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Abstract. It is generally accepted that knowledge based systems would be smarter
if they can deal with uncertainty. Some research has been done to extend Descrip-
tion Logics(DLs) towards the management of uncertainty, most of which con-
cerned the statistical information such as “The probability that a randomly chosen
bird flies is greater than 0.9”. In this paper, we present a new kind of extended DLs
to describe degrees of belief such as “The probability that all plastic objects float is
0.3”. We also introduce the extended tableau algorithm for Pr��� as an example
to compute the probability of the implicit knowledge.

Keywords: Reasoning under Uncertainty,Description Logics, Model-based Rea-
soning, Ontology, Probabilistic, Knowledge Representation.

1 Introduction

It has often been noted that “probability” is a term with dual use: it can be applied to
the frequency of occurrence of a specific property in a large sample of objects, and to
the degree of belief granted to a proposition[1]. Therefore, the probabilistic extension
of Description Logics should also cover these two semantics.

Recently, several probabilistic description logics have been developed to describe un-
certainty such as P-CLASSIC[2] and P-����(D)[3]. Those probabilistic description
logics focus on capturing the statistical information about the world, since given some
statistical information(say, that 90% of the individuals in concept(or class) C also in
concept D), then we can imagine a chance setup in which a randomly chosen individual
of C has probability 0.9 of being an individual of D[4].

Such kind of probabilistic description logics inevitably cannot describe degree of be-
lief [5,6] such as the probability that class C is a subclass of D is 0.9. In this paper,
we will introduce a kind of probabilistic description logics named PrDLs which could
describe and reason on such kind of information. We will use (C � D)�(0 � � � 1)
to express the degree of belief that class C is a subclass of class D is � and (a : C)�

to express the degree of belief that individual a is in class C is �. In many applica-
tion domains, this kind of probabilistic subsumption semantics is more appropriate. For
example,
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– Dealing with conflict ontologies. On the coming semantic web, there would be
a lot of ontologies on the web which are created by different people. Due to the
limitation of their knowlegde or other reasons, there must be many conflict axioms
and assertions such as one ontology may define the company with no more than
5 employees is small company and another ontology defines the company with
no more than 10 employees is small company. How to make use of such kind of
conflict knowledge? One solution is to assign each axiom a probability as degree of
belief. For example, we could assign degree of belief 0.5 to the former one and 0.4
to the latter one. The remaining fraction 0.1 is left for the other possible definition
about small company.

– Making use of knowledge not being proved yet such as Goldbach Conjecture or
could not be proved such as the definition of small company.

– In the information integration domain, using PrDLs to describe the degree of the
similarity of the concepts in different ontologies or schemas which is called ontol-
ogy mapping[7] or schema matching[8]. For example, if there is a concept Small-
Com in schema A and a concept SCompany in schema B, we may draw a conclusion
that the probability SmallCom � SCompany is 0.9. This conclusion should follow
the degree of belief semantics but not statistical semantics, because if we apply the
statistical semantics, we have to admit SmallCom � SCompany.

Moreover, PrDLs are different from other probabilistic description logics such as P-
CLASSIC not only in semantics, but also in reasoning algorithms. For example, in
PrDLs, given (A � B)0�9 and (B � C)0�8, we can infer (A � C)0�72. On the other hand, in
P-CLASSIC, the statement that the probability class A(resp. B) euqals class B(resp. C)
is 0.9(resp. 0.8) could be written as Pr(A�B	A
B) � 0�9(resp. Pr(B�C	B
C) � 0�8).
However, we cannot draw any conclusion about Pr(A � C	A 
 C).

In the following we will introduce PrDLs in detail. Section 2 describes the founda-
tions of PrDLs. Section 3 introduces the reasoning algorithm of a simple probabilistic
description language Pr��
 which is extended from the ��
 tableaux algorithm[9].
Section 4 is the related work. Section 5 is the conclusion and future work.

2 Foundations

PrDLs are a family of logic-based knowledge representation formalisms with proba-
bilistic extension. They are based on a common family of languages which provide a
set of constructors to build concept (class) and role (property) descriptions.

2.1 Probabilistic Description Languages

PrDLs have the exact same languages with the corresponding DLs. For example, PrDLs
also have ��
 and ����, etc. distinguished by the constructors they provide but
named Pr��
 and Pr����. You can find more introduction in [10].

2.2 Knowledge Base

A PrDL knowledge base is also composed of two distinct part: the TBox and the ABox,
but extended by the probabilistic factors.
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In this paper, we separate the TBox to the C(oncept)Box and R(ole)Box which con-
tain the axioms about concept and roles, respectively.

CBox. In A PrDL CBox 
, an axiom may have the form (Mammal � Animal �
FourLegThing)0�9 Which means the probability that the axiom is true is 0.9. Formally,
let � be a probabilistic description language, C�D � Cdsc(�)�-concepts[11], a CBox

 is a finite, possibly empty, set of statements of the form (C � D)�� 0 � � � 1, called
concept inclusion. Cdsc(�) and Rdsc(�) is defined as the set of concepts and roles of
description language �. �, the probabilistic weight of the statement, denotes the prob-
ability that the statement is true. (C � D)�, called concept equivalence, is an statement
denotes the probability that both C � D and D � C is true is �. Statements in 
 are
called concept axioms. If � � 1, the statements can be abbreviated to C � D or C � D,
called certain concept axioms. Otherwise, the statements are called uncertain concept
axioms.

We can divide the CBox 
 into two parts 
d and 
p. 
d consists of all the certain
concept axioms, while 
p consists of all the uncertain concept axioms. Here we should
not treat (C � D)� as the abbreviation for (C � D)� and (D � C)�, since (C � D)� and
(D � C)� imply (C � D)��max(2� � 1� 0) � � � �� but not (C � D)�. A concept axiom
without its probabilistic weight is called the certain extension of the concept axiom. For
example, C � D is the certain extension of (C � D)�. The certain extension of a CBox

 is a new CBox 
e whose concept axioms are all coming from the certain extension
of the concept axioms in 
.

An interpretation � satisfies a concept inclusion (C � D)�, or � models (C � D)�

(written as � � (C � D)�), if � satisfies its certain extension(which means C� � D�),
and it satisfies a concept equivalence (C � D)� (written as � � (C � D)�), if satisfies
its certain extension (which means C�

� D�). An interpretation � possibly satisfies a
PrDL CBox 
(written as � � 
), if it satisfies all the certain concept axioms in 
. We
also say that � is a possible model of 
.

RBox. We could give the similar definition about RBox of PrDLs. Let � be a prob-
abilistic description language, RN� S N � R role names, R1�R2 � Rdsc(�)�-roles, an
PrDL RBox � is a finite, possible empty, set of statements of the form:
- (RN � F)�� 0 � � � 1, where F � R is a set of functional roles, or
- (S N � R�)�� 0 � � � 1, where R� � R is a set of transitive roles, or
- (R1 � R2)�� 0 � � � 1, called role inclusions; (R1 � R2)�� 0 � � � 1, called role
equivalence, denotes the probability that both R1 � R2 and R2 � R1 is true is �.

ABox. Let � be a probabilistic description language, a� b � I individual names, C �

Cdsc(�) an �-concept and R � Rdsc(�) an �-role. An PrDL ABox � is a finite,
possible empty, set of statements of the form (a : C)�, called concept assertions, or
(� a� b �: R)�, called role assertions. Statements in � are called assertions. If � � 1,
the assertions can be abbreviated to a : C or � a� b �: R and can be called certain asser-
tions. Otherwise, they do not have abbreviated form and is called uncertain assertions.

Knowledge Base. A PrDL knowledge base � is a triple � 
���� �, where 
 is a
CBox, � is a RBox, and � is an ABox. An interpretation � satisfies a knowledge base
� , written as � � � , iff it satisfies 
, � and �; � is satisfiable (unsatisfiable) iff there
exists (does not exist) such an interpretation � that satisfies � .
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2.3 Semantics

We use possible worlds[12,13,14] to describe the semantics of the PrDLs. The approach
is mapping a PrDL knowledge base onto a set of DL knowledge bases, where the models
of each of the latter constitute the set of possible worlds(may be empty set). First, we
give the definition of the DL knowledge bases related to a PrDL knowledge base.

Definition 1 (DL KBs Related to the PrDL KB). Given a PrDL knowledge base
� �� 
���� �. 
d, �d and �d are their certain parts, and 
p, �p and �p are their
uncertain parts. Let 
pe, �pe and �pe be the certain extension of 
p, �p and �p.The
set of DLs D� related to this PrDL is defined as

D� � �� 
d � 
i��d � �i��d � �i � 	
i � 
pe � �i � �pe � �i � �pe�

Obviously, a model of the knowledge base of the DL in D� is also a possible model of
� . All the models of the DL knowledge bases in D� constitute the set of its possible
worlds �� . let M � (�� � �) denote a probability structure, where � is a discrete
probability distribution on �� . Then we can define the notion of an extension [t]M

of the term t (could be a concept description, the certain extension of an axiom in

 � � or the certain extension of an assertion in �) by means of the following rules.
Let w be a world (possible model) of �� ��d a DL knowledge base related to � .

1.If �� � (0� 1]� (t)� � 
 � � � �� then [t]M � � � �(��d�D��w��d��d�t�w�)
2.else if t is a concept, [t]M � 1 � �(��d�D��w��d��d�t�w�) �d � t denotes concept t

is not satisfiable with respect to the knowledge base �d.
Then, we can define the probability that a concept is satisfiable.

Definition 2 (Concept satisfiability). Given a PrDL knowledge base� and a concept
C, the probability that C is satisfiable with respect to � is � iff [C]M � �.

Example 1. Given a PrDL knowledge base � �� 
� ��� �, where 
 � �(Animal �
Creature�MovableThing)0�8� (Mammal � Animal�FourLegThing)0�9�� we have a pos-
sible worlds distribution M1 � (�� �):

P(�1) � 0�05 : ��1
� �a� b� c��Creature�1

� �a� b� c��MovableThing�1
� �a� b��

Animal�1 � �a�� FourLegThing�1
� �c��Mammal�1

� �a�
P(�2) � 0�75 : ��2 � �a� b� c��Creature�2

� �a� b� c��MovableThing�2
� �a� b��

Animal�2
� �a�� FourLegThing�2

� �a��Mammal�2
� �a�

P(�3) � 0�15 : ��3
� �a� b� c��Creature�3

� �a� b� c��MovableThing�3
� �a� b��

Animal�3
� �b� c�� FourLegThing�3

� �b��Mammal�3
� �b�

P(�4) � 0�05 : ��4 � �a� b� c��Creature�4
� �a� b� c��MovableThing�4

� �a� b��
Animal�4

� �b� c�� FourLegThing�4
� �b��Mammal�4

� �c�
P(�k) � 0�00 : �k � � � k � 1� 2� 3� 4

In the possible world �1, only the first axiom is satisfiable and �3 only satisfies the
second axiom. Both axioms are satisfiable in the possible world �2. So

[Animal � Creature �MovableThing]M1 � 0�8
[Mammal � Animal � FourLegThing]M1 � 0�9

And the probability that Mammal � Creature is 0.75 in this model (written as M1 �

(Human � Animal)0�75). Actually, the probability will be range from 0.7 to 0.8 with



648 J. Tao et al.

different probability distributions. But if we assume the independence of the terms in
the knowledge base, PrDL would only yield a point value 0.72.

2.4 Reasoning Tasks

The following are the main reasoning tasks related to the PrDL knowledge base:

– Terminology � Satisfiability: Given a CBox or RBox or both, decide whether their
certain part are satisfiable.

– Assertion � Satisfiability: Given an ABox �, decide whether the certain part is
satisfiable.

– Concept � Satisfiability: Given a knowledge base � and a concept C, compute
the probability that C is satisfiable with respect to � .

– Concept � Subsumption: Given a knowledge base � and concepts C�D, compute
the probability that C is included in D.

– Concept �Membership: Given a knowledge base� , an individual a and a concept
C, compute the probability that a : C.

– Role � Subsumption: Given a knowledge base � and roles R� S , compute the
probability that R is included in S .

– Role �Membership: Given a knowledge base � , two individuals a� b and a role
R, compute the probability that � a� b �: R.

From their definition, we know the first two reasoning tasks are exactly same with
description logics.

3 Inference Algorithm

In this section, we will introduce the probabilistic extension of tableaux algorithm
for the terminologies that only contain axioms whose certain extensions contain only
unique introductions[11] and no cycles, called Pr-Tableaux-Algorithm. We only give
the Pr-Tableaux-Algorithm for Pr��
 which is extended from the tableaux algorithm
for ��
. First, we will introduce some relative definitions.

Definition 3 (Keys and Their Boolean Algebra). K is a set of identifiers, which
also contains the special elements � and � . Given a Pr��
 knowledge base � ��


���� �, whose set of possible worlds is �. Let � : 
 � � � � �� K � ���, with
constrains:1.�(t)� � 
 � � � �(� � 1 �� �((t)�) � �);2.�(t)�� (t�)� � 
 � � �

�(�((t)�) � �((t�)�) �� (t � t� � � � �)  (� � 1 � � � 1)). We define KE to be the
extension of K iff

1�K � KE;
2�if e1� e2 � KE� e1 � e2 � KE and e1  e2 � KE�

Let !(KE����� ��� �) denote the boolean algebra over KE. Then we can define a
mapping � : KE �� 2�. For any e� e1� e2 � KE,we define

1��(�) ��
2��(�) � �

3��(e1 � e2) � �(e1) " �(e2)
4��(e1  e2) � �(e1) � �(e2)
5�if �((t)�) � e and (t)� � 
 � � � �� then �(e) � �w	 w 	� (t)��
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Moreover, we define the probability of an key expression e � KE as P(e) � �(�(e)).
Since axioms may have probabilistic factors, the unfolding rules could not just be

replaced by the right side of the axioms. The new unfolding rule should add a set 	 as
the suffix to each concept name called weight set. The elements of 	 are the keys of ax-
ioms which contribute to generating the concept related to 	. The concept with weight
set is called weighted concept. We consider concept name CN to be the abbreviation of
CN # ���. So weighted concept is the generalization of concept. Then, we will use the
weighted concepts as the basic elements during the inference. Formally

Definition 4 (Weighted Concepts). Given a Pr��
 CBox 
, let CN � C and 	 �

KE. CN #	 is called weighted concept name. Weighted concept descriptions in Pr��

are formed according to following syntax rule:

C�D �� CN # 		� # ���	� # ���	$C	C � D	C 
 D	�R�C	�R�C

Let WCdsc(�) denotes the set of all weighted concepts of knowledge base � . Then
we can define a mapping 
 : WCdsc(�) � 2K(� ) as


(C) � �e	e occurs in C�
Furthermore, we define P(C) � P(

�

(C)) � �(�e	e occurs in C�). We can see the pos-

sibility structure M will affect the value of P(C). Similarly, we could define weighted
roles by the exactly same way. So we won’t describe it here.

We consider CN #	 and CN #� are different weighted concepts if 	 � � and RN #	

and RN # � are different weighted roles if 	 � �.
We should also update the unfolding rule as follows:

Definition 5 (Unfold-Rule). Given a Pr��
 CBox 
, CN # 	 is a weighted concept
names. If there exists an axiom (CN � C)� � 
 whose key is e, we can unfold CN # 	

with following rules:
1. Replace CN by C;
2. Let 	�

� 	 � �e�;
3. Replace each concept name DN appeared in C by DN # 	��

Example 2. Given A CBox 
 � �(CN1 � CN2 � CN3)0�9� (CN2 � �R�CN4)0�3�

�(CN1 � CN2 � CN3) � e1� �(CN2 � �R�CN4) � e2. Concept CN1 
 CN4 can be
unfolded to

(�R�CN4 # �e1� e2� � CN3 # �e1�) 
CN4 # ���

Definition 6 (Operator +). Given a weighted concept description C and a weight set
	, we define an operator “+” between them. The semantic of operation “+” as C �

	 � C�, where C� is a weighted concept description derived from C by replacing each
weighted concept name CN #� appeared in C by CN #	 � �.

Definition 7 (R-successor). Given a completion tree, node y is called an R-Successor
of node x if there exists some weighted role R #	 � �(� x� y �).

Given a concept D in NNF and a CBox 
, We assign a key ei to each axiom in 
 follow-
ing Definition 3. We can expansion D by the expansion rules shown in Table 1(C�C1

and C2 are weighted concepts). The expansion procedure won’t stop until there is no
rule could be applied.Actually, we could get a set of completion tree % � �T1� ���� Tn�
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by 
-rule. Next, we are able to compute the probability that concept description D is
satisfiable according to these completion tree. First, we should redefine the clash.

Definition 8 (Possible Clash). Let T be a completion tree for concept D. If for some
CN � C and x of T, �CN # 	�$CN # �� � �(x), T is said to contain a possible clash
c(written as T 	�p c).

Let 
(c) � 	 � �, then the probability clash c is true is P(c) � P(
�

(c)).

Given a weighted concept C of knowledge base � , let % is the set of all the comple-
tion trees generated by the Table 1. If there exists a completion tree T � % which has
no possible clash, the probability C is satisfiable is 1(written as [D]M � 1). Otherwise,
2. [D]M � 1�the probability that every T � % has a clash. So the equation can be

rewritten to [D]M �

�
1 �T � % �T has no possible clash
1 � P(

�
T�� (

�
T ��pc c)) else

According to definition 8,
�

T�� (
�

T ��pc c) could be translated to equivalent boolean
expression of KE(�). So we could transform it to disjunction normal form(DNF) of
keys. Let it be K1  K2  � � �  Kn. If we assume the axioms are independent with each
other, P(

�
T�� (

�
�c	T 	�p c�)) can be computed by the following formula

P(
�
T��

(
�

T ��pc

c)) � P(K1  K2  � � �  Kn) �
n�

i�1

(�1)i	1(
�

1� j1����� ji�n

P(e j1 � � � � � e ji))

We could change the form of
�

T�� (
�

T ��pc c to
�n

i�1
�
�ci1� ���� cim��m � 	% 	� n ��

T�� 	�c	c � T �	. �ci1� ���� cim� is a set of the possible clashes and each of them comes
from different completion trees in % . The meaning of such kind of set is a clash com-
position that could make the concept unsatisfiable. The probability that any one of such
kind of composition is true is the probability that the concept is unsatisfiable. We call
such composition possible clash composition. Given a possible clash composition �,
We define


(�) �
�

c�� 
(c).
Finally, we can prove that the probability computed by the Pr-Tableaux-Algorithm is
equal to the concept extensions introduced in 2.3.

Table 1. The tableaux expansion rules for Pr���

Name Condition Action
�-rule 1.C1 �C2 ∈ L(x), 2.{C1,C2} � L(x) L(x) = L(x) ∪ {C1,C2}
�-rule 1.C1 �C2 ∈ L(x), 2.{C1,C2} ∩ L(x) = Φ L(x) = L(x) ∪ {C} for some C ∈ {C1,C2}
∃-rule 1. ∃R.C ∈ L(x), create a new node y with

2. x has no R�ξ(C)-successor with C ∈ L(y) L(< x, y >) = R � ξ(C) and L(y) = {C}
∀-rule 1. ∀R.C ∈ L(x), L(y) = L(y) ∪ {C}

2. there is an R�Θ-successor y of x with
C � L(y)

Unfold-rule 1.CN � Θ ∈ L(x)(resp. ¬CN � Θ ∈ L(x)), L(x) = L(x) ∪ {C + {Θ ∪ {e}}}
2.(CN ≡ C)α ∈ C, ε((CN ≡ C)α) = e, (resp. L(x) = L(x) ∪ {∼ C + {Θ ∪ {e}}})
and C + {Θ ∪ {e}} � L(x)
(resp. ∼ C + {Θ ∪ {e}} � L(x))
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Lemma 1. Given a Pr��
 knowledge base � �� 
� ��� � with the probabil-
ity structure M �� �� � � and the set of related ��
 knowledge bases D� �

��D
1 � �����

D
n �, let DC

�
� ��d �� 
d� ��� � 	�d � C � �d � D� �. Then we have

[C]M � 1 � P
	�

�d�DC
�

	�
t�
d�(t)��
 �((t)

�)



�

Proof. According to Definition 3, For any �d � DC
�

, we have �
	�

t�
d�(t)��
 �((t)
�)


�

�w	w � �d� then,

[C]M � 1 � �(��d�DC
�

�w	w � �d�)

� 1 � �

	
��d�DC

�

�

	�
t�
d�(t)��
 �((t)

�)




� 1 � �

	
�

	�
�d�DC

�

	�
t�
d�(t)��
 �((t)

�)





� 1 � P
	�

�d�DC
�

	�
t�
d�(t)��
 �((t)

�)




For simplicity, we define 
(�d) � ��((t)�)	t � 
d � (t)� � 
�, then [C]M � 1 �
P(
�
�d�DC

�

(
�

(�d))

Lemma 2. Given a Pr��
 knowledge base � �� 
� ��� � with the probabil-
ity structure M �� �� � � and the set of related ��
 knowledge bases D� �

��D
1 � �����

D
n �, let DC

�
� ��d �� 
d� ��� � 	�d � C � �d � D� �. For any �d � DC

�
,

its clash composition �d generated by the ��
 tableau algorithm has corresponding
possible clash composition� generated by the Pr��
 tableau algorithm (which means
each possible clash c in � has a corresponding clash cd in �d only without weight set)
and 
(�) � 
(�d)

Proof. First, we could prove that each completion tree Td of C with respect to �d �

DC
�

which is generated by the ��
 tableau algorithm is a “sub-tree”(with same root
node) of some T generated by Pr��
 tableau algorithm without considering the weight
set, since Pr��
 tableau algorithm is the extension of the ��
 tableau algorithm.
Similarly, each T generated by Pr��
 tableau algorithm must have a corresponding
Td of C with respect to �d which is a “sub-tree” of T . So each concept D occurred in
each node of Td could be found its weighted version D # 	 in the corresponding node
of T and 	 � 
(�d). Then each clash cd occurred in Td has a corresponding possible
clash c in T and 
(c) � 
(�d). Consequently, the clash composition �d of Td has a
corresponding possible clash composition � of T and 
(�) � 
(�d).

Lemma 3. Given a Pr��
 knowledge base � �� 
� ��� � with the probability
structure M �� �� � �, a concept C and the set of related ��
 knowledge bases
D� � ��D

1 � �����
D
n �, let DC

�
� ��d �� 
d� ��� � 	�d � C � �d � D� �. If � is a pos-

sible clash composition generated by Pr��
, then there is a related ��
 knowledge
base �d with 
(�d) � 
(�) and �d � DC

�
.

Proof. According to the tableau algorithm of Pr��
 we have introduced, the set of the
axioms 
 � �(t)�	(t)� � 
 � �((t)�) � 
(�)� is sufficient for generating the possible clash
composition �. So the related ��
 knowledge base �d whose axioms all come from
the certain extension of the axioms in 
 must be able to generate a corresponding clash
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composition by the ��
 tableau algorithm since it is the specialization of Pr��

tableau algorithm. Then, �d � DC

�
.

Theorem 1 (Correctness of the Algorithm). The probability computed by the Pr-
Tableaux-Algorithm introduced in this section is equal to the concept extensions defined
in section 2.3

Proof. According to Lemma 1, we only need to prove that P(
�
�d�DC

�

(
�

(�d)) �

P(
�

each � of �
�
�) where � is a possible clash composition.

According to Lemma 2, we could obtain P(
�
�d�DC

�

(
�

(�d)) � P(

�
each � of �

�
�)

According to Lemma 3, we could get P(
�
�d�DC

�

(
�

(�d)) & P(

�
each � of �

�
�)

4 Related Work

Halpern et al. have done much research on degree of belief(subject probability) and sta-
tistical information(object probability)[15,16]. They mainly focus on the relation ship
between these two kind of uncertainty[16,17,18], belief change[19,20] and probabilistic
reasoning[13,4]. For description logics, Heinsohn[21] presents a probabilistic extension
of the description logic ��
, which allows to represent generic statistical information
about concepts and roles, and which is essentially based on probabilistic reasoning in
probabilistic logics, similar to[14,22]. Jaeger[23] gives a probabilistic extension of the
description logic, which allows for generic (resp., assertional) statistical information
about concepts and roles (resp., concept instances), but does not support statistical in-
formation about role instances. The uncertain reasoning formalism in [23] is essentially
based on probabilistic reasoning in probabilistic logics, as the one in [21]. The work
by Koller et al. [2] gives a probabilistic generalization of the CLASSIC description
logic. Like Heinsohn’s work [21], it is based on inference in Bayesian networks as un-
derlying probabilistic reasoning formalism. Giugno presents a probabilistic extension
of ����(D)[3], which allows to represent generic statistical knowledge about con-
cept and roles and the assertional statistical knowledge about concept and role instance.
Baader extends Description Logics with modal operators in [24]to describe belief but
not degree of belief.

5 Conclusion and Future Work

We have presented a probabilistic version of description logics–PrDLs which are used to
represent the degree of belief of the axioms and assertions in the knowledge base, which
are very useful in many application area. We also introduce an inference algorithm for
Pr��
 to discover the possible implicit knowledge.

In future, we will improve our work in two aspects. First, develop the inference
algorithms which are suitable for more expressive probabilistic description languages
such as the knowledge bases with none empty RBox, the knowledge bases with general
inclusions and so on; Second, combine PrDLs with other probabilistic description logics
describing statistical information.
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