
A Hybrid Genetic Algorithm for the Cut Order
Planning Problem

Ahlem Bouziri1 and Rym M’hallah2

1 Institut Supérieur des Arts Multimédia, Manouba University, 13 rue des
Entrepreneurs, Charguia II, Tunisia

ahlem.bouziri@wanadoo.tn
2 Department of Statistics and Operations Research, Kuwait University, P.O. Box

5969, Safat 13060, Kuwait
mhallah@kuc01.kuniv.edu.kw

Abstract. This paper proposes a new hybrid heuristic to a difficult but
frequently occurring problem in the apparel industry: the cut order plan-
ning (COP). This problem consists of finding the combination of ordered
sizes on the material layers that minimizes total material utilization. The
current practice in industry solves COP independently from the two-
dimensional layout (TDL) problem; i.e., COP estimates the length of
the layout required to cut a particular combination of sizes instead of
packing the pieces on the fabric and determining the actual length used.
Evidently, this results in a build up of estimation errors; thus increased
waste. Herein, COP and TDL are combined into a single problem CT.
The resulting problem is modeled and solved using a hybrid heuristic
which combines the advantages of population based approaches (genetic
algorithms) with those of local search (simulated annealing). The exper-
imental results show the validity of the proposed model, and the sizeable
savings it induces when solved using the proposed hybrid heuristic.

Keywords: hybrid heuristics, simulated annealing, genetic algorithms.

1 Introduction

Cut order planning (COP) is a frequent problem in the apparel industry. It con-
sists of finding the best combination of the layout of the patterns of the sizes
ordered by the clients on a rectangular fabric of fixed width W. The best com-
bination optimizes material utilization; that is, minimizes L, the total length
of fabric used to generate all the pieces of the patterns included in the order.
An apparel manufacturing order undergoes four stages. First, a COP problem is
solved. Second, Two-Dimensional Layouts (TDL) are generated. Third, the lay-
outs are cut and divided into lots. Fourth and last, the lots are sewn, assembled
and packaged. Currently, stages 1 and 2 are undertaken independently. In stage
1, human experts or dedicated software solve COP using an estimated length of
the layout of a combination of sizes. The estimate is generally a coarse approx-
imation that is read from catalogs prescribing material usage of basic models.

H.G. Okuno and M. Ali (Eds.): IEA/AIE 2007, LNAI 4570, pp. 454–463, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Hybrid Genetic Algorithm for the Cut Order Planning Problem 455

The COP solution is then transferred to the TDL room where it is packed on
rectangles of fixed width, and maximal length l where l is the length of the
cutting table.

An order, in the apparel manufacturing process, consists of one or more gar-
ments (eg., a pair of pants, a shirt, a suit, etc.) in varying colors, sizes and
quantities per size per color. The order is split according to garment type and
color into suborders. Since different colored clothes are layered separately and
different garments are treated separately (to minimize the risk of errors during
assembly), hereafter, an order denotes a suborder. An order is characterized by
its set S of sizes, their number n, and the order quantity qs for size s ∈ S.

A garment is a finite set G of pieces which when assembled according to a
preset procedure yield the garment. The dimensions of each piece depend on
its size s. Let Gs denote the set of pieces of a garment in size s ∈ S. Each set
Gs, s ∈ S, is duplicated qs times. The duplicated sets are positioned on a fabric
of known fixed width W as to minimize the total length L. The positioned pieces
are cut using a computer guided cutter. Since the length of the cutting table is
finite, and the set up for the cutting stage is high, producers choose to layer
the cloth and to position sets of pieces on layered cloth. The automatic guided
cutter works best when the number of layers or ply height is in the interval [h, h],
where h and h are respectively minimal and maximal ply height.

The ply height is an additional variable of the problem. For instance, if the
order requires producing 20 blouses of size XP , then GXP can be positioned 20
times on a fabric of a single layer, or 4 times on a fabric that has 5 plies, or only
once on a fabric having 20 plies, depending on l, h, h, and on the overall efficiency
of the layout. The layered cloth is called a section. An order may be split into
one or more sections; each having a different number of plies and different sets.

Formally, the problem can be stated as follows. Given a set S of sizes, the sets
Gs, s ∈ S of pieces composing the garment, the fabric width W, the minimum
and maximum ply height h and h, and the maximum length of the cutting table
l, find the configuration that minimizes the total length L of used fabric. A
configuration is completely specified by the number of sections p required to
position all the pieces, where the sections need not be identical. Each section
i, i = 1, . . . , p is characterized by its ply height hi, the number of occurrences
Ois of each size s ∈ S, and the shortest length layout li of the pieces it contains
when set on a rectangle of fixed width W . The configuration is feasible if li ≤ l,
and h ≤ hi ≤ h, i = 1, . . . , p. The total length of the layout L =

∑p
i=1 hili.

In industry, markers solve COP using cataloged li values. Herein, li, i =
1, . . . , p is determined by solving a two dimensional layout problem for section
i. That is, stages 1 and 2 of the apparel manufacturing process are combined
into a single COP-TDL problem. The resulting problem, denoted CT, yields an
overall total length that is more accurate than that estimated by markers. Fig. 1
provides an example of the input and output of CT for an order consisting of
n = 6 different sizes: XP, P, M, T, XT, XXT with qXP = 20, qP = 25, qM =
35, qT = 30, qXT = 20, and qXXT = 10.

456 A. Bouziri and R. M’hallah

Fig. 1. Input and Output for COP

CT, which is a complex combinatorial problem, is NP-complete. It is an ex-
tension of COP, which is in turn NP-complete [7]. Herein, CT is approximately
solved using genetic annealing (GAn), a hybrid heuristic that combines the ad-
vantages of local and global optimization procedures.

This paper is organized as follows. Section 2 gives a brief review of the COP
and TDL literature. Section 3 describes the solution configuration. Section 4 de-
tails GAn. Section 5 assesses the performance of GAn and evaluates the potential
savings induced by combining COP and TDL. Finally, Section 6 summarizes this
research and indicates possible extensions.

2 Literature Review

TDL, which is a Cutting and Packing Problem, consists of finding the minimal
length layout of a set of (ir)regular two-dimensional pieces on a stock sheet of
finite width but infinite length. The layout must not contain any overlap. Even
though NP-hard, TDL has been widely studied in the literature [1] - [4], [6],
[8]. Proposed methods fit into one of two classes. In the first class, prior to
being packed, irregular items are nested into regular shapes. In the second class,
irregular pieces are packed using complex geometric computations [6].

COP has been addressed by ElOmri [5] and Jacobs-Blecha et al. [7] who
focused on the cut order planning stage of the manufacturing process. They both
assumed that the length of the layouts are catalogued. Jacobs-Blecha et al. [7]
concluded that the cut order cost is the most dominant component of the cutting
process. M’Hallah et al. [9] provided the example of a local industry which sells
its value added for a $1/ garment, making a net profit of $.4/ garment while

A Hybrid Genetic Algorithm for the Cut Order Planning Problem 457

its estimated cost for cloth is $17.5/ garment. Reducing waste by 6% multiplies
the original net profit by a factor of 3.5. Any saving on cloth represents a large
percentage of the gross gain and a further larger percentage of the net gain.
Herein, it is assumed that the cost of fabric is the dominant cost of COP and
that minimizing the total COP cost minimizes the total length of the layout.

3 Solution Configuration

A solution to CT is represented by a (p × n + 2) matrix. The first n columns
contain Ois, i = 1, . . . , p, s ∈ S. Columns n + 1 and n + 2 contain respectively
hi and li, i = 1, . . . , p. The number of columns of the matrix is constant but the
number of sections is not necessarily identical for all feasible solutions. A solution
to CT is feasible if it satisfies the demand constraints; i.e., if

∑p
i=1 hiOis =

qs, s ∈ S. The fitness of a feasible solution is the total length of fabric needed
to cut all its sections: fitness =

∑p
i=1 hili. The solution corresponding to the

output of Fig. 1 is given by the 3 × 8 matrix
⎛

⎝
0 0 1 1 0 0 30 l1
1 1 0 0 1 0 20 l2
0 1 1 0 0 2 5 l3

⎞

⎠ .

The first row of the matrix represents section 1, which includes two sizes, and
has a ply height equal to 30 and a length l1. The third column shows that size
M occurs once on section 1 (i.e., O1M = 1) but does not appear on section 2
(i.e., O2M = 0) and appears once on section 3 (i.e., O3M = 1). The sets of pieces
assigned to any section i, i = 1, . . . , p, are packed using the sequential best local
position (BLP) layout procedure of [6].

4 The Hybrid Approach

CT is solved using a hybrid heuristic: genetic annealing, which combines the
advantages of global and local optimization. It guides the diversification / in-
tensification of the search of the solution space. During the first generations, it
favors diversification, but gradually increases intensification by imposing stricter
criteria for the inclusion of offsprings into the population as time evolves.

GAn is implemented using a low-level teamwork hybridization [10]. It explores
several regions of the solution space using a population based meta heuristic,
which in this case is GA. An offspring is immediately admitted into the popu-
lation if its fitness is lower than that of its parent. However, a non-improving
offspring is allowed into the population if and only if its fitness is less than its
parent’s threshold level. Initially, the threshold level of an individual is its fitness.
As it proliferates, an individual is either replaced by its offspring -if it produces a
fitter offspring- or has its threshold decreased; that is, its endurance is increased
allowing it to further proliferate. At each iteration, a set composed of the fittest
chromosomes is subject to intensification around its immediate neighborhood
using SA. Formally, the adopted GAn proceeds as follows.

458 A. Bouziri and R. M’hallah

Initialization.
1. Create an initial population that has popsize random chromosomes.
2. Compute the fitness Lj of each chromosome j and set its threshold level

θj = Lj , j = 1, . . . , popsize.
Iterative Step.
For generation = 1, ng,

1. For j = 1, popsize,
(a) Let chromosome j be Parent1 and let Child be the offspring obtained

by mutation or crossover of Parent1.
(b) Compute Lc, the fitness of Child.
(c) If Lc < Lj , then replace chromosome j by Child, set θj = Lc,
(d) Else,

– Set τ0 = 0.6, and θj = θj ∗ α, where α ∈ [.95, .99].
– If exp(−θj) > Rand[0,1], replace chromosome j by Child, and set

θj = Lc.
2. Select the nSA/2 fittest chromosomes of the current population
3. Set τ0 = 0.2.
4. For j = 1, nSA/2,

-- Apply SA with chromosome j being the initial solution and T0 such

that τ0 = e
− |Δ|

T0 , where Δ is the average variation of the fitness of the
chromosomes of the current population from their threshold levels.

5. Randomly pick nSA/2 chromosomes from the current population
6. Set τ0 = 0.6.
7. For j = 1, nSA/2,

-- Apply SA with chromosome j being the initial solution and T0 such

that τ0 = e
− |Δ|

T0 , where Δ is the average variation of the fitness of the
chromosomes of the current population from their threshold levels.

Crossover produces a new chromosome (offspring or Child) from two par-
ents: Parent1 and Parent2. The Child inherits part of its genes from the p1
genes of Parent1 and is completed according to the p2 genes of Parent2, as
explained below.

1. Pick two integer random numbers i1 and i2 from the discrete uniform [1, p1].
2. Copy sections i1 through i2 from Parent1 to the first i2 − i1 + 1 genes of Child.

3. Set the current number of sections of Child pChild = i2 − i1 + 1, and set i = 1.

4. Calculate the residual demand for Child: rs = qs −
∑pChild

i=1 Oishi, s ∈ S.
5. If max

s∈S
{rs} = 0, stop.

6. Generate for Child a new gene i′ = pChild + i, whose hi′ = min{hParent2i , LCD(rs :
rs > 0, OParent2

is > 0, s ∈ S)}, with Oi′s = rs
hi′

, s ∈ S, where hParent2i is the ply

height of section i of Parent2, and OParent2
is is the number of occurrences of

size s in section i of Parent2.
7. Increment i by 1. Goto step 4.

A Hybrid Genetic Algorithm for the Cut Order Planning Problem 459

To illustrate how crossover proceeds, consider the example of crossing Parent1
⎛

⎜
⎜
⎝

1 0 0 0 0 1 10 l1
0 1 0 0 1 0 20 l2
0 0 1 1 0 0 30 l3
2 1 1 0 0 0 5 l4

⎞

⎟
⎟
⎠

and Parent2 (
2 2 3 3 2 1 10 l1
0 0 1 1 0 0 5 l2

)

.

Let i1 and i2, generated from the discrete Uniform [1, 4], be 2 and 3, respectively.
Child inherits genes 2 and 3 of Parent1:

(
0 1 0 0 1 0 20 l2
0 0 1 1 0 0 30 l3

)

.

Computing the residual demand yields: rXP = 20, rP = 25 − 20 = 5, rM =
35 − 30 = 5, rT = 30 − 30 = 0, rXT = 20 − 20 = 0, and rXXT = 10 −
0 = 10. Since max

s∈S
{rs} = 20 > 0, then Child is completed using the genes of

Parent2. The third section of Child has h3 = min{20, 5}, where 20 is the ply
height of section 1 of Parent2, and 5 = LCD(rs : rs > 0, Ois > 0, s ∈ S) =
LCD(rXP , rP , rM , rXXT) = LCD(20, 5, 5, 10).

Computing O3s = rs

h3
yields O3XP = 4, O3P = 1, O3M = 1, O3XXT = 2, and

rs = 0, s ∈ S. Therefore, Child has only 3 sections:
⎛

⎝
0 1 0 0 1 0 20 l2
0 0 1 1 0 0 30 l3
4 1 1 0 0 2 5 l′3

⎞

⎠ .

Mutation is applied to some of the offspring population to make them better
adapted to their new environment. It is not intended to greatly disturb the
current structure of an offspring. As such, mutation moves a size from its original
section to another section. A formal statement of the mutation operator follows.

1. Randomly choose a section i of the p sections of Parent.
2. Randomly choose a size s from set S′ = {s ∈ S : Ois > 0}.
3. Compute the residual demand resulting from moving s from section i, i.e.,

rs = hiOis.
4. Find a section j, j = 1, . . . , p, j �= i, whose hj is a divider of rs.

– If only one such section exists, set Ojs = Ojs + rs
hj

.

– Else if more than one section exist say j and j′, then add size s to the
section whose total length will be smallest when s is added.

– Else if no such section exists, set J = {j = 1, . . . , p, j �= i : hj ≤ rs}.
∗ If J �= ∅, dispatch rs among the sections of J such that

∑

j∈J

ΔOjshj =

rs, where ΔOjs is the additional number of occurrences of size s in
section j.
∗ If J = ∅, create a new section p + 1 whose hp+1 = hi, Op+1s = Ois, and
Op+1s′ = 0, s′ ∈ S, s′ �= s.

460 A. Bouziri and R. M’hallah

The Genetic parameters are the population size popsize, the number of
generations ng, and the probability of mutation Pm. A large population size
insures the diversification of the population while a large number of generations
gives chromosomes a higher chance of strengthening their better genes. However,
the increase of these two parameters increases runtime. A good tradeoff between
diversification and intensification is therefore needed. We opted for a moderately
large population size and a relatively small number of generations; thus, opting
for diversification of the search in the solution space. Intensification is achieved
by allowing the best chromosomes to proliferate at least once and to be mutated
more frequently than lower quality chromosomes. Indeed, Pm is set inversely
proportional to the rank of the chromosome in the population.

Simulated Annealing (SA) is a meta strategy for optimization by local
improvements. It is a local search heuristic that allows occasional uphill moves.
It allows moves from a current solution to a not necessarily improving one in
hope that it leads to a minimal cost one. The process becomes more selective
and accepts fewer non-improving solutions as it ages or gains experience. A
description of SA follows.

1. Let Sol be the initial solution and fSol. its fitness
2. Let T0 be the initial temperature
3. Set Sol∗ = Sol, and f∗ = fSol.
4. Fix the size of the neighborhood M (i.e., M is the length of the

plateau).
5. Set k = 0.
6. Repeat M times.

– Obtain a neighboring solution NSol, and evaluate its fitness fNSol .
– If Δ = fNSol − fSol ≤ 0 then

-- Sol = NSol, and fSol = fNSol ;
-- if fNSol < f∗, then Sol∗ = NSol, and f∗ = fNSol ;

– else if exp(−Δ
Tk

) > Uniform[0, 1], then
-- Sol = NSol, and fSol = fNSol .

7. Incrementk by 1, and compute Tk, the temperature at plateau k.
8. If the stopping criterion is not satisfied, go to Step 5.

In Step 5, the acceptance of an uphill move is controlled by the probability
exp(−Δ

Tk
). The probability that an uphill move of size Δ is accepted diminishes

as the temperature declines. For a fixed Tk, small uphill moves have higher
probabilities of acceptance than large ones. In this implementation of SA, the
temperature of the annealing process is decreased geometrically; that is, at
plateau k, Tk = 0.9Tk−1.

The initial temperature T0 is a function of the probability of acceptance

τ0 = e−
|Δ|
T0 , where Δ is the average variation of the fitness of 100 randomly

generated solutions. τ0 is, in turn, a function of the quality of the initial solution.
τ0 = 0.2 when the initial solution is “good”, and τ0 = 0.6 otherwise. The initial
solution is “good”if its percent deviation from a computed lower bound is less
than 25%. Setting τ0 = 0.2 makes the algorithm very selective starting its first

A Hybrid Genetic Algorithm for the Cut Order Planning Problem 461

Table 1. First problem set

Instance S |G| W (m) qs L∗
a1 {P, M, T, XT} 7 1.0 qP = 2, qM = 5, qT = 2, qXT = 1 1.40
a2 {P, M, T, XT} 7 1.0 qP = 10, qM = 25, qT = 10, qXT = 5 7.00
a3 {P, M, T, XT} 7 1.0 qP = 20, qM = 50, qT = 20, qXT = 30 22.00
a4 {P, M, T, XT} 7 1.0 qP = 10, qM = 25, qT = 10, qXT = 15 11.00
b1 {P, M, T, XT} 11 1.6 qP = 6, qM = 6, qT = 2, qXT = 2 4.00
b2 {P, M, T, XT} 11 1.2 qP = 20, qM = 30, qT = 20, qXT = 5 26.67
b3 {P, M, T, XT} 11 1.6 qP = 12, qM = 12, qT = 18, qXT = 18 25.5
b4 {P, M, T, XT} 11 1.2 qP = 20, qM = 30, qT = 20, qXT = 15 37.34
c1 {XP, P, M, T, XT, XXT} 20 2.0 qXP = 18, qP = 30, qM = 12, qT = 18, qXT = 6, qXXT = 6 99.00
c2 {XP, P, M, T, XT} 20 2.5 qXP = 24, qP = 24, qM = 42, qT = 24, qXT = 6 90.00
c3 {XP, P, M, T, XT, XXT} 20 2.0 qXP = 18, qP = 30, qM = 12, qT = 18, qXT = 12, qXXT = 12 136.5
c4 {XP, P, M, T, XT} 20 2.5 qXP = 24, qP = 24, qM = 42, qT = 24, qXT = 12 100.8

Table 2. Computational Results for first problem set

Instance L∗ ΔSA ΔGA ΔGAn
a1 1.40 3.57 3.57 3.57
a2 7.00 1.07 1.07 1.07
a3 22.00 0.68 0.45 0.11
a4 11.00 0.91 0.68 0.45
b1 4.00 1.88 2.50 1.87
b2 26.66 0.50 0.87 0.50
b3 25.50 6.18 2.05 0.29
b4 37.33 1.92 1.72 1.58
c1 99.00 4.95 3.03 2.42
c2 90.00 5.81 2.66 0.69
c3 136.50 4.29 2.96 2.96
c4 100.80 6.67 2.77 2.38

iterations whereas setting τ0 = 0.6 makes the algorithm accept uphill moves
more often during the first iterations.

A neighbor is obtained by randomly moving a size s ∈ S from a random
section i, i = 1, . . . , p in the current solution Sol to a different existing section
j, j = 1, . . . , p, i �= j while maintaining demand feasibility. Removing a size s
from its section i creates a residual demand rs = hi ∗ Ois. Restoring demand
feasibility without creating an additional section requires moving size s to a
section j whose hj is a divider of rs. When such a section j is identified, its
corresponding Ojs is updated; i.e., Ojs = Ojs + rs

hj
. If no such section exists, a

different size from a different section is considered for a move. The size M of the
plateau or of the neighborhood is set to 12 accepted solutions. The algorithm
is stopped if the best current solution is not improved for 3 consecutive plateaus.

5 Computational Results

The purpose of the computational results is twofold. First, we evaluate the per-
formance of GAn. Second, we assess the need for combining the COP and TDL
problems into a single CT problem. GAn and the sequential TDL algorithm are
coded in Fortran and run on a Pentium IV, 1.7 GHz and 256 Mb of RAM.

The computational results for the instances of Table 1 are displayed in Table
2. Columns 1 and 2 display the instance and its corresponding optimal length.
Columns 3 - 5 report the deviation from L∗ of the SA, GA and GAn solutions.
ΔSA is computed based on the best solution obtained when replicating SA six
times with each replication initiated with a randomly generated solution.

462 A. Bouziri and R. M’hallah

Table 3. Industrial problems

Instance S |G| W (m) qs L∗ h h l

I1 4 21 1.5 10-20-20-10 144.00 5 30 12.00
I2 3 21 1.5 6-12-12 78.00 5 30 12.00
I3 4 18 1.1 6-24-24-12 87.8 5 20 8.00

Table 4. Computational results for the industrial problems

Instance L∗ ΔSA ΔGA ΔGAn

I1 144.00 0 0 5
I2 78.00 5 7 11
I3 87.00 0 1 4

Our experimentation shows that SA’s solution is not very sensitive to the
initial solution. Yet, starting SA from a very bad solution will not lead to a global
optimum. Furthermore, increasing GA’s population size does not necessarily
improve the quality of GA’s solution. GA’s local optimum is generally obtained
randomly during the initial population or is the result of crossover; i.e., it is
the result of diversification rather than of intensification. Starting GA with a
population whose individuals are of high quality leads to premature stagnation;
hindering the escape from local optima. These conclusions highlight the need for
diversification and intensification of the search as in GAn.

The results of Column 4 are consistently better than those reported in Column
3, demonstrating the need for the intensification search. (Note that both GA and
GAn were run with an identical population size and number of generations.)

Second, we assess the performance of the proposed approach on real life in-
dustrial problems where the garments are a collection of non-convex irregular
pieces. Problems I1−I3, summarized in Table 3, were obtained from a medium-
sized local apparel manufacturer along with the “adopted” cut order plan and
the corresponding layout for each of its sections. Column 1 of Table 3 displays
the instance number. Columns 2-4 indicate the number of ordered sizes n, the
number of pieces per garment |G|, and the width of the fabric W. Columns 5 and
6 display respectively the ordered quantity per size qs, s ∈ S, and the best known
solution L∗. Finally, columns 7-9 display respectively h, h, and l the minimum
and maximum ply height and the maximum length of a section.

The computational results for the industrial instances are reported in Table
4. Column 2 indicates the best known length L∗. Column 3 tallies ΔSA, the
minimum percent improvement of total length when SA is replicated six times
starting each replication with a random initial solution. Column 4 gives ΔGA,
the percent improvement of total length when GA is applied without any inten-
sification strategy. Finally, Column 5 displays ΔGAn, the percent improvement
of the total length when GAn is applied. The results show that the solutions

A Hybrid Genetic Algorithm for the Cut Order Planning Problem 463

obtained by human experts/specialized software can be improved. They further
demonstrate the need to combine COP and TDL into a single problem. Finally,
they emphasize the role of hybridization in refining the search.

6 Conclusion

This paper tackles a real life problem that is of sizeable importance to the ap-
parel manufacturing industries. This problem consists of finding the optimal cut
order plan for a given order subject to the industrial set of constraints such
as maximum and minimum ply height, maximum length of a section, etc. The
problem is solved using a hybrid heuristic which diversifies the search by un-
dertaking a global search via genetic algorithms and intensifies the search using
local search via simulated annealing. The computational results highlight the
need for hybridization, and assesses the percent improvements that industry can
incur by adopting the proposed approach.

References

1. Blazewicz, J., Hawryluk, P., Walkowiak, R.: Using a tabu search approach for
solving the two dimensional irregular cutting problem, Annals of Operations Re-
search 41, 313–325 (1994)

2. Dowsland, K.A., Dowsland, W.: Solution approaches to irregular nesting problems.
European Journal of Operational Research 84, 506–521 (1995)

3. Li, Z., Milenkovic, V.: Compaction and separation algorithms for non-convex poly-
gons and their applications. European Journal of Operational Research 84, 539–561
(1995)

4. Dighe, R., Jakiela, M.J.: Solving pattern nesting problems with GA employing
task decomposition and contact detection. Evolutionary Computation 3, 239–266
(1996)

5. ElOmri, Méthode d’optimisation dans un contexte productique, Ph.D. Disserta-
tion, Université de Bordeaux1 (1992)

6. Hifi, M., M’Hallah, R.: A best-local position procedure-based heuristic for the two-
dimensional layout problem. Studia Informatica Universalis. International Journal
on Informatics (Special Issue on Cutting, Packing and Knapsacking) 2(1), 33–56
(2002)

7. Jacobs-Blecha, C., Ammons, J.C., Schutte, A., Smith, T.: Cut order planning for
apparel manufacturing. IIE Transactions 30, 79–90 (1996)

8. Jakobs, S.: On the genetic algorithms for the packing of polygons. European Jour-
nal of Operational Research 88, 165–181 (1996)

9. M’Hallah, R., Bouziri, A., Jilani, W.A.: Layout of Two Dimensional Shapes Using
Genetic Algorithms. In: Del Pobil, A.P., Mira, J., Ali, M. (eds.) Lecture Notes in
Artificial Intelligence, subseries of Lecture Notes in Computer Science, pp. 403–411
(2001)

10. Talbi, E.G.: A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics 8, 541–
564 (2002)

	Introduction
	Literature Review
	Solution Configuration
	The Hybrid Approach
	Computational Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

