
Enabling Full-Size Public-Key Algorithms on

8-Bit Sensor Nodes

Leif Uhsadel, Axel Poschmann, and Christof Paar
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Abstract. In this article we present the fastest known implementation
of a modular multiplication for a 160-bit standard compliant elliptic
curve (secp160r1) for 8-bit micro controller which are typically used
in WSNs. The major part (77%) of the processing time for an ellip-
tic curve operation such as ECDSA or EC Diffie-Hellman is spent on
modular multiplication. We present an optimized arithmetic algorithm
which significantly speed up ECC schemes. The reduced processing time
also yields a significantly lower energy consumption of ECC schemes.
With our implementation results we can show that a 160-bit modular
multiplication can be performed in 0.39 ms on an 8-bit AVR processor
clocked at 7.37 MHz. This brings the vision of asymmetric cryptography
in the field of WSNs with all its benefits for key-distribution and authen-
tication a step closer to reality.

Keywords: wireless sensor network, elliptic curve cryptography, 8-bit
micro controller, Micaz, secp160r1.

1 Introduction

The terms ubiquitous and pervasive computing designate the penetration of our
everyday life with intelligent devices. Wireless sensor networks (WSN) will play
a fundamental role to enable this vision. WSNs consist of many tiny and smart
devices, referred to as nodes, which typically combine an 8-bit processor with
memory, sensors, radio unit and power supply. The foreseen applications for
WSNs range from medical scenarios to agricultural, military and environmental
monitoring. Since many data may be very critical (e.g., for the health of human
beings in medical scenarios or safety critical monitoring) security mechanisms
are required to ensure integrity, confidentiality and authenticity of the data.

WSNs face major security problems because the communication is wirelessly
and the devices are often easy to access. Therefore, an adversary can easily
eavesdrop on communication or simply steal a node. Since sensor nodes are
usually not tamper-resistant, an adversary can often read out any content that
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is stored on the node. Furthermore, the devices are very constrained in terms
of memory, computing power, and energy supply. Since battery powered devices
have a limited amount of energy, the major metric in the area of WSNs is
energy consumption. The lifetime of a WSN is directly proportional to its energy
efficiency, i.e., the less energy is consumed by applications the longer the batteries
will last.

Symmetric algorithms are generally preferable to asymmetric algorithms in
the field of WSNs because they are more efficient in terms of energy consumption
and memory requirements. However, when symmetric algorithms are used, two
problems arise: (1) key distribution and (2) number of stored keys. When indi-
vidual keys are used in a WSN with n nodes, each node has to store (n−1) keys.
This has good resiliency properties but obviously scales badly and is especially
unsuitable for large WSNs. Moreover, perfect forward secrecy is not given after
a node’s key have been compromised. When one single symmetric key is used,
memory requirement is greatly reduced, but at the same time this is not resilient
anymore. To cope with this problem many probabilistic key distribution schemes
for symmetric algorithms have been proposed [EG02,CPS03,DDHV]. In general
these approaches either need pre-distributed keys, which means a higher config-
uration effort before deployment, or they produce much traffic, which results in
higher energy consumption. Therefore, asymmetric algorithms are very valuable
for key establishment and authentication in WSN.

Asymmetric cryptography has long seen as being too demanding for con-
strained devices such as sensor nodes with an 8-bit micro controller. However,
there exist several protocols for asymmetric cryptographic algorithms for WSNs.
In [WKC+04] Watro et al. describe public-key based protocols for WSNs. In par-
ticular, they present authentication and key-agreement protocols based on RSA.
The so-called TinyPK was implemented in NesC for MicaZ 8-bit micro controller.
However, one RSA exponentiation with a 1024-bit key needs 14.5 seconds, which
is arguably not acceptable in many applications. RSA needs much longer key
lengths compared to elliptic curve cryptography to achieve the same security
level (1024 bit vs. 160-bit) [Res00]. Considering the limited amount of memory,
computing power and energy of a typical 8-bit sensor node, it seems that ECC
is a much better choice for public-key cryptography for WSN rather than RSA.
Since TinyPK is based on the more demanding RSA algorithm and was imple-
mented in NesC, it is not surprising that this is more than one order of magnitude
slower than the fastest known implementation of a point multiplication for ECC
in assembly. In [GPW+04] Gura et al. describe a point multiplication on a 160-
bit standard curve within 0.81 seconds. The majority (77%) of the clock cycles
was required by the modular multiplication. However, the source code of this
implementation is not publicly available, it is rather intellectual property of Sun
Microsystems. Therefore, these impressive results are not usable for the scientific
community. Alternatively there is the TinyECC implementation [LN06], which
may be used free of charge. TinyECC is a free software package for TinyOS
that supports all SECG recommended 128-bit, 160-bit and 192-bit elliptic curve
domain parameters. However, it is slower and needs more memory than the



Enabling Full-Size Public-Key Algorithms on 8-Bit Sensor Nodes 75

equivalent of SUN Microsystems. Therefore, our goal was to implement a prime
field arithmetic for an ECC scheme for 8-bit micro controller, which is open
source and at the same time faster than the aforementioned implementation of
SUN.

The remainder of this work is organized as follows: In Section 2 we give an
introduction to elliptic curve cryptography and constraints of the target devices.
Subsequently, in Section 3 our implementation of the modular multiplication for
a 160-bit standard elliptic curve is described. The results of our implementation
are presented in Section 4. Finally, this paper is concluded in Section 5.

2 Preliminary Assumptions and Introduction to Elliptic
Curve Cryptography

In this section, we first state the constraints of the target micro controller. Subse-
quently we introduce the mathematical background of ECC. Finally, we state the
implementation issues that arise when trying to implement ECC for constrained
devices.

2.1 Constrained Devices

For the envisioned applications of WSNs, up to tens of thousands of smart, but
battery powered devices are required, which communicate wirelessly. In order
to lower costs, these devices will be very constrained in terms of memory ca-
pacity, computing power and energy supply. Nowadays, the de-facto standard
sensor nodes for researchers are the so-called Mica motes [xbo,HSW+00]. They
comprise an 8-bit RISC ATMEL AVR ATmega128L [Atm] micro controller, 4
KB configuration EEPROM memory, 512 KB data Flash memory, 128 KB pro-
gram Flash memory, various sensors, ZigBee radio interface, and two standard
AA batteries. Ideally these batteries should last for several months up to years.
Therefore, a small power consumption is a crucial requirement for any applica-
tion running on these nodes. Sending and receiving of messages is by far the
most energy consuming task on the nodes [HMV04], therefore the traffic should
be minimized wherever possible. Furthermore, the energy consumption of an
application is mainly determined by its execution time. Therefore, a rule-of-
thumb is: the shorter the processing time of an algorithm, the lower its energy
consumption.

2.2 Introduction to Elliptic Curve Cryptography

Compared with symmetric algorithms the asymmetric algorithms work very
slow. In particular on low-power processors they are felt as not practical and
are used only rarely or not at all. For this purpose special algorithms were de-
veloped, but they have to be cryptanalyzed and shown to be secure, which takes
a long time, before they are suitable for protecting sensitive data or application.
Elliptic curves represent a special case. The advantage of the Elliptic Curve
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Cryptography (ECC) is that on one hand it is meanwhile quite well investigated
and thus considered secure while on the other hand just a very short bit length
is needed as compared to other asymmetric systems. In order to reach a secu-
rity level, which is equivalent to an RSA key with a length of 1024-Bit, already
160 bits are sufficient with elliptic curves [Res00]. This is a ratio of 6.4 and will
significantly reduce the consumed energy for key establishment.

Let E be an elliptic curve defined over a field K as shown in figure 1, then a
set of points can be created by a chord-and-tangent rule (extended addition). If
P and Q are two different points, which are part of the set, that intersect the
elliptic curve in a straight line, there will be a third intersection on the straight
line with the curve. The reflection on the x axis of the latter is called R and
represents the sum of P and Q. Doubling works the same, but the straight line
is given by the tangent of the curve in the according point. This set of points
defined by the extended addition extended by the point ∞ forms an Abelian
group. P + P is referred to as 2P . Accordingly is P + .. + P = kP . For every
point P exist a point Q with P = kQ, if P is not the identity and the order
of the elliptic curve is prime. Finding the appropriate k for a given set (Q, P )
is considered to be hard and called the elliptic curve discrete logarithm problem
(ECDLP). Most ECC protocols rely on the ECDLP.

There are various algorithms for the extended addition on an elliptic curve for
different coordinates and different underlying fields. They can be optimized ac-
cording to the used protocol and hardware. A good overview is given by [HC02]
and [Bro01]. Regardless which algorithm is used, they are all based on the arith-
metic of the underlying field. Especially the multiplication in the field comes at
great cost in time and energy. An efficient field arithmetic is therefore the base
for an efficient implementation of an elliptic curve cryptographic system.

As prime fields are potential to be implemented in software with good perfor-
mance, we rely in the following on elliptic curves of the form

E/K : y2 = x3 + ax + b, char(K) �= 2, 3 (1)

P

Q

R’

R

Fig. 1. Elliptic Curve, Parameters: a=-7 and b=11
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2.3 Elliptic Curve Cryptography Implementation Issues

The basis for an efficient cryptographic system based on elliptic curves is a
very efficient prime field arithmetic. As shown in Figure 2, a cryptographic sys-
tem based on elliptic curves can be divided into three layers. The highest level
actually represents the application layer. Protocols implemented here are for ex-
ample ECDSA [HC02] or EC ElGamal [HC02]. Optimizations in this layer vary
strongly, depending on the application (signature, coding etc.) and have to be
partly or completely redone for each application. The underlying layer is the
arithmetic of the elliptic curve. Most protocols are based on the multiplication
of a point on the elliptic curve with an integer (k ∗ P ). However, optimizations
at this level usually also strongly depend on the protocol layer. Optimizations in
the underlying prime field arithmetics layer will always improve the performance
of the whole ECC-System, because they are layer independent. More than 77%
of the computing time can be applied here. Therefore, a very efficient prime field
arithmetic is crucial for ECC based systems on constrained devices and time
critical systems.

Protocol

Prime field arithmetic

Curve arithmetic

Fig. 2. Three Layers of an ECC-system

3 Implementation of Modular Multiplication

In this section, we first state criteria for an efficient implementation of an ECC
system. Subsequently we will present details of our implementation of the mod-
ular multiplication, on which ECC system are based on.

3.1 Criteria for an Efficient ECC Implementation

Since optimizations in the prime fields arithmetic, contrary to other optimiza-
tions, will always improve the performance of the ECC system, the main atten-
tion goes here. Further optimization should be done depending on the application
and the selected EC domain parameters. Prime field arithmetic should provide
the operations multiply, add, subtract, halve and reduction. Operations with the
most potential for optimization are the multiplication and the reduction. Start-
ing point for the implementation is to choose a curve. For security reasons it
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should be a standardized curve with at least 160 bit in length. To keep compu-
tations fast the bit length should be as short as possible. The curve “secp160r1”
standardized by Standards for Efficient Cryptography (SEC2) [Cer00] was cho-
sen for our implementation. It has two advantages that can be used to speed up
prime field arithmetic reduction and to speed up curve arithmetic double and
add. Because its underlying prime field is based on a pseudo Mersenne prime
the reduction in the prime field can be done by several shifts and adds [Sol99]
which is much faster than any other known algorithm on constrained devices.
The curve parameter a = −3 can be used to reduce the effort of point doubling
and point addition when using Jacobian projective coordinates [HC02].

To adapt the algorithms in the best possible way to the hardware the prime
field arithmetic is completely implemented in assembly. As mentioned before
the reduction can be implemented very efficiently if pseudo Mersenne primes are
used. Addition and subtraction can be done without special optimization. The
highest cost of computation lies in the 160-bit multiplication of the prime field.
When choosing an algorithm for this multiplication it is important to consider
the hardwares characteristic, such as processor word-size and number of general
purpose registers. The ATmega128L is able to perform an 8-bit multiplication
in two cycles. Loading one 8-bit word from SRAM to registers also requires two
cycles. Basically two different approaches are possible:

1. reduce the number of multiplication or
2. reduce SRAM usage.

The first attempt would be to implement Karatzuba [MVPV96] and the
second some kind of improved schoolbook algorithm. The hybrid multiplica-
tion [GPW+04] is a memory optimized variant of the schoolbook algorithm.
A special characteristic of the algorithm is that the computational cost rises lin-
early with smaller numbers of registers and processor word size. It also is much
easier to implement than Karatzuba and hence much easier to port to different
platforms. For these reasons the hybrid multiplication was chosen.

When doing a multiplication using the schoolbook algorithm the multiplica-
tion is divided in several parts that are accumulated to get the final result. The
summands can be sorted in two ways before the addition: adding them from
left-to-right or right-to-left1 it is called row wise multiplication, see Figure 3(a).
Sorting them by bit length is called column wise multiplication, see Figure 3(b).
The hybrid multiplication algorithm [GPW+04] combines both methods: the
summands that are used in the column wise way are calculated by using the row
wise method, see Figure 4.

The number of rows per column is called column width (d). According to
[GPW+04] the optimal column width is:

d = max{i | 1 ≤ i ≥ n, r ≥ 3i + �log2 (n/i)/k�}, (2)

where n is the operand size, r are the available registers and k is the bitlength.
1 This is what is taught in school when learning the multiplication the first time -

probably giving the algorithm its name.
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(a) Row Wise Multiplication (b) Column Wise Multiplication

Fig. 3. Row Wise and Column Wise Multiplication

Fig. 4. 160-bit Hybrid Multiplication on ATMega128L with five Multiplications per
Row

3.2 Implementation of the Modular Multiplication

According to Formula 2 the optimal d is 10 using all registers of the micro
controller. In our first approach this parameter was used. The implementation
benchmark showed that the implementation was about 50% slower than the
benchmarks of SUN Microsystems in [GPW+04]. This overhead was mainly
caused by handling carry bits. Let’s have a look at the theoretic minimum effort
of the algorithm. The core of the row wise part is the elemental 8 bit multiplica-
tion of the CPU followed by two additions to add the product to an intermediate
result. These three operations are performed in the inner loop and will be ref-
erenced as the elementary instruction block in the remainder as illustrated in
Figure 5(a). When using 160-bit operands this is done exact 400 times regard-
less of d. One multiplication and two additions equal 4 cycles. This means 1600
cycles in total plus the effort to get the operands from SRAM and write them
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back. This effort depends on the parameter d which depends on the machine’s
hardware. For the theoretic best d (d = 10) on our target device the memory
load and store effort would be 80 data loads and 40 stores consuming 240 cy-
cles in total. For d = 5 the data load effort would double to 160 cycles while
data store effort remains at 40 consuming 400 cycles in total. In summary, the
theoretic optimum is 1840 cycles for d equal to 10 or 2000 cycles for d equal to
5. However, our first implementation needed about 4500 cycles, even though we
used the -theoretical- optimal column width d of size 10.

We found that surprisingly, the major part of the overhead was caused by
carry handling rather than handling pointers or other arbitrary effort. The ele-
mentary instruction block is one 8-bit multiplication followed by two additions
as mentioned before. Since the additions are targeted to an intermediate result
which is in general not zero the addition produces a carry bit in the general case.
When the next iteration starts the elementary 8-bit multiplication will overwrite
the carry flag in the CPU. Hence the carry bit has to be stored and restored in
each elementary instruction block, which would result, in at least two additional
cycles per elementary instruction block or an overhead of at least 66.66% only
for carry handling! Note that at the end of each row and also at the end of each
column additional carry handling is required. Even if an efficient carry store
and restore is available, the operation “add with carry” would add the carry to
the wrong register, as can be seen in Figure 5(b). The best solution we found
that solves both problems requires three additional cycles per iteration of each
elementary instruction block. Compared to the four cycles of the elementary in-
struction block, this is an overhead of 75%. Any other possible solution found
needed more spare registers.

In our second implementation the column width d was chosen equal to 5. Note
that in this case a 160-bit multiplication consists of 16 columns, each of them is

Elementary Instruction Block:
1 x 8-bit multiplication
2 x 8-bit additions

ai * bi

(a) Elementary Instruction Block

ai+1 * bi+1

ai * bi

ad
d1

ad
d2

ad
d3

ad
d4

ca
rr

y1

ca
rr

y2

ca
rr

y3

The carrys from 
two consecutive 
elementary 
operation blocks 
overleap here.
Carry2 goes to 
wrong register.

Performing single elementary 
operation blocks

(b) Column Wise

Fig. 5. Carry Handling Problems with Elementary Instruction Blocks
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comprised of five rows. Five elementary instruction blocks are required to calculate
one row. Furthermore, by halving the column width d the number of memory loads
is doubled. In other words, we trade at least 80 additional cycles for the sake of
more spare registers. Storing and restoring the carry bit after each 8-bit multipli-
cation is not efficient. Several different solutions are possible, but discussing them
all would exceed the frame of this work. A solution in which the carry bit can be
handled by the “add with carry” command is required. In the next subsections we
will emphasize the overheadproduced by carry handling within one rowand within
one column. Finally we will summarize the carry handling costs.

Calculating a Row: The number of consecutive elementary instruction blocks
performed in the row wise part is set by the parameter d. In this case five
iterations are done in a row. The spare registers can be used as a buffer to safe
the five 16-bit products of the five 8-bit multiplications, see Figure 6. After the
five multiplications are executed and buffered, eleven additions follow, which are
performed in the order shown by the numbers in Figure 6. Addition number six
is represented by the -carryadd- arrow. It represents a normal “add with carry”
instruction, that adds a zero to the register holding the high significant byte of
the result of an 8-bit multiplication, thus adding the carry bit. We call this carry
add “secure” because it cannot produce another carry. This is due to the fact that
the maximal product 0xFF ∗ 0xFF = 0xFE01. Hence, adding a carry bit to the
high significant byte of 0xFE01 results in 0xFF01 and does not produce another
carry bit. This serialization/pipelining of elementary instruction blocks reduces
the carry handling within a row to four move instructions (the last multiplication
does not need to be buffered) and one addition instruction or, respectively, one
clock cycle per elementary instruction block. Note that the previous approach
required three cycles per elementary instruction block for carry handling. In
other words the overhead is reduced from 75% in the first approach to now 25%.
However, again additional handling is needed for carry bits occurring at the end
of each row and column.

ai * bj+4

ai * bj+3

ai * bj+1

5 911 8 2 7 1

ai * bj

3

ai * bj+2

10 4

carryadd

10 spare registers to 
buffer the results of the 
five 8-bit 
multiplications.

Additions are done in 
an order that “add with 
carry“ can be used.

 16-bit move

8-bit add with carry

8-bit add without carry

carryadd

8-bit word in the range 0x00 .. 0xFE

8-bit word in the range 0x00 .. 0xFF

16-bit product of a multiplication

carry buffer

Fig. 6. Carry Handling in one Row



82 L. Uhsadel, A. Poschmann, and C. Paar

Calculating a Column: Recall that a column is comprised of five rows, i.e. five
rows have to be processed to calculate a column. The last addition done in a row
produces a carry bit which has to be processed in one of the upcoming rows, as
we will see below. Figure 6 shows the carry handling within columns. A white box
denotes an 8-bit register holding a value smaller than 0xFE, i.e. a “secure” carry
add is possible with this register, whereas a gray box denotes an 8-bit register
with an arbitrary value. As mentioned before, the carry bit which occurs at the
end of each row needs to be processed later on, therefore it is buffered either
in “carry buffer 1” or in “carry buffer 2”. The correct position where this carry
bit has to be added is displayed by the position of the carry buffer holding it.
Figure 6 shows furthermore, that in two successive rows the latter one has no
register in which the carry bit of the former could be “securely” added. In the
subsequent row this is possible, hence a second carry buffer is required. The
two buffers are used alternating to safe the carry bits, which occur after the
calculation of each row. Therefore, two additional cycles overhead are required
for carry handling for each column.

The carry bit occurring at the end of the column is stored in a third buffer.
Since more than one row may be calculated using the same accumulator bytes,
more than one carry bit is accumulated in the third carry buffer. If the next
column starts with new accumulator bytes the carry buffer has to be processed.
Figure 7 shows the correct position. In this case two additions are done, whereby
the latter is “secure”. This is because the carry buffer may exceed the value 0x01
making a single “secure” carry add impossible. Therefore, three additional cycles
for carry handling are required if columns start with a new accumulator.

Summary of Carry Handling Costs: This way the total carry handling
results in:

– 5 cycles for 5 elementary instruction blocks (equals 1 row)
– 2 cycles for each column
– 3 cycles for each column starting with new accumulator

Altogether 400+32+15
400 = 1.1175 additional cycles2 per elementary instruction

block are required for the carry handling, which is equivalent to an overhead
of 28%. Note that this calculation includes all carry handling for the entire
multiplication, whereas in the estimation of our first approach (75% overhead)
additional carry handling at the end of each row and column was required. Since
the elementary instruction block is repeated 400 times the benefits in saving
both time and energy is enormous.

Two more aspects shall be mentioned here: First, the amount of needed reg-
isters to apply this carry handling equals the number of partial product which
have to be buffered per row. As a result a smaller d has to be applied. Choos-
ing the optimum size for d in reality can be a quite challenging task though.
2 Recall that each column is comprised of 5 rows, each of them is comprised of 5 elemen-

tary instruction blocks, i.e. each column consists of 25 elementary instruction blocks. For
a 160-bit point multiplication 16 columns are required, i.e. 400 elementary instruction
blocks. Five columns starting with a new accumulator require additional cycles.
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Carrybuffer 1

8-bit word in the range 0x00 .. 0xFE

8-bit word in the range 0x00 .. 0xFF

Carrybuffer 2

carry operation 1

Carrybuffer 3

carry operation 2

Fig. 7. Carry Handling in Columns

Second, the additional effort for handling carry bits in the way presented here
can be divided in a static and a dynamic part. The effort of one clock cycle per
elementary instruction block is static, while the remainder is supposed to grow
with smaller column width.

4 Results

The basic requirement for a fast and thus energy efficient implementation of ECC
is a very fast multiplication in the prime field. The fastest known implementation
was implemented by SUN Microsystems. In [GPW+04] they provide a bench-
mark for the micro controller that we used as well, hence a direct comparison
is possible. A 160-bit multiplication from SUN Microsystems’ implementation
requires 3106 cycles, which is at a clock rate of 7.37 MHz equivalent to 0.42 ms.

The implementation presented in this work needs 2881 cycles for a 160-bit
multiplication, which is equivalent to 0.39 ms at 7.37 MHz. In fact, this rep-
resents a time saving of 7.2%. To the best of our knowledge this is the fastest
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Table 1. Overview of instructions used

This work SUN Microsystems Theoretical Min.
Instr. #C/I Instr. Cycles Instr. Cycles Instr. Cycles

add/adc 1 986 986 1360 1360 800 800

mul 2 400 800 400 800 400 800

ld/lds 2 238 476 167 334 160 320

st/sts 2 40 80 40 80 40 80

mov/movw 1 355 355 335 335

other 184 197

Sum 2881 3106 2000

implementation world wide of a modular multiplication of a 160-bit standardized
elliptic curve for an 8-bit micro controller.

In Table 1 we present a detailed list of instructions used by our and SUN Mi-
crosystems’ implementation as published in [GPW+04]. A third column contains
the theoretical minimum amount of the appropriate instruction, as required by the
hybrid multiplication with a column width of 5 on the ATMega128L micro con-
troller. However, this number cannot be achieved, but is mentioned to show the
limit and the overhead. Each row represents an instruction or a set of instructions,
which are very similar. The first row represents the 8-bit addition with and without
carry. In the next row the number of 8-bitmultiplications canbe seen. In the follow-
ing row all used data loads are combined. Thereafter the used commands to write
back to SRAM are listed. The underlying row shows all 8-bit and 16-bit register
moves. Finally all other instructions are combined. In this row only the number of
used cycles is given while the number of instructions is missing, because different
instructions may consume different number of cycles to be executed.

As one can see, the main differences between our implementation and SUN
Microsystems’ lie in the number of used additions and data loads. Note that data
loads require two cycles contrary to the addition, which only requires one cycle.
Although SUN Microsystems’ implementation executes less data load instruc-
tions, in total it requires more cycles than our implementation. The time saving
results from the improved carry handling reducing the number of needed addi-
tions close to the minimum. In SUN Microsystems’ implementation the number
of data loads is close to the minimum number of 160 data loads for a column
width of 5. The additional data loads in our implementation result from pointer
handling. Pointers have to be restored from SRAM very often, because the carry
handling needs all spare registers.

Comparison with TinyECC is cumbersome for two reasons: on the one hand
neither time tables for curve nor modular arithmetic for TinyECC are available.
On the other hand we did not implement a full ECDSA protocol. Therefore
we estimate the execution time of an ECDSA signature based on our modular
multiplication. [GPW+04] state that 77% of the execution time of one point mul-
tiplication are required for modular multiplication. Assuming our multiplication
to be used here would result in 0.76s. Note that this curve arithmetic includes
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some well applied algorithmic optimizations which are best fitted to hardware,
because they are done in assembly. On the other hand no special optimization
for ECDSA were included, e.g. the y-coordinate is calculated but not used at
all for the ECDSA protocol. A signature requires one inversion, two modular
multiplication, and one modular addition. In addition one SHA-1 has to be ex-
ecuted to hash the message. Generally SHA-1 and a modular multiplication are
both roughly three orders of magnitude faster than a point multiplication. The
execution time of an inversion is in the range of several modular multiplications.
The execution time of the modular addition is roughly four orders of magnitude
faster than the execution of a point multiplication. Therefore, we estimate that
all required operations for an ECDSA signature, including the SHA-1, can most
probably be performed in less than one second. A TinyECC ECDSA signature
generation takes slightly less than two seconds, including the time for the SHA-1
execution. Furthermore, once a precomputation time of a 3.5s is required.

5 Conclusion and Future Work

We presented the fastest implementation of a modular multiplication for a 160-
bit standardized elliptic curve for 8-bit micro controller in Section 3 and com-
pared the results in Section 4. We also highlighted the criteria for efficient im-
plementations of ECC schemes for 8-bit micro controller and pointed out the
problems that arise when implementing

Since modular multiplications take up the major part of the computing time
of point multiplications over an elliptic curve, our results can be used to sig-
nificantly increase the efficiency of point multiplications over an elliptic curve.
Many ECC schemes such as EC ElGamal or ECDSA are based on modular mul-
tiplication and will therefore directly benefit from our results. Our results bring
the vision of asymmetric cryptography in the field of WSNs with all its benefits
for key-distribution and authentication a step closer to reality.

Next steps are the efficient implementation of point multiplication over the
elliptic curve and some ECC schemes such as EC ElGamal and ECDSA. Fur-
thermore an integration into existing ECC modules for TinyOS is thinkable.
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