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Summary. Systematic tabu search based meta-heuristic algorithms are designed and imple-
mented for the transit route network design problem. A multi-objective nonlinear mixed in-
teger model is formulated. Solution methodologies based on three variations of tabu search
methods are proposed and tested using a small experimental network as a pilot study. Sensitiv-
ity analysis is performed, a comprehensive characteristics analysis is conducted and numerical
results indicate that the preferred tabu search method outperforms the genetic algorithm used
as a benchmark.

1 Introduction

Public transit has been widely recognized as a potential way of reducing air pollution,
lowering energy consumption, improving mobility and lessening traffic congestion.
Designing an operationally and economically efficient bus transit network is very
important for the urban area’s social, economic and physical structure.

Generally speaking, the network design problem involves the minimization (or
maximization) of some intended objective subject to a variety of constraints, which
reflect system performance requirements and/or resource limitations. In the past
decade, several research efforts have examined the bus transit route network design
problem (BTRNDP). Previous approaches that were used to solve the BTRNDP can
be classified into three categories: 1) Practical guidelines and ad hoc procedures; 2)
Analytical optimization models for idealized situations; and 3) Meta-heuristic ap-
proaches for more practical problems. NCHRP Synthesis of Highway Practice 69
(1980) provides industry rule-of-thumb service planning guidelines. Furthermore,
in the early research efforts, traditional operations research analytical optimization
models were used. Rather than determining both the route structure and design pa-
rameters simultaneously, these analytical optimization models were primarily ap-
plied to determine one or several design parameters (e.g., stop spacing, route spacing,
route length, bus size and/or frequency of service) on a predetermined transit route
network structure. Generally speaking, these models are very effective in solving
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optimization-related problems for networks of small size or with one or two decision
variables. However, when it comes to the transit route design problem for a network
of realistic size in which many parameters need to be determined, this approach does
not work very well. Due to the inherent complexity involved in the BTRNDP, the
meta-heuristic approaches, which pursue reasonably good local optima but do not
guarantee finding the global optimal solution, were therefore proposed. The meta-
heuristic approaches primarily dealt with simultaneous design of the transit route
network and determination of its associated bus frequencies. Examples of the gen-
eral heuristic approaches can be seen in the work of Ceder and Wilson (1986), Baaj
and Mahmassani (1992), and Shih et al. (1998). Genetic algorithm-based heuristic
approaches that were used to solve the BTRNDP can be seen in Pattnaik et al. (1998),
Chien et al. (2001) and Fan and Machemehl (2004).

However, the major shortcoming of most previous approaches is that they did
not study the BTRNDP in the context of the “distribution node” (or bus stop) level
and simply aggregate zonal travel demand into a single node. This precludes them
as generally accepted applications for practical transportation networks because the
frequency-based rule for the traditional transit trip assignment model based on this
assumption is incorrect. Therefore, the BTRNDP should be considered in a more
general real world situation. Furthermore, previous research efforts mainly centered
on genetic algorithms and other potential heuristic algorithms such as tabu search
methods are seldom used to solve the BTRNDP. To search for possibly good and/or
better network solutions, these methods should be considered.

The objective of this paper is to systematically examine the underlying charac-
teristics of the optimal BTRNDP in the context of the “distribution node” level. A
multi-objective nonlinear mixed integer model is formulated for the BTRNDP. Char-
acteristics and model structures of the Tabu Search (TS) algorithms are reviewed. A
TS algorithm-based solution methodology is proposed. Three different variations of
TS algorithms are employed and compared as the solution method for finding an op-
timum set of routes from the huge solution space. A genetic algorithm is also used as
a benchmark to measure the quality of the TS methods. Numerical results including
sensitivity analysis and characteristics identification are presented using an exper-
imental network. The subsequent sections of this paper are organized as follows.
Section 2 presents the model formulation of the BTRNDP from a systematic view.
The objective function and related constraints are also described. Section 3 discusses
general characteristics of the TS algorithms. Section 4 proposes the solution method-
ology for the BTRNDP, which contains three main components: an initial candidate
route set generation procedure; a network analysis procedure and a TS procedure that
guides the candidate solution generation process. Section 5 presents the applications
of the proposed solution methodology to an experimental network and the numerical
results are also discussed. Finally in Section 6, a summary concludes this paper.
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2 Model Formulation

Essentially speaking, the transportation system is described in terms of “nodes,”
“links” and “routes.” A node is used to represent a specific point for loading, unload-
ing and/or transfer in a transportation network. Generally speaking, there are three
kinds of nodes in a bus transit network system: (a) Nodes representing centroids of
specific zones; (b) Nodes representing road intersections; and (c) Nodes with which
zone centroid nodes are connected to the network through centroid connectors. Note
that nodes could be real (identifiable on the ground) or fictitious. Furthermore, the
term “distribution nodes” is introduced especially for the third kind of node. A link
joins a pair of nodes and represents a particular mode of transportation between these
nodes, which means that if two modes of transportation are involved with the same
link, these are represented as two links, say walk mode and transit mode. This is
natural since the travel time associated with every mode-specific link is different.
A route is a sequence of nodes. Every consecutive pair of the node sequence must
be connected by a link of the relevant mode. The bus line headway on any particu-
lar route is the inter-arrival time of buses running on that route. A graph (network)
refers to an entity G = {N,A} consisting of a finite set of N nodes and a finite set
of A links (arcs) which connect pairs of nodes. A transfer path is a progressive path
that uses more than one route. Note that a typical geographical zone system may
be based upon census boundaries and all land areas are encompassed by streets or
major physical barriers. The zone centroids are located somewhere near the centers
of the zones and zone connectors are used to connect these centroids to the modeled
network. Generally, the centroid node represents the “demand” center (origin and/or
destination) of a specific traffic zone. Distribution nodes are the junctions of cen-
troid connectors and road links and might physically represent bus stops. It should
be pointed out that centroid connectors are usually fictitious and they are used as
the origins and/or destinations for implementation of the shortest path and k shortest
path algorithms. Furthermore, an important characteristic of these centroid connec-
tors is the distances that transit users have to walk to get to the routes that provide
service to their intended destinations. Note that the terms, “arc” and “link” are used
interchangeably.

Consider a connected network composed of a directed graph G = {N,A} with a
finite number of nodes and arcs. The following notations are used.

Sets/Indices

i, j ∈ N centroid nodes (i.e., zones)
rk ∈ R routes
it ∈ N t-th distribution node of centroid node i
tr ∈ R transfer paths that use more than one route from R

Data

Rmax maximum allowed number of routes for the route network
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Dmax maximum length of any route in the transit network
Dmin minimum length of any route in the transit network
dij bus transit travel demand between centroid nodes i and j
hmax maximum headway required for any route; (say, 60 minutes)
hmin minimum headway required for any route; (say, 5 minutes)
Lmax maximum load factor for any route
P seating capacity of buses operating on the network
W maximum bus fleet size available for operations on the route network
Cv per-hour operating cost of a bus; ($/vehicle/hour)
Cm value of time; ($/minute)
Ov operating hours for the bus running on any route; (hours)
Cd value of one unsatisfied transit demand in dollars; ($/person)
Ci (i = 1, 2, 3) weights reflecting the relative importance of three components

including the user costs, operator costs and unsatisfied total demand costs,
respectively; note that C1 + C2 + C3 = 1

Decision Variables

M the number of routes of the current proposed bus transit network solution
rm the m-th route of the proposed solution, m = 1, 2, . . . ,M
Drm

the overall length of route rm

drm
ij the bus transit travel demand between centroid nodes i and j on route rm

dtr
ij the bus transit travel demand between centroid nodes i and j along transfer

path tr

DRij the set of direct routes used to serve the demand from centroid nodes i and
j

TRij the set of transfer paths used to serve the demand from centroid nodes i
and j

trm
ij the total travel time between centroid node i and j on route rm

ttrij the total travel time between centroid node i and j along transfer path tr

hrm
the bus headway operating on route rm; (minutes/vehicle)

Lrm
loading factor in route rm

Trm
the round trip time of route rm; Trm

= 2Drm
/Vb

Nrm
the number of operating buses required on route rm; Nrm

= Trm
/hrm

Qmax
rm

the maximum flow occurring on the route rm

Objective Function
The objective is to minimize the sum of operator cost, user cost and unsatisfied

demand costs for the studied bus transit network. The objective function is as follows:
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min z = C1 ·
(
∑
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rm∈DRij
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ij trm

ij +
∑

i∈N

∑
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s.t.
hmin ≤ hrm

≤ hmax rm ∈ R (headway feasibility constraint)

Lrm
=

Qmax
rm

·hrm

P ≤ Lmax rm ∈ R (load factor constraint)
∑M

m=1 Nrm
=
∑M

m=1
Trm

hrm
≤W rm ∈ R (fleet size constraint)

Dmin ≤ Drm
≤ Dmax rm ∈ R (trip length constraint)

M ≤ Rmax (maximum number of routes
constraint)

M,hrm
, Nrm

, Qmax
rm

, drm
ij , dtr

ij , are all integers.

The first term of the objective function is the total user cost (including the user
cost on direct routes and that on transfer paths), the second part is the total operator
cost, and the third component is the cost resulting from total travel demand excluding
the transit demand satisfied by a specific network configuration. Note that C1, C2 and
C3 are introduced to reflect the tradeoffs between the user costs, the operator costs
and satisfied transit ridership, making the BTRNDP a multi-objective optimization
problem. Generally, operator cost refers to the cost of operating the required buses.
User costs usually consist of four components, including walking cost, waiting cost,
transfer cost, and in-vehicle travel cost. The first constraint is the headway feasibility
constraint, which reflects the necessary usage of policy headways in extreme situa-
tions. The second is the load factor constraint, which guarantees that the maximum
flow on the critical link of any route rm cannot exceed the bus capacity on that route.
The third (fleet size) constraint represents the resource limits of the transit company
and it guarantees that the optimal network pattern never uses more vehicles than
currently available. The fourth constraint is the trip length constraint. This avoids
routes that are too long because bus schedules on very long routes are too difficult
to maintain. Meanwhile, to guarantee the efficiency of the network, the length of
routes should not be too small. The fifth constraint is the maximum number of routes
constraint, which reflects the fact that in solving the BTRNDP, transit planners often
set a maximum number of routes, which is based on the fleet size. This has a great
impact on the later driver scheduling work.

3 Tabu Search Algorithm

The TS algorithm has traditionally been used on combinatorial optimization prob-
lems and has been frequently applied to many integer programming, routing and
scheduling, traveling salesman and related problems. The basic concept of TS is
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presented by Glover (1977), Glover (1986) who described it as a meta-heuristic su-
perimposed on another heuristic. It explores the solution space by moving from a
solution to the solution with the best objective function value in its neighborhood at
each iteration, even in the case that this might cause the deterioration of the objective.
(In this sense, “moves” are defined as the sequences that lead from one trial solution
to another.) To avoid cycling, solutions that were recently examined are declared for-
bidden or “tabu” for a certain number of iterations and associated attributes with the
tabu solutions are also stored. The tabu status of a solution might be overridden if it
corresponds to a new best solution, which is called “aspiration.” The tabu lists are
historical in nature and form the Tabu Search memory. The role of the memory can
change as the algorithm proceeds. Intensification strategies are based on modifying
choice rules to encourage move combinations and solution features historically found
good, and to initiate a return to attractive regions to search them more thoroughly.
Diversification strategies are based on modifying choice rules to bring attributes into
the solutions that are infrequently used, or to drive the search into new regions. Inten-
sification and diversification are fundamental cornerstones of longer term memory in
TS and reinforce each other. In many cases, various implementation models of the
TS method can be achieved by changing the size, variability, and adaptability of the
tabu memory to a particular problem domain. Basic versions of TS can be found in
Glover (1989), Glover (1990), and variants ranging from simple to advanced can be
found in Glover and Laguna (1997).

In all, TS is an intelligent search technique that hierarchically explores one or
more local search procedures in order to search quickly for the global optimum. As
one of the advanced heuristic methods, TS is generally regarded as a method that
can provide a near-optimal or at least local optimal solution within a reasonable time
for the BTRNDP. Details of our BTRNDP-specific TS algorithms are presented in
Section 4.

4 Proposed Solution Methodology

The proposed solution framework consists of three main components: an Initial Can-
didate Route Set Generation Procedure (ICRSGP) that generates all feasible routes
incorporating practical guidelines that are commonly used in the bus transit indus-
try; a Network Analysis Procedure (NAP) that assigns the transit trips, determines the
service frequencies on each route and computes many performance measures; and,
a TS Procedure that combines these two parts, guides the candidate solution gen-
eration process and selects an optimum set of routes from the huge solution space.
Fig. 1 gives the flow chart of the proposed solution framework. C++ is chosen as the
implementation language in this research.

4.1 The Initial Candidate Route Set Generation Procedure (ICRSGP)

The ICRSGP configures all candidate routes for the current transportation network. It
requires the user to define the minimum and maximum route lengths. The knowledge
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  Initial Candidate Route Set Generation Procedure (ICRSGP)
� generate all candidate routes filtered by some user-defined

feasibility constraints in the current bus transit network

          STOP
� Output the optimal transit route set, associated route frequencies

and related performance measures

User Input

  Tabu Search Procedure (TSP)
� generate starting transit networks
� update proposing solution transit route

networks based on the NAP results using
the tabu search algorithm

  Network Analysis Procedure (NAP)
� assign transit trip demands
� determine route frequecies
� compute node-level, route-level and

network-level descriptors
� compute system performance measures

Fig. 1. Flow Chart of the Proposed Solution Methodology

of the transit planners has a significant impact on the initial route set skeletons, i.e.,
different user requirements result in different route solution space sets. ICRSGP re-
lies mainly on algorithmic procedures including the shortest path and k-shortest path
algorithms. Given the user-defined minimum and maximum length constraints, Di-
jkstra’s shortest path algorithm (see Ahuja et al. (1993)) is used and Yen’s k-shortest
path algorithm (see Yen (1971)) is modified to generate all candidate feasible routes
in the studied transportation network. Fig. 2 presents a skeleton for the ICRSGP.

      DIJKSTRA'S LABEL-SETTING SHORTEST PATH
ALGORITHM

� Find the shortest path between each possible
distribution node pair of any centroid node pair in the
bus transit demand network

                                          STOP
� Output the set of kept candidate routes

User Input
� Minimum route length
� Maximim route length

      FILTER ROUTES #1
� Check the route fundamental feasibility constraints for

the present paths (routes), keep all feasible routes,
and set a label to each kept route

      YEN'S K-SHORTEST PATH ALGORITHM
� Find the k-shortest path between each possible

distribution node pair of any centroid node pair in the
current transit demand network

      FILTER ROUTES #2
� Check the route fundamental feasibility constraints for

all the present generated routes, keep all feasible
routes and remove all the leftovers. Set a label to each
kept route.

Fig. 2. Skeleton of the Initial Candidate Route Set Generation Procedure (ICRSGP)
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4.2 The Network Analysis Procedure (NAP)

Fig. 3 shows the flow chart of the proposed network analysis procedure for the
BTRNDP. Essentially, the NAP proposed in this paper is a bus transit network eval-
uation tool with the ability to assign transit trips between each centroid node pair
onto each route in the proposed solution network and determine associated route
frequencies. To accomplish these tasks for the BTRNDP, NAP employs an iterative
procedure, which contains two major components, namely, a multiple transit trip as-
signment procedure and a frequency setting procedure, to seek to achieve internal
consistency of the route frequencies.

Once a specific set of routes is proposed by the TS procedure in the overall can-
didate solution route set generated by the ICRSGP, the NAP is called to evaluate
the alternative network structure and determine route frequencies. The whole NAP
process can be described as follows. First, an initial set of route frequencies are spec-
ified because they are necessary before the beginning of the trip assignment process.
Then, hybrid transit trip assignment models are utilized to assign the passenger trip
demand matrix to a given set of routes associated with the proposed network con-
figuration. The service frequency for each route is then computed and used as the
input frequency for the next iteration in the transit trip assignment and frequency
setting procedure. If these route frequencies are considered to be different from pre-
vious frequencies by a user-defined parameter, the process iterates until internal con-
sistency of route frequencies is achieved. Once this convergence is achieved, route
frequencies and several system performance measures (such as the fleet size and the
unsatisfied transit demands) are thus obtained.

It should be noted that the trip assignment process considers each zone (centroid
node) pair separately. Also, the transit trip assignment model presented in this pa-
per adapts the lexicographic strategy (see Han and Wilson (1982)) and the previous
transit trip assignment methods (see Shih et al. (1998)). However, several modifica-
tions have been made to accommodate more complex considerations for real world
application. This model considers the number of transfers and/or the number of long
walks to the bus station as the most important criterion. It first checks the existence of
the 0-transfer-0-longwalk paths. If any path of this category is found, then the transit
demand between this centroid node pair can be provided with direct route service and
the demand is therefore distributed to these routes. If not, the existence of paths of
the second category, i.e., 0-transfer-1-longwalk path and 1-transfer-0-longwalk paths
are checked. If none of these paths is found, the proposed procedure will continue
to search for paths of the third category, i.e., paths with 2-transfer-0-long-walk, 1-
transfer-1-long-walk and/or 0-transfer-2-longwalks. Only if no paths that belong to
these three categories exist, there would be no paths in the current transit route sys-
tem that can provide service for this specific centroid node pair (i.e., these demands
are unsatisfied). Note that at any level of the above three steps, if more than one path
exists, a “travel time filter” is introduced for checking the travel time on the set of
competing paths obtained at that level. If one or more alternative paths whose travel
time is within a particular range pass the screening process, an analytical nonlinear
model (i.e., the inverse proportional model) that reflects the relative utility on these



A Tabu Search for the Transit Route Network Design Problem 395

Output

Input

Assign Initial Frequencies Fr

Set i=1 and j=1

Does 0-transfer-0-longwalk
path exist?

 Filtering process by travel time check
� Assign trip dij

� Update 0-t-0-lw

Yes

1-transfer-0-longwalk
and 0-transfer-1-longwalk

 path exist?

Yes Filtering process by travel time check
� Assign trip dij

� Update 1-t-0-lw and/or 0-t-1-lw

No Route Service Provided

j<N?

i<N?

Set j=j+1

Set i=i+1
Set   j=1

Yes

Yes

Determine route frequencies Fnew

Frequencies converge? Set frequencies Fr=Fnew

No

Yes

Compute all related
performance measures

No

� Update unsatisfied demand

No

No

2-transfer-0-longwalk,
0-transfer-2-longwalk

and 1-transfer-1-longwalk
 paths exist?

Yes
 Filtering process by travel time check
� Assign trip dij

� Update 2-t-0-lw, 0-t-2-lw and/or
1-t-1-lw

No

No

Fig. 3. Network Analysis Procedure (NAP) for the BTRNDP

competing paths is used to assign the transit trips between that centroid node pair to
the network. In addition, policy headway and the demand headway are used together
to determine the frequencies on each route in the frequency setting procedure. The
whole process is repeated until all the travel demand pairs in the studied network
are considered. Details of the transit trip assignment model can be seen in Fan and
Machemehl (2004).

4.3 Tabu Search Procedure

Since the TS provides a robust search as well as a near optimal solution in a rea-
sonable time, this approach is employed as one of the candidate solution techniques
for BTRNDP. The following subsections present a systematic description for the TS
algorithm-based implementation model for the BTRNDP.

Tabu Search Implementation Model: As with other heuristic algorithms, apply-
ing TS methods requires a significant amount of knowledge specific to the BTRNDP.
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To make TS a potentially efficient algorithm for the BTRNDP, careful attention is
required. Note that one of the significant contributions in this paper is using the TS
algorithm to solve the BTRNDP. Since it is the first time for the TS methods to be
applied for the BTRNDP, a detailed description of the BTRNDP-specific TS is pre-
sented.

Solution Representation: At any iteration t of the algorithm, let n represent the
proposed solution route set size. A candidate bus transit route solution network can
be represented by Xt = (Rt

1, R
t
2, . . . R

t
i, . . . , R

t
n), where Rt

i(i = 1, 2, . . . , n) de-
notes the i-th bus route in the proposed solution set. Although the vector Xt is treated
as ordered by the algorithm, it should be pointed out that Xt can also be treated as
a set rather than a vector, and its ordering serves as a record keeping device for
the algorithm rather than identifying a structural property of the solution itself. Let
f(Xt) represent the objective function as shown in the model formulation part for
the proposed solution network defined by this n transit route network configuration
Xt = (Rt

1, R
t
2, . . . , R

t
n).

Initial Solution: In this paper, all initial solutions for three different versions of
the TS algorithms are randomly generated, with each solution being uniformly dis-
tributed in the solution space generated by the ICRSGP.

Neighborhood Structure: Undoubtedly, how to define the “neighborhood,” i.e.,
the nearby solutions, might affect the quality of the transit route network solution. A
different definition rule could result in a different solution of different quality. In this
research, the neighborhood of a feasible solution route network set Xt is another
feasible solution obtained by replacing one of the routes in the current proposed
solution set, say the i-th route Rt

i to one of the routes that is next to Rt
i in the stored

solution space. For route 1, the neighborhood can be defined as route 2 and route N,
where N is the total number of routes in the stored solution space. For route N, the
neighborhood can be defined as route 1 and route (N-1). The neighborhood of any
route i (1 < i < N − 1) that lies somewhere in the middle of the solution route
space can be defined as the routes that are next to Rt

i . Z(Xt
ij), the objective function

value of a new solution Xt+1 that is obtained from Xt by moving Rt
i to one of its

neighbors Rt
j at generation t can be computed as follows: Z(Xt

ij) = f(Xt+1).

Moves and Tabu Status: As defined, a move consists of replacing a given route
within Xt by one of its two neighboring routes that lie outside of Xt but within the
stored solution space. It should be noted that both of these two neighboring routes
are tried. At the beginning of this process, no move is tabu (i.e., forbidden). At any
iteration with n number of routes in solution Xt, the algorithm executes the best
non-tabu move out of 2 ∗ n feasible moves to a feasible neighbor of the current
solution. In addition, if a tabu move yields a worse solution which is, however, the
best among all feasible neighbors of the current solution, it is also updated. Whenever
a move is performed, the reverse move is declared tabu for m iterations, where m is
either a user-defined parameter or a randomly generated one that follows a discrete
uniform distribution in an interval [mmin,mmax], where mmin and mmax are the
user-defined minimum and maximum parameters of the algorithm. Comparisons of
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the model performance between these two strategies including the fixed and variable
tabu tenure are performed in the numerical results part.

Diversification and Intensification: This part is developed to combine the diver-
sification and intensification procedures to further explore the solution space for a
possibly better solution. It starts from the best found solution route set and intro-
duces a major perturbation by allowing q routes (1 ≤ q ≤ n) to move w positions
up from their current solution location (say q = 2 and w = 10) in the stored solu-
tion space. Put another way, Xt is moved to another feasible solution by replacing
q routes within Xt by q other routes that each of them go up w position from their
current solution location in the stored solution space. This is called “diversification.”
Note that this is a “forced” movement no matter whether the solution improves or
not, so that the solution space can be somehow traversed more evenly. To respect
the original characteristics of the TS, this procedure is never applied more than once
during a given operation (called “intensification”). Note that tabu moves are also ap-
plied to this situation. If this move is toward one direction (say increasing direction)
of the current route, then moves toward to the opposite direction (i.e., decreasing
direction) are prevented for a certain number of iterations (say using the same m).
Model performance comparisons of the TS algorithms between using and not us-
ing this procedure are also achieved and the better approach will be identified in the
numerical results part.

Implementation Model Summary: In all, the proposed TS algorithms for the
BTRNDP in this paper include two main procedures described as follows.

Neighborhood Search Procedure: At iteration t, let Xt = (Rt
1, R

t
2, . . . , R

t
n) be

a feasible solution of value f(Xt). Let N(Xt) be the set of feasible neighbors of Xt,
as defined before. The best neighbor of Xt is a solution Xt

i∗j∗ ∈ N(Xt) obtained
by replacing one given route Rt

i∗ within Xt to its best neighbor Rt
j∗ that is one of

its two neighboring routes outside Xt but within the stored solution space. Similarly
define the best feasible non-tabu neighbor of Xt as Xt

ij
∈ N(Xt). (Xt

i∗j∗ and Xt
ij

may coincide). Let X∗ be the incumbent (the best known feasible solution) and let
Z(X∗) be its value.

If Z(Xt
i∗j∗) < Z(X∗), set X∗ = Xt+1 = Xt

i∗j∗ and Z(X∗) = Z(Xt+1) =
Z(Xt

i∗j∗). Declare the move of a route from Rt
j∗ to Rt

i∗ tabu for m iterations,
where m can be a fixed user-defined parameter or is uniformly distributed with
m ∈ [mmin,mmax]. If Z(Xt

i∗j∗) > Z(X∗) and all moves defining the solu-
tions of N(Xt) are tabu, set δ = 1 and return. Otherwise, set Xt+1 = Xt

ij
and

Z(Xt+1) = Z(Xt
ij

). Declare the move of a route from Rj to Ri tabu for m itera-
tions, where m has the same definition as used before.

Diversification and Intensification Procedure: This procedure is the same as that
in Neighbor Search but defines N(Xt) differently. It allows q routes (1 ≤ q ≤ n)
to move up to w more than the current solution location in the solution space (Note
that in this paper, this procedure is called the “shakeup” procedure. Furthermore,
for simplicity, q is set to n and w is set as a user-defined parameter). When a route
is moved (i.e., replacing this route within Xt by another route that is w positions
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up/down from its current location in the stored solution space) in one direction (say
the increasing direction), moving back in the opposite direction is declared tabu for
m iterations, where m uses the same notation as before.

Tabu Search Algorithm for the BTRNDP:

Step 1 Randomly generate an initial feasible solution route network
Xt = (Rt

1, R
t
2, . . . , R

t
n) with route size n in the proposed solution set.

Step 2 Set δ = 0, t = 1 and X∗ = Xt; While ( δ = 0 and t ≤ MAX Iterations )
Apply Neighborhood Search to the solution Xt; t = t + 1.

Step 3 Apply the “Diversification and Intensification” procedure to X∗. Apply
Neighborhood Search to the solution X∗ until δ = 1 or t > MAX Iterations.

Step 4 Output the current best solution found.

As mentioned before, since TS provides a robust search as well as a near optimal
solution within a reasonable time, this algorithm is employed as the solution tech-
nique for the BTRNDP. Before implementing the TS algorithms, a set of potential
routes, consisting of the whole solution space, has been generated by the ICRSGP.
The objective of the TS algorithm presented here is to select an optimal set of routes
from the candidate route set solution space with the sum of the total user, operator
and unsatisfied demand cost being minimized.

A flow chart that provides the typical TS algorithm-based solution framework for
the BTRNDP can be seen in Fig. 4. Note that the “neighborhood” for any route i is
defined as the route left or right of route i stored in the solution space, as described
before. At the beginning of the TS implementation, the initial solution is randomly
generated. In the second (and later) generation, the TS procedure is used to guide the
generation of the new transit route solution set and after it is proposed at each gen-
eration, the search process is started. The network analysis procedure is then called
to assign the transit trips between each centroid node pair and determine the service
frequencies on each route and evaluate the objective function for each proposed so-
lution route set. For each iteration, if a solution route set is detected to improve over
the current best one, the current best solution is updated. The new proposed solu-
tion sets are generated and are evaluated in the same way. If convergence is achieved
or the number of generations is satisfied, the iteration for a specific route set size
ends. Then, the proposed solution route set size is incremented and the processes
are repeated until the maximum route set size is reached. The best solution among
all transit route solution sets is adopted as the best solution to the BTRNDP for the
current studied network.

Moreover, in this paper, three versions of TS algorithms are used: 1) TS without
shakeup procedure (i.e., without the diversification procedure as defined before) and
with fixed tabu tenures; 2) TS with shakeup procedure and fixed tabu tenure (i.e.,
the number of restrictions set for the tabu moves are fixed); and 3) TS with shakeup
procedure and variable tabu tenure (i.e., the number of restrictions set for the tabu
moves are randomly generated). The differences underlying each TS algorithm are
self-explanatory by the names. All three variations of TS methods are implemented,
sensitivity analysis for each version are presented, and algorithm comparisons are
performed.
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Fig. 4. A Tabu Search Model Based Solution Framework for the BTRNDP

5 Experimental Network and Numerical Results

5.1 Example Network Configuration

The TS algorithm-based solution methodology is implemented using a small exam-
ple network as shown in Fig. 5. This example network contains seven travel demand
zones and 15 road intersections. As noted before, the ICRSGP discussed in this pa-
per first considers the BTRNDP under the “centroid” level. The network is processed
as follows: 1) the zonal demands are distributed the same way as the highway net-
work demand; and 2) if the same road link contains two or more demand distribution
nodes from different zones, these distribution nodes are aggregated. After this pre-
liminary process, 20 centroid distribution nodes, 35 nodes, and 82 arcs are obtained
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in this example network. The minimum and maximum route lengths are defined. In
the example first phase, the ICRSGP generates 286 feasible routes whose distances
satisfy two route length constraints as mentioned before.
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5.2 Numerical Results and Sensitivity Analysis

It is noted that the performance of the proposed TS algorithms might greatly depend
upon the chosen parameters such as the number of generations, the number of search
neighbors, the number of tabu tenures and the shakeup number. Furthermore, note
that since these parameters are basically continuous, one has to get the “nominally”
optimal parameter through sequential testing. In addition, since the objective func-
tion is a multi-objective decision making problem, a commonly used weight set (0.4,
0.4 and 0.2) is assigned to each of the three objective function components (user
cost, operator cost and unsatisfied demand cost), respectively, for demonstrating the
sensitivity analysis here. Fig. 6 presents the sensitivity analysis of these parameters
using the tabu algorithm without shakeup and with fixed tenures as an example. The
effect of generations, tabu tenures and search neighbors are examined by varying
these values within a specific range, and the results are given from Fig. 6.1 to 6.3,
respectively. Details are described as follows.

Effect of Generations: Basically, “Generation” is a user-defined parameter which
means how many iterations the transit planners want the developed solution algo-
rithm run. It therefore can be varied from 1 to∞. However, for efficiency, the effect
of the number of generations is examined by varying this value from 5 to 100 and the
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result is given in Fig. 6.1. It can be seen from the figure that as the number of genera-
tions increases, the objective function value tends to decrease. It is also noted that the
larger the chosen number of generations, the more the computation time. When the
number of generations reaches 30, the optimal objective function is achieved, sug-
gesting that 30 should be chosen as the optimal generations for the small network.
Therefore, a generation of 30 was recommended.

Effect of Tabu Tenures: The effect of tabu tenures (i.e., the number of restric-
tions) is investigated by choosing this number ranging from 5 to 40 and the result is
provided in Fig. 6.2. As can be seen, the least objective function value occurred with
ten restrictions. Therefore, ten is chosen as the best number of tabu move tenures.

Effect of Search Neighbors: The effect of search neighbors is also studied by
varying this value from 10 to 100. The result shown in Fig. 6.3 indicates that 20
might be the best value and as a result, it is recommended.
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Fig. 6. Sensitivity Analysis for the Tabu Algorithm Without Shakeup and With Fixed Tenures

The above subsections presented the sensitivity analysis for tabu algorithm with-
out shakeup and with fixed tenures using the example network. For sensitivity
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analysis regarding the other two developed TS methods including the tabu with
shakeup/fixed tenures and that with shakeup/variable tenures, similar procedures can
be followed. In addition, the genetic algorithm is used as a benchmark in this paper
to examine the solution quality obtained from these three TS algorithms. The sensi-
tivity analysis are also performed for the genetic algorithm using the same procedure
(details about the genetic algorithm implementation model can be seen from Fan and
Machemehl (2004)). Table 1 provides a summary of these sensitivity analysis for
each algorithm for the BTRNDP. The best parameter set for each algorithm thus can
be seen and chosen.

Table 1. Summary of Algorithm Sensitivity Analysis for the BTRNDP

Genetic Algorithm Population Size 30
Generations 20

Crossover Probability 0.8
Mutation Probability 0.1

Generations 30
Tabu w/o Shakeup and with Fixed Tenures Tenures 10

Search Neighbors 20
Generations 80

Tabu Tabu w/t Shakeup and Fixed Tenures Tenures 10
Search Search Neighbors 10

Shakeup Number 50
Generations 20

Tabu w/t Shakeup and Variable Tenures Search Neighbors 40
Shakeup Number 50

5.3 Multi-Objective Decision Making and Algorithm Comparisons

As mentioned, the model performance based on each proposed algorithm might
greatly depend upon the chosen value of parameters inherent in that algorithm. In
previous sections, a set of user-defined parameters associated with each algorithm
is found by first assigning a commonly used weight set to each of the three objec-
tive function components and then running the developed programming codes based
on that algorithm several times. The sensitivity analysis are then performed and the
best parameter set is found by choosing those resulting in the least objective value
from that algorithm. In this section, these chosen parameters for each algorithm are
used and applied to the BTRNDP at different chosen weight levels. The objective is
to see how the quality of these algorithms varies across different weight levels and
one might therefore know which algorithm can be used to best solve the BTRNDP.
The following sections compare the three employed TS algorithms to examine which
variation is most suitable for the BTRNDP. Furthermore, the model performance is
also compared to the genetic algorithm as a benchmark to examine the solution qual-
ity using TS algorithms from a multi-objective decision making perspective.
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Fig. 7 presents numerical results for these comparisons using the example net-
work. For each graph, the weight of total unsatisfied demand cost is set at a specific
level between 0.1 and 0.8. The x-axis denotes the weight of total user cost and the y-
axis is the objective function value measured in minutes. Note that each point shown
for each algorithm in each graph is a decision making problem with a particular
weight set for the three components contained in the objective function, where the
weight of total operator cost can be obtained at each point by subtracting 1.0 from
the weight sum of total unsatisfied demand cost and user cost. One can see from
Fig. 7 that TS with shakeup and fixed tenures (i.e., fixed iterations) clearly seems to
outperform other TS algorithms using the example network at any weight set level.
Therefore, this tabu algorithm is chosen as the best TS algorithm for the BTRNDP.

It can also be seen from Fig. 7 that for each algorithm from any graph, as the
weight of total user cost increases, the objective function value obtained by using
that algorithm tends to increase. This is expected because the user cost is usually
greater than the operator cost and the increase in total user cost due to a 0.1 unit
increase in the weight of total user cost outweighs the decrease in total operator cost
due to a 0.1 unit decrease in the weight of total operator cost. As a result, the total
objective function value increases. One interesting phenomenon is that the genetic
algorithm seems to be more variable than any TS algorithm (except the TS with
shakeup and with variable tenures, which is also variable due to its inherent variable
nature underlying the tabu tenures) in terms of the optimal objective function value
(from Fig. 7.1 to 7.5.) This might suggest that, compared to TS algorithms, the Ge-
netic Algorithm (GA) may largely depend on the chosen parameters at any particular
level. If the chosen parameters inherent in the GA are fixed, the solution quality for
the BTRNDP might be unstable. Therefore, to achieve the best solution network at
each weight set level, one might need to run the program and get the optimal pa-
rameter set at that level although the computational burden would become larger.
Furthermore, for each graph (i.e., for each weight level for the total unsatisfied de-
mand cost), the TS with shakeup and fixed tenures seems to consistently outperform
the GA in terms of the quality of solution (i.e., it always results in the least objec-
tive function value). This might allow the conclusion that compared to the GA, this
TS method performs better for solving the BTRNDP. Furthermore, it can be seen
that the local optimal solution obtained from this TS method can provide solution
of very high quality because it is very near to the global optimum. The GA, how-
ever, seems to be the undesirable model. This might be possible because although
the GA might achieve some better solutions by learning from the previous solutions
through a genetic approach, it might take much more time inside the algorithm itself
to look for this achievement, while it does not take much more effort looking for pos-
sibly better solutions from other “neighborhood” solutions in the candidate solution
space (compared to the TS algorithms). Conversely, the TS with shakeup and fixed
tenures not only can look for a good solution with a specific origin-destination node
pair through “random search” in its early stage, but also can fully explore possibly
better neighborhood solutions. Note that the tradeoffs between route coverage and
the route directness might be well balanced between chosen shortest paths or k-th
shortest paths between specific origin-destination node pairs. It is expected that this
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inherent characteristics of the TS algorithm might make it particularly suited for the
BTRNDP and therefore outperform the GA.

5.4 Characteristics of the BTRNDP

The characteristics of the BTRNDP are very extensive due to its multi-decision mak-
ing nature and the variety of parameters and procedures involved. These character-
istics might depend upon the network size, the chosen parameters in the solution
process, the chosen algorithm and the chosen weight level for each component of the
objective function. In this sense, it is very hard to generalize all characteristics of the
BTRNDP. However, it is expected that in most cases, the BTRNDP characteristics
should be similar and the current comprehensive numerical results also show these
similarities. Since the numerical results based upon weights of 0.4, 0.4 and 0.2 for
the user cost, operator cost and unsatisfied demand cost, respectively, using the tabu
algorithm without shakeup and with fixed tenures seem to be very representative,
these are chosen here for presenting related BTRNDP characteristics.

The effect of the number of proposed routes in the transit network solution is
investigated by varying it from 1 to 10 and the values of each performance measure
of the optimal network at each route set size level including the user cost, the oper-
ator cost, the fleet size required, the unsatisfied demand cost, the percentage of the
satisfied transit demand and the total objective function value are shown in Fig. 8.1
through 8.6, respectively. Generally speaking, as the number of routes provided in
the network increases, more passengers will be served by transit and therefore, the
satisfied transit demand increases. Furthermore, since the fixed transit demand is as-
sumed, the percentage of satisfied transit demand also tends to increase as shown
in Fig. 8.5. Also as a result, the unsatisfied demand cost decreases. However, the
operator cost tends to increase because the fleet size required for the network gen-
erally increases. In addition, the user cost generally increases because more transit
users travel and the total objective function value also increases. The reason might
be that although service might be better in some sense (such as more passengers get
direct route service) as more routes are provided, the headway might be longer on
some routes. Therefore, the transit user cost as a whole might actually increase. In
conclusion, the numerical results in Fig. 8 indicate that as a whole, as the route set
size increases, the solution improved initially because more demand was satisfied
and unsatisfied demand costs decrease. However, the least objective function value
is achieved with two routes for this scenario and increases in the fleet size (i.e., op-
erator cost) produces underutilization of routes and does not result in an improved
objective function value. (Note that the optimal transit route network is shown in
Fig. 5.)
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Fig. 7. TS and GA Comparisons for the BTRNDP 
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Fig. 8. Effect of Route Set Size on Objective Function and its Components for the BTRNDP 
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6 Conclusions

This paper uses TS algorithms to solve the optimal bus transit route network design
problem at the distribution node level. A multi-objective nonlinear mixed integer
model is formulated for the BTRNDP. The proposed solution framework consists of
three main components: an Initial Candidate Route Set Generation Procedure that
generates all feasible routes incorporating practical bus transit industry guidelines;
and a Network Analysis Procedure that assigns transit trips, determines service fre-
quencies and computes performance measures; and, a TS procedure that guides the
candidate solution generation process. Three different variations of TS algorithms
are employed and compared as the solution method for finding a hopefully optimal
set of routes from the huge solution space. A C++ program is developed to implement
the TS algorithms for the BTRNDP. A small example network is successfully tested
as a pilot study. The model comparisons are performed and numerical results are pre-
sented. The TS with shakeup and fixed tenures is identified as the best TS method to
solve the BTRNDP. A genetic algorithm is also used as a benchmark to measure the
quality of the TS methods and numerical results clearly indicate that the preferred TS
method outperforms the genetic algorithm using the example network. Furthermore,
the local optimal solution obtained from this TS method can provide solutions of
very high quality because it is very near to the global optimum. In addition, related
characteristics and tradeoffs underlying the BTRNDP are also discussed.

BTRNDP is a really complex problem. One simple neighborhood rule can be the
swapping of nodes. However, the link connectivity problem can make many routes
resulting from swapping infeasible. Although one can always find routes to connect
any two nodes to make it feasible, the efficiency can be a big problem. One option for
future investigation is to examine a more flexible neighborhood definition that allows
replacement by non-adjacent routes and the tabu status would then refer to forbidding
the re-instatement of specific routes for a given period. Another possibility that may
be worth mentioning is the investigation of a different type of short term memory that
recent investigations have shown effectiveness (Glover and Laguna (1997)). Also,
further application of this model to a very large network is under the way.
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