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Abstract. In this paper we present a volumetric approach for quantita-
tively studying white matter connectivity from diffusion tensor magnetic
resonance imaging (DT-MRI). The proposed method is based on a mini-
mization of path cost between two regions, defined as the integral of local
costs that are derived from the full tensor data along the path. We solve
the minimal path problem using a Hamilton-Jacobi formulation of the
problem and a new, fast iterative method that computes updates on the
propagating front of the cost function at every point. The solutions for
the fronts emanating from the two initial regions are combined, giving a
voxel-wise connectivity measurement of the optimal paths between the
regions that pass through those voxels. The resulting high-connectivity
voxels provide a volumetric representation of the white matter pathway
between the terminal regions. We quantify the tensor data along these
pathways using nonparametric regression of the tensors and of derived
measures as a function of path length. In this way we can obtain vol-
umetric measures on white-matter tracts between regions without any
explicit integration of tracts. We demonstrate the proposed method on
several fiber tracts from DT-MRI data of the normal human brain.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) has the ability to reveal
in vivo properties of white matter tissue in the human brain. As such, DT-MRI is
becoming a powerful technique for clinical studies of white matter abnormalities
in neurological disorders as well as studies of normal brain development. The
usefullness of diffusion imaging relies on the fact that the motion of water is
impeded in directions that are not parallel to the axons. In DT-MRI a diffusion
tensor at each voxel gives an estimated model of the pattern of water diffusion
aggregated over a point-spread function of the measurements. The neural fiber
orientation is typically inferred from the principal eigenvector of the diffusion
tensor, which is the direction of highest probability of water motion.

Clinical studies have been mostly limited to analysis of white matter prop-
erties in a region of interest (ROI) [I2]. Typically, statistics are computed on
derived tensor measurements, such as fractional anisotropy (FA) or mean dif-
fusivity (MD). This analysis is done either on a voxel-by-voxel basis or as an
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aggregate measurement within the ROI. Because of the complexity of the diffu-
sion tensor data, registration of images to a common atlas for voxelwise statistics
is particularly problematic. Recent work has explored statistical analysis of de-
rived measures [34] and also of the entire tensors [5] along fiber pathways.

Much of the work in DT-MRI connectivity focuses on fiber tractography [@],
in which streamlines are computed, by forward integration from a seed point,
of the field of vectors defined by the principal eigenvector of the tensor at each
point (interpolated between voxels), and where the twofold ambiguity of eigen-
vector directions is resolved by the continuity of paths. While tractography is an
excellent tool for visualization of white matter pathways, it is not ideal for quan-
titative analysis for several reasons. First, imaging noise can cause fiber tracts to
stray due to accumulating errors in the integration. The second issue is partial
voluming. The finite size of a voxel measurement at fiber crossings (combined
with sensor noise) can cause the direction of the major eigenvector to be am-
biguous, further misleading the streamlines. This problem is aggravated by the
fact that streamlines are often computed, displayed, and analyzed at subvoxel
resolution—suggesting a level of precision that is not warranted by the data.
Finally, region-to-region analysis with conventional tractography is challenging,
because there is no way to steer tracts from a seed point toward a particular
target region. To address these problems, several researchers propose tractogra-
phy algorithms that rely on a stochastic integration, in which flow vector are
chosen from a distribution around the principal eigenvector. These stochastic
techniques can be combined with Monte-Carlo simulations, which may include
tens of thousands of paths from a single seed, of which only a small fraction will
typically reach the target [ZUSIOUT0].

Several Hamilton-Jacobi (H-J) methods for white matter connectivity have
been proposed to overcome some of the difficulties arising in tractography. These
methods compute the cost of the shortest path from a seed region to every pixel
in the volume (usually a white-matter mask). This cost function consists of an
integral that depends on path position and orientation, and typically penalizes
paths that do not agree with the tensors. These H-J formulations result in first-
order partial differential equations (PDEs) which model evolving fronts whose
speeds are determined by information from the diffusion tensor. These methods
are inherently more robust to noise in the diffusion weighted measurements than
standard tractography. Parker et al. [I1] evolve a front with speed related to the
inner product of the front normal with the principal eigenvector of the tensor.
O’Donnell et al. [I2] propose using the diffusion tensor as a Riemannian metric
in the image domain and compute a front representing arrival time of geodesics
beginning at a single seed point. Connectivity to that point is defined as a ratio
of Euclidean path length to Riemannian distance. Jackowski et al. [13] use a
speed derived as a function of the diffusivity magnitude in the front normal
direction. They solve this Hamiltonian equation using a Lax-Friedrichs scheme,
also beginning with an intial seed point. Pichon et al. [14] define a directionally
dependent local cost function that extends the H-J framework to high-angular
diffusion data. In all of these works, the end result is either a dense field of
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connectivities to regions or a set of optimal paths emanating from a seed region,
which are determined by integrating the characteristics of the PDEs.

In this paper we present a new method for quantifying white matter con-
nectivity based on a H-J formulation, which we solve with a front propagating
method. However, unlike previous H-J methods, which solve for the minimal cost
of paths emanating from a single region, we formulate a cost for a very large num-
ber of paths between two regions. This results in a measure of region-to-region
connectivity as well as a volumetric representation of the pathway between the
two regions, without any explicit integration of individual paths. This approach
is targeted to the study of white matter circuits between functional regions of
the grey matter. We demonstrate the quantification of white matter properties,
including both full tensor and derived measurements, along fiber pathways using
nonparametric regression.

2 Region-to-Region Connectivity

Our formulation of region-to-region connectivity is based on the principle of min-
imal cost paths. Using information from the entire diffusion tensor, we construct
a local cost function based the current position and directionality of a path.
This leads to a first-order nonlinear PDE that computes the minimal cost from
a starting region to each point in the image. Unlike previous front-propagation
methods for DT-MRI, we then solve for minimal cost from a second target re-
gion. The two solutions are then combined, giving the minimal cost through each
voxel of paths restricted to travel between the two target regions.

2.1 Minimum Cost Paths

Given a path ¢ : [a,b] — 2, where §2 is a compact image domain, we define the
total cost of ¢ as

b
E(c) = / B(elt), T(t))dt, (1)

where T'(t) = /(t)/||¢/(¢)|| is the unit tangent vector of c¢. The total cost is
defined as the integral of a local cost function, 1 : §2 x S* — R, where 9(x,v)
gives the cost of moving in the unit direction v € S from the point = € £2. We
require that the local cost be symmetric, ¥(x,v) = 1 (x, —v), which is generally
consistent with the model of diffusion through passive media.

This metric in ([{]) allows for a wide range of cost functions ¢ that incorporate
tangents. Pichon et al. [T4] describe the properties of this metric, the choices of
for high-angular diffusion data, and the relationship between this cost function
and the corresponding speed that controls the motion of the wavefront in the H-J
formulation. In this work we use a quadratic (bilinear) local cost function, with
the understanding that all of the results in this paper generalize to high-angular
data using the methods described in [I4]. Thus we have

U(z,v) = v M~ (2)v, (2)

where M (z) is a symmetric, positive-definite matrix defined at each point z € (2.
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The relationship between the measured diffusion tensor and M must be con-
sidered carefully. For instance, several researchers [I2/I5] use as their cost, the
bilinear product with the inverse of the diffusion tensor itself. However, even in
ideal situations (straight bundles of healthy axons) [16], the tensors are not be
perfectly anisotropic, because of some degree of diffusion between or through
cells. Thus, good measurements of tissue with relatively high FA, such as in the
corpus collosum, might have values as low as 0.7, which would not offer suf-
ficient penality for paths that cross the principal eigen directions. Because of
this, the paths are relatively unconstrained by the diffusion tensors themselves,
and solutions tend toward the shortest paths in the Euclidean sense, rather than
following the white matter tracts. The same is true if we use the tensors directly
in a second order PDE and model the diffusion of water from the tensors [12]—
the resulting connectivities spread too easily outside of the paths defined by the
principal eigenvectors, which limits their usefulness. On the other extreme, we
could construct tensors from the principal eigenvectors that produce a virtually
infinite penalty (zero speed) for all other directions. This, however, would ig-
nore any meaningful differences between different tensor shapes, including the
case of oblate tensors which are thought to represent fiber crossings and provide
virtually equal evidence for all directions spanned by the first two eigenvectors.

One middle ground between these two extremes is to sharpen the tensor, which
is done by raising it to a power . This must be combined with a normalization,
and for this work we normalize by the tensor volume. If we consider the sharpened
tensor to be speed (in the H-J formulation), which gives low cost along the
principal eigen directions, the cost is the inverse, and we have

M@ =Pl () ®

where o > 1 is a constant and |D(z)| denotes the determinant of D(z). The
sharpened tensor field M has the following properties:

1. If D(z) has eigenvalues \;(x), then M (x) has eigenvalues \;(x)*|D(z)| e

2. |[M(x)| = |D(z)| for all z € {2, i.e., tensor volume is preserved.

3. If D(x) = al, then M(z) = D(z), in other words, isotropic tensors are left
unchanged.

We can consider all paths emanating from a region Ry C £2. Let uq () denote
the minimal cost as defined by () over all paths beginning in the region Ry and
terminating at the point x. Then u; satisfies the first-order equation

IVui (@)l = ¢ (2, Vu/[|Vul]), (4)

with initial conditions uq(R1) = 0.

2.2 Costs Between Regions

While u; gives us a measure of the connectivity from the region Ry to any point
in the image, we would like to assess the specific connectivity to a second target
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Fig. 1. An axial slice from the FA image with regions R; and Rz highlighted (left).
The cost functions w1 and u2 (middle two). The total cost function uw = w1 +us2 (right).

region. To do this, we define a second region Ry, C {2 and corresponding minimal
cost function us also satisfying ({@l). Consider all paths beginning in the region Ry
and terminating in Ry. Now we define the total cost function for regions Ry and
Rs to be u(x) = uy(x) +wuz(x). The value of u(x) is the minimal cost of all paths
between Ry and Ro that are constrained to pass through x. This is formalized in
the following theorem.

Theorem 1. Let = € {2, and let I' be the space of all paths 7 : [ay,by] — 2
such that v(a,) € R1 and v(by) € Ry and ~(t) = x for some t € [a,b,], then
u(zx) satisfies
= min E(v).
u(z) = min E(y)
Proof. By definition of the path space I', we can break any path v € I" into a
path ~1 from R; to the point z and a path 7, from the point = to the region Rs.
We thus have E(y) = E(v1) + E(72). Because uq(z) minimizes the cost E(v1)
and wus(z) minimizes the cost E(7y2), u(x) = ui(x) + uz(x) must also minimize
the cost E(7). O

Thus, the function u assigns to each point x in the image the cost of that point
being included in a pathway between regions Ry and Rs. The construction of
the total cost function w is demonstrated in Figure[Il showing a tract through
the genu of the corpus callosum in DT-MRI data from a normal brain. If we
assume a compact image domain (2, then u must have a minimum value in f2.
As the next theorem shows, this minimal value is in fact achieved everywhere
along the minimal cost path connecting the two regions.

Theorem 2. Let v : [a,b] — 2 be the minimal total cost path with v(a) € Ry
and y(b) € Ra. Then u is constant along v with u(y(t)) = E(v) for all t € [a,b].
Furthermore, u(vy(t)) = min, u(x).

Proof. Let T'(t) = ~'(t)/]|7'(¢)|| be the unit tangent vector of . Given any
point ty € [a,b], we have E(y) = [ ¢(y(t),T(®))dt + [ ¥ (v(t), T(t))dt. Duc
to the symmetry of the local cost, ¢¥(z,v) = ¥(x, —v), this implies that E(v) =
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volumetric pathway

Constrained optimal path

e—point

Fig. 2. Diagram of the volumetric connectivity framework

Jo° e (y(®), T®)dt + [,° w((s), =T(s))ds = ui(v(to)) + u2(v(to)) = u(3(to))-
Finally, if u(y(t)) # min, u(x), then there is a point y € 2 with u(y) < u(y(t)).
However, by Theorem [ this would mean there is a path from R; to Ry with
lower cost than ~y, which is a contradiction. O

The properties described in Theorems [[l and 2] all generalize to the high-angular
form of () so long as the solutions are symmetric, which is guaranteed by

¥(z,T(x) = ¢z, —T(x)).
2.3 Volumetric Connectivity

Here we define the framework for volumetric connectivity. Let v be the minimal
total cost path, and fix a threshold € > 0, which is the tolerance of paths relative
to the optimum. We define an e-point as a point whose constrained minimum
cost is less than (1 4 €)E(y). The set of all such e-points defines a volumetric
pathway between R; and Rs. This region is the set of voxels that belong to the
fiber connection between R; and Ry. By definition, a volumetric pathway must
contain « for any value of € > 0. Figure ] gives a pictoral representation of a
volumetric pathway.

The total cost u along a pathway is obviously affected by the Euclidean length
of that path. We wish to define a connectivity measure that is independent of
the length of a path. Let ¢, be the minimal total cost path constrained to pass
through the point @ € 2. By definition, this path has total cost E(c,) = u(z).
As described in Section Bl we can solve for g(z), the Euclidean arclength of ¢,
using a first-order PDE. This allows us to define a normalized cost function, u,
in a volumetric pathway as (z) = u(x)/g(z). The integral over the e-region of
the normalized cost in a volumetric pathway gives a length-invariant measure of
the total connectivity of the represented pathway.

2.4 Numerical Implementation

We do not consider the problem of numerical solutions to [@l) to be a significant
aspect of this paper. However, in the analysis of circuits between large sets of
cortical regions, the speed of solutions is a consideration, and the availability of
the efficient numerical algorithms will be important.
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Several options exist to solve () for the cost functions uy, ug. For instance, the
Lax-Friedrichs method used in [I3] is stable but excessively diffusive. Tsai et al.
[1I'7] propose a Gudonov approximation for the Hamiltonian, which includes one-
sided deratives, and a sweeping method for iteratively updating the solution. In
this case, the number of sweeps depends on the complexity of the data. We solve
() using a new numerical method, the Fast Iterative Method (FIM), which solves
the general static Hamilton-Jacobi equation using the Gudonov approximation,
which gives an explicit solution for the characteristic direction, and thereby does
not require differentiating the cost to obtain path lengths. The FIM updates a
list of points whose solutions depend on updated points but are not yet final.
This list of points is maintained by removing or adding points based on the
convergence of the solution and their dependencies on solved points. The method
iteratively updates solutions of the points until the list becomes empty. For full
details of the FIM algorithm and implementation, see [I§]. Because we are only
interested in connectivity in the white matter, we use a white matter mask in
which to compute the cost function solutions. For improved numerical accuracy
we compute the solution on a grid supersampled by two from the original data.
Supersampling is done on the original DWI measurements.

3 Nonparametric Regression of Path Data

Identifying white matter fiber connections as volumetric pathways leaves us with
a collection of unparameterized voxels, defined on the original DTI grid, each
of which contains information on the tensor, path cost, path length, and path
orientation. This collection of raw voxel data offers several possibilities for quan-
tification of the tensor data along these paths. One interesting possibility is the
set of integral properties such as average FA, connectivity, etc. In this section we
describe a nonparametric regression method for generating a compact statistical
description of diffusion tensor data as a function of position along a fiber path-
way. The first step is to compute a parameter s for each voxel in the pathway,
which is the Euclidean arclength along the minimal cost curves. This arclength
will serve as the independent variate in a nonparametric regression of the tensor
data along the pathway. Using this regression, we compute mean and variance
statistics along fiber pathways of the full diffusion tensor data as well as derived
measurements, without any explicit integration of paths.

3.1 Solving for Distance Along Paths

For a given pathway we wish to find the Euclidean arclength along the con-
strained minimum cost paths between regions R; and Re. We do this by solving
a first-order, linear PDE that results in distance along the minimal path to in-
dividual targets. If g1 (x) denotes Euclidean arclength along a minimal cost path
from R; to the point x, it satisfies the advection equation

Vg Ty =1, (5)
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where 77 is the unit length tangent vector to the minimal path connecting each
point in 2 to R;. Likewise for go, T, Rs, and uy. There are two possible strate-
gies for evaluating the tangents, 77. One strategy is the use the characteristics
of w1, which are given by T} = M ~'Vu;, where Vu, is approximated with fi-
nite differences, as described in [I3]. Alternatively, the Gudonov approximation
given in [I7], which we use for this paper, requires an explicit calculation of the
characteristic direction at each iteration. For this work, we save these vectors,
after the solution has converged, and use them for 77 in Eq.

To solve ([Bl), we use an iterative, fixed point strategy with an up-wind approx-
imation of the gradient of g;. The initial solution for g; is set to a Manhattan
distance computed on the set of points for which the speed function is nonzero.
It typically converges in several dozen iterations.

In this way, we can also compute the Euclidean arclength, go(x), of the min-
imial cost path from Ry to the point z. Summing these two distances, g; and
g2, we get the total arclength of the minimal cost path from R; to Ro that
is constrained to pass through the point x. We denote this total arclength as
g = g1+ g2. The parameter that we use for the dependent variable in our regres-
sion is s = g1/g, the percentage of arclength along the minimal cost path from
Ry to Ry. As such, the parameter s takes values in [0, 1].

3.2 Path Regression

Let P be a volumetric pathway, and let {x;}2 | be the collection of voxel loca-
tions within P. Each voxel has an associated parameter s; = s(z;), as defined
abovve. Denote by f; a data value at the location x;. This data may be a dif-
fusion weighted value, a full diffusion tensor, or a derived measure, such as
FA or MD. We compute a continuous description of the data as a function of
s using a Nadaraya-Watson nonparametric regression [T9/20] with a Gaussian
kernel.

SN fG(s — si,0)
- YN G(s—siy0) ]

where G(u,0) denotes a Gaussian with mean p and standard deviation o. We
choose the kernel width o used in the regression equation automatically, by
minimizing the sum-of-squares cross-validation error. We solve this optimization
using a Golden Ratio search. Typical values for the optimal o are 1-4% of the
path length. The function f defined above gives a continuous average of the data
along the pathway. Given this mean function, we can use the same regression to
estimate the variance of the data along the path:

S (fi = F(9))°Gls = si.0).
Y, Gls = i,0)

In addition to computing diffusion properties along a pathway, it is also possi-
ble to statistically quantify the geometry of the path in a similar fashion. Using

f(s) (6)

of(s) = (7)
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Fig. 3. Volumetric pathways for the GCC (cyan), BCC (yellow), SCC (red), LCG

(green) and RCG (blue). Axial, coronal and sagittal views are shown against FA slices.

([©]), we can compute the average voxel position along a pathway as a function of s.
This results in an curve (x(s),y(s), z(s)), which represents the average geome-
try of the fibers in the connection. Once again, the ¢ is determined through
optimality of the cross validation.

4 Results

We apply our quantitative DTT connectivity analysis to a single high-resolution
(2 x 2 x 2.5mm?) 3T image from a database of healthy controls. We selected
five tracts for analysis: three bundles through the genu (GCC), splenium (SCC),
and body (BCC) of the corpus callosum, and the left (LCG) and right (RCG)
cingulum bundles. Using the FA image, we outlined the terminal regions R
and Ry at the white/grey matter interface for each tract. An example of the
segmented regions is shown in Figure [Il

For each of the five tracts, we solved for the total cost function u as described
in Section 223l We chose an € value of 0.10, i.e., we included voxels in the vol-
umetric pathway within £10% of the optimal total cost curve. Figure [ shows
the resulting volumetric pathways for the five tracts. Next we quantified the FA
along each pathway using the nonparametric regression analysis. Figure [l shows
the original raw FA data from all the voxels included in the GCC volumetric
pathway and also the mean and standard deviation result from the regression.
The regression analysis for the FA of the other four tracts is shown in Figure [l
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Fig. 4. FA along the GCC: (a) scatterplot of raw data, and (b) nonparametric regres-
sion. The solid curve shows average FA, and dashed curves show standard deviation.

Fig. 5. Nonparametric regression of FA along the (a) BCC, (b) SCC, (c) LCG, and (d)
RCG

Notice the similar pattern in each of the corpus callosum pathways, where the FA
increases as it passes through the tightly packed fibers of the corpus callosum.
In Table [[l we show the aggregate connectivity measurements for each tract,
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Table 1. Mean connectivity metrics, normalized cost and alignment, for the five tracts

Measure GCC BCC SCC LCG RCG

Norm. Cost 10.8 16.1 7.5 22.8 18.6
Alignment 0.797 0.789 0.708 0.611 0.788

Fig. 6. Average diffusion tensors along the pathways displayed on the average fiber
geometries. Rendered using superquadric glyphs [21].

including the average normalized cost u, and the average alignment, i.e., dot
product, of the major tensor eigenvector and the tangent of the optimal curve
at each voxel. Notice that the tracts through the corpus callosum, which have
higher anisotropy, also have lower normalized cost (higher connectivity) than
the cingulum tracts. The connectivity of the cingulum tracts is also reduced
due to partial voluming with the adjacent corpus callosum tensors. Finally, we
computed the average positions and average diffusion tensors along each tract,
resulting in compact average fiber descriptions, shown in Figure [6l
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