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Abstract. In this paper we propose an automated approach for joint
sulci detection on cortical surfaces by using graphical models and boosting
techniques to incorporate shape priors of major sulci and their Markovian
relations. For each sulcus, we represent it as a node in the graphical model
and associate it with a sample space of candidate curves, which is gener-
ated automatically using the Hamilton-Jacobi skeleton of sulcal regions.
To take into account individual as well as joint priors about the shape of
major sulci, we learn the potential functions of the graphical model using
AdaBoost algorithm to select and fuse information from a large set of fea-
tures. This discriminative approach is especially powerful in capturing the
neighboring relations between sulcal lines, which are otherwise hard to be
captured by generative models. Using belief propagation, efficient infer-
encing is then performed on the graphical model to estimate each sulcus
as the maximizer of its final belief. On a data set of 40 cortical surfaces, we
demonstrate the advantage of joint detection on four major sulci: central,
precentral, postcentral and the sylvian fissure.

1 Introduction

Cortical sulci are important landmarks in human brain mapping because they
encode rich information about the convolution patterns of human brains[1] and
provide guidance for registration tasks[2], but the variability of the brain mor-
phometry poses serious challenges for their automatic detection, thus manual
annotation remains the golden standard in practice. In this paper, we propose a
novel approach to incorporate prior knowledge from manual tracing by modeling
the relation of major sulci with boosting techniques and detect them jointly via
the solution of an inference problem on graphical models.

Many algorithms were proposed for sulci detection in previous works. Cur-
vature features were used in [3,4,5] to detect sulci semi-automatically with the
need of manually inputing the starting and ending points. Depth features with
respect to a shrink wrap surface were also used for sulci detection on surfaces[6,7].
The extraction of sulci from volume images were proposed in [8,9,10], but hu-
man interactions are still necessary to pick out specific sulci from the results.
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Fig. 1. An illustration of joint sulci detection. (a) Seven major sulci on a cortical
surface. (b) A graphical model representing the local dependency between neighboring
sulci.

To address this challenge, learning-based approaches were introduced into the
detection process. Because of its simplicity, techniques based on the principal
component analysis(PCA) of point sets[11] were used in[12,13]. Graphical mod-
els and neural networks were used in [14] for automatic recognition of sulcal
ribbons, which only identify subsets of major sulci. A learning-based technique
based on probabilistic boosting trees[15] was proposed in [16] for the automatic
detection of cortical sulci from volume images, but each sulcus was detected
separately.

We propose in this work to detect multiple sulci jointly with graphical mod-
els. From the experience of manual tracing, this seems a natural choice as the
knowledge about the relative location of sulci is frequently utilized for the correct
identification of these curves. Modeling the relation of multiple objects has also
been shown useful in medical image segmentation[17]. As an example, seven ma-
jor sulci are plotted on the lateral surface of a cortex in Fig. 1(a). Even though
we can see that most parts of sulci follow furrows of high curvature, choices have
to be made at intersections of multiple furrows because of the variability of the
cortex. What makes this task more difficult is that the gyral regions have to be
crossed sometimes to ensure a continuous curve is generated for each sulcus. To
counter this kind of complications, protocols are defined in practice on how to
use local dependency of sulcal lines for manual annotation. For the example in
Fig. 1(a), the precentral sulcus has to cross a gyrus to meet the requirement
that it should follow a path as parallel as possible to the central sulcus. In de-
termining the inferior portion of postcentral sulcus that is highly variable, its
relation with respect to the tail of the sylvian fissure also helps to provide critical
information.

There are two main challenges, however, to formulate a tractable inference
problem over graphical models for joint sulci detection. (1) With each node of
the graph representing a sulcus, the random variables of interest here live in high
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dimensional shape spaces and it is generally hard to do inferences directly over
such spaces. (2) Every major sulcal curve observes flexible shape and it is hard
to capture their individual as well as joint regularity by a good prior.

In our joint detection framework, we tackle these challenges by first construct-
ing a sample space containing a finite number of candidate curves at each node
of the graph. These sample spaces greatly reduce the search range of inference
algorithms and they are generated automatically based on the Hamilton-Jacobi
skeleton of sulcal regions on triangulated cortical surfaces. We then use boost-
ing techniques[18] to learn discriminative shape models of each sulcus and their
neighboring relations. The advantages are twofold. (1) The algorithm is able to
automatically select and fuse a set of informative shape features, characterizing
unary as well as binary relationships of the sulcal curves, from a large set of can-
didate features. (2) The priors are learned directly from the training data and
there is no parameter to tune for different sucal curves. Traditional generative
model based algorithms, e.g. PCA, have difficulty in modeling such complicated
priors due to its Gaussian assumptions. In making the inference, a belief propa-
gation algorithm[19,20] is used to perform inferences efficiently on these sample
spaces for joint sulci detection.

In the rest of the paper, we first propose our joint detection framework with
graphical models in section 2. The generation of sample spaces for each node
of the graph is then described in section 3. After that, we develop a boosting
approach in section 4 to learn potential functions in graphical models for sulci
of interest. In section 5, experimental results on the joint detection of four ma-
jor sulci: central, precentral, postcentral and the sylvian fissure on 40 cortical
surfaces are presented. Finally, conclusions are made in section 6.

2 The Joint Detection Framework

For the detection of a set of major sulci C1, C2, · · · , CL on a cortical surface
M, we assume an undirected graphical model G = (V, E) that represents the
Markovian relation among sulci, where V = {C1, C2, · · · , CL} are the set of
nodes, and E is the set of edges in the graph. As an example, a graphical model
for the seven sulci in Fig. 1(a) is shown in Fig. 1(b). Because the number of
major sulci is small on the cortical surface, it is straightforward to construct the
graph structure of such models and this only needs to be done once for the same
detection task.

To perform inferences on sulcal lines with graphical models, it is critical to
first specify a proper sample space for each node as the general space of curves
is infinite dimensional. One possible solution is to reduce the dimension of shape
spaces with PCA, but there is no guarantee that these parameterized curves will
live on the cortical surface and follow the bottom of sulcal regions. To overcome
this problem, we generate a set of candidate curves Si automatically for each
sulcus Ci using a novel algorithm that will be developed in section 3. These
candidate curves are weighted geodesics on the cortical surface and follow the
skeleton of sulcal regions closely. By adopting the set of candidate curves Si as
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Table 1. The AdaBoost algorithm[18]

Given training data: (x1, y1, w
1
1), · · · , (xn, yn, w1

n) where xi are the sample data,
yi ∈ {−1, 1} are the corresponding class labels, and w1

i are the initial weights.

For t = 1, · · · , T

– Train a weak classifier ht given the current weights.
– Compute the weighted error rate εt of the classifier ht.
– Update the weights:

wt+1
i =

wt
ie

−αtyiht(xi)

Zt

where αt = log((1 − εt)/εt)/2 and Zt is a normalization constant such that�n
i=1 wt+1

i = 1.

Output the final classifier H = sign(f) with the decision function f =
�T

t=1 αtht.

the sample space for each node Ci, we are able to model each sulcus as a discrete
random variable with values in a finite set and this makes the inference on the
graphical model computationally tractable.

Over the sample spaces of all the nodes in a graphical model, we define two
types of potential functions to complete the construction of the graphical model:
the local evidence function φi : Si → R at each node Ci and the compatibility
function ψi,j : Si × Sj → R for (Ci, Cj) ∈ E. To incorporate shape priors about
individual sulcus and their relations, we propose a discriminative approach using
AdaBoost[18] in section 4 to learn both types of potential functions from man-
ually annotated training data. Given input data x, the discriminative method
learns the posterior probability p(y|x) of a label y. With the discriminative ap-
proach, there is no need of specifying parametric forms for prior models of sulcal
lines and their neighboring relations. Instead we use a large set of features derived
from training data and selectively combine information from these features with
boosting techniques. The central idea of AdaBoost, as listed in Table I, is the
formation of a strong classifier through the combination of a series of weak clas-
sifiers. Using the decision function f generated from AdaBoost, an approximate
posterior can then be defined and used as the potential function.

With the graphical model defined, we can write down the joint distribution
of all the sulci as:

p(C1, · · · , CL) =
1
Z

∏

(Ci,Cj)∈E

ψi,j(Ci, Cj)
∏

Ci∈V

φi(Ci) (1)

where Z is the partition function for normalization. For sulci detection, we use
belief propagation to compute the marginal distribution of each sulcus from the
joint distribution because it is applicable to graphs both with and without cycles.
With belief propagation, each node in the graph receives and sends out messages
at every iteration of the algorithm. For a node Ci, the message it sends to its
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Fig. 2. An example of message passing in the graphical model of Fig. 1(b)

neighbor Cj is defined as:

mi,j(Cj) =
∑

Ci∈Si

ψi,j(Ci, Cj)φi(Ci)
∏

Ck∈N (Ci)\Cj

mk,i(Ci) (2)

where N (Ci) are neighbors of Ci in the graph. This message takes into account
not only the local evidence φi and the compatibility function ψi,j , but also the
messages the node Ci received from its neighbors except Cj . As an illustration,
we show in Fig. 2 the flow of messages from the node C4 and C5 to C3, and then
to C1 in the graphical model shown in Fig. 1(b). If we continue this message
passing process until it converges, i.e., when the messages stop changing, we
obtain the final belief at each node of the graph as:

bi(Ci) = φi(Ci)
∏

Cj∈N (Ci)

mj,i(Ci) i = 1, 2, · · · , L. (3)

Using belief propagation, we collect information from all the nodes to form the
final belief for every sulcus. For graphs without cycles[19], such as trees, the final
belief function corresponds to the marginal distribution of each sulcus derived
from the joint distribution in (1), thus we can detect a sulcus by maximizing the
final belief:

C∗
i = arg max

Ci∈Si

bi(Ci) i = 1, 2, · · · , L. (4)

Even for graphs with cycles, belief propagation is known to frequently perform
well and generate excellent results[20], most notably for its near Shannon limit
performance in turbo decoding[21]. Thus the above equation is also applicable
for joint sulci detection in the case that the graphical model has loops.

3 Generation of Sample Spaces

Given a cortical surface, there are three main stages in our algorithm of sample
space generation for each node of a graphical model: skeletonization of sulcal
regions, a learning-based approach that picks out candidates for the starting
and ending point of the sulcus, and the generation of member curves of the
sample space as weighted geodesics on the cortical surface.
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Fig. 3. The process of generating sample spaces for sulci detection. (a) The original
cortical surface. (b) Mesh segmentation results. Red: sulcal regions; blue: gyral regions.
(c) The skeleton of sulcal regions plotted in black. (d) Curves from the sample space
of the central sulcus plotted in red.

In the first stage, we compute the skeleton of sulcal regions with the method
we reported in[22]. For completeness we briefly review the main steps of this
algorithm. We represent the cortical surface M as a triangular mesh and first
compute the principle curvatures at each vertex. Using the curvature features,
the cortical surface is then partitioned into sulcal and gyral regions using graph
cuts. As an illustration, we show in Fig. 3(b) the result of the partition algo-
rithm for the cortical surface in Fig. 3(a). Finally an extension of the method of
Hamilton-Jacobi skeleton[23] is used to calculate the skeleton of sulcal regions
as shown in Fig. 3(c). For all vertices of M in the skeleton, we classify them into
three types using the neighboring system of the triangular mesh:

– End points: vertices with one neighbor in the skeleton.
– Knot points: vertices with three or more neighbors in the skeleton.
– Middle points: vertices with two neighbors in the skeleton.

We learn a two-class classifier with AdaBoost in the second stage to pick a set
of candidate points from the union of end and knot points in the skeleton for the
starting and ending point of each sulcus. We use a set of K cortical surfaces with
manually labeled sulci for the construction of our training data. These cortical
surfaces are assumed to be registered to a common coordinate space such as
ICBM. To learn the classifier for the starting point of a sulcus Ci, we construct
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the training data as follows. The starting point of the manually labeled sulcus
Ci on the K cortical surfaces are assigned label 1 and weight 1/2K. The union
of all the knot and end points from the skeletons of the K cortical surfaces
are assigned label −1 and weight 1/2Ñ where Ñ is the total number of points
in this set. At each iteration of AdaBoost, we train a perceptron as the weak
classifier using the pocket algorithm with ratchet[24]. As shown in Table I, the
final decision function generated from AdaBoost is of the following form:

f =
T∑

t=1

αtht (5)

where ht : R
3 → {−1, 1} is the weak classifier at the t-th iteration of AdaBoost

and αt is the weight for this weak classifier. Applying the decision function f
to all the end and knot points in the skeleton of a cortical surface, we pick the
candidates for the starting point of Ci as M points with the largest f values.
Typically we choose M = 10 in our experiments and this generates a sufficiently
large candidate set for the final detection of sulcal lines according to our experi-
ence. Similarly, a candidate set of M points can also be generated for the ending
point of Ci.

Given the candidate set for the starting and ending points of the sulcal line
Ci, we connect them with weighted geodesics on M to generate the sample
space Si. The weights are derived from the geodesic distance transform d of the
skeleton on M generated in the first stage. We compute these geodesics with the
fast marching algorithm on triangular meshes[25]. For a candidate of starting
point Xs and a candidate for the ending point Xe, we connect them through a
weighted geodesic with the weight defined as

F = e−d2/2σ2
(6)

to encourage the weighted geodesic overlapping as much as possible with the
skeleton of sulcal regions. To find this geodesic, we first compute a weighted
distance transform dw on M by solving the Eikonal equation

∇dwF = 1 (7)

intrinsically over the cortical surface and trace backward from Xe to Xs in
gradient descent directions. This geodesic is then added to the sample space
Si. We choose the parameter σ = 1, 2, 3, 4, 5 to cover a wide range of possible
routes. So overall the sample space Si of Ci is composed of 5M2 curves. As an
illustration, all the candidate curves in the sample space of the central sulcus on
the cortical surface in Fig. 1(a) are plotted in Fig. 1(d) and we can see that the
true central sulcus is included in this sample space.

4 Learning Potential Functions Using AdaBoost

In this section, we describe our learning-based approach for the construction
of the potential functions in graphical models to take into account individual
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and joint shape priors of major sulci. Our approach is discriminative and learns
both the local evidence functions φi and the compatibility functions ψi,j with
AdaBoost. For each potential function, we construct a set of features and learn
a strong two-class classifier by combining with AdaBoost a series of weak clas-
sifiers on these features. It is shown in [26] that AdaBoost approximates logistic
regression and its result can be used to estimate the probability of a class label,
which we then use to define the potential function.

For a sulcus Ci we learn its local evidence function φi from a training data set
of K cortical surfaces with the sulcus manually labeled on each surface. We also
assume these cortical surfaces are registered to the same common coordinate
system as in section 3. For the same sulcus, we generate a sample space on each
of the cortical surface in the training data. All curves are parameterized with N
(typically 100) uniformly sampled points such that one-to-one correspondences
are established between curves. In the training data set, all manually labeled
sulcus for Ci on the K cortical surfaces are assigned label 1 and weight 1/2K
and all the curves in the sample spaces are assigned a label −1 and weight
1/10KM2. The same perceptron in section 3 is used as our weak classifier. At
each iteration of AdaBoost, we train N perceptrons Pn(1 ≤ n ≤ N) with the
n-th point from all the curves and pick the one with the best performance as
the weak classifier ht. By combining all the weak classifiers, we obtain the final
decision function f(Ci) =

∑T
t=1 αtht(Ci). Following [26], we define the local

evidence function for Ci as:

φi(Ci) =
e2f(Ci)

1 + e2f(Ci)
∀Ci ∈ Si. (8)

The local evidence function approaches the value 1 at curves in the sample space
that are similar to the manually labeled sulcus in the training data, indicating
intuitively that they exhibit strong evidence to be the sulcus we want to detect.

To learn the compatibility function between two sulci Ci and Cj , we define the
feature used for training as di,j = Ci − Cj , which is the difference between the
two curves. For each cortical surface in the training data, the manually labeled
sulci for Ci and Cj are used to construct the feature vector di,j with label 1 and
weight 1/2K. From the sample spaces of Ci and Cj on the K cortical surfaces,
we randomly pick 5KM2 pairs to construct the negative sample data with label
−1 and weight 1/10KM2. The same boosting process as above is applied to
learn a decision function for the compatibility between the two sulci f(Ci, Cj) =∑T

t=1 αtht(di,j) and we can define the compatibility function between Ci and Cj

as:

ψi,j(Ci, Cj) =
e2f(Ci,Cj)

1 + e2f(Ci,Cj)
∀Ci ∈ Si, Cj ∈ Sj. (9)

With AdaBoost, we have developed a common solution for the learning of both
local evidence functions and compatibility functions. Even though we used only
features derived from coordinate information in our current work, the boosting
method for learning priors is general and allows the inclusion of more features
in future work. By inserting the potential functions into graphical models, the
belief propagation process can then be used for the joint detection of major sulci.
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(a) Without graphical models. (b) With graphical models.

(c) Without graphical models. (d) With graphical models.

Fig. 4. Sulci detection results on two cortical surfaces. (a) and (b) show results from
a surface in the training data. (c) and (d) show results from one of the surface in
the testing data. For all the results, manually labeled results are plotted in black for
comparison. The detected curves for the central, precentral, postcentral, and sylvian
fissure are plotted in red, green, blue and cyan.

5 Experimental Results

In this section we present preliminary experimental results for the joint detection
of four major sulci: the central, precentral, postcentral sulcus and sylvian fissure.
The graphical model used for the joint detection of these four sulci is the sub-
graph in Fig. 1(b) that includes the nodes C1, C2, C3 and C4.

In our experiments, we have a dataset of 40 cortical surfaces with the four
sulci manually labeled. We used 20 of them as the training data and the other
20 for testing. During the training stage, we first computed the skeleton of sulcal
regions for the 20 training data. Decision functions were then learned for each
sulcus such that a set of candidate points can be generated for both of its starting
and ending point. After that, a sample space was generated for each sulcus with
weighted geodesics as described in section 3. With these sample spaces, the local
evidence functions and the compatibility functions between neighboring vertices
in the graphical model were learned using the boosting method developed in
section 4. For every cortical surface in the testing data, the sample space of each
sulcus was generated with the same classifier learned from the training data.

Once all the potential functions and sample spaces were constructed, we ap-
plied the joint detection algorithm with graphical models in section 2 to detect
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the four sulci on all 40 cortical surfaces. As a comparison, we also detected each
sulcus independently without using graphical models. This is realized by simply
picking the curve in the sample space that maximizes the local evidence function.
To illustrate the advantage of the joint detection algorithm, we show in Fig. 4
the detection results on two cortical surfaces, one from the training data and
the other from the testing data, using these two different methods. For the first
surface, the results without using graphical models is shown in Fig. 4(a) and
we can see the inferior part of the postcentral sulcus overlaps with the central
sulcus and this is clearly undesirable. In the joint detection results shown in Fig.
4(b), it is easy to see the postcentral sulcus is correctly detected. Thanks to
the compatibility functions learned with boosting, the tail of the sylvian fissure
detected in Fig. 4(b) also agrees better with manually labeled results than the
sylvian fissure detected in Fig. 4(a). In results of the second surface shown in Fig.
4(c) and (d), improved results were also obtained with graphical models for the
central and precentral sulcus as compared to the results detected independently.

We next perform a quantitative analysis of the performance of our sulci de-
tection algorithm by comparing with manually labeled curves. For two curves
C̃1 and C̃2 that are parameterized with N points, we define two distances:

Da(C̃1, C̃2) =
1
N

∑

xn∈C̃1

min
ym∈C̃2

‖ xn − ym ‖ (10)

and

Dh(C̃1, C̃2) = max
xn∈C̃1

min
ym∈C̃2

‖ xn − ym ‖ . (11)

The distance Da is an average of the distance from points on C̃1 to C̃2, while Dh

measures the Hausdorff distance from C̃1 to C̃2. For a detected sulcus Ci and
its manually labeled result Ci, we use four distances to measure the difference
between them: D1

a = Da(Ci, Ci), D2
a = Da(Ci, Ci), D1

h = Dh(Ci, Ci), and
D2

h = Dh(Ci, Ci).
Quantitative comparisons to manually labeled results were performed for

both the sulci detected jointly with graphical models and independently without
graphical models. For these two different groups of results, the average of the
four distances over the training and testing data were computed and listed sep-
arately for each sulcus in Table 2. Overall we have 32 average distances for each
group of results. The advantage of the jointly detected results are clear as they
outperform results without graphical models in 28 of the 32 distances. A more
detailed analysis shows that we achieve very good performance with our joint
sulci detection algorithm in terms of D1

a and D2
a for all four sulci, and the results

are especially encouraging for the central sulcus where an average distance of
around 1mm is obtained to the manually annotated curves. The relatively large
distances in terms of D1

h and D2
h are mostly due to the variability of the start-

ing and ending part of sulci. Considering the lack of consensus among manual
tracers on these parts, it might be interesting to use other metrics in our future
research to measure how well the main body of each sulcal curve is detected.
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Table 2. Differences between sulci detected jointly with graphical models and inde-
pendently as compared to manually annotated results (in millimeters)

Without graphical models With graphical models
Sulci

Central (training)
Precentral (training)
Postcentral(training)
Sylvian (training)
Central (testing)

Precentral (testing)
Postcentral (testing)

Sylvian (testing)

D1
a D2

a D1
h D2

h

1.86 1.91 7.88 8.40
3.01 2.50 11.48 11.87
5.65 5.00 15.34 14.58
2.68 2.55 11.14 13.05
3.04 2.98 10.52 11.01
4.37 4.48 13.19 14.75
2.80 3.10 11.33 11.80
3.07 2.75 13.41 13.59

D1
a D2

a D1
h D2

h

0.99 1.36 5.64 6.98
2.57 2.56 10.03 11.13
2.90 3.26 11.75 12.19
2.88 2.32 11.15 10.83
1.10 1.59 6.59 8.55
2.92 3.41 10.55 12.60
2.50 3.04 10.16 12.42
2.65 2.48 12.09 12.55

6 Conclusions

A general framework for the joint detection of major sulci was proposed in this
paper. Using boosting techniques, we integrated discriminative shape priors of
each sulcus and their Markovian relations into graphical models and transformed
sulci detection into a tractable inference problem over sample spaces of candidate
curves. The boosting approach is flexible and allows the inclusion of new features
to capture more detailed priors in future work. We are also testing the joint
detection of more major sulci with our algorithm.
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netic resonance images to structural representations of the cortex topography us-
ing topology preserving deformations. Journal of Mathematical Imaging and Vi-
sion 5(4), 297–318 (1995)

11. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training
and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

12. Lohmann, G., Cramon, D.: Automatic labelling of the human cortical surface using
sulcal basins. Medical Image Analysis 4, 179–188 (2000)

13. Tao, X., Prince, J., Davatzikos, C.: Using a statistical shape model to extract sulcal
curves on the outer cortex of the human brain. IEEE Trans. Med. Imag. 21(5), 513–
524 (2002)

14. Rivière, D., Mangin, J., Papadopoulos-Orfanos, D., Martinez, J., Frouin, V., Régis,
J.: Automatic recognition of cortical sulci of the human brain using a congregation
of neural networks. Medical Image Analysis 6, 77–92 (2002)

15. Tu, Z.: Probabilistic boosting-tree: learning discriminative models for classification,
recognition, and clustering. In: Proc. ICCV 2005, vol. 2, pp. 1589–1596 (2005)

16. Zheng, S., Tu, Z., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Thomp-
son, P., Dinov, I., Toga, A.: A learning-based algorithm for automatic extraction
of the cortical sulci. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006.
LNCS, vol. 4190, pp. 695–703. Springer, Heidelberg (2006)

17. Pizer, S., Jeong, J., Lu, C., Joshi, S.: Estimating the statistics of multi-object
anatomic geometry using inter-object relationships. In: Proc. DSSCV 2005, pp.
60–71 (2005)

18. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

19. Perl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San
Mateo (1988)

20. Yedidia, J., Freeman, W., Weiss, Y.: Understanding Belief Propagation and Its Gen-
eralizations, pp. 239–269. Morgan Kaufmann Publishers Inc, San Francisco (2003)

21. Berrou, C., Glavieus, A., Thitimajshima, P.: Near Shannon limit error-correcting
coding and decoding: Turbo-codes. In: Proc. IEEE Int. Conf. on Communications,
pp. 1064–1070 (1993)

22. Shi, Y., Reiss, A., Lee, A., Dutton, R., Bellugi, U., Galaburda, A., Korenberg, J.,
Mills, D., Dinov, I., Thompson, P., Toga, A.: Hamilton-Jacobi skeletons on cortical
surfaces with applications in characterizing the gyrification pattern in Williams
syndrome. In: Proc. ISBI 2007 (2007)

23. Siddiqi, K., Bouix, S., Tannebaum, A., Zuker, S.: Hamilton-Jacobi skeletons. Int’l
Journal of Computer Vision 48(3), 215–231 (2002)

24. Gallant, S.: Perceptron-based learning algorithms. IEEE Trans. Neural Net-
works 1(2), 179–191 (1990)

25. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl.
Acad. Sci. USA 95(15), 8431–8435 (1998)

26. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Ann. Statist. 28(2), 337–407 (2000)


	Introduction
	The Joint Detection Framework
	Generation of Sample Spaces
	Learning Potential Functions Using AdaBoost
	Experimental Results
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




