x may change when A switches from q to q′. A hybrid
state is a pair (q, x) where q ∈ Q and x ∈ X and the hybrid state space is
S = Q × X . In location q, the evolution of the continuous variables is governed
by ẋ(t) = fq(x(t), u(t)). We assume that all fq are Lipschitz continuous1. The
admissible input functions u(·) are piecewise continuous. We denote the initial
state of the automaton by (q0, x0). A state (q, x) of A can change in two ways as
follows. By continuous evolution, the continuous state x evolves according to the
dynamics fq while the discrete state q remains constant. By discrete evolution,
x satisfies the guard condition of an outgoing transition, the system changes
the location by taking this transition and possibly changing the values of x
according to the associated reset map. We assume that discrete transitions are
instantaneous. It is important to note that this model allows to capture non-
determinism in both continuous and discrete dynamics. This non-determinism
is useful for describing disturbances from the environment and imprecision in
modelling and implementation. The hybrid automata we consider are assumed
to be non-blocking and non-Zeno.

A system under test often operates within some environment. In our testing
problem, the tester plays the role of the environment. Given a hybrid automaton

1 This ensures the existence and uniqueness of solutions of the differential equations.
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modeling the behavior of the system under test, the tester can have the follow-
ing controls on the system: first, it can control all the continuous inputs of the
system; second, it can decide whether the system should take a given transition
(among the enabled ones) or continue with the same continuous dynamics. In-
deed, for simplicity of explanation, we do not include the control of the tester
over the non-determinism in the reset maps. We also assume that the state of the
system can be fully observed by the tester. Since we want to implement the tester
as a computer program, we could assume that the continuous input functions
generated by the tester are piecewise-constant with a fixed period h (i.e. they
can change their values only after a fixed period of time), and h is called the
time step. Hence, there are two types of control actions the tester can perform:
continuous and discrete. A continuous control action denoted by a continuous
dynamics and the value of the corresponding input, such as (fq, vq). It specifies
that the system continues with the dynamics fq under the input u(t) = vq for ex-
actly h time. A discrete control action specifies a discrete transition to be taken
by the system. We denote an action of this type by the corresponding transi-
tion, such as (q, q′). For a continuous action (fq, vq), we define its ‘associated’
transition as (q, q). A sequence of control actions is called admissible if after re-
placing all the continuous actions by their associated transitions, it corresponds
to a path (i.e. a sequence of consecutive transitions) in the hybrid automaton A
augmented with a self-loop at every location.

Definition 1 (Test case). A test case is an admissible sequence of control
actions a1, a2, a3, . . . which is coherent with the initial state of the system, that
is if a1 = (fq, vq) then q = q0 and if a1 = (q, q′) then q = q0.

Our testing problem can thus be stated as to automatically generate a set of
test cases from the system model to satisfy a coverage criterion that we formally
define in the following.

Test Coverage. Test coverage is a way to evaluate testing quality. More pre-
cisely, it is a way to relate the number of tests to carry out with the fraction
of the system’s behaviors effectively explored. As mentioned earlier, the classic
coverage notions mainly used in software testing, such as statement coverage
and if-then-else branch coverage, path coverage (see for example [16,14]), are
not appropriate for the trajectories of continuous and hybrid systems defined by
differential equations. However, geometric properties of the hybrid state space
can be exploited to define a coverage measure which, on one hand, has a close
relationship with the properties to verify and, on the other hand, can be effi-
ciently computed or estimated. In this work, we are interested in state coverage
and focus on a measure that describes how ‘well’ the visited states represent
the reachable set of the system. This measure is defined using the star discrep-
ancy notion in statistics, which characterises the uniformity of the distribution
of a point set within a region. We first briefly recall the star discrepancy. The
star discrepancy is an important notion in equidistribution theory as well as in
quasi-Monte Carlo techniques (see for example [1]). Recently, it was also used in
probabilistic motion planning to enhance the sampling uniformity [3].
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Star Discrepancy. Let P be a set of k points inside B = [l1, L1]× . . .× [ln, Ln].
Let Γ be the set of all sub-boxes J of the form J =

∏n
i=1[li, βi] with βi ∈ [li, Li]

(see Figure 1 for an illustration). The local discrepancy of the point set P with

respect to the subbox J is defined as follows: D(P, J) = |A(P, J)
k

− λ(J)
λ(B)

| where

A(P, J) is the number of points of P that are inside J , and λ(J) is the volume
of the box J . The star discrepancy of P with respect to the box B is defined as:

D∗(P, B) = supJ∈Γ D(P, J) (1)

Note that 0 < D∗(P, B) ≤ 1. Intuitively, the star discrepancy is a measure for

B

(β1, β2)

(l1, l2)

J

(L1, L2) B

b+

b

b−

(α1, α2)

(β1, β2)

(l1, l2)

(L1, L2)

Fig. 1. Illustration of the star discrepancy notion

the irregularity of a set of points. A large value D∗(P, B) means that the points
in P are not much equidistributed over B. When the region is a hyper-cube,
the star discrepancy measures how badly the point set estimates the volume
of the cube. Since a hybrid system can only evolve within the staying sets of
the locations, we are interested in the coverage with respect to these sets. For
simplicity we assume that all the staying sets are boxes.

Definition 2 (Hybrid System Test Coverage). Let P = {(q, Pq) | q ∈
Q ∧ Pq ⊂ Iq} be the set of states. The coverage of P is defined as: Cov(P) =

1
||Q||

∑
q∈Q 1 − D∗(Pq, Iq) where ||Q|| is the number of locations in Q.

If a staying set Iq is not a box, we can take the smallest oriented box that
encloses it, and apply the star discrepancy definition in (1) to that box after
an appropriate coordination change. We can see that a large value of Cov(P)
indicates a good space-covering quality. If P is the set of states visited by a set
of test cases, our objective is to maximize Cov(P).

3 Test Generation

Our test generation is based on a randomized exploration of the reachable state
space of system. It is inspired by the Rapidly-exploring Random Tree (RRT)
algorithm, which is a successful motion planning technique for finding feasible
trajectories of robots in an environment with obstacles (see [8] for a survey). More
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precisely, we extend the RRT algorithm to hybrid systems and combine it with
a guiding tool in order to achieve a good coverage of the system’s behaviors we
want to test. In this context, we use the coverage measure defined in the previous
section. Some preliminary results for continuous systems were described in [12].

The visited states are stored in a tree T , the root of which corresponds to the
initial state. The construction of the tree is summarized in Algorithm 1. In each
iteration, a hybrid state sgoal = (qgoal, xgoal) is sampled to indicate the direction
towards which the tree is expected to evolve. Expanding the tree towards sgoal

is done by making a continuous step as follows:

– First, a starting state sinit = (qinit, xinit) for the current iteration is deter-
mined. It is natural to choose sinit to be a state near sgoal. The definition
of the distance between hybrid states will be given later.

– Next, the procedure ContinuousStep tries to find the input uqinit such
that, after one time step h, the current continuous dynamics at qinit takes
the system from sinit towards sgoal, and this results in a new continuous
state xnew . A new edge from sinit to snew = (qinit, xnew), labeled with the
associated input uqinit , is then added to the tree.

Then, from snew, we compute its successors by all possible discrete transitions.
Each time we add a new edge, we label it with the associated control action.
The algorithm terminates after reaching a satisfactory coverage value or after
some maximal number of iterations. From the tree constructed by the algorithm
we can then extract test cases. In addition, when applying such test cases to the
system, the tree can be used to decide whether the system under test behaves
as expected. In the classic RRT algorithms, which work in a continuous setting,

Algorithm 1. Test generation algotihm
T .init(s0), j = 1 � s0: initial state
repeat

sgoal = Sampling(S) � S : hybrid state space
sinit = Neighbor(T , sgoal)
(snew, uqinit) = ContinuousStep(sinit, h) � h: time step
DiscreteSteps(T , snew), j + +

until j ≥ Jmax

only xgoal needs to be sampled, and a commonly used sampling distribution
of xgoal is uniform over X . In addition, the point xinit is defined as a nearest
neighbor of xgoal in some usual distance, such as the Euclidian distance. In Al-
gorithm 1, the function Sampling plays the role of guiding the exploration via
a biased sampling of xgoal, which will be discussed in detail later. The compu-
tation of discrete successors in DiscreteSteps, which involves testing a guard
condition and applying a reset map, is straightforward. In the following, we show
how to compute the functions Neighbor and ContinuousStep.
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Finding a Neighbor. To define the distance between two hybrid states, we
first define the average length of a path. Given a path of two transitions e =
(q, q′) and e′ = (q′, q′′), let σ(e, e′) = d(R(q,q′)(G(q′,q′′)), G(q′,q′′)) where d is the
average distance between two sets defined as the Euclidian distance between
their centroids. Given a path γ = e1, e2, . . . em where ei = (qi, qi+1), we define
its average length as: len(γ) =

∑m−1
i=1 σ(ei, ei+1). Note that from one location

to another, there can be more than one path. Let Γ (q, q′) be the set of all paths
from q to q′. Given two hybrid states s = (q, x) and s′ = (q′, x′), if q = q′,
we define the hybrid distance dH(s, s′) from s to s′ as the Euclidian distance
between the continuous states x and x′: dH(s, s′) = ||x − x′||. If q �= q′,

dH(s, s′) =

{
min

γ∈Γ (q,q′)
d(x, fG(γ)) + len(γ) + d(x′, lR(γ)), if Γ (q, q′) �= ∅

∞ otherwise.

where fG(γ) = G(q1,q2), the first guard of γ, and lR(γ) = R(qk,qk+1)(G(qk,qk+1)),
that is the set resulting from applying the reset map of the last transition to its
guard set. Intuitively, dH(s, s′) is obtained by adding to the average length of γ
the distance from x to the first guard and the distance from the last ‘reset set’
to x′. This distance can be thought of as an average length of the trajectories
from s to s′. The function Neighbor can thus be computed using this hybrid
distance as follows: sinit = argmins∈V dH(sgoal, s) where V is the set of states
stored in the tree.

Continuous Step. If the states sinit and sgoal have the same discrete location
component, we want to expand to tree from xinit towards xgoal as closely as
possible. Otherwise, let γ be the path from qinit to qgoal with the shortest average
length, we want to steer the system from xinit towards the first guard of γ. In
both cases, this is an optimal control problem with the objective of minimizing
the distance to some target point. This problem is difficult especially for systems
with non-linear continuous dynamics. Thus, we can trade some optimality for
computational efficiency. When the input set is not finite, we can sample a set of
input values and pick from this set an optimal input. In addition, we can prove
that by an appropriate sampling of the input set, the completeness property of
the RRT algorithm is preserved [2].

Coverage Estimation. To evaluate the coverage of a set of states, we need
to compute the star discrepancy of a point set, which is not an easy problem
(see for example [7]). Many theoretical results for one-dimensional point sets are
not generalizable to higher dimensions, and among the fastest algorithms we can
mention the one proposed in [7] of time complexity O(k1+n/2). In this work, we
do not try to compute the star discrepancy but approximate it by estimating a
lower and upper bound. These bounds as well as the information obtained from
their estimation are then used to decide which parts of the state space have
been ‘well explored’ and which parts need to be explored more. This estimation
is done using a method published in [10]. Let us briefly describe this method
for computing the star discrepancy D∗(P, B) of a point set P w.r.t. a box B.
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Although in [10], the box B is [0, 1]n, we extended it to the case where B can be
any full-dimensional box. Let B = [l1, L1]×. . .×[ln, Ln]. We define a box partition
of B as a set of boxes Π = {b1, . . . , bm} such that ∪m

i=1b
i = B and the interiors of

the boxes bi do not intersect. Each such box is called an elementary box. Given
a box b = [α1, β1]× . . .× [αn, βn] ∈ Π , we define b+ = [l1, β1]× . . .× [ln, βn] and
b− = [l1, α1] × . . . × [ln, αn] (see Figure 1 for an illustration).

For any finite box partition Π of B, the star discrepancy D∗(P, B) of the
point set P with respect to B satisfies: C(P, Π) ≤ D∗(P, B) ≤ B(P, Π) where
the upper and lower bounds are:

B(P, Π) = max
b∈Π

max{A(P, b+)
k

− λ(b−)
λ(B)

,
λ(b+)
λ(B)

− A(P, b−)
k

} (2)

C(P, Π) = max
b∈Π

max{|A(P, b−)
k

− λ(b−)
λ(B)

|, |A(P, b+)
k

− λ(b+)
λ(B)

|} (3)

The imprecision of this approximation is the difference between the upper and
lower bounds, which can be bounded by B(P, Π) − C(P, Π) ≤ W (Π) where
follows:

W (Π) = max
b∈Π

(λ(b+) − λ(b−))/λ(B) (4)

Thus, one needs to find a partition Π such that this difference is small.

Coverage-Guided Sampling. We show how to use the estimation of the cov-
erage measure to derive a guiding strategy. Recall that our goal is to achieve a
good testing coverage quality, which is equivalent to a small value of the star
discrepancy of the points visited at each discrete location. More concretely, in
each iteration, we want to bias the goal state sampling distribution according to
the current coverage of the visited states. To do so, we first sample a discrete
location and then a continuous state. Let P = {(q, Pq) | q ∈ Q∧Pq ⊂ Iq} be the
current set of visited states. The discrete location sampling distribution depends
on the current continuous state coverage of each location:

Pr[qgoal = q] =
D∗(Pq, Iq)∑

q′∈Q D∗(Pq′ , Iq′)
.

We now show how to sample xgoal, assuming that we have already sampled a
discrete location qgoal = q. In the remainder of the paper, to give geometric
intuitions, we often call a continuous state a point. In addition, since all the
staying sets are assumed to be boxes, we denote the staying set Iq by the box B
and denote the current set of visited points at location q simply by P instead of
Pq. Let k be the number of points in P . Let Π be a finite box partition of B that
is used to estimate the star discrepancy of P . The sampling process consists of
two steps. In the first step, we sample an elementary box bgoal from the set Π ;
in the second step we sample a point xgoal in bgoal uniformly. The elementary
box sampling distribution in the first step is biased in order to optimize the
coverage. The intuition behind this guiding strategy is to favor the selection of
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an elementary box such that a new point x added in this box results in a smaller
star discrepancy of the new point set P ∪ {x}. The strategy is determined so as
to reduce both the lower bound C(P, Π) and the upper bound B(P, Π).

Reducing the lower bound. We associate with each box B ⊆ Π a number A∗(b)

such that
λ(b)
λ(B)

=
A∗(b)

k
. We denote ΔA(b) = 1

k (A(P, b)−A∗(b)). Denote c(b) =

max{|ΔA(b+)|, |ΔA(b−)|}, and the lower bound of the star discrepancy of the
point set P over the bounding box B becomes: C(P, Π) = maxb∈Π{c(b)}. Note
that in comparison with A∗, the negative (respectively positive) sign of ΔA(b)
indicates that in this box there is a lack (respectively an excess) of points; its
absolute value indicates how significant the lack (or the excess) is. We now
compare the values of |ΔA(b+)| in two cases: the newly added point xnew is in b
and xnew is not in b. If ΔA(b+) is positive, the value of |ΔA(b+)| in the former
case is smaller than or equal to that in the latter case; otherwise it is greater
than or equal to. However, adding a new point in b does not affect the values
of A(P, b−) (see Figure 1). Thus, we define a function reflecting the potential
influence on the lower bound as follows:

ξ(b) =
1 − ΔA(b+)
1 − ΔA(b−)

, (5)

and we favor the selection of b if the value ξ(b) is large. Note that 1−ΔA(b) > 0
for any box b inside B. The intepretation of ξ is as follows. If ΔA(b+) is negative
and its absolute value is large, the ‘lack’ of points in b+ is significant. In this
case, ξ(b) is large, meaning that the selection of b is favored. On the other hand,
if ΔA(b−) is negative and its absolute value is large, then ξ(b) is small, because
it is preferable not to select b in order to increase the chance of adding new
points in b−.

Reducing the upper bound. The upper bound in (2) can be rewritten as

B(P, Π) = max
b∈Π

fm(b) (6)

where fm(b) = max{fc(b), fo(b)} and fc(b) = 1
k (A(P, b+)−A∗(b−)) and fo(b) =

1
k (A∗(b+) − A(P, b−)). Since the value of fm is determined by comparing fc

with fo. After straightforward calculations, the inequality fc(b) − fo(b) ≤ 0 is
equivalent to fc(b) − fo(b) = ΔA(P, b+) + ΔA(P, b−) ≤ 0. Therefore,

fm(b) =
{

fo(b) if ΔA(b+) + ΔA(b−) ≤ 0,
fc(b) otherwise.

(7)

Again, the value of fc(b) when the new point xnew is added in b is larger than
that when xnew is not in b, but the fact that xnew is in b does not affect fo(b). To
reduce fo(b) we need to add points in b−. Hence, if b is a box in Π that maximizes
fm in (6), it is preferable not to add more points in b but in the boxes where
the values of fm are much lower than the current value of B(P, Π) (in particular



Test Coverage for Continuous and Hybrid Systems 457

those inside b−). Using the same reasoning for each box b locally, the smaller
|ΔA(P, b+)+ΔA(P, b−)| is, the smaller sampling probability we give to b. Indeed,
as mentionned earlier, if fm(b) = fc(b), increasing fc(b) directly increases fm(b).
On the other hand, if fm(b) = fo(b), increasing fc(b) may make it greater than
fo(b) and thus increase fm(b), because small |ΔA(P, b+) + ΔA(P, b−)| implies
that fc(b) is close to fo(b).

We define two functions reflecting the global and local potential influences
on the upper bound: βg(b) = B(P, Π) − fm(b) and βl(b) = βg(b)|ΔA(P, b+) +
ΔA(P, b−)|. We can verify that βg(b) and βl(b) are always positive. Now, com-
bining these functions with ξ in (5) that describes the potential influence on the
lower bound, we define: κ(b) = γξξ(b)+γgβg(b)+γlβl(b) where γξ, γg, and γl are
non-negative weights that can be user-defined parameters. Then, the probability

of choosing the box b can be defined as follows Pr[bgoal = b] =
κ(b)

∑
b∈Π κ(b)

.

4 Implementation

In addition to the tree that is used to store the explored executions, to facilitate
the computation of geometric operations, such as finding a neighbor, we store the
points reachable by the dynamics at each location using a data structure similar
to a k-d tree. Each node of the tree has exactly two children. Each internal
node is associated with the information about a partitioning plane: its axis i
and position c, and the partitioning plane is thus xi = c (where xi is the ith

coordinate of x). The additional information associated with a leaf is a set of
visited points. Each node thus corresponds to an elementary box resulting from
a hierarchical box-partition of the state space. The box of the root of the tree is
B. The tree and the partition of a 2-dimensional example is shown in Figure 2,
where the axes of the partitioning planes are specified by the horizontal and
vertical bars inside the nodes.
Approximate Neighbors. Since the computation of exact nearest neighbors is
expensive (even in a continuous setting), we approximate a neigbor of x as
follows: find the elementary box b which contains at least one visited point
and, in addition, is closest to x (note that some elementary boxes may not
contain any visited points). Then, we find a point in b which is closest to x. It is
easy to see that b does not necessarily contain a nearest neighbor of x. We use
this approximation because, on one hand the sampling distribution reflects the
boxes we want to explore, and on the other hand, it has lower complexity w.r.t.
dimensions. In addition, as we will show later, this approximation preserves the
completeness.

Update the discrepancy estimation. After adding a new point x, we need to
update the estimation of the star discrepancy. More concretely, we need to find
all the elementary boxes b such that the new point has increased the number
of points in the corresponding boxes b− and b+. These boxes are indeed those
which intersect with the box Bx = [x1, L1] × . . . × [xn, Ln]. In addition, if b is a
subset of Bx, the numbers of points in both b+ and b− need to be incremented;
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Fig. 2. Illustration of the update of the star discrepancy estimation

if b intersects with Bx but is not entirely inside Bx, only the number of points
in b+ needs to be incremented. Searching for all the elementary boxes that are
affected by x can be done by traversing the tree from the root and visiting all
the nodes the boxes of which intersect with Bx. In the example of Figure 2, the
box Bx is the dark rectangle, and the nodes of the trees visited in this search
are drawn as dark cirles.

Box splitting. When the difference between the lower and upper bounds in the
star discrepancy estimation is large, some boxes need to be split as indicated
by (4). Additionally, splitting is also needed for efficiency of the neighbor com-
putation.

Completeness Property. Probabilistic completeness is an important prop-
erty of the RRT algorithm. Roughly speaking, it states that if the trajectory we
seach for is feasible, then the probability that the algorithm finds it approaches
1 as the number k of iterations approaches infinity [8]. Although this property is
mainly of theoretical interest, it is a way to explain a good space-covering prop-
erty and the success of the RRT algorithm in solving practical robotic motion
planning problems. We can prove that our test generation algorithm preserves
this completeness property.

Theorem 1. [Reachability completeness] Let V k be the set of states visited after
k iterations of Algorithm 1. Given ε > 0 and a reachable state (q, x), the
probability that there exists a state (q, x′) ∈ V k such that ||x−x′|| ≤ ε approaches
1 when k approaches infinity, i.e. limk→∞Pr[∃(q, x′) ∈ V k : ||x − x′|| ≤ ε] = 1.

Sketch of Proof. The proofs of the completeness of RRTs are often established
for the algorithms where the goal point sampling distribution is uniform and
all the operations are exactly computed (see for example [8]). We first identify
the following condition: at each iteration k, ∀s ∈ V k : Pr[sinit = s] > 0. We
can prove that this condition is sufficient for the completeness proofs to remain
valid, even when the sampling distribution is non-uniform and the operations
are not exactly computed. The proof of this is rather technical and thus omitted
(see [2]). We now give a sketch of proof that our guided sampling method and
nearest neighbor approximation satisfy this condition. We first observe that,
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both the location and elementary box sampling distributions guarantee that all
the locations and all the boxes have non-null probability of being selected. We
consider only the case where the elementary box b within which we search for
a neighbor of xgoal contains xgoal (the other case can be handled similarly). Let
Pb be the set of visited points that are inside b. Let Vb be the Voronoi diagram
of Pb restricted to b and Cp the corresponding Voronoi cell of a visited point
p ∈ Pb. (Recall that the Voronoi cell of a point p is the set of all points that
are closer to p than to any other point). We can prove that the volume of Cp is
strictly positive. Since the goal point sampling distribution within b is uniform,
Pr[xgoal ∈ Cp] > 0, and hence the probability that p is the approximate neighbor
is also positive. It then follows that any visited point has a positive probability
of being selected to be xinit. This implies that at each iteration, any visited state
has a positive probability to be sinit.

5 Experimental Results

We implemented the test generation algorithm using C++ in a prototype tool,
and the results reported here were obtained by running the tool on a 1.4 GHz
Pentium III. First, to demonstrate the performance of our algorithm, we use
a set of examples of linear systems ẋ = Ax + u in various dimensions. In this
experiment, we did not exploit the linearity of the dynamics and the tested
systems were randomly generated: the matrix A is in Jordan canonical form,
each diagonal value of which is randomly chosen from [−3, 3] and the input set U
contains 100 values randomly chosen from [−0.5, 0.5]n. We fix a maximal number
Kmax = 50000 of visited states. In terms of coverage, the star discrepancy of
the results obtained by our algorithm and the classic RRT algorithm are shown
in Table 1 (left), which indicates that our algorithm has better coverage quality.
These discrepancy values were computed for the final set of visited states, using
a partition optimal w.r.t. to the imprecision bound in (4). Note that in each
iteration of our test generation algorithm we do not compute such a partition
because it is very expensive. The results obtained on a 2-dimensional system are
visualized in Figure 3. Table 1 (right) shows the time efficiency of our algorithm
for linear systems of dimensions up to 100.

To illustrate the application of our algorithm to hybrid systems, we use
the well-known aircraft collision avoidance problem [11]. The dynamics of each

Table 1. Discrepancy results and computation time for some linear systems

dim n Lower bound Upper bound

Algo 1 RRT Algo 1 RRT

3 0.451 0.546 0.457 0.555

5 0.462 0.650 0.531 0.742

10 0.540 0.780 0.696 0.904

dim n Time (min)

5 1

10 3.5

20 7.3

50 24

100 71
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Fig. 3. Results obtained using Algorithm 1 (left) and the RRT algorithm (right)

aircraft is as follows: ẋi = vcos(θi) + d1sin(θi) + d2cos(θ2), ẏi = vsin(θi) −
d1cos(θi) + d2sin(θ2), θ̇i = ω where xi, yi describe the position and θi is the
relative heading. The continuous inputs are d1 and d2 describing the external dis-
turbances on the aircrafts and −δ ≤ d1, d2 ≤ δ. There are three discrete modes.
At first, each aircraft begins in straight flight with a fixed heading (mode 1).
Then, as soon as two aircrafts are within the distance between each other, they
enter mode 2, at which point each makes an instantaneous heading change of
90 degrees, and begins a circular flight for π time units. After that, they switch
to mode 3 and make another instantaneous heading change of 90 degrees and
resume their original headings from mode 1. Thus for N aircrafts, the system has
3N + 1 continuous variables (one for modeling a clock). For the case of N = 2
aircrafts, when the collision distance is 5 no colission was detected after visit-
ing 10000 visited states, and the computation time was 0.9 min. The result for
N = 8 aircrafts with the disturbance bound δ = 0.06 is shown in Figure 4. For
this example, the computation time for 50000 visited states was 10 min and a
collision was found. For a similar example with N = 10 aicrafts, the computation
time was 14 minutes and a collision was also found.

Fig. 4. Eight-aircraft collision avoidance (50000 visited states, computation time: 10
min)
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6 Related Work and Conclusion

Classical model-based testing frameworks use Mealy machines or finite labeled
transition systems and their applications include testing of digital circuits, com-
munication protocols and software. Recently, these frameworks have been ex-
tended to real-time systems and hybrid systems. Here we only discuss related
works in hybrid systems testing. The paper [13] proposed a framework for gen-
erating test cases from simulation of hybrid models specified using the language
Charon. A probabilistic test generation approach, similiar to ours, was pre-
sented in [5]. In this paper, the authors also proposed a coverage measure based
on a discretized version of dispersion. This measure is defined over a set of grid
points with a fixed size δ. The spacing sg of a grid point g is the distance from g
to the tree if it is smaller than δ, and sg = δ otherwise. Let S be the sum of the
spacings of all the grid points. This means that the value of S is the largest when
the tree is empty. Then, the coverage measure is defined in terms of how much
the vertices of the tree reduce the value of S. While in our work, the coverage
measure is used to guide the simulation, in [5] it is used as a termination cri-
terion. The RRT algorithms have also been used to solve other hybrid systems
analysis problems such as hybrid systems control and verification [6,4]. Bias-
ing the sampling process is guided by geometric constraints (such as avoiding
sampling near the obstacles) in [15] and by the exploration history (to predict
unreachable parts) in [5]. The difference which is also the novelty in our method
for guiding test generation is that we use the information about the current
coverage in order to improve it.

To conclude, in this paper we described a test coverage measure for continuous
and hybrid systems and a test generation algorithm. The originality of our paper is
away to guide the test generationprocess by the coveragemeasure.The experimen-
tal results obtained using an implementation of the test generation algorithm show
its scalability to high dimensional systems and good coverage quality. A number of
directions for future research can be identified. First, we are interested in defining a
measure for trace coverage. Partial observability also needs to be considered. Con-
vergence rate of the exploration in the test generation algorithm is another interest-
ing theoretical problem to tackle. This problem is particular hard especially in the
verificationcontextwhere the systemis subject touncontrollable inputs.Finally,we
intend to apply the results of this research to validation of analog and mixed-signal
circuits, a domain where testing is a widely used technique.

Acknowledgement. This research is supported by a fund ANR-06-SETI-018
of Agence Nationale de la Recherche.
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Abstract. We propose HyDICE, Hybrid DIscrete Continuous
Exploration, a multi-layered approach for hybrid-system testing that in-
tegrates continuous sampling-based robot motion planning with discrete
searching. The discrete search uses the discrete transitions of the hybrid
system and coarse-grained decompositions of the continuous state spaces
or related projections to guide the motion planner during the search for
witness trajectories. Experiments presented in this paper, using a hybrid
system inspired by robot motion planning and with nonlinear dynamics
associated with each of several thousand modes, provide an initial vali-
dation of HyDICE and demonstrate its promise as a hybrid-system testing
method. Comparisons to related work show computational speedups of
up to two orders of magnitude.

1 Introduction

Hybrid systems play an increasingly important role in transportation networks
[1], manufacturing processes [2], robotics [3], and medicine and biology [4, 5].
Today we find hybrid systems in sophisticated embedded controllers used in
the automotive and airplane industry, and also in medical devices that monitor
serious health conditions. Recently, it has been shown that hybrid systems are a
powerful tool for modeling biological processes and for analyzing how complex
systems, such as living organisms, survive [5].

Hybrid systems are formal models that combine discrete and continuous dy-
namics by associating continuous dynamics with each operating mode, while
using discrete logic to switch between operating modes. For example, a hybrid
system may model a vehicle whose underlying motion dynamics varies discretely
depending on terrain conditions. As another example, a hybrid system may
model air-traffic control, where the modes correspond to the cruising of the
planes and the discrete logic models conflict-resolution protocols.

As hybrid systems model more and more complex behaviors, and as they are
often part of devices operating in safety-critical situations, the verification of
safety properties becomes increasingly important. A hybrid system is considered
safe if unsafe states cannot be reached from initial safe states. In general, hybrid-
system verification consists of formally guaranteeing that a certain property is

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 463–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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true for the system. A rich theory exists for this problem [6,7,8,9,10], as well as
several tools, such as CheckMate1, HyTech2, and PHAVer3.

Unfortunately, even for safety properties, where verification is equivalent to
reachability checking, decidability holds only for hybrid systems with very sim-
ple continuous dynamics (essentially some types of linear dynamics) [11]. To
handle more general hybrid systems, tools have to resort to overapproximation
techniques, surveyed in [12, 13]. Such techniques are semi-decidable, since when
a hybrid system is unsafe it may not be possible to show that unsafe states are
reachable. Other recent approaches are semi-decidable in the opposite direction:
capable of finding unsafe behaviors when the system is unsafe, but unable to
determine that a system is safe [14, 15]. In essence, the focus in these recent
approaches shifts from verification to falsification, which often is the main focus
of model checking in industrial applications [16].

In this work we study the following problem: Can we produce a hybrid-system
trajectory from a safe state to an unsafe state when such trajectories exist? This
problem is commonly known as hybrid-system testing. When a hybrid system is
safe, it may not be possible to prove that unsafe states are unreachable. Such
an approach trades completeness for the ability to discover safety violations
for complex systems that current verification methods cannot handle. Under
appropriate conditions and for certain classes of algorithms, as discussed later in
the paper, as the running time increases, we can also increase our confidence in
the safety of the system, since the testing method has not been able to produce
a trajectory that violates safety properties. An efficient framework for finding
trajectories to unsafe states can shed light on the operation of the hybrid system
and may suggest possible interventions. Such framework is particularly useful
in the early stages of hybrid-system development, when errors in design are
common.

This work approaches hybrid-system testing using a robotics-inspired method.
Initially, we exploit the insight that hybrid-system testing is in many respects re-
lated to robot motion planning. The motion-planning problem consists of search-
ing a continuous space for a trajectory for a robotic system from an initial to a
final state, such that kinodynamic constraints on the robot motion are respected
and collision with obstacles are avoided [17, 18]. Hybrid-system testing is also a
reachability analysis on the state space of the hybrid system. In particular, find-
ing a trajectory from a safe to an unsafe state in a hybrid system entails searching
a high-dimensional state space with continuous and discrete components.

The connection with motion planning becomes deeper when we consider state-
of-the art motion-planning algorithms as the starting point for the methods used
for searching the continuous state space of a hybrid system. Recent advances
in motion planning have made it possible to efficiently find trajectories from
initial to final states even for continuous systems with hundreds of dimensions
whose motion is governed by nonlinear dynamics [17, 18, 19, 20, 21, 22, 23, 24].

1 http://www.ece.cmu.edu/∼webk/checkmate/
2 http://embedded.eecs.berkeley.edu/research/hytech/
3 http://www.cs.ru.nl/∼goranf/
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The most successful planning methods are numerical, sampling-based methods.
These methods generate samples in the state space and connect them with simple
trajectories. (e.g., PRM [25], RRT [19], EST [20], PDST [22], GRIP [23], DSLX-Plan
[24], and others [17, 18]). Motion planning methods, such as RRT, have already
been used for hybrid-system testing for nonlinear hybrid systems with few modes
[15, 14].

Departing from traditional robot motion planning, we introduce a discrete
component to our work that is responsible for managing the potentially huge
complexity of the discrete transitions. The contribution of this work is the de-
velopment of a multi-layered framework for hybrid-system testing that blends
sampling-based motion planning with discrete searching. The motivation and
many of our design decisions come from our earlier work [26, 24]. In [26] we use
discrete search to obtain a sequence of transitions that guides the generation
of motions for a hybrid robotic system with 10–30 modes and mostly linear
dynamics. In [24] we show that traditional motion-planning problems can be
solved more efficiently by combining sampling-based motion planning with dis-
crete search over an artificially imposed decomposition of the environment on
which the robot moves (which in general can be regarded as a projection of its
state space). The work presented in this paper combines and extends ideas de-
veloped in [26,24] to obtain an effective testing method for hybrid systems with
thousands of modes and nonlinear dynamics.

The proposed method, HyDICE, imposes a coarse-grained decomposition on the
continuous state space associated with each mode. The decomposition and the
discrete transitions of the hybrid system are used to construct a discrete search
graph. Vertices of the search graph correspond to decomposition regions, while
edges connect vertices corresponding to two adjacent decomposition regions or
two decomposition regions that are connected by a discrete transition. The search
graph is used to find leads, that is sequences of decomposition regions that
constitute search directions and may be useful in finding a trajectory from a
safe to an unsafe state. The search inside each of the continuous decomposition
regions is done by a state-of-the-art sampling-based motion-planning technique.
Information gathered during exploration, such as region coverage, exploration
time and progress, and other quantities, are used to refine the discrete search
and improve the quality of the lead computed for the next exploration step.

In contrast to previous work [15,14], the multi-layered approach developed in
this paper is well-suited for systems with many modes and transitions and of-
fers considerable computational improvements over existing methods as demon-
strated in this paper. Initial validation of HyDICE is provided by testing hybrid
systems inspired by motion-planning problems that have thousands of modes and
transitions and nonlinear dynamics associated with each mode. As indicated by
the experiments, the tight integration of discrete search and exploration enables
HyDICE to be up to two orders of magnitude faster than other related methods.

The rest of the paper is as follows. The hybrid-testing problem and the hybrid
system used in the experiments are described in Section 2. Details of HyDICE are
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provided in Section 3. Experiments and results are presented in Section 4. We
conclude in Section 5 with a discussion.

2 Problem Description

2.1 Hybrid Automata and Hybrid-Testing Problem

In this work, hybrid systems are modeled by hybrid automata [6]. A hybrid
automaton is a tuple H = (S, E, G, J, f, U, I, F ), where S = Q × X ; Q is a
discrete and finite set; each Xq ∈ X , Xq ⊆ Rdim(Xq), represents the continuous
space associated with q ∈ Q; E ⊆ Q × Q indicates discrete transitions; each
G(qi,qj) ∈ G, G(qi,qj) ⊆ Xqi , and each J(qi,qj) ∈ J , J(qi,qj) : Xqi → Xqj , represent
the guard set and reset function associated with (qi, qj) ∈ E, respectively. The
continuous dynamics of the system in each q ∈ Q is governed by a set of differ-
ential equations fq : Xq × Uq → TgXq, where fq ∈ f , Uq ⊆ Rdim(Uq) denotes
the set of possible input controls, and TgXq denotes the tangent space of Xq.
Each Xq ∈ X usually includes derivatives of different orders, e.g., velocity and
acceleration of a car, and thus fq is typically nonlinear. The function fq has the
form fq(x, uq(x)), where the input uq(x) ∈ Uq associated with each x ∈ Xq could
represent continuous controls, nondeterminism, uncertainties, disturbances from
the environment, or actions of other systems. In order to model these factors,
the assignment uq(x) ∈ Uq could be non-deterministic or selected according to
some probability distribution associated with Uq.

A hybrid system trajectory consists of one or more continuous trajectories
interleaved with discrete transitions. Starting at some state (q0, x0) ∈ I, where
I ∈ S denotes the set of initial states, the system evolves according to fq0 until
it reaches G(q0,q1), for some q1 ∈ Q. Then a discrete transition to q1 occurs and
the continuous state is reset by J(q0,q1)(x0). The system evolution continues in
such manner until the end of execution time.

A hybrid system is considered unsafe if a witness trajectory is produced that
takes the hybrid system from some initial safe state ssafe ∈ I to some sunsafe ∈ F ,
where F ⊆ S denotes a set of unsafe states.

2.2 A Hybrid System Inspired by Motion Planning Problems

The hybrid system used throughout this paper consists of an autonomous robotic
car, whose underlying dynamics change discretely depending on terrain condi-
tions. The choice of this specific system is to provide a concrete, scalable bench-
mark in which the competitiveness of our approach can be tested.

A given environment is divided into a number of terrains {R1, . . . , RN}, where
each Ri corresponds to an operating mode qi ∈ Q. The motion of the robotic
car inside each terrain is specified by a set of ordinary differential equations.
A discrete transition (qi, qj) occurs when the robotic car enters a part of Ri

designated as the guard set G(qi,qj). The discrete transition indicates necessary
changes in the way the robotic car should be controlled to adapt to changes in
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terrain conditions. After entering Rj , the continuous state of the robotic car is
reset as specified by J(qi,qj) and the underlying dynamics of the car is specified
according to the motion equations associated with qj ∈ Q. The robotic car is
said to have entered some unsafe state, for example, if it is in a particular terrain
Rj and the speed is above a certain predefined threshold. The robotic car could
behave as a kinematic (first-order) car (KCar), smooth (second-order) car (SCar),
smooth Reeds-Shepp car (RSCar), smooth unicycle (SUni), or smooth differential
drive (SDDrive). Detailed descriptions of these models can be found in [17, 18].

Kinematic Car (KCar): A continuous state x is of the form x = [p, θ], where p ∈
R

2 and θ ∈ (−π, π] denote the position and orientation of the robotic car. The
motion equations are ṗ0 = u0(x) cos(θ); ṗ1 = u1(x) sin(θ); θ̇ = u0(x) tan(u1(x))/
L, where u0(x) ∈ [−1, 1] and u1(x) ∈ [−1, 1] are the speed and steering wheel
controls and L is the distance between the front and rear axles.

Smooth Car (SCar): The kinematic car model can be extended to a second-order
model by expressing the velocity v and steering angle φ as differential equa-
tions of the acceleration u0(x) and the rotational velocity of the steering wheel
u1(x) controls, as follows: x = [p, θ, v, φ] and ṗ0 = v cos(θ); ṗ1 = v sin(θ); θ̇ =
v tan(φ)/L; v̇ = u0(x); φ̇ = u1(x).

Smooth Reeds-Shepp Car (RSCar): A smooth Reeds-Shepp car is similar to a
smooth car, but the acceleration control u0(x) is only allowed to be from the set
{− max, 0, max}, where max ∈ R is some predefined parameter.

Smooth Unicycle (SUni): The continuous state x is x = [p, θ, v, ω], where p, θ,
v are as in the smooth car model and ω indicates the rotational velocity. The
motion equations are ṗ0 = v cos(θ); ṗ1 = v sin(θ); θ̇ = ω; v̇ = u0(x); ω̇ = u1(x).

Smooth Differential Drive (SDDrive): The motion equations are ṗ0 = 0.5r
(ω� + ωr) cos(θ); ṗ1 = 0.5r(ω� + ωr) sin(θ); θ̇ = r(ωr − ω�)/L; ω̇� = u0(x); ω̇r =
u1(x), where x = [p, θ, ω�, ωr] is the continuous state; ω� and ωr are the rota-
tional velocities of the left and right wheels, respectively; r is the wheel radius;
and L is the length of the axis connecting the centers of the two wheels.

The controls u0(x) and u1(x) could be thought of as playing the role of the
automatic driver. The objective of hybrid-system testing is then to test the
safety of the automatic driver, i.e., the driver is unsafe if a witness trajectory
is produced that indicates that it is possible for the robotic car to enter an
unsafe state. Due to length limitations of this paper, we only provide high-level
descriptions of the automatic drivers.4 These driver models consist of simple if-
then-else statements depending on the state values and motion equations. In the
first model, RandomDriver, u0(x) and u1(x) are selected pseudo-uniformly at
random from some [− max0, max0] and [− max1, max1], respectively. In a second
model, StudentDriver, the driver follows an approach similar to stop-and-go.
When the speed is close to zero, StudentDriver selects u0(x) and u1(x) as in the
RandomDriver model. Otherwise, StudentDriver selects controls that reduce
the speed. The third model, HighwayDriver attempts to maintain the speed
4 See http://www.cs.rice.edu/CS/Robotics/CAV2007data/ for more details.
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within acceptable low and upper bounds and avoid sharp turns. When the speed
is too low, HighwayDriver selects controls that increase the speed. When the
speed is too high, HighwayDriver selects controls that slow down the robotic car.
When the speed is between the low and upper bounds, HighwayDriver selects
controls that do not change the speed too much.

3 Methods

As discussed in the introduction, HyDICE constructs a discrete search graph based
on the discrete transitions and a decomposition of the continuous state spaces.
Observe that any witness trajectory from ssafe ∈ I to sunsafe ∈ F passes through
a sequence of decomposition regions. Although the converse does not hold, a
sequence of connected decomposition regions, starting and ending in two regions
containing states in I and F , respectively, may contain a witness trajectory. Such
sequences of connected regions, referred to as leads, provide search directions
which are used by the sampling-based motion-planning method as guides for the
exploration of the state space of a given hybrid system.

Algorithm 1. Pseudocode for HyDICE
Input: H = (S, Inv, E, G, J, f, U, I, F ): hybrid system; tmax ∈ R: upper bound on
overall computation time; te ∈ R: short time allocated to each exploration step
Output: A witness trajectory or FAILURE if no witness trajectory is found

1: StartClock1
2: T = (VT , ET ); VT ← {ssafe}; ET ← ∅
3: D ← CoarseGrainedDecomposition(H)
4: GD = (VD, ED) ← DiscreteSearchGraph(D)
5: InitExplorationEstimates(GD)
6: while ElapsedTime1 < tmax do
7: σ ← DiscreteLead(GD)
8: StartClock2
9: while ElapsedTime2 < te do

10: s ← SelectState(T , σ)
11: snew ← PropagateForward(H,T , s, σ)
12: VT ← VT ∪ {snew}; ET ← ET ∪ {(s, snew)}
13: if snew ∈ F then return WitnessTrajectory(T , snew)
14: UpdateExplorationEstimates(GD, σ)
15: return FAILURE

The search for a witness trajectory proceeds iteratively. Throughout the
search, HyDICE maintains an exploration tree T = (VT , ET ), which initially
contains only ssafe, i.e., VT = {ssafe} and ET = ∅. The vertices VT are states of
S, while an edge (s′, s′′) ∈ ET indicates that a hybrid-system trajectory connects
s′ ∈ S to s′′ ∈ S. At each iteration, HyDICE uses the discrete search graph to
compute a lead and then sampling-based motion planning to extend the branches
of T in the direction specified by the lead. The branches of T are extended by
adding new vertices and edges to VT and ET , respectively. A witness trajectory



Hybrid Systems: From Verification to Falsification 469

is found when a state sunsafe ∈ F is added to T . Otherwise, the search continues
until an upper bound on computation time is exceeded. Pseudocode is provided
in Algorithm 1. The discrete search and the sampling-based motion planning are
described in Sections 3.1 and 3.2, respectively.

3.1 Discrete Search

Coarse-grained Decomposition. HyDICE constructs a coarse-grained decom-
position D = {Dq1 , . . . , DqN }, where Dqi = {Dqi,1, . . . , Dqi,ni} denotes the de-
composition of Xqi into ni ∈ N different regions (line 3 of Algorithm 1). HyDICE
does not impose any strict requirements on the decomposition. Dqi is usually
computed as a set of nonoverlapping regions in some low-dimensional projection
of Xqi . For the hybrid system used in this work, HyDICE projects each Xqi onto
R

2 and constructs a cell-based decomposition. Other types of projections and
decompositions are possible [17, 18].

Discrete Search Graph. D is used to create a search graph GD = (VD, ED).
A vertex vqi,j is added to VD for each Dqi,j . An edge (vqi,j, vqi,k) is added
to ED for each two adjacent regions Dqi,j and Dqi,k. Furthermore, an edge
(vqi,j , vq�,k) is added to ED for each two regions Dqi,j and Dq�,k such that there
is a discrete transition from some state (qi, x1), x1 ∈ Dqi,j , to some state (q�, x2),
x2 ∈ Dq�,k. There are also two special vertices vsafe and vunsafe added to VD. An
edge (vsafe, vqi,j) is added to ED for each Dqi,j such that Dqi,j ∩I �= ∅. Similarly,
an edge (vqi,j , vunsafe) is added to ED for each Dqi,j such that Dqi,j ∩ F �= ∅.
This operation is found in line 4 of Algorithm 1.

Importance of Leads. A central issue is which lead to choose from the com-
binatorially large number of possibilities. This issue is addressed by associating
a weight w(vqi,j ,vq�,k) with each (vqi,j, vq�,k) ∈ ED, which estimates the impor-
tance of including (vqi,j, vq�,k) ∈ ED as an edge in the lead. Preference is given
to leads associated with higher edge weights. For the moment assume that there
is no distinction between edges corresponding to discrete transitions and edges
connecting adjacent regions in the decomposition. At the end we discuss the
possibility of using different weighting schemes depending on the edge type.

Initially, the weights are set to a fixed value (line 5) and are updated (line
14) after each exploration step. The weight w(vqi,j ,vq�,k) depends on the coverage
of Dqi,j and Dq�,k by T . The coverage c(T , Dqi,j) is computed by imposing an
implicit uniform grid on Dqi,j and measuring the fraction of cells that contain
at least one state from T . Let cprev(T , Dqi,j) denote c(T , Dqi,j) at the begin-
ning of the current exploration step (before line 9) and let cafter(T , Dqi,j) denote
c(T , Dqi,j) at the end of the exploration step (after line 13). Thus Δc(T , Dqi,j) =
cafter(T , Dqi,j) − cprev(T , Dqi,j) indicates the change in the coverage of Dqi,j

by T as a result of the current exploration step. c(T , Dq�,k), cprev(T , Dq�,k),
cafter(T , Dq�,k), and Δc(T , Dq�,k) are defined similarly. Let t denote the com-
putation time devoted to the exploration of Dqi,j and Dq�,k during the current
exploration step and let tacc(Dqi,j , Dq�,k) denote the accumulated exploration
time devoted to Dqi,j and Dq�,k. Then, the weight w(vqi,j ,vq�,k) is defined as
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w(vqi,j ,vq�,k) = (1 − ε)(Δc(T , Dqi,j) + Δc(T , Dq�,k))/(2t) + ε/tacc(Dqi,j , Dq�,k),
where 0 < ε < 1 is a normalization constant. Large values of w(vqi,j ,vq�,k) indi-
cate promising leads, since such values are obtained when T in a short amount
of time reaches previously uncovered parts of Dqi,j and Dq�,k. tacc(i, j) is used
to increase the weight of those regions that have been explored less frequently.

As described so far the same procedure determines w(vqi,j ,vq�,k), regardless
of whether the edge from Dqi,j to Dq�,k corresponds to a discrete transition
or adjacency in the decomposition. Intuitively, edges corresponding to discrete
transitions may be more important, as they guide the sampling-based motion
planner to extend branches of T from one continuous state space to another. For
this reason, each w(vqi,j ,vq�,k) corresponding to a discrete transition is multiplied
by some constant w > 1. Depending on the problem, it may also be beneficial
to estimate the weights corresponding to discrete transitions differently.

Computation of Leads. Leads associated with higher edge weights are selected
more frequently. At the same time, each lead has a non-zero probability of being
selected. In this way, HyDICE aims to obtain a balance between greedy and me-
thodical search. The computation of leads is essentially a graph-search problem
and there is extensive literature on the subject [27]. The approach undertaken
in this work is to use combinations of different strategies, such as randomized
depth-first search where the weights associated with each edge in ED are used
to select the successor vertices in the search process, Dijkstra’s algorithm, and
other graph-search methods [27]. For considerably larger problems, approaches
from model checking, such as bounded model checking [28] or directed model
checking [29], could also be used (see also discussion in Section 5).

DiscreteLead(GD) (line 7) returns more frequently the most probable lead
and the lead associated with the highest sum of edge weights and less frequently
leads computed by randomized depth-first search. The most probable lead is
computed using Dijkstra’s algorithm and setting the weight function used in the
graph search to − log(w(vqi,j ,vq�,k)/wtotal) for (vqi,j, vq�,k) ∈ ED, where wtotal =
∑

(v′,v′′)∈ED
w(v′,v′′). The lead with the highest sum of edge weights is computed

using Dijkstra’s algorithm and setting the weight function to wmax −w(vqi,j ,vq�,k)

for (vqi,j , vq�,k) ∈ ED, where wmax denotes the maximum weight.

3.2 Sampling-Based Motion Planning

The objective of the exploration step (lines 9–13) is to use the lead σ to extend
T toward F . The exploration step proceeds iteratively by selecting a state s from
T and propagating forward from s to a new state snew.

Conceptually, forward propagation provides the necessary mechanism for
sampling-based motion planning to extend the branches of T and explore the
state space. The forward propagation from s entails simulating the evolution
of H starting at s and for a duration of t units of time, where t is selected
pseudo-uniformly at random from [mint, maxt] ⊂ (0, ∞). The simulation can be
computed by numerically integrating the motion equations for a short period of
time and following the appropriate discrete transitions when guard conditions
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are met. The simulation terminates if at any point an unsafe state is reached
(see [14] for more details). The new state snew obtained at the end of the simula-
tion and the edge (s, snew) are added to the vertices and edges of T , respectively.

SelectState(T , σ) (line 10) selects more frequently states s from T , which,
when propagated forward, bring T closer to F . Let Dqi1 ,j1 , . . . , Dqin ,jn be the
coarse-grained decomposition regions associated with the sequence of vertices
vsafe, vqi1 ,j1 , . . . , vqin ,jn , vunsafe in σ. Since σ is a sequence of edges from vsafe to
vunsafe, the order 1 ≤ k ≤ n in which vqik

,jk
appears in σ provides an indication

of how close Dqik
,jk

is to F . Since the objective of the exploration step is to
extend branches of T closer to F , HyDICE gives preference to regions Dqik

,jk
that

are closer to F , i.e., k is close to n. To balance this greedy approach, HyDICE
also takes into account the overall exploration time tacc(Dqik

,jk
) spent in each

Dqik
,jk

and the coverage c(T , Dqik
,jk

). If Dqik
,jk

contains states from T , let wk =
αk/n + β/c(T , Dqik

,jk
) + γ/tacc(Dqik

,jk
), where α, β, and γ are normalization

constants. Otherwise, let wk = 0. SelectState(T , σ) selects a region Dqik
,jk

with probability wk/
∑m

h=1 wh. Each state s from T that is contained in Dqik
,jk

is selected with probability 1/nsel(s), where nsel(s) is the number of times s
has been previously selected. Preference is thus given to states that have been
selected less frequently, since such states, when propagated forward, can cause
T to extend in previously unexplored directions.

PropagateForward(H, T , s, σ) attempts to extend s toward Dqik+1 ,jk+1

and thus bring T closer to F . Since the evolution of H can be nondetermin-
istic, PropagateForward(H, T , s, σ) tries several times to propagate forward
from s. Let snewi

be the state obtained after simulating the evolution of H from
s for a duration of ti units of time, where ti is selected pseudo-uniformly at
random from [mint, maxt]. PropagateForward(H, T , s, σ) computes snew as
the state snewi

that is the closest to Dqik+1 ,jk+1 . A witness trajectory is found
if snew ∈ F . The witness trajectory is computed by reconstructing the evolution
of the hybrid system from ssafe to snew following the appropriate edges of T
(line 13).

4 Experiments and Results

Experiments are performed using the hybrid robotic system described in Sec-
tion 2.2. The hybrid robotic system is made increasingly complex by increasing
the number of modes. This paper presents experiments with up to 10000 modes.

An important part of experiments is the comparison with previous related
work. The closest work we can compare to is the application of RRT to hybrid
systems [14, 15]. We also provide experiments that indicate the impact of the
discrete search on the computational efficiency of HyDICE.

A problem instance is obtained by fixing the number N of operating modes of
the hybrid robotic car. The continuous dynamics associated with each mode
qi (or terrain Ri) is selected pseudo-uniformly at random from KCar, SCar,
RSCar, SUni, and SDDrive. The set of discrete transitions E is created as follows.
Initially, discrete transitions are added between each pair Ri, Rj of neighboring
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terrains. A disjoint-set strategy, similar to maze creation, is then used to remove
certain discrete transitions. Furthermore, each remaining discrete transition is
kept with probability p. We experimented with different values of p and found
that it has minimal impact on the comparisons between HyDICE and RRT. Ex-
periments reported in this paper use p = 0.1. For each problem instance, we
create 30 safety properties. Each safety property is created by selecting pseudo-
uniformly at random one terrain as safe and another one as unsafe. As discussed
in Section 2.2, the hybrid robotic car is said to have entered some unsafe state,
if it is in an unsafe terrain and its speed is above a certain predefined thresh-
old. In all the experiments, the systems were unsafe. For safe systems, since the
hybrid-system testing problem is generally undecidable, all the tools used in the
experiments would timeout.

Results. For each problem instance, experiments are run using each of the driver
models. Results are summarized in Table 1. We report the average computational
time in seconds required by RRT, HyDICE*, and HyDICE to test 30 safety proper-
ties. HyDICE* refers to the version of HyDICE that does not use the discrete-search
component, i.e., HyDICE* is the sampling-based motion planner of HyDICE with
some minor modifications.5 Comparisons include HyDICE* to investigate the im-
portance of the discrete search on HyDICE. An entry marked with X indicates
that the testing method timed out. The upper bound on time was set to 3000s
for each safety property testing. The time allocated to each exploration step by
HyDICE (te in Algorithm 1) was set to 1s. The Rice PBC Cluster and Rice Cray
XD1 Cluster ADA were used for code development. Experiments were run on
ADA, where each processor runs at 2.2GHz and has up to 8GB of RAM.

Table 1. Summary of experimental comparisons. Time is in seconds

RandomDriver StudentDriver HighwayDriver
|Q| RRT HyDICE* HyDICE RRT HyDICE* HyDICE RRT HyDICE* HyDICE
100 22.30 4.34 2.68 74.01 6.74 2.20 21.29 4.92 2.82
225 117.79 14.02 6.24 336.85 32.44 5.24 230.88 21.64 6.30
525 295.88 75.60 6.87 792.45 65.40 15.52 668.67 106.56 16.31
900 504.93 175.96 13.74 X 120.48 17.06 2596.50 182.54 36.96

1600 2159.24 289.94 32.52 X 464.56 34.14 X 374.44 37.26
2500 X 910.86 60.18 X 699.66 62.30 X 929.36 71.44

10000 X X 439.88 X X 457.60 X X 445.52

Table 1 shows that HyDICE is consistently more efficient than RRT. When the
RandomDrivermodel is used, HyDICE is 8.32, 18.87, 43.06, and 66.39 times faster
than RRT, as the number of modes is increased to 100, 225, 525, and 1600, respec-
tively. Furthermore, RRT times out when |Q| = 2500, while HyDICE requires only
60.18s. Similarly, when the StudentDriver model is used, the computational
5 HyDICE* can be obtained from the implementation of HyDICE by computing the lead

σ as vsafe, γ, vunsafe, where γ is a random permutation of VD −{vsafe, vunsafe}, where,
as described in Section 3, GD = (VD, ED) is the search graph.
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speedups obtained by HyDICE vary from 33.64 to 51.05 on instances where RRT
does not time out. Under the StudentDriver model, RRT times out on instances
with |Q| = 900, while HyDICE requires only 17.06s. The StudentDriver model is
particularly computationally challenging for RRT since the stop-and-go approach
it uses makes it difficult for RRT to extend the exploration tree. On the other
hand, since HyDICE relies on a discrete search component it successfully extends
the exploration tree and quickly reaches unsafe states. Similar observations are
made for the HighwayDriver model as well.

Table 1 indicates that HyDICE is up to two orders of magnitude computation-
ally faster than RRT. Table 1 also shows that HyDICE scales up reasonably well
with respect to |Q|. In fact, RRT timed out in all cases when |Q| ≥ 2500, while
HyDICE is shown to handle problems even with |Q| = 10000 quite efficiently.

The second set of experiments provides insight on the observed computational
efficiency of HyDICE. In particular, we investigate the importance of the discrete
search on HyDICE. Table 1 shows that although HyDICE* is still faster than RRT,
it is considerably slower than HyDICE. (For a discussion on issues related to the
computational efficiency of RRT and sampling-based motion planners similar to
HyDICE* see [17, 18, 21, 24].) For example, when |Q| = 2500, HyDICE* is 11–15
times slower than HyDICE. Furthermore, HyDICE* times out on instances with
|Q| = 10000, while HyDICE handles such instances efficiently. These results high-
light the importance of the discrete search and agree with observations made
in [24]. The interplay between lead computations and sampling-based explo-
ration has the desired effect of quickly improving the quality of future leads and
explorations and bringing the search closer to obtaining a solution. By guid-
ing the exploration, the discrete search significantly improves the computational
efficiency of HyDICE.

5 Discussion

We have presented HyDICE, a multi-layered approach for hybrid-system test-
ing that blends sampling-based motion planning with discrete searching. The
discrete search, responsible for managing the potentially huge complexity of dis-
crete transitions, also uses coarse-grained decompositions of the continuous state
spaces or related projections to guide the motion planner during the search for
witness trajectories. The motion planner feeds back to the discrete search in-
formation gathered during the exploration, which is then used to further refine
the discrete search and guide the motion planner toward increasingly promising
search directions. This tight integration of discrete search and motion planning
in the framework of HyDICE offers considerable computational advantages over
related work. Experiments presented in this paper, using a hybrid robotic car,
different driving models, and nonlinear dynamics associated with each of the
several thousand modes, provide initial validation of HyDICE and demonstrate
its promise as a hybrid-system testing method. Comparisons to related work
show computational speedups of up to two orders of magnitude.
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Although HyDICE was shown to handle a system with thousands of modes and
nonlinear dynamics, the scalability issue is relevant and remains open to further
research. As the number of modes becomes significantly large, the simple graph-
search strategies used in this work becomes a computational bottleneck and
need to be replaced with state-of-the-art techniques developed in the verification
community which can handle discrete systems with billions of modes [30].

Additionally, the search graph is based on a decomposition of the continuous
state spaces or related projections and the ability to determine whether or not
two decomposition regions are connected by a discrete transition. Depending
on the hybrid system, guard sets, and reset functions it may be challenging to
determine if such discrete transition exists. In such cases, a viable approach
would be to resort to approximations of guard sets and reset functions, which
also requires investigating the overall impact of approximations on HyDICE.

One important theoretical issue that is subject of ongoing research relates to
guarantees HyDICE can offer for general hybrid-system testing. Although com-
pleteness cannot be guaranteed, since the problem is generally undecidable, our
belief is that HyDICE offers a weaker form of completeness, referred to as prob-
abilistic completeness. Guaranteeing probabilistic completeness means that, for
unsafe systems, the probability of finding a witness trajectory goes to one as the
running time approaches infinity [17]. Probabilistic completeness allows us to
increase the confidence in the safety of the system as the running time increases.
The work in [31] has already proven probabilistic completeness in a continuous
setting for certain classes of motion-planning methods, such as the one used by
HyDICE. The theoretical framework developed in [31] is also promising for show-
ing probabilistic completeness in a hybrid-system setting and we are currently
investigating such an approach.

We also intend in future work to experiment with HyDICE in other settings
and apply it to increasingly realistic and complex hybrid systems.
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Abstract. Linearizability is one of the main correctness criteria for
implementations of concurrent data structures. A data structure is
linearizable if its operations appear to execute atomically. Verifying lin-
earizability of concurrent unbounded linked data structures is a challeng-
ing problem because it requires correlating executions that manipulate
(unbounded-size) memory states. We present a static analysis for verify-
ing linearizability of concurrent unbounded linked data structures. The
novel aspect of our approach is the ability to prove that two (unbounded-
size) memory layouts of two programs are isomorphic in the presence of
abstraction. A prototype implementation of the analysis verified the lin-
earizability of several published concurrent data structures implemented
by singly-linked lists.

1 Introduction

Linearizability [1] is one of the main correctness criteria for implementations of
concurrent data structures (a.k.a. concurrent objects). Intuitively, linearizability
provides the illusion that any operation performed on a concurrent object takes
effect instantaneously at some point between its invocation and its response. One
of the benefits of linearizability is that it simplifies reasoning about concurrent
programs. If a concurrent object is linearizable, then it is possible to reason
about its behavior in a concurrent program by reasoning about its behavior in
a (simpler) sequential setting.

Informally, a concurrent object o is linearizable if each concurrent execution of
operations on o is equivalent to some permitted sequential execution, in which the
global order between non-overlapping operations is preserved. The equivalence
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is based on comparing the arguments and results of operations (responses). The
permitted behavior of the concurrent object is defined in terms of a specification
of the desired behavior of the object in a sequential setting.

Linearizability is a widely-used concept, and there are numerous non-automatic
proofs of linearizability for concurrent objects (See Sec. 6). Proving linearizability
is challenging because it requires correlating any concurrent execution with a cor-
responding permitted sequential execution. Proving linearizability for concurrent
objects that are implemented by dynamically allocated linked data-structures is
particularly challenging, because it requires correlating executions that may ma-
nipulate memory states of unbounded size.

In this paper, we present a novel technique for automatically verifying the
linearizability of concurrent objects implemented by linked data structures. Tech-
nically, we verify that a concurrent object is linearizable by simultaneously ana-
lyzing the concurrent implementation with an executable sequential specification
(i.e., a sequential implementation). The two implementations manipulate two
disjoint instances of the data structure. The analysis maintains a partial iso-
morphism between the memory layouts of the two instances. The abstraction is
precise enough to maintain isomorphism when the difference between the mem-
ory layouts is of bounded size. Note that the memory states themselves can be
of unbounded size.

Implementation. We have implemented a prototype of our approach, and used
it to automatically verify the linearizability of several concurrent algorithms,
including the queue algorithms of [2] and the stack algorithm of [3]. As far as we
know, our approach is the first fully automatic proof of linearizability for these
algorithms.

Limitations. Our analysis has several limitations: (i) Every concurrent operation
has a (specified) fixed linearization point, a statement at which the operation
appears to take effect. (This restriction can be relaxed to several statements,
possibly with conditions.) (ii) We verify linearizability for a fixed but arbitrary
number of threads. (iii) We assume a garbage collected environment. Sec. 4
discusses the role of these limitations. We note that the analysis is always sound,
even if the specification of linearization points is wrong (see [4]).

Main Results. The contributions of this paper can be summarized as follows:
– We present the first fully automatic algorithm for verifying linearizability of

concurrent objects implemented by unbounded linked data structures.
– We introduce a novel heap abstraction that allows an isomorphism between

mutable linked data structures to be maintained under abstraction.
– We implemented our analysis and used it to verify linearizability of several

unbounded linked data structures.

Due to space reasons, we concentrate on providing an extended overview of our
work by applying it to verify the linearizability of a concurrent-stack algorithm
due to Treiber [3]. Formal details can be found in [4].
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[10] #define EMPTY -1
[11] typedef int data type;
[12] typedef struct node t {
[13] data type d;
[14] struct node t *n
[15] } Node;
[16] typedef struct stack t {
[17] struct node t *Top;
[18] } Stack;

(a) Stack and Node type definitions

[40] void client(Stack *st) {
[41] do {
[42] if (?)
[43] push(st, rand());
[44] else
[45] pop(st);
[46] } while (1);
[47] }

[20] void push(Stack *S, data type v){
[21] Node *x = alloc(sizeof(Node));
[22] x->d = v;
[23] do {
[24] Node *t = S->Top;
[25] x->n = t;
[26] } while (!CAS(&S->Top,t,x)); // @1
[27] }

[30] data type pop(Stack *S){
[31] do {
[32] Node *t = S->Top; // @2
[33] if (t == NULL)
[34] return EMPTY;
[35] Node *s = t->n;
[36] } while (!CAS(&S->Top,t,s)); // @3
[37] data type r = t->d;
[38] return r;
[39] }

(c) The most general client of Stack (b) Concurrent stack procedures

Fig. 1. A concurrent stack: (a) its type, (b) implementation, and (c) most general
client

2 Verification Challenge

Fig. 1(a) and (b) show C-like pseudo code for a concurrent stack that maintains
its data items in a singly-linked list of nodes, held by the stack’s Top-field. Stacks
can be (directly) manipulated only by the shown procedures push and pop, which
have their standard meaning.

The procedures push and pop attempt to update the stack, but avoid the
update and retry the operation when they observe that another thread changed
Top concurrently. Technically, this is done by repeatedly executing the following
code: At the beginning of every iteration, they read a local copy of the Top-field
into a local variable t. At the end of every iteration, they attempt to update the
stack’s Top-field using the Compare-and-Swap (CAS) synchronization primitive.
CAS(&S->Top,t,x) atomically compares the value of S->Top with the value of t
and, if the two match, the CAS succeeds: it stores the value of x in S->Top, and
evaluates to 1. Otherwise, the CAS fails: the value of S->Top remains unchanged
and the CAS evaluates to 0. If the CAS fails, i.e., Top was modified concurrently,
push and pop restart their respective loops.

Specification. The linearization point of push is the CAS statement in line [26]
(marked with @1). This linearization point is conditional: Only a successful CAS
is considered to be a linearization point. Procedure pop has two (conditional)
linearization points: Reading the local copy of Top in line [32] (marked with @2)
is a linearization point, if it finds that Top has a NULL-value. The CAS in line
[36] (marked with @3) is a linearization point, if it succeeds.

Goal. We verify that the stack algorithm is linearizable with the specified
linearization points for 2 threads, using its own code as a sequential
specification.
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3 Our Approach

We use abstract interpretation of a non-standard concrete semantics, the corre-
lating semantics, abstracted by a novel delta heap abstraction to conservatively
verify that every execution of any program that manipulates a stack using 2
threads is linearizable. Technically, we simulate the executions of all such pro-
grams using a single program that has two threads running the stack’s most-
general-client and using a shared stack. (The stack’s most general client, shown
in Fig. 1(c), is a procedure that invokes an arbitrary nondeterministic sequence
of operations on the stack.)

3.1 The Correlating Semantics

The correlating semantics “checks at runtime” that an execution is lineariz-
able. It simultaneously manipulates two memory states: the candidate state and
the reference state. The candidate state is manipulated according to the inter-
leaved execution. Whenever a thread reaches a linearization point in a given
procedure, e.g., executes a successful CAS while pushing data value 4, the cor-
relating semantics invokes the same procedure with the same arguments, e.g.,
invokes push with 4 as its value argument, on the reference state. The inter-
leaved execution is not allowed to proceed until the execution over the reference
state terminates. The reference response (return value) is saved, and compared
to the response of the corresponding candidate operation when it terminates.
This allows to directly test the linearizability of the interleaved execution by
constructing a (serial) witness execution for every interleaved execution. In the
example, we need to show that corresponding pops return identical results.

Example 1. Fig. 2(a) shows a part of a candidate execution and the corresponding
fragment of the reference execution (the witness) as constructed by the corre-
lating semantics. Fig. 2(b) shows some of the correlated states that occur in the
example execution. Every correlated state consists of two states: the candidate
state (shown with a clear background), and the reference state (shown with a
shaded background).

The execution fragment begins in the correlated state σa. The candidate (resp.
reference) state contains a list with two nodes, pointed to by the Top-field of the
candidate (resp. reference) stack. To avoid clutter, we do not draw the Stack
object itself. In the reference state we add an r-superscript to the names of fields
and variables. (We subscript variable names with the id of the thread they belong
to.) For now, please ignore the edges crossing the boundary between the states.

In the example execution, thread B pushes 7 into the stack, concurrently
with A pushing 4. The execution begins with thread B allocating a node and
linking it to the list. At this point, σb, thread A’s invocation starts. Although
B’s invocation precedes A’s invocation, thread A reaches a linearization point
before B. Thus, after thread A executes a successful CAS on state σc, resulting in
state σd, the correlating semantics freezes the execution in the candidate state
and starts A executing push(4) uninterruptedly in the reference state. When
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Fig. 2. An example correlated execution trace
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the reference execution terminates, in σg, the candidate execution resumes. In
this state, thread B has in tB an old copy of the value of the stack’s Top. Thus,
its CAS fails. B retries: it reads the candidate’s Top again and executes another
(this time successful) CAS in state σi. Again, the correlating semantics freezes
the candidate execution, and makes B execute push(7) on the reference state
starting from σj . In σm, both push operations end.

Thread A invokes a pop operation on the stack in state σm. Thread A executes
a successful CAS on state σn, and the reference execution starts at σo. When
the latter terminates, the correlating semantics saves the return value, 7, in
the special variable retr

A. When the candidate pop ends in σr, the correlating
semantics stores the return value, 7, in retA, and compares the two, checking
that the results match.

Up to this point, we described one aspect of the correlating semantics: checking
that an interleaved execution is linearizable by comparing it against a (con-
structed) serial witness. We now show how our algorithm uses abstraction to
conservatively represent unbounded states and utilizes (delta) abstraction to
determine that corresponding operations have equal return values.

Comparison of Unbounded States. Our goal is to statically verify linearizability.
The main challenge we face is devising a bounded abstraction of the correlating
semantics that allows establishing that every candidate pop operation, in every
execution, returns the same result as its corresponding reference pop operation.
Clearly, using separated bounded abstractions of the candidate and the reference
stack will not do: Even if both stacks have the same abstract value, it does not
necessarily imply that they have equal contents.

Our abstraction allows one to establish that corresponding operations return
equal values by using the similarity between the candidate and reference states
(as can be observed in Fig. 2(b)). In particular, it maintains a mapping between
the isomorphic parts of the two states (an isomorphism function). Establishing
an isomorphism function—and maintaining it under mutations—is challenging.
Our approach, therefore, is to incrementally construct a specific isomorphism
during execution: The correlating semantics tracks pairs of nodes allocated by
corresponding operations using a correlation relation. We say that two correlated
nodes are similar if their n-successors are correlated (or both are NULL). The
maintained isomorphism is the correlation relation between similar nodes.
Example 2. The edges crossing the boundary between the candidate and the ref-
erence component of the correlated states shown in Fig. 2(b) depict the correla-
tion relation. In state σa, each node is similar to its correlated node. In states σb

and σc, threads B and A have allocated nodes with data values 7 and 4, re-
spectively, and linked them to the list. When thread A’s corresponding reference
operation allocates a reference node, it becomes correlated in σe with the can-
didate node that A allocated. When the reference node is linked to the list, in
σf , the two become similar. (The node allocated by B undergoes an analogous
sequence of events in σk and σl).

Comparing Return Values. The analysis needs to verify that returned values of
corresponding pops match. Actually, it establishes a stronger property: the re-
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turned values of corresponding pops come from correlated nodes, i.e., nodes that
were allocated by corresponding pushs. Note that a node’s data value, once ini-
tialized, is immutable. To simplify the presentation, and the analysis, we consider
correlated nodes to also have equal data values. Our analysis tracks the nodes
from which the return values are read (if this is the case) and verifies that these
nodes are correlated. Sec. 4 discusses the comparison of actual data values.

Example 3. Thread A executes a pop and gets the reference return value by
reading the data field of the node pointed to by tr

A, in σp. The corresponding
candidate pop gets the return value by reading the data field of the node pointed
to by tA, resulting in σq, with 7 being rA’s value. Our analysis verifies that these
nodes are indeed correlated. Furthermore, consider an incorrect implementation
of (concurrent) push in which the loop is removed and the CAS in line [26]
is replaced by the standard pointer-update statement S->Top=x. Running our
example execution with this implementation, we find that thread B manages to
update Top in state σg (instead of failing to do so with a CAS). As a result, the
candidate Top is redirected to the node that B allocated, and the current node
at the top of the candidate stack (pushed by A) is lost. However, the node that
A pushed onto the reference stack is still (eventually) in the reference stack. As
a result, when it is popped from the stack, it will not be correlated with the
node popped from the candidate stack. Our analysis will find this out and emit
a warning.

3.2 Delta Heap Abstraction

Our abstraction summarizes an unbounded number of nodes while maintaining
a partial-isomorphism between the reference state and the candidate state. The
main idea is to abstract together the isomorphic parts of the states (comprised of
pairs of correlated nodes) and to explicitly record the differences that distinguish
between the states. Technically, this is performed in two abstraction steps: In
the first step, we apply delta abstraction, which merges the representations of
the candidate and reference states by fusing correlated nodes, losing their actual
addresses. In the second step, we bound the resulting delta memory state into
an abstract delta memory state using canonical abstraction [5], losing the exact
layout of the isomorphic subgraphs while maintaining a bounded amount of
information on their distinguishing differences. This abstraction works well in
cases where the differences are bounded, and loses precision otherwise.

Delta Abstraction. We abstract a correlated memory state into a delta state
by sharing the representation of the correlated parts. Pictorially, the delta ab-
straction superimposes the reference state over the candidate state. Each pair of
correlated nodes is fused into a duo-object. The abstraction preserves the layout
of the reference memory state by maintaining a double set of fields, candidate-
fields and reference-fields, in every duo-object. Recall that a pair of correlated
nodes is similar if their n-successors are correlated (or both are NULL). In the
delta representation, the candidate-field and the reference-field of a duo-object
representing similar nodes are equal. Thus, we refer to a duo-object representing
a pair of similar nodes as a uniform duo-object.
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Example 4. Fig. 2(c) depicts the delta states pertaining to some of the correlated
states shown in Fig. 2(b). The delta state σδ

m represents σm. Each node in σm

is correlated, and similar to its correlated node. A duo-object is depicted as
a rectangle around a pair of correlated nodes. All the duo-objects in σδ

m are
uniform. (This is visually indicated by the ∼ sign inside the rectangle.) The
n-edge of every uniform duo-object implicitly represents the (equal) value of its
nr-edge. This is indicated graphically, by drawing the n-edge in the middle of
the uniform duo-object. For example, the n-edge leaving the uniform duo-object
with value 1, implicitly records the nr-edge from the reference node with value 1
to the reference node with value 3. Note that the candidate Top and the reference
Top, that point to correlated nodes in σm, point to the same duo-object in σδ

m.
The delta state σδ

k represents σk. The duo-object with data-value 7 in σδ
k is

nonuniform; it represents the pair of nodes allocated by thread B before it links
the reference node to the list. (Nonuniform duo-objects are graphically depicted
without a ∼ sign inside the rectangle.) Note that the n-edge of this nonuniform
duo-object is drawn on its left -side. The lack of a nr-edge on the right-side
indicates that the nr-field is NULL.

The delta state σδ
i represents σi. The non-correlated node with data-value 7

is represented as a “regular” node.

Bounded Delta Abstraction. We abstract a delta state into a bounded-size
abstract delta state. The main idea is to represent only a bounded number of
objects in the delta state as separate (non-summary) objects in the abstract
delta state, and summarize all the rest. More specifically, each uniform duo-
object, nonuniform duo-object, and node which is pointed to by a variable or
by a Top-field, is represented by a unique abstract uniform duo-object, abstract
nonuniform duo-object, and abstract node, respectively. We represent all other
uniform duo-objects, nonuniform duo-objects, and nodes, by one uniform sum-
mary duo-object, one nonuniform summary duo-object, and one summary node,
respectively. We conservatively record the values of pointer fields, and abstract
away values of data fields. (Note, however, that by our simplifying assumption,
every duo-object represents nodes with equal data values.)

Example 5. Fig. 2(d) depicts the abstract delta states pertaining to the delta
states shown in Fig. 2(c). The abstract state σ�

i represents σδ
i . The duo-objects

with data values 1 and 3 in σδ
i are represented by the summary duo-object,

depicted with a double frame. The duo-object u with data value 4 in σδ
i is

represented by its own abstract duo-object in σ�
i (and not by the summary duo-

object) because u is pointed to by (both) Top-fields. The non-correlated node w
with data-value 7 in σδ

i is pointed to by xB. It is represented by its own abstract
node pointed to by xB. The n-field between the candidate node w and the duo-
object u in σδ

i is represented in the abstract state by the solid n-labeled edge.
The absence of an n-labeled edge between abstract nodes or abstract duo-objects
represents the absence of pointer fields. Finally, the dotted edges represent loss
of information in the abstraction, i.e., pointer fields which may or may not exist.
Note that the summary duo-object in σ�

i is uniform. This information is key to
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our analysis: it records the fact that the candidate and reference states have
(potentially unbounded-sized) isomorphic subgraphs.

The abstract delta state σ�
k represents σδ

k. The nonuniform duo-object v in σδ
k

is represented by an abstract nonuniform duo-object in σ�
k. Note that the ab-

straction maintains the information that the duo-object pointed to by v’s can-
didate n-field, is also pointed to by the reference Top. This allows to establish
that once thread B links the reference node to the list, the abstract nonuniform
duo-object v is turned into a uniform duo-object.

Recap. The delta representation of the memory states, enabled by the novel use
of similarity and duo-objects, essentially records isomorphism of subgraphs in a
local way. Also, it helps simplify other elements of the abstraction: the essence of
our bounded abstraction is to keep distinct (i.e., not to represent by a summary
node or a summary duo-object) nodes and pairs of correlated nodes which are
pointed-to by variables or by a Top-field. Furthermore, by representing the refer-
ence edges of similar nodes by the candidate edges and the similarity information
recorded in (uniform) duo-objects, the bounded abstraction can maintain only
a single set of edges for these nodes. Specifically, if there is a bounded num-
ber of differences between the memories, the bounded abstraction is, essentially,
abstracting a singly-linked list of duo-objects, with a bounded number of ad-
ditional edges. In addition, to represent precisely the differences between the
states using this abstraction, these differences have to be bounded, i.e., every
non-similar or uncorrelated node has to be pointed to by a variable or by a
Top-field.

Example 6. The information maintained by the abstract delta state suffices to
establish the linearizability of the stack algorithm. Consider key points in our
example trace:

– When thread B performs a CAS on σg, its abstraction σ�
g carries enough

information to show that it fails, and when B tries to reperform the CAS on
σi, its abstraction σ�

i can establish that the CAS definitely succeeds.
– When linking the reference node to the list in state σe and later in σk, the

abstracted states can show that newly correlated nodes become similar.
– σ�

m, the abstraction of σm, which occurs when no thread manipulates the
stack, indicates that the candidate and the reference stacks are isomorphic.

– Finally, σ�
q, the abstraction of σq, indicates that the return value of the

reference pop was read from a node correlated to the one from which rA’s
value was read (indicated by retr

A pointing into the correlated node). This
allows our analysis to verify that the return values of both pops agree.

Our analysis is able to verify the linearizability of the stack. Note that the
abstraction does not record any particular properties of the list, e.g., reach-
ability from variables, cyclicly, sharing, etc. Thus, the summary duo-object
might represent a cyclic list, a shared list, or even multiple unreachable lists
of duo-objects. Nevertheless, we know that the uniform summary duo-object
represents an (unbounded-size) isomorphic part of the candidate and reference
states.
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4 Discussion

In this section, we shortly discuss some key issues in our analysis.

Soundness. The soundness of the analysis requires that every operation of
the executable sequential specification is fault-free and always terminates. This
ensures that triggering a reference operation never prevents the analysis from
further exploring its candidate execution path. Our analysis conservatively ver-
ifies the first requirement in situ. The second requirement can be proved using
termination analysis, e.g., [6]. Once the above requirements are established, the
soundness of the abstract interpretation follows from the soundness of [5]’s frame-
work for program analysis, in which our analysis is encoded. We note that for
many of our benchmarks, showing termination is rather immediate because the
procedures perform a loop until a CAS statement succeeds; in a serial setting, a
CAS always succeeds.

Correlating Function. We used the same correlation function in all of our bench-
marks: nodes allocated by corresponding operations are correlated. (In all our
benchmarks, every operation allocates at most one object. More complicated al-
gorithms might require more sophistication.) We note that our analysis is sound
with any correlation function.

Comparison of Return Values. We simplified the example by not tracking actual
data values. We now show how return values can be tracked by the analysis.
The flow of data values within corresponding operations can be tracked from
the pushed value parameter to the data fields of the allocated nodes (recall that
corresponding operations are invoked with the same parameters). We then can
record data-similarity, in addition to successor-similarity, and verify that data-
fields remain immutable. This allows to automatically detect that return values
(read from correlated nodes) are equal. Such an analysis can be carried out using,
e.g., the methods of [7].

Precision. As far as we know, we present the first shape analysis capable
of maintaining isomorphism between (unbounded-size) memory states. We at-
tribute the success of the analysis to the fact that in the programs we analyze the
memory layouts we compare only “differ a little”. The analysis tolerates local per-
turbations (introduced, e.g., by interleaved operations) by maintaining a precise
account of the difference (delta) between the memory states. In particular, dur-
ing our analysis, it is always the case that every abstract object is pointed to by a
variable or a field of the concurrent object, except, possibly, uniform duo-objects.
Thus, we do not actually expect to summarize nonuniform duo-objects or regu-
lar nodes. In case the analysis fails to verify the linearizability of the concurrent
implementation, its precision may be improved by refining the abstraction.

Operational Specification. We can verify the concurrent implementation
against a simple sequential specification instead of its own code. For example, in
the operational specification of push and pop, we can remove the loop and replace
the CAS statement with a (more natural) pointer-update statement. Verifying a
code against a specification, and not against itself, can improve performance.
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For example, we were not able to verify a sorted-set example using its own code
as a specification (due to state explosion), but we were able to verify it using a
simpler specification. Also, it should be much easier to prove fault-freedom and
termination for a simplified specification.

Parametric Shape Abstraction. We match the shape abstraction to the way
the operations of the concurrent objects traverse the heap: When the traversal
is limited to a bounded number of links from the fields of the concurrent object,
e.g., stacks and queues, we base the abstraction on the values of variables. When
the traversal is potentially unbounded, e.g., a sorted set, we also record sharing
and reachability.

Automation. In the stack example, we used a very simple abstraction. In
other cases, we had to refine the abstraction. For example, when analyzing the
nonblocking-queue [2], we found it necessary to also record explicitly the suc-
cessor of the tail. Currently, we refine the abstraction manually. However, it is
possible to automate this process using the methods of [8]. We define the abstract
transformers by only specifying the concrete (delta) semantics. The abstract ef-
fect of statements on the additional information, e.g., reachability, is derived
automatically using the methods of [9]. The latter can also be used to derive the
delta operational semantics from the correlating operational semantics.

Limitations. We now shortly discuss the reasons for the imposed limitations.

Fixed Linearization Points. Specifying the linearization points of a procedure
using its own statements simplifies the triggering of reference operations when
linearization points are reached. In addition, it ensures that there is only one
(prefix of a) sequential execution corresponding to every (prefix of a) concur-
rent execution. This allows us to represent only one reference data structure.
Extending our approach to handle more complex specification of linearization
points, e.g., when the linearization point occurs in the body of another method,
is a matter of future investigation.

Bounded Number of Threads. The current analysis verifies linearizability for a
fixed (but arbitrary) number k of threads. However, our goal is not to develop
a parametric analysis, but to lift our analysis to analyze an unbounded number
of threads using the techniques of Yahav [10].

No Explicit Memory Deallocation. We do not handle the problem of using (dan-
gling) references to reclaimed memory locations, and assume that memory is
automatically reclaimed (garbage collected). Dangling references can cause sub-
tle linearizability errors because of the ABA problem.1 Our model is simplified
by forbidding explicit memory deallocation. This simplifying assumption guar-

1 The ABA problem occurs when a thread reads a value v from a shared location
(e.g., Top) and then other threads change the location to a different value, say u,
and then back to v again. Later, when the original thread checks the location, e.g.,
using read or CAS, the comparison succeeds, and the thread erroneously proceeds
under the assumption that the location has not changed since the thread read it
earlier [11].
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Table 1. Experimental results. Time is measured in seconds. Experiments performed
on a machine with a 3.8 Ghz Xeon processor and 4 Gb memory running version 4 of
the RedHat Linux operating system with Java 5.0, using a 1.5 Gb heap.

Client type (a) General client (b) Producers / Consumers

Data Structure Threads Time # States Threads Time # States

Stack [3] 3 555 64,618 2/2 1,432 82,497

Nonblocking queue [2] 2 1,874 116,902 1/1 15 2,518

Nonblocking queue [15] 2 340 34,611 1/1 12 1,440

Two-lock queue [2] 4 1,296 115,456 3/3 4,596 178,180

Pessimistic set [16] 2 14,153 229,380 1/1 2,981 51,755

antees that the ABA problem does not occur, and hence need not be treated in
the model. We believe that our approach can be extended to support explicit
memory deallocation, as done, e.g., in [12]. In our analysis, we do not model the
garbage collector, and never reclaim garbage.

5 Implementation and Experimental Results

We have implemented a prototype of our analysis using the TVLA/3VMC [13,10]
framework. Tab. 1 summarizes the verified data structures, the running times,
and the number of configurations. Our system does not support automatic
partial-order reductions (see, e.g., [14]). For efficiency, we manually combined
sequences of thread-local statements into atomic blocks.

The stack benchmark is our running example. We analyze two variants of
the well-known nonblocking queue algorithm of Michael and Scott: the original
algorithm [2], and a slightly optimized version [15]. The two-lock queue [2] uses
two locks: one for the head-pointer and one for the tail-pointer. The limited
concurrency makes it our most scalable benchmark. The pessimistic set [16] is
implemented as a sorted linked list. It uses fine-grained locking: Every node has
its own lock. Locks are acquired and released in a “hand-over-hand” order; the
next lock in the sequence is acquired before the previous one is released.

We performed our experiments in two settings: (a) every thread executes the
most general client and (b) every thread is either a producer, repeatedly adding
elements into the data structure, or a consumer, repeatedly removing elements.
(The second setting is suitable when verifying linearizability for applications
which can be shown to use the concurrent object in this restricted way.) Our
analysis verified that the data structures shown in Tab. 1 are linearizable, for the
number of threads listed (e.g., for the stack, we were able to verify linearizability
for 4 threads: 2 producer threads and 2 consumer threads, and for 3 threads
running general clients).

We also performed some mutation experiments, in which we slightly mutated
the data-structure code, e.g., replacing the stack’s CAS with standard pointer-
field assignment, and specified the wrong linearization point. In all of these cases,
our analysis reported that the data structure may not be linearizable. (See [4].)
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6 Related Work

This section reviews some closely related work. For additional discussion, see [4].

Conjoined Exploration. Our approach for conjoining an interleaved execution
with a sequential execution is inspired by Flanagan’s algorithm for verifying
commit-atomicity of concurrent objects in bounded-state systems [17]. His al-
gorithm explicitly represents the candidate and the reference memory state. It
verifies that at quiescent points of the run, i.e., points that do not lie between the
invocation and the response of any thread, the two memory states completely
match. Our algorithm, on the other hand, utilizes abstraction to conservatively
represent an unbounded number of states (of unbounded size) and utilizes (delta)
abstraction to determine that corresponding operations have equal return values.

Automatic Verification. Wang and Stoller [18] present a static analysis that
verifies linearizability (for an unbounded number of threads) using a two-step
approach: first show that the concurrent implementation executed sequentially
satisfies the sequential specification, and then show that procedures are atomic.
Their analysis establishes atomicity based primarily on the way synchroniza-
tion primitives are used, e.g., compare-and-swap, and on a specific coding style.
(It also uses a preliminary analysis to determine thread-unique references.) If a
program does not follow their conventions, it has to be rewritten. (The lineariz-
ability of the original program is manually proven using the linearizability of the
modified program.) It was used to derive manually the linearizability of several
algorithms including the nonblocking queue of [2], which had to be rewritten.
We automatically verify linearizability for a bounded number of threads. Yahav
and Sagiv [12] automatically verify certain safety properties listed in [2] of the
nonblocking queue and the two-lock queue given there. These properties do not
imply linearizability. We provide a direct proof of linearizability.

Semi-Automatic Verification. In [15,19,20], the PVS theorem prover is used for
a semi-automatic verification of linearizability.

Manual Verification. Vafeiadis et. al. [16] manually verify linearizability of list al-
gorithms using rely-guarantee reasoning. Herlihy and Wing [1] present a method-
ology for verifying linearizability by defining a function that maps every state
of the concurrent object to the set of all possible abstract values representing
it. (The state can be instrumented with properties of the execution trace). Both
techniques do not require fixed linearization points.

Acknowledgments. We are grateful for the comments of A. Gotsman, T. Lev-
Ami, A. Loginov, R. Manevich, M. Parkinson, V. Vafeiadis, and M. Vechev.
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Abstract. Finite abstraction helps program analysis cope with the huge state
space of programs. We wish to use abstraction in the process of error detection.
Such a detection involves reachability analysis of the program. Reachability in
an abstraction that under-approximates the program implies reachability in the
concrete system. Under-approximation techniques, however, lose precision in the
presence of loops, and cannot detect their termination. This causes reachability
analysis that is done with respect to an abstraction to miss states of the program
that are reachable via loops. Current solutions to this loop-termination challenge
are based on fair termination and involve the use of well-founded sets and ranking
functions.

In many cases, the concrete system has a huge, but still finite set of states. Our
contribution is to show how, in such cases, it is possible to analyze termination of
loops without refinement and without well-founded sets and ranking functions.
Instead, our method is based on conditions on the structure of the graph that
corresponds to the concrete system — conditions that can be checked with respect
to the abstraction. We describe our method, demonstrate its usefulness and show
how its application can be automated by means of a theorem prover.

1 Introduction

Finite abstraction (such as predicate or Boolean abstraction [7,2]) helps program analy-
sis cope with the huge state space of programs. Finite abstraction is helpful for proving
properties of programs but less helpful for proving the presence of errors. The reason,
as we demonstrate below, is that reachability analysis that is done with respect to an
abstraction misses states of the program that are reachable via loops.

Consider the procedure simple appearing in Figure 1. The procedure is indeed
simple and it increments the value of a variable x in a deterministic manner. It is not hard
to see that the value of x eventually exceeds the value 3n and that the single execution
of the procedure eventually reaches the failing assertion. Most counterexample-driven
refinement methods, however, will generate a predicate for each loop iteration, quickly
overwhelming the ability of their analysis engines to cope with the resulting state space
explosion.
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procedure simple (int n)
int x:=0;
while (x < n) do x:=x+1;
while (x < 2n) do x:=x+2;
while (x < 3n) do x:=x+3;
assert false

Fig. 1. The procedure simple

a0 a1 a2 a3

0 1 n-1 n n+2 2n-2 2n 2n+3 3n-3 3n

Fig. 2. The concrete state space of the procedure simple and its abstraction

To see the problem in more detail, consider Figure 2, where we describe the state
space of the procedure simple1 and its abstraction according to the predicates {0 ≤
x < n, n ≤ x < 2n, 2n ≤ x < 3n, 3n ≤ x}. Since the abstraction over-approximates
the transitions in the concrete system, and over-approximating transitions are not closed
under transitivity, we cannot conclude, based on the abstraction, that a concrete state
corresponding to a3 is reachable from the a concrete state corresponding to a0. For-
mally, the abstraction is a modal transition system (MTS) [11] in which all the transi-
tions are may transitions. According to the three-valued semantics for modal transition
systems [9], the property “exists a path in which 3n ≤ x” has truth value “unknown”
and the abstraction should be refined. Since the three-valued abstraction gives a definite
true value for reachability properties only if they hold along must transitions, the only
refinement that would work bisimulates the concrete system. Augmenting MTSs with
hyper-must transitions [12,14] does not help in this setting either (and is orthogonal to
the contribution we describe here).

Proving reachability along loops is a long-standing challenging problem in program
abstraction. Recently, significant progress has been made by automatically proving ter-
mination [13,5,6,4]. The main idea is to synthesize ranking functions proving well
foundedness. However, these techniques require the generation of rank functions and/or
are not suitable for proving that there exists a trace leading to a certain configuration in
non-deterministic systems, which is a goal of our work.

In many cases (in particular, in all realistic implementations of software with vari-
ables over unbounded domains), the concrete system has a huge, but still finite set
of states. Our contribution is to show how, in such cases, it is possible to analyze

1 The concrete values in Figure 2 correspond to the case n = 0 mod 6. Otherwise, the maximal
value in a1 may not be 2n − 2, and similarly for a2 and 3n − 3.
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may may

Before:
must

After:
must entry 

port
exit 
port

must* may

Fig. 3. Applying our method

reachability in the concrete system without refinement of loops and without well-
founded sets and ranking. Instead, our method is based on conditions on the structure
of the graph that corresponds to the concrete system — conditions that can be checked
automatically with respect to the abstraction.

Figure 3 illustrates the idea of our method, which is to replace the may transitions
to and from an abstract state a by must transitions to an entry port for a and from an
exit port for a, and to replace the intermediate may transition by a sequence of must
transitions from the entry port to the exit port. Essentially, this is done by checking
conditions that guarantee that the transitions of the concrete system embody a connected
acyclic graph that has the entry port as its source and has the exit port as its sink.
Finiteness of the set of concrete states associated with the abstract state then guarantees
the finiteness of this graph. The checks we do, as well as the declaration of the entry
and the exit ports, are automatic, refer to the abstract system, and are independent of
the size of the concrete system. While our conditions are sufficient but not necessary,
they are expected to hold in many cases.

An approach similar to ours is taken in [10], where loop leaping is also performed
without well-founded sets. Like our approach, the algorithm in [10] is based on sym-
bolic reasoning about the concrete states associated with the loop. The conditions that
the algorithm in [10] imposes, however, are different, and the algorithm is much more
complicated. Essentially, loop detection along an abstract path a1, . . . , an is reduced in
[10] to the satisfiability of a propositional formula that specifies the existence of loca-
tions ai and aj along the path such that ai is reachable from aj and aj is reachable
from ai. The size of the formula is quadratic in size of the concrete state space. Our
conditions, on the other hand, are independent of the size of the concrete state space,
and are much simpler. As we argue in the paper, the conditions we give are likely to be
satisfied in many common settings.

2 Preliminaries

Programs and Concrete Transition Systems. Consider a program P . Let X be the
set of variables appearing in the program and variables that encode the program counter
(pc), and let D be the domain of all variables (for technical simplicity, we assume that
all variables are over the same domain). We model P by a concrete transition system in
which each state is labeled by a valuation in D|X|.

A concrete transition system (CTS) is a tuple C = 〈SC , IC , −→C〉, where SC is a
(possibly infinite) set of states, IC ⊆ SC is a set of initial states, −→C⊆ SC × SC is
a total transition relation. Given a concrete state c ∈ SC , let s(c) denote the successor
states of c; that is, s(c) = {c′ ∈ SC | c −→C c′}, and let p(c) denote the predecessor
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states of c; that is, p(c) = {c′ ∈ SC | c′ −→C c}. Let c−→C
∗c′ denote that state c′ is

reachable from state c via a path of transitions.
A CTS is deterministic if every state has a single successor. A CTS is reverse-

deterministic if every state has a single predecessor. Nondeterminism in concrete sys-
tems is induced by internal or external nondeterminism, as well as resource allocation
and built-in abstractions in the programs they model.

Predicate Abstraction. Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (formulas of
first-order logic) over the program variables X . Given a program state c and formula φ,
let c |= φ denote that formula φ is true in state c (c is a model of φ). For a set a ⊆ Φ
and an assignment c ∈ D|X|, we say that c satisfies a iff c |= ∧

φi∈a φi.
In predicate abstraction, we merge a set of concrete states into a single abstract state,

which is defined by means of a subset of the predicates. Thus, an abstract state is given
by a set of predicates a ⊆ Φ.2 We sometimes represent a by a formula, namely the
conjunction of predicates in a. For example, if a = {(x ≥ y), (0 ≤ x < n)} then
we also represent a by the formula (x ≥ y) ∧ (0 ≤ x < n). We define the set of
concrete states corresponding to a, denoted γ(a), as all the states c that satisfy a; that
is, γ(a) = {c | c |= a}.

May and Must Transitions. Given a concrete transition system and its (predicate)
abstraction via a set of predicates Φ, its modal transition system (MTS) contains three
kinds of abstract transitions between abstract states a and a′ (a, a′ ⊆ Φ, and we assume
that Φ is clear from the context):

– may(a, a′) if there is c ∈ γ(a) and a c′ ∈ γ(a′), such that c −→C c′.
– must+(a, a′) only if for every c ∈ γ(a), there is c′ ∈ γ(a′) such that c −→C c′.
– must−(a, a′) only if for every c′ ∈ γ(a′), there is c ∈ γ(a) such that c −→C c′.

Must transitions are closed under transitivity, and can therefore be used to prove
reachability in the concrete system. Formally, if there is a sequence of must+-
transitions from a to a′ (denoted by must+

∗(a, a′)) then for all c ∈ γ(a), there is
c′ ∈ γ(a′) such that c−→C

∗c′. Dually, if there is a sequence of must−-transitions
from a to a′ (denoted by must−∗(a, a′)) then for all c′ ∈ γ(a′), there is c ∈ γ(a) such
that c−→C

∗c′. On the other hand, may transitions are not transitive. Indeed, it may be
the case that may(a, a′), may(a′, a′′), and still for all c ∈ a and c′′ ∈ a′′, we have
c 
−→C

∗c′′.
Let us go back to the procedure simple and its abstraction in Figure 2. Since every

concrete state in a3 has a predecessor in a2, we have that must−(a2, a3). On the other
hand, all the other transitions in the abstraction are may transitions. As such, we cannot
use the abstraction in order to conclude that the failing statement is reachable from the
initial state. We want to detect such reachability, and we want to do it without well-
founded orders and without refining the abstraction further!

2 In the full generality of predicate abstraction, an abstract state is represented by a set of sets
of predicates (that is a, disjunction of conjunction of predicates). All our results hold for the
more general setting.
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Weakest Preconditions and Strongest Postconditions. In many applications of
predicate abstraction, Φ includes a predicate for the program counter. Accordingly, each
abstract state is associated with a location of the program, and thus it is also associated
with a statement. For a statement s and a predicate e over X , the weakest precondition
WP(s, e) and the strongest postcondition SP(s, e) are defined as follows [8]:

– The execution of s from every state that satisfies WP(s, e) results in a state that
satisfies e, and WP(s, e) is the weakest predicate for which the above holds.

– The execution of s from a state that satisfies e results in a state that satisfies SP(s, e),
and SP(s, e) is the strongest predicate for which the above holds.

For example, in the procedure simple, we have WP(x := x + 2, n ≤ x < 2n) =
n ≤ x + 2 < 2n, SP(x := x + 2, n ≤ x < 2n) = n + 2 ≤ x < 2n + 2.

Must transitions can be computed automatically using weakest preconditions and
strongest postconditions. Indeed, statement s induces the transition must+(a, a′) iff
a ⇒ WP(s, a′), and induces the transition must−(a, a′) iff a′ ⇒ SP(s, a).

We sometimes use also the Pre predicate. For a statement s and a predicate e over X ,
the execution of s from a state that satisfies Pre(s, e) may result in a state that satisfies
e. Formally, Pre(s, e) = ¬WP(s, ¬e).

3 Leaping Loops

Unfortunately, an abstraction of loops usually results in may transitions. As discussed
above, may transitions are not closed under transitivity, thus abstraction methods cannot
cope with reachability of programs with loops. In this section we describe our method
for coping with loops.

An entry port of an abstract state a is a predicate ea such that γ(ea) ⊆ γ(a) and for
all ce ∈ γ(ea), either ce is initial or p(ce) \ γ(a) 
= ∅. That is, every concrete state ce

represented by entry port ea is inside a and either ce is initial or some predecessor of ce

lies outside a.
Dually, an exit port of an abstract state a is a predicate xa such that γ(xa) ⊆ γ(a)

and for all cx ∈ γ(xa), we have that s(cx) \ γ(a) 
= ∅. That is, every concrete state cx

represented by exit port xa is in a and some successor of cx lies outside a.
In Section 4.1, we describe how entry and exit ports can be calculated automatically

be means of weakest preconditions and strongest postconditions. We now use entry and
exit ports in order to reason about loops.

Theorem 1. Consider an abstract state a. Let ea and xa be entry and exit ports of a
such that all the following conditions hold:

1. γ(a) is finite;
2. for all c ∈ γ(a ∧ ¬xa), we have that | s(c) ∩ γ(a) |≤ 1. That is, every concrete

state in γ(a ∧ ¬xa) has at most one successor in γ(a).
3. must−(a ∧ ¬xa, a ∧ ¬ea). That is, every concrete state in γ(a ∧ ¬ea) has a pre-

decessor in γ(a ∧ ¬xa).

Then, must−∗(ea, xa). That is, for all c′ ∈ γ(xa), there is c ∈ γ(ea) such that
c−→C

∗c′.
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ea

xa

ea

xa

(a)                                  (b)

Fig. 4. Inside an abstract state

Note that Conditions 1-3 imply that ea cannot be empty (unless xa is empty, in which
case the theorem holds trivially).

The proof of Theorem 1 is based on constructing a DAG in which all states are
reachable from the source. The finiteness of γ(a) then implies that source vertices of
the DAG are contained in γ(ea). Note that the DAG induces a well-founded order on
the states of γ(a). The well-founded order, however, is hidden in the proof and the user
does not have to provide it. The detailed proof is given in the full version. Here we give
some intuition and an example to its application. Figure 4(a) illustrates the intuition
underlying Theorem 1. The large dashed circle represents the abstract state a with entry
port ea and exit port xa. The grey nodes represent concrete states that are consistent
with the theorem. Every grey node that is not in the exit port has at most one successor
in a (but may have arbitrarily many successors outside a). Every grey node in γ(a∧¬ea)
has a predecessor in a ∧ ¬xa (and may have more than one predecessor). Note that the
conditions permit cycles in the concrete state space, as shown on the left of the figure.

The black nodes in Figure 4(b) illustrate configurations in the concrete state space
that are not permitted by the theorem. We see that the conditions of the theorem rule
out unreachable cycles, as well as non-determinism inside a. Finally, it is not permitted
to have a state in γ(a ∧ ¬ea) that does not have predecessor in γ(a ∧ ¬xa).

Example 1. Consider the procedure simple from Figure 1 and its abstraction in Fig-
ure 2. The application of our method on the abstraction is described in Figure 5. The
abstract state a0 : 0 ≤ x < n has entry port x = 0 and exit port x = n − 1. The condi-
tions of Theorem 1 hold for a0 with these ports: first, as n is finite, so is γ(a0). Second,
since the procedure is deterministic, each concrete state has a single successor. Finally,
each concrete state except for x = 0 has a predecessor in a0. We can therefore conclude
that must−∗(x = 0, x = n − 1). In a similar way, the conditions of the theorem hold
for a1 with entry port x = n and exit port 2n − 2 ≤ x < 2n, and for a2 with entry port
2n ≤ x ≤ 2n + 1 and exit port 3n − 3 ≤ x < 3n. From this, we can conclude that
must−∗(x = n, 2n−2 ≤ x < 2n) and must−∗(2n ≤ x ≤ 2n+1, 3n−3 ≤ x < 3n).
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x=0              x=n-1           x=n       2n- < 2n            3n- < 3n          

a0 a1 a2 a3

x=0  x=n-1  x=n   2n- < 2n  3n- < 3n 

Fig. 5. Entry and exit ports in the abstraction of the procedure simple

Since, in addition, must−(x = n − 1, x = n), must−(2n − 2 ≤ x < 2n, 2n ≤ x ≤
2n+1), and must−(3n−3 ≤ x < 3n, 3n ≤ x), we can conclude, from the transitivity
of must−, that must−∗(x = 0, 3n ≤ x).

We now state a similar theorem for a forward traversal. The proof is dual to the proof
of Theorem 1.

Theorem 2. Consider an abstract state a. Let ea and xa be entry and exit ports of a
such that all the following conditions hold:

1. γ(a) is finite.
2. for all c ∈ γ(a ∧ ¬ea), we have that | p(c) ∩ γ(a) |≤ 1. That is, every concrete

state in γ(a ∧ ¬ea) has at most one predecessor in γ(a).
3. must+(a ∧ ¬xa, a ∧ ¬ea). That is, every concrete state in γ(a ∧ ¬xa) has a suc-

cessor in γ(a ∧ ¬ea).

Then, must+
∗(ea, xa). That is, for all c ∈ γ(ea), there is c′ ∈ γ(xa) such that

c−→C
∗c′.

Below we discuss the conditions required for the application of Theorems 1 and 2 and
describe more involved examples.

The γ(a) finiteness assumption. Precondition (1) of Theorems 1 and 2 is that γ(a) is
finite. To see that the finiteness requirement is crucial, consider an abstract state over
the whole numbers a = (x ≥ 0 ∧ y ≥ 0), and assume that the statement executed
in a is while true do if y=0 then x:=x-1. Let ea = (x ≥ 0 ∧ y > 0)
and xa = (x = y = 0). Note that ea and xa satisfy the conditions required from
entry and exit ports: γ(ea) ⊆ γ(a), and γ(ea) may have predecessors not in γ(a).
Also, γ(xa) ⊆ γ(a), and the successor of the single concrete state in γ(xa) is not in
γ(a). Conditions (2) and (3) of Theorem 1 are satisfied: Each state in γ(a) has a single
successor, and all states in γ(a ∧ ¬ea) = {〈x, y〉 : x ≥ 0 ∧ y = 0}, have a predecessor
in γ(a ∧ ¬xa). Still, we do not have must−∗(ea, xa). Indeed, all states in γ(ea) satisfy
y 
= 0 and therefore they have a self loop.

Note that while γ(a) has to be finite, it is unbounded. Thus, for applications like
detecting errors representing extreme out of bound resources, e.g., stack overflow, our
method is applicable. Types like integers or reals have infinite domains. In practice,
however, we run software on machines, where all types have finite representations.
Thus, if for example, x is an integer and the abstract state a : (x ≥ 0) has an infinite
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procedure less_simple (int n)
int x:=0; y:=0;
x:=1; {y:=1|skip};
while (x < n) do if x >= y+2 then y:=x else {x:=x+1|y:=x+1};
if x >= y then assert false

Fig. 6. The procedure less simple

0,0                1,0        2,0        2,2          3,2                                          n-1,n-1           n,n-1                   

1,1                2,1      3,1          3,3        n-2,n-2      n-1,n-2        n,n-2      n,n

1,2                        2,3         3,4                          n-2,n-1         n-1,n             

a0: x = 0 
y+2

a1: 0 < x< n a2: x = n 

b1: 0 < x< n 
x < y

Fig. 7. An abstraction of the procedure less simple

γ(a), we can view a as defined by the predicate (0 ≤ x ≤ max int), which is finite.
Different machines have different policies for variables that go above their maximal or
beyond their minimal values. It is possible to adjust the abstract system to account for
these policies (“wrap around”, error messages, etc.).

Another source of infiniteness are variables that the abstraction ignores. Consider for
example a concrete state space over two integer variables, x and y. The abstract state
a : (1 ≤ x ≤ n) constrains x to have one of |n| values but leaves y unconstrained,
making γ(a) infinite. Since, however, the behavior inside a is independent of y, its in-
finiteness is irrelevant to termination of a loop that traverses the values of x. This point,
of coping with an abstraction that hides part of the variables is studied in [3]. Using
partitioned-must transitions that are studied there, it is possible to apply Theorems 1
and 2 in settings in which there are finitely many equivalence classes in a partition of
γ(a) according to the value of x.

The determinization assumption. Consider the procedure less simple described
in Figure 6. A statement s1|s2 denotes a nondeterministic choice between statements s1
and s2. Thus, for example, in x:=x+1|y:=x+1, the procedure may either increment
the value of x by 1 or assign x + 1 to y. As in the procedure simple, the value of
the variable x is incremented, but now the procedure may also assign values to the
variable y, and the increments to x, as well as the failure assertion, depend on the
relation between x and y.
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The behavior of the variables x and y is described in Figure 7. The figure also con-
tains an abstraction of the procedure according to the predicates {(x = 0), (0 < x <
n), (x ≥ n), (y ≤ x ≤ y + 2), (x < y)}. We restrict the figure to states that are reach-
able along may transitions. Since the transition from a1 to a2 in the abstraction is a may
transition, we cannot conclude that failure states are reachable from the initial state.

Let us focus on the abstract state a1, where 0 < x < n and y ≤ x ≤ y + 2. The
predicate (y ≤ x = 1 ≤ y + 2) is an entry port for a1. Note that the state x = y = 2 is
not in the entry port and still has a predecessor not in γ(a1), but an entry port need not
be maximal. As an exit port, we take the predicate (y ≤ x = n − 1 ≤ y + 2). Note that
the transitions from some of the concrete states in a1 (all these for which y ≤ x ≤ y+1)
are nondeterministic. One of the nondeterministic choices, however, takes us out of a1.
Indeed, an attempt to use Theorem 1 without refining the predicate 0 < x < n to
y ≤ x ≤ y + 2, x < y, and x > y + 2 fails. Note also that all the concrete states in
γ(a1 ∧¬ea1) have predecessors in γ(a1 ∧¬xa1). Thus, must−(a1 ∧¬xa1 , a1 ∧¬ea1).
The fact that some states (these in which x = y) have two predecessors, one of which is
in b1, does not violate the conditions of Theorem 1. By the theorem, all concrete states
in the exit port are reachable from states in the entry port. Since, in addition, the error
states (x = n) ∧ (n − 2 ≤ x ≤ n − 1) are reachable from the exit port, and all states in
the entry port are reachable from x = y = 0, we can conclude that some error states in
less simple are reachable from the initial state.

Nested loops. Proving termination is harder in the presence of nested loops. Our
method, however, is applicable also to programs with nested loops. Consider the pro-
cedure nested in the right. Reasoning about the procedure with well-founded orders
requires working with pairs in IN× IN. Using our method, we can have a single abstract
state a : (0 ≤ x, y ≤ n), define the entry and exit ports to be ea = (x = y = 0)
and xa = (x = y = n), respectively, and verify that the following conditions, of
Theorem 2, hold: (1) γ(a) is finite, (2) every concrete state in γ(a ∧ ¬ea) has at most
one predecessor in γ(a), and (3) every concrete state in γ(a ∧ ¬xa) has a successor in
γ(a ∧ ¬ea).

procedure nested (int n)
int y, x:=0;
while x < n do

x++; y:=0; while y < n do y++
if y=n then assert false

Now, we can conclude that
must+

∗(x = y = 0, x =
y = n). Note that Theorems 1
and 2 can also be applied to
more complicated variants of
nested in which, for example,
the increment to y depends on x. Complicated dependencies, however, may violate
Condition (3) of the theorem, and the state a has to be refined in order for the condition
to hold.

Ingeneral,ourmethodis independentof thecause to the loop intheabstractstateandcan
be applied to various cases like nested loops, recursive calls, and mutual recursive calls.

4 In Practice

In this section we discuss the implementation of our method and ways to use a theorem
prover in order to automate it. We assume that the abstraction was obtained by predicate
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abstraction and that each abstract state is associated with a statement executed in all its
corresponding concrete states.

We consider the following application: the user provides two abstract states a and
a′ and asks whether a′ is weakly reachable from a′; that is, are there concrete states
c0, c1, . . . , cn such that c0 ∈ γ(a), cn ∈ γ(a′), and for all 0 ≤ i < n, we have
ci −→C ci+1. As discussed in Section 1, we have to check whether must+

∗(a, a′)
or must−∗(a, a′)3.

We start by considering a simpler mission, where the user also provides a path
a1, a2, . . . , an in the abstract system such that a = a1 and a′ = an. Our method
enters the picture in cases there is 1 < i < n such that ai is associated with a loop,
may(ai−1, ai) or may(ai, ai+1). Then, as illustrated in Figure 3, we find entry and
exit ports for ai and check whether the conditions in Theorem 1 (or 2) are satisfied.

Below we describe how to automate both parts. We start with the detection of entry
and exit ports.

4.1 Automatic Calculation of Ports Along a Path

For two abstract states a and a′, and a statement s executed in a, we say that ea′ is an
entry port for a′ from a if γ(ea′) ⊆ γ(a′) and for all c ∈ ea′ , we have p(c) ∩ γ(a) 
= ∅.
Thus, ea′ is an entry port and all its states have predecessors in a. Likewise, we say that
xa is an exit port for a to a′ if γ(xa) ⊆ γ(a) and for all c ∈ xa, we have s(c)∩γ(a′) 
= ∅.
Thus, xa is an exit port and all its states have successors in a′.

Lemma 1. Consider two abstract states a and a′. Let s be the statement executed in a.

– ea′ is an entry port for a′ from a iff ea′ ⇒ a′ ∧ SP(s, a).
– xa is an exit port for a to a′ iff xa ⇒ a ∧ Pre(s, a′).

The proof of Lemma 1 can be found in the full version. The lemma suggests that when
we glue ai−1 to ai, we proceed with entry port ai ∧ SP(s, ai−1) for ai. Then, when we
glue state ai to ai+1, we proceed with exit port ai ∧ WP(s, ai+1) for ai.

Example 2. In Example 1, we described an application of our method to the proce-
dure simple. The entry and exit ports used in the example (see Figure 5) have been
generated automatically using the characterization in Lemma 1. Consider, for exam-
ple, the states a0 : (0 ≤ x < n) and a1 : (n ≤ x < 2n). Recall that the state-
ment s executed in a0 is while x < n do x:=x+1. The exit port of a0 is then
a0 ∧ WP(s, a1) = (x = n − 1) and the entry port of a1 is a1 ∧ SP(s, a0) = (x = n).

The ports induced by the Lemma are the maximal ones. Note, however, that the
conditions in Theorem 1 and 2 are monotonic with respect to the entry port (the bigger
it is, the more likely it is for the conditions to hold), Condition (2) is monotonic and
Condition (3) is anti-monotonic with respect to the exit port. Thus, one can always take
the maximal entry port (the way we have defined it also guarantees that it is possible

3 As noted in [1], if there are abstract states b and b′ such that must−∗
(a, b), may(b, b′), and

must+
∗
(b′, a′), we can still conclude that a′ is weakly reachable from a. This “one flip trick”

is valid also in the reasoning we describe here. For the sake of simplicity, we restrict attention
to the closure of either must+ or must− transitions.
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to “glue” it to ai−1), start also with a maximal exit port, and search for a subset of the
maximal exit port in case Condition (3) does not hold but must−(a, a ∧ ¬ea) holds.
The search for the subset can use a theorem prover and the characterization of must−

transitions by means of weakest preconditions. Reasoning is dual for Theorem 2.

4.2 Checking the Conditions

Once entry and exit ports are established, we proceed to check the conditions in Theo-
rems 1 or 2. In many cases, the program is known to be deterministic, thus the determin-
ism check in Theorem 1 is redundant. Theorem 1, however, is applicable also when the
program is nondeterministic, or not known to be deterministic, and we have to check a
weaker condition, namely for all c ∈ γ(a ∧ ¬xa), we have that | s(c) ∩ γ(a) |≤ 1. In
order to automate the check, we use the statement s that is executed in a, and the fact
that the successors of a state satisfy WP(s, a), which can be decomposed for nondeter-
ministic statements. Formally, we have the following.

Lemma 2. Let s1|s2 be a nondeterministic statement executed in a, for deterministic
statements s1 and s2. If there exists c ∈ γ(a) such that | s(c) ∩ γ(a) |> 1, then the
formula a ∧ ¬xa ∧ WP(s1, a) ∧ WP(s2, a) is satisfiable.

Lemma 2 refers to nondeterminism of degree two, and to a statement in which the
nondeterminism is external 4.

Similarly, to check the reverse-nondeterminism condition in Theorem 2, we have to
find c ∈ γ(a ∧ ¬ea) such that c is reachable from two states in γ(a). If the nonde-
terministic statement executed in a is s1|s2 and then there exists c ∈ γ(a) such that
| p(c) ∩ γ(a) |> 1, then the formula a ∧ ¬ea ∧ SP(s1, a) ∧ SP(s2, a) is satisfiable.

Checking the local reachability conditions in Theorems 1 and 2 can be done using the
characterization of must− and must+ transitions. Specifically, must−(a ∧ ¬xa, a ∧
¬ea) iff a ∧ ¬ea ⇒ SP(s, a ∧ ¬xa) and must+(a ∧ ¬xa, a ∧ ¬ea) iff a ∧ ¬xa ⇒
WP(s, a ∧ ¬ea).

Remark 1. An advantage of forward reasoning (Theorem 2) is that the check for must+

transitions involves weakest preconditions, which are often easier to compute than
strongest postconditions, which are required for checking must− transitions. Indeed,
for an assignment statement x:=v, we have that WP(x := v, e) = e[x/v] (that is, e
with all occurrences of x replaced by v, whereas SP(x := v, e) = ∃x′.(e[x/x′] ∧ x =
v). On the other hand, an advantage of backwards reasoning (Theorem 1) is the fact that
checking that a program is deterministic is often easier than checking that it is reverse
deterministic, especially in cases the program is known to be deterministic.

4.3 Proceeding Without a Suggested Path

So far, we assumed that weak reachability from a to a′ is checked along a path suggested
by the user. When the user does not provide such a path, one possible way to proceed is

4 In order for the second direction of the lemma to hold, one has to check that executing s1 and
s2 from c results in different states. If this is not the case, then the nondeterminism in a is only
syntactic, and one can apply Theorem 1 by disabling one of the nondeterministic choices (see
Section 5).
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procedure jump_beyond_n (int n)
int x:=0
while (x < n) do case

x = 1 mod 2: x:=x-1|x:=x-3;
x = 0 mod 4: x:=x+5;
x = 2 mod 4: x:=x+1;

assert false

0 5 4 9

2 3

8 13

6 7

12 17

10 11

Fig. 8. The procedure jump beyond n

to check all simple paths from a to a′. Since these are paths in the abstract MTS and the
cost of each check depends only on the size of the MTS, this is feasible. Alternatively,
we can check the path obtained by proceeding in a BFS from a along the MTS. Thus,
the path along which we check reachability is a0, a1, . . . , an, where a0 = a and ai

is the union of states that are reachable in the MTS from ai−1. We stop at an that
contains a′. We now try to prove that must−∗(a0, an), which implies that a′ is weakly
reachable from a. We start with i = n and when we come across an iteration i such that
must−(ai−1, ai) does not hold, we check whether ai+1 involves a loop and Theorem 1
is applicable. If this is not the case, we refine ai+1.

5 Making the Method More General

The application of Theorem 1 requires the concrete system to be deterministic with re-
spect to γ(a). That is, every concrete state in γ(a) should have at most one successor
in γ(a). As demonstrated in Section 3, one way to cope with nondeterminism is to re-
fine a so that, while being nondeterministic, the program is deterministic with respect to
γ(a). In this section we discuss how generalize our method to handle cases in which the
program is nondeterministic and there is no way to refine a efficiently and make it de-
terministic with respect to a. As an example, consider the procedure jump beyond n
appearing in Figure 8. The figure also depicts the concrete state space. Abstracting it to
three abstract states according to the predicates x = 0, 0 < x < n, and x ≥ n results
in the problematic setting of Figure 3, where we cannot conclude that the error state
x ≥ n is reachable from the initial state x = 0. The procedure has a nondeterministic
choice (when x = 1 mod 1, it can be decreased by either 1 or 3) and there is no way to
refine the abstract state 0 < x < n so that the conditions of Theorem 1 hold.

Our technique is to generate programs with fewer behaviors, with a hope that we
preserve weak reachability and satisfy the conditions of the theorem. The programs we
try first are deterministic programs obtained from the original program by disabling
some of its nondeterministic choices. In our example, we try to apply Theorem 1 with
respect to the two procedures obtained from jump beyond n by replacing the state-
ment x:=x-1|x:=x-3 by x:=x-1 or x:=x-3. As can be seen in the description
of the concrete state space, for this example, this would work – going always with
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x:=x-1 increments x to go beyond n. Thus, in order to apply Theorem 1, we have to
disable the x:=x-3 branch and refine the abstract state to 2 ≤ x < n (the state x = 1
is unreachable).

Disabling nondeterministic branches works when reachability can be achieved by
always taking the same transition. As we discuss below, this is not always possible. A
more general approach is to determinize the program by adding predicates that “sched-
ule” the different branches. Thus, a nondeterministic choice s1|s2| · · · |sk is replaced
by case b1 : s1; . . . ; bk : sk, for mutually exclusive predicates b1, . . . , bk. The predi-
cates b1, . . . , bk can be automatically generated (for example, proceed in a round-robin
fashion among all branches) or can be obtained from the user.

Remark 2. Reachability in a CTS can be checked along simple paths. On the other
hand, since each state in an MTS corresponds to several concrete states, weak reacha-
bility may have to traverse the same abstract state several times. The traversal need not
be stationary, in the sense that different nondeterministic choices may be taken in order
to reach an exit port.
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Abstract. In automatic software verification, we have observed a theoretical
convergence of model checking and program analysis. In practice, however,
model checkers are still mostly concerned with precision, e.g., the removal of spu-
rious counterexamples; for this purpose they build and refine reachability trees.
Lattice-based program analyzers, on the other hand, are primarily concerned with
efficiency. We designed an algorithm and built a tool that can be configured to
perform not only a purely tree-based or a purely lattice-based analysis, but offers
many intermediate settings that have not been evaluated before. The algorithm
and tool take one or more abstract interpreters, such as a predicate abstraction
and a shape analysis, and configure their execution and interaction using several
parameters. Our experiments show that such customization may lead to dramatic
improvements in the precision-efficiency spectrum.

1 Introduction

Automatic program verification requires a choice between precision and efficiency. The
more precise a method, the fewer false positives it will produce, but also the more ex-
pensive it is, and thus applicable to fewer programs. Historically, this trade-off was
reflected in two major approaches to static verification: program analysis and model
checking. While in principle, each of the two approaches can be (and has been) viewed
as a subcase of the other [18,19,7], such theoretical relationships have had little impact
on the practice of verification. Program analyzers, by and large, still target the efficient
computation of few simple facts about large programs; model checkers, by contrast,
focus still on the removal of false alarms through ever more refined analyses of rel-
atively small programs. Emphasizing efficiency, static program analyzers are usually
path-insensitive, because the most efficient abstract domains lose precision at the join
points of program paths. Emphasizing precision, software model checkers, on the other
hand, usually never join abstract domain elements (such as predicates), but explore an
abstract reachability tree that keeps different program paths separate.

In order to experiment with the trade-offs, and in order to be able to set the dial be-
tween the two extreme points, we have extended the software model checker
BLAST [11] to permit customized program analyses. Traditionally, customization has
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meant to choose a particular abstract interpreter (abstract domain and transfer func-
tions, perhaps a widening operator) [13, 8, 14, 20], or a combination of abstract inter-
preters [10, 6, 4, 12]. Here, we go a step further in that we also configure the execution
engine of the chosen abstract interpreters. At one extreme (typical for program analyz-
ers), the execution engine propagates abstract domain elements along the edges of the
control-flow graph of a program until a fixpoint is reached [5]. At the other extreme
(typical for model checkers), the execution engine unrolls the control-flow graph into
a reachability tree and decorates the tree nodes with abstract domain elements, until
each node is ‘covered’ by some other node that has already been explored [11]. In or-
der to customize the execution of a program analysis, we define and implement a meta
engine that needs to be configured by providing, in addition to one or more abstract
interpreters, a merge operator and a termination check.

The merge operator indicates when two nodes of a reachability tree are merged, and
when they are explored separately: in classical program analysis, two nodes are merged
if they refer to the same control location of the program; in classical model checking,
no nodes are merged. The termination check indicates when the exploration of a path
in the reachability tree is stopped at a node: in classical program analysis, when the
corresponding abstract state does not represent new (unexplored) concrete states (i.e.,
a fixpoint has been reached); in classical model checking, when the corresponding ab-
stract state represents a subset of the concrete states represented by another node. Our
motivation is practical, not theoretical: while it is theoretically possible to redefine the
abstract interpreter to capture different merge operators and termination checks within a
single execution engine, we wish to reuse abstract interpreters as building blocks, while
still experimenting with different merge operators and termination checks. This is par-
ticularly useful when several abstract interpreters are combined. In this case, our meta
engine can be configured by defining a composite merge operator from the compo-
nent merge operators; a composite termination check from the component termination
checks; but also a composite transfer function from the component transfer functions.

Combining the advantages of different execution engines for different abstract inter-
preters can yield dramatic results, as was shown by predicated lattices [9]. That work
combined predicate abstraction with a data-flow domain: the data-flow analysis be-
comes more precise by distinguishing different paths through predicates; at the same
time, the efficiency of a lattice-based analysis is preserved for facts that are difficult to
track by predicates. However, the configuration of predicated lattices is just one possi-
bility, combining abstract reachability trees for the predicate domain with a join-based
analysis for the data-flow domain. Another example is lazy shape analysis [2], where
we combined predicate abstraction and shape analysis. Again, we ‘hard-wired’ one par-
ticular such combination: no merging of nodes; termination by checking coverage be-
tween individual nodes; cartesian product of transfer functions. Our new, configurable
implementation permits the systematic experimentation with many variations, and the
results are presented in this paper. We show that different configurations can lead to
large, example-dependent differences in precision and performance. In particular, it is
often useful to use non-cartesian transfer functions, where information flows between
multiple abstract interpreters, e.g., from the predicate state to the shape state (or lat-
tice state), and vice versa. By choosing suitable abstract interpreters and configuring
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the meta engine, we can also compare the effectiveness and efficiency of symbolic ver-
sus explicit representations of values, and the use of different pointer alias analyses in
software model checking.

In recent years we have observed a convergence of historically distinct program ver-
ification techniques. It is indeed difficult to say whether our configurable verifier is a
model checker (as it is based on BLAST) or a program analyzer (as it is configured by
choosing a set of abstract interpreters and some parameters for executing and combin-
ing them). We believe that the distinction is no longer practically meaningful (it has
not been theoretically meaningful for some time), and that this signals a new phase in
automatic software verification tools.

2 Formalism and Algorithm

We restrict the presentation to a simple imperative programming language, where all
operations are either assignments or assume operations, and all variables range over
integers.1 A program is represented by a control-flow automaton (CFA), which consists
of a set L of control locations (models the program counter pc), an initial location pc0
(models the program entry), and a set G ⊆ L× Ops × L of control-flow edges (models
the operation that is executed when control flows from one location to another). The
concrete state of a program is a variable assignment c that assigns to each variable from
X ∪ {pc} a value. The set of all concrete states of a program is denoted by C. Each
edge g ∈ G defines a (labeled) transition relation

g→ ⊆ C × {g} × C. The complete
transition relation → is the union over all edges: → =

⋃
g∈G

g→. A concrete state cn

is reachable from a region r, denoted by cn ∈ Reach(r), if there exists a sequence
of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all 1 ≤ i ≤ n, we have
ci−1→ci.

2.1 Configurable Program Analysis

A configurable program analysis D = (D, �, merge, stop) consists of an abstract do-
main D, a transfer relation �, a merge operator merge, and a termination check stop,
which are explained in the following. These four components configure our algorithm
and influence the precision and cost of a program analysis.

1. The abstract domain D = (C, E , [[·]]) is defined by a set C of concrete states, a
semi-lattice E , and a concretization function [[·]]. The semi-lattice E = (E, 	, ⊥, �, �)
consists of a (possibly infinite) set E of elements, a top element 	 ∈ E, a bottom
element ⊥ ∈ E, a preorder � ⊆ E × E, and a total function � : E × E → E (the
join operator). The lattice elements from E are the abstract states. The concretization
function [[·]] : E → 2C assigns to each abstract state its meaning, i.e., the set of concrete
states that it represents. The abstract domain determines the objective of the analysis.

2. The transfer relation � ⊆ E × G × E assigns to each abstract state e possible new
abstract states e′ that are abstract successors of e, and each transfer is labeled with a
control-flow edge g. We write e

g�e′ if (e, g, e′) ∈ �, and e�e′ if there exists a g with

1 In our implementation based on BLAST, we allow C programs as inputs, and transform them
into the intermediate language CIL [16]. Interprocedural analysis is supported.
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e
g�e′. For soundness and progress of the program analysis, the abstract domain and the

corresponding transfer relation have to fulfill the following requirements:

(a) [[	]] = C and [[⊥]] = ∅;
(b) ∀e, e′ ∈ E: [[e � e′]] ⊇ [[e]] ∪ [[e′]]

(the join operator is precise or over-approximates);
(c) ∀e ∈ E: ∃e′ ∈ E: e�e′ (the transfer relation is total);
(d) ∀e ∈ E, g ∈ G :

⋃
e

g�e′ [[e′]] ⊇ ⋃
c∈[[e]]{c′ | c

g→c′}
(the transfer relation over-approximates operations).

3. The merge operator merge : E × E → E combines the information of two ab-
stract states. To guarantee soundness of our analysis, we require that e′ � merge(e, e′)
(the result can only be more abstract than the second parameter). Dependent on the
element e, the result of merge can be anything between e′ and 	, i.e., the operator
weakens the second parameter depending on the first parameter. Furthermore, if D is a
composite analysis, the merge operator can join some of the components dependent on
others. Note that the operator merge is not commutative, and is not the same as the join
operator � of the lattice, but merge can be based on �. Later we will use the following
merge operators: mergesep(e, e′) = e′ and mergejoin(e, e′) = e � e′.

4. The termination check stop : E × 2E → B checks if the abstract state that is given
as first parameter is covered by the set of abstract states given as second parameter.
We require for soundness of the termination check that stop(e, R) = true implies
[[e]] ⊆ ⋃

e′∈R[[e′]]. The termination check can, for example, go through the elements of
the set R that is given as second parameter and search for a single element that subsumes
(�) the first parameter, or —if D is a powerset domain2— can join the elements of R
to check if R subsumes the first parameter. Note that the termination check stop is not
the same as the preorder � of the lattice, but stop can be based on �. Later we will use
the following termination checks (the second requires a powerset domain):

stopsep(e, R) = (∃e′ ∈ R : e � e′) and stopjoin(e, R) = (e � ⊔
e′∈R e′).

Note that the abstract domain on its own does not determine the precision of the analy-
sis; each of the four configurable components (abstract domain, transfer relation, merge
operator, and termination check) independently influences both precision and cost.

Among the program analyses that we use later in the experiments are the following:

Location Analysis. A configurable program analysis L = (DL, �L, merge
L
, stop

L
)

that tracks the reachability of CFA locations has the following components: the domain
DL is based on the flat lattice for the set L of CFA locations; the transfer relation �L

with l
g�Ll′ if there exists an edge g = (l, op, l′) ∈ G, and l

g�L⊥ otherwise (the syn-
tactical successor in the CFA without considering the semantics of the operation op);
the merge operator merge

L
= mergesep; and the termination check stop

L
= stopsep.

Predicate Abstraction. A program analysis for cartesian predicate abstraction was de-
fined by Ball et al. [1]. Their framework can be expressed as a configurable program

2 A powerset domain is an abstract domain such that [[e1 � e2]] = [[e1]] ∪ [[e2]].
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Algorithm 1. CPA(D, e0)
Input: a configurable program analysis D = (D, �, merge, stop),

an initial abstract state e0 ∈ E, let E denote the set of elements of the semi-lattice of D
Output: a set of reachable abstract states
Variables: a set reached of elements of E, a set waitlist of elements of E

waitlist := {e0}
reached := {e0}
while waitlist �= ∅ do

pop e from waitlist
for each e′ with e�e′ do

for each e′′ ∈ reached do
// Combine with existing abstract state.
enew := merge(e′, e′′)
if enew �= e′′ then

waitlist :=
�
waitlist ∪ {enew}

�
\ {e′′}

reached :=
�
reached ∪ {enew}

�
\ {e′′}

if ¬ stop(e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return reached

analysis P by using their abstract domain and transfer relation, and choosing the merge
operator merge

P
= mergesep and the termination check stop

P
= stopsep.

Shape Analysis. Shape analysis is a static analysis that uses finite structures (shape
graphs) to represent instances of heap-stored data structures. We can express the frame-
work of Sagiv et al. [17] as a configurable program analysis S by using their abstract
(powerset) domain and transfer relation, and choosing the merge operator merge

S
=

mergejoin and the termination check stop
S

= stopjoin.

2.2 Execution Algorithm

The reachability algorithm CPA computes, for a given configurable program analysis
and an initial abstract state, a set of reachable abstract states, i.e., an over-approximation
of the set of reachable concrete states. The configurable program analysis is given by
the abstract domain D, the transfer relation � of the input program, the merge oper-
ator merge, and the termination check stop. The algorithm keeps updating two sets of
abstract states, a set reached to store all abstract states that are found to be reachable,
and a set waitlist to store all abstract states that are not yet processed (frontier). The
state exploration starts with the initial abstract state e0. For a current abstract state e,
the algorithm considers each successor e′, obtained from the transfer relation. Now, us-
ing the given operator merge, the abstract successor state is combined with an existing
abstract state from reached. If the operator merge has added information to the new
abstract state, such that the old abstract state is subsumed, then the old abstract state is
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replaced by the new one.3 If after the merge step the resulting new abstract state is not
covered by the set reached, then it is added to the set reached and to the set waitlist.4

Theorem 1 (Soundness). For a given configurable program analysis D and an ini-
tial abstract state e0, Algorithm CPA computes a set of abstract states that over-
approximates the set of reachable concrete states:

⋃

e∈CPA(D,e0)
[[e]] ⊇ Reach([[e0]]).

We now show how model checking and data-flow analysis are instances of configurable
program analysis.

Data-Flow Analysis. Data-flow analysis is the problem of assigning to each control-
flow location a lattice element that over-approximates the set of possible concrete states
at that program location. The least solution (smallest over-approximation) can be found
by computing the least fixpoint, by iteratively applying the transfer relation to abstract
states and joining the resulting abstract state with the abstract state that was assigned
to the location in a previous iteration. The decision whether the fixpoint is reached
is usually based on a working list of data-flow facts that were newly added. In our
configurable program analysis, the data-flow setting can be realized by choosing the
merge operator mergejoin and the termination check stopjoin.

Note that a configurable program analysis can model improvements (in precision or
efficiency) for an existing data-flow analysis without redesigning the abstract domain of
the existing data-flow analysis. For example, a new data-flow analysis that uses a subset
of the powerset domain 2D, instead of D itself, can be represented by a configurable
program analysis reusing the domain D and its operators, but using an appropriate
new merge operator that is different from mergejoin. Moreover, static analyzers such
as ASTRÉE [3] use delayed joins, or path partitioning [15], to improve the precision
and efficiency of the analysis. We can model these techniques within our framework by
changing only the merge operator.

Model Checking. A typical model-checking algorithm explores the abstract reachable
state space of the program by unfolding the CFA, which results in an abstract reacha-
bility tree. For a given abstract state, the abstract successor state is computed and added
as successor node to the tree. Branches in the CFA have their corresponding branches
in the abstract reachability tree, but since two paths never meet, a join operator is never
applied. This tree data structure supports the required path analysis in CEGAR frame-
works, as well as reporting a counterexample if a bug is found. The decision whether
the fixpoint is reached is usually implemented by a coverage check, i.e., the algorithm
checks each time a new node is added to the tree if the abstract state of that node is
already subsumed by some other node. BLAST’s model-checking algorithm can be in-

3 Implementation remark: The operator merge can be implemented in a way that it operates
directly on the reached set. If the set reached is stored in a sorted data structure, there is no
need to iterate over the full set of reachable abstract states, but only over the abstract states that
need to be combined.

4 Implementation remark: The termination check can be done additionally before the merge
process. This speeds up cases where the termination check is cheaper than the merge.
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stantiated as a configurable program analysis by choosing the merge operator mergesep

and the termination check stopsep.

Combinations of Model Checking and Program Analysis. Due to the fact that the model-
checking algorithm never uses a join operator, the analysis is automatically path-
sensitive. In contrast, path-sensitivity in data-flow analysis requires the use of a more
precise data-flow lattice that distinguishes abstract states on different paths. On the
other hand, due to the join operations, the data-flow analysis can reach the fixpoint
much faster in many cases. Different abstract interpreters exhibit significant differences
in precision and cost, depending on the choice for the merge operator and termination
check. Therefore, we need a mechanism to combine the best choices of the operators
for different abstract interpreters when composing the resulting program analyses.

2.3 Composite Program Analyses

A configurable program analysis can be composed of several configurable program
analyses. A composite program analysis C = (D1, D2, �×, merge×, stop×)5 consists
of two configurable program analyses D1 and D2, a composite transfer relation �×,
a composite merge operator merge×, and a composite termination check stop×. The
three composites �×, merge×, and stop× are expressions over the components of D1
and D2 (�i, mergei, stopi, [[·]]i, Ei, 	i, ⊥i, �i, �i), as well as the operators ↓ and �
(defined below). The composite operators can manipulate lattice elements only through
those components, never directly (e.g., if D1 is already a result of a composition, then
we cannot access the tuple elements of abstract states from E1, nor redefine merge1).
The only way of using additional information is through the operators ↓ and �. The
strengthening operator ↓ : E1 × E2 → E1 computes a stronger element from the lat-
tice set E1 by using the information of a lattice element from E2; it has to meet the
requirement ↓(e, e′) � e. The strengthening operator can be used to define a compos-
ite transfer relation �× that is stronger than a pure product relation. For example, if
we combine predicate abstraction and shape analysis, the strengthening operator ↓

S,P

can ‘sharpen’ the field predicates of the shape graphs by considering the predicate re-
gion. Furthermore, we allow the definitions of composite operators to use the compare
relation � ⊆ E1 × E2, to compare elements of different lattices.

For a given composite program analysis C = (D1, D2, �×, merge×, stop×), we can
construct a configurable program analysis D× = (D×, �×, merge×, stop×), where the
product domain D× is defined as the direct product of D1 and D2: D× = D1 × D2 =
(C, E×, [[·]]×). The product lattice is E× = E1×E2 = (E1×E2, (	1, 	2), (⊥1, ⊥2), �×
, �×) with (e1, e2) �× (e′1, e′2) iff e1 �1 e′1 and e2 �2 e′2, and (e1, e2) �× (e′1, e′2) =
(e1�1 e′1, e2�2 e′2). The product concretization function [[·]]× is such that [[(d1, d2)]]× =
[[d1]]1 ∩ [[d2]]2. The literature agrees that this direct product itself is often not sharp
enough [6,4]. Even improvements over the direct product (e.g., the reduced product [6]
or the logical product [10]) do not solve the problem completely. However, in a config-
urable program analysis, we can specify the desired degree of ‘sharpness’ in the com-
posite operators �×, merge×, and stop×. For a given product domain, the definition of

5 We extend this notation to any finite number of Di.
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the three composite operators determines the precision of the resulting configurable pro-
gram analysis. In previous approaches, a redefinition of basic operations was necessary,
but using configurable program analysis, we can reuse the existing abstract interpreters.

Example: BLAST’s Domain. The program analysis that is implemented in the tool
BLAST can be expressed as a configurable program analysis D that derives from the
composite program analysis C = (L, P, �×, merge×, stop×), where the components
are the configurable program analysis L for locations and the configurable program
analysis P for predicate abstraction. We construct the composite transfer relation �×
such that (l, r)

g�×(l′, r′) iff l
g�Ll′ and r

g�Pr′. We choose the composite merge opera-
tor merge× = mergesep and the composite termination check stop× = stopsep.

Example: BLAST’s Domain + Shape Analysis. The combination of predicate abstrac-
tion and shape analysis [2] can now be expressed as the composite program analysis
C = (L, P, S, �×, merge×, stop×) with the three components: location analysis L,
predicate abstraction P, and shape analysis S. In our previous work [2] we used a con-
figuration that corresponds to the composite merge operator merge× = mergesep and
the composite termination check stop× = stopsep. Our new tool allows us now to de-
fine the three composite operators �×, merge×, and stop× in many different ways, and
we report the results of our experiments in Sect. 3.

Example: BLAST’s Domain + Pointer Analysis. Fischer et al. used a particular com-
bination (called predicated lattices) of predicate abstraction and a data-flow analy-
sis for pointers [9], which we can express as the composite program analysis C =
(L, P, A, �×, merge×, stop×), where A is a configurable pointer analysis. The trans-
fer relation �× is such that (l, r, d)

g�×(l′, r′, d′) iff l
g�Ll′ and r

g�Pr′ and d
g�Ad′.

We can configure the algorithm of Fischer et al. by choosing the composite termination
check stop× = stopsep and the composite merge operator that joins the third elements
if the first two agree:

merge×((l, r, d), (l′, r′, d′)) =
{

(l′, r′, merge
A
(d, d′)) if l = l′ and r = r′

(l′, r′, d′) otherwise
with merge

A
(d, d′) = d �A d′.

Remark: Location Domain. Traditional data-flow analyses do not consider the location
domain as a separate abstract domain; they assume that the locations are always ex-
plicitly analyzed. In contrast, we leave this completely up to the interpreter. We find it
interesting to consider the program counter as just another program variable, and de-
fine a location domain that makes the program counter explicit when composed with
other domains. This releases the other abstract domains from defining the location han-
dling, and only the parameters for the composite program analysis need to be set. This
keeps different concerns separate. Usually, only the program counter variable is mod-
eled explicitly, and all other variables are represented symbolically (e.g., by predicates
or shapes). We have the freedom to treat any program variable explicitly, not only the
program counter; this may be useful for loop indices. Conversely, we can treat the
program counter symbolically, and let other variables ‘span’ the abstract reachability
tree.
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3 Experiments

We evaluated our new approach on several combinations of abstract interpreters, under
several different configurations. We implemented the configurable program analysis as
an extension of the model checker BLAST, in order to be able to reuse many compo-
nents that are necessary for an analysis tool but out of our focus in this work. BLAST

supports recursive function calls, as well as pointers and recursive data structures on
the heap. For representing the shape-analysis domain we use parts of the TVLA imple-
mentation [13]. For pointer-alias analysis, we use the implementation that comes with
CIL [16]. We use the configuration of Fischer et al. [9] to compare with predicated
lattices.

3.1 Configuring Model Checking + Shape Analysis

For our first set of experiments, we consider the combination of predicate abstraction
and shape analysis. To demonstrate the impact of various configurations on performance
and precision, we ran our algorithm on the set of example C programs from [2], ex-
tended by some programs to explore scalability. These examples can be divided into
three categories: (1) examples that require only unary and binary (shape) predicates to
be proved safe (list i, simple, and simple backw), (2) examples that require
in addition nullary predicates (alternating and list flag), and (3) an example
that requires that information from the nullary predicates is used to compute the new
value of unary and binary predicates (list flag2). The verification times are given
in Table 1 for the six different configurations (A-F). When BLAST fails to prove the
program safe for a given configuration, a false alarm (FP) is reported.

A: Predicated Lattice (merge-pred-join, stop-sep). In our first configuration we use
the traditional model-checking approach (no join) for the predicate abstraction, and
the predicated-join approach for the shape analysis. This corresponds to the following
composite operators:

1. (l, r, s)
g�×(l′, r′, s′) iff l

g�Ll′ and r
g�Pr′ and s

g�Ss
′

2. merge×((l, r, s), (l′, r′, s′)) =
{

(l′, r′, merge
S
(s, s′)) if l = l′ and r = r′

(l′, r′, s′) otherwise

3. stop×((l, r, d), R) = stopsep((l, r, d), R)

The transfer relation is cartesian, i.e., the successors of the different components are
computed independently (cf. [2]). The merge operator joins the shape graphs of abstract
regions that agree on both the location and the predicate region. The predicate regions
are never joined. Termination is checked using the coverage against a single abstract
state. This configuration corresponds to Fischer et al.’s predicated lattice [9].

Example. To illustrate the difference between the various configurations, we use the
C program in Fig. 1(a). This program constructs a lists that contains the data values 1
or 2, depending on the value of the variableflag, and ends with a single 3. We illustrate
the example using the following abstractions. In the predicate abstraction, we keep track
of the nullary predicate flag . In the shape analysis, we consider shape graphs for the list
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1 typedef struct node {
2 int h; struct node *n;
3 } *List;
4 void foo(int flag) {
5 List a = (List) malloc(...);
6 if (a == NULL) exit(1);
7 List p = a;
8 while (random()) {
9 if (flag) p->h = 1;

10 else p->h = 2;
11 p->n = (List) malloc(...);
12 if (p->n == NULL) exit(1);
13 p = p->n; }
14 p->h = 3;
15 }

(a) Example C program

g1
a

h = 3

g2,1
a n

h = 1 h = 3

g2,2
a n

h = 2 h = 3

g3,1
a n n

h = 1 h = 1 h = 3

g3,2
a n n

h = 2 h = 2 h = 3

g4,1 a n n

n

h = 1 h = 1 h = 3

g4,2 a n n

n

h = 2 h = 2 h = 3

(b) Example shape graphs

Fig. 1. Example program and two list representations

pointed to by program variable a, and field predicates for the assertions h = 1, h = 2,
and h = 3. (These abstractions are automatically discovered by BLAST’s refinement
procedure [2], but this is not the subject of this paper). Figure 1(b) shows some shape
graphs that are encountered during the analysis. The nodes of a shape graph correspond
to memory cells. Summary nodes (double circles) represent 0, 1, or more nodes. Shape
graphs are defined by the valuation of predicates over nodes in a three-valued logic.
Predicates are either unary (e.g., the points-to predicate a or the field predicates h = 1,
h = 2, and h = 3) or binary (e.g., the next predicate n).

To understand how this composite program analysis works on this example, we con-
sider abstract states for which the location component has the value 15 (program exit
point). Because of the merge operator, abstract states that agree on both the location
and the predicates are joined. Consequently, shape graphs corresponding to lists with
different lengths are collected in a single abstract state. At the end of the analysis,
we therefore find at most one abstract state per location and predicate valuation, e.g.,
(15,flag, {g1, g2,1, g3,1, g4,1}) and (15, ¬flag, {g1, g2,2, g3,2, g4,2}).

Experimental Results. Precision: Shape analysis is based on a powerset domain, and
therefore the join has no negative effect on the precision of the analysis. Performance:
The idea behind the join in data-flow analysis is to keep the number of abstract states
small for efficiency and progress reasons, and in a typical data-flow analysis the join
operations are efficient. However, since an abstract state contains a set of shape graphs
in our analysis, the effect is the opposite: the join operations add extra work, because
larger sets of shape graphs need to be manipulated. In addition, when the algorithm
computes successors of a joined set, the work that may have been done already for some
subset is repeated. This results in unnecessarily many, highly expensive operations.

B: As Precise as Model Checking (merge-sep, stop-sep). Now we want to avoid that
the merge operator causes join overhead in the analysis when computing abstract suc-
cessor states. This is easy to achieve in our composite program analysis: we replace the
composite merge operator merge× by the merge operator mergesep. The new compos-
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ite program analysis joins neither predicate regions nor shape regions, and corresponds
to lazy shape analysis [2].

Example. Since this composite program analysis is not joining elements, there is no
reached abstract state with a set of shape graphs of size larger than 1 (unlike in the
previous configuration A). Instead, we maintain distinct abstract states. In particu-
lar, at the exit location, the set of reached abstract states contains the following ab-
stract states: (15,flag, {g1}), (15,flag, {g2,1}), (15,flag, {g3,1}), (15,flag, {g4,1}),
(15, ¬flag, {g1}), (15, ¬flag, {g2,1}), (15, ¬flag, {g3,1}), and (15, ¬flag , {g4,1}). This
set of abstract states represents exactly the same set of concrete states as the result of
the previous analysis (configuration A).

Experimental Results. All examples in our experiments have smaller run times using
this configuration, and the precision in the experiments does not change, compared to
configuration A. Precision: Shape analysis is based on a powerset domain, and there-
fore, joins are precise. The precision of the predicated lattice is the same as the precision
of this variant without joins. Performance: Although the number of explored abstract
states is slightly higher, this configuration improves the performance of the analysis.
The size of lattice elements (i.e., the average number of shape graphs in an abstract
state) is considerably smaller than in the predicated-lattice configuration (A). There-
fore, we achieve a better performance, because operations (in particular the successor
computations) on small sets of shape graphs are much more efficient than on large sets.

C: More Precision by Improved Transfer Relation (merge-sep, stop-sep, transfer-
new). From the first to the second configuration, we could improve the performance
of the analysis. Now, we show how the precision of the analysis can be improved.
We replace the cartesian transfer relation [2] by a new version that does not compute
successors completely independently for the different sub-domains:

(l, r, s)
g�×(l′, r′, s′) iff l

g�Ll′ and r
g�Pr′ and s

g�Ss
′′ and s′ = ↓

S,P(s′′, r′)

The strengthening operator improves the precision of the transfer relation by using the
predicate region to sharpen the shape information.

Example. In the example, the strengthening operator has no effect, because the nullary
predicate flag has no relation with any predicates used in the shape graph. The strength-
ening operator would prove useful if, for example, the shape graphs had in addition a
unary field predicate h = x (indicating that the field h of a node has the same value as
the program variable x), and the predicate abstraction had the nullary predicate x = 3.
Consider the operation at line 14 (p->h = 3). The successor of the shape graph be-
fore applying the strengthening operator can only update the unary field predicate h = x
to value 1/2, while the unary field predicate h = 3 can be set to value 1 for the node
pointed to by p. Supposing x = 3 holds in the predicate region of the abstract successor,
the strengthening operator updates the field predicate h = x to value 1 as well.

Experimental Results. This configuration results in an improvement in precision over
published results for a ‘hard-wired’ configuration [2], at almost no cost. Precision: Be-
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cause of the strengthening operator, the abstract successors are more precise than using
the cartesian transfer relation. Therefore, the whole analysis is more precise.

Performance: The cost of the strengthening operator is small compared to the cost of
the shape-successor computation. Therefore, the performance is not severely impacted
when compared to a cartesian transfer relation.

D: As Precise as Model Checking with Improved Termination Check (merge-sep,
stop-join). Now we try to achieve another improvement over configuration B: we re-
place the termination check with one that checks the abstract state against the join of
the reached abstract states that agree on locations and predicates:

stop×((l, r, s), R) = (s �S

⊔
S
{s′ | (l, r, s′) ∈ R})

The previous termination check was going through the set of already reached abstract
states, checking against every abstract state for coverage. Alternatively, abstract states
that agree on the predicate abstraction can be summarized by one single abstract state
that is used for the termination check. This is sound because the shape-analysis domain
is a powerset domain.

Example. To illustrate the use of the new termination check in the example, consider a set
of reached abstract states that contains at some intermediate step the following abstract
states: (15,flag, {g1}), (15,flag, {g2,1}), (15, ¬flag, {g1}), and (15, ¬flag , {g2,2}). If
we want to apply the termination check to the abstract state (15,flag, {g1, g2,1}) and the
given set of reached abstract states, we check whether the set {g1, g2,1} of shape graphs
is a subset of the join of all shape graphs already found for this location and valuation
of predicates (that is, the set {g1, g2,1}). The check would not be positive at this point
using termination check stopsep.

Experimental Results. The overall performance impact is slightly negative. Precision:
This configuration does not change the precision for our examples. Performance: We
expected improved performance by (1) avoiding many single coverage checks because
of the summary abstract state, and (2) fewer successor computations, because we may
recognize earlier that the fixpoint is reached. However, the performance impact in our
examples is negligible, because a very small portion of the time is spent on termination
checks, and the gain is more than negated by the overhead due to the joins.

E: Join at Meet-Points as in Data-Flow Analysis (merge-join, stop-join). To com-
pare with a classical data-flow analysis, we choose a configuration such that the data-
flow elements are joined where the control flow meets, independently of the predicate
region. We use the following merge operator, which joins with all previously computed
shape graphs for the program location of the abstract state:

merge×((l, r, d), (l′, r′, d′)) =
{

(l′, r′, merge
S
(d, d′)) if l = l′

(l′, r′, d′) otherwise

Example. The composite program analysis encounters, for example, the abstract state
(15,flag, {g1, g2,1, g2,2, g3,1, g3,2, . . .}), which contains shape graphs for lists that con-
tain either 1s or 2s despite the fact that flag has the value true. Therefore, we note
a loss of precision compared to the predicated-lattice approach (configuration A), be-
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Table 1. Time for the different configurations8 (false alarm: FP)

Program A B C D E F
pred-join merge-sep merge-sep merge-sep merge-join merge-join
stop-sep stop-sep stop-sep stop-join stop-join stop-join

transfer-new join preds
simple 0.53 s 0.32 s 0.40 s 0.34 s 0.51 s 0.50 s
simple backw 0.43 s 0.28 s 0.26 s 0.31 s 0.44 s 0.45 s
list 1 0.42 s 0.37 s 0.41 s 0.32 s 0.41 s 0.41 s
list 2 5.24 s 0.85 s 1.25 s 0.86 s 5.34 s 5.36 s
list 3 138.97 s 1.79 s 2.62 s 2.10 s 132.08 s 132.07 s
list 4 > 600 s 9.67 s 15.44 s 11.87 s > 600 s > 600 s
alternating 0.86 s 0.61 s 0.96 s 0.60 s FP FP

list flag 0.69 s 0.49 s 0.79 s 0.46 s FP FP

list flag2 FP FP 0.81 s FP FP FP

Table 2. Time for examples run with a predicated lattice

Program CFA nodes LOC A: orig. (join) B: more precision (no join)
s3 clnt 272 2 547 0.680 s 0.830 s
s3 srvr 322 2 542 0.560 s 0.590 s
cdaudio 968 18 225 33.50 s > 600 s
diskperf 549 14 286 248.330 s > 600 s

cause the less precise merge operator looses the correlation between the value of the
nullary predicate flag and the shape graphs.

Experimental Results. The analysis is not able to prove several of the examples that
were successfully verified with previous configurations. Precision: The shape-analysis
component has lost the path-sensitivity: the resulting shape graphs are similar to what a
classical fixpoint algorithm for data-flow analysis would yield. Therefore, the analysis
is less precise. Performance: The run time is similar to configuration A.

F: Predicate Abstraction with Join (merge-join for preds). We now evaluate a com-
posite program analysis that is similar to a classical data-flow analysis, i.e., both pred-
icates and shapes are joined for the abstract states that agree on the program location.
We consider the following merge operator:

merge×((l, r, s), (l′, r′, s′)) =
{

(l′, merge
P
(r, r′), merge

S
(d, d′)) if l = l′

(l′, r′, d′) otherwise
where merge

P
(r, r′)=r�P r′ is the weakest conjunction of predicates that implies r∨r′.

This composite program analysis corresponds exactly to a data-flow analysis on the direct
product of the two lattices: the set of reached abstract states contains only one abstract
state per location, because the merge operator joins abstract states of the same location.

Example. At location 15, we have one abstract state: (15, true, {g1, g2,1, g2,2, . . .}).

Experimental Results. This configuration can prove the same example programs as con-
figuration E, and the run times are also similar to configuration E.

Precision: This composite program analysis is the least precise in our set of config-
urations, because the merge operator joins both the predicates and the shape graphs
independently, for a given location. While join is suitable for many data-flow analy-
ses, predicate abstraction becomes very imprecise when predicate regions are joined,
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because then it is not possible to express disjunctions of predicates by the means of
separate abstract states for the same location. Performance: Compared to configura-
tion E, the number of abstract states is smaller (only one per location), but the shape
graphs have the same size. Therefore, this configuration is less precise, although not
more efficient.

Summary. For our set of examples, the experiments have shown that configuration C
is the best choice, and we provided justifications for the results. However, we cannot
conclude that configuration C is the preferred configuration for any combination of
abstract interpreters, and we provide evidence for this in the next subsection.

3.2 Configuring Model Checking + Pointer Analysis

In the experimental setting of this subsection we show that for a certain kind of abstract
interpreter the join is not only better, but that algorithms without join show prohibitive
performance, or do not terminate. We consider the combination of BLAST’s predicate
domain and a pointer-analysis domain, as described at the end of Sect. 2. In Table 2 we
report the performance results for two different algorithms: configuration A for a “pred-
icated lattice,” as described by Fischer et al. [9], and configuration B for an algorithm
without join, using the merge operator mergesep. The experiments give evidence that
the number of abstract states explodes and blows up the computational overhead, but
the gained precision is not even necessary for proving our example programs correct.

4 Conclusion

When the goal is as difficult as automatic software verification, it is imperative to bring
to bear insights and optimizations no matter if they originated in model checking, pro-
gram analysis, or automated theorem proving (which is heavily used in BLAST, to com-
pute transfer functions and to perform termination checks). We have therefore modified
BLAST from a tree-based software model checker to a tool that can be configured using
different lattice-based abstract interpreters, composite transfer functions, merge opera-
tors, and termination checks. Specifically configured extensions of BLAST with lattice-
based analysis had been implemented before, e.g., in predicated lattices [9] and in lazy
shape analysis [2]. As a side-effect, we can now express the algorithmic settings of
these papers in a simple and systematic way, and moreover, we have found different
configurations that perform even better.
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Abstract. STP is a decision procedure for the satisfiability of quantifier-free for-
mulas in the theory of bit-vectors and arrays that has been optimized for large
problems encountered in software analysis applications. The basic architecture
of the procedure consists of word-level pre-processing algorithms followed by
translation to SAT. The primary bottlenecks in software verification and bug find-
ing applications are large arrays and linear bit-vector arithmetic. New algorithms
based on the abstraction-refinement paradigm are presented for reasoning about
large arrays. A solver for bit-vector linear arithmetic is presented that eliminates
variables and parts of variables to enable other transformations, and reduce the
size of the problem that is eventually received by the SAT solver.

These and other algorithms have been implemented in STP, which has been
heavily tested over thousands of examples obtained from several real-world ap-
plications. Experimental results indicate that the above mix of algorithms along
with the overall architecture is far more effective, for a variety of applications,
than a direct translation of the original formula to SAT or other comparable deci-
sion procedures.

1 Introduction

Decision procedures for fragments of first-order logic are increasingly being used in
modern hardware verification and theorem proving tools. These decision procedures
usually support integer and real arithmetic, uninterpreted functions, bit-vectors, and
arrays. Examples of such decision procedures include Yices, SVC, CVC Lite,UCLID
[9,3,2,13]. Although theorem-proving and hardware verification have been the primary
users of decision procedures, increasingly they are being used in large-scale program
analysis, bug finding and test generation tools [7,16]. These tools often symbolically
analyze code and generate constraints for the decision procedure to solve, and use the
results to guide analysis or generate new test cases.

Software analysis tools create demands on decision procedures that are different
from those imposed by hardware applications. These applications often generate very
large array constraints, especially when tools choose to model system memory as one or
more arrays. Also, software analysis tools need to be able to reason about bit-vectors,
and especially mod-2n arithmetic, which is an important source of incorrect system
behavior. The constraint problems are large and extremely challenging to solve.

This paper reports on STP, a decision procedure for quantifier-free first order logic
with bit-vector and array datatypes [17]. The design of STP is has been driven primar-
ily by the demands of software analysis research projects. STP is being used in several
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software analysis, bug finding and hardware verification applications. Notable applica-
tions include the EXE project [7] at Stanford, which generates test cases for C programs
using symbolic execution, and uses STP to solve the constraints. Other projects include
the Replayer project [16] and Minesweeper [5] at Carnegie Mellon University which
produce constraints from symbolic execution of machine code, and the CATCHCONV
project [14] at Berkeley which tries to catch errors due to type conversion in C pro-
grams. The CATCHCONV project produced the largest example solved by STP so far.
It is a 412 Mbyte formula, with 2.12 million 32 bit bit-vector variables, array write terms
which are tens of thousands of levels deep, a large number of array reads with non-
constant indices (corresponding to aliased reads in memory), many linear constraints,
and liberal use of bit-vector functions and predicates, and STP solves it in approx. 2
minutes on a 3.2GHz Linux box.

There is a nice overview of bit-vector decision procedures in [6], which we do not
repeat here. STP’s architecture is different from most decision procedures that support
both bit-vectors and arrays [18,2,9], which are based on backtracking and a framework
for combining specialized theories such as Nelson-Oppen [15]. Instead, STP consists
of a series of word-level transformations and optimizations that eventually convert the
original problem to a conjunctive-normal form (CNF) formula for input to a high-speed
solver for the satisfiability problem for propositional logic formulas (SAT) [10]. Thus,
STP fully exploits the speed of modern SAT solvers while also taking advantage of
theory-specific optimizations for bit-vectors and arrays. In this respect, STP is most
similar to UCLID [13].

The goal of this paper is to describe the factors that enable STP to handle the large
constraints from software applications. In some cases, simple optimizations or a careful
decision about the ordering of transformations can make a huge difference in the capac-
ity of the tool. In other cases, more sophisticated optimizations are required. Two are
discussed in detail: An on-the-fly solver for mod-2n linear arithmetic, and abstraction-
refinement heuristics for array expressions. The rest of the paper discusses the archi-
tecture of STP, the basic engineering principles, and then goes into more detail about
the optimizations for bit-vector arithmetic and arrays. Performance on large examples
is discussed, and there is a comparative evaluation with Yices [9], that is well-known
for its efficiency.

2 STP Overview

STP’s input language has most of the functions and predicates implemented in a pro-
gramming language such as C or a machine instruction set, except that it has no floating
point datatypes or operations. The current set of operations supported include TRUE ,
FALSE , propositional variables, arbitrary Boolean connectives, bitwise Boolean op-
erators, extraction, concatenation, left and right shifts, addition, multiplication, unary
minus, (signed) division and modulo, array read and write functions, and relational op-
erators. The semantics parallel the semantics of the SMTLIB bit-vector language [1]
or the C programming language, except that in STP bit-vectors can have any positive
length. Also, all arithmetic and bitwise Boolean operations require that the inputs be of
the same length. STP can be used as a stand-alone program, and can parse input files in



A Decision Procedure for Bit-Vectors and Arrays 521

a special human readable syntax and also the SMTLIB QF UFBV32 syntax [1]. It can
also be used as a library, and has a special C-language API that makes it relatively easy
to integrate with other applications.

STP converts a decision problem in its logic to propositional CNF, which is solved
with a high-performance off-the-shelf CNF SAT solver, MiniSat [10] (MiniSat has a
nice API, and it is concise, clean, efficient, reliable, and relatively unencumbered by
licensing conditions). However, the process of converting to CNF includes many word-
level transformations and optimizations that reduce the difficulty of the eventual SAT
problem. Problems are frequently solved during the transformation stages of STP, so
that SAT does not need to be called.

STP’s architecture differs significantly from many other decision procedures based
on case splitting and backtracking, including tools like SVC, and CVC Lite [3,2],
and other solvers based on the Davis-Putnam-Logemann-Loveland (DPLL(T)) archi-
tecture [11]. Conceptually, those solvers recursively assert atomic formulas and their
negations to a theory-specific decision procedures to check for consistency with for-
mulas that are already asserted, backtracking if the current combination of assertions is
inconsistent. In recent versions of this style of decision procedure, the choice of formu-
las to assert is made by a conventional DPLL SAT solver, which treats the formulas as
propositional variables until they are asserted and the decision procedures invoked.

Architectures based on assertion and backtracking invoke theory-specific decision-
procedures in the “inner loop” of the SAT solver. However, modern SAT solvers are
very fast largely because of the incredible efficiency of their inner loops, and so it is
difficult with these architectures to take the best advantage of fast SAT solvers.

STP on the other hand does all theory-specific processing before invoking the SAT
solver. The SAT solver works on a purely propositional formula, and its internals are
not modified, including the highly optimized inner loop. Optimizing transformations
are employed before the SAT solver when they can solve a problem more efficiently
than the SAT solver, or when they reduce the difficulty of the problem that is eventually
presented to the SAT solver.

DPLL(T) solvers often use Nelson-Oppen combination [15], or variants thereof, to
link together multiple theory-specific decision procedures. Nelson-Oppen combination
needs the individual theories to be disjoint, stably-infinite and requires the exchange
of equality relationships deduced in each individual theory, leading to inflexibility and
implementation complexity. In return, Nelson-Oppen ensures that the combination of
theories is complete. STP is complete because the entire formula is converted by a set of
satisfiability preserving steps to CNF, the satisfiability of which is decided by the SAT
solver. So there is no need to worry about meeting the conditions of Nelson-Oppen
combination. Furthermore, the extra overhead of communication between theories in
the Nelson-Oppen style decision procedures can become a bottleneck for the very large
inputs that we have seen, and this overhead is avoided in STP.

The STP approach is not always going to be superior to a good backtracking solver.
A good input to STP is a conjunction of many formulas that enable local algebraic
transformations. On the other hand, formulas with top-level disjunctions may be very
difficult. Fortunately, the software applications used by STP tend to generate large con-
junctions, and hence STP’s approach has worked well in practice.
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Fig. 1. STP Architecture

In more detail, STP’s architecture is depicted in Figure 1. Processing consists of
three phases of word-level transformations; followed by conversion to a purely Boolean
formula and Boolean simplifications (this process is called “Bit Blasting”); and finally
conversion to propositional CNF and solving by a SAT solver. The primary focus of this
paper is on word level optimizations for arithmetic, arrays and refinement for arrays.

Expressions are represented as directed acyclic graphs (DAGs), from the time they
are created by the parser or through the C-interface, until they are converted to CNF. In
the DAG representation, isomorphic subtrees are represented by a single node, which
may be pointed to by many parent nodes. This representation has advantages and dis-
advantages, but the overwhelming advantage is compactness.

It is possible to identify some design principles that have worked well during the
development of STP. The overarching principle is to procrastinate when faced with
hard problems. That principle is applied in many ways. Transformations that are risky
because they can significantly expand the size of the expression DAG are postponed
until other, less risky, transformations are performed, in the hope that the less risky
transformation will reduce the size and number of expressions requiring more risky
transformations. This approach is particularly helpful for array expressions.

Counter-example-guided abstraction/refinement is now a standard paradigm in for-
mal tools, which can be applied in a variety of ways. It is another application of the
procrastination principle. For example, the UCLID tool abstracts and refines the preci-
sion of integer variables.

A major novelty of STP’s implementation is the particular implementation of the
refinement loop in Figure 1. In STP, abstraction is implemented (i.e. an abstract formula
is obtained) by omitting conjunctive constraints from a concrete formula, where the
concrete formula must be equisatisfiable with the original formula. (Logical formulas
φ and ψ are equisatisfiable iff φ is satisfiable exactly when ψ is satisfiable.)

When testing an abstract formula for satisfiability, there can be three results. First,
STP can determine that the abstracted formula is unsatisfiable. In this case, it is clear
that the original formula is unsatisfiable, and hence STP can return “unsatisfiable” with-
out additional refinement, potentially saving a massive amount of work.

A second possible outcome is that STP finds a satisfying assignment to the abstract
formula. In this case, STP converts the satisfying assignment to a (purported) concrete
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model, 1 and also assigns zero to any variables that appear in the original formula but
not the abstract formula, and evaluates the original formula with respect to the purported
model. If the result of the evaluations is TRUE , the purported model is truly a model
of the original formula (i.e. the original formula is indeed satisfiable) and STP returns
the model without further refinement iterations.

The third possible outcome is that STP finds a purported model, but evaluating the
original formula with respect to that model returns FALSE . In that case, STP refines
the abstracted formula by heuristically choosing additional conjuncts, at least one of
which must be false in the purported model and conjoining those formulas with the ab-
stracted formula to create a new, less abstract formula. In practice, the abstract formula
is not modified; instead, the new formulas are bit-blasted, converted to CNF, and added
as clauses to the CNF formula derived from the previous abstract formula, and the re-
sulting CNF formula solved by the SAT solver. This process is iterated until a correct
result is found, which must occur because, in the worst case, the abstract formula will
be made fully concrete by conjoining every formula that was omitted by abstraction.
When all formulas are included, the result is guaranteed to be correct because of the
equisatisfiability requirement above.

3 Arrays

As was mentioned above, arrays are used heavily in software analysis applications, and
reasoning about arrays has been a major bottleneck in many examples. STP’s input
language supports one-dimensional (non-extensional) arrays [17] that are indexed by
bit-vectors and contain bit-vectors. The operations on arrays are read(A, i), which re-
turns the value at location A[i] where A is an array and i is an index expression of the
correct type, and write(A, i, v), which returns a new array with the same value as A
at all indices except possibly i, where it has the value v. The value of a read is a bit-
vector, which can appear as an operand to any operation or predicate that operates on
bit-vectors. The value of an array variable or an array write has an array type, and may
only appear as the first operand of a read or write , or as the then or else operand of an
if-then-else. In particular, values of an array type cannot appear in an equality or any
other predicate.

In the unoptimized mode, STP reduces all formulas to an equisatisfiable form that
contains no array reads or writes, using three transformations. (In the following, the
expression ite(c1, e1, e2) is shorthand for if c1 then e1 else e2 endif.) These transforma-
tions are all standard.

The Ite-lifting transformation converts read(ite(c,write(A, i, v), e), j) to ite(c,
read(write(A, i, v), j), e). (There is a similar transformation when the write is in the
“else” part of the ite.) The read-over-write transformation eliminates all write terms
by transforming read(write(A, i, v), j) to ite(i = j, v, read(A, j)). Finally, the read
elimination transformation eliminates read terms by introducing a fresh bit-vector vari-
able for each such expression, and adding more predicates to ensure consistency. Specif-
ically, whenever a term read(A, i) appears, it is replaced by a fresh variable v, and new

1 A model is an assignment of constant values to all of the variables in a formula such that the
formula is satisfied.
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predicates are conjoined to the formula i = j ⇒ v = w for all variables w introduced
in place of read terms read(A, j), having the same array term as first operand. As an ex-
ample of this transformation, the simple formula (read(A, 0) = 0) ∧ (read(A, i) = 1)
would be transformed to v1 = 0 ∧ v2 = 1 ∧ (i = 0 ⇒ v1 = v2). The formula of the
form (i = 0 ⇒ v1 = v2) is called an array read axiom.

3.1 Optimizing Array Reads

Read elimination, as described above, expands each formula by up to n(n−1)/2 nodes,
where n is the number of syntactically distinct index expressions. Unfortunately, soft-
ware analysis applications can produce thousands of reads with variable indices, result-
ing in a lethal blow-up when this transformation is applied. While this blow-up seems
unavoidable in the worst case, appropriate procrastination leads to practical solutions
for many very large problems. Two optimizations which have been very effective are
array substitution and abstraction-refinement for reads, which we call read refinement.

The array substitution optimization reduces the number of array variables by sub-
stituting out all constraints of the form read(A, c) = e1, where c is a constant and e1
does not contain another array read. Programs often index into arrays or memory using
constant indexes, so this is a case that occurs often in practice.

The optimization has two passes. The first pass builds a substitution table with the
left-hand-side of each such equation (read(A, c)) as the key and the right-hand-side
(e1) as the value, and then deletes the equation from the input query. The second pass
over the expression replaces each occurrence of a key by the corresponding table entry.
Note that for soundness, if a second equation is encountered whose left-hand-side is
already in the table, the second equation is not deleted and the table is not changed. For
example, if STP saw read(A, c) = e1 then read(A, C) = e2, the second formula would
not be deleted and would later be simplified to e1 = e2.

The second optimization, read refinement, delays the translation of array reads with
non-constant indexes in the hope of avoiding read elimination blowup. Its main trick is
to solve a less-expensive approximation of the formula, check the result in the original
formula, and try again with a more accurate approximation if the result is incorrect.

Read formulas are abstracted by performing read elimination, i.e., replacing reads
with new variables, but not adding the array read axioms. This abstracted formula is
processed by the remaining stages of STP. As discussed in the overview, if the result is
unsatisfiable, that result is correct and can be returned immediately from STP. If not,
the abstract model found by STP is converted to a concrete model and the original
formula is evaluated with respect to that model. If the result is TRUE , the answer is
correct and STP returns that model. Otherwise, some of the array read axioms from read
elimination are added to the formula and STP is asked to satisfy the modified formula.
This iteration repeats until a correct result is found, which is guaranteed to happen (if
memory and time are not exhausted) because all of the finitely many array read axioms
will eventually be added in the worst case.

The choice of which array read axioms to add during refinement is a heuristic that is
important to the success of the method. A policy that seems to work well is to find a non-
constant array index term for which at least one axiom is violated, then add all of the
violated axioms involving that term. Adding at least one false axiom during refinement
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guarantees that STP will not find the same false model more than once. Adding all
the axioms for a particular term seems empirically to be a good compromise between
adding just one formula, which results in too many iterations, and adding all formulas,
which eliminates all abstraction after the first failure.

For example, suppose STP is given the formula (read(A, 0) = 0)∧(read(A, i) = 1).
STP would first apply the substitution optimization by deleting read(A, 0) = 0 from
the formula, and inserting the pair (read(A, 0), 0) in the substitution table. Then, it
would replace read(A, i) by a new variable vi, thus generating the under-constrained
formula vi = 1. Suppose STP finds the solution i = 1 and vi = 1.

STP then translates the solution to the variables of the original formula to get (read
(A, 0) = 0) ∧ read(A, 1) = 1). This solution is satisfiable in the original formula as
well, so STP terminates since it has found a true satisfying assignment.

However, suppose that STP finds the solution i = 0 and vi = 1. Under this solution,
the original formula eventually evaluates to read(A, 0) = 0 ∧ read(A, 0) = 1, which
after substitution gives 0 = 1. Hence, the solution to the under-constrained formula is
not a solution to the original formula.

In this case, STP adds the array read axiom i = 0 ⇒ read(A, i) = read(A, 0). When
this formula is checked, the result must be correct because the new formula includes the
complete set of array read axioms.

3.2 Optimizing Array Writes

Efficiently dealing with array writes is crucial to STP’s utility in software applica-
tions, some of which produce deeply nested write terms when there are many suc-
cessive assignments to indices of the same array. The read-over-write transformation
creates a performance bottleneck by destroying sharing of subterms, creating an unac-
ceptable blow-up in DAG size. Consider the simple formula: read(write(A, i, v), j) =
read(write(A, i, v), k), in which the write term is shared.

The read-over-write transformation translates this to ite(i = j, v, read(A, j)) =
ite(i = k, v, read(A, k)). When applied recursively to the deeply nested write terms,
it essentially creates a new copy of the entire DAG of write terms for every distinct read
index, which exhausts memory in large examples.

Once again, the procrastination principle applies. The read-over-write transforma-
tion is delayed until after other simplification and solving transformations are performed,
except in special cases like read(write(A, i, v), i+1), where the read and write indices
simplify to terms that are always equal or not equal. In practice, the simple transfor-
mations convert many index terms to constants. The read-over-write transformation is
applied in a subsequent phase. When that happens, the formula is smaller and contains
more constants. This simple optimization is enormously effective, enabling STP to solve
many very large problems with nested writes that it is otherwise unable to do.

Abstraction and refinement can also be used on write expressions, when the previous
optimization leaves large numbers of reads and writes, leading to major speed-ups on
some large formulas. For this optimization, array read-over-write terms are replaced by
new variables to yield a conjunction of formulas that is equisatisfiable to the original
set. The example above is transformed to:
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v1 = v2
v1 = ite(i = j, v, read(A, j))
v2 = ite(i = k, v, read(A, k))

where the last two formulas are called array write axioms. For the abstraction, the array
write axioms are omitted, and the abstracted formula v1 = v2 is processed by the
remaining phases of STP. As with array reads, the refinement loop iterates only if STP
finds a model of the abstracted formula that is also not a model of the original formula.
Write axioms are added to the abstracted formula, and the refinement loop iterates with
the additional axioms until a definite result is produced. Although, this technique leads
to improvement in certain cases, the primary problem with it is that the number of
iterations of the refinement loop is sometimes very large.

4 Linear Solver and Variable Elimination

One of the essential features of STP for software analysis applications is its efficient
handling of linear twos-complement arithmetic. The heart of this is an on-the-fly solver.
The main goal of the solver is to eliminate as many bits of as many variables as possible,
to reduce the size of the transformed problem for the SAT solver. In addition, it enables
many other simplifications, and can solve purely linear problems outright, so that the
SAT solver does not need to be used.

The solver solves for one equation for one variable at a time. That variable can then
be eliminated by substitution in the rest of the formula, whether the variable occurs in
linear equations or other formulas. In some cases, it cannot solve an entire variable, so
it solves for some of the low-order bits of the variable. After bit-blasting, these bits will
not appear as variables in the problem presented to the SAT solver. Non-linear or word-
level terms (extracts, concats etc.) appearing in linear equations are treated as bit-vector
variables.

The algorithm has worst-case time running time of O(k2n) multiplications, where k
is the number of equations and n is the number of variables in the input system of linear
bit-vector equations.2 If the input is unsatisfiable the solver terminates with FALSE .
If the input is satisfiable it terminates with a set of equations in solved form, which
symbolically represent all possible satisfying assignments to the input equations. So, in
the special case where the formula is a system of linear equations, the solver leads to
a sound and complete polynomial-time decision procedure. Furthermore, the equations
are reduced to a closed form that captures all of the possible solutions.

Definition 1. Solved Form: A list of equations is in solved form if the following invari-
ants hold over the equations in the list.

2 As observed in [4], the theory of linear mod 2n arithmetic (equations only) in tandem with
concatenate and extract operations is NP-complete. Although STP has concatenate and extrac-
tion operations, terms with those operations are treated as independent variables in the linear
solving process, which is polynomial.

A hard NP-complete input problem constructed out of linear operations, concatenate and
extract operations will not be solved completely by linear solving, and will result in work for
the SAT solver.
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1) Each equation in the list is of the form x[i : 0] = t or x = t, where x is a
variable and t is a linear combination of the variables or constant times a variable (or
extractions thereof) occuring in the equations of the list, except x

2) Variables on the left hand side of the equations occuring earlier in the list may
not occur on the right hand side of subsequent equations. Also, there may not be two
equations with the same left hand side in the list

3) If extractions of variables occur in the list, then they must always be of the form
x[i : 0], i.e. the lower extraction index must be 0, and all extractions must be of the
same length

4) If an extraction of a variable x[i : 0] = t occurs in the list, then an entry is made
in the list for x = x1@t, where x1 is a new variable refering to the top bits of x and @
is the concatenation symbol

The algorithm is illustrated on the following system:

3x + 4y + 2z = 0
2x + 2y + 2 = 0

4y + 2x + 2z = 0

where all constants, variables and functions are 3 bits long.
The solver proceeds by first choosing an equation and always checks if the chosen

equation is solvable. It uses the following theorem from basic number theory to deter-
mine if an equation is solvable: Σn

i=1aixi = ci mod 2b is solvable for the unknowns xi

if and only if the greatest common divisor of {a1, . . . , an, 2b} divides ci.
In the example above, the solver chooses 3x + 4y + 2z = 0 which is solvable since

the gcd(3, 4, 2, 23) does indeed divide 0. It is also a basic result from number theory
that a number a has a multiplicative inverse mod m iff gcd(a, m) = 1, and that this
inverse can be computed by the extended greatest-common divisor algorithm [8] or a
method from [4]. So, if there is a variable with an odd coefficient, the solver isolates
it on the left-hand-side and multiplies through by the inverse of the coefficient. In the
example, the multiplicative inverse of 3 mod 8 is also 3, so 3x + 4y + 2z = 0 can be
solved to yield x = 4y + 6z.

Substituting 4y + 6z for x in the remaining two equations yields the system

2y + 4z + 2 = 0
4y + 6z = 0

where all coefficients are even. Note that even coefficients do not have multiplicative
inverses in arithmetic mod 2b, and, hence we cannot isolate a variable. However, it is
possible to solve for some bits of the remaining variables.

The solver transforms the whole system of solvable equations into a system which
has at least one summand with an odd coefficient. To do this, the solver chooses an
equation which has a summand whose coefficient has the minimum number of factors
of 2. In the example, this would the equation 2y +4z +2 = 0, and the summand would
be 2y. The whole system is divided by 2, and the high-order bit of each variable is
dropped, to obtain a reduced set of equations
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y[1 : 0] + 2z[1 : 0] + 1 = 0
2y[1 : 0] + 3z[1 : 0] = 0

where all constants, variables and operations are 2 bits. Next, y[1 : 0] is solved for to
obtain y[1 : 0] = 2z[1 : 0] + 3. Substituting for y[1 : 0] in the system yields a new
system of equations 3z[1 : 0]+2 = 0. This equation can be solved for z[1 : 0] to obtain
z[1 : 0] = 2. It follows that original system of equations is satisfiable. It is important to
note here that the bits y[2 : 1] and z[2 : 1] are unconstrained. The solved form in this
case is x = 4y + 6z ∧ y[1 : 0] = 2z[1 : 0] + 3 ∧ z[1 : 0] = 2 (Note that in the last two
equations all variables, constants and functions are 2 bits long).

Algorithms for deciding the satisfiability of a system of equations and congruences
in modular or residue arithmetic have been well-known for a long time. However, most
of these algorithms do not provide a solved form that captures all possible solutions.
Some of the ideas presented here were devised by Clark Barrett and implemented in the
SVC decision procedure [12,4], but the SVC algorithm has exponential worst-case time
complexity while STP’s linear solver is polynomial in the worst-case.

The closest related work is probably in a paper by Huang and Cheng [12], which
reduces a set of equations to a solved form by Guassian elimination. On the other hand,
STP implements an online solving and substitution algorithm that gives a closed form
solution. Such algorithms are easier to integrate into complex decision procedures.

5 Experimental Results

This section presents empirical results on large examples from software analysis tools,
and on randomly generated sets of linear equations. The effects of abstraction and lin-
ear solving in STP are examined. It is difficult to compare STP with other decision
procedures, because no publicly available decision procedures except CVCL (from the
authors research group) can deal with terms involving both bit-vectors and arrays in-
dexed by bit-vectors. CVCL is hopelessly inefficient compared with STP, which was
written to replace it. Terms in Yices can include bit-vectors and uninterpreted functions
over bit-vectors. Uninterpreted functions are equivalent to arrays with no write opera-
tions, so it is possible to compare the performance of STP and Yices on examples with
linear arithmetic and one realistic example with a read-only array.

In Table 1, STP is compared with all optimizations on (All ON), Array Optimizations
on (Arr-ON,Lin-OFF), linear-solving on (Arr-OFF,Lin-ON), and all optimizations off
(ALL OFF) on the BigArray examples (these examples are heavy on linear arithmetic
and array reads). Table 2 summarizes STP’s performance, with and without array write
abstraction, on the big array examples with deeply nested writes. Table 3 compares
STP with Yices on a very small version of a BigArray example, and some randomly
generated linear system of equations. All experiments were run on a 3.2GHz/2GB RAM
Intel machine running Linux.

Table 1 includes some of the hardest of the BigArray examples which are usually tens
of megabytes of text, typically hundreds of thousands of 32 bit bit-vector variables, lots
of array reads, and large number of linear constraints derived from [14,16]. The primary
reason for timeouts is an out-of-memory exception. Table 1 shows that all optimizations
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Table 1. STP performance in different modes over BigArray Examples. Names are followed by
the nodesize. Approximate node size is in millions of nodes. 1M is one million nodes. Shared
nodes are counted exactly once. NR stands for No Result. All timings are in seconds. MO stands
for out of memory error. These examples were generated using the CATCHCONV tool.

Example Name (Node Size) Result All ON Arr-ON,Lin-OFF Arr-OFF,Lin-ON All OFF
testcase15 (0.9M) sat 66 192 64 MO
testcase16 (0.9M) sat 67 233 66 MO
thumbnailout-spin1 (3.2M) sat 115 111 113 MO
thumbnailout-spin1-2 (4.3M) NR MO MO MO MO
thumbnailout-noarg (2.7M) sat 840 MO 840 MO

Table 2. STP performance in different modes over BigArray Examples with deep nested writes.
Names are followed by the nodesize. 1M is one million nodes (1K is thousand nodes). Shared
nodes are counted exactly once. NR stands for No Result. All timings are in seconds. MO
stands for out of memory error.These examples were generated using the CATCHCONV and
Minesweeper tools.

Example Name (Node Size) Result WRITE Abstraction NO WRITE Abstraction
grep0084 (69K) sat 109 506
grep0095 (69K) sat 115 84
grep0106 (69K) sat 270 > 600
grep0117 (70K) sat 218 > 600
grep0777 (73K) NR MO MO
610dd9dc (15K) sat 188 101
testcase20 (1.2M) sat 67 MO

are required for solving the hardest real-world problems. As expected, STP’s linear
solver is very helpful in solving these examples.

Table 2 includes examples with deeply nested array writes and modest amounts of
linear constraints derived from various applications. The “grep” examples were gener-
ated using the Minesweeper tool while trying to find bugs in unix grep program. The
610dd9c formula is generated by a Minesweeper analysis of a program that is used in
“botnet” attack. The formula testcase20 was generated by CATCHCONV. As expected,
STP with write abstraction-refinement ON can yield a very large improvement over
STP with write abstraction-refinement switched OFF, although it is not always faster.

Yices and STP were also compared on small, randomly-generated systems of linear
equations with coefficients ranging from 1 to 216, from 4 to 256 variables of 32 bits
each, and 4 to 256 equations. Yices consistently timed out at 200 seconds on exam-
ples with 32 or more variables, and was significantly slower than STP on the smaller
examples. The hardest problem for STP in this set of benchmarks was a test case with
32 equations and 256 variables of 32 bits, which STP solved in 90 seconds. There are
two cases for illustration in Table 3. Yices times out on even a 50 variable 50 equation
example, and when it does finish it is much slower than STP.

There is one large, real example with read-only arrays, linear arithmetic and bit-
vectors which is suitable for comparison with Yices. On this example, Yices is nearly
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Table 3. STP vs. Yices. Timeout per example: 600sec. The last example was generated using the
Replayer tool.

Example STP Yices
25 var/25 equations(unsat) 0.8s 42s
50 var/50 equations(sat) 13s TimeOut
cookie checksum example(sat) 2.6s 218s

one hundred times slower than STP. Unfortunately, we could not compare Yices with
STP on examples with array writes since Yices does not support array writes with
bit-vector indexing. More meaningful comparisons will have to wait till competing
decision procedures includes bit-vector operations and a theory of arrays indexed by bit-
vectors. All tests in this section are available at http://verify.stanford.edu/
stp.html

6 Conclusion

Software applications such as program analysis, bug finding, and symbolic simulation
of software tend to impose different conditions on decision procedures than hardware
applications. In particular, arrays become a bottleneck. Also, the constraints tend to be
very large with lots of linear bit-vector arithmetic in them. Abstraction-refinement al-
gorithms is often helpful for handling large array terms. Also, the approach of doing
phased word-level transformations, starting with the least expensive and risky transfor-
mations, followed by translation to SAT seems like a good design for decision proce-
dures for the applications considered. Finally, linear solving, when implemented
carefully, is effective in variable elimination.
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Abstract. Increasing interest towards property based design calls for effective
satisfiability procedures for expressive temporal logics, e.g. the IEEE standard
Property Specification Language (PSL).

In this paper, we propose a new approach to the satisfiability of PSL formu-
lae; we follow recent approaches to decision procedures for Satisfiability Modulo
Theory, typically applied to fragments of First Order Logic. The underlying in-
tuition is to combine two interacting search mechanisms: on one side, we search
for assignments that satisfy the Boolean abstraction of the problem; on the other,
we invoke a solver for temporal satisfiability on the conjunction of temporal for-
mulae corresponding to the assignment. Within this framework, we explore two
directions. First, given the fixed polarity of each constraint in the theory solver,
aggressive simplifications can be applied. Second, we analyze the idea of conflict
reconstruction: whenever a satisfying assignment at the level of the Boolean ab-
straction results in a temporally unsatisfiable problem, we identify inconsistent
subsets that can be used to rule out possibly many other assignments. We pro-
pose two methods to extract conflict sets on conjunctions of temporal formulae
(one based on BDD-based Model Checking, and one based on SAT-based Simple
Bounded Model Checking). We analyze the limits and the merits of the approach
with a thorough experimental evaluation.

1 Introduction

The role of properties in the design flow is becoming increasingly important. Properties
can be used to describe design intent, document designs, and enable for earlier valida-
tion steps (e.g. in requirements analysis, realizability, and even in synthesis). Satisfiabil-
ity engines for temporal logic formulae can be important backbones of property-based
design. They can be used to show that a set of requirements is consistent, or entails
some required properties, or is compatible with some desirable behaviors [27].

Given the degree of sophistication of model checking technologies, it would be
tempting to reduce temporal logic satisfiability to model checking algorithms. How-
ever, model checking and requirements analysis are inherently different, and substantial
problems from the user’s perspective are open. For example, providing diagnostic in-
formation in case of inconsistency of a specification can not be solved by searching for
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a counterexample trace: the user is working at the level of requirements, and thus the
inconsistency should be identified at the same level, e.g. as a subset of inconsistent re-
quirements. Furthermore, this approach may have some limitations: in fact, techniques
and tools for temporal logic model checking are focusing on complexity in the model,
and even reductions on the temporal logic formula [30] are oriented to dominating the
complexity in the model.

In this paper we propose a novel approach to the satisfiability of temporal logic.
The intuition is to combine two forms of search: Boolean enumeration and temporal
reasoning. Boolean enumeration is carried out on the propositional abstraction of the
specification, where temporal atoms are abstracted into Boolean atoms; once a satis-
fying assignment is available, temporal reasoning is invoked on the corresponding set
of temporal formulae. If a model is found, then the problem is satisfiable, otherwise
reasoning theory is used to reconstruct a conflict, and the iteration is restarted.

This approach is mutuated by recent work on Satisfiability Modulo Theories
(SMT) [8]. To the best of our knowledge, this is the first time the SMT paradigm,
typically used for decidable fragments of First Order Logics, is applied to temporal sat-
isfiability. This choice provides a clear conceptual framework, and suggests several im-
portant directions. First, don’t cares in the Boolean abstraction of the problem pinpoint
temporal formulae that are irrelevant for satisfiability, and can be safely ignored, thus
reducing the effort to be carried out in temporal reasoning. Second, fixed polarity con-
straints are given in input to the theory solver: this enables more aggressive simplifica-
tions of the input problem (e.g. pure literal rule). Third, the theory solvers for temporal
logic should be extended to provide unsatisfiable cores (or simply unsat cores): these
are explanations for unsatisfiability, i.e. inconsistent subsets of the problem in input.
This information can be used to rule out all those assignments that satisfy the Boolean
abstraction of the problem, but are associated with a superset of an unsatisfiable core.
We extend two satisfiability checking algorithms, one based on BDD-based language
emptiness [12], and one on SAT-based Simple Bounded Model Checking (SBMC) [20],
to return unsat cores. This is in general an interesting aspect, since it enables to provide
explanations for unsatisfiability, and ultimately to generalize the idea of unsatisfiable
core to the case of temporal logic.

We instantiate our approach on the Property Specification Language (PSL) [1], for
its high expressiveness (it captures all ω-regular languages), and its practical interest.
We remark however that the approach is general, and independent of the specific tem-
poral logic at hand. The approach has been implemented within the NUSMV model
checker [9]. A notable feature at the implementation level is that we use Binary De-
cision Diagrams as the top level enumeration mechanism. This is in contrast to the
current trends in SMT, where DPLL-based enumeration is becoming a de facto stan-
dard. A DPLL-based enumeration could have been adopted here, and will be in fact
investigated in the future. The BDD-based approach is justified by the fact that for the
problems at hand the Boolean splitting is dominated by the temporal one, and as such,
BDD-based reasoning turns out not to be a bottleneck. The approach has been experi-
mentally evaluated on a large set of benchmarks, both for BDD-based and SAT-based
techniques, and the results are very promising.
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This paper is structured as follows. In Section 2, we shortly present the temporal
logic PSL. In Section 3, we discuss previous approaches to temporal logic satisfiability.
In Section 4, we overview the proposed approach. In Section 5, we discuss the idea
of pure literal simplification, and the algorithms for the extraction of unsat cores. In
Section 6, we experimentally evaluate our approach. Finally, in Section 7, we draw
some conclusions and outline directions for future work.

2 The Property Specification Language PSL

In this paper, we use PSL [1] as our temporal logic. PSL is a very rich language. Here
we consider a subset, which is mostly used in practice, and provides ω-regular expres-
siveness [3]. The subset combines Linear Temporal Logic [28] (LTL) and Sequential
Extended Regular Expressions (SERE) [1]. (SEREs extend classical regular expres-
sions with language intersection, thus allowing for a greater succinctness at a cost of
a possible exponential blow-up in the conversion to automata. Moreover, the atoms of
SEREs are Boolean expressions enabling efficient determinization of automata.)

In the definition of the PSL syntax, for technical reasons, we introduce the “suffix
conjunction” connective as a dual of the suffix implication. Moreover, we consider only
the strong version of the temporal operators (the weak operators can be rewritten in
terms of the strong ones [1]) and the strong version of the SEREs (though our approach
can be easily extended to deal also with the weak semantics).

Definition 1 (PSL syntax). Assume a set A of atomic propositions. We define the PSL
formulae, as follows:

– if p ∈ A , p is a PSL formula;
– if φ1 and φ2 are PSL formulae, then ¬¬¬φ1, φ1 ∧∧∧φ2, φ1 ∨∨∨φ2 are PSL formulae;
– if φ1 and φ2 are PSL formulae, then Xφ1, φ1Uφ2 , φ1Rφ2 are PSL formulae;
– if r is a SERE and φ is a PSL formulae, then r �→�→�→ φ and r |→|→|→ φ are PSL formulae;
– if r is a SERE, then r is a PSL formula.

The X (“next-time”), the U (“until”), and the R (“releases”) operators are called tem-
poral operators. We call the �→�→�→ (“suffix conjunction”), and the |→|→|→ (“suffix impli-
cation”), suffix operators. Notice that, the r not occurring in the left side of a suffix
operator is the strong version of a SERE (r! in the PSL notation). In the following, we
will consider such r as an abbreviation for r �→�→�→ True [4]. We also use Gφ as an ab-
breviation for ¬(True U ¬φ). LTL can be seen as a subset of PSL in which the suffix
operators and the SEREs are suppressed.

We refer the reader to [1] for a formal definition of the semantics of PSL, and in
particular of the entailment relation w |= φ for any infinite word w over a given alphabet
Σ (Σ = 2A ) and PSL formula φ . Notice that we can build Boolean expressions by
means of atomic formulae and Boolean connectives. The language of a PSL formula φ
over the alphabet Σ is defined as the set L (φ) := {w ∈ Σω | w |= φ}. The satisfiability
problem is to check if L (φ) �= /0 for a given PSL formula φ .
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3 Previous Approaches to PSL Satisfiability

Satisfiability of temporal logics [15] has been widely studied. The seminal work of [32]
established the PSPACE-completeness of the satisfiability problem for LTL. Since then,
many techniques have been proposed to solve the problem. The first decision procedures
are based on tableau systems [34,24,23]. The tableau rules exploit the connection be-
tween the syntax of formulae and the tableau structures. The expansion is terminated
by some criteria based either on the recurrence of nodes or on maximal strongly con-
nected components. Temporal resolution has been devoted some attention [16] and has
been used as a basis for works based on theorem proving, as well as inspiration for
SNF-based LTL bounded model checking. Satisfiability of LTL can also be reduced to
check language emptiness of Nondeterministic Büchi automata (NBA) [33] or to check
the existence of a winning strategy for focus games [22].

In particular, if we reduce the satisfiability problem to checking the emptiness of the
language of an NBA, we can exploit model checking engines: it is possible to check
the satisfiability of formula φ by model checking the validity of the negation of φ on a
completely nondeterministic Kripke Structure. This way we can exploit symbolic tech-
niques both for the translation of the formula into Büchi automata and for the emptiness
checking [12]. Alternatively, it is possible to use SAT based bounded model checking
techniques as in [5].

The satisfiability problem has been extended also to other temporal logics. In par-
ticular, [2] studied the satisfiability of richer languages that combine LTL with regular
expressions, such as ForSpec [2] and PSL [1]. The satisfiability of subsets of ITL [18]
has also been studied in [26].

We now concentrate on recent approaches to dealing with satisfiability of PSL,
namely [19,7,10,29,11]. The first step in the so-called monolithic approaches is to con-
vert the PSL problem in a monolithic alternating Büchi automaton (ABA); during the
conversion, semantic simplification steps (such as the elimination of unreachable states,
and restricted forms of minimization by observational equivalence) are applied. The
ABA is then converted into a symbolically represented NBA. In [7], this is done by
means of a symbolic encoding of Miyano and Hayashi [25], and can be applied both
to BDD-based and SAT-based approaches. In [19], an encoding of the ABA that is spe-
cialized for bounded model checking is proposed.

The conversion proposed in [10] is based on the so called Suffix Operator Nor-
mal Form (SONF). The idea is to partition the translation, by first converting a PSL
formula φ into an equi-satisfiable formula in SONF, structured as

∧
i φi ∧∧∧ ∧

j G(p j
I →→→

(r j �→�→�→ p j
F)), where φi are LTL formulae, r j are SEREs, p j

I and p j
F are propositional

atoms, and �→�→�→ is either |→|→|→ or �→�→�→ . Formulae of the form G(p j
I →→→ (r j �→�→�→ p j

F))
are called Suffix Operator Subformulae (SOS’s). The translation first converts the for-
mula in NNF, and then “lifts out” the occurrences of suffix operators, by introducing
fresh variables (intuitively, the p j in the formula above), together with the correspond-
ing SOS. For lack of space, we omit the details regarding the conversion of SOS into
NBA; we only mention that the translation is specialized to exploit the structure of SOS
(see [10] for details).

The translation presented in [29] introduces a new variable for every subformula.
A difference is that the testers of [29] set the new variable to true if and only if the
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Fig. 1. Satisfiability modulo theory schema
for PSL

Fig. 2. The PSL satisfiability algorithm

subformula is satisfied, while in SONF the subformula is triggered by an implication,
and is, as such, more amenable to the exploitation of don’t cares.

In [10], a substantial experimental evaluation is carried out on PSL satisfiability. The
SONF based approach results in dramatic improvements in PSL automata compilation
time. However, on those problems where the ABA construction succeed to build an au-
tomaton within the time limit, the search time is typically in favor of the monolithic
approach. This is mainly due to the fact that in certain examples the semantic simplifi-
cations are extremely effective. In [11], additional improvements over [10] are obtained
by applying cheap syntactic simplification rules, that result in additional savings not
only in search but also in construction time.

4 Boolean Abstraction for Temporal Satisfiability

Consider the temporal satisfiability problem Φ .= (φ1 ↔ (φ2 ∨ φ3)). If it is possible to
show that the set {φ1,φ3} is temporally satisfied by a word w, then φ2 is irrelevant:
intuitively, the truth value of φ2 over w can not affect the truth of Φ . However, all
the automata-based approaches presented in the previous section are going to compile
the formula statically: this means, for instance, that they will generate and search an
automaton taking into account each φi. Information could be potentially disregarded
because of the Boolean structure of the formula is in fact taken into account.

In this paper we propose a new approach that tries to overcome this problem. The
idea, depicted in Fig. 1, is to decouple the search for a temporal model in two interact-
ing, hierarchically connected phases: in the first, we look for a propositionally satisfying
assignment (an implicant) to the Boolean abstraction of the problem; in the second, we
check whether the set of temporal formulae corresponding to the implicant is tempo-
rally satisfiable.

We see a temporal property Φ as a Boolean combination BoolComb(φ1, . . . ,φn),
where φi are distinct temporal formulae. The Boolean abstraction of Φ is
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φ .= BoolComb(A1, . . . ,An), where the Ai are distinct Boolean variables (called the
Boolean abstraction of φi); in the example above, φ is (A1 ↔ (A2 ∨ A3)). We define
an assignment μ for φ as a mapping from each Ai to {True,False,X}. We call μt the
atoms assigned to True, μ f the atoms assigned to False, and μx the atoms assigned to
X(for don’t care). We say that μ propositionally satisfies φ iff the formula obtained by
replacing each occurrence of Ai ∈ μt with True, and each Ai ∈ μ f with False, evaluates
to True. A temporal model for Φ can be seen as an assignment μ satisfying φ , plus a
temporal model for the conjunction of the required temporal formulae.

Theorem 1. Φ is satisfiable iff there exists a truth assignment μ for φ such that Φμ is
satisfiable, where

Φμ
.=

∧

i.Ai∈μt

φi ∧
∧

j.A j∈μ f

¬φ j

This theorem suggests an algorithm to check the satisfiability of a PSL formula Φ , and
in general of any temporal formula. The (disjunctive) Boolean structure of Φ , express-
ible as a disjunction of Φμ , can be used to obtain several (hopefully) smaller automata,
that can then be analyzed individually, with standard language emptiness checks (or
other techniques).

Figure 2 reports the algorithm. The function PSLSAT( ) takes in input a PSL prop-
erty Φ and returns “sat” iff Φ is satisfiable, otherwise it returns “unsat”. ABSTRACT( )
builds the Boolean abstraction for Φ . ImpIter enables enumeration of the implicants
(satisfying assignments) of φ . HASNEXT( ) returns True iff there is at least one (yet un-
explored) implicant left. GETNEXT( ) returns the next such implicant. If there is none,
then the PSL formula is unsatisfiable and “unsat” is returned (line 14). Otherwise, we
iterate for each implicant (lines 4–13). From μ the function CONCRETIZE(μ) builds the
formula Φμ corresponding to the implicant μ . ISPSLSAT( ) is a function that takes a
PSL property and returns “sat” if the property is unsatisfiable, otherwise it possibly re-
turns a reason for the unsatisfiability. This function can simply be any of the functions
reported in Sect. 3. If the Φμ is temporally satisfiable, then we are done and the top
level function returns “sat”. Otherwise, at line ??, the result is analyzed by PRUNE( ),
removing all remaining prime implicants that can be inferred to be unsatisfiable from
the obtained reason. In our implementation reason is a set of implicants corresponding
to a set of unsatisfiable cores of Φμ . Note that the unsatisfiability of Φμ establishes Φμ
itself as an unsatisfiable core.

Relations to Satisfiability Modulo Theories. The high level schema presented above
is largely inspired by the standard approaches to decision procedures for Satisfiability
Modulo Theories (SMT), implemented in a number of systems and for a number of
theories. In SMT, the enumeration of satisfying assignments is often carried out by a
DPLL-based solver, that incrementally constructs an assignment for the Boolean ab-
straction of the formula. A typical technique is early pruning, where the theory solvers
are called on the concretization of the assignment while this is being constructed. The
advantage of early pruning is that it can prune a partial assignment as soon as its con-
cretization becomes theory-unsatisfiable.

Some SMT solvers do attempt to extract don’t care information on the Boolean ab-
straction; the combination with early pruning, however, appears to be nontrivial. Here
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we take a different perspective: we do not rely on early pruning, and try to exploit the
presence of don’t cares as much as possible, by enumerating prime implicants. This
enables us to limit the number of theory constraints (PSL properties) sent to the theory
solver. We base our Boolean enumeration on a BDD package, that provides primitives
for on-the-fly extraction of one prime implicant. This choice is mostly motivated by the
fact that the complexity of the temporal reasoning often dominates the problem, and
thus BDD-based enumeration of prime implicants is not a bottleneck; in the future we
also plan to experiment with DPLL-based enumeration. Another interesting feature is
that “essential literals”, i.e. literals that are common to all prime implicants, can be ex-
tracted at a reasonable cost. Notice that the set of essential literals includes all literals
that can be obtained by standard SAT-based unit propagation and potentially more.

A key issue with SMT is the ability to avoid the same mistake in theory reason-
ing: more precisely, we don’t want to try a prime implicant, if its intersection with a
previously disproved one concretizes to an inconsistent set of temporal formulae. This
problem is addressed by requiring that theory solvers should return a conflict set, i.e. an
inconsistent subset of the problem it was given in input. In DPLL-based SMT, theory
solvers are able to express conflicts in form of conflict clauses, that can be easily inte-
grated with the conflict analysis and back-jumping mechanism. In the next section, we
discuss how to address this problem in the setting of temporal satisfiability.

5 A Theory Solver for Temporal Logic

We now discuss how to design a theory solver. First, we exploit the fact that the input
problem is a conjunction of temporal constraints with fixed polarity. This opens up to
many optimizations. A particularly interesting simplification, given the fixed polarity
of the constraints, is based on the notion of pure literal for PSL (Sect. 5.1). Then, we
propose two new methods for the extraction of unsatisfiable cores (conflict sets) from
the standard PSL satisfiability algorithms, one based on the use of BDD techniques
(Sect. 5.2), and the second based on the use of SAT techniques (Sect. 5.3).

5.1 Pure Literal Simplification for PSL

First, we extend the notion of positive/negative occurrence of a proposition (the notion
of positive/negative occurrence of a proposition in a Boolean expression is assumed to
be known), and then we extend the notion to PSL formulae.

Definition 2. If an occurrence of p in a Boolean expression b is positive [resp., nega-
tive] and b occurs in a SERE r, then that occurrence of p is positive [resp., negative] in
r too.

Let φ be a PSL formula and p a proposition. We define if an occurrence of p in φ is
positive [resp., negative] recursively on the syntax of PSL formulae:

– p is a positive occurrence of p in p
– every positive [resp., negative] occurrence of p in φ is a negative [resp., positive]

occurrence in ¬φ
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– every positive [resp., negative] occurrence of p in φ is a positive [resp., negative]
occurrence in Xφ , ψ ∧φ , φ ∧ψ , ψUφ , φUψ , φRψ , ψRφ , r |→|→|→ φ , and r �→�→�→ φ

– every positive [resp., negative] occurrence of p in r is a positive [resp., negative]
occurrence in r �→�→�→ φ

– every positive [resp., negative] occurrence of p in r is a negative [resp., positive]
occurrence in r |→|→|→ φ

We now define when a proposition is pure. Intuitively, if the proposition is pure, we can
substitute every occurrence with either true or false, depending on the polarity, without
affecting the satisfiability.

Definition 3. Let φ be a PSL formula and p a proposition. p is pure positive [pure
negative, resp.] in φ iff all the occurrences of p are positive [negative, resp.].

Theorem 2. If p is pure positive [pure negative, resp.] in φ , then φ is satisfiable iff
φ [�/p] [resp., φ [⊥/p]] is satisfiable.

5.2 BDD-Based Inconsistency Analysis

The first inconsistency analysis technique exploits a BDD-based computation of the
fair states, i.e. those states that are the starting point of an accepting path. The standard
symbolic procedure to check language emptiness (LE) [12] builds an automaton for the
input formula Φ , computes the set of fair states and intersects it with the initial states:
the resulting set (denoted with [[Φ]]) contains all states that are the starting point of
some path that accepts Φ .

Let φ0, . . . ,φn be temporal formulae with a top-level temporal operator over a set of
atomic propositions AP. For each temporal formula φi, we introduce an activation vari-
able. Let A0, . . . ,An be atomic propositions not in AP. We define a formula Ψ as

Ψ =
∧

i

Ai → φi(x)

The set [[Ψ ]] resulting from applying LE to Ψ is conditioned by the activation vari-
ables: it contains tuples of state variables from the automata of the φi together with
the activation variables Ai. In order to obtain the sets of temporal formulae φi which
are inconsistent, we look at those tuples of activation variables that do not have any
corresponding state in [[Ψ ]].

Formally, suppose that MΨ is an automaton represented with a set V of state variables
and that MΨ encodes the formula Ψ so that a set [[Ψ ]] of states is defined in such a way
that:

1. all states in [[Ψ ]] are the starting point of some path accepting Ψ ;
2. all words satisfying Ψ are accepted by some path starting from [[Ψ ]].

Suppose that V contains a variable vAi for every activation variable Ai such that a state
s assigns vAi to true iff all paths starting from s accept the propositional formula Ai. Let
VA = {vA0 . . .vAn} and V ′ = Vψ \VA. 1

1 Note that the LTL compilation of [12] and the PSL compilation discussed in Section 3 satisfy
all these assumptions.
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Theorem 3. Let UC be a subset of {0, . . . ,k}. Then, there exists a state s in [[Ψ ]] such
that s |= ∧

i∈UC vAi iff
∧

i∈UC φi is satisfiable.

Corollary 1. ∃V ′([[Ψ ]]) = {s ∈ 2VA |∧i.s|=vAi
φi is sat}

¬∃V ′([[Ψ ]]) = {s ∈ 2VA|∧i.s|=vAi
φi is unsat}

Thus, the set ¬∃V ′([[Ψ ]]) encodes all the possible subset of the implicant φ0, . . . ,φn that
are inconsistent. When using SAT-based enumeration of implicants, we should not add
all the clauses corresponding to the above set as blocking clauses. Instead, techniques
to minimize the configurations should be employed. In our BDD-based setting, the
information can be directly fed back to the main search (by a simple conjunction within
the prime implicants enumeration routine) in order to prevent the next iterations of
Boolean enumeration from producing PSL-unsatisfiable configurations.

5.3 SAT-Based Inconsistency Analysis

Standard incremental SAT-based bounded model checkers with completeness, such as
[19], can be used off-the-shelf to determine language emptiness for LTL formulae.
These approaches can be extended to extract an unsatisfiable core from a conjunction
of temporal constraints.

Intuitively, the extraction relies on the ability of a Boolean SAT solver such as Mini-
Sat [14] to check satisfiability of a Boolean formula f under a set of assumed literals
{li}, i.e., (

∧
i li)∧ f . If that turns out to be unsatisfiable, the SAT solver returns a subset

UC ⊆ {li} such that UC ∧ f is still unsatisfiable. Given a prime implicant Φμ we prefix
the formulae φi with activation variables Ai as in the previous section. We then supply
the literals corresponding to the value True for the activation variables at the initial
time step as assumptions to the SAT solver. When a subset of these literals is reported
to cause a conflict, it is straightforward to obtain the corresponding unsatisfiable core
of Φμ . This SAT approach, differently from the BDD-based approach, computes only a
single rather than the set of all unsatisfiable cores for Φμ . In the following we formalize
that intuition.

SAT-based bounded model checking [5] represents a finite path π of length k over a
set of variables V as the valuations of a set of variables V [0,k], where V [0,k] contains
one variable v[i] for each v ∈ V and 0 ≤ i ≤ k.

Given a set of variables V , a linear temporal logic formula φ , and a natural number
k, a SAT-based bounded model checker following the approach [6] in Fig. 3 generates
the following Boolean formulae:2

1. a witness formula |[V,φ ,k]| over (a superset of) V [0,k]. The set of satisfying as-
signments of |[V,φ ,k]| corresponds exactly to the set of paths π [0,k] such that π
represents a lasso-shaped path that satisfies φ .

2 Model checking typically involves both, a model and a temporal logic formula. As we are only
concerned with satisfiability of linear temporal logic formulae, we disregard the model part.
To simplify the presentation we also disregard that (1) the witness formula typically allows
to detect finite violating prefixes of safety properties [21] and (2) guaranteeing termination
requires additional constraints [31,6]. Our implementation handles both.
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Fig. 3. SAT-based language emptiness with unsatisfiable cores

2. a completeness formula 〈〈V,φ ,k〉〉 over (a superset of) V [0,k]. If 〈〈V,φ ,k〉〉 is un-
satisfiable, then φ is unsatisfiable.

Let Φμ be a prime implicant with atoms {φ0, . . . ,φn} and activation variables
{A0, . . . ,An}, and let ψ be Φμ prefixed with activation variables as in the previous sec-
tion. Then we have

Lemma 1. (
∧

i vAi [0])∧|[V ∪VA,ψ ,k]| is satisfiable iff there is a lasso-shaped witness
π [0, l − 1]◦ π [l,k]ω of Φμ .

Lemma 2. Let UC ⊆ {0, . . . ,n}. If 〈〈V ∪VA,ψ ,k〉〉 is unsatisfiable under assumptions
{vAi [0] | i ∈ UC} then

∧
i∈UC φi is unsatisfiable.

Theorem 4. The algorithm in Fig. 3 returns Sat iff Φμ is satisfiable. If it returns (Unsat,
UC), then UC is an unsatisfiable core of Φμ .

6 Experiments

The algorithms described in previous sections have been implemented within the
NUSMV model checker [9]. To show the effectiveness of the proposed approach, we
carried out an experimental evaluation, based on the benchmarks proposed in [10,11],
in [17], and also on some benchmarks collected from the web. The benchmarks from
[10,11] are random properties obtained by applying to randomly generated SEREs
typical patterns extracted from industrial case studies [13]. The benchmarks are
either randomly generated Boolean combinations of such typical properties, or
implications/bi-implications between large conjunctions of such typical properties. The
latter cases model refinement and equivalence among specifications, as is often seen
in requirements engineering. The benchmarks from [17] are properties coming from a
requirements engineering domain, and model whether a given property is implied by a
big conjunction of other properties.

We evaluate the Boolean abstraction approach using BDD-based theory solving, and
SAT-based SBMC theory solving, both based on the SONF algorithm for PSL satisfia-
bility presented in [11]. The same approach was also chosen as a base line for the eval-
uation of performance improvements. (We also considered the possibility to include in
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Fig. 4. Solving time of approaches with and without Boolean abstraction

our comparison other tools, e.g. [22,26], at least for pure LTL problems. However, some
preliminary experiments on moderate-sized problems clearly indicated that the satisfi-
ability based on model checking is vastly superior, at least in terms of the currently
available implementations.) In the experiments, we evaluate the impact of Boolean
abstraction, pure literal simplification, and feedback.

All experiments were run on a 3 GHz Intel CPU equipped with 4 GB of memory
running Linux; for each run, we used a timeout of 120 seconds and a memory limit
of 768 MB. For all methods, we used the settings that turned out to provide better
results in [10,11]. For BDD-based methods, dynamic variable reordering was used, and
forward reachability simplification was enabled on the tableau automata. For SAT-based
methods, we used MiniSAT [14], and we enabled the completeness check based on the
simple path constraint. The complete test suite and an extended version of this paper
can be found at http://sra.itc.it/people/roveri/cav07-bapsl/.

In the following we use method descriptors consisting of up to five parts to describe
an approach. (1) If ba is present, Boolean abstraction is used. (2) sbmc or bdd indi-
cates whether SAT- or BDD-based solvers are used. (3) Presence of fb indicates that
feedback is used. Finally, (4) pt and (5) ppi stand for pure literal simplification applied
at the top and prime-implicant levels, respectively. As an example, babddptppi stands
for BDD-based solver with Boolean abstraction and with the pure literal simplification
applied both to the the top-level formula and to each prime implicant, but without using
feedback. bdd and sbmc mark the respective base line approaches.

In Fig. 4, we report the scatter plots comparing the Boolean abstraction approaches
(no pure literal simplification and no feedback) against the corresponding base line
without Boolean abstraction. The plots show that the Boolean enumeration approach
may lead to advantages in the case of SAT, and is vastly superior in the case of BDDs.

In Fig. 5, we compare Boolean abstraction with and without pure literal simplifi-
cation. The plots show that the pure literal simplification dramatically reduces search
time, both when applied at the prime implicant (row 1) and at the top level (row 2).
Row 3 demonstrates that the application on the prime implicant level can gain an ad-
ditional advantage even after the application on the top level. For our set of examples,
the reverse is not true, see row 4. Rather, there seems to be a small penalty induced
by the overhead of pure literal simplification at the top. In all cases the impact with
BDD-based solvers turns out to be much stronger than with SAT-based solvers.

http://sra.itc.it/people/roveri/cav07-bapsl/
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Fig. 5. Solving time of approaches with Boolean abstraction and combinations of pure literal
simplification at the top- and/or prime implicant levels

We now analyze the impact of feedback. In Fig. 6, upper row, we compare basbmc
and babdd with the corresponding configurations with feedback activated. The plots
show that enabling conflict extraction sometimes pays off, but most often it degrades
the overall performance. However, the degraded performance can be explained with
the fact that the current implementation of the feedback is rather naı̈ve, and uses the
theory solvers as off-the-shelf. Interestingly enough, the generation of conflicts sets
can dramatically reduce the search space, by avoiding to reconsider implicants that
proved to be inconsistent in previous calls. This is clear if we plot the number of prime
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Fig. 6. The impact of feedback

implicants analyzed by the algorithms with and without feedback before determining a
result (see plots of the second row).

For more results see the extended version of this paper, including pure literal sim-
plification for sbmc and bdd, a comparison between SAT- and BDD-based approaches,
and splitting some results of Figs. 4, 6 by the number of prime implicants examined.

7 Conclusion and Future Work

We proposed a novel paradigm for satisfiability of temporal logics, where model enu-
meration applied to the propositional abstraction of the problem interacts with a solver
able to decide conjunctions of temporal formulae. A thorough experimental evaluation
shows that the approach may result in substantial advantages, especially in the case of
BDD-based reasoning, and the advantage mostly leverages on a generalization of the
pure literal simplification rule to PSL. We also defined ways for computing unsatisfi-
able cores from the temporal solvers, and showed that their use may indeed reduce the
search space, currently at the price of a penalty in performance.

In the future, a short term activity is to optimize the computation of conflict sets. In
the longer term, the adoption of an SMT framework for temporal satisfiability suggests
different research directions. First, we will investigate how to enable early pruning by
means of incremental theory reasoning. Second, we will work on ways to combine
BDD-based and SAT-based techniques: in fact, a comparison of the two technologies
(see the extended version of this paper), clearly highlights their complementarity. This
includes not only identifying conditions that will suggest which one to use for which
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implicant, but also trying to let each method benefit from results obtained with the
other. Finally, we will consider to exploit the temporal hierarchy to identify sufficient
conditions for temporal satisfiability.
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weak alternating büchi automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
Springer, Heidelberg (2006)

20. Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model checking for
full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer,
Heidelberg (2005)

21. Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods in System
Design 19(3), 291–314 (2001)

22. Lange, M., Stirling, C.: Focus Games for Satisfiability and Completeness of Temporal Logic.
In: LICS (2001)

23. Lichtenstein, O., Pnueli, A.: Propositional Temporal Logics: Decidability and Completeness.
Logic Journal of the IGPL 8(1) (2000)

24. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer,
Heidelberg (1992)

25. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Sci-
ence 32, 321–330 (1984)

26. Moszkowski, B.C.: A Hierarchical Completeness Proof for Propositional Interval Temporal
Logic with Finite Time. Journal of Applied Non-Classical Logics 14(1-2), 55–104 (2004)

27. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of
hardware requirements. In: DAC (2006)

28. Pnueli, A.: The temporal logic of programs. In: FOCS (1977)
29. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers. In: Misra,

J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer,
Heidelberg (2006)

30. Sebastiani, R., Tonetta, S.: “More Deterministic” vs. “Smaller” Büchi Automata for Efficient
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Abstract. Rarely verification problems originate from bit-level descriptions. Yet,
most of the verification technologies are based on bit blasting, i.e., reduction to
boolean reasoning.

In this paper we advocate reasoning at higher level of abstraction, within the
theory of bit vectors (BV ), where structural information (e.g. equalities, arith-
metic functions) is not blasted into bits. Our approach relies on the lazy Satisfia-
bility Modulo Theories (SMT) paradigm. We developed a satisfiability procedure
for reasoning about bit vectors that carefully leverages on the power of boolean
SAT solver to deal with components that are more naturally “boolean”, and acti-
vates bit-vector reasoning whenever possible. The procedure has two distinguish-
ing features. First, it relies on the on-line integration of a SAT solver with an
incremental and backtrackable solver for BV that enables dynamical optimiza-
tion of the reasoning about bit vectors; for instance, this is an improvement over
static encoding methods which may generate smaller slices of bit-vector vari-
ables. Second, the solver for BV is layered (i.e., it privileges cheaper forms of
reasoning), and it is based on a flexible use of term rewriting techniques.

We evaluate our approach on a set of realistic industrial benchmarks, and
demonstrate substantial improvements with respect to state-of-the-art boolean
satisfiability solvers, as well as other decision procedures for SMT(BV ).

1 Introduction

Historically, algorithmic verification has been based on efficient reasoning engines,
such as Binary Decision Diagrams [7], and more recently on SAT procedures [15],
reasoning at the boolean level. However, the source of verification problems has in-
creasingly moved from the boolean level to higher levels: most designers work at least
at Register Transfer Level (or even higher levels). Thus, the mapping to verification
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engines is typically based on some form of synthesis to the boolean level. With this
process, hereafter referred to as bit blasting, boolean representations are generated for
structured constructs (e.g., arithmetic operators), and even simple assignments result in
fairly large formulae (e.g., conjunctions of equivalences between the bits in the words).

This impacts verification in several ways. For instance, high-level structural infor-
mation is not readily available for a solver to exploit (and arithmetic is typically not
handled efficiently by boolean reasoners). Furthermore, the hardness of the verification
exhibits a dependence of the width of the data path.

The importance of avoiding (or controlling) the use of bit blasting has been strongly
advocated by [18], where the theory of bit vectors is identified as a suitable represen-
tation formalism for practical industrial problems from many application domains, and
the development of effective solvers for SMT(BV ) is highlighted as an important goal
for the research community.

In this paper we take on this challenge and propose a new, scalable approach to
SMT(BV ) based on the lazy SMT paradigm. We have developed a satisfiability pro-
cedure for reasoning in the theory of bit vectors, that leverages the power of boolean
SAT solver to deal with components that are more naturally “boolean”, and activates
reasoning on bit vectors whenever possible.

The procedure has two distinguishing features. First, it is based on the lazy SMT
paradigm, that is, it relies on the on-line integration of a SAT solver with an incre-
mental and backtrackable solver for BV (BV -solver), that allows us to dynamically
optimize the reasoning about bit vectors. For instance, this has the advantage that word
chunks are kept as large as possible, since the splitting is carried out according to the
control path currently activated; this addresses one of the drawbacks of static encoding
methods [4,2], which may result in an unnecessary slicing of bit vector variables.

Second, the BV -solver makes aggressive use of layering, i.e., subsolvers for cheaper
theories are invoked first, and more expensive ones are called only when required, and
on simplified subproblems. The cheapest levels are implemented by means of flexible
use of term rewriting techiques.

Our approach also relies on a preprocessor, aiming at simplifying the problem before
the search, and on a novel boolean enumeration algorithm for circuits that generates
partial satisfying assignments.

We evaluate our approach experimentally on a set of realistic industrial benchmarks.
We analyze the impact of the proposed optimizations, showing that they all contribute to
gaining efficiency. We then compare our solver with several state of the art approaches,
including MiniSat 2.0, the winners of the last SMT competition on bit vectors, and
BAT [13]. The results indicate that our approach, despite the preliminary status of the
implementation, has a great potential: on the hardest instances it is often able to largely
outperform the other approaches.

This paper is structured as follows. In §2 we describe the problem of Satisfiability
Modulo the theory of bit vectors, and in §3 we describe the previous approaches. In §4
we overview our approach. In §5 we discuss the details of the preprocessing, and in §6
we present the BV -solver. In §7 we experimentally evaluate our approach. Finally, in
§8 we draw some conclusions and outline directions for future research.
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2 SMT(BV ): Satisfiability Modulo the Theory of Bit Vectors

A bit vector of a given width n is an array of bits and hence it may assume (decimal)
values in the range [0,2n − 1], accordingly to the binary value expressed by its individ-
ual bits. From now on we will implicitly assume bit vector variables to have a fixed
width, whose maximal value N is determined a priori. In the remainder of the paper
we shall use the notation xn to represent a bit vector variable of width n or simply x
when the width is not important or it can be deduced from the context. Constants will
be denoted either with their decimal or binary value (in the latter case a subscript “b” is
added).

The easiest possible theory of bit vectors (here denoted as BV (ε)) includes only bit
vector variables, constants, and the equality (=) as predicate symbol. Notice that, since
we are dealing with fixed-width bit vectors , any interpretation of the theory must satisfy
implicit finite domain constraints; for instance it is not possible to satisfy formulae of
the kind

�2n+1
i=1

�2n+1
j=i+1 xi

n �= xj
n, because only 2n different values may be represented

with n bits.
More interesting theories may be obtained with the addition of other operators to

BV (ε). The most common ones can be divided into three main sets:

core operators. {[i : j], ::}, named selection (or extraction) and concatenation respec-
tively; i is the most significant bit in the selection ( i ≥ j ). The result of a selection
is a bit vector of size i− j + 1 whose k-th bit is equivalent to the k + j-th bit of the
selected term, for k ∈ [0, i− j+1]. Concatenation returns a bit vector resulting from
the justapposition of the bits of its arguments;

arithmetic operators. (and relations) {+,−,∗,<}, i.e., plus, minus, multiplication by
constant, and less than. The intended semantic is the one of arithmetic modulo 2n,
n being the width of the arguments of the operators;

bitwise operators. { AND , OR , NOT } that apply basic logical functions to corre-
spondent bits of the arguments.

In [9] it is shown a polynomial algorithm to solve BV (ε) augmented with core op-
erators (BV (C)). As soon as other operators are added to the theory, either arithmetic
(BV (CA)) or bitwise (BV (CB)) or both (BV (CAB) or BV ), the problem of decid-
ing a conjunction of atoms becomes NP-Hard [3]. In the following, a bit vector term is
defined to be either a constant, a variable, or the application of an operator to a term. A
bit vector atom is an application of a relation (=, <) to two terms.

Given a decidable first-order theory T , we call the decision problem on T (DEC(T ))
the problem of deciding the satisfiability in T of sets/conjunctions of ground atomic
formulas (T -atoms) and their negations in the language of T . We call a T -solver any
tool able to decide DEC(T ). Satisfiability Modulo (the) Theory T (SMT(T )) is the
problem of deciding the satisfiability of boolean combinations of propositional atoms
and theory atoms. (Consequently, DEC(BV ) and SMT(BV ) represent respectively the
decision and the SMT problem in BV .) We call an SMT(T ) solver any tool able to
decide SMT(T ). Notice that, unlike with DEC(T ), SMT(T ) involves handling also
boolean connectives.
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3 An Analysis of Previous Approaches

In this section we overview and analyze the main approaches for the verification of an
RTL circuit design.

Eager encoding into SAT (bit blasting). The traditional approach (bit blasting) is that
of encoding the problem into a boolean formula, which is then fed to a boolean solver:
words are encoded into arrays of boolean atoms, and BV operators are decomposed
into their gate-level representation, each gate being a boolean connective. Pre- and post-
processing steps can further enhance the performance (see, e.g., [11,13,12,10]). Notice
that the winners of SMT-COMP’06 for SMT(BV ) were all based on bit blasting.

A variant of this approach is followed in [17,2]: abstract representations of an RTL
circuit are generated by abstracting away information on the data path, and the resulting
encoding is then fed into a propositional SAT solver. The approach in [2] is subject to
loss of information, and iterative refinement may be required.

Eager encodings into DEC(BV ). The approaches proposed in [9,14,3] encode the
problem into a set of atomic formulas in (fragments of) BV , which is fed to a BV -
solver. Novel and optimized BV -solvers have been introduced there: particular atten-
tion is paid in optimizing the partitioning of bit vectors due to core operators [14] and
in handling modulo-arithmetic operators [3].

Eager encodings into DEC(LA(Z)). The approaches proposed in [19,6] encode the
problem into a set of literals in the theory of linear arithmetic on the integers (LA(Z))
which is then fed to a LA(Z)-solver: bit-vector variables xi

n are encoded as integer
variables xi ∈ [0,2n − 1], RTL constructs [19]) are encoded, into LA(Z) constraints.

Eager encoding into SMT(LA(Z)). The approach we proposed in [4] encodes the
problem into an SMT(LA(Z)) formula, which is fed to an SMT(LA(Z))-solver. The
design is partitioned into control-path and data-path components: control lines are en-
coded as boolean atoms, and control constructs into boolean combinations of control
variables and predicates over data-path variables; data-path bit-vector variables and lin-
earizable data-path constructs are encoded similarly to the DEC(LA(Z)) approach;
non-linearizable data-path constructs are encoded by bit-blasting, or by means of un-
interpreted functions. Some other constraints are introduced to represent the interface
between the control and data-path lines.

Generalizing a standard terminology of the SMT community, we call the approaches
above, eager approaches, because the encodings into SAT, DEC(BV ), DEC(LA(Z))
and SMT(LA(Z)) respectively are performed eagerly at the beginning of the process,
before starting any form of search.

We now discuss the above approaches. The key issue of the approaches based on
bit-blasting is that they encode bits into boolean atoms, and consequently words into
arrays of boolean atoms and gates into boolean connectives. On the one hand, this al-
lows for a straightforward encoding of all constructs of the BV language; moreover,
as all the search is demanded to an external SAT solver, it allows for selecting the SAT
solver off-the-shelf; more importantly, these approaches allows for exploiting the full
power of modern boolean solvers in handling the search due to the control logic. On
the other hand, a predominant part of the computational effort is wasted in performing
useless boolean search on the bitwise encoding of data-path variables and arithmetical



A Lazy and Layered SMT(BV ) Solver 551

operations (e.g., up to a 232 factor in the amount of boolean search for a 32-bit inte-
ger value). In particular, notice that boolean solvers are typically “bad at mathematics”,
in the sense that reasoning on the boolean encoding of arithmetical operations causes
a blowup of the computational effort. To this extent, we say that the bit-blasting ap-
proaches are “control-path oriented”, in the sense that they are well-suited for problems
where the control-path component dominates, but may suffer when the data-path com-
ponent dominates, in particular when lots of arithmetic is involved.

The key issue of the encoding-into-DEC(T ) approaches is that they encode words
into terms in some first order theory T (typically some fragment of either BV or
LA(Z)), and consequently gates and RTL operators into function symbols of T . On
the one hand, these approaches allows and ad-hoc T -solver for handling each word as
a single term in T , preventing the bit-blasting of the world itself and the consequent
potential blowup in boolean search; moreover, arithmetic operators can be handled di-
rectly and efficiently by an ad-hoc solver. On the other hand, the fact that control bits and
gates are encoded into terms and function symbols respectively prevents from exploit-
ing the full power of modern boolean solvers in handling the search due to the control
logic. To this extent, we say that the encoding-into-DEC(T ) approaches are “data-
path oriented”, in the sense that they are well-suited for problems where the data-path
part dominates, in particular when lots of arithmetic is involved, but may suffer when
the control-path part dominates.

The key issue of the encoding-into-SMT(LA(Z)) approach is that control bits and
gates are encoded into boolean atoms and connectives respectively, whilst words and
RTL operators are encoded into terms, function and predicate symbols in LA(Z) re-
spectively. Remarkably, some bits may have both a control-path and a data-path role,
and have a double encoding. On the one hand, this approach allows for exploiting the
power of the boolean solver embedded in the SMT(LA(Z)) solver in handling the
search due to the control logic, preventing the blowup in boolean search due to the
bit-blasting of data-path words.

On the other hand, it suffers from other important weaknesses: first, some constructs
(e.g., bitwise operators) cannot be encoded into LA(Z), and must bit-blasted anyway;
second, the LA(Z) constraints resulting from the encoding of core BV operations, like
selection and concatenation, turns out to be very expensive to handle by LA(Z)-solvers;
third, many LA(Z) constraints resulting from the encoding of some BV constructs
prevent and efficient propagation of integer values and boolean values, corresponding
to unit-propagation in the equivalent bit-blasted encoding. (These problems are shared
also by the encoding-to-DEC(LA(Z)) approach.) Overall, from our experience the ap-
proach turned out to be less efficient than expected, mostly due to too many and too
expensive calls to LA(Z)-solvers.

We see our encoding-into-SMT(LA(Z)) approach of [4] as a first and very prelimi-
nary attempt to merge control-path-oriented and data-path-oriented approaches. In next
sections we push this idea forward, within the lazy SMT(BV ) framework.

4 A Lazy Approach to SMT(BV )

Our novel SMT(BV ) solver is based on the layered lazy approach to SMT(T ) (see,
e.g., [5]). A preprocessor takes as input a representation of (the negation of) an RTL
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verification problem, and produces a simpler and equivalently-satisfiable SMT(BV )
CNF formula ϕ. The search is based on the boolean abstraction of ϕ, that is a boolean
formula ϕp obtained by substituting every distinct BV -atom in ϕ with a fresh propo-
sitional atom. ϕ is also called the refinement of ϕp. The boolean abstraction ϕp of ϕ
is then fed to a modified DPLL engine, which enumerates a complete list µp

1 , ...,µp
n of

partial truth assignments which satisfy ϕp. Every time a new assignment µp
i is gener-

ated, the set µi of BV literals corresponding to µp
i is fed to a BV -solver. If µ is found

BV -consistent, then ϕ is BV -consistent and the whole procedure stops. Otherwise, the
BV -solver returns the subset η ⊆ µ which caused the inconsistency of µ (called a the-
ory conflict set). The boolean abstraction ηp of η is then used by the DPLL engine to
prune the future boolean search (by backjumping and learning [15]). If at the end of the
boolean search none of the µi’s is found BV -consistent, then ϕ is BV -inconsistent and
the whole procedure stops.

In order to increase the efficiency of the BV reasoning, the BV -solver is organized
into three layers of increasing expressivity and complexity, s.t. the more expensive lay-
ers come into play only when strictly needed [5]. In particular, the DPLL engine invokes
the BV -solver also on assignments under construction (“early pruning”), which can be
pruned if they are found unsatisfiable in BV . As these checks are not necessary for the
correctness and completeness of the procedure, in early-pruning calls only the cheaper
layers of the BV -solver are invoked. (We omit the description of other SMT optimiza-
tions we adopted, which can be found in [5].)
The preprocessor and the BV -Solver are described in details in §5 and §6 respectively.

Notice that, unlike the eager approaches described in §3, our approach is lazy, in
the sense that the encoding is performed by the BV -solver, on demand and ad hoc for
every branch in the search. Thus, only a strict subset of the BV atoms are assigned
by DPLL and passed to the BV -solver, corresponding to only the sub-circuits that are
given an active role by the control variables assigned in the branch. This reduces the
computational effort required to the BV -solver, in particular when expensive arithmeti-
cal constructs come into play, and addresses one of the major source of inefficiency we
encountered with the SMT(LA(Z)) approach [4]. Another advantage is that bit-vector
chunks are kept as large as possible, since the splitting is carried out according to the
control path currently activated; this addresses one of the drawbacks of eager encoding
methods [14,2,4], which may result in an unnecessary slicing of bit-vector variables.

5 Preprocessing

The schema of the preprocessor is outlined in the left part of Figure 1. It consists mainly
on a sequence of six processing steps.

1. Bool to word-1 encoding. The first step addresses the fact that in an RTL circuit
there is not always a clear separation between the data paths and the control paths;
in particular, there is no distinction between control lines and word variables of width
one. This distinction is crucial when our SMT approach is used, because the former and
the latter ones must be encoded respectively as propositional atoms and as terms in the
theory [4].
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PREPROCESSOR SOLVER
Concat. Elimination (match)

LITERAL NORMALIZATION

Concat. elimination (no match)

Variable elimination

Deduction rules

TERM BANK

Evaluation of Ground Terms
Bit−mask Elimination Selection Propagation

Unconstrained variables

Control paths extraction

Bool/word1 encoding

Frontier propagation

ITE expansion

Formula Normalizer

Fig. 1. The architecture of the preprocessor and of the second layer of the solver

The encoder tags all the nodes of the circuit either as bool (“control”) or as word
(“data”): outputs from predicates ( =, < ) and words of width one are tagged bool; the
result of concatenations or arithmetic operators is instead tagged as word. The tagging
information is then propagated back and forth to the remaining parts of the circuit.
(Bitwise operators with bool inputs are converted into boolean operators.) When tag
clashes occurs (e.g., a node tagged bool is in input to a concatenation), they are resolved
with the introduction of a one of two tag-casting operators: bool( w1 ), which casts
a word w1 into a bool, and word1( b ) that translates a bool b into a word of size 1.
bool( w1 ) is translated into w1 = 11, while word1( b ) is replaced by a fresh variable
w1, and the axioms (b → w1 = 11)∧ (¬b → w1 = 01) are added to the global formula.

2. Control-paths extraction. When word1(.) constructs occur in matching positions
in an equality, then the equality is split into a conjunction of equalities, and the equali-
ties between word1 variables are transformed into equivalences between booleans. For
instance, (t1

7 :: word1(p) :: t2
8) = (t3

7 :: word1(q) :: t4
8) is rewritten into the equiva-

lent form (t1
7 = t3

7)∧ (p ↔ q)∧ (t2
8 = t4

8).

3. Propagation of unconstrained variables. Industrial benchmarks often contain un-
constrained variables (i.e., input variables that occur only once in the formula) used
to abstract more complex subparts. An unconstrained variable may assume an arbitrary
value, and hence we can rewrite the original formula φ into an equisatisfiable formula φ′
using the following rules (v, v1 , and v2 are unconstrained variables, f is a fresh variable,
p is a fresh propositional variable):

vn + tn → fn

tn + vn → fn

vn − tn → fn

tn − vn → fn

v1
n :: v2

m → fn+m

NOT vn → fn

v1
n AND v2

n → fn

v1
n OR v2

n → fn

vn = tn → p
vn < tn, t �≡ 0n → p

tn < vn,t �≡ 2n − 1n → p

4. Frontier Propagation and Variable Inlining. When a boolean formula φ is as-
serted to a truth value, the truth value information may be propagated backward to its
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subformulae. For instance, if φ is a conjunction and φ is asserted to true, also its con-
juncts must be true. During this process of frontier propagation it is possible to collect
every equality between a word variable and a constant that has been marked as true
and replace every occurrence of the variable with the constant. The whole process is re-
peated until a fixpoint is reached. (Typically a couple of iterations are enough to reach
convergence.)

5. Enhanced Term-ITE expansion. Term-ITE constructs (ITEt ) are not part of the
language of SMT(BV ), and hence they have to be expanded. The naive approach is to
introduce a fresh variable for every occurrence of a Term-ITE, and then add two im-
plications to the original formula. For instance, t1

n = ITEt(q, t2
n, t3

n) is rewritten into
t1

n = fn ∧ (q → fn = t2
n)∧ (¬q → fn = t3

n). When a formula contains a considerable
amount of Term-ITEs, the generation of a corresponding number of fresh variables neg-
atively affects performance. In many applications, however, Term-ITE constructs are or-
ganized in complex clusters with the structure of a directed acyclic graph. Any maximal
cluster in the formula can be transfomed into a correspondent Boolean-ITE (ITEb) clus-
ter by pushing the external predicate toward the leaves of the DAG. For instance, t1

n =
ITEt(q1, ITEt(q2, t2

n, t3
n), t4

n) can be rewritten into ITEb(q1, ITEb(q2, t1
n = t2

n, t1
n =

t3
n), t1

n = t4
n) saving the introduction of two fresh variables.

6. Normalization. In the language of BV the problem of transforming a generic bit
vector expression into a canonical form is an NP-Hard problem in itself. Weaker, but
effective, polynomial transformations on bit vector terms are performed, for instance
elimination of concatenation with perfect match: t1

m :: t2
n = t3

m :: t4
n is reduced to the

conjunction of t1
m = t3

m and t2
n = t4

n.
During the whole six-step process above, a set of cheap and “local” linear transfor-

mations are applied in order to simplify BV terms.

Evaluation of Ground terms. Whenever a term is composed solely of constants it is
replaced by the constant of the appropriate value; similarly for boolean formulas. For
example, 0100b :: 0001b + 00001001b is evaluated into 01001010b.

Bit-masks elimination. When a constant occurs in a binary bitwise operation, it is
rewritten into concatenations of maximal sequences of 0’s and 1’s. For example, the
constant 00011101b is split as 000b :: 111b :: 0b :: 1b. Then, similar splitting is applied
to the other term, and then the operator is evaluated. For instance, t8 AND 00011101b

is rewritten into 000b :: t[4 : 2] :: 0b :: t[0 : 0].

Selection propagation. Selection operators are propagated through concatenation and
bitwise operators. After this process, only selection on variables, ITE’s or arithmetic
operators can be left.

These transformations are implemented within the “term bank”, a layer that allows
for the dynamic creation of new terms, implementing perfect sharing; both the prepro-
cessor and the solver, described in next section, rely on the term bank, and benefit from
the transformations above.
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6 An Incremental and Layered BV -Solver for SMT(BV )

In this section we describe the BV -solver, that decides the consistency of a set of bit
vector literals, and in case of inconsistency, it produces a conflict set. The BV -solver is
intended to be called on-line, while the boolean search is constructing a boolean model,
in order to apply early pruning. For this reason, it is implemented to be incremental and
backtrackable, i.e., it is possible to add and remove constraints without restarting from
scratch.

The theory solver is layered [5], i.e. it analyzes the problem at hand trying to detect
inconsistency in layers of theories of increasing power, so that cheaper layers are called
first. The first layer is a solver for the logic of Equality of Uninterpreted Functions
(EUF ). Here all bit vector operators (functions and predicates) are treated as unin-
terpreted, the finiteness of the domain and codomain of variables and functions is not
taken into account; all constants are however treated as distinct. The EUF solver [16]
is incremental, backtrackable, produces conflict sets, and has the capability to deduce
unassigned theory literals, which will be propagated to the boolean enumerator. In this
layer, conflicts of the type x < y::z, ¬(x < w), w = y::z can be detected.

The second layer is an incomplete solver, based on a set of inference rules for bit-
vector constraints, that can be applied in an incremental and backtrackable manner. The
main idea driving the design of this solver is that a complete solver is very seldom nec-
essary. Thus, a solver based on a small number of inference rules, that can be efficiently
implemented, may suffice to decide most formulas.

The third layer is a complete solver for conjunctions of bit vector constraints, that
ultimately relies on the encoding into LA(Z) proposed in [6]. In early pruning, the
first two, cheaper layers are active; the third, more expensive layer is activated only
in complete calls, when a definite answer is necessary, i.e. when a satisfying boolean
assignment is being analyzed.

In the rest of this section, we focus on the second layer, which is the most novel com-
ponent of the solver. The architecture of the second layer is depicted in the right part of
Figure 1. The control is organized into a sequence of four main stages, described below.
Each of the stages transforms a set of currently active facts, by means of a syntactic
inference engine, in an incremental and backtrackable manner.

Similarly to the preprocessor, the solver relies on the term bank, so that whenever
a new term is created, the local simplification rules described in §5 are automatically
applied. In addition, whenever a new literal is created, a set of normalization rules is
used to obtain simpler literals. The rules include a subset of the normalizations applied
in the preprocessor which are described in §5; in addition, negated equalities of the
form ¬(t1 = 11) are turned into the positive correspondent t1 = 01. Early termination
is enforced upon detection of inconsistency: whenever a literal is reduced to false, the
computation is immediately stopped. The stages are the following:

Concatenation Elimination (match). The rule for the elimination of concatenation
with perfect match (see Section 5) is applied to all the literals that are amenable for
reduction. We notice that the rule does not introduce any selection operator.

Variable Elimination. Whenever a fact of the form v = t is active, and v does not
occur in t, then it is removed from the active facts, and every occurrence of v in the
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Fig. 2. Comparison between different optimizations. Execution times measured as 0 seconds have
been adjusted to 0.01 seconds.

other active facts is replaced by t. During substitution, new terms may be generated in
the term bank, so that the corresponding local rules are applied, together with the literal
normalization rules.

Concatenation Elimination (no match). All top-level concatenations are simplified,
regardless of the match of the sizes. In particular, each active fact having the form
t1

m:: t2
n = t3

m+n is replaced by t1
m = t3 [m+ n : n] and t2

n = t3 [n−1 : 0]. We notice that
at this stage concatenations may be replaced by selections, requiring thus the creation
of new terms, which in turn fire local rules and literal normalization rules.

Deduction Rules. The final step is the application of the following simplification rules,
until fix point is reached (here “c” denotes a constant).

t1 = t2 t2 = t3

t1 = t3
Tr1

t1 < t2 t2 < t3

t1 < t3
Tr2

c < t1 t1 < t2

c + 1 < t2
Tr3

A ¬A
⊥ Exc.

Some remarks are in order. First, the issue of incrementality and backtrackability
poses nontrivial constraints on the implementation of the stages; in particular, variable
elimination is not applied destructively, and it is, in the current implementation, the
most expensive stage. It is likely that additional efficiency may be achieved by means
of optimizations of the underlying data structures. Second, new rules can be plugged
in with relatively little effort, possibly in a way that is dependent on the application
domain; additional efficiency could be achieved by scoring their activity on the fly,
with a mechanism similar to the VSIDS heuristic for SAT.

Finally, a very relevant issue is the generation of informative (i.e., small) conflict
sets. Currently, if an inconsistency is detected, the leaves of the proof tree can be taken
as a conflict set. However, the conflict sets generated may contain irrelevant literals,
depending on the order in which inference rules are applied. Currently, we start from
the assumptions of the proof and obtain a smaller conflict sets by means of deletion
filtering [8]: one constraint is dropped from the conflict set, and then consistency is
checked again. If the set is still inconsistent, the dropped constraint was irrelevant. This
is repeated until a fix point is reached, and the remaining set of literals can be used as
a conflict set. A method based on proof storing and analysis could be used to improve
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Fig. 3. Scatter plots between MathSAT and the other solvers. Execution times measured as 0
seconds have been adjusted to 0.01 seconds.

the quality of the conflict set; however, an efficient implementation may be nontrivial
to achieve, and it is left as the object of future research.

7 Experimental Evaluation

The approach described in previous sections was implemented within the MathSAT
system, and was experimentally evaluated on industrial verification problems. In this
section we first describe the experimental set up, and report the evaluation in two parts.
First we show the impact of the different optimizations. Second, we compare our solver
against alternative approaches.

Experimental Set Up. We evaluated our approach in a set of industrial benchmarks
provided by Intel. Unfortunately, we can not disclose the benchmarks or any details on
the original application domain.

For the benefit of the reader, in order to give a feeling of their structural properties
we report in a technical report available at [1] for each of the benchmarks the number
of: constants, words of size 1, words of size > 1, equalities, core operators, arithmetic
operators, bitwise operators, ITEs, boolean connectives. We also report the size of the
boolean abstraction of the SMT(BV ) encoding, and the size of the bitblasted formula.

The experiments were run on an Intel Xeon 3GHz processor running Linux. For each
run, the time limit was set to 1 hour and the memory limit was set to 1500 MB.

Evaluation of the Optimizations. In this section we compare the impact of eq-layering
and enhanced ITE expansion on the overall performance of the solver. We compare the
best configuration (the one with all optimizations enabled), against configurations that
have a single option disabled at a time, and against the baseline configuration, where no
optimization is active. Results are shown in figure 2. The results clearly show that each
of the optimizations contributes to improving the performance; we also see that without
them the solver is virtually unable to solve any of the interesting instances.

Comparison with Other Solvers. We compared our approach against the following
systems.

– MiniSat 2.0, considered as the best system based on bit blasting; We are using the
SatELite-like simplifying version as it performed better on these instances.
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Fig. 4. Cumulative distribution functions (survival plots) comparing the solvers in log scale. Ex-
ecution times measured as 0 seconds have been adjusted to 0.01 seconds.

– STP, as one of the winners of the bit-vector division of the latest SMT-COMP com-
petition; STP extends bit blasting with a normalization/preprocessing step, built on
top of an incremental SAT engine. We are using a recent version provided by the
authors of STP.

– Yices 1.0.3, as the other winner of the latest SMT-COMP in the bit-vector division.
To the best of our knowledge, the solver for bit vector reasoning in Yices is based
on bit blasting [10].

– BAT 0.2 is a recently-released system that specializes in structured, modular prob-
lems with memories. It combines a clever encoding of memory term rewriting tech-
niques and reduction to SAT.

The problems were given in input to STP and Yices in SMT format. As for MiniSat,
we generated a DIMACS file both before and after the preprocessing, and we used the
one that resulted in better performance, i.e., the one before preprocessing; surprisingly,
our preprocessor degraded the performance of MiniSat significantly.

Scatter plots of the execution times can be seen in figure 3. As can be seen from the
figure, MathSAT clearly outperforms other solvers on the majority of instances. The
notable exception is BAT which is comparable on the two hardest, although slightly
slower (see Table 1 for the precise time taken).

From the cumulative distribution functions in figure 4 the percentiles can be read.
On the easiest instances Yices is fast, but there are 25 instances it cannot solve within
the time limit. MathSAT, on the other hand, is clearly superior approximately above the
60th percentile.

We now focus on the “hardest” instances, i.e. those instances where at least two
systems used an execution time greater than 60 seconds. In particular, we extended
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Table 1. Execution times for the hardest instances. All times are rounded to the nearest second.

Instance MathSAT STP Yices MiniSat BAT
Intel-35 3 3 72 50 >18000 >18000 42 19 81 80
Intel-37 4 3 84 68 >18000 >18000 47 17 80 80
Intel-39 4 4 133 189 >18000 >18000 35 38 28 28
Intel-76 256 76 >18000 >18000 >18000 >18000 1393 8658 344 348
Intel-77 29 22 2687 1781 >18000 >18000 948 559 245 248
Intel-78 580 252 8451 9699 >18000 >18000 2973 2199 611 611
Intel-79 62 36 >18000 9968 >18000 >18000 1929 8065 240 242

the execution time limit to 5 hours. In addition, we experimented with two different-
translations from the source file format. (For each solver in figures 3 and 4 the trans-
lation corresponding to the best performance has been used.) The results are reported
in Table 1: for each system, we report the result for both encodings. We see that Math-
SAT outperforms the other solvers, regardless of translation. We also notice that the
translation schema may induce substantial differences in performance, in particular for
STP and MiniSat: with the second translation, STP solves one more instance within the
extended time limit, whereas MiniSat performs considerably worse on two instances.
Yices is not able to solve any of these benchmarks within the time with either transla-
tion, while the performance of BAT is remarkably stable.

8 Conclusions and Future Work

The work described in this paper is motivated by the fact that many verification problems,
especially in industrial settings, are naturally described at a level of abstraction that is
higher than boolean – the additional structure is typically used to describe data paths.

We have developed a new decision procedure for Satisfiability Modulo the Theory of
fixed-width bit vectors. The procedure is tailored towards hard industrial problems, and
has two distinguishing features. First, it is lazy in that it invokes a solver on the theory
of bit vectors on the fly during the search. Second, it is layered, i.e. it tries to apply in-
complete but cheap forms of reasoning (e.g. equality and uninterpreted functions, term
rewriting), and deal with complete solvers only when required. As a result structural
information is used to significantly speed up the search, without incurring in a sub-
stantial penalty with reasoning about purely boolean parts. In an empirical evaluation
performed on industrial problems, our solver outperforms state-of-the-art competitor
systems by an order of magnitude on many instances.

In the future, we plan to work on the following problems. First, the current implemen-
tation can be heavily optimized; in particular the generation of conflict sets is currently an
issue. Second, we plan to investigate the application of advanced theorem proving tech-
niques. We would also like to experiment with abstraction refinement techniques, and to
integrate the solver within a CEGAR loop based on the NuSMV model checker.
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