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Preface

Understanding the mechanisms involved in life (e.g., discovering the biological
function of a set of proteins, inferring the evolution of a set of species) is becoming
increasingly dependent on progress made in mathematics, computer science, and
molecular engineering. For the past 30 years, new high-throughput technologies
have been developed generating large amounts of data, distributed across many
data sources on the Web, with a high degree of semantic heterogeneity and
different levels of quality. However, one such dataset is not, by itself, sufficient for
scientific discovery. Instead, it must be combined with other data and processed
by bioinformatics tools for patterns, similarities, and unusual occurrences to
be observed. Both data integration and data mining are thus of paramount
importance in life science.

DILS 2007 was the fourth in a workshop series that aims at fostering dis-
cussion, exchange, and innovation in research and development in the areas of
data integration and data management for the life sciences. Each previous DILS
workshop attracted around 100 researchers from all over the world. This year,
the number of submitted papers again increased. The Program Committee se-
lected 19 papers out of 52 full submissions. The DILS 2007 papers cover a wide
spectrum of theoretical and practical issues including scientific workflows, an-
notation in data integration, mapping and matching techniques, and modeling
of life science data. Among the papers, we distinguished 13 papers presenting
research on new models, methods, or algorithms and 6 papers presenting imple-
mentation of systems or experience with systems in practice. In addition to the
presented papers, DILS 2007 featured two keynote talks by Kenneth H. Buetow,
National Cancer Institute, and Junhyong Kim, University of Pennsylvania.

The workshop was held at the University of Pennsylvania, in Philadelphia,
USA. It was kindly sponsored by the School of Engineering and Applied Science
of the University of Pennsylvania, the Penn Genomics Institute, and Microsoft
Research, who also made available their conference management system. As
editors of this volume, we thank all the authors who submitted papers, the
Program Committee members, and the external reviewers for their excellent
work. Special thanks go to Susan Davidson, General Chair, Chris Stoeckert, PC
Co-chair, as well as Olivier Biton, Tara Betterbid, and Howard Bilowsky. Finally,
we are grateful for the cooperation and help of Springer in putting this volume
together.

June 2007 Sarah Cohen-Boulakia
Val Tannen
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Enabling the Molecular Medicine Revolution

Through Network-Centric Biomedicine

(Keynote Presentation)

Kenneth H. Buetow

National Cancer Institute
2115 East Jefferson Street

Suite 6000, MSC 8505
Bethesda, MD 20892, USA

buetowk@nih.gov

To deliver on the promise of next generation treatment and prevention strategies
in cancer, we must address its multiple dimensions. The full complement of the
diverse fields of modern biomedicine are engaged in the assault on this complex-
ity. These disciplines are armed with the latest tools of technology, generating
mountains of data. Each surpasses the next in their unprecedented and novel
view of the fundamental nature of cancer. Each contributes a vital thread of
insight. Information technology provides a promising loom on which the threads
of insight can be woven.

Bioinformatics facilitates the electronic representation, redistribution, and in-
tegration of biomedical data. It makes information accessible both within and
between the allied fields of cancer research. It weaves the disparate threads of re-
search information into a rich tapestry of biomedical knowledge. Bioinformatics
is increasingly inseparable from the conduct of research within each discipline.
The linear nature of science is being transformed into a spiral with bioinfor-
matics joining the loose ends and facilitating progressive cycles of hypothesis
generation and knowledge creation.

To facilitate the rapid deployment of bioinformatics infrastructure into the
cancer research community the National Cancer Institute (NCI) is undertaking
the cancer Biomedical Informatics Grid, or caBIGTM . caBIGTM , is a voluntary
virtual informatics infrastructure that connects data, research tools, scientists,
and organizations to leverage their combined strengths and expertise in an open
environment with common standards and shared tools. Effectively forming a
World Wide Web of cancer research, caBIGTM promises to speed progress in all
aspects of cancer research and care including etiologic research, prevention, early
detection, and treatment by breaking down technical and collaborative barriers.

Researchers in all disciplines have struggled with the integration of biomedical
informatics tools and data; the caBIGTM program demonstrates this important
capability in the well-defined and critical area of cancer research, by planning
for, developing, and deploying technologies which have wide applicability out-
side the cancer community. Built on the principles of open source, open access,
open development, and federation, caBIGTM infrastructure and tools are open

S. Cohen-Boulakia and V. Tannen (Eds.): DILS 2007, LNBI 4544, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 K.H. Buetow

and readily available to all who could benefit from the information accessible
through its shared environment. caBIGTM partners are developing or providing
standards-based biomedical research applications, infrastructure, and data sets.
The implementation of common standards and a unifying architecture ensures
interoperability of tools, facilitating collaboration, data sharing, and streamlin-
ing research activities across organizations and disciplines.

The caBIGTM effort has recognized that in addition to new infrastructure
new information models are required to capture the complexity of cancer. While
the biomedical community continues to harvest the benefits of genome views
of biologic information, it has been clear from the founding of genetics that
biology acts through complex networks of interacting genes. Information models
and a new generation of analytic tools that utilizing these networks are key to
translating discover to practical intervention.



Phyl-O’Data (POD) from Tree of Life:

Integration Challenges from Yellow Slimy
Things to Black Crunchy Stuff

(Keynote Presentation)

Junhyong Kim

Department of Biology
Penn Center for Bioinformatics

Penn Genomics Institute
415 S. University Ave.

Philadelphia, PA 19104, USA
junhyong@sas.upenn.edu

1 Background

The AToL (Assembling the Tree of Life) is a large-scale collaborative research
effort sponsored by the National Science Foundation to reconstruct the evolu-
tionary origins of all living things. Currently 31 projects involving 150+ PIs
are underway generating novel data including studies of bacteria, microbial eu-
karyotes, vertebrates, flowering plants and many more. Modern large-scale data
collection efforts require fundamental infrastructure support for archiving data,
organizing data into structured information (e.g., data models and ontologies),
and disseminating data to the broader community. Furthermore, distributed data
collection efforts require coordination and integration of the heterogeneous data
resources. In this talk, I first introduce the general background of the phylo-
genetic estimation problem followed by an introduction to the associated data
modeling, data integration, and workflow challenges.

2 Phylogeny Estimation and Its Utility

While ideas about genealogical reconstruction have been around since Darwin,
quantitative algorithmic approaches to the problem have been developed only
in the last 50 years. The basic structure of the problem involves considering
all possible tree graph structures compatible with an organismal genealogy and
measuring their fits to observed data by various objective functions. There are
now many algorithms based on various inferential principles including maximum
information, maximum likelihood, Bayesian posterior, etc. Many flavors of the
phylogeny reconstruction problem have been shown to be NP-hard and there is
a considerable body of literature on associated computational and mathemati-
cal problems. Phylogenetic methods provide the temporal history of biological
diversity and have been used in many applications. For example: to track the

S. Cohen-Boulakia and V. Tannen (Eds.): DILS 2007, LNBI 4544, pp. 3–5, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 J. Kim

history of infectious diseases; to reconstruct ancestral molecules; to reveal func-
tional patterns in comparative genomics; and even in criminal cases, to infer
the relatedness of biological criminal evidence. But, a grand challenge for phy-
logenetic research is to reconstruct the history of all extent organismal life-the
so-called Tree of Life.

3 Problems and Challenges

In modern times, much of phylogenetic estimation is carried out using molecular
sequences, some explicitly gathered for phylogenetic research; others, systemati-
cally collected and deposited in public databases. There are many data manage-
ment problems associated with using molecular sequence data even from public
databases-which are not discussed here. But, for the frontline researcher the
problem starts at the stage of actually collecting the biological material for ex-
perimentation. That is, the animal must be captured, preserved, measured, and
recorded along with associated metadata (e.g., capture location). Such specimens
must be physically archived (called voucher specimen) and identified if possible
and given a name. All of these activities are sometimes called alpha-taxonomy.

Once a specimen has been obtained and named then it (or presumed identical
specimens) must be measured for relevant traits including extracting molecular
sequences. This action of obtaining ”relevant measurements” involve gathering
characteristics that will be broadly comparable amongst different varieties of
organisms-thus require a prior data model of what is or is not relevant. Once
the relevant measurements are recorded, the next important step is deriving
an equivalence relationship between measurements on different organisms such
that the measurements are considered to be evolutionarily comparable to each
other. This activity is called ”establishing homology relationships” and is a crit-
ical prelude to further analysis. An example of such homologizing activity is
the alignment of molecular sequences whereby equivalent relations of individ-
ual sequence letters are established. This activity of defining relevant characters
and homologizing their assembly is called Systematics and the final product of
this activity is the ”data matrix” that encapsulates the data model of relevant
measurements and the relational maps of sets of such measurements. Biologists
widely disagree on details of such matrices-for example, whether a particular
measurement should be described as present or absent; thus, these matrices are
best seen as a ”data view” of the primary objects. It is common in the literature
and in public databases to have available only the fixed data matrix. Given the
complicated and uncertain ontology of such matrices, a critical challenge is to
endow the phylogenetic matrices with their provenance information
as well as to provide a facility to change the ”views” as biologists’
assumptions change.

Notwithstanding the fundamental problems described above, there are con-
tinuing activities to collect empirical measurements and generate data matrices
and place them into a structured information source. For example, there are cur-
rent database efforts within the AToL projects where all projects have sub-aims
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targeting data storage, access, and sharing; and, a small number of projects have
been funded to develop domain specific data models and analysis tools such as
databases for 3D morphological data, web-based information storage and dis-
semination, and mining molecular databases for phylogenetic information. As a
simple fact the magnitude of the AToL efforts is insufficient to meet the real-
world needs of the AToL projects that will become critical as each empirical
project matures. More importantly, there is little or no coordination between
these efforts and there is a critical need to enable the integration of distributed,
heterogeneous, and changing data sources; provide for reliable data archiving
and maintenance of data provenance; and, help manage the complex data col-
lection and analysis processes. Many of the projects are already very mature
and domain-specific problems, cultural problems, and legacy problems make it
difficult to develop a single solution to the problems. Therefore, another criti-
cal challenge is to provide ways to post-hoc integrate the extremely
dispersed and heterogeneous phylogenetic data sources in a scalable
manner.

The ultimate end product of phylogenetic reconstruction is the tree graph
depicting the genealogical history and associated data. The associated data is
usually mapped to substructures within the tree graph-say the nodes of the
graph, usually from a secondary analysis (so-called post-analysis). For example,
once the phylogeny is known, there are algorithms available for reconstructing
the measurements of putative ancestors; thus, we may assign data matrices to
interior nodes of the tree. In actual practice, the researcher may try many dif-
ferent algorithms to reconstruct the tree, each algorithm may generate multiple
trees (e.g., because of equivalent optimality score), and given some preliminary
tree estimate one may want to modify the data matrix (try a different view) and
re-estimate the tree. Furthermore, there is often a large battery of post-analysis
routines that involve other calculations including calculations on substructures
of estimated tree. As is typical in complicated data analysis, the total analysis
may involve a large number of steps, some steps recursive, cyclic, or branch-
ing. Thus, a final challenge is to develop a workflow for phylogenetic
analysis that automatically tracks analysis flow and helps manage the
complexity in such a way that is useful to the primary researcher
and helps other researchers recapitulate analyses carried out by third
parties.



Automatically Constructing a Directory of

Molecular Biology Databases

Luciano Barbosa, Sumit Tandon, and Juliana Freire

School of Computing, University of Utah

Abstract. There has been an explosion in the volume of biology-related
information that is available in online databases. But finding the right
information can be challenging. Not only is this information spread over
multiple sources, but often, it is hidden behind form interfaces of on-
line databases. There are several ongoing efforts that aim to simplify
the process of finding, integrating and exploring these data. However,
existing approaches are not scalable, and require substantial manual
input. Notable examples include the NCBI databases and the NAR
database compilation. As an important step towards a scalable solution
to this problem, we describe a new infrastructure that automates, to a
large extent, the process of locating and organizing online databases. We
show how this infrastructure can be used to automate the construction
and maintenance of a Molecular Biology database collection. We also
provide an evaluation which shows that the infrastructure is scalable
and effective—it is able to efficiently locate and accurately identify the
relevant online databases.

1 Introduction

Due to the explosion in the number of online databases, there has been increased
interest in leveraging the high-quality information present in these databases
[1, 2, 7, 10, 19]. However, finding the right databases can be challenging. For ex-
ample, if a biologist needs to locate databases related to molecular biology and
searches on Google for the keywords “molecular biology database” over 27 mil-
lion documents are returned. Among these, she will find pages that contain
databases, but the results also include a very large number of pages from jour-
nals, scientific articles, etc.

Recognizing the need for better mechanisms to locate online databases, there
have been a number of efforts to create online database collections such as
the NAR database compilation [9], a manually created collection which lists
databases of value to biologists. Given the dynamic nature of the Web, where
new sources are constantly added, manual approaches to create and maintain
database collections are not practical. But automating this process is non-trivial.
Since online databases are sparsely distributed on the Web, an efficient strat-
egy is needed to locate the forms that serve as entry points to these databases.
In addition, online databases do not publish their schemas and since their con-
tents are often hidden behind form interfaces, they are hard to retrieve. Thus, a

S. Cohen-Boulakia and V. Tannen (Eds.): DILS 2007, LNBI 4544, pp. 6–16, 2007.
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scalable solution must determine the relevance of a form to a given database
domain just by examining information that is available in and around forms.

In previous work [2,3,4], we proposed ACHE (Adaptive Crawler for Hidden-
Web Entry Points), a new scalable framework that addresses these problems. We
showed, experimentally, that ACHE is effective for a representative set of com-
mercial databases. In this paper, we describe a case study we carried out to inves-
tigate the effectiveness of this framework for different domains, and in particular,
for non-commercial online databases. We chose to focus on databases related to
molecular biology for two key reasons: these are often academic databases; and
there is already a sizeable collection of these databases [9] which can serve as a
basis for comparison.

The remainder of the paper is organized as follows. In Section 2, we give a
brief overview of the ACHE framework. In Section 3, we describe in detail the
process we followed to customize ACHE to the molecular biology domain. We
discuss the issues we faced in the process, and show that, because the different
components of ACHE use learning-based techniques, they can be easily adapted
to a different domain. We present our experimental evaluation in Section 4.
The results indicate that ACHE is effective: it is able to efficiently locate and
accurately identify online databases related to molecular biology. We conclude
in Section 6, where we outline directions for future work.

2 Searching and Identifying Online Databases

ACHE provides an end-to-end solution to the problem of locating and organizing
online databases. The high-level architecture of the system is shown in Figure 1.
ACHE uses a focused crawler to locate online databases. Similar to topic-specific
crawlers, ACHE also uses Web page contents to focus its search on a given topic.
But to deal with the sparseness of online databases on the Web, it prioritizes links
that are more likely to lead to forms in the database domain sought. ACHE also
uses a form-filtering process to select the relevant forms among the set of forms
retrieved by the crawler. This form-filtering process is required because even a
focused crawler invariably retrieves a diverse set of forms, including searchable
forms (i.e., forms used to search over a database) from multiple database do-
mains, and non-searchable forms that do not represent database queries such as,
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for example, forms for login, mailing list subscriptions, Web-based email forms.
Consider for example, the Form-Focused Crawler (FFC) [2] which is optimized
for locating searchable Web forms. For a set of representative database domains,
on average, only 16% of the forms retrieved by the FFC are actually relevant—
for some domains this percentage can be as low as 6.5%. These numbers are even
lower for less focused crawlers [6, 8].

In what follows, to make this paper self-contained, we briefly describe the
components of ACHE . For a detailed description, the reader is referred to [3,4].

2.1 Searching for Online Databases

Each page retrieved by the crawler is sent to the Page Classifier, which is trained
to identify pages that belong to a particular topic based on their contents. It uses
the same strategy as the best-first crawler of [6]. The page classifier analyzes a
page P and assigns to it a score which reflects the probability that P belongs to
the focus topic. A page is considered relevant if this probability is greater than
a certain threshold (0.5 in our case).

If a page is determined to be relevant, its links are extracted and used as
inputs to the Link Classifier.

The Link Classifier learns to estimate the distance between a link and a target
page based on link patterns: given a link, the link classifier assigns a score to
the link which corresponds to the estimated distance between the link and a
page that contains a relevant form. The Frontier Manager uses this estimate to
prioritize promising links, including links that have delayed benefit—links which
belong to paths that will eventually lead to pages that contain searchable forms.
As we discuss in [3], considering links with delayed benefit is essential to obtain
high harvest rates while searching for sparse concepts such as online databases
on the Web. Since searchable forms are sparsely distributed on the Web, by
prioritizing only the links that bring immediate return, i.e., links whose patterns
are similar to those of links pointing to pages containing searchable forms, the
crawler may miss target pages that can only be reached with additional steps.

The Link Classifier is constructed as follows. Given a set of URLs of pages that
contain forms in a given database domain, paths to these pages are obtained by
crawling backwards from these pages. ACHE uses two different approximations of
the Web graph to perform a backward crawl: it uses the link: facility provided
by search engines [5] at the beginning of the crawling process; and it uses the Web
subgraph collected during the crawler execution. The backward crawl proceeds in
a breadth-first manner. Each level l+1 is constructed by retrieving all documents
that point to the documents in level l. From the set of paths gathered, the best fea-
tures of the links are automatically selected. These features consist of the highest-
frequency terms extracted from text in the neighborhood of the link, as well as from
the URL and anchor. Using these features, the classifier is trained to estimate the
distance between a given link (from its associated features) and a target page that
contains a searchable form. Intuitively, a link that matches the features of level 1 is
likely to point to a page that contains a form; and a link that matches the features
of level l is likely l steps away from a page that contains a form.
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The Frontier Manager controls the order in which pages are visited. It creates
one queue for each level of the backward crawl. Links are placed on these queues
based on their similarity to the features selected for the corresponding level of
the link classifier. Intuitively, the lower the level of the link classifier, the higher
is the priority of the queue. When the crawler starts, all seeds are placed in
queue 1. At each crawling step, the crawler selects the link with the highest
relevance score from the first non-empty queue. If the page it downloads belongs
to the target topic, its links are classified by link classifier and added to the most
appropriate queue.

The focused crawler learns new link patterns during the crawl and automat-
ically adapts its focus based on these new patterns. As the crawler navigates
through Web pages, successful paths are gathered, i.e., paths followed by the
crawler that lead to relevant forms. Then, the Feature Selection component au-
tomatically extracts the patterns of these paths. Using these features and the
set of path instances, the Adaptive Link Learner generates a new Link Classi-
fier that reflects these newly-learned patterns.1 The Adaptive Link Learner is
invoked periodically, after the crawler visits a pre-determined number of pages.
Experiments over real Web pages in a representative set of commercial domains
showed that online learning leads to significant gains in harvest rates—the adap-
tive crawler retrieve up to three times as many forms as a crawler that use a
fixed focus strategy [3].

2.2 Identifying Relevant Databases

The Form Filtering component is responsible for identifying relevant forms gath-
ered by ACHE , and it does so by examining the visible content in the forms.
The overall performance of the crawler is highly-dependent on the accuracy of
the form filtering process, which assists ACHE in obtaining high-quality results
and also enables the crawler to adaptively update its focus strategy. If the Form
Filtering process is inaccurate, crawler efficiency can be greatly reduced as it
drifts way from its objective through unproductive paths.

Instead of using a single, complex classifier, our form filtering process uses a
sequence of simpler classifiers that learn patterns of different subsets of the form
feature space [4]. The first is the Generic Form Classifier (GFC), which uses
structural patterns to determine whether a form is searchable. Empirically, we
have observed that these structural characteristics of a form are a good indicator
as to whether the form is searchable [2]. The second classifier in the sequence
identifies searchable forms that belong to a given domain. For this purpose, we
use a more specialized classifier, the Domain-Specific Form Classifier (DSFC).
The DSFC uses the textual content of a form to determine its domain. Intuitively,
the form content is often a good indicator of the database domain—it contains
metadata and data that pertain to the database.

1 The length of the paths considered depends on the number of levels used in the link
classifier.
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By partitioning the feature space of forms, not only can simpler classifiers be
constructed that are more accurate and robust, but this also enables the use
of learning techniques that are more effective for each feature subset. Whereas
decision trees [14] gave the lowest error rates for determining whether a form is
searchable based on structural patterns, SVM [14] proved to be the most effective
technique to identify forms that belong to the given database domain based on
their textual content.

3 Constructing the Molecular Biology Database
Directory

In this section we describe the process we followed to build a collection of
molecular biology online databases. This process consists of customizing three
components of the ACHE framework: Page Classifier, Link Classifier and Form
Filtering.

Page Classifier. The Page Classifier defines the broad search topic for the crawler:
based on the page content (words in the page), the Page Classifier predicts
whether a given page belongs to a topic or not. We used Rainbow [12], a freely-
available Näıve Bayes classifier, to build the Page Classifier. To train it, we
crawled the biology-related Web sites listed in dmoz.org and gathered 2800 pages
to serve as positive examples. Because of the great variety of pages that can be
visited during the crawl, constructing a set of representative negative examples
is more challenging. To select negative examples, we ran the crawler with the
selected positive examples and an initial set of negative examples taken from a
corpus that comes with the Rainbow classifier. We then added the misclassified
pages to the set of negative examples. Examples of such misclassified pages
included non-English pages and pages from foreign porn sites. A total of 4671
negative examples were collected.

The Page Classifier was then constructed using the 50 terms that led to the
highest information gain. For the Molecular Biology domain, these terms in-
cluded: biology, molecular, protein, genome, ncbi, length, substring, structure,
gene, genomics, nih, parent, sequence, pubmed, entrez, nlm, fellows, postdoc-
toral, research, dna.

Link Classifier. We created the Link Classifier from a backward crawl of depth
3. The set of seeds chosen to train the Link Classifier comprised 64 relevant Web
forms manually selected from NAR collection. For each of the feature spaces of
links (url, anchor and text in link neighborhood), the 5 most frequent words
are selected. To build the classifier we used WEKA [18], an open source data
mining tool. The classification algorithm (Näıve Bayes) is used to estimate the
probabilities of a link being 1, 2, or 3 steps away from a form page.

Form Filtering. As discussed above, the Form Filtering uses two classifiers: the
GFC (based on form structure) and DSFC (based on form content). In our initial
experiment, we used the GFC we had constructed for identifying searchable
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(a) Non-searchable form (b) Blast form

Fig. 2. Similarity of a non-searchable form in a commercial domain and a searchable
form in the molecular biology domain

commercial databases [4]. An inspection of the misclassified forms showed that
some searchable forms in the molecular biology domain are structurally similar
to non-searchable forms of commercial sites. The presence of features such as text
areas, buttons labeled with the string “submit”, file inputs, are good indicators
that a (commercial) form is non-searchable. However, these features are also
present in many searchable forms in the molecular biology domain (e.g., Blast
search forms). This is illustrated in Figure 2. To address this problem, we added a
sample of the misclassified forms to the pool of positive examples, and generated
a new instance of the classifier. The GFC was then able to correctly classify forms
like the Blast forms as searchable—its accuracy improved to 96%.

To generate the DSFC, we manually gathered 150 positive examples of forms
from the NAR collection [9]. The negative examples were obtained as follows:
we ran the crawler and filtered the searchable forms using the GFC; then, from
these searchable forms we manually selected 180 forms that did not belong to the
molecular biology domain. These forms included, e.g., forms related to chemistry
and agriculture, as well forms for searching for authors and journals related to
molecular biology. Using these training examples, we generated the first version
of DSFC. This version, however had a very low precision: only 16%. The problem
was due to false positives. Unlike the commercial domains, the crawler retrieved a
large number of non-English pages. As the DSFC was not trained to handle non-
English terms it incorrectly classified these forms as relevant. After we added the
misclassified (non-English) forms to the set of negative examples, the accuracy
of the DSFC increased substantially, to 65%. To try and further improve the
accuracy, we added additional false positives misclassified by the second version
of the DSFC to the pool of negative examples and, once again, constructed a new
instance of the classifier. The third version obtained 89% accuracy. The top 20
terms used to build the DSFC were: name, type, select, result, keyword, gene,
sequenc, databa, enter, ani, option, page, help, titl, protein, number, advanc,
onli, format, word.
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Table 1. Quality measurement for GFC

Recall Specificity
Adaptive 0.82 0.96

Table 2. Quality measurement for Form Filtering (GFC+DSFC)

Recall Precision Accuracy
Adaptive 0.73 0.93 0.96

4 Experimental Evaluation

In this section we first assess the effectiveness of ACHE for constructing a high-
quality set of molecular biology databases. We then compare our results with
those of the manually constructed NAR collection.

To verify the effectiveness of the adaptive crawler in this domain, we executed
the following crawler configurations:

• Baseline Crawler: A variation of the best-first crawler [6]. The page classifier
guides the search and the crawler follows all links of a page whose contents are
classified as being on-topic;
• Static Crawler: Crawler operates using a fixed policy which remains unchanged
during the crawling process;
• Adaptive Crawler: ACHE starts with a pre-defined policy, and this policy is
dynamically updated after crawling 10,000 pages.

All configurations were run using 35 seeds obtained from dmoz.org and crawled
100,000 pages. The Link Classifier was configured with three levels.

Since the goal of ACHE is to find relevant online databases in the molecular
biology domain, we measured the effectiveness of the crawler configurations in
terms of the total number of relevant forms gathered. We manually inspected the
output of Form Filtering to calculate the values for: accuracy, recall; precision
and specificity. Accuracy is a suitable measure when the input to the classifier
contains similar proportions of positive and negatives examples; recall captures
the number of relevant items retrieved as fraction of all relevant items; precision
represents the number of relevant items as a fraction all the items predicted as
positive by the classifier; and specificity is the proportion of actual irrelevant
items predicted as irrelevant.

The results obtained by the GFC (see Table 1) confirm that it can identify
most of the relevant forms (high recall) and to filter out most of the irrelevant
forms (high specificity). As Table 2 shows, the combination of the GFC and
DSFC leads to a very high recall, precision and accuracy. This indicates that
the Form Filtering process is effective and that a high-quality (homogeneous)
collection of databases can be generated by ACHE .

Figure 3 shows the number of relevant forms retrieved by the three crawler
configurations over time. The Adaptive Crawler outperforms both the Static
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Table 3. Features of the Link Classifiers used at the beginning and at the end of the
crawl process

Field Initial features Final features
URL link, search, full, genom, index search, blast, genom, form, bioinfo

Anchor data, genom, for, text, full search, blast, gene, databas, sequenc

Around bio, data, info, genom, gene search, databas, gene, genom, sequenc

Fig. 3. Behavior of different crawler configurations over time

and the Baseline configurations, retrieving 513 relevant forms after crawling
100,000 pages versus 341 and 376 relevant forms retrieved by Static and Baseline,
respectively. This shows that the feedback from Form Filtering is effective in
boosting the crawler performance. Table 3 shows the features used by the initial
Link Classifier and the features learned during the crawl that are used by the
final classifier. A similar behavior has been observed for crawls over commercial
domains [3]. This indicates that the adaptive strategy is effective regardless of
the domain.

NAR Collection. The NAR collection lists 968 databases. But their concept of
databases is more generic than ours: they consider as a database both pages that
contains tables with information about genes and proteins, and pages that con-
tain forms (or links to pages that contain forms). In our evaluation, we consider
only the searchable forms accessible through the NAR collection. To extract the
searchable forms directly or indirectly accessible through the NAR collection, we
crawled the links provided (using wget with depth 1). Among the 20,000 pages
retrieved by wget, 700 relevant forms were identified. Although ACHE obtained
513 forms, we should note that the NAR collection has been maintained for
over 7 years—the earliest reference we found dates back to 1999—and it has
become a very popular resource. Once ACHE was configured, the 513 forms
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were automatically gathered in 4 hours. This shows that such a collection can
be efficiently maintained over time. In addition, these forms were obtained in a
relatively small crawl (only 100,000 pages). The positive slope for the Adaptive
Crawler graph in Figure 3 indicates that additional forms can be obtained in
larger crawls. This is an issue we plan to investigate in future work.

5 Related Work

BioSpider [11] is a system that integrates biological and chemical online
databases. Given a biological or chemical identifier, BioSpider produces a re-
port containing physico-chemical, biochemical and genetic information about the
identifier. Although the authors mention BioSpider performs a crawl to locate
the underlying sources, no details are given about the crawling process. Also,
the number of sources they integrate is very small—only about 20 databases are
listed on their Web site.

Ngu et al. [15] proposed an approach to classify search interfaces by probing
these interfaces and trying to match the control flow of the interface against a
standard control flow. Thus, for a specific type of form (which they refer to as a
service class), e.g., a Blast search, they create a corresponding flow graph pattern
from a sample of known interfaces and try to match new interfaces against that
pattern. An important limitation of this solution comes from its reliance on the
ability to automatically fill out structured forms. The difficulties in automatically
filling out structured Web forms are well-documented in the literature [7, 16].

InfoSpiders [17] is a multi-agent focused crawler specialized for biomedical in-
formation whose goal is to fetch information about diseases when given informa-
tion about genes. A study by Menczer et al. [13] comparing several topic-driven
crawlers (including InfoSpiders) found that the best-first approach (the Baseline
configuration in Section 4) leads to the highest harvest rate among the crawlers
in the study. As we discuss in Section 4, our adaptive crawler outperforms the
best first crawler by a large margin.

6 Conclusion and Discussion

In this paper we described a case study we carried out to evaluate the extensi-
bility and effectiveness of the ACHE framework for constructing a high-quality
online database directories. We described the process of customizing the frame-
work for molecular biology databases; and performed an evaluation which showed
that ACHE is able to efficiently locate and accurately identify databases in this
domain. The number of relevant forms automatically gathered (after a 4-hour
crawl) is very close to the number of forms listed in a manually created col-
lection that has been maintained for over 7 years. This indicates that ACHE
provides a scalable solution to the problem of automatically constructing high-
quality, topic-specific online database collections. These results also reinforce our
choice of applying learning techniques. Because we use learning classifiers in the
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different components of ACHE , with some modest tuning, the system can be
customized for different domains.

It is well-known, however, that the performance of machine learning tech-
niques, such as the classifiers used in our framework, is highly-dependent on the
choice of training examples used to construct them. And building a represen-
tative sample of forms is difficult due to the large variability in form content
and structure, even within a well-defined domain. We are currently investigating
strategies that simplify the process of gathering positive and negative examples.

To help users locate relevant databases, we are designing intuitive and ex-
pressive query interfaces that support both simple keyword-based queries and
structured queries (e.g., find forms that contain an attribute with a given label).
Although our focus has been on databases accessible through forms, in future
work we plan to investigate extensions to our infrastructure for handling more
general notions of online databases, such as for example, pages that contain
tables with biology-related information.
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Abstract. The Allen Brain Atlas (ABA), publicly available at http://
www.brain-map.org, presents the expression patterns of more than
21,500 genes in the adult mouse brain. The project has produced more
than 600 Terabytes of cellular level in situ hybridization data whose im-
ages have been reconstructed and mapped into whole brain 3D volumes
for search and viewing. In this application paper we outline the bioin-
formatics, data integration, and presentation approach to the ABA and
the creation a fully automated high-throughput pipeline to deliver this
data set to the Web.

1 Introduction

There are several high-throughput projects underway to systematically analyze
gene expression patterns in the mammalian central nervous system [1,2,3,4].
These projects strive to gain insight into temporal and spatial expression of
specific genes throughout development and in the adult brain. Advances in
genomic sequencing methods, high-throughput technology, and bioinformatics
through robust image processing now enable the neuroscience community to
study nervous system function at the genomic scale [5,6,7]. Central to these
neuro-genomics efforts is understanding gene transcription in the context of the
spatial anatomy and connectivity of the central nervous system [8].

The recent completion of the Allen Brain Atlas (ABA, www.brain-map.org)
offers a technology platform for viewing, browsing, and searching cellular level
resolution in situ hybridization gene expression data in the brain for over 21,500
genes of the standard laboratory C56Bl/6J mouse genome. The value of this
dataset for basic neuroscience research, medicine, and pharmaceutical drug tar-
get development is enormous and becoming increasingly recognized [9,10]. In the
ABA expressing genes can be viewed with tools that can pan/zoom from a whole-
brain section down to a single cell and retrieve data in a multi-resolution format.
The full technology solution of the ABA consists of an automated informatics
mapping platform capable of starting with two dimensional histological and in
situ hybridization images and ending with the construction of three-dimensional
maps or atlases for each gene. Each of these genes is comparable to a standard
de facto reference brain for anatomic comparison and localization.

S. Cohen-Boulakia and V. Tannen (Eds.): DILS 2007, LNBI 4544, pp. 17–26, 2007.
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The ultimate data set of the ABA is on the order of 600 terabytes and will
require a substantial data mining effort to understand and integrate with ex-
isting biomedical knowledge. In addition to a variety of informatics tools, such
as organizing the data for anatomic search and implementation of expression
detection filters, a three-dimensional gene atlas viewer is available that maps
the location and intensity of gene expression onto a reference atlas. While this
is a substantial step in browsing gene expression pattern summaries, much work
remains to be done in connecting the data to the community.

In this paper we describe the architecture and methods of the ABA pipeline
and web application. The aim is to provide an overview of this important re-
source so that in addition to the tools and services already presented, the data
integration and bioinformatics community may offer solutions toward best how
to integrate this community resource for maximum benefit to neurobiology.

2 Technology Requirements/Challenges of the ABA

Leveraging the success of the Human Genome Project, the Allen Brain Atlas is
one of the first projects to utilize a genomic scale approach to neuroscience. The
ABA employs high throughput methods to automate the in situ hybridization
process in the standard C56Bl/6J adult mouse brain [10]. These streamlined
processes include animal and tissue processing, riboprobe generation, in situ
hybridization (ISH), Nissl staining, and anatomic and gene expression quantifi-
cation. Details of these processes can be found in [10]. At capacity, 600 genes
each at 200 um spaced sagittal sections were processed each week. Higher den-
sity coronal replicates were generated for a subset of genes with restricted or
interesting gene expression patterns. Imaging of each tissue section at 10X mag-
nification with resolution at 1.07 μm2/pixel generated 80-120 tiles having 3-8MB
per image tile. Data generation was approximately 1 terabyte per day with data
processing done on more than 300 genes per day.

The throughput of the ABA requires a data management and analysis system
capable of the significant throughput of the laboratory processes. Additionally,
the open source nature of the project required an efficient mechanism to deliver
data to the public. Our approach to addressing these challenges can be divided
into four primary areas: bioinformatics, laboratory information management,
data processing, and data presentation. In each area, we will detail the strategy
as well as describe the technologies used to address the above challenges.

2.1 Bioinformatics

Probe generation requires bioinformatics support in the area of primer and tem-
plate design. The majority of the genes used in the ABA are catalogued in the
NCBI’s Reference Sequence (RefSeq) collection, providing a non-redundant set of
transcript sequences. Other external sources for gene templates not represented
in RefSeq included TIGR, Celera, and the Riken FANTOM3 clone collection.
Using a standardized PostgreSQL RDBMS [11], these external sources are up-
loaded into a staging environment before an automated application is run to
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update public gene and transcript metadata as well as importing new genes into
a set of tables within the Laboratory Information Management System (LIMS)
described below. Templates used to design probes come from different clone
collections including MGC and Riken. Metadata for these clones and their se-
quences are also imported into the database via the same strategy as the gene
metadata information. An internal custom web-based application has been cre-
ated to support end-user querying of gene/transcript information, integration of
BLAST and Primer3 algorithms for alignment and primer design, and upload
of design and probe information into the database. These are available in LIMS
for use in the ISH process.

2.2 Laboratory Information Management (LIMS)

A custom Java web-based LIMS was modeled to the ISH process used in the
ABA. At the most general level, it is designed around the set of discrete tasks
that define particular workflows. All tasks are recorded and object identifiers
are assigned to all inputs and outputs of tasks. Three additional design items in
the LIMS include quality control, usage of a controlled set of vocabularies, and
reporting. In addition to generating outputs from each task, success and failures
are recorded as well as their reasons for failures. Reports, using Crystal Reports
[12] web API, are integrated into the LIMS for ease of creating report templates
and allows end-user access to a number of reports relating to task plans and
status, object states, and quality statistics. A web application allows users to
conveniently access computer terminals throughout the laboratory areas. Since
all tasks and objects are in a database, reliance on spreadsheets is eliminated
and further allows for subsequent automated processing.

2.3 Data Processing

Image Capture. Tissue processing from the laboratory, once completed, is
imaged using an automated microscopy system called the Image Capture System
(ICS). The system consists of 10 Leica DM6000M microscopes, each equipped
with a DC500 camera, a custom stage, and a barcode scanner mounted. A custom
Scope Controller Application was created to control the movement of the stage
and image tile acquisition. Barcoded microscope slides are read by the Scope
Controller as they are loaded onto the stage. As image tiles are acquired, they
are deposited to the Storage Area Network along with the barcode number.

Software Architecture. The data processing component of the ABA involves
careful development and integration of software and hardware components. The
Informatics Data Processing pipeline (IDP) is a data processing engine with its
architecture centering around three components: scheduler, computing modules,
and business logic.

Scheduler. This layer of the IDP engine was developed to monitor, queue com-
puting jobs, manage load balancing, and failure recovery. To develop this system
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we used a combination of custom software development leveraging existing open
source applications, mainly Torque and Maui [13]. Within the IDP, the engine
submits jobs through the use of PBS scripts to manage the different states of
jobs as it progresses through the pipeline. The system is also configurable to
manage the number of job batches being run and the number of different job
queues. Automated re-submission of jobs due to failure is incorporated as well.
Torque and Maui are used to schedule jobs to the computing servers and manage
the load balancing of the system.

Computing Modules. The IDP was designed to accept a variety of different In-
formatics computation modules. The system is not as generically configurable
as systems such as Taverna [14], or the LONI pipeline [15] but rather optimized
for the computational environment particular to the ABA. Each different com-
puting method is developed separately and packaged as a module in the IDP.
Communication between the modules and the IDP follows a simple input and
output XML scheme. The ABA informatics automated pipeline consists of mod-
ules supporting the following functions:

– Image preprocessing, including tile stitching and direct compression into
JPEG2000 format [16]

– Image storage and indexing,
– Access to a novel online digital reference atlas for the adult C56Bl/6J mouse

brain [17],
– 3-D image reconstruction and deformable registration to bring the ISH im-

ages into a common anatomic framework,
– Signal detection and estimation for segmentation of expressing cells and

tissues,
– Compilation of gene expression results over 3-D regions and presentation in

an online searchable database,
– Visualization tools for examining 3-D expression patterns of multiple genes

in anatomic regions.

The details of these algorithms and methods are given in [10] and [18].

Business Logic. Workflows are defined in the IDP by specifying which computing
modules to run for a particular project data type. This layer in the IDP also
interacts with other systems such as the LIMS and the internal web application
hosting the ABA via a series of web services calls. Upon identification of a
valid barcode on the directory file system produced by the ICS, a web service
call, implemented using the XFire Codehaus API [19], is initiated to the LIMS.
Metadata passed from the LIMS instructs the IDP engine which workflow to
be used. As the data progresses to the end of the pipeline, the IDP packages
all required information to present for visualization and passes it off to the web
application for end-user usage.
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Hardware Architecture. In addition to the head node, the computing mod-
ules of the IDP are run using a Fedora Linux cluster consisting of 106 CPUs, 32
HP BL35 Blades with dual AMD 2.4 Ghz, 4 GB RAM and 21 IBM HS20 Blades
with dual Intel 2.8 Ghz, 4GB RAM. Once raw tiles are stitched and compressed,
they are deep archived using the SpectraLogic T120 robotic tape library system.
Stitched images, compressed 16:1 using a wavelet based JPEG2000 format are
stored on the Hitachi Thunder 9585V Storage Area Network along with other
intermediate files produced by the Informatics modules in the IDP. Figure 1
shows the architecture of the IDP including the computing modules of the ABA
workflow.

Fig. 1. The software and hardware architecture of the Informatics Data Pipeline,
including the Informatics computation workflow of the ABA project

The Allen Brain Atlas hosting architecture is designed for performance, re-
dundancy and ease of deployment. While servers can be added to any of the
silos based on usage needs, the use of F5 Big IP allows for load balancing as well
as fail over. This mutiple silos architecture has several advantages. Performance
wise, it allows us to add additional servers to the silos and new silos can also
be added as required. Since servers within each of the silos are independent of
the other silos, this scheme provides additional redundancy within the system.
During deployment upgrades and maintenance, single silos can be taken down
without affecting the public availability of the website.

3 Data Presentation and Visualization

Successfully processed data are housed in a web application containing the pri-
mary image data as well as other summary data such as 2D expression quantifi-
cation images, metadata, etc.. Two and three dimensional visualization of the
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data can be performed within the main application or Brain Explorer (described
below), and both viewing mechanisms can be accessed from our public site
at http://www.brain-map.org. In addition, computed data are made available
through a number of different gene-based and structure-based searches within
the application. Figure 2 shows the search interface with return results. In this
instance a search was performed for genes expressing simultaneously high level
and density in the cortex and hypothalamus. The ABA interface provides the
return list with metadata as well as genes whose expression patterns are most
correlated with the given gene image series.

Fig. 2. ABA search interface with return list and metadata. Search can be based on
expression level, density, or uniformity of signal. Genes can be individually loaded into
detailed two or three dimensional viewing applications.

3.1 The Allen Brain Atlas Web Portal

In addition to serving images within the application, the database architecture of
the Allen Brain Atlas is built using a warehousing approach to allow fast retrieval
of textual image metadata information and their computed values. Metadata
destined to be displayed externally are retrieved from the LIMS through a web
service call from the IDP as successfully processed data are passed from the
IDP to the web application along with informatics computed values. Informatics
value contents and all associated metadata are flattened and warehoused in a
simple schema centered on the concept of an image series.

It is now relatively common to present and manage high resolution imagery
in bioinformatics applications. While our primary images are compressed in the
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JPEG2000 format [18], delivering images through a browser in this format is
infeasible due to the lack of native browser support without a plug-in. While
some work has been done [20] in streaming images within the browser, ABA
image sizes and the number of images to be displayed disfavor this approach.
Using a JPEG multi-resolution tiled pyramid [21] allows browsing ease and is
comparatively size effective. We created a Linux based custom modification of
this approach to serve JPEG based pyramid images directly converted from the
JPEG2000 originals. Additional development was done to integrate the Flash
based user inferface within the web application as well as add additional end-
user functionality.

The result of this architecture, shown in Figure 3, enables the development
of a detailed image viewer that can support browsing of the reference atlas,
individual ISH data sections, quantitation masks, as well as thumbnail selection
and supporting metadata and a host of image manipulation options.

Fig. 3. The multiple image viewer of the ABA showing G-protein coupled receptor
Gpcr-12 with closest reference plane section and expression pattern in the hippocam-
pus. The right side images show the original ISH section and signal detection mask for
expression.

3.2 3-D Viewing Tools

With gene expression data mapped into a common coordinate space, it is also pos-
sible to visualize and compare expression patterns in 3D. However, 3D expression
visualization of brain data has not commonly been applied on a very large scale
largely due to manual input requirements of validation and the task of accurate
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3D reconstruction. Additionally limiting the usage of 3D visualization has been
the necessary compromise in resolution relative to the resolution of 2D sections.

We developed a 3D viewing application, Brain Explorer, to visualize the Allen
Reference Atlas and Allen Brain Atlas in three-dimensional space. The applica-
tion has utility for both examining small sets of genes in detail as well as navi-
gating the entire atlas of more than 21,500 genes. Our application also links the
3D representation of gene expression with the original full resolution 2D tissue
sections. An area of interest in the 3D model can instantly link to the full res-
olution image (shown in Figure 3) for corroboration with the 3D model as well
as detailed examination of subtle expression patterns. Figure 4 shows the gene
protein kinase-C, prkcd implicated in the regulation of cell growth and death
viewed in 3-D in Brain Explorer.

Fig. 4. The gene protein kinase-C,viewed in 3-D in Brain Explorer. The user has access
to the full anatomy, original ISH section, maneuverable planes, and summary statistics.

4 Discussion

With the entire ABA data set now publicly available, current development focus
is on additional features within the application for easier navigation, enabling
users to download images, and more advanced mining tools. Because the ABA
data set was calculated entirely by an automated pipeline, additional data inte-
gration and annotation can make the data set even more powerful. One way this
can be achieved is by allowing the user community to bookmark genes and/or
images of interest and assign a tag to describe the bookmark. Most popular
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and related tags, combined with the automated calculations can be retrieved
to discover additional interesting annotations associated with the data. When
implemented, other online content could integrate the information of the ABA
with current data knowledge. Similarly, scientific information exposed using this
framework could be retrieved by the ABA and returned to the users as added
annotation bookmark tags and links to the existing ABA data. While this can
be viewed as a tool to help link dynamic unstructured web data, there is great
potential to create new knowledge from this integration strategy.

A detailed view of expression content in the brain can also be achieved by ex-
posing the ABA’s expression grid data, rather than summaries at the anatomic
structural level. Achieving this type of API and providing structural ontology
descriptions, as well as user community annotation bookmarks to the external
world may best be done in the context of the Semantic Web, a novel paradigm for
web information exchange and integration. Technology standards such as XML
or JSON [22], Resource Description Framework (RDF) and Web Ontology Lan-
guage (OWL) can be combined to provide a template for information exchange
architecture.

Neurobiological content in the ABA data set can best be leveraged by effec-
tive integration with other online scientific data sources. It is widely recognized
that lack of successful data integration is one of the most significant barriers
to comprehensive understanding of the biological significance of available data.
Ultimately, effective data integration, particularly for genomic and proteomic
content, should contribute to more specific understanding of biological processes
from fundamental science to the selection of pharmaceutical drug targets. One
of the most challenging goals for the Allen Brain Atlas, or any large scale image
database in the life sciences, is to expose its content to maximum advantage
with respect to our present knowledge.
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Abstract. In this paper we present the design and implementation of
an RNA structural motif database, called RmotifDB. The structural mo-
tifs stored in RmotifDB come from three sources: (1) collected manu-
ally from biomedical literature; (2) submitted by scientists around the
world; and (3) discovered by a wide variety of motif mining methods.
We present here a motif mining method in detail. We also describe
the interface and search mechanisms provided by RmotifDB as well as
techniques used to integrate RmotifDB with the Gene Ontology. The
RmotifDB system is fully operational and accessible on the Internet at
http://datalab.njit.edu/bioinfo/

1 Introduction

Post-transcriptional control is one of the mechanisms that regulate gene expres-
sion in eukaryotic cells. RNA elements residing in the UnTranslated Regions
(UTRs) of mRNAs have been shown to play various roles in post-transcriptional
control, including mRNA localization, translation, and mRNA stability [16].
RNA elements in UTRs can be roughly divided into three groups: elements whose
functions are primarily attributable to their sequences, elements whose functions
are attributable to their secondary or tertiary structures, and elements whose
functions are attributable to both of their sequences and structures. Well-known
sequence elements include AU-rich elements (AREs), some of which contain one
or several tandem AUUUA sequences and are involved in regulating mRNA sta-
bility [2], and miRNA target sequences, which are partially complementary to
cognate miRNA sequences and are involved in regulating translation or mRNA
stability [14].

Well-known structure elements (or structural motifs) include the histone 3′-
UTR stem-loop structure (HSL3) and the iron response element (IRE) [16].
Both sequence and structure are important for the functions of the structural
motifs. HSL3 is a stem-loop structure of about 25 nucleotides (nt) that exists in
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Fig. 1. (a) An example of the HSL3 motif. (b) An example of the IRE motif.

3′-UTRs of most histone genes. In Figure 1(a), an HSL3 motif is portrayed us-
ing the XRNA tool (http://rna.ucsc.edu/rnacenter/xrna/xrna.html). The HSL3
structure is critical for both termination of the transcription of mRNAs and sta-
bility of mRNAs. These functions are exerted by the stem-loop binding protein
(SLBP) that interacts with HSL3.

IRE is a stem-loop structure of ∼30 nt with a bulge or a small internal loop
in the stem (Figure 1(b)). IREs have been found in both 5′-UTRs and 3′-UTRs
of mRNAs whose products are involved in iron homeostasis in higher eukaryotic
species. IREs bind to the iron regulatory proteins (IRPs) of these species, which
control translation and stability of IRE-containing mRNAs.

HSL3 and IRE are similar in several aspects: both are small simple RNA struc-
tures with less than 40 nt; both exist in UTRs of several genes with related func-
tions; and both bind to cellular proteins and are involved in post-transcriptional
gene regulation. The regulations via HSL3 and IRE constitute a distinct mode
of gene regulation, whereby expression of several genes can be modulated via a
common RNA structure in UTRs.

Functional sequence motifs in genomes have been heavily studied in recent
years, particularly for the promoter region and sequences involved in splicing.
In contrast, RNA structure elements have been investigated to a much lesser
extent, largely due to the difficulties in predicting correct RNA structures and
conducting RNA structure alignments, where huge computing costs are involved.
While some success has been achieved using phylogenetic approaches [1] and se-
quence alignments [3,4] to gain accuracy in RNA structure prediction, large-scale
mining for conserved structures in eukaryotic UTRs has been studied to a lesser
extent. In addition, current methods for finding common stem-loop structures
solely rely on the detection of structural similarities [9]. Gene Ontology infor-
mation has not been used in the study of RNA structure, though integrating
ontologies with other biological data has been studied extensively.
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Here we present a database, called RmotifDB, that contains structural motifs
found in 5′ and 3′ UTRs of eukaryotic mRNAs. The structural motifs are linked
with Gene Ontology and PubMed entries concerning the motifs. A wide variety
of motif mining methods are developed. In particular, we present in the paper a
histogram-based method for discovering motifs in eukaryotic UTRs. In Section 2
we describe the histogram-based method in detail. Section 3 describes RmotifDB
as well as its interface and search mechanisms. Section 4 presents techniques used
to integrate RmotifDB with the Gene Ontology. Section 5 concludes the paper
and points out some directions for future research.

2 A Motif Mining Method

We have developed several structural motif mining methods based on different
RNA representation models. For example, in [19], we represented an RNA sec-
ondary structure using an ordered labeled tree and designed a tree matching
algorithm to find motifs in multiple RNA secondary structures. More recently,
we developed a loop model for representing RNA secondary structures. Based
on this loop model we designed a dynamic programming algorithm, called RS-
match [15], for aligning two RNA secondary structures. The time complexity of
RSmatch is O(mn), where m and n are the sizes of the two compared struc-
tures, respectively. The RSmatch method is implemented in a web server, called
RADAR (acronym for RNA Data Analysis and Research) [13], which is acces-
sible at http://datalab.njit.edu/biodata/rna/RSmatch/server.htm. In Figure 2,
the common region of two RNA secondary structures pertaining to homo sapiens
sequences is portrayed using XRNA where the local matches found by RSmatch
are highlighted with the green color.

Below, we describe a histogram-based scoring method to uncover novel con-
served RNA stem-loops in eukaryotic UTRs using the RSmatch tool. This
method is an upward extension of our previously developed histogram-based
algorithm for DNA sequence classification [18]. Given a set of RNA secondary
structures, the method uses RSmatch to perform pairwise alignments by compar-
ing two RNA structures at a time in the set. Given an optimal local alignment
between two structures A and B found by RSmatch, the set of bases in the
aligned region of A is denoted by QA = {Ai, Ai+1, ..., Aj} where Ai (Aj , respec-
tively) is the 5′-most (3′-most, respectively) nucleotide not aligned to a gap. The
set of bases in the aligned region of B is denoted by QB = {Bm, Bm+1, ..., Bn}
where Bm (Bn, respectively) is the 5′-most (3′-most, respectively) nucleotide not
aligned to a gap. Each nucleotide Ak ∈ QA that is not aligned to a gap scores
|j − i + 1| points. All the other bases in the structure A receive 0 point. Thus,
the larger the aligned region between A and B, the higher score each base in
the region has. When aligning the structure A with another structure C, some
bases in QA may receive non-zero points and hence the scores of those bases are
accumulated. Thus, the bases in a conserved RNA motif will have high scores.

To validate our approach, we conducted experiments to evaluate the effec-
tiveness of this scoring method. The conserved stem-loops we considered were
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Fig. 2. Alignment of two RNA secondary structures where the local matches found by
RSmatch are highlighted with the (light) green color

IRE motifs, which contained about 30 nucleotides, located in the 5′-UTRs or
3′-UTRs of mRNAs coding for proteins involved in cellular iron metabolism.
The test dataset was prepared as follows. By searching human RefSeq mRNA
sequences from the National Center for Biotechnology Information (NCBI) at
http://www.ncbi.nlm.nih.gov/RefSeq/, we obtained several mRNA sequences,
within each of which at least one IRE motif is known to exist. We then extracted
the sequences’ UTR regions as indicated by RefSeq’s GenBank annotation and
used PatSearch [10] to locate the IRE sequences. Each IRE sequence was then
extended from both ends to obtain a 100 nt sequence. These sequences were
mixed with several “noisy” sequences with the same length, where the noisy
sequences are UTR regions of mRNA sequences that do not contain IRE mo-
tifs. All the resulting sequences were then folded by the Vienna RNA package
[11] using the “RNAsubopt” function with setting “-e 0”. This setting can yield
multiple RNA structures with the same free energy for any given RNA sequence.

Figure 3 shows the score histograms for two tested RNA structures. It was
observed that clusters of bases with high scores correspond to the IRE motifs
in the RNA structures. Similar clusters of bases with high scores corresponding
to the IRE motifs were observed in the other IRE-containing RNA structures,
but not in the “noisy” structures. This result indicates that our histogram-based
scoring method is able to detect biologically significant motifs in multiple RNA
structures.

3 The RmotifDB System

RmotifDB is designed for storing the RNA structural motifs found in the UTRs
of eukaryotic mRNAs. It is a web-based system which supports retrieval and
access of RNA structural motifs from its database. The system allows the user
to search RNA structural motifs in an effective and friendly way. RmotifDB is
accessible on the Internet at http://datalab.njit.edu/bioinfo/. It is developed
using Perl-CGI, Java, C and Oracle.



Toward an Integrated RNA Motif Database 31

Base position

0
35

0
50

10
0

15
0

20
0

25
0

30
0

0 20 40 60 10080

Sc
or

e

0
35

0
50

10
0

15
0

20
0

25
0

30
0

20 40 600 10080

Base position

Sc
or

e
Fig. 3. Diagrams illustrating the effectiveness of the proposed scoring method. IRE
is found around base positions 30-60 in the RNA structures corresponding to the
diagrams respectively.

The RNA structural motifs stored in RmotifDB come from three sources. The
primary source consists of manually collected motifs from biomedical literature.
Scientists who used this database can also submit motifs to RmotifDB. The
interface where scientists can submit RNA structural motifs is shown in Figure 4.
Lastly, motifs are obtained from those RNA structures discovered by a wide
variety of motif mining methods (such as the method described in Section 2).
These motif mining methods may find new, or unknown motifs, which are also
stored in RmotifDB.

Figure 5 shows the search interface of RmotifDB. The system provides two
search options: query by sequence (QBS) and query by structure (QBR). With
QBS, the user enters an RNA sequence in the standard FASTA format and
the system matches this query sequence with motifs in the database using ei-
ther RSmatch or Infernal [8]. Since RSmatch accepts, as input data, RNA sec-
ondary structures only, the system needs to invoke Vienna RNA v1.4 [11] to
fold the query sequence into a structure before a match is performed. With
QBR, the user enters an RNA secondary structure represented by the Vienna
style Dot Bracket format [11] and the system matches this query structure
with motifs in the database using RSmatch. The result is a ranked list of
motifs that are approximately contained in the query sequence or the query
structure. In addition, the user can search RmotifDB by choosing a Gene ID
or RefSeq ID from a pre-defined list of Gene IDs and RefSeq IDs provided
by the RmotifDB system where the Gene IDs and RefSeq IDs are obtained
from http://www.ncbi.nlm.nih.gov/RefSeq/. This pre-defined list contains the
IDs of the genes (mRNA sequences) used by our motif mining methods to
discover the structural motifs stored in RmotifDB. The result of this search
is a list of structural motifs containing the query gene ID (Gene ID or
RefSeq ID).
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Fig. 4. The interface of RmotifDB where scientists can submit RNA structural motifs

4 Integrating RmotifDB with the Gene Ontology

In browsing the search results returned by RmotifDB, the user can click each mo-
tif to see detailed information concerning the motif. Figure 6 shows the result of
displaying a motif and its related information. Here the motif is an iron response
element (IRE) in humans shown in the Stockholm format [8]. This format is a
multiple sequence alignment output with structural annotation in the Vienna
style Dot Bracket format. The motif is depicted in the bottom right-hand corner
of the window. Also displayed are the Gene Ontology (GO) information con-
cerning the motif and relevant articles in PubMed (not shown in the screenshot)
that publish this motif.

In general, a motif contains multiple genes (mRNA sequences) with similar
functions. The GO entries and their URLs that are highly associated with the
motif are collected and stored in RmotifDB. The GO entries in three categories,
including molecular function, biological process and cell component, are obtained
from the Gene Ontology Consortium (http://www.geneontology.org). The map-
ping information between the GO entries and the genes is obtained from the
LocusLink database [17]. A hypergeometric test [6] is used to measure the sig-
nificance of the association between the motif and each of the GO entries. The
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Fig. 5. The search interface of RmotifDB

significance is shown as the t-value next to each GO entry in Figure 6. The
hypergeometric test is appropriate here, since it is a finite population sampling
scheme with the entire population being divided into two groups—those that are
associated with a particular GO entry and those that are associated with the
other GO entries.

In the hypergeometric test, there are four parameters: (1) m, the number of
white balls in an urn, (2) n, the number of black balls in the urn, (3) k, the
number of balls drawn from the urn, and (4) x, the number of white balls drawn
from the urn. The probability that x out of the k balls drawn are white from
the urn containing m + n balls is

f(x, m, n, k) =

(
m
x

) (
n

k − x

)
(

m + n
k

) (1)

where x ≤ min(m, k).
For each RNA structural motif M containing multiple genes, all GO en-

tries are examined to evaluate their associations with M . Through the mapping
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Fig. 6. The output showing a structural motif stored in RmotifDB and related in-
formation. The t-value inside the parentheses next to each GO entry indicates the
significance of the association between the motif and the GO entry. The smaller the
t-value, the more significant the association is.

information between M and a GO entry G in a GO category C [17], we are
able to calculate four numbers: (1) N1, the number of genes associated with any
GO entry in C, (2) N2, the number of genes associated with G in C, (3) N3,
the number of genes in M associated with any GO entry in C, and (4) N4, the
number of genes in M associated with G in C, where N1 ≥ N2 and N3 ≥ N4.
The t-value of the GO entry G is calculated by

t(G) = f(N4, N2, N1 − N2, N3) (2)

where the function f is as defined in Equation (1). In general, the smaller the
t(G) value, the more significant the association between G and M is. RmotifDB
displays G together with its t-value if t(G) is smaller than a user-adjustable
parameter value (0.05 here).

5 Conclusion

In this paper we presented an RNA structural motif database, called Rmo-
tifDB, and described some features of RmotifDB as well as techniques used for
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integrating RmotifDB with the Gene Ontology. Besides integrating with the
Gene Ontology, RmotifDB also supports standard formats such as accession
numbers from ReqSeq as well as commonly used Gene IDs. Therefore, anyone
familiar with data associated with these identification numbers can retrieve the
sequences without difficulty. It is our plan in the future to integrate RmotifDB
further with other popular databases creating a seamless environment for the
user.

We developed a motif mining method capable of discovering structural mo-
tifs in eukaryotic mRNAs. Our system provides a search interface supporting
structure-based searches in RNAs. Studying RNA data has been a popular topic
in the biological database community. There are many databases and software
on RNA (cf. the RNA World Site at http://www.imb-jena.de/RNA.html). Most
of these databases, however, while providing structural information, do not give
the user the power to query using the structural information like RmotifDB.

The system presented here is part of a long-term project [13,20] aiming to
build a cyberinfrastructure for RNA data mining and data integration. This cy-
berinfrastructure complements existing RNA motif databases such as Rfam and
UTRdb [12,16], which lack structure-based search functions. Data mining and
data integration [5,7] in bioinformatics has emerged as an important field at the
interface of information technology and molecular biology. Our cyberinfrastruc-
ture will contribute to this field in general, and RNA informatics in particular.
In future work we plan to develop new data mining and data integration tech-
niques for finding motifs in various organisms and for integrating the motifs with
several biomedical ontologies.
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Abstract. Life sciences research in general and systems biology in particular
have evolved from the simple combination of theoretical frameworks and exper-
imental hypothesis validation to combined sciences of biology/medicine, analyt-
ical technology/chemistry, and informatics/statistics/modeling. Integrating these
multiple threads of a research project at the technical and data level requires tight
control and systematic workflows for data generation, data management, and data
evaluation. Systems biology research emphasizes the use of multiple approaches
at various molecular and functional levels, making the use of complementing
technologies and the collaboration of many researchers a prerequisite. This paper
presents B-Fabric, a system developed and running at the Functional Genomics
Center Zurich (FGCZ), which provides a core framework for integrating differ-
ent analytical technologies and data analysis tools. In addition to data capturing
and management, B-Fabric emphasizes the need for quality-controlled scientific
annotation of analytical data, providing the ground for integrative querying and
exploitation of systems biology data. Users interact with B-Fabric through a sim-
ple Web portal making the framework flexible in terms of local infrastructure.

1 Introduction

Experimental research in the life sciences in general and systems biology as an emerg-
ing concept aims at characterizing complex biological organisms and functions at the
systems level [3]. To achieve the required data width and depth with high accuracy and
reliability, all components of a research project have to fulfill highest standards: exper-
imental design needs to feature proper statistics and selection of experimental parame-
ters and biological systems, experimental analysis requires to generate highly accurate
and reproducible data at the highest sensitivity and specificity level for various molecu-
lar species, and data analysis has to ensure proper statistics and interpretation in order to
allow for validation of the data in iterative experiment and knowledge discovery cycles.

In practical terms, scientists working in a life science research project follow a gen-
eral data acquisition workflow [6] using different analytical platforms and instruments.
The instruments generate raw data files which are usually stored on the instrument PC,
together with the parameter files from the analysis run. In a second step, these files are
copied to different PCs where analytical software tools are running. There, reformatting
or processing of the raw data takes place and the analysis software generates additional
data files in the form of report files that also have attached processing and visualization
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parameters or bear additional links to external references. Already at this stage, analyt-
ical data is inherently distributed across multiple files in multiple locations. After going
through additional cycles of data generation and analysis, data management and track-
ing becomes a challenge for the individual researcher. In a collaborative environment,
the issues of data consistency and accessibility are even more critical. Unless all data
and files generated in the analytical process are managed together with their semantic
context, i.e., the lab book annotation of files and data, usage of the primary data by other
researchers in the collaboration or peer-reviewing network is not possible. Thus, huge
data resources will become useless for future integrated research. However, capturing
the analytical raw data together with its semantic context is not easy. Usually, the instru-
ment software is configured to place the acquired raw data on a file server. Setting up
and maintaining the software environment so that the software reads and writes its data
from and to a central data drive is highly software-specific. As the semantic context of
an analytical data set not only includes the instrument configuration but also all rele-
vant information from upstream workflow steps including the generation and treatment
of the analytical sample, this metadata is usually not accessible since it is only written
in the lab book of the researcher. Hence, mechanisms are required to enforce users to
provide this information together with the experimental data.

As the complexity of the analytical systems in integrated functional genomics or sys-
tems biology research has reached a level where specific, isolated application-oriented
data management and analysis has become apparently inefficient, the B-Fabric project
has been initiated at the Functional Genomics Center Zurich (FGCZ) to build an in-
frastructure for integrated management of experimental data, scientific annotations, and
metadata. B-Fabric also functions as a central LIMS which supports successful research
1) by integrating data from different sources, and 2) by ensuring that the dispersed data
is available for future use. B-Fabric covers all main aspects of an integration frame-
work, including safety, standard access protocols, transparent access, authentication,
authorization, and access control. In particular, B-Fabric enforces the entry of scien-
tifically and analytically required data such that users will then be able to browse and
search for data entries across experiments, projects, and instruments.

In this paper, we introduce B-Fabric. Section 2 sketches its basic notions and goals
while Section 3 presents its architecture and highlights some implementation issues.
Workflow issues are discussed in Section 4. Section 5 shows how an instrument can be
integrated into the B-Fabric framework. Section 6 concludes the paper.

2 Basic Notions and Goals of B-Fabric

Each research project using integrative functional genomics technologies may encom-
pass multiple experiments. An experiment may contain a number of measurements on a
number of samples and extracts, respectively. Following standards for systems biology
[1], such as MIAME, MGED, or SBML, a sample is a biological source, from which the
nucleic acids, proteins, or any other species of molecules to be investigated can be ex-
tracted from. In a controlled setting, each sample is given a unique ID and the sample is
associated with a number of annotations, such as species (organism) for model systems
or general terms for patient samples including sex or age. Further annotations that are
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relevant to a particular sample are its development stage, organism part (tissue or organ),
cell type, genetic variation, individual genetic characteristics, state (disease vs. normal),
treatment type (e.g., pharmacological treatment, heat shock, food deprivation), and sep-
aration technique. The notion of an extract refers to a sample derivate that is used in a
measurement. An extract is prepared from a sample in a specific way using laboratory
techniques. Each extract has a unique ID and is associated with a number of annotations,
which are precisely describing how the extract was prepared. Useful extract annotations
are the extraction method, extraction type (for example for nucleic acids: RNA, mRNA,
genomic DNA), amplification (for nucleic acids: RNA polymerases, PCR) and purifi-
cation parameters (precipitation, spin column). As a special feature, an extract may be
prepared directly from a sample or can be composed of multiple extracts.

In the nomenclature for the analytical workflow, each measurement may contain
more than one part, called a workunit. A workunit captures related measurements at a
specific point in time of the experiment. It contains all the files that are necessary to
restore the instrument software to the exact state when this type of snapshot was taken,
including instrument settings files, software parameters, and log files. Within the work-
flow, the user decides when a workunit is complete, specifies the created data, adds
metadata and commits it to B-Fabric central repository. The notion of a workunit is
central to B-Fabric since it defines the main unit of storage and search. From a data
modeling point of view, a workunit associates related file(s) with metadata, e.g., in-
formation about the extract used in the measurement. The types of files as well as the
metadata may vary from instrument to instrument. Moreover, the workunit-file-extract
association may vary from instrument to instrument. In some cases, each workunit is
associated with one (raw) file and a corresponding extract. In other cases, a workunit
comprises several files associated to one extract, or a workunit may even consist of
several file-extract associations.

The basic goal of B-Fabric is to store all data generated from experiments centrally in
a way that allows the subsequent data access, analysis, and visualization to be location-
independent and to combine the data with all relevant metadata at the point of data
generation. In detail, B-Fabric supports experimental researchers and bioinformaticians
in their daily work, providing a number of advantages:

– Data capturing and provisioning: All experimental data is captured with its seman-
tic context and is provided as needed.

– Reproducibility: Experimental data is stored together with instrument parameters
and configuration files in order to being able to reproduce an experiment.

– Uniform access: All data (experimental, derived, metadata) is uniformly accessible
from everywhere through a Web portal.

– Federated search and integrated analysis: Users may run queries against all public
B-Fabric data (about projects, experiments, samples, extracts etc.). In this way, an
integrated, inter-experiment, inter-project analysis becomes possible.

– Transparency: The user does not need to care about where and how the data is
stored. B-Fabric functions as data fabric capturing and providing the data transpar-
ently through a Web portal.

– Reliability: All B-Fabric data is continuously backed up.
– Security: User’s data is stored in a secure repository that is access controlled.
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3 Architecture and Implementation of B-Fabric

The architecture of B-Fabric consequently follows the idea of a system gluing a set of
loosely-coupled components together to satisfy the specific requirements of the overall
system. Figure 1 gives an overview of the architecture of B-Fabric.

Fig. 1. Overview of the Architecture of B-Fabric

– User PCs are usual computers running a Web browser to enable access to B-Fabric.
From a user PC, a scientist interacts with B-Fabric to search for and download a
workunit (or parts of it) for analysis purposes. The user PCs at FGCZ provide a
number of tools for data analysis and/or data visualization.

– Instrument PCs refer to computers that generate or hold scientific data to be im-
ported into B-Fabric. From an instrument PC, a user interacts with B-Fabric through
a Web browser to create and commit a workunit.

– Data Marts refer to external (autonomous) systems that supports specialized scien-
tific data management, analysis, and/or visualization. Users use the marts to inves-
tigate the results of their experiments in detail. In its current setting, B-Fabric has
one mart (Rosetta Resolver) for the detailed management and analysis of transcrip-
tomics experiments and one mart (Mascot Integra) for the detailed management
and analysis of proteomics experiments. For some instrument PCs, the associated
workunits cannot be assigned to one of these two marts since the marts are not
able to capture all specific information of the workunit. For these cases, B-Fabric
implements a custom mart which is able to manage the corresponding information.

– B-Fabric Application Server acts as Web portal providing users a consistent and
access controlled front-end. It is responsible for all user interaction with B-Fabric,
and consequently implements the presentation logic. Among others, this portal in-
cludes forms for the scientific annotation of workunits and interfaces for browsing
and searching. The portal can be accessed by a usual Web browser from every-
where, e.g. from an instrument PC to import data into B-Fabric or from a user
PC to download data from B-Fabric. The portal dynamically adapts its layout and
underlying workflows according to the computer from which the user accesses B-
Fabric, e.g., in case of an access via an instrument PC, the workflow for creating
and storing a workunit is adapted to the specifics of the corresponding instrument.
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– B-Fabric File Archive Server stores and manages the workunits. All associated data
files are stored in the file archive that is only accessible via the B-Fabric portal.

– B-Fabric Database Server stores and manages all metadata of B-Fabric, including
the base administrative data, such as project or user data, as well as the annotations
of the workunits, samples etc. Above that, it manages all messaging information
that is used to communicate between the B-Fabric components.

– B-Fabric JMS Server provides persistent message queues for asynchronous com-
munication between B-Fabric components. The latter place their messages (tasks)
in the corresponding queues which are monitored by the responsible components.

– B-Fabric Workhorse Server(s) waits for messages arriving on the queues configured
for a process component doing a single task. Typical tasks of a workhorse are the
copying of data from an instrument PC to the file archive, the metadata extraction
from the experimental data, and the indexing of the data for the search engine, to
name a few. After having performed a task, a workhorse places a message on the
corresponding queue to inform about the state of the task.

In principle, all B-Fabric components could be deployed on one computer. However, in
a typical B-Fabric setting, the components will be distributed over several computers
due to performance and availability reasons. Especially the workhorses will run on more
than one machine to distribute the heavy load of data copying and processing. In this
way, B-Fabric is able to scale up with increasing workloads.

Currently, B-Fabric provides an integration framework with basic functionality on
top to store and search for all data generated from experiments. In more detail, fol-
lowing features are supported currently: creation and storage of workunits, export of
workunits (e.g. to the instrument or analysis computer), zip-download of workunits,
browsing through B-Fabric data, basic and advanced search, creation and management
of collections, sample/extract registration, and workflow and error management. Be-
sides, B-Fabric is linked together with our user and project management tool.

The current implementation of B-Fabric consists of 166 Java classes and 212 XML
files. In total, it comprises more than 65000 lines of code without Java scripts, plain
text configuration files etc. The implementation synthesizes a number of well-known
technologies, which are open source, mainly written in Java, and heavily exploit XML.
In the following, we sketch the key technologies of the B-Fabric architecture.

Apache Cocoon - Web Application Portal and Integration Framework. All
B-Fabric components for the web-based user interaction are built on Apache Cocoon
[2], which is an open source web application development framework. Cocoon has been
chosen because it represents a mature application development framework and has an
extremely advanced form handling model which eases the implementation of the dif-
ferent instrument-specific workflows. Cocoon strictly follows the idea of separation of
concerns. It separates the content, application logic, and layout concerns. Thus, appli-
cation developers may work on the presentation of an application without affecting the
content or the application logic, for example. This reduces the long-term overhead asso-
ciated with maintaining a complex code base and allows the different concerns in main-
taining the application to be isolated and distributed to different development teams.
Cocoon is based on the pipeline and sitemap model. Abstractly spoken, a pipeline pro-
cesses a (Web) request and provides a response to it. In detail, a pipeline consists of a
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sequence of steps, starting with a data generation (retrieving) step, followed by arbitrary
many data transformation steps, and finished by a data serialization step. Each step is
dynamically configurable. The result of the data generation step is provided as an XML
file, which is then transformed using XSLT, and finally serialized to a specified format
for presentation. For each request, Cocoon allows to specify one or more pipelines. A
sitemap is an XML file which among others configures matchers to choose a specific
pipeline for an incoming request. The processing of a request is thus determined by
a sitemap. This very flexible mechanism allows easy configuring of any type of data
source as data generator, arbitrary transformations of the data, and finally presentation
of the data in any form (e.g. XML or PDF). This feature plays an important role in
B-Fabric where new data sources have to be plugged into the system dynamically.

PostgreSQL - Data Management. PostgreSQL [11] is a powerful and mature open
source SQL database system which provides native programming interfaces for several
languages, including Java which was a prerequisite for being a component of B-Fabric.
PostgreSQL was chosen for B-Fabric since it is currently the most sophisticated open
source database system which satisfies the demands of B-Fabric w.r.t. stability, perfor-
mance, and scalability. In principle, B-Fabric could run with any other SQL database
system, too. B-Fabric uses PostgreSQL for managing project and user data, instrument-
specific metadata, scientific annotations, and B-Fabric messaging information.

OJB - Object-Relational Mapping. Apache ObJectRelationalBridge (OJB) [7] is an
object-relational mapping tool that supports transparent persistence for Java Objects
against relational databases. OJB has been chosen for B-Fabric since it is extremely
flexible and smoothly fits into the Cocoon framework. Besides, OJB has a number of
advanced features that are useful for B-Fabric, e.g. object caching, lazy materializa-
tion and distributed lock-management with configurable transaction-isolation levels.
The object-relational mapping is specified using XML files and resides in a dynamic
layer, which can be manipulated at runtime to change the behavior of the persistence
kernel. B-Fabric uses OJB to transparently map between the B-Fabric Java application
objects and the corresponding relational PostgreSQL database entries.

OSWorkflow - Workflow Management. B-Fabric uses OSWorkflow [10] from the
open source project OpenSymphony as workflow engine. OSworkflow was chosen be-
cause it is extremely flexible and can seamlessly be integrated into the Cocoon frame-
work. OSWorkflow is different from most other workflow systems available since it
does not require a graphical tool for defining workflows. It is a low-level, Java-based
workflow engine that processes workflows described in XML. Beside sequences of
steps, it supports split and join steps, and thus allows parallel execution of steps. This
important feature is required by some central B-Fabric workflows, e.g. to detach the
workunit annotation (requires user interaction) from the copying of the workunit files
(which usually tend to be very large in size). Using parallel steps, the user can start (and
finish) annotating while the copying takes place.

Apache Lucene - Indexing and Search. B-Fabric uses the open source tool Apache
Lucene [5] to support full-text search on all B-Fabric (meta)data. Lucene was chosen
because it is a high-performance, cross-platform text search engine that can seamlessly
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be integrated into the Cocoon framework. Lucene offers several powerful information
retrieval features through a simple API. It supports incremental indexing as well as
batch indexing. Its search algorithms among others support ranked results, different
query types (phrase queries, wildcard queries, proximity queries etc.), fielded searching
(e.g., title, author, contents), date-range searching, complex queries based on boolean
operators, sorting by any field, and allows simultaneous update and searching. Espe-
cially the fielded searching is a feature of Lucene that is of high value for B-Fabric,
e.g., to reduce the search space to certain workunits, sample, extracts etc. B-Fabric uses
Lucene to provide a simple as well as an advanced search on different granularities.

OpenJMS - Messaging. OpenJMS [8] is an open source implementation of Sun Mi-
crosystems’s Java Message Service (JMS), which supports asynchronous (and syn-
chronous) message delivery, guaranteed delivery of messages, persistent messaging,
and especially a point-to-point and publish-subscribe messaging model. Above that, it
integrates with Servlet containers and supports in-memory and database garbage col-
lection together with many communication protocols like TCP, RMI, HTTP and SSL.
Besides all these characteristics, OpenJMS was chosen because it is scalable and can
cope with the level of services of B-Fabric. B-Fabric uses OpenJMS to manage the vari-
ous message queues, together with the JMS component of Cocoon which is responsible
for retrieving new workflow steps to be executed. Services without a Cocoon-based web
interface like the workhorses communicate directly with OpenJMS.

Apache log4j - Logging. The open source logging utility Apache log4j [4] allows for
enabling logging at runtime without modifying the application binary. The logging be-
havior can be controlled by editing a configuration file, without touching the application
binary. B-Fabric uses log4j to insert log statements into the code. In this way, it provides
a low-level, but always applicable method for application debugging. Besides, log4j is
designed so that log statements can remain in shipped code without incurring a heavy
performance cost. Both features mentioned above are essential especially for complex
distributed systems, such as B-Fabric.

OpenSSH - Connectivity. OpenSSH [9] is a free SSH tool, which encrypts all data
traffic to effectively eliminate eavesdropping, connection hijacking, and other attacks.
Besides, OpenSSH provides secure tunneling and several authentication methods, and
supports all SSH protocol versions. B-Fabric uses OpenSSH to securely transmit data
from the instrument PCs to the B-Fabric file archive server. Note that in principle any
data copy library can be used instead of OpenSSH, as long as it is Java library.

4 User Versus B-Fabric Workflows

Scientists performing experiments using analytical technologies run through a (man-
ual) user workflow. They enter physically the analytical laboratory with their samples
and/or extracts, prepare the instrument to run the measurements, copy the generated
results to a place where they can access them using analysis software, start the software
to analyze the results, run several analysis steps, and finally save all relevant results
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(i.e. the corresponding data files) on a server or a CD. Some of these workflow steps are
repeated several times depending on the results and the type of experiment.

A common workflow template ensures that all scientists take the same steps through
B-Fabric, enforcing a rigorous control over the flow of data. As an example, scientists
will need to annotate samples and files before getting access to the produced raw data
and before further analysis and publication of the data can take place. In this context
it is important to distinguish between user workflows and B-Fabric workflows. Both
types of workflows differ in multiple ways: A user workflow describes the actual steps
a scientist takes while he performs his research. A B-Fabric workflow on the other hand
specifies the steps that have to be taken by B-Fabric to support the scientist. Some steps,
e.g. the copying of data into the B-Fabric file archive, do not require user intervention,
while others, e.g. the annotation step, involve a user interaction.

Figure 2 illustrates the two different views on workflows. From the user point of
view, the workflow consists of the steps: 1) sample/extract preparation, 2) running the
experiment, 3) creating a workunit to store the experimental results, and 4) providing
scientific annotations for the workunit. From B-Fabric point of view, the workflow has
the following steps: 1) creating a workunit to store experimental results, 2a) providing
scientific annotations for the workunit and 2b) copying the experimental data to the data
storage, and 3) indexing all the data. As can be seen, the user interacts with B-Fabric
only in two steps: workunit creation and annotation input. According to this workflow,
the user is free to create workunits based on files of any type.

Sample
Preparation Experiment

User Workunit
Creation Annotation

Data
Storage

Optional
StepsIndexing

B-Fabric

Fig. 2. Example User vs. B-Fabric Workflow

5 Instrument Integration

Before an instrument can be integrated into the B-Fabric framework, the following
instrument-specific questions must be answered:

– What is the input and output of the instrument? For instance, in most cases, the
input is one extract, while the output is one or more raw data files together with
some log files which describe the generation of the raw data files.

– Where does the instrument writes its output? Is this place configurable? The infor-
mation about the location of the raw data files is essential for transparently reading
and importing the files into B-Fabric. For each instrument to be integrated into
B-Fabric, the corresponding location must be specified.

– Are there any instrument-specific annotations that should be managed by B-Fabric
(in addition to the generic sample and extract annotations)? Depending on the tech-
nology associated with an instrument, the set of meaningful annotations may vary.
These annotations are needed to better understand and investigate the research re-
sults, especially in comparison to other research results.
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– Can a B-Fabric data mart be used for the management of the data of the instrument
in order to exploit its analytic functionality for data analysis. If there exists such a
data mart, does it provides an interface to import data into mart? If not, the B-Fabric
custom mart needs to be extended to capture the instrument-specific annotations.

– Which workflows are affected by the instrument? There is at least one workflow
that applies to all instruments. It is the workunit creation workflow. Of course, this
workflow may vary from instrument to instrument. The instrument integrator has
not to specify only the corresponding B-Fabric workflow but also has to define the
interaction between B-Fabric and the user.

Technically, the integration of an instrument into the B-Fabric framework requires the
execution of the following tasks:

1. An OpenSSH server has to be installed and run on the instrument PC. OpenSSH
allows a secure transfer of experimental data between B-Fabric and the instrument
and analysis PCs.

2. A data provider must be implemented. The instrument-specific data provider com-
ponent tells B-Fabric from which location the experimental data has to be imported
into B-Fabric.

3. A data mart has to be determined where the experimental data generated with this
instrument shall be managed and analyzed in detail. In case there is no mart for that
instrument, the B-Fabric custom mart has to be extended appropriately.

4. One or more instrument-specific workflows have to be specified using the XML
notation of OSWorkflow. These workflows define the flow of control w.r.t. the gen-
eration and usage of data of that instrument.

In the following, we sketch how to integrate an instrument into the B-Fabric framework.
We use the Affymetrix instrument as example. Assume the OpenSSH server is running
the corresponding instrument computer. The following lines depict a part of the XML
file which implements the corresponding data provider:

<?xml version="1.0"?> <xconf xpath="/cocoon">
<component>
<!-- Data provider for Affymetrix instrument -->
<component-instance class="bfabric.dataprovider.impl.SshBasedDataProvider"

logger="bfabric.data-provider.affymetrixgenechip"
name="affymetrixgenechip">

<name>Affymetrix GeneChip System</name>
<research-area>Transcriptomics</research-area>
<data-mart>Resolver</data-mart>
<workflow>affymetrixgenechip</workflow>
<optional-resources>

<base-path>$dataprovider.affymetrixgenechip.base-path</base-path>
<include-pattern>.*\.CEL|.*\.cel</include-pattern>

</optional-resources>
</component-instance>
</component>
...

</xconf>

Note that the data provider is configured such that it knows which data mart is tar-
get for metadata digestion and which research area is associated with this instrument.
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Furthermore, the data provider defines a list of resource location names to choose from
when creating a workunit. Finally, the data provider knows which workflow is target for
the workunit creation.

Figure 3 shows a snapshot of the OSWorkflow designer tool which models the
workunit creation workflow for the Affymetrix instrument.The details of the workflow
is usually specified using the XML notation. For instance, since the copying is realized
by sending a JMS message to the import queue, the data copying step determines the
corresponding queue (import) and action (jms-import). This is done by setting the cor-
responding XML-tags of that step to the appropriate values. Due to space restrictions,
we however omit the presentation of the lengthy XML specification of a workflow.

Fig. 3. B-Fabric workflow for the Affymetrix workunit creation

Altogether, we may state that a new component can be plugged into B-Fabric by creat-
ing a few XML configuration files which provide the necessary information about the
component and the workflows it is involved in. After having integrated some instru-
ments into the framework this task get easier since the existing XML configuration files
can be copied and adapted to the specifics of the new instrument to be installed.

6 Conclusions and Outlook

B-Fabric provides the foundation for integrative biological research over multiple an-
alytical technologies, workflows, and users, by effectively storing all relevant analyt-
ical raw data and experimental parameter information in conjunction with the corre-
sponding biological and workflow annotation. B-Fabric also supports a new way for
research departments and technology centers to maximize their innovation, by making
all data accessible to the researchers and allowing integrated searches on this data. The
researchers benefit from the secure, long-term storage combined with easy access to and
download of the research results. Interpretability and reproducibility of research results
is facilitated by capturing all semantically related data together with annotations that
are conform to standards. The rigorous workflow-driven “one-time” annotation and the
transparent federated search leads to significant overall time savings for the scientists.

From the implementation of B-Fabric we learned some not really new but often ne-
glected important lessons: 1) As data generators such as instruments or applications are
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constantly in flux, the integration infrastructure must provide templates to quickly adapt
to changes. 2) Since data access and provisioning as well as authentification and access
control are difficult to add to existing systems, a data fabric approach with a global
namespace for all file-based data is essential. 3) A simple combined data browsing and
querying interface is the basis for successful usage of the data because life sciences
researchers are not used to formulate complex database queries. 4) A workflow-driven
approach that demands the entering of appropriate metadata and annotations from the
researcher is crucial since otherwise the generated huge raw data files will be of no use
for anybody else. 5) Data quality is a huge problem that requires advanced strategies.

Building on the modular architecture, future releases of B-Fabric will also provide
the integration platform for queries across projects, users, organisms, molecule species,
and analytical technologies. By these means, B-Fabric is the essential first step in
achieving quality-controlled and reproducible integration of biological research data
necessary for integrative research and systems biology. Modules to be implemented
will include technology-dependent scaling functions, which allow for estimations of
correlations between the different molecular, spatial and temporal data sets.
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Abstract. In the last decade, many projects have tried to deal with the 
integration of biological resources. Web portals have flourished online, each 
providing data from a public provider. Although these online resources are 
available with a set of manipulation tools, scientists, researchers, and students 
often have to shift from one resource to another to accomplish a particular task. 
Making a rich tool set available along with a variety of databases, data formats, 
and computational capabilities is a complex task. It requires building a versatile 
environment for data integration, data manipulation, and data storage. In this 
paper, we study the requirements and report the architectural design of a web 
application, code named SWAMI, which aims at integrating a rich tool set and a 
variety of biological databases. The suggested architecture is highly scalable in 
terms of adding databases and new manipulation tools. 

Keywords: Biology Workbench, Biological data integration, Biological tool 
integration. 

1   Introduction 

Modern molecular biology research is increasingly reliant upon the production and 
analysis of very large amounts of digital data (gene sequencing, microarrays etc.). The 
assembly and analysis of these data provides the basis for posing and verifying 
hypotheses on a very large scale. Data analyses typically require individual scientists 
to assemble enormous amounts of data locally and to integrate this data with data 
gathered from remote public or private providers. The aggregated data is then queried 
or analyzed using search or algorithmic tools. Often there is a significant time 
investment in collecting, organizing, and preparing the proper formats for algorithmic 
analysis. In fact, scientists may spend ~80% of their time in assembling data (e.g. data 
manipulation, extracting subset of data from external files, reformatting data, moving 
data, etc.) and preparing it for analysis [1]. 

It would be of great benefit to provide researchers with tools that can speed this 
process. There are three stages where help is needed. First, the investigator must be 
able to manage data created locally. This means producing data of a known format. 
This step is unique to individual laboratories, and must be managed to some extent 
within that context. Second, the data must be compared with data from other sources. 
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In general, public biological resources are freely accessible, and provide tools for 
navigation, querying, and searching through websites. For instance, EMBL, DDBJ, 
and NCBI provide the tools SRS, getentry and Entrez, respectively, for locating 
required sequence data. In addition to data resources, many sites provide online tools 
for data analysis as well. However, when local and remote data must be aggregated 
for analysis, online tools at a single site are seldom adequate. Moreover, extracting, 
integrating, and cataloging data from several sources requires unification of 
independent heterogeneous data sources, subsequent selection of the needed sources, 
and the transformation of the content to fit with users’ needs and perspectives. This 
includes understanding data format compatibilities and data conversion possibilities. 
All of these issues impede scientific data analysis (c.f. [2]).  Since discovery (and not 
data manipulation) is the ultimate goal of end users, the ability to aggregate data in 
the presence of appropriate analytical tools would be extremely helpful, particularly 
when manipulation of data formats is required prior to analysis.  

While the problem is fairly well defined, and the requirements are known or can be 
gathered, no environment that addresses these three needs in a robust and scalable 
way is currently available. The SWAMI project was undertaken to create such an 
environment. SWAMI is an outgrowth of the Biology Workbench [3] (BW) which 
was the first web application to provide an integrated data management and analysis 
environment. Our goal is to re-engineer the BW while preserving its spirit, so as to 
reduce user overhead for collecting, storing, manipulating, and analyzing virtually any 
biological data using any specified tool, in a way could, in time, be scaled meet the 
needs of the entire community.  

The paper is organized as follows: Section 2 describes the prior art in Biological 
data and tool integration, Section 3 studies the requirements gathered from the 
community, Section 4 describes how these requirements and prior art can be 
assembled into a versatile web application, and Section 5 summarizes these 
experiences, and forecasts future directions for SWAMI.  

2   Background and Related Works 

Despite much effort, available solutions for meaningful integration, transformation, 
and manipulation of biological data have not achieved the full functionality required 
by domain researchers. Indeed, biological data are diverse and generated 
independently in many “omics” subfields. Public data sources rely upon existing data 
management technologies and involve multiple transformations between different 
levels of data granularity and reconcile the difference in data structure and format. 
The complex biological data space is matched by an equally complex set of 
algorithmic tools used in data analysis. Tasks such as sequence assembly, similarity 
searches, structure visualization and phylogenetic inference require a variety of 
analytical bioinformatics applications.  

2.1   Integrating Biological Data  

Many efforts have been made to provide solutions for biological data integration; the 
basic approaches reported are as navigational, warehousing, and mediator based: 
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Navigational: The most widely used data integration tool in life sciences relies on 
flat file storage. Data are extracted from public data sources and assembled into one 
or more flat files. These flat file(s) are indexed and/or cross-referenced according to 
table and/or specific field locations. This kind of solution has been implemented in 
public resources, including SRS [4, 5], BioNavigator [6], Entrez [7], SeqHound [8], 
Lucegene [9], and the BW [3, 10]. Although, this solution is simple to maintain and 
easy to use, it does not provide the rich queries and query optimization benefits of 
relational modeling. 

Warehousing (data translation) is accomplished by materializing data from 
multiple resources into a local warehouse and executing all queries on the warehoused 
data. Data warehousing requires the use of Extraction Transformation and Load 
(ETL) tools to load data, and map it to a materialized global schema. The overhead of 
creating the ETL tools to import data into a common schema is offset by efficient 
query execution and query optimization, and grater control over data 
consistency/redundancy. Local storage of the integrated data allows local curation: 
users can add annotations in tables created for this purpose. A more difficult problem 
in warehousing solutions is scalability: if many frequently-updated databases are to be 
warehoused, the combined overhead of loading and re-indexing the databases can be 
problematic. Implementations in this category include GUS [11], Atlas [12], BioSQL 
[13], BioMart [14], BioWarehouse [15], and Chado[16]. 

Federated/mediator based approaches (query translation) leave data in their 
native schema, typically in their home production environment. At runtime, a 
mediator translates user queries, optimizes them, and maps them to available remote 
or local RDBMS. The mediated schema is a virtual one: data are accessed in their 
original physical schema. The overhead in this approach comes from constructing the 
tools to register the remote data resources, and to map and optimize queries across 
them. In exchange for this investment, all responsibility for data management, 
curation, and updating is left to the data provider. This solution has specific 
drawbacks, including lack of control of data, lack of permission to directly query a 
remote resource, and vulnerability to sudden loss of service due to physical or logical 
changes at the provider site. Implementations in this category include Tambis [17], 
K2/Kleiski [11], and DiscoveryLink [18]. 

2.2   Integrating Biological Tools 

Several attempts have also been made to create integrated software environments for 
staging and analyzing biological data. Some examples of integrated software 
environments are: 

The Biology Workbench [3]: BW was the first web application to present users 
with an integrated environment for tools and data. The BW provides web-based 
interfaces to search 33 databases, store the search results, and route stored sequences 
to 66 sequence analysis/ presentation tools [3]. This approach remains the most 
common for heterogeneous biological databases [19].  

The Pasteur Institute Software Environment (PISE) [20] provides a web 
application framework that is highly scalable, where each analytical tool is described 
by a PISE-XML document. Using the PISE DTD, the document provides all the 
information required to spawn a static web page, together with the information to 
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assemble a PERL/CGI command line to run the program. Currently, PISE supports 
200+ tools, freely available through a web application at the Pasteur Institute, 
however, it provides no data resources or data storage area for users. 

NC Bioportal Project: The NC Bioportal [21] was created as an extensible 
bioinformatics portal. Bioportal links static PISE interfaces [20] to grid computing 
resources. Its design combines rapid, scalable tool deployment with the ability to map 
jobs over distributed computing resources. Access to integrated data resources is 
currently provided via web application to North Carolina students and researchers 
only. 

MIGenAS: (Max Planck Integrated Gene Analysis System): MiGenAS [22] is a 
web application that integrates bioinformatics software tools with locally generated 
microbial sequence data. Its capabilities cover the complete processing chain for 
microbial genome sequencing. The MiGenAS portal is available only to researchers 
within the Max Planck Institute, and their colleagues. We are not aware of any 
planned public release of the underlying software. 

Anabench (Biology Workbench): AnaBench [23] is a Web/CORBA-based 
workbench environment integrating bioinformatics sequence analysis software in a 
flexible manner. This web application provides tool access, including the EMBOSS 
suite, and a workflow pipelining system [24] but does not provide access to data 
resources from external public providers. Like the BW, access and user data storage is 
provided free of charge to registered users. 

Thick Client Solutions: Smart Client software (packages that must be downloaded 
and installed locally) represents another design approach. These tools offer the ability 
to construct workflows linking tools in sequence, and pipelining data through the 
workflow. Packages that are currently available include BioSteer [25], Pegasys [26], 
Kepler [27], Taverna [28] and Gemstone [29]. While these tools offer significant 
promise as an alternative to portals, the user must have the ability and the 
administrative privileges to install the client locally. 

3   Requirements 

The SWAMI project was created to extend the functionality of the BW by providing 
1) a dynamic set of data resources, 2) improved data search tools, 3) a dynamic set of 
analytical tools with static and interactive interfaces, 4) improved data/task 
management capabilities so data can be annotated, modified, and assembled by the 
users, and 5) provisions for growth of the resource and expansion of its services.  

3.1   Non Functional Requirements 

The first step in gathering user requirements for the SWAMI project was to examine 
the current user population of the BW, which will be the initial population served by 
SWAMI. User surveys revealed that BW is essentially serving educational 
community. Through interviews with instructors, it became clear that non-functional 
requirements of the educational community include minute by minute reliability 
(uptime), low latency, and stability of content. In contrast to the education 
community, researchers rely less on minute by minute access, and slow responses to 
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larger data submissions or more computationally intensive tasks are tolerated. Based 
on the assumption that both researchers and educators can benefit from new features 
and capabilities deployed in the most stable and reliable environment possible,  
we have elected to tailor SWAMI development and architecture choices to give 
priority to requirements for stability and predictability. This means new capabilities  
will be deployed more slowly, but with more stability. Additional non-functional 
requirements were gathered, and are posted at http://www.ngbw.org. 

3.2   Functional Requirements 

Integration of biological databases: SWAMI should integrate a large set of publicly 
available data sources. This data will be stored in a public area that is accessible by all 
users for query and search. The initial list of data sources to be supported (based on 
initial user requests) includes most Genbank DBs, Uniprot, and PDB. Further addition 
of DBs will be made based on user feedback, so the data model must be extensible to 
include new data types. Users can import data of any format and data type known to 
the application, and the application must provide format checking for any uploaded 
data. Uploaded data, user experiments, and user results will be stored in a dedicated 
private user DB, which will store data created, metadata stored, organized, and 
annotated by the individual users.  

Flexible management of analysis tools: Both public and user data resources 
should be integrated with a wide variety of analytical and modeling tools, with a 
point-and-click interface, and with no file format compatibility problems. A main 
challenge is to permit facile addition of new manipulation tools (open source tools) 
and to provide easy and user-friendly access. The application should also allow data 
flow between compatible programs with essentially no user effort. Consequently, the 
application should enable pipelining data between analytical tasks and routing data 
from one tool to the next. The implementation should allow users to modify, save, and 
download results in printable/editable/publishable formats. 

High-end visualization tools: SWAMI should provide enhanced visualization 
capabilities, including interactive tools for visualizing molecular structures and 
phylogenetic trees. Users should be able to interactively import, construct, modify, 
and save structure models and tree models in real time. The tools provided must be 
lightweight and run effectively from the server side without requiring software 
downloads or plug-in installations. We will not develop such tools, but rather 
integrate the numerous existing tools using applet/servlet technologies. 

User configurable interface: The applications should provide role-based user 
applications. User interfaces should differ depending on role, for example, 
teacher/student or beginner/advanced. Users should ultimately be given the capability 
to create their own, “custom” user interfaces without being constrained by the 
preconceptions of the design team. A “smart” or “thick” client interface that increases 
the power and functionality of the toolkit, and permits local storage will be added to a 
subsequent release for users with administrative control of their computers. This will 
help them managing locally their data and interact with the system for data search and 
tools usage provided sufficiently robust compute resources.  
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4   System Description 

The main architectural challenge is to create a reliable, stable, well defined system 
while at the same time enabling the extensibility and scalability both of data resources 
and tools.  

4.1   Core Architecture Design 

The SWAMI architecture design evolved in the context of user requirements and 
following best practices in terms of separation of concerns among components.  
 

 

Fig. 1. Schematic view of the system architecture 
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System capabilities are created as a set of independent services. This makes it easier 
to think of functionality of each component rather than of the system as whole. 
Consequently, the separation of functionalities means that addition of a new data type, 
database, or tool requires as little change as possible in other components.  

SWAMI architecture features three modules, which are coordinated through a 
fourth module, an “intelligent” Broker that contains all the specific information 
needed by individual components. The Broker contains this information in a logical 
registry that describes properties of data types, data sources, and tools supported by 
the application. A schematic representation of the architecture designed to fulfill this 
design goal is shown in Figure 1. 

The architecture design includes a PRESENTATION LAYER that receives user 
requests, passes them to the CORE WORKBENCH APPLICATION, and returns 
application results to the user by the same route. The PRESENTATION LAYER has 
a published Application Programmer Interface (API) that provides flexible access to 
SWAMI. Browser access will be supported initially, and access by thick clients (user-
downloaded software) or mobile clients (specialty browsers with smaller screens and 
lower resource systems) will be enabled at a later date.  

The CORE APPLICATION consists of four major components: a User module, a 
Broker module, a Data module and a Tool module. These are described in detail 
below. As noted above, the CORE APPLICATION architecture achieves scalability 
by storing all specific information about particular data types, tools, etc, in a Registry 
within the Broker module. Thus, the User, Data, and Tool modules contain 
executive functions, and contact the Broker module to receive specific instructions 
on handling and executing a user request. New tools and data types can be added by 
providing definitions within the Registry, and adding physical descriptions of resource 
location in configuration files that specify the names of servers.  

4.1.1   User Module  
As noted above, the User module receives data and instructions from the 
PRESENTATION LAYER. This input is directed through the 
User_Common_Service (Process 1), which can allow user input to: manage user data 
via User_Data_Management (Process 2), launches Analytical or Search Tasks via 
Task_Management or Query_Management (Processes 3a and 3b).  

User_Data_Management has the following user functions: (i) refers uploaded data to 
Data_Format_Service (Process 4) to check for data formatting errors. (ii) routes format-
checked data to Task_Management (Process 6) for use as input for analysis. (iii) routes 
format-checked data/user settings to the USER DATABASE (an RDBMS that sustains 
all user data) for storage (Process 5). (iv) accesses User_Configurations, 
User_Monitoring, and User_Logging modules (Process 16), which modify user settings. 

Task_Management and Query_Management serve parallel functions in managing 
user tasks and query requests, respectively. Note that a Query is, from a logical point 
of view, a specific type of Task. We find it convenient to treat Tasks and Queries as 
separate entities in our architecture, but emphasize their logical relationship by the 
symmetrical representation of these entities in Figure 1. To further underscore this 
relationship, analogous processes in Task or Data modules are assigned the same 
number, but are given an alphabetical sub-qualifier. 

Task_Management and Query_Management have the following functions: (i) 
interrogate the Registry in Broker to identify the resources available and the formats 
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required by these resources (Process 7). (ii) combine information from the Registry 
with instructions from Task_Management and Query_Management and pass it to an 
executive service: Task_Service or Data_Service (Process 8).  

4.1.2   Broker Module 
The Broker module interacts with User, Tool, and Data modules via APIs. The 
Broker module contains a Registry that provides logical information about each tool 
and data resource known to the application.  

The Registry is the “brain” of the application; it contains all of the logical 
information about the application and data sets/types known. The Registry defines 
semantics using ontological concepts and relationships (axioms). Information 
included in the Registry is gathered using an ontology language (OWL [30]). By 
using an ontology language, and adding a reasoning engine (Pellet [31]) the Broker 
can respond more intelligently to requests from user queries or task requests.   

The information about tools in the Registry includes tool functions, tool names, 
input parameters required, output parameters delivered, and results presentation 
formats (.pdf, .ps, .txt). The Registry also contains all information known to the 
application about data resources. This includes Biotypes (which describe the 
biological nature of the entity: i.e. protein, DNA, lipid, etc); Data Types (which 
describe whether the data is a sequence, structure, genome, etc.), Data Format (which 
describes the presentation format: e.g. if a sequence is in fasta, asn.1, etc.), and Data 
Sets (which describes where the data came from EBI, GenBank, PDB, etc.).  

The isolation of all logical information about application resources, new tools, data 
resources, and data types in the Registry means new Tools and Data types can be 
added by editing the registry without extensive modification of other modules. 

4.1.3   Tool and Data Modules 
The Tool and Data modules are conceptually identical. Both modules interact with 
the Broker and User modules, but they do not interact directly with each other. The 
principal function of the Tool/Data modules is to receive user requests as input 
combined with instructions from the Broker (Processes 8 and 9), decompose those 
requests into atomic executable jobs or queries, and return those results to the User 
module with instructions obtained from the Broker.  

Task/Data_Service receives Task/Query information from 
Task/Query_Management (Process 8). If the Task is a workflow, for example, 
Task_Service decomposes the Task into a sequence of Jobs, and manages their 
execution. This is accomplished by submitting the first Job for execution, then 
passing the output of the first Job as input to the second Job, and so forth. Similarly, 
Data_Service assimilates queries and composes individual queries, and passes them to 
the executive service (Process 11). 

Job/Query_Execution_Service (Process 11) receives Jobs/Queries from 
Task/Query_Preparation_Service and prepares command line arguments or 
formulates SQL queries. In both modules, a Broker (Process 12) receives command 
line arguments for jobs, and locates the specific hardware, the specific tool 
implementation (executable), and arranges scheduling used to execute the job. 
Tool_Instance_Broker contains the physical addresses of available hardware, 
knowledge of binary locations on those machines, information on available web 
services, etc. Similarly, Data_Resource_Broker contains the physical addresses of 
available databases, flat file locations, information on available web services, etc. 



56 R. Rifaieh et al. 

4.2   Tools and DB Integration Design 

The SWAMI architecture can access and manage new tools and data sources once 
they are registered within the Broker. Registration occurs at both logical and physical 
levels. Logical integration occurs in Registry, where relevant logical information for 
each new tool or data type is stored. For each new tool, the accepted data formats, 
parameters required for the analysis, command line flags to modify the binary 
function, etc. must be registered. For new database resources, the data sets, data types, 
biotypes and any other parameters necessary to specify the types of information 
located in the database must be registered. Physical integration occurs within the Tool 
and Data modules, in configuration files. 

4.2.1   Scalable Data Integration 
There are two ways to proceed for handling data integration, building an ad-hoc data 
integration solution or using existing solutions (Section 2). We explored these two 
alternatives. The first is a simple, incremental improvement on the current WB system 
(code named CherryPicker). Cherry Picker parses flat file DB into records and 
tokenizes them into DB lookup tables.  It allows arbitrary fields to be identified and 
indexed (as character or numeric), facilitating more targeted searches. Our long term 
goal is to integrate the databases by semantically matching fields in different 
databases. We tested existing biological warehousing databases (Atlas [12], GUS 
[11], and Biowarehouse [15]), which come with embedded ETL tools used to 
populate DB schema with data and record coming from available resources. 

To permit users to interact with the DB using domain language (e.g. sequences, 
genes, proteins) biological data types (instead of string, integer, float, etc.) will be 
used in the query formulation [5]. In this respect, SWAMI ontology serves as a global 
schema for all DB known to the SWAMI application. It includes all the concepts and 
terms to be queried by the user and their representations in the physical storage.  
The association between the ontology and the data storage schema is done through the 
registration process. A similar work on using ontology concepts for registering and 
querying multiple DB schemas is being carried out in [32].  

4.2.2   Scalable Tool Integration 
To achieve tool scalability, we must address the problem of how to create a new 
interface and register each tool. This can be a significant problem if more than a 
handful of tools are to be implemented. We chose to take advantage of tool XML 
documents available through PISE [20] to solve this problem. We can implement all 
the 200+ tools of the PISE by using PISE-XML files and (i) extracting the XML 
interface information, and creating a .jsp page in the PRESENTATION LAYER. (ii) 
extracting all information about tool parameters and writing this information to the 
Registry in Broker. (iii) reading PISE XML files and writing a SWAMI-XML 
document. All of the PISE XML documents can be converted by a single mapping 
step, making this process highly scalable. For future tools, a single XML file will be 
required in order to integrate the new tool into the system. 

In addition, the user requirement for specific tools to view and modify protein 
structure and phylogenetic trees can easily be met by taking advantage of applet and 
servlet technologies. We have already implemented the Sirius protein structure viewer 
[33] in this way. We plan to incorporate other interactive tools based on user requests. 
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5   Conclusion 

Advances in computational and biological methods during the last decade have 
remarkably changed the scale of biomedical and genomic research. Current research 
on biomedicine and genomics is characterized by immense volume of data, 
accompanied by a tremendous increase in the number of databases and tools. This 
wealth of information and data presents a major challenge for users. Although, many 
of the available resources are public and accessible, users are constrained by the 
number of analysis tools provided by individual site. A cross-sites manipulation is 
only available through user tedious management (conversion format, saving 
intermediate data, etc.). The goal of this work is to bring together contributions from 
publicly available resources and analysis tools to the end user. This New Generation 
of Biology Workbench (SWAMI) is designed to tackle the issues of growing need of 
data access, data storage, and availability of computational resources. The design 
proposed emphasizes modularity and separation of functionalities. The goal of this 
architecture design is to minimize dependence of individual components on other 
components, allowing versatility in changing and adapting the software to new 
functionalities, just as the requirements for the SWAMI dictate. Our original design 
guarantees to incrementally add more resources (databases and tools) on demand of 
the users. The SWAMI architecture manages new tools and data sources once they are 
registered within the application through logical and physical registration process. 
Future work will include incremental implementation of the system; a first public 
release is expected shortly; please visit http://www.ngbw.org for more details. 
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Abstract. In silico experiments have hitherto required ad hoc collec-
tions of scripts and programs to process and visualise biological data,
consuming substantial amounts of time and effort to build, and lead-
ing to tools that are difficult to use, are architecturally fragile and scale
poorly. With examples of the systems applied to real biological prob-
lems, we describe two complimentary software frameworks that address
this problem in a principled manner; myGrid/Taverna, a workflow de-
sign and enactment environment enabling coherent experiments to be
built, and UTOPIA, a flexible visualisation system to aid in examining
experimental results.

Keywords: Workflows, visualisation, web services, in silico
experimentation.

1 Introduction

The life science community has relied on information technology to store and
process data since at least the late 70s. Advances in laboratory techniques and
technologies have led to the exponential growth of machine-readable biological
data, the management and analysis of which was only made possible with the
increase of raw compute power, network performance and digital storage capac-
ity. The in silico life science community is large and encompasses a broad area of
research, at one extreme examining the chemical properties of small molecules,
and at the other, modeling and understanding how complete biological systems
function. Increasingly, the community has moved from the isolated study of in-
dividual molecules and data objects to studying whole genomes, proteomes and
metabolomes.

In many cases in silico experimentation involves chaining together a series
of analysis and data resources from a number of different locations. Tools ini-
tially designed to work in isolation on comparatively small localised data sets
� Corresponding author.
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are now being required to work together in a much broader distributed environ-
ment. With the subtle and complex concepts involved in biology, this integration
presents significant technological challenges. Improvised assemblies of scripts and
programs working on fluctuating file formats were once a viable means of per-
forming these analyses, however such assemblies require substantial effort to
develop and maintain, and lack the robustness, reproducability and auditability
required by today’s scientific community. Consequently, alternatives are needed
that are able to deal with both the distributed nature of tools and resources and
the heterogeneity of data and data formats.

In the post-genomic era, in silico and in vitro experiments are strongly inter-
linked. Increasingly, biological research involves the generation and analysis of
large amounts of complex data using high throughput techniques which require
both wet laboratory and dry computational techniques. To be successful, both
types of experiment must adhere to the classical scientific experimental process
with all its associated rigour. This experimental ‘life-cycle’ is essentially the same
for both in vitro and in silico research: an experiment is designed to support
a particular hypothesis; the experiment is executed; the results are recorded
and analysed; and the findings are published to the scientific community for
discussion, verification and for the generation of new hypotheses.

In this paper we describe the integration of two complimentary systems,
myGrid[11] and UTOPIA[12], designed to support a more streamlined and rig-
orous in silico experimentation process. myGrid is a collection of components
for building, enacting and managing workflow experiments in the life sciences.
UTOPIA is a suite of interactive visualisation and analysis tools for examin-
ing and analysing the results of such experiments. Each system targets different
problems from the life science domain: myGrid enables the automated integra-
tion of distributed resources and UTOPIA allows scientists to visualise and in-
teract with experimental results. The functionality of one system compliments
the other, providing the scientist with a platform that can support the whole in
silico experiment life-cycle.

In the following sections we describe the individual systems’ functionality
before describing their integration and application.

2 myGrid

myGrid (http://www.mygrid.org.uk/) is a collection of loosely coupled compo-
nents built on the technologies of web services, workflows and the semantic web.
The design philosophy is one of openness and ease of extension. Consequently
the architecture is an extensible set of components that can be adopted indepen-
dently but which are designed to work together in a distributed service-oriented
environment.

At the heart of myGrid is the Taverna workbench workflow environment. Tav-
erna provides a framework for designing, executing and sharing workflow experi-
ments using distributed web services. At present, there are over 3000 distributed
services that Taverna can access from across the world, predominantly owned
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by third parties. These include resources from major service providers, such as
the NCBI, DDBJ and the EBI, as well as specialist ‘boutique’ service providers
offering resources and analysis tools that they themselves have developed for
particular fields of research which they wish to share with the community. The
reason that Taverna can access so many resources is that it does not impose any
data models upon the service providers: for a web service to be integrated into
Taverna, all that is required is the URL of the WSDL file. In this way, myGrid
can maximise the number and variety of resources accessible to scientists, and
minimise the complexity for scientists adding their own services. Taverna can also
access other types of service, for example, local java services, Biomart databases,
bespoke beanshell scripts and also Biomoby services [7], further maximising cov-
erage of the in silico biology domain.

As well as the ability to access distributed resources, Taverna allows the au-
tomation of experiments. The workflow itself defines how and when during an
experiment a service should be invoked and the workflow can iterate over mul-
tiple data objects, enabling repetitive tasks to proceed without the scientist’s
intervention. By combining services together in Taverna workflows, scientists
can automatically access and analyse large amounts of data from a large num-
ber of distributed resources from their own desktops. Accessing these resources
at their source means that individual scientists do not require local supercom-
puting power and do not have the overhead associated with the maintenance of
data resources.

2.1 Service Discovery

Taverna addresses the problem of accessing and interoperating between dis-
tributed services, but their distribution creates the requirement for manageable
service discovery. The Feta Semantic Discovery component [9] enables services
to be discovered by the biological functions they perform and the descriptions
of the resources they can consume and produce.

Scientists generally know the methods or analyses they wish to use in an
experiment, but they do not necessarily know what individual services are called,
or where those services might be hosted. In order to address this problem services
need to be annotated with a common set of terms that describe the various
attributes necessary for their discovery. These will include, for instance, their
input, output and biological task. These descriptions are delivered by annotating
services with terms from the myGrid ontology, over which Feta can browse and
query.

2.2 The myGrid Ontology

The myGrid ontology describes the biological in silico research domain and the
dimensions with which a service can be characterised from the perspective of
the scientist [15,14]. Consequently the ontology is logically separated into two
distinct components: the service ontology and the domain ontology. The domain
ontology describes the types of algorithms and data resources used in silico,
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and the types of data that may be derived from, or used by, these resources.
It effectively acts as an annotation vocabulary including descriptions of core
bioinformatics data types and their relationships to one another. The service
ontology describes the physical and operational features of web services, for
example, where they are located, how many inputs and outputs they have and
the type of service they are.

The myGrid ontology is written in OWL, the Web Ontology Language [5].
Using a formal description logic language means that we can support service dis-
covery mediated both by scientists browsing for a service and computational ser-
vice discovery using OWL-based reasoning, for example, when detecting seman-
tic mismatches (incompatibilities) between services in workflows [3] and when
automatically finding intermediaries to connect two incompatible services [6].

The Feta semantic discovery component of myGrid is essential for the integra-
tion of myGrid and UTOPIA. The provision of semantic descriptions of services
also implicitly provides semantic descriptions of any data objects consumed or
produced by the workflow. UTOPIA can exploit these descriptions to determine
the types of data it is being presented with.

myGrid has been used in many areas of biological research, including geno-
type/phenotype correlations, functional genomics, systems biology, proteomics,
microarray analyses and data integration. To demonstrate the added value of
integrating myGrid and UTOPIA, we will use an example of previous research
using myGrid, a study into the genetics of Graves Disease [8].

2.3 A myGrid Use-Case

Graves Disease is an autoimmune disease that causes hyperthyroidism. A project
using myGrid workflows investigated the complex genetic basis of the disease by
identifying and characterising genes located in regions of the human chromo-
some that showed linkage to Graves Disease. The experiment involved analysing
microarray data to determine genes differentially expressed in Graves Disease
patients and healthy controls, and then characterising these genes (and any
proteins encoded by them) in an annotation pipeline. Gathering and examin-
ing all available information about potential candidates allowed researchers to
determine which genes were the most likely candidates for further laboratory
investigation. The outcome of the research was the identification of the gene I
kappa B-epsilon as being involved in Graves Disease.

In this paper, we concentrate on the annotation pipeline workflow from the
Graves Disease experiment. This workflow begins with the results of the mi-
croarray analysis with an Affymetrix probeset identifier and extracts information
about genes encoded in this region. For each gene, the objective is to extract
evidence from other data sources to potentially support it as a good candidate
for disease involvement. The workflow (figure 1) was designed for the Graves
Disease experiment, but it is equally applicable to similar candidate gene stud-
ies. It collects information on Single Nucleotide Polymorphisms in coding and
non-coding regions, protein products, protein structure and functional features,
metabolic pathways and Gene Ontology terms.
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3 UTOPIA

Having designed and executed an experiment using Taverna, the UTOPIA sys-
tem (http://utopia.cs.manchester.ac.uk/) addresses the next stage in the scien-
tific cycle – that of analysis and interpretation. The emphasis here is on providing
the scientist with intuitive ways of viewing their results in a variety of different
forms without the need to write extra code or perform unnecessary tasks to
convert between file formats or move between views.

Though the design of the initial in silico experiment benefits from access to the
widest possible variety of tools and algorithms, the visualisation and analysis of
data typically revolves around a comparatively small set of representations such
as molecular structure, protein or genetic sequence, graph-based representations
and various statistical and multi-dimensional data plots. Tools for visualising
these effectively, however, are difficult to build well. UTOPIA provides a small set
of high-quality and intuitive display tools, imbued with well-founded interaction
metaphors, and made seamlessly interoperable and able to access a large number
of data formats via an underlying semantic model shared with Taverna.

3.1 The Visualisation Tools

The UTOPIA suite currently has three released front-end applications: CIN-
EMA is a fully-featured multiple sequence alignment tool, supporting many of
the common desktop direction manipulation interaction metaphors such as ‘drag-
and-drop’ and ‘cut-and-paste’; Ambrosia[13] is a 3D structure viewer, exploiting
modern Graphical Processing Unit techniques to accelerate high quality render-
ing of very large molecular models in real time; and Find-O-Matic provides an
iTunes-like interface for discovering services and data objects. Examples of the
tools in operation are shown in figure 3. All these tools share data in real-time
via the underlying model described in the following section and are able to vi-
sually annotate the objects they display with biological features generated from
services and workflows accessed via Feta and Taverna.

3.2 The Data Model

At the core of the UTOPIA system is a data model designed to be rich enough
to capture the semantics of the data to be analysed in such a way that it can be
exchanged between applications, and at the same time sufficiently light-weight
such that it can be interrogated in real time to extract the data required by the
interactive visualisation tools [10]. To achieve this balance between richness and
efficiency – and also for conceptual elegance – the model is split in to a number
of orthogonal spaces.

First, a distinction is made between structure and annotation: concepts that
are accepted as ‘fundamental facts’ within a domain, and concepts that annotate
or enrich the knowledge of the structure in some way but are in themselves either
‘received wisdom’, fuzzy, or refer to a process or collection of structural concepts.
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Unlike in the physical and mathematical sciences where discoveries are axiom
based, very few of the concepts in the biological domain can be thought of as
absolute truths: beyond such things as atoms, bonds, residues and sequences the
majority of biological features contain degrees of uncertainty or ambiguity that
must be somehow represented within our model in order that it can be rendered
as a visual object. UTOPIA’s structure space is therefore quite small, and
consists of four types of node: bonds, atoms, residues and sequences. All other
concepts are mapped as annotations that project onto this structure space, and
comprise annotation space. Each annotation may map to a single node in
structure space, or to a set of nodes. An annotation may also have associated
provenance. Optionally, a set of annotations may have an ontological structure
projected onto it from semantic space to give it meaning in a particular do-
main or context and so that annotations can be classified and grouped in a
hierarchy if appropriate. Finally, variant space represents uncertainty, conflict,
and alternatives within a data set. A variant node maps onto a set of structural
nodes that all maintain to represent the same data, and provides a mechanism
for making any identifiable ambiguity or conflict explicit in the model.

What may initially appear as an overly philosophical way of storing data in
fact yields a simple universal model that can represent actual data, uncertainty,
conflicts and ambiguities, and be annotated in an arbitrary way using extensible
ontological structures. Certain areas of the life sciences – for example, sequence
or structure analysis – will heavily populate the structural space, with some
annotations and semantics. Other areas – such as systems biology which deals
in ‘higher level’ biological concepts – will concentrate on generating hierarchies
and networks of annotations. Ambiguity and conflict exist in most areas: the
‘same’ protein from UniProt and PDB may have differing residues or atoms; the
signalling network representing what is nominally the ‘same’ organism may have
apparently different metabolites and reactions depending on its source.

The separation of these spaces allows their implementation to be tailored
for their most common use in visualisation: a certain amount of ‘heavyweight’
computational reasoning may be required to infer that an Enzyme is-a-kind-of
Protein so that it can be viewed in a sequence viewing tool; however the data
structures and algorithms to support this must not interfere with the need to
rapidly extract 10s of 1000s of annotations that form a systems biology graph,
or the 100,000 or so atoms 30 times a second in order to be able to render a
ribosomal complex as an interactive 3D structure.

This underlying model allows UTOPIA to gather and integrate data from a
wide variety of heterogeneous sources and to generate a canonical internal rep-
resentation that can be visualised by any of the front-end tools. Tools negotiate
with the model using terms from the semantic space, e.g. ‘can render sequences
of residues with regional annotations’, ‘can show a fingerprint motif’ or ‘can
display a structure of atoms with regional annotations’, and thus do not have to
be aware of file formats or the means of accessing remote sources of data. The
richness of the model has two additional important features:
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• Multiple UTOPIA tools are inherently aware that they are viewing the same
biological concept, albeit potentially in radically different forms (e.g. as a
residue sequence, as a molecular structure, and as a frequency plot). Thus
modifications made to the data in real time by one tool and injected in to
the underlying model are immediately reflected in any other.

• Biological concepts are exposed as ‘first class citizens’ in the interface itself,
thus the tools are aware that the user has selected ‘a sequence’, ‘an alignment
of sequences’, ‘a signaling pathway’, a ‘cell compartment’ and so on. This is
especially important in terms of UTOPIA’s integration with myGrid, and is
explained in more detail in section 4.

3.3 Access to Remote Resources

UTOPIA provides tools for retrieval, visualisation and interactive manipulation
of biological data; it does not of itself provide any algorithms or mechanisms for
performing computational analysis of the data it manages: all such features are
accessed via third party software. Plugin components called conduits connect
UTOPIA to other sources of data and computation such as scripts, executable
programs, web services and workflows. Terms from the myGrid ontology are used
to annotate these, allowing UTOPIA to expose the functionality in appropriate
parts of its tools’ interfaces and to inject concepts into its model from the input
and output formats used by the 3rd party software.

4 The Integrated System

UTOPIA and myGrid support complimentary aspects of the in silico experi-
mentation process. The strength of myGrid lies in its ability to discover services

Fig. 2. Combined architecture
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and to compose and enact workflows in order to generate auditable results.
UTOPIA provides a flexible means of visually analysing such results. Their com-
bined architecture is shown in Figure 2. Using the ontology that drives its seman-
tic service discovery to populate UTOPIA’s semantic space provides a coherent
means of integration between the two systems, giving coverage of much of the in
silico experimentation cycle. Feta provides UTOPIA with a means of discovering
services by their semantic tags, and is exposed primarily via the Find-O-Matic
tool. Workflows designed using Taverna’s graphical interface, once semantically
annotated, become available like any other service from within UTOPIA, and
are exposed within the visualisation tools by comparing their semantic descrip-
tion to the semantics of the currently selected objects in UTOPIA’s graphical
interfaces. For example, selecting a single protein in the CINEMA tool gener-
ates a menu of services that operate on a protein sequence, such as BLAST[1];
selecting a set of proteins modifies this menu to include services that require mul-
tiple proteins as their inputs, such as the Clustal[4] multiple-sequence alignment
algorithm.

Figure 3 was generated by executing the annotation pipeline workflow from
the Graves disease study and displaying the results in UTOPIA. The display
shows the three dimensional structure of a protein (in this case, Heat shock
70 kDa protein 1, part of test data not from the original study) with the lo-
cations of SNPs in the coding region identified in black. Functional domains
of the protein are displayed along with its sequence above the structure, and
the insert describes the Gene Ontology[2] molecular function terms associated
with this protein. Combining functional and structural data in this way allows
scientists to assess the validity of a protein being a candidate for disease asso-
ciation. UTOPIA enables scientists to see an integrated display of all this data
simultaneously.

5 Conclusions and Future Work

In the original Graves Disease work, experimental results were gathered but
not integrated, so for interpretation each result was analysed separately. Whilst
this was effective, it was also time-consuming and inefficient. The addition of the
UTOPIA tools to the experimental process addressed these shortcomings. Due to
the extensible architectures and common semantic frameworks of both Taverna
and UTOPIA, we were able to combine their complimentary functionalities. The
outcome is a method for performing comprehensive analysis and visualization of
data from workflow experiments.

At the time of writing, the Taverna workbench has been downloaded over
30,000 times, and development continues as part of the UK’s Open Middle-
ware Infrastructure Institute (http://www.omii.ac.uk). UTOPIA’s development
continues under the auspices of the EMBRACE (http://www.embracegrid.info)
Network of Excellence.



myGrid and UTOPIA: An Integrated Approach 69

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Mol. Biol. 215, 403–410 (1990)

2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. the
gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)

3. Belhajjame, K., Embury, S.M., Paton, N.W.: On characterising and identifying
mismatches in scientific workflows. In: Data Integration in the Life Sciences, pp.
240–247 (2006)

4. Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., Gibson,
T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Research 22, 4673–4680 (1994)

5. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: OWL: the making of a web
ontology language. Web Semantics 1(1), 7–26 (2003)

6. Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., Stevens, R.: Decid-
ing matching of stateless services. In: 21st Nat. Conf. on Artificial Intelligence
(AAAI06) Boston, MA, USA (2006)

7. Kawas, E., Senger, M., Wilkinson, M.D.: Biomoby extensions to the taverna work-
flow management and enactment software. BMC Bioinformatics, (Electronic) Jour-
nal Article Research Support, Non-U.S. Gov’t, vol. 7(523), pp. 1471–2105 (2006)

8. Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T., Stevens, R., Pearce, S.,
Wipat, A.: Association of variations on i kappa b-epsilon with graves’ disease us-
ing classical and mygrid methodologies. In: 3rd UK e-Science All Hands Meeting,
Nottingham, UK (2004)

9. Lord, P., Alper, P., Wroe, C., Goble, C.: Feta: A light-weight architecture for user
oriented semantic service discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC
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Abstract. The success of mass spectrometry-based proteomics in emerging 
applications such as biomarker discovery and clinical diagnostics, is predicated 
substantially on its ability to achieve growing demands for throughput. Support 
for high throughput implies sophisticated tracking of experiments and the 
experimental steps, larger amounts of data to be organized and summarized, 
more complex algorithms for inferring and tracking protein expression across 
multiple experiments, statistical methods to access data quality, and a 
streamlined proteomics-centric bioinformatics environment to establish the 
biological context and relevance of the experimental measurements. This paper 
presents a bioinformatics platform that was built for an industrial mass 
spectrometry-based proteomics laboratory focusing on biomarker discovery. 
The basis of the platform is a robust and scalable information management 
environment supported by database and workflow management technology that 
is employed for the integration of heterogeneous data, applications and 
processes across the entire laboratory workflow. This paper focuses on selected 
features of the platform which include: (a) a method for improving the accuracy 
of protein assignment, (b) novel software tools for protein expression analysis 
that combine differential MS quantitation with tandem MS for peptide 
identification, and (c) integration of methods to aid the biological relevance and 
statistical significance of differentially expressed proteins.  

1   Introduction  

Proteomics studies yield volumes of data characterized by heterogeneity and diversity 
in data formats, processing methods, and software tools and databases that are 
involved in order to transform spectral data into relevant and actionable information 
for scientists. As the size of, and the demand for, proteomics studies increases, 
laboratories are compelled to introduce more automation and increase throughput. 
Support for high throughput means more sophisticated tracking of experiments and 
the experimental steps, larger amounts of data to be organized and summarized, more 
complex algorithms for inferring and tracking protein expression across multiple 
experiments, statistical methods to access data quality, and a streamlined proteomics-
centric bioinformatics environment to establish the biological context and relevance 
                                                           
* The work reported in this paper was carried out by the authors at MDS Proteomics / Protana. 
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of the experimental measurements. In addition to the involvedness of data 
management, high throughput relates to the comprehensiveness of the analysis. 
Automation of computational steps enables fast processing of large datasets based on 
set parameters that reflect the common case. As a result, data processing can miss 
correct answers or admit false ones. The alternative is manual inspection of the data 
which lowers throughput. One solution is to incorporate appropriate methodologies 
within the data management strategy that help to detect and filter out poor data. 
Integration of such methodologies requires solid data management foundations that 
support queries to integrated data across the laboratory processes.  

In this paper we present a proteomics data management and bioinformatics 
platform that our team was tasked to develop, for an industrial mass spectrometry-
based proteomics laboratory focusing on biomarker discovery. Key requirements 
were to tackle the entire laboratory lifecycle, ensure high throughput, i.e., hundreds of 
MS acquisitions per week, and support both protein identification and protein 
quantitation (expression) analysis workflows. The landscape of MS data analysis, 
prior to the work described here, included a variety of specialized stand-alone 
applications for MS data acquisition, spectral analysis and protein identification (e.g., 
Mascot, Sequest, X!Tandem), manual means for protein quantitation, and no 
commercial-of-the-self (COTS) proteomics data management solutions and close to 
zero interoperability between existing applications.  

We opted for a solution that is based on a systems integration approach, i.e., built 
upon a modular framework where each task can be fulfilled by a class of components 
that satisfy the task’s interface, and provide a framework where data can flow from 
one component to another; components are software packages, custom programs, 
databases, or interfaces through which users access and change data. We committed 
to maximize the use of industrial strength, commercial technology and tools such as 
database and workflow management systems and visualization tools where 
applicable. For the most part, we adopted the “hub-and-spoke” model for application 
interoperation where a common database system plays the role of the hub. Data 
processing workflows were modeled and implemented in a commercial workflow 
management engine. The backbone of the platform therefore comprised a robust and 
scalable information management environment supported by database and workflow 
management technology that is employed for the integration of heterogeneous data, 
applications and processes across the entire laboratory process. 

The novel aspects of our work are divided into two categories. First is the 
definition of a reference architecture of a system for acquisition, management, 
analysis and interpretation of MS proteomics data that was implemented and used in 
production. The second is the development of novel methods for protein inference, 
peptide quantitation and differential protein expression analysis. This paper focuses 
on the methods, algorithms and their implementation. We also discuss the structure 
and the main features of a protein sequence and annotation database and associated 
environment that was developed to provide timely access to data and tools and to 
enable data sharing and collaboration among scientists.  

The rest of this paper is organized as follows. Section 2 introduces some concepts 
of mass spectrometry and proteomics and a case study used to demonstrate the 
functionality of the informatics platform. Section 3 presents the main functions of the 
computational analysis workflows supported by the platform, with emphasis on the 
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algorithmic aspects and the platform components that were introduced to address 
these functions. Section 4 describes the overall information management and 
bioinformatics platform. Section 5 presents related work, and Section 6 concludes 
with a summary of our contributions and discussion on continuing challenges and 
future work directions.   

2   Background 

Mass Spectrometry 

The goal of proteomics is to identify and quantify all the expressed proteins expressed 
in a biological system under specific conditions. Mass spectrometry (MS) has 
developed into the method of choice for achieving this goal (Aebersold and Mann 
2003). The success of MS as a powerful analytical technology for biomolecule 
analysis is due to several technological accomplishments including the development 
of efficient protein ionization methods and advances in mass analyzer hardware. In 
addition, protein separation methods, including 1-D and 2-D gel electrophoresis and 
gel-free methods, make a variety of complex sample types amenable to MS analysis, 
including biofluids such as urine or blood plasma, cell lines and tissue extracts. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. (a) MS spectrum from rat urine sample scanned at elution time 55.2 min of a 210 minute 
LC gradient. (b) Isotopic clusters for a molecular species with monoisotopic mass (M) 1342.67 
amu; both [M + 2H]2+ and [M + 3H]3+ ions were detected for this species. (c) MS/MS 
fragmentation spectrum for 2+ precursor ion observed 672.34 m/z, recorded at elution time 
54.95 min. This spectrum was identified by Mascot as peptide LKAALSENEQLK with 
observed mass 1342.66 Da, corresponding to the mass of the molecular species shown in b. 
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A vast and multi-disciplinary scientific basis underlies the application of MS in 
proteomics, a detailed description of which is well beyond the scope of this paper. 
Here, we provide a brief outline of concepts particular to the analysis of complex 
samples with the MS platform that was employed in the case study. A protein sample 
is typically subjected to denaturation and enzymatic digestion (e.g. with Trypsin) to 
produce a mixture consisting primarily of peptide fragments. The mixture is injected 
into a liquid chromatography (LC) column for separation, and pumped at a low flow 
rate towards a capillary terminus at which a high electric field transforms the liquid 
material into charged ion droplets. The latter process is known as electrospray 
ionization (ESI) (see (Smith, Loo et al. 1990) for a review). The ion current emerging 
from the ESI tip is introduced into a mass spectrometry device where ions are 
separated on the basis of their mass to charge ratios (m/z). Ions at different m/z values 
are counted, resulting in a mass spectrum (MS). In tandem MS, or MS/MS mode, ions 
are typically subjected to high-energy collision with neutral gas molecules, leading to 
peptide fragmentation; the recorded tandem mass spectrum captures m/z and 
intensities values of the fragments (Chernushevich, Loboda et al. 2001). Continuous 
flow of the sample mixture is subjected to periodic scanning and detection of ions 
spanning the duration of the LC elution gradient. 

An MS spectrum is an ion intensity signal recorded over an m/z range (Figure 1a). 
A charge state distribution series results for each molecular species detected, with 
adjacent peaks in a series assumed to be separated by exactly one charge (carried by a 
proton in the positive ion mode), thus enabling the calculation of accurate molecular 
weight using any two peaks within a series. Other reliable charge state determination 
algorithms have been proposed that are based on the detection of isotopic clusters 
(Horn, Zubarev et al. 2000), (Zhang and Marshall 1998), (Senko, Beu et al. 1995) 
(Figure 1b). A mass accuracy as low as 1-2 ppm was reported recently using a linear 
quadrupole ion trap coupled with an FTICR analyzer (Syka, Marto et al. 2004). A 
fragmentation pattern provided by an MS/MS spectrum (Figure 1c) can be used to 
deduce the amino acid sequence for the parent peptide (or precursor ion). Software for 
de novo and database search-based sequencing has made possible the automated 
identification of hundreds of proteins per sample.  

A Biomarker Discovery Case Study 

The objective of this study was to identify proteins in rat urine that are indicators  
of drug-induced kidney damage. This study was conducted by MDS Proreomics / 
Protana Inc. in order to demonstrate its discovery proteomics technology in clinically 
relevant fluids such as urine. Here we discuss the aspects of the study pertaining to 
data management and data analysis and describe the key bioinformatics methods and 
systems involved in carrying out the study.  

The study involved 15 rats, 10 of which were treated with a drug known to cause 
kidney damage and the remaining 5 used as controls.  Urine samples were taken at 3 
time points after treatment. The drug causes proteinuria, a condition in which total 
protein concentration in urine is significantly increased. The urine samples were taken 
before the onset of proteinuria, near its peak, and after it had mostly subsided. Both 
treated and control rats were young and continued to grow through the course of the 
experiment. Auxiliary study data including specimen parameters such as weight over 
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time, gender, clinical tests, histopathology report, sample amount and concentration, 
and sample preparation measurements, were recorded in the platform’s sample 
tracking database (SATS).  

LC-MS acquisitions were performed in batches containing 1 control and 2 treated 
rats, producing a total of 5 batches. The samples from a given time point and batch 
were always analyzed back-to-back in order to facilitate an accurate control/treated 
comparison. The order of batches and the order of samples within each batch were 
randomized. The study setup and acquisition information were also captured in SATS. 
LC-MS/MS acquisitions were run on a QStar Hybrid XL mass spectrometer in an 
intensity-dependent sequencing mode, allowing for the determination of fragmentation 
spectra of the most intense ions.  

3   Bioinformatics Methods for MS Proteomics 

The discrete steps of the biomarker discovery study workflow are outlined in Table 1. 
Each step involves a sequence of tasks or subsequent workflows that generate or 
transform data. In the rest of this section, we use the case study to demonstrate 
capabilities of the platform, focusing on those that are technically challenging and 
involve novel work. 

The main objective of a biomarker discovery study is the identification of 
differentially expressed proteins that are biologically relevant and statistically 
significant. To achieve this, raw MS data are processed via two parallel analysis 
workflows: protein identification and peptide quantitation (Figure 3).  

Table 1. Overview of bioinformatics in biomarker discovery lifecycle 

Sample Processing 
1. Register samples and sample attributes in the sample tracking system 
2. Create acquisition plan applying principles of statistical experimental design
MS Data Acquisition 
3. Collect data files from MS instruments
4. Copy MS data to centralized file storage for analysis
MS Data Processing 
5. Derive quantitative profiles of peptides based on MS
6. Search MSMS data against a protein sequence db and derive peptide sequences 
7. Integrate peptide profile data in a matrix based on the study structure
Bioinformatics  Analysis and Interpretation
8. Assign peptides to proteins by clustering peptide hits across multiple acquisitions 
9. Report statistically significant differential peptides and proteins
10. Evaluate biological relevance of significant hits using available annotation & iterature 
11. Mine over-represented annotation themes in the study 

Quantitative differential analysis can be summarized as the measurement and 
interpretation of protein expression in biological samples aimed at detecting 
differences that are due to conditions present in the sample (e.g. disease, treatment). 
The analysis is quantitative because abundances are derived for each molecular 
species (e.g., peptides) detected in the samples; it is differential because we compare 
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abundances across samples. In the case study, for example, expression profiles of 
peptides and proteins are calculated in samples taken from animals at different time 
points, in an effort to identify proteins that may be related to the early onset of 
nephrotoxicity. Methods for computing such profiles from complex biological 
samples using mass spectra are described in (Lilien, Farid et al. 2003), (Petricoin, 
Ardekani et al. 2002), (MacCoss, Wu et al. 2003),  (Johnson, Mason et al. 2004) . 

Protein Assignment  

Peptide sequences are assigned based on interpretation of their fragmentation (MSMS) 
spectra. Several methods are available for this, including de novo sequencing and 
database searching (for a recent review see (Baldwin 2004)). The standard practice in 
our platform is through database-searching using the Mascot search engine (Mascot; 
www.matrixscience.com) and a protein sequence database. A known limitation of the 
database searching approach is that search engines make incorrect assignments 
(Nesvizhskii, Keller et al. 2003). Considerable effort within the proteomics community 
is being directed at refining peptide scoring and distinguishing high-quality spectra. 
The solution that we implemented, at the time of this study, was to accept peptide 
identifications above a fixed Mascot score threshold. The score threshold was 
originally defined empirically. Each MS/MS acquisition data file (all 45 of the case 
study) was searched using Mascot. The resulting data-files were parsed into a relational 
database of mass spectrometry experiments and analyses (MSdb), including also the 
Mascot search-parameters (such as modifications, enzyme information, etc). We later 
extended the search engine score with a second score derived using an empirical 
statistical model. The integration of a second score is a straightforward process in 
MSdb, as it is also the case with results from additional search engines.   

The choice and size of the search database plays an important role in peptide 
matching (Fenyo and Beavis 2003), (Cargile, Bundy et al. 2004). Intuitively, a large, 
comprehensive, multi-species database increases the chances of a match and of false 
positives, where a smaller species specific database reduces false positive matches. An 
important factor in peptide matching is the redundancy of the database. Our approach 
is to generate non-redundant sequence search databases that are appropriate to the 
study in hand. A central component of our bioinformatics infrastructure is therefore the 
construction of a non-redundant protein sequence database. In contrast to existing 
public-domain efforts (e.g. IPI (Kersey, Duarte et al. 2004)), we define redundant 
proteins as being proteins from the same species that are identical in sequence and 
length. We built and maintained an in-house protein sequence and annotation database, 
called AIDA (for details see Section 4), based on the eukaryotic proteins from all 
major sources of protein sequence information (SwissProt, TrEMBL, GenBank etc). 
Each distinct entry in AIDA, i.e., a unique sequence and species pair, has a unique and 
stable protein identifier, termed PI. Using AIDA as the source, we generate 
appropriate, versioned sequence databases for MS/MS searches. A combined human, 
rat and mouse protein sequence database was used in the current study. 

The next step is the protein inference. The objective in this step is to identify a 
minimal set of proteins consistent with the observed peptides. Protein inference is a 
non-trivial process that is complicated by the ‘many-to-many’ relationships between 
MS/MS spectra and candidate peptides and between peptides and protein sequences 
(Yang, Dondeti et al. 2004), (Tabb, McDonald et al. 2002), (Kristensen, Brond et al. 
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2004). Biomarker discovery studies, however, like our case study, commonly possess 
a property that helps to improve the sensitivity of the protein inference process. This 
property is replication. As multiple biological and/or technical replicate samples are 
analyzed, the same population of peptides is assumed to be present in these samples. 
However, the mass spectrometer focuses at selected ions due to constraints like length 
of duty cycle or sample complexity. Merging therefore multiple search results leads to 
a richer pull of peptides that can be exploited to infer proteins. A similar parsimonious 
approach is outlined by Yang et al (Yang, Dondeti et al. 2004). The protein inference 
method is based on a clustering operation that minimizes the set of proteins that best 
explains the set of observed peptides. The equivalent operation of the search engine is 
no longer applicable as we consider multiple acquisitions, although Mascot has lately 
introduced this function.   

Briefly, our clustering operation works as a two-step process. In the first step, 
proteins are grouped according to shared sets of matching peptides (for two proteins 
to be grouped one of the sets of peptides must either be equal to, or a proper subset of 
the other). Second, redundant clusters are filtered out by ranking clusters by peptide 
complement and then iteratively removing clusters whose peptide complement is 
redundant with respect to two or more other clusters. The output of this clustering 
process is stored in MSdb. The resulting set of clustered proteins and peptides is 
further refined by selecting a representative ‘anchor’ protein from each cluster. The 
anchor protein of a given cluster is identified by taking the top ranked protein by 
number of peptides. In some cases, there may be multiple top-ranked proteins 
(insufficient peptide evidence to distinguish the proteins). In these cases, other 
selection criteria are applied such as choosing an anchor by species (i.e. if for a given 
cluster in our rat urine study, a human and rat protein with equivalent peptide 
evidence were identified – the rat protein would be selected as the anchor), or by 
annotation (i.e. selecting the best-annotated protein).  

Peptide Profile Matrix Construction 

A major task in the quantitation workflow is the generation of the profile matrix. 
Intuitively, a peptide matrix integrates quantitative peptide data from multiple 
samples. The structure of the profile matrix is illustrated in Figure 2. A row in this 
matrix represents a molecular species (a putative tryptic peptide) measured in a set of 
samples, while a column represents the molecular profile of a distinct sample or state. 
Each cell therefore represents the presence (or absence) of a putative peptide in a 
given state, characterized by monoisotopic mass, intensity, elution time, and 
sequence, among other attributes. This profile matrix is the starting point for 
subsequent bioinformatics and statistical analyses.  

 S1 … Si … Sn 
M1           

…
 

          
Mj     Cij = {…,Massij, Timeij , Intensityij, Sequenceij, … }     

…
 

          
Mm           

Fig. 2. Profile Matrix  
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The derivation of a profile matrix involves a series of steps that are summarized as 
follows. First, raw spectral peaks are extracted from the MS data file, isotopic clusters 
are resolved, and each isotopic cluster is assigned a charge state and molecular mass. 
Second, ions for the same molecular species observed at different charge states and 
different chromatographic elution time points are combined, producing a set of 
distinct molecular species detected in a given sample. Finally, samples are compared 
and molecular species are brought together to produce the rows of the profile matrix. 
Next, we discuss each step in detail with the help of the case study.  

The first step is a pre-processing and signal analysis step that takes as input the raw 
MS signal and produces a list of monoisotopic peaks. Raw MS signal peaks are 
extracted from the the acquisition file with the help of the instrument vendor’s 
supplied software. In the case study, raw signal peaks are extracted from each of the 
45 data files using in an extractor application that utilizes the Analyst QS API 
(www.sciex.com), resulting in an extracted peak list for each MS spectrum. The data 
extractor program provides the automation that is needed for high-throughput 
processing.  An extracted peak consists of an ion mass-to-charge ratio (m/z), intensity, 
and elution time. The extracted intensities are channelled through a second order, 5-
point Savitsky-Golay smoothing routine and then processed by the THRASH 
algorithm (Horn, Zubarev et al. 2000). THRASH was modified slightly for processing 
TOF data from the QStar Hybrid XL instrument. THRASH resolves isotopic clusters 
in an MS spectrum and assigns charge state and monoisotopic mass to each cluster, 
thus producing a set of monoisotopic peaks. The THRASH parameters and the output 
data are saved in MSdb. In the case study, nearly 18 million isotopic clusters were 
generated, averaging 404,161 per sample.  

The next steps involve two grouping operations applied to monoisotopic peaks in 
order to obtain a set of molecular species detected for each sample: 

(1)  In a given MS spectrum, monoisotopic peaks with matching mass (within a 
specified mass tolerance window) are grouped and their intensities summed, 
bringing together ions having acquired different charges but representing a single 
molecular species (such as the peaks for the 2+ and 3+ ions shown in Figure 1c).  

(2)   Molecular species appearing in multiple adjacent MS scans are grouped to yield a 
chromatographic peak. Mass and elution time occurring at the intensity apex are 
recorded for each peak. A chromatographic peak corresponds to the intensity 
profile of an eluting putative peptide. Peptide sequences assigned by Mascot, as 
described in the Protein Assignment section, are linked to chromatographic peaks 
on the basis of peptide neutral mass and precursor ion elution time.  Intuitively 
this corresponds to a fuzzy join operation on mass and time attributes as some 
tolerance mass and time intervals are applied. This join connects the abundance 
information (intensity) of a putative peptide with the peptide sequence 
information (identity), if it is available. In total, 161,939 chromatographic peaks 
were constructed in the study, with an average of 3,680 per sample.   

Operations (1) and (2) produce a list of chromatographic peaks per sample.   
The next step involves two alignment operations that complete the construction of 

the profile matrix. Because the experimental design involved batches of samples, we 
first align by batch and then across all batches. This step is varied depending on the 
experimental design and in particular on the replication or batching factors. 
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(3)  A pairwise chromatographic peak alignment algorithm is applied to the 
chromatographic peaks within a batch. In the case study, each batch consists of 1 
control and 2 treated samples. In each batch, a reference sample is randomly 
selected, and each non-reference sample is aligned with the reference, resulting in 
shifted chromatographic peak elution times. Alignment is based on a piecewise 
polynomial function computed using elution times of control points common 
between samples. After alignment, chromatographic peaks are compared and 
grouped across the set of samples in each batch on the basis of mass, elution 
time, charge composition, and sequence where available. This results in a set of 
unique putative peptides for each batch. The case study produced a total of 
100,623 unique putative peptides across the 15 batches. Each batch contained on 
average 6,708 unique putative peptides. 

(4)  Average monoisotopic mass and elution time are calculated for each putative 
peptide in a batch. Peptides consisting entirely of singly-charged ions are 
assumed to be products of electronic and chemical noise and are filtered out. 
Mass, elution time and sequence, if assigned, are compared between peptides 
from different batches. The case study was finally condensed in profile matrix 
containing a final count of 22,349 distinct putative peptides (matrix rows).  

Table 2 show the significant reduction in data points that is achieved during each step 
of this process. An important feature of this process is that all data generated after raw 
peak extraction, from the monoisotopic ion peaks generated by THRASH, to MS/MS 
precursor ions and sequences assigned by Mascot, to the cells of the profile matrix 
itself are stored in a relational database, MSdb, This provides an efficient way of 
querying and comparing data points during the various grouping operations, and for 
carrying the profile matrix forward for further analysis. 

Table 2. Data points generated in the case study after MS peak extraction 

 
Total 

Mean per 
batch 

Mean per 
sample 

Isotopic Clusters (Monoisotopic peaks) 17,783,082 1,185,539 404,161 
Molecular Species (2) 161,939 10,796 3,680 
Putative Peptides grouped within Batches (3) 100,623 6,708 N/A 
Putative Peptides grouped across Batches (4) 22,349 N/A N/A 

Identification of Differentially Expressed Proteins 

The goal of the case study is to identify proteins that are differentially expressed, e.g., 
low in time point 1, high in time point 2, and low again in time point 3. The 
information needed to make this decision is made available in the profile matrix and 
in the protein assignment process. The method for identifying differentially expressed 
proteins is outlined in Table 3. First, the profile matrix is filtered such that only those 
peaks detected in at least 75% of the samples and at least one of the treatment groups 
are retained. After filtering, the matrix retained a total of 2,035 rows. The filtered  
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matrix is analogous to data matrices produced by microarray studies, enabling the use 
of many of the analysis techniques developed for microarrays, as reviewed in (Simon, 
Korn et al. 2003).  

Statistical analysis here aims to answer two questions: (a) which peptides (rows of 
the matrix) are differentially expressed with statistical significance, and (b) which 
peptides link to the same protein cluster according to the protein inference algorithm 
described earlier. The details of the statistical analysis are beyond the scope of this 
paper. The results of the case study are summarized in Table 3. Specifically, the 
peptide clustering algorithm produced 345 protein clusters, 216 of which were linked 
to data rows that passed the reproducibility filter. Altogether, 32% of all reproducible 
data rows were linked to a protein sequence. This quantitative assessment concludes 
that about 200 urine proteins were affected by drug treatment.  These proteins were 
supported by more that 500 peptides, for which both high-confidence sequence 
assignment and sufficient intensity data were calculated. 

Table 3. Quantitation and identification stream statistics 

Quantitation 
      Profile matrix rows, total 22,349 
      Rows passing  reproducibility filter 2,035 
      Reproducible rows linked to high-confidence sequences 661 
Identification
      High-confidence sequences, total 1,264 
      High-confidence sequences linked to reproducible rows 550 
      Clusters, total 345 
      Clusters linked to reproducible rows 216 

Biological Interpretation 

A significant challenge with high-throughput “-omic” technologies is the 
interpretation of the resulting data. In the current study, using the proteomic data 
processing workflows and tools supported by the informatics platform we identified 
around 200 rat urine proteins that are differentially expressed in drug-treated and 
control animals. Just the identity of these proteins does not reveal much about the 
effects of drug treatment.  Assessment however of the available annotation for the 
proteins in the list – such as sequence-based annotations (e.g. functional domains, 
signal peptides) or function-based annotations (e.g. biological process, pathways, etc), 
may provide some insights of the effects of drug treatment. In addition, these 
annotations can be grouped by type and using annotation mining tools to identify 
functions, motifs, etc which are over- or under-represented in the overall set (Hosack, 
Dennis et al. 2003), (Zeeberg, Feng et al. 2003), (Boyle, Weng et al. 2004). In the 
current study, for example, biological processes such as renal cell repair and 
glomerular damage were identified which are consistent with known biological 
processes induced by the action of the drug in the rat kidney. 

To facilitate these kinds of annotation-based analyses, we rely on AIDA. AIDA 
which stands for Automated Integration of Datasets and Applications, in addition to  
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being a protein index as it was described in Section 3, is also a protein annotation 
database. AIDA collates protein annotation from many major public domain sources. 
A home developed extract-transform-load (ETL) application, called the data feeder, is 
responsible for assembling and keeping the data in AIDA up to date. The data feeder 
maintains information on the schema of certain subsets of the external data sources 
and its correspondence to the AIDA schema, such that it selectively extracts 
information from these sources, it transforms it to the local schema, performs the 
necessary entity matching operations, and loads this information into AIDA. In 
addition, each protein entry in AIDA has several fields that hold pre-computed 
annotations that are calculated using a number of computational annotation tools, 
such as sequence feature prediction programs to pre-compute domains, signal 
peptides etc. These pre-computed predictions are stored in the database for rapid 
query access. A central feature in AIDA, as previously described, is the assignment of 
a unique PI (protein identifier). Each PI represents a unique combination of protein 
sequence and species, so that identical sequences from a given species will be 
grouped as a single PI (identical sequences are required to be identical in both 
sequence and length).  

The PI has the following properties: (a) The PI is persistent, i.e., the identity of a 
unique sequence, in a given species, will never change. Oftentimes, a unique 
sequence changes identity or has multiple identities (e.g. GenBank identifiers or GIs) 
in the public sources. Using a PI, a sequence is immune from public ID changes, yet 
all these corresponding GIs are linked to the PI. (b) PI-based, AIDA generated 
sequence databases used for MS/MS searches are free of the problem of reporting the 
same sequence under different public identifiers (e.g. GI) that may change beyond our 
control. (c) Sequence-based information such as annotations attached to different 
versions of a sequence are brought together under the same PI. (d) The PI maintains 
provenance of protein sequences, since any ID or name changes of the sequence in the 
public sources is recorded in the PI record. (e) The PI functions as the cross-database 
link between AIDA and MSdb.  

Understanding as much as possible about the biological meaning of an observed 
differential protein is an important part of the process of the identification of viable 
biomarker or drug target candidates. To this end, AIDA provides a uniform view of 
many of the known associations (e.g. sequence features, biological processes, 
pathways) for protein sequences. 

4   Bioinformatics Platform Implementation 

Figure 3 provides a schematic overview of the bioinformatics platform which 
comprises systems that deliver the functionality of the methods described above, and 
a backbone information management environment intended for high-throughput, 
scalable and proteomics analysis. The system is structured as a series of workflows 
that load data into a family of integrated databases which are made available to data 
analysts and scientific users via a range of front-end analysis and visualization 
applications. In what follows we briefly discuss the information and workflow 
management backbone of the system, and a representative front-end application.  
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Fig. 3. Bioinformatics Platform Overview 

Data and Workflow Management 

Even for a relatively small study such as the case study described in this paper, there 
is a need to keep track of acquisitions, analysis operations, study structure, sample-
specific factors and program parameters for interpretation of the results. This 
information may not be stored in a single place as it is generated at different times 
and by different systems. In order to facilitate tracking of data and processes 
throughout the laboratory workflow, we organized the data stores back-ending the 
various processing steps as a federation of cross-referencing databases. The 
significant members of the federation include a sample tracking database (SATS), a 
repository for mass spectrometry experiments analysis results (MSdb), and a protein 
index and annotations database (AIDA). The common reference entity between SATS 
and MSdb is a uniquely assigned MS acquisition identifier. Similarly, MSdb and 
AIDA share a common reference for protein entries (PI). Maintenance of referential 
integrity between these independently maintained databases is performed by custom 
programs. For convenience and easier cross-database queries, the individual databases 
are federated using DB2 Information Integrator (www.ibm.com).     

The systems that support the proteomics laboratory workflows are both 
distributed and heterogeneous. For example, MS data acquisitions are performed 
using vendor-supplied applications running on the workstations that control the 
instruments; data files stored on these workstations are automatically copied to a 
network file system; finally MSdb is updated with acquisition-relevant records, at 
which point the identification workflow is triggered to extract MS/MS data, perform 
Mascot searches, and parse the results into MSdb, etc. Organizing into a collection of 
integrated databases is only part of the overall solution. Improving application 
interoperability and automating data transfers between applications represents another 
significant simplification and source of productivity gains. We achieve this through 
the deployment of workflow management solutions. In addition to simplifying data 
analysis by automating processing steps, the introduction of workflow management 
also improves utilization of computing resources. The data processing workflows 
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were automated using TurboWorx (www.turboworx.com), a commercial solution for 
workflow management, while the bioinformatics pipeline that maintains AIDA is 
supported by an in-house workflow management solution.   

Discovery Portal 

The Discovery Portal (DP) is a web-based collaboration environment that allows 
scientists to access information on proteins, maintain their projects, access proteomics 
analysis applications, map proteins to scientific literature and explore external 
databases. The Discovery Portal was designed to be the single point of access for all 
internal and external applications and data in the bioinformatics area. It creates a hub 
of information based on the family of databases mentioned earlier and provides an 
access interface to them.  

 

Fig. 4. The Discovery Portal showing the AIDA find, Protein list and Protein summary portlets 

The Discovery Portal is built using the Jetspeed portal application builder with the 
goal to enable aggregation of multiple Web applications is a single page as portlets, 
and allow users to customize and personalize the content of the page. Important 
portlets include the AIDA query, AIDA annotation (Fig. 4), custom reports, and a 
literature mining portlet, among others. The Discovery Portal is easily extendable and 
enables economic and rapid development of interfaces for bioinformatics applications 
and data sources.  

The portal supports a variety of ways to integrate applications. Specifically it 
implements a container framework with standardized navigation features and style 
sheets, and a specification of a general method for deploying applications inside the 
framework. It also provides a common user authentication component for controlling 
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data access and ownership. The portal maintains a runtime data object holding the 
data/information to be rendered, and a publisher/subscriber pattern to facilitate acting on 
modifications to the data object. This allows for results (proteins) of an operation, to be 
available for use in another application, making it really easy to run multiple 
applications on the same data without copying, pasting and opening of new applications.  

The Workspace is another key portlet that further aids user collaboration and 
application interoperability. The motivating principle behind the Workspace is that 
experiments and bioinformatics analyses produce lists of proteins that scientists may 
want to store, share, modify or compare. Within the Portal, the scientific user can 
create protein lists as workspace objects and open them in some other application or 
promote them to the Portal’s runtime object. The Workspace facilitates both persistent 
storage of user selected data and data exchange between portal applications. The latter 
reduces the proliferation of disparate spreadsheets and promotes interoperability. 
Workspace protein lists may also be associated with an open-ended set of attributes, 
both user-defined and derived from underlying databases. An XML database is 
employed to tackle the representation and storage of Workspace objects.  

5   Related Work  

Until recently, the focus of informatics in proteomics was the development of 
methods for interpreting spectral data and in particular tools for identification (Mascot 
(Perkins, Pappin et al. 1999), X!Tandem (Craig and Beavis 2004)) and quantitation 
(Xpress (Li, Zhang et al. 2003)) of MS/MS and MS spectra.  As the volume of data 
produced by LC-MS experiments and subsequent analyses, became an issue, stand 
alone tools were extended with some data management functionality (Mascot  
Integra (www.matrixscience.com), EPICenter (Kristensen, Brond et al. 2004)), or 
integrated in laboratory information management systems (Proteus LIMS 
(www.genelogics.com)). Still, these systems address only a part of the discovery 
process lifecycle that is described in this paper. High-throughput laboratories such as 
EMSL at the Pacific Northwestern Laboratory and the Seattle Proteomics Center 
(SPC) at the Institute of Systems Biology have developed significant platforms 
(Kiebel, Anderson et al. 2004), (Keller, Eng et al. 2005) with similar functionality but 
different architecture than ours. The SPC system, called trans-proteomics pipeline, is 
of particular interest because it promotes open standards and XML formats in order to 
enhance interoperability and assist integration of third party tools. Instrument vendors 
also market solutions for management and analysis of proteomics data (Protein 
Expression System (www.waters.com)) that combine protein identification and 
quantitation analyses. Several proteomics companies have also developed  
their own custom platforms that are specific to their needs (ProteomicIQ 
(www.proteomesystems.com), CellCarta (www.caprion.com)). Although these 
systems share common goals, they differ in their focus, functions and throughput 
support. Comprehensive comparison of those would be very hard due to limited or no 
access to their methods, architecture and technical specifications. To the best of our 
knowledge, this paper is the first to provide details on the algorithms and 
implementation of such platform. Recently, bioinformatics software vendors have 
launched products with support for the entire LC-MS proteomics workflows and 
functionality tailored to biomarker discovery that share features with our work 
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including the Elucidator system (www.rosettabio.com) and Proteomarker 
(www.infochromics.com). Proteomarker has evolved from the work reported here and 
is designed to provide rapid and accurate quantitative analysis of LC-MS datasets.  

Our work connects with, and benefits from, many disciplines including algorithms 
for protein identification (Baldwin 2004) and differential proteomics analysis 
(Listgarten and Emili 2005), integration of protein sequence and annotation  
databases (Kersey, Duarte et al. 2004), scientific workflow management (Ludascher 
and Goble 2005), implementation of data provenance in scientific databases 
(Simmhan, Plale et al. 2005), and proteomics data representation (Taylor, Paton et al. 
2003) and analysis (Pedrioli, Eng et al. 2004).  

6   Discussion   

We have presented a bioinformatics platform for a mass spectrometry based 
proteomics. We have also provided an account of specific challenges and solutions 
pertaining to selected aspects of the platform. The design and implementation of the 
platform and of its components are based on the requirement of an industrial 
proteomics laboratory focusing in novel biomarker discovery.  

The contributions of the platform are methods for accurate assignment of proteins 
to observed peptides, construction of a peptide profile matrix from raw mass spectra 
that enables statistical analysis for establishing significant expression profiles. A 
distinguishing feature of the platform is the integration of these components through 
an underlying infrastructure for data and workflow management, enabling us to 
connect otherwise disparate data and processes, from sample preparation, mass 
spectrometry, protein identification, spectral analysis, and biological interpretation. 

The benefits of integrating data and processes in a proteomics laboratory are 
especially important for biomarker discovery. First, it improves the efficiency and 
throughput of data analysis. For example, an earlier study conducted in the same 
laboratory, of the same biological model consisting of 18 acquisitions, using manual 
methods for grouping spectral peaks and spreadsheets for collating data, required 2 
months for data analysis and produced a smaller yield of peptide and protein hits. In 
the case study described here, involving differential quantitative analysis of 45 
samples, construction of the profile matrix was rendered a routine task completed in a 
matter of days, amounting to a ten-fold reduction in data processing time. Second, 
results and data from intermediate processing steps are accessible through database 
queries. For example, for a differential protein selected by statistical analysis, 
supporting data can be readily reported at all levels, from protein cluster, to peptide, 
to individual raw MS peaks across all samples. Third, an integrated platform helps the 
scientist to focus on data interpretation and enhancement of discovery methods, rather 
than on manually running software and locating and connecting diverse data.  

There are several continuing challenges and directions for future work. In protein 
identification, a significant drawback is the inability to assign sequences to all 
statistically meaningful peptide expression profiles. This reflects technological 
limitations of MS instrumentation, as well as shortcomings of existing protein 
identification algorithms. The development of an empirical statistical scoring method 
for peptide hits, based on physical and chemical properties of spectra, along the lines 
of (Nesvizhskii, Keller et al. 2003) can give rise to good identifications and improve 
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the sensitivity of database searches. In the construction of the profile matrix, we make 
important assumptions pertaining to digestion efficiency, chromatography, ion 
detection, and fragmentation. Currently, algorithm parameters settings such as elution 
time tolerance windows for peak construction and comparison, or relative abundance 
thresholds for establishing significant differentials, are set based on the results of 
various reproducibility studies conducted to support those assumptions. However, a 
continuing challenge is to fully characterize effects of instrument configuration on 
resulting data. The storage of comprehensive process and experimental data in an 
integrated database is a step forward to this direction. 

Biomarker discovery studies generate large and complex datasets, the analysis of 
which necessitates advanced data management and analysis tools. As shown here, 
such tools broaden the understanding of the data and offer insights for technical 
improvements. 
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Abstract. This paper focuses on the problem of bioinformatics service
reconciliation in a generic and scalable manner so as to enhance interop-
erability in a highly evolving field. Using XML as a common representa-
tion format, but also supporting existing flat-file representation formats,
we propose an approach for the scalable semi-automatic reconciliation
of services, possibly invoked from within a scientific workflows tool. Ser-
vice reconciliation may use the AutoMed heterogeneous data integration
system as an intermediary service, or may use AutoMed to produce ser-
vices that mediate between services. We discuss the application of our
approach for the reconciliation of services in an example bioinformatics
workflow. The main contribution of this research is an architecture for
the scalable reconciliation of bioinformatics services.

1 Introduction

In recent years, the bioinformatics field has seen an explosion in the number of
services offered to the community. These platform-independent software compo-
nents have consequently been used for the development of complex tasks through
service composition within workflows, thereby promoting reusability of services.
However, the large number of services available impedes service composition and
so developing techniques for semantic service discovery that would significantly
reduce the search space is of great importance [12].

After discovering services that are relevant to one’s interests, the next step
is to identify whether these services are functionally compatible. Bioinformatics
services are being independently created by many parties worldwide, using dif-
ferent technologies and data types, hindering integration and reusability [21]. In
particular, after discovering two such services, the researcher needs to first iden-
tify whether the output of the first is compatible with the input of the second
based on a number of factors, such as the technology employed by each service,
the representation format and the data type used.

In practice, compatible services are rare. Within Taverna (see http://
taverna.sourceforge.net), service technology reconciliation is addressed by
using Freefluo [19], an extensible workflow enactment environment that bridges
the gap between web services and other service types, such as web-based REST
services (stateless services that support caching). However, the researcher still
needs to reconcile the outputs and inputs of services in terms of content, data
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type and representation format, spending time and effort in developing function-
ality that, even though essential for the services to interoperate, is irrelevant to
the experiment.

The primary cause of this problem is the existence of multiple different data
types and representation formats used even for basic concepts, such as DNA
sequences. These data types and representation formats, used for the same or
overlapping concepts, have been developed over the years by collaborative work
between researchers and/or industry and so even though standardisation efforts
are important and encouraged by the community, non-standardised efforts are
likely to persist and new ones are bound to appear in this constantly evolving
field. For this reason, service composition solutions that take into consideration
this factor are essential. Unfortunately, most current tools concentrate on a spe-
cific data type and representation format (or combinations of pairs of types and
formats, when translation is needed) to accomplish a highly specific task, rather
than being generic [13]. As a result, reusability of existing tools is low.

Another common practice in bioinformatics is the use of flat-file representation
formats for the overwhelming majority of data types, while the adoption rate
of XML is low. This practice does not allow the application of Semantic Web
technologies and solutions to their full extent, such as semantically annotating
fields within a bioinformatics data type. For example, even though it is possible
to annotate a service as having FASTA output, it is not possible to annotate
the different fields within the non-tagged FASTA data type. But, even if a data
type is tagged, e.g. UniProt, annotation cannot be performed in a generic way,
as it would require data type-specific annotation tools.

We also observe that, even though the use of semantic annotations is key to
service discovery and composition, service providers are disinclined to supply
comprehensive annotations for their services. Relying on a centralised approach
for such a task is clearly not scalable, and so any proposed solution for the
reconciliation of bioinformatics services must ensure that the amount of required
annotations is kept to a minimum and that it is reused as much as possible.

We argue that (a) the use of XML and (b) allowing the annotation and ma-
nipulation of service inputs and outputs at a fine-grained level, can boost service
interoperability in a scalable manner. We therefore propose and exemplify an ar-
chitecture for the reconciliation of services by exploiting the (manual) semantic
annotation of service inputs and outputs using one or more interconnected on-
tologies, and the subsequent automatic restructuring of the XML output of one
service to the required XML input of another. Although our approach uses XML
as the common representation format, non-XML services are also supported by
the use of converters to and from XML. Our schema and data transformation
approach is supported by the AutoMed heterogeneous data integration system
(see http://www.doc.ic.ac.uk/automed) and can accommodate two types of
service reconciliation: either using AutoMed as a service itself, e.g. from within
a workflow tool, or using AutoMed to generate mediating services.

In the remainder of this paper, Section 2 first reviews current approaches
related to service interoperability. Section 3 then provides an overview of the

http://www.doc.ic.ac.uk/automed
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AutoMed system, to the level of detail necessary for this paper. Section 4 intro-
duces our proposed approach for a scalable solution to the problem of bioinfor-
matics service reconciliation. Section 5 presents our ongoing work in applying
our approach to the reconciliation of bioinformatics services. Section 6 provides
an overall discussion of our approach and gives our plans for future work.

2 Related Work

In the context of service composition, research such as [20,18,2] has mainly fo-
cused on service technology reconciliation, matchmaking and routing, assuming
that service inputs and outputs are a priori compatible. This assumption is re-
strictive, as it is often the case that two services are semantically compatible, but
cannot interoperate due to data type and/or representation format mismatches.

This problem has forced service consumers to handle such mismatches with
custom code from within the calling services. In an effort to minimise this issue
and promote service reusability, myGrid (see http://www.mygrid.org.uk) has
fostered the notion of shims [7], i.e. services that act as intermediaries between
services and reconcile their inputs and outputs. However, a new shim needs to
be manually created for each pair of services that need to interoperate. [8] states
that, even though in theory the number of shims that myGrid needs to provide
is quadratic in the number of services it contains, the actual number of shims
should be much smaller. However, this manual approach is not scalable, as in
2005 myGrid gave access to 1,000 services [12] and this number is now over 3,000.

[3] describes a scalable framework that uses mappings to one or more ontolo-
gies, possibly containing subtyping information, for reconciling the output of a
service with the input of another. The sample implementation of this framework
is able to use mappings to a single ontology in order to generate an XQuery
query as the transformation program.

We observe that [3] only provides for shim generation, whereas our approach,
by using the AutoMed data integration system, provides a uniform approach
to workflow and data integration, both of which are key aspects of in silico
biological experiments. Furthermore, the work presented here differs from [3]
in a number of aspects and provides a more generic solution to the problem of
bioinformatics service reconciliation. First, we also consider services that produce
or consume non-XML data and also allow primitive data type reconciliation,
whereas [3] does not. Moreover, we allow 1-n GLAV correspondences, compared
to the 1-1 LAV correspondences of [3] and we also define a methodology for
reconciling services that correspond to more than one ontology. We also note
that our XML restructuring algorithm is able to avoid loss of information during
data transformation, by analysing the hierarchical nature of the source and target
schemas and by using subtype information provided by the ontologies.

[22] also uses a mediator system for service composition. However, the focus
is either to provide a service over the global schema of the mediator whose data
sources are services, or to generate a new service that acts as an interface over
other services. In contrast, we use the AutoMed toolkit to reconcile a sequence

http://www.mygrid.org.uk


92 L. Zamboulis, N. Martin, and A. Poulovassilis

of semantically compatible services that need to form a pipeline: there is no need
for a single ‘global schema’ or a single new service to be created.

Concerning the use of ontologies for data integration, a number of approaches
have been proposed. For example, [1] uses an ontology as a virtual global schema
for heterogeneous XML data sources using LAV mapping rules, while [4] under-
takes data integration using mappings between XML data sources and ontolo-
gies, transforming the source data into a common RDF format. In contrast, we
use XML as the common representation format and focus on restructuring the
source data into a target XML format, rather than on integration.

3 Overview of AutoMed

AutoMed is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and hybrid data trans-
formation/integration across multiple data models. It supports a low-level
hypergraph-based data model (HDM) and provides facilities for specifying
higher-level modelling languages in terms of this HDM. An HDM schema con-
sists of a set of nodes, edges and constraints, and each modelling construct of a
higher-level modelling language is specified as some combination of HDM nodes,
edges and constraints (the constraints are expressed in the IQL query language
— see below).

For any modelling language M specified in this way (via the API of Au-
toMed’s Model Definitions Repository) AutoMed provides a set of primitive
schema transformations that can be applied to schema constructs expressed in
M. In particular, for every construct of M there is an add and a delete prim-
itive transformation which add to/delete from a schema an instance of that
construct. For those constructs of M which have textual names, there is also a
rename primitive transformation.

Instances of modelling constructs within a particular schema are identified by
means of their scheme enclosed within double chevrons 〈〈. . .〉〉. AutoMed schemas
can be incrementally transformed by applying to them a sequence of primitive
transformations, each adding, deleting or renaming just one schema construct
(thus, in general, AutoMed schemas may contain constructs of more than one
modelling language). A sequence of primitive transformations from one schema
X1 to another schema X2 is termed a pathway from X1 to X2 and denoted by
X1 → X2. All source, intermediate, and integrated schemas, and the pathways
between them, are stored in AutoMed’s Schemas & Transformations Repository.

Each add and delete transformation is accompanied by a query specifying the
extent of the added or deleted construct in terms of the rest of the constructs
in the schema. This query is expressed in a functional query language, IQL [9].
Also available are extend and contract primitive transformations which behave
in the same way as add and delete except that they state that the extent of
the new/removed construct cannot be precisely derived from the rest of the
constructs. Each extend and contract transformation takes a pair of queries that
specify a lower and an upper bound on the extent of the construct. These bounds
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may be Void or Any, which respectively indicate no known information about
the lower or upper bound of the extent of the new construct.

The queries supplied with primitive transformations can be used to trans-
late queries or data along a transformation pathway X1 → X2 (see [15,16] for
details). For translating data from X1 to data on X2 the add, extend and re-
name steps are used. The queries supplied with primitive transformations also
provide the necessary information for these transformations to be automatically
reversible, in that each add/extend transformation is reversed by a delete/contract
transformation with the same arguments (including the same query arguments),
while each rename is reversed by a rename with the two arguments swapped. As
discussed in [15], this means that AutoMed is a both-as-view (BAV) data in-
tegration system: the add/extend steps in a transformation pathway correspond
to Global-As-View (GAV) rules while the delete and contract steps correspond
to Local-As-View (LAV) rules. If a GAV view is derived from solely add steps
it will be exact in the terminology of [11]. If, in addition, it is derived from one
or more extend steps using their lower-bound (upper-bound) queries, then the
GAV view will be sound (complete) in the terminology of [11]. Similarly for LAV
views. An in-depth comparison of BAV with the GAV and LAV approaches to
data integration can be found in [15], while [16,17] discusses the use of BAV
in a peer-to-peer data integration setting. [10] discusses how Global-Local-As-
View (GLAV) rules [5,14] can also be derived from BAV pathways. We note that
AutoMed and BAV transform both schema and data together, and thus do not
suffer from any data/schema divide.

4 Bioinformatics Service Reconciliation

In this section, we present the problems encountered during service reconcilia-
tion and describe our proposed approach for overcoming them, including a brief
discussion of how our approach could be incorporated within a workflow tool. We
then provide details of XML DataSource Schema (XMLDSS), the XML schema
type used in our approach, and of our own earlier work on schema transformation
using ontologies that has been extended to enable service reconciliation.

4.1 Proposed Approach

Consider a service S1 that produces data that need to be consumed by another
service S2. In general, the following issues need to be resolved when trying to
handle data exchange between S1 and S2:

1. Data model heterogeneity: different data models (e.g. legacy flat files
and XML) or different schema types (e.g. DTD and XML Schema) may be
used. It may also be the case that a service producing or consuming XML
data does not have an accompanying XML schema.

2. Semantic heterogeneity: schematic differences caused by the use of dif-
ferent terminology, or describing the same information at different levels of
granularity.
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3. Schematic heterogeneity: schematic differences caused by modelling the
same information in different ways. This heterogeneity is common to all
data modelling languages, but is amplified in XML due to its hierarchical
nature, as well as the possibility of using elements with a single text node
and attributes interchangeably.

4. Primitive data type heterogeneity: differences caused by the use of
different primitive data types, e.g. int and varchar, for the same concept.

To resolve these issues, we propose the following 4-step approach, illustrated
in Figure 1:

Step 1: XML as the common representation format. We handle differ-
ences in the representation format by using XML as the common representation
format. If the output/input of a service is not in XML, then a format converter
is needed to convert to/from XML.

Step 2: XMLDSS as the schema type. We use our own XMLDSS schema
type for the XML documents input to and output by services. An XMLDSS
schema can be automatically extracted from an XML document or automatically
derived from an accompanying DTD/XML Schema, if one is available.

Step 3: Correspondences to typed ontologies. We use one or more on-
tologies as a ‘semantic bridge’ between services. Providers or users of services
semantically annotate the inputs and outputs of services by defining correspon-
dences between an XMLDSS schema and an ontology. Ontologies in our approach
are typed, i.e. each concept is associated with a data type, and so defining cor-
respondences resolves issues 2 and 4 discussed above.

Step 4: Schema and data transformation. We use the AutoMed toolkit
to automatically transform the XMLDSS schema of the output of service S1 to
the XMLDSS schema of the input of service S2. This is achieved using the two
automatic algorithms discussed in Section 4.4.

If service S1 does not have an accompanying DTD or XML Schema for its
output, sample XML output documents for S1 must be provided, and these must
represent all valid formats that S1 is able to produce, so as to create an XMLDSS
schema that represents all possible instances of the output of S1. If this is not
possible, then an XMLDSS can be extracted at run-time for every new instance
XML document output by S1. The same applies for the input of S2.

4.2 Integration of Approach With Workflow Tools

Our architecture for service reconciliation supports two different approaches
identified below, depending on the preferred form of interoperability between
AutoMed and the workflow tool.

Mediation service. With this approach, the workflow tool invokes service S1,
receives its output, and submits this output and a handle on service S2
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Fig. 1. Reconciliation of services S1 and S2 using ontology O1

to a service provided by the AutoMed system. This uses our approach to
transform the output of S1 to a suitable input for consumption by S2.

Shim generation. With this approach, the AutoMed system is used to gener-
ate shims, i.e. tools or services for the reconciliation of services, by generating
transformation scripts which are then incorporated within the workflow tool.

In the following, we provide an overview of the shim generation architecture.
The mediation service architecture is described in more detail in Section 5.

With the shim generation approach, AutoMed is not part of the architecture,
and so it is necessary to export AutoMed’s mediation functionality described and
exemplified in Section 5. This functionality consists of the format converters, the
algorithms for generating an XMLDSS schema from an XML document, DTD
or XML Schema, and the XMLDSS schema transformation algorithms.

Format converters are not a part of the AutoMed toolkit and so can be used
from within a workflow tool, without exporting any AutoMed functionality. The
converters can be either incorporated within the workflow tool, or their func-
tionality can be imported using services. As an example, a number of shims in
myGrid are format converters.

The XMLDSS schema type is currently used only within the AutoMed system,
but it does not require AutoMed functionality. As a result, the XMLDSS schema
generation algorithms can be used from within a workflow tool in the same way
as format converters.

The two XMLDSS schema transformation algorithms described in Section 4.4
are currently tightly coupled with the AutoMed system, since they use the BAV
approach, which is currently supported only by AutoMed. To use our approach
without dynamically integrating AutoMed with a workflow tool, we need to
export the functionality of the schema transformation algorithms, in order for
this AutoMed-dependent functionality to be used statically by a workflow tool.
To this effect, we have designed an XQuery query generation algorithm, as de-
tailed in [25], that derives a single XQuery query Q, able to materialise an
XMLDSS schema X2 using data from the data source of an XMLDSS schema
X1, and a transformation pathway X1 → X2. In summary, to derive query Q, the
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algorithm first uses AutoMed’s Query Processor to create the IQL view defini-
tion V of each construct c of X2 in terms of constructs of X1, and to translate
each V into an equivalent XQuery query, VXQuery . The algorithm then creates a
single XQuery query Q, for materialising X2 by following a bottom-up approach
as follows. The algorithm first creates the XQuery queries for materialising the
leaf elements of X2, together with their attributes and child text nodes. These
queries are then used to create the queries that materialise the parent elements
of the leaf elements, together with their attributes and text nodes. This process
is repeated until the root of X2 is reached and the overall query Q is formulated.

4.3 XML DataSource Schema (XMLDSS)

The standard schema definition languages for XML are DTD and XML Schema.
However, both of these provide grammars to which conforming documents ad-
here, and they do not explicitly summarise the tree structure of the data sources.
In our schema transformation setting, tree-structured schemas are preferable as
they facilitate schema traversal, structural comparison between a source and a
target schema, and restructuring of the source schema. Moreover, such a schema
type means that the queries supplied with AutoMed primitive transformations
are essentially path queries, which are easily generated.

The AutoMed toolkit therefore supports a modelling language called XML
DataSource Schema (XMLDSS), which summarises the tree structure of XML
documents, much like DataGuides [6]. XMLDSS schemas consist of four kinds
of constructs: Element, Attribute, Text and NestList (see [23] for details of their
specification in terms of the HDM). The last of these defines parent-child rela-
tionships either between two elements ep and ec or between an element ep and
the Text node. These are respectively identified by schemes of the form 〈〈i, ep, ec〉〉
and 〈〈i, ep, Text〉〉, where i is the position of ec or Text within the list of children
of ep in the XMLDSS schema.

In an XMLDSS schema there may be elements with the same name occurring
at different positions in the tree. To avoid ambiguity, the identifier element-
Name$count is used for each element, where count is incremented every time the
same elementName is encountered in a depth-first traversal of the schema.

4.4 XML Schema and Data Transformation Using Ontologies

We now describe the two algorithms, the schema conformance algorithm (SCA)
and the schema restructuring algorithm (SRA), used in our approach to trans-
form a source XMLDSS schema X1 and its data to the structure of a target
XMLDSS schema X2. In this setting, these are the XMLDSS schemas of the
outputs and inputs of services. Our own previous work in [23,26,27] addressed
the issue of XML schema and data transformation. This section describes an
extended version of the approach of [27], in that the expressiveness of the cor-
respondences used in our approach has been enriched, and the SCA algorithm
has been extended to support this.

The SCA uses manually defined correspondences between XMLDSS schemas
X1 and X2 and an ontology O, in order to automatically transform X1 and
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X2 into equivalent schemas X ′
1 and X ′

2 that use the same terms as O. As a
result, transformation pathways X1 → X ′

1 and X2 → X ′
2 are created. By the

bidirectionality of BAV, a pathway X ′
2 → X2 can be automatically derived from

the pathway X2 → X ′
2.

In [27], a correspondence defines an Element, Attribute or NestList of an
XMLDSS schema by means of an IQL query over a typed ontology.1 In par-
ticular, an Element e may map either to a Class c; or to a path ending with
a class-valued property of the form 〈〈p, c1, c2〉〉, where p is the property name
and c1 and c2 are source and target classes; or to a path ending with a literal-
valued property 〈〈p, c, Literal〉〉, where p is the property name and c the source
class; additionally, the correspondence may state that the instances of a class
are constrained by membership in some subclass. An Attribute may map either
to a literal-valued property or to a path ending with a literal-valued property.

We now extend the correspondences of [27] as follows. An XMLDSS scheme of
the form 〈〈i, e, Text〉〉 (where i denotes the order of 〈〈Text〉〉 in the list of children
of Element 〈〈e〉〉) may map to a literal-valued property of the form 〈〈p, c, Literal〉〉.
In addition to 1-1 correspondences, we now also allow 1-n correspondences as
follows. An Element/Attribute may map to more than one path over the on-
tology. In this case, n correspondences are required, each associating the same
XMLDSS Element/Attribute to a different path over the ontology, and specifying
an expression that determines the part of the extent of the Element/Attribute to
which the correspondence applies (an example of this is given in Section 5). This
expression is in general a select-project IQL query. We note that these extended
correspondences are GLAV, in contrast with the LAV correspondences defined
in our own earlier work [27], as an expression over an XMLDSS construct (rather
than just an XMLDSS construct) maps to a path in the ontology.2

The SCA uses correspondences from an Element or Attribute to a single path
over the ontology to rename that construct, ensuring consistency with the termi-
nology of the ontology. In the case of a 1-n correspondence relating to an Element
e with parent p, the algorithm first retrieves all relevant correspondences, then
inserts n Elements under p (in the position previously held by e), named after the
paths specified by the correspondences, and finally deletes e and its underlying
structure. When inserting the n Elements under p, the algorithm also replicates
the underlying structure of the old Element e under each one of the newly inserted
Elements. A 1-n correspondence relating to an Attribute is handled similarly: the
owner Element is replaced by n Elements with the same name, each containing
a different Attribute named after the paths specified by the correspondences.
A correspondence mapping an Attribute or a scheme of the form 〈〈i, e, Text〉〉 in
the XMLDSS to a literal-valued property in the ontology is used to perform

1 In principle, it would be possible to use more high-level query languages such as
XQuery to specify correspondences in our setting. Currently, AutoMed provides
an XQuery-to-IQL translator component, capable of translating (possibly nested)
FLWR XQuery queries to (possibly nested) select-project-join IQL queries.

2 Even though BAV pathways could have been used to express these GLAV mappings,
we specify the mappings directly as GLAV rules for compactness.
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primitive data type reconciliation: if the data type of the Attribute or scheme in
the XMLDSS schema is not the same as in the ontology, the algorithm replaces
the Attribute or scheme by performing a type-casting operation.

After the transformation of schemas X1 and X2 into schemas X ′
1 and X ′

2
that use the same terms as O, our second algorithm, the SRA presented in [27],
automatically transforms X ′

1 to the structure of X ′
2, producing a transformation

pathway X ′
1 → X ′

2. To do so, the SRA first inserts into X ′
1 those constructs

present in X ′
2 but not in X ′

1. After this growing phase, a shrinking phase follows,
in which the SRA removes from X ′

1 those constructs present in X ′
1 but not in

X ′
2. The SRA is able to generate synthetic structure to avoid loss of data caused

by structural incompatibilities between X ′
1 and X ′

2. The SRA is also able to use
information that identifies an element/attribute in X ′

1 to be either equivalent to,
or a superclass of, or a subclass of an element/attribute in X ′

2. This information
may be produced by, e.g. a schema matching tool or, in our context here, via
correspondences to an ontology.

Consequently, an overall transformation pathway from X1 to X2 can now be
obtained by composing the pathways X1 → X ′

1, X ′
1 → X ′

2 and X ′
2 → X2. This

pathway can be used to automatically transform data that is structured accord-
ing to X1 to be structured according to X2, and an XML document structured
according to X2 can finally be materialised (the pathway X1 → X2 could also
be used to translate queries expressed on X2 to operate on X1).

Note that we do not assume the existence of a single ontology. As discussed
in [27], it is possible for XMLDSS schema X1 to have a set of correspondences C1
to an ontology O1, and for XMLDSS schema X2 to have a set of correspondences
C2 to another ontology O2. Provided there is an AutoMed transformation path-
way between O1 and O2, either directly or through one or more intermediate
ontologies, we can use C1 and the transformation pathway between O1 and O2 to
automatically produce a new set of correspondences C′

1 between X1 and O2. As a
result, this setting is now identical to a setting with a single ontology. There is a
proviso here that the new set of correspondences C′

1 must conform syntactically
to the correspondences accepted as input by the schema conformance process.
Determining necessary conditions for this to hold is an area of future work.

5 Case Study

We now describe our approach in more detail and demonstrate the use of Au-
toMed as a mediation service by specifying a sample bioinformatics workflow.
Note that listings of all service inputs, outputs and XMLDSS, XML Schema and
DTD schemas discussed in this section are given in [25].

Figure 2 illustrates a sample workflow with three services that will be used
to demonstrate our approach. The first service takes as input an IPI (http://
www.ebi.ac.uk/IPI) accession number, e.g. IPI00015171, and outputs the cor-
responding IPI entry as a flat file using the UniProt (http://
www.ebi.uniprot.org) format. The second service receives an InterPro
(http://www.ebi.ac.uk/interpro) accession number and returns the

http://www.ebi.ac.uk/IPI
http://www.ebi.ac.uk/IPI
http://www.ebi.uniprot.org
http://www.ebi.uniprot.org
http://www.ebi.ac.uk/interpro
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Fig. 2. Sample Workflow

corresponding InterPro entry. The third service receives a Pfam(http://
www.sanger.ac.uk/Software/Pfam accession number and returns the corre-
sponding Pfam entry. In this workflow, two transformations are needed: T1
extracts the InterPro accession number from an IPI entry using the UniProt
format, while T2 extracts the Pfam accession number from an InterPro entry.

We now apply the mediation service approach described in Section 4.2, for
the reconciliation of the services of the workflow of Figure 2.

Step 1: XML as a common representation format. Service getIPIEntry
outputs a flat file that follows the UniProt representation format and contains
a single entry consisting of multiple lines. Each line consists of two parts, the
first being a two-character line code, indicating the type of data contained in
the line, while the second contains the actual data, consisting of multiple fields.

Since UniProt also has an XML representation format specified by an XML
Schema, we created a format converter that, given an IPI flat file f that follows
the UniProt format, converts f to an XML file conforming to that XML Schema.

Service getInterProEntry outputs an XML file and so there is no need for
a format converter. Concerning the input of the second and the third service,
they each take as input a single string, representing an InterPro/Pfam accession
number, respectively. The input XML documents for these contain a single XML
element, ip acc and pf acc, respectively, with a PCData node as a single child,
as shown below. For these, the format converters implement the functionality of
the XPath expressions /ip acc/text() and /pf acc/text(), respectively.

<ip_acc>InterPro_accession_string</ip_acc>

<pf_acc>Pfam_accession_string</pf_acc>

Step 2: XMLDSS schema generation. After resolving representation format
issues, we now give details on the generation of XMLDSS schemas for our setting.
As discussed above, service getIPIEntry outputs a flat file which is converted to
an XML file that conforms to the UniProt XML Schema. An XMLDSS schema
for the output of this service is automatically derived from that XML Schema.
Similarly, an XMLDSS schema for the output of service getInterProEntry is
automatically derived using the InterPro DTD schema.

Concerning the input of the second and the third service, the corresponding
XMLDSS schemas are automatically extracted by using a single sample XML
document for each, such as the ones given earlier.

Step 3: Correspondences. After generating the XMLDSS schemas for our
workflow, we need to specify the correspondences between these schemas and an
ontology. In this case, we have used the typed myGrid OWL domain ontology.

http://www.sanger.ac.uk/Software/Pfam
http://www.sanger.ac.uk/Software/Pfam
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In general, all XMLDSS elements and attributes should be mapped to the
ontology. However, if an element or attribute cannot be mapped to the ontology,
this construct is not affected by our SCA and SRA algorithms that use the corre-
spondences to transform X1 to the structure of X2. An advantage of this is that
data transformation is still possible with only a partial set of correspondences
from an XMLDSS schema to the ontology. This property is particularly signif-
icant in terms of the applicability and scalability of our approach, as it allows
for incrementally defining the full set of correspondences between an XMLDSS
schema and an ontology: one can define only those correspondences relevant to
the specific problem at hand, instead of the full set of correspondences.

In our example, this means that we only need to specify correspondences
for those constructs of the XMLDSS schema of the output of getIPIEntry
that contribute to the input of service getInterProEntry. Consequently, we
need to specify correspondences for only two constructs, 〈〈dbReference$9〉〉 and
〈〈dbReference$9, id〉〉 (see Table 1). The first models an entry in a bioinformatics
data resource, whose type is specified by 〈〈dbReference$9, type〉〉. The type of a
resource is modelled in IPI using data values, whereas in the ontology it is mod-
elled as classes, and so n correspondences are required for this construct, where
n is the number of types of resources that IPI supports and that also exist in the
ontology. Each of these correspondences maps 〈〈dbReference$9〉〉 to a class in the
ontology representing a bioinformatics data resource record and specifies the part
of the extent of 〈〈dbReference$9〉〉 to which the correspondence applies. For exam-
ple, the second correspondence states that those instances of 〈〈dbReference$9〉〉
whose 〈〈dbReference$9, type〉〉 Attribute has a data value of ‘Pfam’, map to the
〈〈Pfam record〉〉 ontology class. Due to space limitations, but without loss of gen-
erality, we only provide the two correspondences related to InterPro and Pfam.

The XMLDSS schema of the input of service getInterProEntry consists of a
single Element construct, 〈〈ip acc〉〉, which corresponds to class
〈〈InterPro accession〉〉in the ontology, and of a NestList construct, 〈〈1, ip acc, Text〉〉.
The correspondences are given in Table 2. The correspondences for the XMLDSS
schema of the input of the third service, getPfamEntry, are not listed as they are

Step 4: Schema transformation. After manually specifying correspondences,
the SCA and SRA algorithms can automatically transform the outputs of ser-
vices getIPIEntry and getInterProEntry to the required inputs for services
getInterProEntry and getPfamEntry respectively.

Concerning the output of service getIPIEntry, the schema conformance al-
gorithm (SCA) first retrieves all correspondences related to 〈〈dbReference$9〉〉
(in this case 2 correspondences) and inserts 〈〈InterPro record$1〉〉 and
〈〈Pfam record$1〉〉, using the correspondences’ expressions to select the appro-
priate 〈〈dbReference$9〉〉 instances, i.e. those that have a type Attribute with
value ‘InterPro’ and ‘Pfam’ respectively. As discussed in Section 4.4, the SCA
then replicates under the newly inserted Elements the structure located under
〈〈dbReference$9〉〉 (again using the correspondences’ expressions to select the ap-
propriate structure), and then removes 〈〈dbReference$9〉〉. Note that this removal
is postponed until after any other insertions are performed, as other insertions
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Table 1. Correspondences between the XMLDSS schema of the output of getIPIEntry
and the myGrid ontology

Construct: 〈〈dbReference$9〉〉
Extent: [{d}|{d, t} ← 〈〈dbReference$9, type〉〉; t =′ InterPro′]

Path: 〈〈InterPro record〉〉
Construct: 〈〈dbReference$9〉〉

Extent: [{d}|{d, t} ← 〈〈dbReference$9, type〉〉; t =′ Pfam′]
Path: 〈〈Pfam record〉〉

Construct: 〈〈dbReference$9, id〉〉
Extent: [{d, i}|{d, i} ← 〈〈dbReference$9, id〉〉;

{d, t} ← 〈〈dbReference$9, type〉〉; t =′ InterPro′]
Path: [{ir, l}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉;

{ia, l} ← 〈〈datatype, InterPro accession, Literal〉〉]
Construct: 〈〈dbReference$9, id〉〉

Extent: [{d, i}|{d, i} ← 〈〈dbReference$9, id〉〉;
{d, t} ← 〈〈dbReference$9, type〉〉; t =′ Pfam′]

Path: [{pr, l}|{pa, pr} ← 〈〈part of, Pfam accession, Pfam record〉〉;
{pa, l} ← 〈〈datatype, Pfam accession, Literal〉〉]

Table 2. Correspondences between the XMLDSS schema of the input of getInterPro
and the myGrid ontology

Construct: 〈〈ip acc$1〉〉
Extent: 〈〈ip acc$1〉〉

Path: [{ia}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉]
Construct: 〈〈1, ip acc$1, Text〉〉

Extent: 〈〈1, ip acc$1, Text〉〉
Path: [{ia, l}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉;

{ia, l} ← 〈〈datatype, InterPro accession, Literal〉〉]

may need to use the extent of 〈〈dbReference$9〉〉 in the queries supplied with the
AutoMed transformations.

The SCA then retrieves all correspondences related to 〈〈dbReference$9, id〉〉 (in
this case 2 correspondences) and inserts Attributes 〈〈InterPro record$1,InterPro
record.part of.InterPro accession〉〉 and 〈〈Pfam record$1,InterPro record.part of.Pf
am accession〉〉, using the correspondences’ expressions to select the appropriate
〈〈dbReference$9, id〉〉 instances (as discussed earlier, 〈〈dbReference$9〉〉 has not yet
been removed). Concerning primitive data types, 〈〈dbReference$9, id〉〉 is of type
string, and the same applies for all accession numbers in the myGrid domain
ontology, so there is no need for any type-casting operations.

Concerning the input of getInterProEntry, the SCA uses the first correspon-
dence to rename 〈〈ip acc$1〉〉 to 〈〈InterPro record.part of.InterPro accession$1〉〉,
while the second correspondence, which is a primitive data type reconciliation
correspondence, is of no consequence as both the input of the service and the
ontology model InterPro accession numbers using the string data type.

After the application of the SCA, the XMLDSS schema X2 of the input of
service getInterProEntry contains three constructs, 〈〈InterPro record.part of.Int
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erPro accession$1〉〉, 〈〈Text〉〉 and a NestList linking these two constructs. The
XMLDSS schema of the output of service getIPIEntry, X1, contains a number
of constructs, but the only ones relevant to those of X2 are 〈〈InterPro record$1〉〉
and 〈〈InterPro record$1,InterPro record.part of. InterPro accession〉〉. The schema
restructuring algorithm (SRA) therefore applies a number of contract transfor-
mations supplied with the queries Void and Any, so as to remove non-relevant
constructs. The only non-trivial transformation is the attribute-to-element trans-
formation: first Element 〈〈InterPro record.part of.InterPro accession$1〉〉 is added
to X1 using the extent of Attribute 〈〈InterPro record$1,InterPro record.part of.Inter
Pro accession〉〉, then NestList 〈〈InterPro record.part of.InterPro accession$1, Text〉〉
is added, again using the Attribute extent, and finally the Attribute is deleted.

After applying the SRA, we finally employ the XMLDSS schema material-
isation algorithm defined in [26] to materialise X2, i.e. the input of service
getInterProEntry, using data from the data source of X1, i.e. the output of
service getIPIEntry, using the transformation pathway X1 → X ′

1 → X ′
2 → X2.

The application of Step 4 for the second part of our workflow is similar.

6 Conclusions and Future Work

In this paper we have presented a generic and scalable architecture for bioin-
formatics service reconciliation within a wider data transformation framework.
Our approach makes no assumptions about representation format, primitive data
type usage or the number of ontologies used. Moreover, this approach can be used
either dynamically or statically from within a workflow tool.

The architecture exploits format converters to establish a common XML for-
mat for all service inputs and outputs, thus reducing the overall complexity of
service reconciliation by establishing a common representation format. Service
inputs and outputs are then abstracted using the XMLDSS schema type which
can be automatically generated either from XML documents, or from accompa-
nying DTD or XML Schema specifications using our algorithms.

Our approach is able to use correspondences to multiple ontologies for defining
the semantics of services. This ‘semantic bridge’ is utilised by two automatic
algorithms that use the correspondences to allow data transformation between
services. The schema conformance algorithm is able to use 1-1 and 1-n GLAV
correspondences to ontologies, in order to produce schemas with no semantic
heterogeneity. The schema restructuring algorithm then restructures the source
schema to the target schema. This algorithm is able to avoid loss of information
that may be caused due to structural incompatibilities of the data sources.

While the correspondences to ontologies must be produced manually or semi-
automatically, an advantage of our approach is that correspondence reusability
is promoted by allowing the use of multiple ontologies. Moreover, our approach
does not require a full set of correspondences to be defined, but instead allows
the definition of only those correspondences between the XMLDSS schema and
the ontology that are relevant to the problem at hand - we therefore allow an
incremental approach for the definition of correspondences.
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The architecture has been illustrated with a bioinformatics workflow charac-
teristic of those currently available with string-based inputs. Future workflows
with more complex inputs are to be expected, which our architecture will also
readily support.

Concerning the integration of our approach with workflow tools, we defined
two possible architectures. The first, using AutoMed as a mediation service, can
be used from within a workflow tool by invoking AutoMed as a service and
does not require XMLDSS or XQuery support. On the other hand, in the shim
generation architecture AutoMed is used to statically generate shims, which can
then be incorporated into any workflow tool that supports XQuery.

Our current implementation has supported testing of the transformation path-
ways underpinning the service reconciliation examples presented within the Au-
toMed toolkit. Ongoing work is aimed at integrating our approach with the
Taverna workflow tool. The resulting implementation will be evaluated within
the proteomics grid infrastructure being developed in the ISPIDER project [24].

In future work, we will investigate the necessary conditions under which a set
of correspondences, transformed by a ‘semantic bridge’ defined between multiple
ontologies, adheres to the required format of our schema conformance algorithm.
Other extensions to our work include investigating the effect on our approach
of constraints on XMLDSS schemas and/or the ontologies, and also considering
the effect of the evolution of the inputs and outputs of services.

Acknowledgements. The work presented in this paper is part of the BBSRC-
funded ISPIDER project. The authors would also like to thank the ISPIDER
members and especially Khalid Belhajjame, Suzanne Embury and Norman Paton
for the fruitful discussions that helped shape the work presented in this paper.
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3. Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation
in scientific workflows. In: Proc. of Data Integration in the Life Sciences (DILS’04),
pp. 1–16 (2004)

4. Cruz, I.F., Xiao, H., Hsu, F.: An ontology-based framework for XML semantic
integration. In: Proc. IDEAS’04, pp. 217–226 (2004)

5. Friedman, M., Levy, A., Millstein, T.: Navigational plans for data integration. In:
National Conference on Artificial Intelligence, pp. 67–73. AAAI Press, Stanford,
California, USA (1999)

6. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In: Proc. VLDB’97, pp. 436–445 (1997)

7. Hull, D., et al.: Treating shimantic web syndrome with ontologies. In: Proc. of
Advanced Knowledge Technologies workshop on Semantic Web Services (2004)

8. Hull, D., Stevens, R., Lord, P.: Describing web services for user-oriented retrieval.
In: Proc. of W3C Workshop on Frameworks for Semantics in Web Services (2005)



104 L. Zamboulis, N. Martin, and A. Poulovassilis

9. Jasper, E., Poulovassilis, A., Zamboulis, L.: Processing IQL queries and migrating
data in the AutoMed toolkit. AutoMed Technical Report 20 (July 2003)

10. Jasper, E., Tong, N., McBrien, P.J., Poulovassilis, A.: View generation and op-
timisation in the AutoMed data integration framework. In: Proc. of 6th Baltic
Conference on Databases and Information Systems (2004)

11. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS’02, pp.
233–246 (2002)

12. Lord, P., Alper, P., Wroe, C., Goble, C.: Feta: A light-weight architecture for user
oriented semantic service discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC
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Abstract. Dataflow repositories are databases containing dataflows and
their different runs. We propose a formal conceptual data model for such
repositories. Our model includes careful formalisations of such features
as complex data manipulation, external service calls, subdataflows, and
the provenance of output values.

1 Introduction

Modern scientific research is characterized by extensive computerized data
processing of lab results and other scientific data. Such processes are often com-
plex, consisting of several data manipulating steps. We refer to such processes as
dataflows, to distinguish them from the more general workflows. General work-
flows also emphasize timing, concurrency, and synchronization aspects of a com-
plex process, whereas in this paper we are less interested in such aspects, and
our focus is mainly on data manipulation and data management aspects.

Important data management aspects of scientific dataflows include:

– Support of complex data structures, such as records containing different
attributes of a data object, and sets (collections) of data objects. When
combining, merging, and aggregating data, complex compositions of records
and sets can arise.

– It must be possible to iterate operations over all members of a set.
– It must be possible to call external resources and services, like GenBank.
– Subdataflows must be supported, i.e., one dataflow can be used as a service

in another dataflow.
– Dataflows must be specified in a clean, high-level, special purpose program-

ming formalism.
– A dataflow can be run several times, often a large number of times, on

different inputs.
– The data of these different runs must be kept, including input parameters,

output data, intermediate results (e.g., from external services), and meta-
data (e.g., dates).

The last item above is of particular importance and leads to the notion of
a dataflow repository: a database system that stores different dataflows to-
gether with their different runs. Dataflow repositories can serve many important
purposes:
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– Effective management of all experimental and workflow data that float
around in a large laboratory or enterprise setting.

– Verification of results, either within the laboratory, by peer reviewers, or by
other scientists who try to reproduce the results.

– Tracking the provenance (origin) of data values occurring in the result of a
dataflow run, which is especially important when external service calls are
involved.

– Making all data and stored dataflows available for complex decision support
or management queries. The range of such possible queries is enormous; just
to give two examples, we could ask “did an earlier run of this dataflow, using
an older version of GenBank, also have this gene as a result?”, or “did we
ever run a dataflow in which this AA sequence was also used for a BLAST
search?”

The idea of dataflow repository is certainly not new. It has been repeatedly
emphasized in the database and bioinformatics literature, and practical dataflow
systems such as Taverna [1] or Kepler [2] do accommodate many of the features
listed above. What is lacking so far, however, is a formal, conceptual data model
of dataflow repositories. This paper contributes towards this goal.

A conceptual data model for dataflow repositories should offer a precise spec-
ification of the types of data (including the dataflows themselves) stored in the
repository, and of the relationships among them. Such a data model is important
because it provides a formal framework that allows:

– Analyzing, in a rigorous manner, the possibilities and limitations of dataflow
repositories.

– Comparing, again in a rigorous manner, the functionalities of different prac-
tical systems.

– Highlighting differences in meaning of common notions as used by differ-
ent authors or in different systems, such as “workflow”, “provenance”, or
“collection”.

For the dataflow programming language, our model uses the nested relational
calculus (NRC), enhanced with subtyping and external functions. NRC [3] is a
well-studied language with exactly the right set of operations that are needed for
the manipulation of the types of complex data that occur in a dataflow [4]. The
suitability of NRC (in the form of a variant language called CPL) for scientific
data manipulation and integration purposes has already been amply demon-
strated by the Kleisli system [5,6]. We have confirmed this further by doing some
case studies ourselves (e.g., of a proteomics dataflow [7]). A detailed report on
several case studies of bioinformatics dataflows modeled using our formalism will
be presented in a companion paper.

In this paper we provide formalisations of a number of fundamental notions
related to dataflow repositories, such as:

– the notion of run of a dataflow;
– the provenance tracking of dataflow results;
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– the binding of service names to external functions or to subdataflows; and
– the relationship between a run of a dataflow and the runs of its subdataflows.

2 Example

In this section we provide a simple example to illustrate different aspects involved
in modelling of both dataflows and dataflow repository.

We begin by showing two dataflows, expressed in the nested relational cal-
culus, for the following protocol: “Given two organisms A and B, extract all
messenger RNA sequences from GenBank belonging to A. Then for each found
sequence, search for similar sequences belonging to B.”

dataflow findSimilar (A : Organism, B : Organism) : MatchedSeqs is⋃
for s in entrez(A, genbank) return
if s .moltype = mRNA

then {〈a : s , b : filter(blast(s , 1e − 4), 300,B)〉}
else ∅

dataflow filterBlastRep(rep : BlastRep, min : Int, org : Organism) : Seqs is⋃
for a in accDb(rep,min) return
let seq := getSeq(a.accessionnr , a.database) in

if seq.organism = org
then {seq }
else ∅

These dataflows use the following complex types:

MatchedSeqs = {〈a : Seq, b : Seqs〉},
Seqs = {Seq},
Seq = 〈organism : Organism,moltype : MolType, content : NCBIXML〉,
AccNrDB = 〈accesionnr : AccessionNr, database : Database〉.

The dataflows also contain various service calls, with the following signatures:

entrez (org : Organism, db : Database) : Seqs,
filter(rep : BlastRep, score : Int, org : Organism) : Seqs,
blast(seq : Seq, evalue : String) : BlastRep,
accDb(rep : BlastRep, score : Int) : {AccNrDB},
getSeq(acc : AccNrDB): Seq.

Before we can execute the dataflows, we must bind the service names used to
express service calls to actual services. We bind entrez and blast to external
services provided by NCBI. We bind filter to dataflow filterBlastRep, which thus
becomes a subdataflow of findSimilar . Now we have to bind all service names
appearing in filterBlastRep, i.e., accDb and getSeq . We choose to bind both of
them to some external service. The binding process stops here, as filterBlastRep
does not have any subdataflows.

Suppose now that we have executed findSimilar with value cat for parameter
A, and mouse for B . Suppose the following value has been returned:
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{〈a : 〈organism : cat,moltype : mRNA,ncbiXML : AY800278〉,
b : {〈organism : mouse,moltype : mRNA,ncbiXML : XM 908677〉,

. . . ,
〈organism : mouse,moltype : DNA,ncbiXML : NW 042634〉}〉,

. . . ,
〈a : 〈organism : cat,moltype : mRNA,ncbiXML : NM 001079655〉,
b : {〈organism : mouse,moltype : mRNA,ncbiXML : NM 053015〉,

. . . ,
〈organism : mouse,moltype : DNA,ncbiXML : NT 078297〉}〉},

where values like AY800278 are used as place holders for the corresponding XML
documents. We denote this complex value by finalresult .

In our dataflow repository model, however, not just the final result value will
be kept, but also information about the service calls that have happened during
the run. Such information would look as follows:

(entrez , [(A, cat), (B , mouse), (org , cat), (db, genbank)], catseqs),
(blast , [(A, cat), (B , mouse), (s , cat1 ), (seq , cat1 ), (evalue, 1e − 4)], rep1 ),
(filter , [(A, cat), (B , mouse), (s , cat1 ),

(rep, rep1 ), (score, 300), (org , mouse)], foundcat1 ),
(blast , [(A, cat), (B , mouse), (s , cat2 ), (seq , cat2 ), (evalue, 1e − 4)], rep2 ),
(filter , [(A, cat), (B , mouse), (s , cat2 ),

(rep, rep2 ), (score, 300), (org , mouse)], foundcat2 ),

Here, catseqs is a set containing the following tuples (among many others):

cat1 = 〈organism : cat,moltype : mRNA,ncbiXML : AY800278〉,
cat2 = 〈organism : cat,moltype : mRNA,ncbiXML : NM 001079655〉.

Also, repi would be documents of type BlastRep, and, for instance, foundcat2
would be a set containing the following tuples (among several others):

m1 = 〈organism : mouse,moltype : mRNA,ncbiXML : NM 053015〉,
m2 = 〈organism : mouse,moltype : DNA,ncbiXML : NT 078297〉.

Since all information needed to reconstruct the entire run is available, we can
trace the provenance (origin) of a particular subvalue appearing in finalresult ,
say m1 . We produce a back-trace of the entire run by using subexpression oc-
currences and their respective input values, as follows:

{(
⋃

, [(A, cat), (B , mouse)],m1 ),
(for, [(A, cat), (B , mouse), (s , cat2 )],m1 ),
( if, [(A, cat), (B , mouse), (s , cat2 )],m1 ),
({ }, [(A, cat), (B , mouse), (s , cat2 )],m1 ),
(〈 〉, [(A, cat), (B , mouse), (s , cat2 )],m1 ),
(filter , [(A, cat), (B , mouse), (s , cat2 ), (rep, rep2 ), (min , 300), (org , mouse)],m1 )}.

Note that filter is bound to a subdataflow, so if desired, we can further track
the provenance of m1 in the corresponding run of filterBlastRep.
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The main idea of a dataflow repository is that dataflows, as well as their runs,
type declarations, input values, intermediate results, and subdataflow links, are
all stored together in a database system. Here is an illustration of this idea:

The database should also contain meta-data stored in various additional ta-
bles. By meta-data we understand annotating information such as author of a
dataflow, date of a run, or version of an external service. Through dataflow iden-
tifiers, run identifiers, and referential integrity, these meta-data tables are linked
to the repository tables. In the above illustration, we use call-outs to represent
these links.

3 Dataflows, Runs, and Provenance

In this section, we present the formal dataflow model. Due to space limitations,
we will only be able to give a sample of the formal definitions, and all proofs of
mathematical properties will be omitted.

Complex Values. We model the complex data structures occurring in a work-
flow using complex values. Complex values are constructed, using record and set
constructions, from base values. Base values can be numbers or strings, but can
also be XML files; it is essentially up to the application to decide which kinds
of values are considered to be “atomic”, and of which kinds of values we want
to explicitly model the internal structure within the dataflow.

For example, consider the report returned by a BLAST search. One can con-
sider the entire report as a base value, e.g., an XML file, and use an XQuery
operation to extract information from it. This implies that the dataflow will
model the XQuery operation as a single step: we will model such single steps by
service calls. On the other hand, one can consider the structure of the report,
modeled as a long record with various attributes, including a set of search results,
and model this explicitly as a combination of record and set structures. Since
our dataflow model includes the operations of the nested relational calculus, the
process of extracting information from the report can be fully modeled in the
dataflow. It always depends on the designer of the workflow application which
data manipulation aspects of the dataflow need to be explicitly modeled, and
which can be modeled as a single step: a good formal model should not enforce
this choice in a particular direction.

Formally, we assume a given countably infinite set A of base values. To la-
bel attributes in tuples (records), we also need a countably infinite set L of
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labels. Then the set V of complex values is the smallest set satisfying the fol-
lowing: A ⊆ V ; if v1, . . . , vn ∈ V , then the finite set {v1, . . . , vn} is a complex
value; if v1, . . . , vn ∈ V , and l1, . . . , ln ∈ L are distinct labels, then the tuple
〈 l1 : v1, . . . , ln : vn 〉 is also a complex value. The positioning of elements within
a named tuple is arbitrary.

Note that we work with sets as the basic collection type, because other kinds
of collections can be modeled as sets of records. For an ordered list, for example,
one could use a numerical attribute that indicates the order in the list.

Complex Types. Types are a basic mechanism in computer programming to avoid
the application of operations to inputs on which the operation is not defined.
Thus, all data occurring in our dataflow model is strongly typed. We use a type
system for complex objects with tuples and sets, known from database theory,
that includes a form of subtyping.

Our type system starts from a finite set B of base types. Then the set T of
complex types is the smallest set satisfying the following: ⊥ ∈ T ; B ⊆ T ; if τ ∈ T ,
then the expression {τ } is also a complex type, called a set type; if τ1, . . . , τn ∈ T ,
and l1, . . . , ln ∈ L are distinct labels, then the expression 〈 l1 : τ1, . . . , ln : τn 〉 is
also a complex type, called a tuple type. The positioning of elements within a
tuple type is arbitrary.

The purpose of base types is obviously to organize the base values in classes.
The purpose of ⊥ is to have a generic type for the empty set; that type is the
set type {⊥}. More generally, the semantics of types is that for each type τ we
have a set [[τ ]] of values of type τ , defined in the obvious manner (omitted).

Reasons of flexibility require that the type system is equipped with a form of
subtyping [8]. Base types provide an organization of the different types of base
values into different classes, and it is standard to allow for classes and subclasses.
For example, base types “Protein” and “Peptide” could be subclasses of a base
type “AminoAcidSeq”, which in turn could be a subtype of “BioSeq”. Moreover,
subtyping allows a flexible typing of if-then-else statements in dataflows. Thus,
the type system of our dataflow model, while guaranteeing safe execution of
operations, does not impede flexible specification of dataflows. Due to space
limitations, however, we omit all details concerning subtyping.

Abstract Services. A common and general view of dataflows is that of a complex
composition of atomic actions. In our model, the composition is structured using
the programming constructs of the nested relational calculus (NRC). Moreover,
the basic data manipulation operators of the NRC are already built in as atomic
actions. Any further atomic actions are modeled in our formalism as service calls.
Service calls can be really calls to external services, such as NCBI BLAST, but
can also be calls to library functions provided by the underlying system, such
as addition for numbers or concatenation for strings, or the application of an
XQuery to an XML file. Moreover, one dataflow can appear as a service call in
another dataflow, thus becoming its subdataflow.

In our model, dataflows use abstract service names to denote services. The
type system requires signatures to be attached to these names. Only at the time a
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dataflow needs to executed we provide meaning to the service names by assigning
them service functions. In this section, service functions are merely abstract non-
deterministic functions, as this is already sufficient to formally define a run of a
dataflow. In Section 4, we will need to be more specific and distinguish between
external services (or library functions) on the one hand, and subdataflows on
the other hand.

Formally, a signature is an expression of the form τ1, . . . , τn → τout, where
the τ ’s are types. Likewise, a service function is an (infinite) relation L from
[[τ1 ]] × · · · × [[τn ]] to [[τout ]], that is total in the sense that for any given values
v1, . . . , vn of types τ1, . . . , τn respectively, there must exist at least one value
vout of type τout such that (v1, . . . , vn, vout) ∈ L. We denote the universe of all
possible signatures by S, and that of all possible service functions by F.

Service functions thus model the input-output behavior of services. Note that
service functions can be non-deterministic, in that there may be more than
one output related to a given input. This is especially important for modeling
external services over which we have no control. The internal database of an
on-line service (e.g., BLAST) may be updated, or the service may from time to
time fail and produce an error value instead of the actual output value.

Note that we assume service functions to be total. For external services over
which we have no control, or to model system failures, totality can always be
guaranteed using wrappers. We also assume that wrappers take care of all com-
patibility issues between used services, as data integration aspects are beyond
the scope of this paper.

The Nested Relational Calculus. NRC is a simple functional programming lan-
guage [3], built around the basic operations on records and sets, with for-loops
and if-then-else (and let-expressions) as the only programming constructs. We
naturally augment NRC with service calls.

Formally, we assume countably infinite sets X of variables and N of service
names. Then the NRC expressions are defined by the following BNF grammar:

Expr → BaseExpr | CompositeExpr
BaseExpr → Constant | Variable | “∅”
CompositeExpr → “{” Expr “}” | Expr “∪” Expr | “

⋃
” Expr |

“〈” Element (“,” Element)∗ “〉” | Expr“.”Label |
“for” Variable “in” Expr “return” Expr |
Expr “=” Expr | Expr “= ∅” |
“if” Expr “then” Expr “else” Expr |
“let” Variable “:=” Expr “in” Expr |
ServiceName “(” Expr (“,” Expr)∗ “)”

Element → Label “:” Expr
Constant → a ∈ A
Variable → x ∈ X
Label → l ∈ L
ServiceName → f ∈ N
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The variables in an expression that are introduced by a for- or a let-construct are
said to occur bound ; all other occurrences of variables in an expression constitute
the free variables of an expression. For simplicity of exposition, we disallow that
different for- or let-subexpressions bind the same variable. We also disallow that a
free variable occurs bound at the same time. We denote the set of free variables of
an expression e by FV (e). Naturally, the free variables are the input parameters
of the dataflow expressed by the expression. We also use the notation SN (e) for
the set of service names used in expression e.

When we want to run an expression, we need to assign input values to the
free variables, and we need to assign service functions to the service names used
in the expression. Formally, a value assignment is a mapping σ from FV (e) to
V , and a function assignment is a mapping ζ from SN (e) to F. The evaluation
of expressions is then defined by a system of rules (one rule for each construct
of NRC) by which one can infer judgments of the form σ, ζ |= e ⇒ v, meaning
“value v is a possible final result of evaluating e on σ and ζ”. Recall that there
can be more than one possible final result value, if non-deterministic service
functions are involved in the evaluation.

Since these inference rules are known from the literature [3], we just present
a sample of them, using big union, if-then-else, and for-loops as examples. We
also show the rule for service calls:

σ, ζ |= e ⇒ {v1, . . . , vn}
σ, ζ |=

⋃
e ⇒ v1 ∪ · · · ∪ vn

σ, ζ |= e1 ⇒ {w1, . . . , wn } ∀i ∈ {1, . . . , n} : add(σ, x, wi), ζ |= e2 ⇒ vi

σ, ζ |= for x in e1 return e2 ⇒ {v1, . . . , vn}

σ, ζ |= e1 ⇒ true σ, ζ |= e2 ⇒ v

σ, ζ |= if e1 then e2 else e3 ⇒ v

σ, ζ |= e1 ⇒ false σ, ζ |= e3 ⇒ v

σ, ζ |= if e1 then e2 else e3 ⇒ v

∀i ∈ {1, . . . , n} : σ, ζ |= ei ⇒ vi (v1, . . . , vn, w) ∈ ζ(f )
σ, ζ |= f (e1, . . . , en) ⇒ w

In the rule for for-loops, by add(σ, x, wi) we mean the value assignment obtained
from σ by updating the value of x to wi.

In order to guarantee that expression evaluation will not fail, we must type-
check the expression. The typechecker requires that we declare types for the free
variables, and that we declare signatures for the service names. Formally, a type
assignment for e is a mapping Γ from FV (e) to T , and a signature assignment
is a mapping Θ from SN (e) to S. Typechecking is then defined by a system of
rules (omitted due to space limitations) by which one can infer judgments of the
form Γ, Θ � e : τ , meaning “e is well typed given Γ and Θ, with result type τ”.
The rules are such that there can be at most one possible result type for e given
Γ and Θ.

The following property now states that the type system assures safe execution
of expressions.
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Property 1. If Γ, Θ � e : τ can be inferred, and σ and ζ are value and function
assignments consistent with Γ and Θ, then there always exists a value v of type
τ such that σ, ζ |= e ⇒ v can be inferred.

Runs. In a dataflow repository, we want to keep the information about the
different runs we have performed of each dataflow. For this, it is not sufficient to
just keep the input values. Indeed, if external services are called in the dataflow,
merely rerunning the dataflow on the same inputs may not produce the same
result as before, because the behavior of the external service may have changed
in the meantime, or because it may even fail this time. It is also not sufficient
to keep only the final result value of every run in addition to the input values.
Indeed, the repository should support provenance tracking of output values, by
which the system can show how certain output values were produced during the
dataflow execution. Again, as before, merely rerunning the dataflow will not do
here.

We conclude that it is necessary to keep, for each run of an expression e,
the information about the service calls that have happened during the run.
We can naturally represent this information as a number of triples of the form
(e′, σ′, v′), where: e′ is a service call subexpression of e; σ′ is the value assignment
constituting the input values of the service call; and v′ is the output produced
by the service call. Note that there can be many such triples, even if e contains
only one service call subexpression, because that service call may occur inside a
for-loop.

From that information, the entire run can then be reconstructed. We can
represent the entire run equally well as a set of such triples, where now e′ is not
restricted to just service calls, but where we consider all subexpressions instead.1

Specifically, we have defined a new system of inference rules (one rule for each
construct of NRC) that allow to infer judgments of the form σ, ζ |≈ e ⇒ R,
meaning that R is a possible run of e on σ and ζ. Recall that service functions
may be non-deterministic, so that for the same value and function assignments,
there may be several different runs. The rules also define the final result value of
the run. Moreover, because we will need this for provenance tracking, our rules
define the set of subruns of a run R — these are runs of subexpressions of e
that happened as part of R. Formally, each subrun is represented by a triple
of the form (e′, σ′, R′), where e′ is a subexpression of e and σ′, ζ |≈ e′ ⇒ R′

holds.
Like before, we only show a sample of the rules:

e =
⋃

e′ σ, ζ |≈ e′ ⇒ R′ v =
⋃

result(R′) R = R′ ∪ {(e, σ, v)}

σ, ζ |≈ e ⇒ R result(R) def= v Subruns(R) def= Subruns(R′) ∪ {(e, σ, R)}

1 For simplicity of exposition, in the present version of this paper, we will ignore
the complication that a subexpression may have several different occurrences in an
expression. We know how to incorporate this in the formalism.
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e = for x in e1 return e2 σ, ζ |≈ e1 ⇒ R′

result(R′) = {w1, . . . , wn } ∀i ∈ {1, . . . , n} : add(σ, x, wi), ζ |≈ e2 ⇒ Ri

v = {result(R1), . . . , result(Rn)} R = R′ ∪ R1 ∪ · · · ∪ Rn ∪ {(e, σ, v)}
σ, ζ |≈ e ⇒ R result(R) def= v

Subruns(R) def= Subruns(R′) ∪ Subruns(R1) ∪ · · · ∪ Subruns(Rn) ∪ {(e, σ, R)}

e = f (e1, . . . , en) ∀i ∈ {1, . . . , n} : σ, ζ |≈ ei ⇒ Ri

(result(R1), . . . , result(Rn), v) ∈ ζ(f ) R = R1 ∪ · · · ∪ Rn ∪ {(e, σ, v)}
σ, ζ |≈ e ⇒ R result(R) def= v

Subruns(R) def= Subruns(R1) ∪ · · · ∪ Subruns(Rn) ∪ {(e, σ, R)}

Let us explain the rule for the flatten expression e =
⋃

e′. We see that, in order
to be able to derive a possible run R of e on given σ and ζ, we must first derive
a possible run R′ for e′ on σ and ζ. From this particular R′, we construct a final
result value v for e, and a run R of which v is the final result value. This R is
one of the possible runs of e on σ and ζ, in particular the one that has R′ as its
subrun. Therefore all subruns of R′ are also subruns of R.

The run inference rules have the following property.

Property 2. Given a run R, for each subexpression e′ and each σ′ there is at
most one R′ such that (e′, σ′, R′) ∈ Subruns(R). We denote this run R′ by
Subrun(e′, σ′, R).

Provenance. We are now ready to consider provenance tracking. We define prove-
nance tracking for any occurrence of a subvalue of the final result value of a run.
The following simple example will illustrate what we mean by subvalue occur-
rences. Consider the simple expression e = 〈a : x, b : f(5)〉, where we declare x
to be of type int, and assign the signature int → int to service name f . Suppose
now that we run e on the value assignment where x = 3, and on a function
assignment ζ by which (5, 3) ∈ ζ(f). Then the tuple 〈a : 3, b : 3〉 is a final result
value of e. Note that 3 occurs twice as a subvalue in this result, but both occur-
rences have a quite different provenance: the first occurrence is simply a copy
of the input value x = 3, whereas the second occurrence was produced by the
service call f(5).

Formally, we define a subvalue path of some complex value v as a path from the
root in v, viewing v as a tree structure in the obvious manner. Space limitations
prevent us from giving the detailed definition. We will use the notation ϕ ←• v
to denote that ϕ is a subvalue path of v. Note that if v is a set value, and ϕ is
not just v itself, i.e., ϕ leads to a proper subvalue, then ϕ is of the form v; ϕ′,
with ϕ′ ←• u for some u ∈ v. We will use that observation in the inference rules
below.

Indeed, we have designed a new system of inference rules that defines, for
any run R, the provenance Prov (ϕ,R) for any subvalue path ϕ in result(R).
Intuitively, the provenance is the restriction of R to all subexpressions and sub-
values of intermediate results that have contributed to the production of ϕ in
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R. Formally, considering that R is a set of triples of the form (e′, σ′, v′), we will
define Prov (ϕ,R) as a set of triples of the form (e′, σ′, ϕ′), where ϕ′ is a sub-
value path of v′. Intuitively, such a triple represents the information that the
intermediate result v′ (resulting from an evaluation of the subexpression e′) has
partly contributed to ϕ in the output—ϕ′ then indicates which part.

We give a sample of the provenance inference rules next.

e = e′.l σ, ζ |≈ e ⇒ R
v = result(R) ϕ ←• v S = Subrun(e′, σ,R) v′ = result(S )

Prov (ϕ,R) def= Prov (v′; l ; ϕ,S ) ∪ {(e, σ, ϕ)}

e = 〈 l1 : e1, . . . , ln : en 〉 σ, ζ |≈ e ⇒ R v = result(R)
i ∈ {1, . . . , n} S = Subrun(ei, σ,R) ϕ = v; li; ϕ′ ϕ′ ←• result(S )

Prov (ϕ,R) def= Prov(ϕ′,S ) ∪ {(e, σ, ϕ)}

e = if e1 then e2 else e3 σ, ζ |≈ e ⇒ R
v = result(R) ϕ ←• v result(Subrun(e1, σ,R)) = true

Prov (ϕ,R) def= Prov(ϕ,Subrun(e2, σ,R)) ∪ {(e, σ, ϕ)}

e = for x in e1 return e2 σ, ζ |≈ e ⇒ R v = result(R)
w = result(Subrun(e1, σ,R)) ∀w′ ∈ w : Sw′ = Subrun(e2, add(σ, x, w′),R)

ϕ = v; ϕ′ ϕ′ ←• u u ∈ v

Prov (ϕ,R) def=
⋃

{w′∈w|result(Sw′ )=u}
Prov(ϕ′,Sw′) ∪ {(e, σ, ϕ)}

e =
⋃

e′ σ, ζ |≈ e ⇒ R v = result(R)
S = Subrun(e′, σ,R) w = result(S ) ϕ = v; ϕ′ ϕ′ ←• u u ∈ v

Prov (ϕ,R) def=
⋃

{w′∈w|u∈w′}
Prov (w; w′; ϕ′,S ) ∪ {(e, σ, ϕ)}

The rule for tuple field selection delegates the provenance to the immediate
subexpression. Note that the rule for tuple construction includes only informa-
tion from the subrun of the subexpression corresponding to the tuple field in
which the subvalue path ϕ occurs. The rule for if-then-else (only given for the
then-case) is similar in this respect; only the then-branch is tracked. The rule
for for-loops shows how provenance is tracked in all subruns that contributed a
value in which ϕ occurs. The rule for big union is again similar in this respect.

4 Binding Trees

In a dataflow repository, different dataflows are stored together with their runs.
An important feature is that the same dataflow may have been run several
times, on distinct inputs (value assignments), but also with different function
assignments. Recall that a function assignment binds the service names occurring
in the dataflow expression to concrete service functions. While some of the service
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names will be bound to external functions, in a dataflow repository, it should
also be possible to use an existing dataflow as the functionality of some service
name. In other words, one dataflow can be used as a “subdataflow” of another.
A complication now is that subdataflows may in turn contain service names, so
those must be bound as well. In order to avoid non-terminating executions, we
must pay attention not to create cycles in this binding process. This is taken
care by the notion of binding tree, which we formally introduce in the present
section.

Formally, consider a set D of dataflow identifiers. Each dataflow id has an
associated NRC-expression that serves as the dataflow expression. Formally, this
corresponds to a given mapping expr : D → NRC. Moreover, consider a set Ext
of external service identifiers. We now define:

Definition 1. A binding tree is a finite tree, where the nodes are labeled with
dataflow identifiers or external service identifiers, and the edges are labeled with
service names, with the following properties:
– The root is labeled with a dataflow identifier.
– Only leaves can be labeled with external service identifiers.
– Suppose a node x is labeled with a dataflow identifier d. Let f1, . . . , fn be

the different service names used in expr(d). Then x has precisely n children,
with edges labeled by f1, . . . , fn, respectively.

Intuitively, a binding tree specifies, for the dataflow mentioned in the root, which
service names in the dataflow expression are bound to external services, and
which to subdataflows. For these subdataflows, the binding tree again specifies
a binding for their own service names, and so on. Indeed, note that in a binding
tree, a subtree rooted in a node labeled with a dataflow id is itself a binding tree.
Note also that the same dataflow id can appear several times in a binding tree
(and with different binding subtrees), and that also the same external service
name can appear several times.

In order to define this formally, to begin with, we need an assignment of service
functions to external service identifiers, i.e., a mapping func : Ext → F. We can
then define the function assignment specified by a binding tree by induction on
the height of the tree:

Definition 2. Let β be a binding tree. Let the root of β be labeled with d, and
let expr(d) = e. We define a function assignment ζβ for e as follows. Let h be
the height of β.
– If h = 0, then ζβ is empty.
– If h > 0, then ζβ(f), for any service name f used in e, is defined as follows.

Let x be the f -child of the root of β.
• If x is labeled with an external service id z, then we define

ζβ(f) := func(z).
• If x is labeled with a dataflow id d′, then let e′ = expr (d′), and consider

the subtree β′ of β rooted at x. By induction, we already have a func-
tion assignment ζ′β′ for e′. Then we define ζβ(f) to be the relation that
associates input value assignments for e′ to final result values, given ζ′β′ .
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In the above, due to space limitations, we have ignored the signatures of service
names and of external service identifiers. Incorporating these signatures requires
that we enrich a binding tree with mappings that associate parameter positions
of service calls to free variables of subdataflow expressions.

5 Repository Data Model

We are now in a position to give a formal definition of a dataflow repository. A
conceptual schema illustrating the different entities that play a role in a repos-
itory, and their relationships, is given in Fig. 1. We use the following notation:
G for all possible type assignments; S for all possible value assignments; Runs
for all possible runs; T for all possible signature assignments; B for the set of all
possible binding trees; and Triples for all possible triples in runs. Also, as in the
previous section, we assume a given set Ext of external service identifiers and a
mapping func : Ext → F. (External service identifiers also have signatures, but
we ignore these due to space limitations.)

Definition 3. A dataflow repository consists of two finite, pairwise disjoint sets
D and R, whose elements are called dataflow identifiers and run identifiers,
respectively, together with eight mappings of the following signatures:

expr : D → E inputtypes : D → G

servicesigs : D → T dataflow : R → D
inputvals : R → S binding : R → B

run : R → Runs internalcall : R × Triples → R

The first seven mappings are standard, total, many-to-one mappings; the last
mapping, however, is partial but must be one-to-one.

Moreover, the mappings must satisfy the following integrity constraints, for
any d ∈ D and any r ∈ R:

– inputtypes(d) is defined on FV (expr (d)).
– servicesigs(d) is defined on SN (expr(d)).
– expr(d) is well-typed under inputtypes(d) and servicesigs(d).
– inputvals(r) is defined on FV (expr(dataflow (r))), and is compatible with

inputtypes(dataflow (r)).
– The root of binding(r) is labeled with dataflow (r).
– run(r) is a run of expr (dataflow (r)) on inputvals(r), given ζbinding(r).
– The repository is closed by the mapping internalcall .

We still have to explain the last item in the above definition (closure). Closure
is an important integrity constraint that corresponds to the following intuition:
if the repository contains a run of some dataflow, then it also contains all corre-
sponding runs of its subdataflows. (Note that if a subdataflow is inside a for-loop,
the subdataflow may be run several times.) This is precisely the function of the
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Fig. 1. Conceptual dataflow repository schema

mapping internalcall , which given a run and a call in that run to a service name
bound to a subdataflow, will indicate the run identifier of the corresponding
subdataflow run. Formally, we define:

Definition 4. A repository is closed by internalcall if for any r ∈ R and any
t = (Φ, σ, v) ∈ Triples, the following holds:

– internalcall (r, t) is defined if and only if t ∈ run(r) and Φ is (an occurrence
of) a service call to some service named f such that the f -child of the root
of binding(r) is labeled with a dataflow identifier d′.

– If internalcall (r, t) = r′ is indeed defined, then
• dataflow (r′) = d′;
• binding(r′) equals the subtree of binding(r) rooted in the f -child of the

root of binding(r);
• inputvals(r′) = σ; and
• the final result value of run(r′) equals v.

Note that we do not explicitly model meta-data in the repository data-model.
However, it is possible to extend the conceptual data model with meta-data, for
instance by adding mappings from various entities in the repository to annotation
identifiers, which represent diverse meta-data entities. The actual content of
meta-data is beyond the scope of this paper.

6 Related Work

Several researchers advocate integration of workflows and DBMSs [9, 10, 11], as
they provide mechanisms for planning, scheduling, and logging. We believe that to
properly design a dataflow repository, you need a formal model for dataflows and
runs. Although there are several dataflow specification languages [9, 12, 13, 1, 2],
to our knowledge, none of them presents a formal model of repository storing
dataflows and runs. With increasing importance of provenance [14,15,16,17], often
with different interpretations for this term, it is essential that our model includes
a formal definition of the kind of provenance that our work targets. For instance,
our notion of provenance largely covers the queries of the Provenance Challenge
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(http://twiki.ipaw.info/bin/view/challenge/). Pioneers in integration of work-
flows and DBMSs are ZOO [9] and OPM [10]. The ZOO system, implemented
on top of an OODBMS, uses database schemas to model dataflows: object classes
model data, and relations between them model operations (associated rules spec-
ify their execution). An instance contains run information. OPM uses schemas
for workflow design with separate object and protocol classes. Protocol classes
employ attributes for input, output and connections, and constrains are used to
enforce various rules. OPM is implemented in RDBMS, and runs are stored as
instances of relational schemas. More recently, Shankar et al. [11] have proposed
dataflow specification integrated with SQL and relational DBMS. Dataflows are
modeled as active relational tables, and invoked through SQL queries. The Tav-
erna [1] workflow system focuses on practical workflow design and integration of
bioinformatics tools and databases. They store runs and associated meta-data
in a provenance store implemented as a Web Service et al. [16]. There are also
systems with dataflow design repositories, e.g., WOODSS [18], mainly focusing
on workflow reuse. Tröger et al. [12] present a language for workflow design,
similar to in vitro experiments. Although the compiler produces a persistent
repository of workflow specifications and meta-data, it does not include (inter-
mediate) results. Another well-known workflow system is Kepler [2]. Workflow
design is actor-oriented and supports collections through an abstract data model
for actor design [19]. Intermediate results are recorded through automatic report
generation.

7 Towards a Dataflow Repository System

A dataflow repository system, following the conceptual model presented in this
paper, could be implemented in various ways. An approach that seems promising
to us, and which is the object of our current work, is to build the system on top of
a modern relational DBMS using SQL/PSM and SQL/XML. A similar approach
was also advocated by Shankar et al. [11]. Base values are implemented using
SQL datatypes; more complicated base types such as NCBIXML can be imple-
mented using the XML column type, or as large objects (LOBs). Complex values
can be decomposed into tables using standard techniques. NRC expressions can
be compiled into SQL procedures that, when run, will insert not only the final
result value in the repository, but also the intermediate results of external service
calls. Service calls can be implemented using SQL user-defined functions. The
conceptual data model of the dataflow repository is readily mapped to the rela-
tional data model. All semi-structured data belonging to the repository, such as
NRC expressions, type assignments, signatures, or binding trees, can be stored
using XML columns.

Last but not least, the database may include various additional tables, which
contain meta-data such as author of a dataflow, date of a run, version of an exter-
nal databases, etc. Through dataflow identifiers, run identifiers, and referential
integrity, these tables are linked to the repository tables.
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8 Conclusions

In this paper we have presented an attempt to lay the formal groundwork of
dataflow repository systems. Now that we have a precise specification of the var-
ious data stored in such repositories, we can start envisaging ways of querying
all this data. Note that computing provenance information can already be con-
sidered as a kind of query computed over a single run stored in the repository.
But clearly much more is possible, given that many different dataflows, with
many different runs, are in the database. Two examples of potential decision
support queries were already given in the introduction. It remains to be investi-
gated whether special-purpose query language mechanisms must be designed, or
whether SQL/XML, where XQuery and SQL can be freely combined, provides
enough flexibility and expressive power.
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Abstract. While a number of scientific workflow systems support data prove-
nance, they primarily focus on collecting and querying provenance for single
workflow runs. Scientific research projects, however, typically involve (1) many
interrelated workflows (where data from one or more workflow runs are selected
and used as input to subsequent runs) and (2) tasks between workflow runs that
cannot be fully automated. This paper addresses the need for recording data de-
pendencies across multiple workflow runs and accommodating data management
activities performed between runs. We define a new conceptual model for rep-
resenting project-level provenance based on the notion of project histories and
folders, and describe mechanisms to support this model in the collection-oriented
modeling and design framework of KEPLER. Our approach allows users to conve-
niently organize their projects and data using the familiar folder-hierarchy
metaphor, while at the same time integrating this information with detailed prove-
nance of data products generated via automated scientific workflows.

1 Introduction

Scientific workflows promise to automate complex and repetitive operations, model (i.e.,
clarify for the scientist) the tasks being automated, and record how results of workflow
runs were computed from input data. However, few results of great significance are likely
to emerge from a single run of one scientific workflow. Novel research involves project
organization, data exploration, decision making, and trial-and-error activities that can-
not be automated in advance. Researchers employing scientific workflow automation
generally wish to run a number of distinct workflows in the context of a single project,
apply workflows multiple times on different data or with different parameter settings,
modify workflows, and compose completely new workflows as needed. As a result, data
provenance support in scientific workflow systems is likely to be of limited usefulness
unless the flow of data can be tracked rigorously across multiple workflow runs. Be-
cause researchers require the freedom to organize their data and projects as they see
fit, comprehensive workflow provenance support also necessitates the recording of data
management activities performed manually by researchers between workflow runs. This
paper describes how the Collection-Oriented Modeling and Design (COMAD) paradigm
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[11] may be extended to provide project-scale data provenance support while enabling
users to freely organize their projects and data using the familiar nested-folder metaphor.

1.1 Nested Collections for Scientific Data Management

Nested collections are a ubiquitous organizational scheme for scientific data. The large
number of standards based on XML testify to the naturalness of representing data
as nested collections. Digital libraries and data archives also commonly exploit this
metaphor to provide a primary organization for discovering data and exploring col-
lections. While technological inertia may explain some use of the nested collection
metaphor, there are more fundamental reasons for its predominance in the realm of
scientific data management.

– Hierarchical structure of natural systems. Much scientific data can be repre-
sented readily as nested collections due to the hierarchical structure of the natural
world. For example, the structure of a protein molecule can be described as suc-
cessively nested collections of polypeptide chains, amino acid residues, and atoms
each with their own identifiers and attributes.

– Intuitive nested file folder metaphor. Many individuals (including scientists) find
the nested collection metaphor an intuitive way to organize information [9]. Folders
are often nested and named in ways that reflect significant associations between
files. Further, the meaning attached to a particular folder generally cascades to sub-
folders, where the resulting hierarchy represents a nested collection of metadata
that annotates contained files.

– Projects, tasks, and subtasks. Projects are generally structured hierarchically.
Project tasks can be broken down into (sometimes ordered) collections of subtasks.
For this reason, files created during a project often are organized according to a
nested folder scheme reflecting the task-hierarchy of the project [9]. The contents
of the folders represent data used or created while carrying out the project and to-
gether reflect the state of the project at a particular point in time. For scientists in
particular, storing information in nested collections is a natural way of persisting
data between research tasks.

– Operations that generate lists of lists. Many experiments and calculations gener-
ate lists of results. For example, a BLAST search can take one molecular sequence
and return a list of genes containing similar sequences. A search within the pro-
moter for a gene can reveal a list of over-represented sequences or motifs. When
tasks are performed in series the results often are more deeply nested hierarchies,
e.g., collections of genes with sub-collections of sequence motifs.

For the above reasons it is important that systems for automating scientific workflows
respect, preserve, and ideally exploit the hierarchical structure of scientific data and
project information. Workflow systems that lack such support require users to repeat-
edly map back and forth between a project data organization intuitive to them and the
data models employed by the automation system. In contrast, COMAD was envisioned
precisely for the purpose of managing data organized within nested collections during
workflow execution and facilitating this relatively unrecognized yet common compo-
nent of doing science.
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1.2 Leveraging Nested Collections in Scientific Workflow Automation

The COMAD framework in KEPLER [10] extends the conventional actor-oriented
framework provided by PTOLEMY II1 to support collection-oriented workflows. Unlike
workflows built from conventional actors, workflows employing collection-aware ac-
tors, or co-actors, transparently manage data organized as nested collections, maintain
the associations implied by the collections, and exploit generic approaches for operat-
ing on streams of collections. Abstracting the generic data management tasks associated
with collections from the workflow definition in this way often drastically reduces the
complexity of the workflow graph (i.e., fewer actors and actor connections are required)
with the result that collection-oriented workflows generally are simpler to compose, un-
derstand, and maintain than their conventional counterparts. The approach also largely
decouples the structure of the workflow from the structure of the data flowing through it,
producing workflows that are more reusable, i.e., workflow definitions need not change
when the structure of input data changes. In KEPLER, COMAD leverages the nested
structure of scientific data to: (1) enable concurrency-safe pipelined execution across
actors connected in series or parallel; (2) associate annotations with particular collec-
tions and data; (3) dynamically deliver customized parameter values to actors operating
on specific collections; and (4) efficiently capture the detailed provenance of all data and
collections created during the course of workflow execution. These advantages derive
directly from the COMAD approach of exploiting the hierarchical properties of scien-
tific data and projects, much as scientists have been doing manually for many years.

The COMAD implementation in KEPLER delivers the above capabilities by stream-
ing nested collections of data through co-actors as “flat” token sequences where col-
lections are delimited using paired (opening and closing) control tokens. COMAD
provides services to actors for managing collections, e.g., for constructing internal rep-
resentations of collections from input token sequences, inserting and deleting collection
elements, and (re-)serializing collections to output token sequences. Co-actors can de-
clare the types of collections and data they process via read scope expressions. The CO-
MAD framework iteratively invokes actors over portions of the input stream matching
these expressions. Data and collections that fall outside of an actor’s read scope are au-
tomatically forwarded by the framework to succeeding actors, enabling “assembly-line”
style data processing. Annotations (e.g., represented as name-value pairs) are modeled
explicitly in COMAD, and may be used to represent data and collection metadata that
actors create and access during workflow execution. Annotations may also be used to
override actor parameters, e.g., allowing co-actor behavior to be changed at runtime
within the context of particular collections. Like data and collections, annotations are
represented as tokens and are automatically streamed through co-actors by the COMAD
framework.

1.3 Data Provenance Within Single Workflow Runs

Accurately recording the provenance of workflow products is a critical step towards
enabling scientists to incorporate workflow systems into their day-to-day research pro-
cesses. The COMAD framework records the events (i.e., actor invocations) involved

1 http://ptolemy.eecs.berkeley.edu/ptolemyII/

http://ptolemy.eecs.berkeley.edu/ptolemyII/
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Fig. 1. Proposed extensions to Kepler for supporting project-scale provenance: (a) data manage-
ment between workflow runs occurs outside of the current implementation of Kepler; and (b)
envisioned support for managing data and provenance between workflow runs

in computing each workflow product along with the dependencies of these products
on input and intermediate data. However, the current COMAD implementation sup-
ports provenance for events that occur within a single run of a workflow. In general,
the scope of most scientific workflow systems, e.g., [5,14,15,6], is limited to single
workflow runs. An exception is [4], which tracks changes to workflow definitions and
caches output data to optimize subsequent workflow runs. In COMAD, users may spec-
ify the collections, data, and metadata to be applied as input to a workflow run using
an XML input file. Similarly, the results of a run, including references to any new data,
collections, metadata and provenance records may be persisted as an XML trace file.
However, these XML files, and any referenced external data, must be managed directly
by the user. Thus, like most other scientific workflow systems, KEPLER and the CO-
MAD implementation are largely ignorant of data management tasks carried out be-
tween workflow runs. Figure 1a depicts the current state of affairs and emphasizes that
workflow definitions, input and output data, and records of workflow runs are gener-
ally maintained outside the workflow system. The remainder of this paper describes
extensions to the COMAD framework to capture and manage provenance information
throughout research projects employing scientific workflows.

2 Project Histories and Folders

Figure 1b illustrates our vision for a project-aware version of KEPLER. The KEPLER

system boundary is expanded to include workflow definitions and project data as part of
the system state. Data may be imported or exported from the project folders, whereupon
this data may be supplied to workflow runs. Data and traces produced by a workflow
run are retained within the system and are added to the project history, together with
the workflow definition and input data sets, when the run is committed. This section
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introduces the primary use cases of the envisioned system through a realistic usage
scenario.

A researcher R wishes to build an improved phylogenetic tree (i.e., evolutionary his-
tory) of the bacterial kingdom using molecular sequences common to representatives
of major taxa in the bacterial tree of life. Figure 2 shows the state of the project history
and project folders at three points in time.

Creating the organizational structure for the project. R creates a new project and
within it a folder named ‘Genomes’ for holding the annotated genomes of each of sev-
enty bacterial species. R downloads files representing these genomes from NCBI2 and
The Institute for Genomic Research3 (TIGR), imports these files into the project, and
stores them in sub-folders of Genomes. R now creates another folder to hold informa-
tion related to the thirty phylogenetic markers he intends to use to infer the evolutionary
relationships between the bacterial taxa. Each marker is a protein sequence correspond-
ing to a highly conserved gene expected to be present and identifiable in every bacterial
genome. R creates a folder under Markers for each marker and data associated with it.
Into each he imports a single reference protein sequence that will be used as a search
pattern for identifying homologous sequences in each bacterial genome. The system is
now aware of the raw data to be used throughout the rest of the project. Subsequent
manual and automated operations will fill out the Markers sub-folders and create new
top-level folders corresponding to attempts to build an updated bacterial tree of life
based on available genome sequences.

Identifying markers in each genome. R is now ready to employ the first scientific
workflow, wf1, which takes each reference protein sequence stored in the Marker fold-
ers, and then locates (via BLAST searches) and refines (using the HMMER [7] program
suite) likely candidates for these genes in each of the bacterial genomes. The workflow
accepts a stream of collections, each corresponding to a single marker and containing a
reference sequence and sub-collection for each genome to search. The products of the
workflow are candidate protein sequences for each marker-genome combination.

Once R has selected this workflow for execution, he stages the input data and work-
flow parameters. He drags a visual representation of the Markers collection onto a data
staging widget, then requests that the contents of the Genomes collection be copied
into each Marker sub-collection in the staging area. These interactive operations have
no effect on the project collections themselves. After specifying values for workflow
parameters, R starts the workflow. After the workflow run completes, R browses the
output of the run via a workflow-product evaluation area. R inspects the results of the
run, e.g., skimming log files generated by BLAST and HMMER. Noting that the results
appear reasonable, he commits the results of the workflow run to the project history
and then updates the project folders with the workflow outputs. Once the run is com-
mitted, it appears in the project history panel (wf1:r1 on left side of Figure 2a). The
input and output collections of the run can also be accessed at any point in the future
via the project history panel, regardless of whether the project folders are updated with
the run’s output data. Because R also updates the project folders, the protein sequences

2 http://www.ncbi.nlm.nih.gov/
3 http://www.tigr.org/

http://www.ncbi.nlm.nih.gov/
http://www.tigr.org/
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(a) Project history and folders after identifying markers in each genome. 

(b) Project history and folders after performing sequence alignments. 

(c) Project history and folders after inferring maximum likelihood trees. 
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Fig. 2. Evolution of project history (left) and project folders (right) during the course of the hy-
pothetical project described in the text

discovered during the workflow run are pasted into the corresponding project collec-
tions (right side of Figure 2a). Note that the copies of the genomes placed into the
staging area are not duplicated in the project tree. Only new data is propagated to the
project collections during an update.

R must now confirm that the markers have been unambiguously identified in each
of the genomes. He browses the project folders and notes how many candidate marker
sequences were discovered for each genome-marker pair. If more than one candidate
was identified for a particular pair, he compares these sequences to each other and the
reference sequence, and inspects statistics produced by the workflow run in an attempt
to determine which sequence is orthologous to the reference sequence. R discards the
non-orthologous sequences where this distinction can be made, and annotates any fold-
ers that still contain multiple candidate markers with metadata that will prevent these
sequences from being used in downstream computations.

Creating the data matrix and maximum likelihood tree. R now selects a second
workflow that will build a hidden Markov model (HMM) for each marker using the se-
quences identified in the previous run. He drags the Markers collection from the project
folders panel into the staging area, enters parameter values, and starts the workflow.
He evaluates the results of the run, commits the run to the project history, and updates
the project collections. Each marker folder now contains a file representing the HMM.
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R reviews the HMMs and then creates, edits, and imports a mask for each, indicating
unreliable segments of the models. He then selects a third workflow for aligning each
marker sequence to the corresponding HMM and again specifies the Markers collection
as the workflow input. After committing and updating, each Markers sub-collection
contains a multiple sequence alignment (see project history and folders in Figure 2b).

R runs a fourth workflow that concatenates the alignments into a single data matrix
for further analysis. After updating the project folders, R visualizes the data matrix in-
teractively to check for problems. Satisfied with its quality, R moves the data matrix
from the Markers collection to a new, top-level collection named ‘Tree1’. He then se-
lects a fifth workflow for rapidly calculating a neighbor-joining (NJ) tree from the data
matrix, updates the tree to the Tree1 collection, and visualizes the tree in an interactive
application. Noting that no unusual groupings are evident in the tree, R stages the input
data to a sixth workflow that calculates a maximum-likelihood (ML) tree from the data
matrix, where R again visualizes the tree interactively. To check the tree topologies
under different evolutionary models, R re-runs workflow six specifying a slightly dif-
ferent model of evolution via the workflow parameters. The project history and folders
now appear as shown in Figure 2c.

Re-running the analysis with additional bacterial genomes. R periodically re-runs
the above analysis to take advantage of new bacterial genome sequences that have be-
come available. Usually he does not find it necessary to recompute the hidden Markov
models or alignments from scratch. Instead, R simply imports the new genomes and
re-runs the alignment workflow specifying (via a parameter value) that the alignments
should be updated with the new sequences, and then computes the data matrix, the NJ
tree, and ML tree as before, storing the results in a new top-level collection.

Querying provenance for maximum likelihood tree. One year after starting the
project R has computed eight maximum likelihood trees, each based on more bacte-
rial genomes than the previous analyses. During this time, R has updated the hidden
Markov models three times. At this point a collaborator asks for the hidden Markov
model for the third marker used in computing the maximum likelihood tree produced
by the fourth iteration of the analysis. Because R has been replacing the hidden Markov
models stored in the project folders each time a new HMM is computed, he cannot
simply browse the folders to answer this question. Instead, he right-clicks on the maxi-
mum likelihood tree in question and selects Show dependencies from the context menu,
whereupon a data dependency graph appears (e.g., see Figure 5). R selects the requested
HMM from the visual display and exports it for sharing with the collaborator.

3 Collection-Oriented Workflows and Provenance

Here we describe the basic COMAD data model and an approach for recording and
querying provenance in single workflow runs. We extend the provenance approach to
support multiple workflow runs (via project histories and folders) in the next section.
Figure 3 shows a collection-oriented workflow in KEPLER for inferring phylogenetic
trees. This workflow is similar in intent to the project described in the previous section,
i.e., it combines simpler approaches analogous to those used in the workflows described
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in Section 2 into a single automated workflow (for the purpose of describing COMAD
for single workflow runs). The Collection Reader actor inputs a nested data collection
containing DNA sequences for homologous genes from a number of taxa. The Align Se-
quences actor performs an initial alignment of the sequences, and the Refine Alignment
actor refines this initial alignment. The Infer Trees actor infers a set of phylogenetic
trees from the aligned sequences, and the Compute Consensus actor computes the con-
sensus of these trees (see Figure 4). Finally, the Collection Writer actor stores the output
of workflow runs, including the provenance information described below.

3.1 Basic COMAD Data Model

A COMAD nested data collection forms a node-labeled, ordered tree. Within work-
flow runs, these trees are flattened into sequences of data, metadata, and collection
delimiter tokens (similar to SAX-based parsing4 of XML documents). Co-actors work
concurrently on nested data collections via these token sequences, inserting new data
items and collections into the token stream and deleting (i.e., not forwarding) existing
data items and collections from the token stream. Insertions and deletions always occur
within the context of a co-actor’s read scope.

The following relations can be used to represent the types of nodes that occur within
nested data collections.

– Data(label, idnode, idob j)
– Collection(label, idnode, [node])
– Metadata(label, idnode, idob j)
– Parameter(label, idnode, idactor, idob j)

Every node in a nested data collection has a label and is assumed to have a unique to-
ken identifier (denoted idnode above). Data nodes are used to encapsulate values. The
label of a data node is used to represent the type of value encapsulated. We distinguish
between primitive data values (e.g., strings and integers) and complex values (e.g., Java
objects and external resources such as files). We generally refer to both primitive and
complex values as objects. All object values are assumed to have unique identifiers (de-
noted idob j above), e.g., represented using URIs. A value can either be stored directly
within a data-node token (i.e., inlined), or stored externally and resolved on demand via
the object identifier. Inlining complex data values can be used to cache values within a
workflow run (e.g., reducing the number of derefences made during workflow execu-
tion). Collection nodes contain (possibly empty) ordered sequences of “child” nodes,
shown as a node list above. Metadata nodes can be used to assign annotations to data
nodes and collections. Metadata nodes always precede the collections or data items be-
ing annotated. When metadata is assigned to a collection, it applies (“cascades”) to all
collection descendents (i.e., collection data and sub-collections). Parameter nodes are
used to configure actors during workflow execution. The actor identifier and label ar-
guments of a parameter node specify a target actor and corresponding parameter name.
The value of a parameter node is used to set the target actor’s parameter value prior
to invocation. Parameters are embedded within collections and can be overridden by
parameters within sub-collections. In this way, parameter nodes provide a convenient
mechanism to dynamically change the default configuration of a workflow.

4 http://www.saxproject.org/
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Fig. 3. A collection-oriented workflow for computing phylogenetic trees from DNA sequences
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Fig. 4. An example invocation of Compute Consensus from Figure 3

3.2 Representing and Recording Provenance in Workflow Runs

The main goals of the current COMAD provenance implementation are to (1) enable
scientists to ask “scientific” questions about a workflow run by providing convenient
queries against the run’s execution trace, and (2) have the system track the true data and
actor invocation dependencies within a run so that answers to such scientific questions
may be as accurate as possible. For example, in most collection-oriented workflows
only a portion of an actor’s input data is used to produce output data. In addition, work-
flow input collections are often organized into distinct data sets that enable independent
“sub-runs” of the workflow. Each sub-run corresponds to one workflow execution over
an input data set, and the set of sub-runs are executed concurrently via pipelining. In
each of these cases, assuming that all output data from either an actor invocation or a
workflow depends on all input data would result in false dependencies [2,3].

The approach described here for single-workflow runs extends our previous work on
recording and querying provenance in conventional KEPLER scientific workflows [3].
The approach was successfully applied to the Provenance Challenge [13], as briefly
reported in [2]. In the following we describe the basic COMAD model of provenance,
the provenance-related annotations recorded during workflow execution, and examples
of using this provenance information for querying COMAD workflow traces.

Model of provenance. We adopt a simple model of provenance for capturing data
dependencies and corresponding source events (such as actor invocations) related to
creating and modifying nodes of nested data collections. Instances of the provenance
model can be represented using the following relation

– Dependency(nodew,{noder},{event})
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This relation records the set of nodes ({noder}) and events that were used to produce a
particular node (nodew). Note that nodew is a primary key for the relation, i.e., a given
node has at most one associated set of dependency nodes and events. Here we only con-
sider events that correspond to actor invocations, where each noder was read (i.e., was
in the actor’s read scope) and each nodew was written (i.e., inserted) by the invocation.
Actor invocations are represented via their actor identifiers and invocation number, e.g.,
where the first invocation of actor a1 is written a1:1. Figure 4 shows an invocation of
the Compute Consensus actor. The invocation creates a new tree, inserting it under the
input Nexus collection. This tree was derived from three of the input trees. For data,
metadata, and parameter nodes, a dependency always represents a one-step derivation
(i.e., via one actor invocation) with respect to a workflow run. Thus, for non-collection
nodes, dependencies may be due to at most one actor invocation. For collections, mul-
tiple actor invocations may contribute to distinct portions of intermediate “versions” of
the collection. Thus, dependency relations for collections record their changes within
a workflow run. We can view a set of dependency relations for a workflow run as a
directed acyclic graph, where vertices correspond to nested data-collection nodes and
edges correspond to dependencies labeled by their invocation events. Figure 5 shows a
portion of the dependency graph for a consensus tree output from a run of the work-
flow in Figure 3. Each vertex in the tree is labeled with its corresponding node type and
identifier.

Recording provenance annotations. We infer data dependencies for a workflow run
from lower-level provenance annotations that are directly embedded into the token
stream by co-actors. Three different types of annotations are recorded:

– Insertion(idins,{idr}, idinvoc)
– Deletion(iddel , idr)
– InvocationDependency(idinvoc1 , idinvoc2)

Each of these relations store only node identifiers as opposed to entire nodes, as in de-
pendency relations. An insertion annotation records that a particular node (idins) was
inserted by an actor invocation based on the presence of a given set of nodes ({idr}). A
deletion annotation records that a particular node was deleted (i.e., input to, but not for-
warded) by an actor invocation. Nodes can be inserted and deleted at most once within
a workflow run. An invocation-dependency annotation records that an actor invocation
(idinvoc1 ) modified a collection (i.e., inserted into or deleted from the collection), and the
modified collection was used by another actor invocation (idinvoc2). The set of invocation
dependencies induces a partial ordering of actor invocations in a workflow run.

Our approach of including provenance annotations within the data stream contrasts
with existing workflow systems (e.g., [16,1,12]) that maintain separate provenance
stores. While our approach does not prevent the use of a separate provenance database,
it simplifies the overall implementation by not requiring additional communication pro-
tocols between the workflow engine and the provenance store (possibly requiring syn-
chronization overhead), and allows provenance and run results to be easily viewed and
archived outside of any given system implementation. The result of a workflow run is
serialized into a single, self-contained XML trace file containing all run output and
provenance annotations. Figure 6 shows a portion of a trace file generated from a run
of the workflow in Figure 3.
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Fig. 5. A portion of a simple dependency graph starting from an output consensus tree

The current implementation of COMAD requires actors to declare dependencies
when new items are inserted into collections during workflow execution. The COMAD
framework validates declared dependencies (e.g., checking that each of the items re-
ferred to are within the actor’s current read scope), and inserts appropriate provenance
annotations into the output token stream of the actor. COMAD can automatically in-
fer dependencies in certain cases. For example, composite co-actors [11] are composed
from sub-workflows comprising conventional KEPLER actors, enabling data dependen-
cies to be automatically inferred based on the read scope of the co-actor and the data
actually accessed by the contained sub-workflow. The COMAD framework inserts ap-
propriate deletion annotations for input items not forwarded by an actor invocation.
The framework ensures that items having deletion annotations are inaccessible to sub-
sequent downstream actor invocations. Retaining deleted items is essential to inferring
complete data dependencies when input or intermediate items are deleted. Invocation
dependencies are automatically inferred by the framework based on insertion and dele-
tion dependencies. For example, when a new item is inserted into a collection, an invo-
cation dependency is inferred between the current invocation and each invocation used
to create the item’s immediate insertion dependencies. These invocation dependencies
are then inserted into the token stream.

Inferring dependencies from provenance annotations. Following a workflow run,
data dependencies can be inferred from a workflow’s trace file, i.e., from the prove-
nance annotations generated by the COMAD system together with the nested data col-
lections output by the workflow run. In general, we aim at minimizing the number and
size of provenance annotations that must be recorded to compute data dependencies.
For example, when an actor inserts a new collection node, a single insertion annotation
is created for the collection that cascades to all descendents of the collection.5 Similarly,
if an inserted node is derived from an entire collection (i.e., the collection structure in-
cluding all subnodes), an insertion annotation is created that refers just to the collection
identifier (and not the various subnodes). Shorthands are also used to specify dependen-

5 If items are inserted within this collection by subsequent actors, the insertion annotations for
these items override the collection insertion annotation.
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<Trace id=“1”>
<Collection type=“Project” id=“4”>

<Collection type=“Nexus” id=“19”>
<Collection type=“Sequences” id=“20”>

<Data type=“Sequence” id=“32” objectId=“1”/>
...

<Data type=“Sequence” id=“41” objectId=“10”/>
</Collection>
<Deletion item=“42” invocation=“RefineAlignment:1”/>
<Insertion item=“42” dep=“32 33 34 35 36 37 38 39 40 41” actor=“AlignSequence:1”/>
<Data type=“SequenceAlignemnt” id=“42” objectId=“22”/>
<Insertion item=“43” dep=“42” actor=“RefineAlignment:1”/>
<Data type=“SequenceAlignment” id=“43” objectId=“23”/>
<InvocationDependency from=”AlignSequence:1” to=”RefineAlignment:1”/>

</Collection>
...

</Collection>
</Trace>

Fig. 6. An example portion of an XML trace file for Figure 3

cies on subsets of collections, e.g., by referring to the collection node identifier and one
or more of its subnode identifiers.

Informally, the dependencies of a data node are computed by (1) identifying the in-
sertion annotation for the node; (2) obtaining the set of node identifiers given as depen-
dencies by the insertion annotation; (3) for those dependency nodes that are collections,
pruning away nodes inserted after the actor invocation and nodes deleted prior to the ac-
tor invocation; and (4) pruning away non-selected subnodes of collection dependencies
(if any such subnodes are specified). Collection node dependencies are computed in a
similar way, except that collection dependencies may span multiple actor invocations,
since invocation dependencies are in general partially ordered.

Finally, the following relations are computed to store the input and output collection
structure of a trace.

– input(Trace, [Node])
– output(Trace, [Node])

These relations are computed directly using insertion and deletion annotations (as op-
posed to first computing the dependency graph for the run). In this case, the input struc-
ture is computed by removing all nodes inserted by the run, and the output structure
is computed by removing all nodes deleted by the run. We use these operations in the
following section for managing multiple-run provenance via project histories.

3.3 Querying Provenance

The current COMAD implementation includes a prototype subsystem for querying
traces. The prototype is implemented as an SWI-Prolog6 program, and operates over
XML trace files output by workflow runs. The system provides basic operations (i.e.,
Prolog rules) for accessing trace nodes, constructing dependency relations, and query-
ing corresponding dependency graphs. The operations are defined as views over the
underlying COMAD XML schema (as shown in Figure 6). Dependency graphs are con-
structed by applying various inference rules. Methods also are provided to reconstruct

6 http://www.swi-prolog.org/
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parameter settings and metadata annotations attributed to data and collection nodes.
The main operation in our current implementation computes dependency edges and is
defined as follows.

dependencyEdges(Trace, [Node], [Edge])

This operation takes an XML trace file and a list of nodes, and returns a list of de-
pendency edges denoting paths that start from each of the given nodes. For example,
the following Prolog query selects the set of sequence alignments used to compute the
output consensus tree of Figure 5.

q(S) :– traceId(1,T ),nodeForId(T,51,N),dependencyEdges(T, [N],E),edge(E,N1,S, I),
nodeType(S, ‘SequenceAlignment’).

In this query, we (1) select the trace with identifier 1 (traceId); (2) get the Tree node
having identifier 51 (nodeForId); (3) get the set of dependency edges that start from the
Tree node; (4) select an edge; and (5) return the edge node S if it is of type Sequence
Alignment (nodeType). As another example, the following query gives the set of actor
invocations involved in creating the final consensus tree.

q(I) :– traceId(1,T ),nodeForId(T,51,N),dependencyEdges(T, [N],E),edge(E,N1,N2, I).

A number of additional operations for querying traces, along with more complex query
examples are given in [2]. As ongoing work, we are developing a specialized query
language built upon a minimal set of low-level graph-based operations, as well as KE-
PLER-based tools for displaying and navigating COMAD workflow run results.

4 Extensions for Supporting Project Histories and Folders

Here we present extensions to COMAD for enabling provenance support across sci-
entific workflow runs via project histories and folders. The extensions are designed to
address the following challenges in supporting the project-history approach.

– Staging input data from project collections. Staging involves the selection of rel-
evant data and sub-collections from the project-folders view, and organizing the
selected items to conform to the desired collection schema of the target workflow.
Selected items must be tracked and appropriately associated as input to the run,
given that items may be organized in new ways, e.g., data may be copied into dif-
ferent collections, new collections may be introduced, collection nesting may be
inverted, and so on.

– Updating project folders from workflow run results. Once a user has committed a
run to the project history, they have the option of updating the project-folders view
using the run result. Updating requires the identification of new items generated
by the run and determining where these items should be placed within the project
folders (given the restructuring described above). The update process should be
semi-automatic, e.g., users should be asked whether to apply deletions and where
to put items unrelated to the existing structure of the project folders.

– Tracking dependencies between workflow runs. In general, workflow runs (like
actor invocations) are partially ordered, where all or a subset of data output by
one run can be used as input to another run. The system must track these “run
dependencies”, i.e., the order of runs and their data dependencies, for display within
the project run history.
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– Querying data dependencies spanning multiple workflow runs. Latent data de-
pendencies currently exist between workflow runs, where an output of one run may
have depended on input that was generated from a previous run, and so on. To
expose these dependencies, provenance queries must be extended to leverage run
dependencies (e.g., to obtain the set of markers used to generate a phylogenetic tree
in the scenario of Section 2).

These tasks are supported by the following additions to the COMAD provenance
framework.

Collection identifiers. As described in the previous section, we require every node
in a nested data collection to have a unique identifier. However, as a result of staging
data, nodes of project folders may be copied into multiple input sub-collections. For
instance, in the marker identification example of Section 2, the contents of each genome
collection are copied into each marker sub-collection. Each marker sub-collection will
contain nodes that have the same identifiers as nodes in each of the other marker sub-
collections. To address these problems, we create new node identifiers for all nodes in
a staged nested data collection. Note that with new node identifiers, collections can no
longer be tracked back to the project folder. Thus, similar to object identifiers for data
values, we add collection identifiers as a mechanism to distinguish, track, and merge
collection nodes. These new collection nodes can be represented using the following
relation

– Collection(label, idnode, idcol , [node])

where the argument idcol is the collection identifier for the node. Unlike object identi-
fiers, collection identifiers are used only to uniquely identify a particular occurrence of
a collection, and do not prescribe a collection structure. Thus, two collection nodes that
refer to the same collection identifier may have different content.

Run dependencies. To construct the project-history graph (see Figure 2), we explic-
itly track the order of runs for those runs with data dependencies, i.e., where the output
of one run is used as input to another run. The following relation is used to represent
run order

– RunDependency(idrun1 , idrun2 , type)

Each run is assigned a unique identifier (denoted idrun). Run identifiers can be associ-
ated with additional metadata, e.g., with the version of the workflow used in the run,
the date and time of the run, and so on. As shown in Figure 2, we distinguish between
partial and full run dependencies (where partial dependencies are shown using dashed
arrows). A partial run dependency between a run A and B means that (1) run B occurred
after run A; and (2) some of the collection and object identifiers produced (i.e., inserted)
by A were included in the input to B. In a full run dependency, the input to B is identical
to the output of A, i.e., there is a one-to-one correspondence between node identifiers
and nesting is preserved. The type argument above denotes whether the run dependency
is full or partial, which can be easily computed directly from the associated output and
input collections (via the input and output operations described in Section 3). There are
a number of ways we envision users staging workflows to produce data dependencies
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between runs. In particular, a user can select data from project folders, can select some
or all of the output data from the project history, or can select from both.

Integrated trace storage. In the current COMAD implementation, each trace generated
from a workflow run is stored in a separate XML document. We extend this approach
by allowing each trace result to be stored in a single, integrated “project store” (see
Figure 1), providing central database storage and access to project traces. The project
store supports both the project-history and project-folders views, as well as queries
against one or multiple traces. Individual trace XML documents can be generated from
the project store if needed, e.g., to exchange run results between workflow systems or
for archival purposes. We add the following relation to represent traces in the project
store

– Trace(idrun, [node])

This relation maps run identifiers to the nodes of the trace. When a user decides to
commit a run (i.e., save the run in their project history), a new trace record is constructed
in the project store, the run’s XML trace file is used to update the project store, and
associated run dependencies are created.

Although related to the problem of schema matching [8], the introduction of unique
collection identifiers significantly simplifies the task of updating project folders from a
committed run result. Figure 7 shows an example update operation, based on applying
the following update rules for modifying project folders from run outputs.

– Only new data and collection nodes inserted by the run are added to project folders.
The new items in Figure 7c include D7, D8, and D9. Collections C6 and C7 are not
considered new since they were input to the run (i.e., introduced during staging).

– New data and collection nodes are added to the collection in the project-folder
corresponding to their nearest ancestor collection in the run output. For example,
D7 is added to collection C4 in Figure 7d.

– Data and collection nodes without a corresponding ancestor collection in the
project-folder are added directly under the root collection of the project folders.
For example, data items D8 and D9 are added directly under C1 in Figure 7d.

– Data and collection nodes marked as deleted in the run output are removed from
project folders. Project-folder nodes that are not marked as deleted, but with par-
ents that are marked as deleted, are nested under their nearest non-deleted ancestor
collection in the project folders. For example, D4 is placed within C3 in Figure 7d,
since C5 was deleted by the run.

We intend to allow users to incrementally accept or reject modifications to project fold-
ers resulting from an update operation. In addition, users can freely modify and rear-
range project folders and their contents as needed.

Finally, the addition of run dependencies can facilitate provenance queries across
multiple runs. One of our requirements is to allow users to specify the workflow runs
to use to answer a particular provenance query. That is, without modifying the query
expression, the user should be able to easily specify the run or set of runs to query over.
We extend the rules used to infer dependency graphs (as described in Section 3.2) to
include run dependency information. In this way, an input node of a workflow run may
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(a) Project Folders
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Fig. 7. An example update operation: (a) the initial project folders; (b) the staged run input, where
collection and object identifiers taken from project folders are shaded; (c) the result of the run on
the staged input; and (d) the resulting updated project folders

depend on an intermediate node created within a different run. For example, assume
the set of data dependencies have been computed for a workflow run B, and a run
dependency exists between A and B (i.e., the output of A was used as input to B). For
each input node to B, we additionally compute the data dependencies for corresponding
nodes (i.e., nodes with the same collection or data identifier) in workflow run A.

5 Conclusion

This paper introduces the notion of project histories and folders as a natural model for
managing provenance information across scientific-workflow runs. The model lever-
ages the file-folder metaphor for organizing project data, provides a simple and intuitive
project-history view of workflow runs that emphasizes run dependencies, and leverages
our previous work on collection-oriented workflows and provenance. In addition, we
propose extending the single-run provenance support in COMAD with new constructs
to support project histories, e.g., for tracking collections and data across runs, and up-
dating project folders with run results. These extensions allow multiple workflow traces
to be stored in a single, integrated repository, e.g., to better support provenance queries
across runs.
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Abstract. 2D-Nuclear magnetic resonance (NMR) spectroscopy is a
powerful analytical method to elucidate the chemical structure of
molecules. In contrast to 1D-NMR spectra, 2D-NMR spectra correlate
the chemical shifts of 1H and 13C simultaneously. To curate or merge
large spectra libraries a robust (and fast) duplicate detection is needed.
We propose a definition of duplicates with the desired robustness prop-
erties mandatory for 2D-NMR experiments. A major gain in runtime
performance wrt. previously proposed heuristics is achieved by mapping
the spectra to simple discrete objects. We propose several appropriate
data transformations for this task. In order to compensate for slight vari-
ations of the mapped spectra, we use appropriate hashing functions ac-
cording to the locality sensitive hashing scheme, and identify duplicates
by hash-collisions.

1 Motivation

Nuclear magnetic resonance (NMR) spectra are important to analyze unknown
natural products. In contrast to standard one-dimensional NMR spectroscopy,
advanced two-dimensional NMR spectroscopy is able to capture the influences of
two different atom types at the same time, e.g. 1H (hydrogen) and 13C (carbon).

The result of a 2D-NMR measurement can be seen as an intensity function
measured over two independent variables1. Regions of the plane with high inten-
sity are called peaks, which contain the real information about the underlying
molecular structure. The usual visualizations of 2D-NMR spectra are contour
plots as shown in figure 1 (1H,13C-HSQC NMR spectrum). 2 Contour lines in
low intensity regions are clipped away, because they are produced by irreprodu-
cable fluctuations. An ideal peak would register as small dot. In the biochemical
literature, peaks are noted by their two-dimensional positions.

However, due to the limited resolution available (depending on the strength
of the magnetic field) multiple peaks may appear as a single merged object with
1 The measurements are in parts per million (ppm).
2 HSQC: Heteronuclear Single Quantum Coherence.
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non-convex shape, and after thresholding two different peaks, which are close
together, may be merged and so both are represented by a single point. This is
usually accepted. The pattern of peaks is very characteristic and specific for a
particular substance.
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Fig. 1. 2D-NMR (HSQC) spectrum of Quercetrin, the one-dimensional plots at the
axes are projections of the original two-dimensional intensity function including the re-
spective signal intensities. Each peak captures characteristic 13C,1 H- atomic resonance
interactions present in the specific molecule.

As modern NMR devices allow the automatic analysis of many samples per
day, the number of a spectra in a database can be up to several thousands
per laboratory. Yet, manual work is needed to deduce the chemical structure
of a complex organic substance from the spectrum. Thus, most of the NMR
data is unpublished but contains a lot of experimental knowledge. Duplicate
detection is needed for a use case where two or more libraries are merged, and the
experimental knowledge for a pair of duplicates needs to be manually merged and
curated. The matching has to be robust against merged peaks and measurements
deviations between the two laboratories.

The problem is, given an automatically measured spectrum find all matching
spectra on the basis of their peaks with annotations. We cast the specific problem in
amore general setting: given a set of spectrafindall pairswhich arenear-duplicates.

Our approach is based on a similarity measure with the desired robustness
properties. In [15], we describe heuristics which guarantee no false negatives
and reduce the average run time. However, the runtime complexities of those
heuristics are still quadratic and the run times for very large data sets are still
unacceptable.
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In this paper, we propose to map the spectra to simple discrete objects like
fixed length integer vectors or discrete sets, for which duplicates can be found
much easier. The mapping may cause false negatives, as duplicate spectra may be
mapped to discrete objects with slight variations. The effect is compensated by
searching similar discrete objects instead of identical ones. We use 1) manhattan
distance and 2) the Jaccard coefficient for this task. For both similarity measures
exist instances of the locality sensitive hashing scheme (LSH) [16], which uses a
proper set of hashing functions to identify duplicate spectra by hash-collisions.
The effectiveness of the proposed transformations are evaluated on real data
with respect to quality and run time.

The remainder of the paper is organized as follows: after a discussion of re-
lated work in the next section, we introduce a simple definition of similarity and
define fuzzy duplicates in section 3. Based on the exact method we discuss the
transformation of spectra into discrete space in section 4, followed by the ap-
plication of LSH to the problem. Our experiments are based on real data, their
setup and results are shown in section 6. With the summary in section 7 we
conclude the paper.

2 Related Work

Duplicate detection can be seen as a special case of content-based similarity
search, where pairs of spectra are considered duplicates if their similarity exceeds
a certain cutoff value. While content-based similarity search is already in use
for 1D-NMR spectra [19, 1, 22, 18, 2], to the best of our knowledge, no effective
similarity search method is known for 2D-NMR-spectra. Besides technical details
(like how to choose the particular cutoff values for similarity) the problem of an
approach purely based on similarity is, that the similarities between all pairs of
spectra have to be computed. This leads to quadratic run time in the number
of spectra, which is prohibitive for large spectra databases. In case of duplicate
detection, more efficient algorithms exist.

Various aspects of detecting duplicates have received a lot of attention in
database and information retrieval research. The closest type of approaches is
near-duplicate detection of documents. The efficient detection of near-duplicate
documents has been studied by several authors [5, 24]. In particular, near-
duplicate detection of web documents is a quite active research area [13, 8, 12].
The difference between near-duplicate documents and fuzzy duplicates of 2D-
NMR spectra is that documents are composed of discrete entities, namely words
or index terms, but 2D-NMR spectra consists of continuous 2D points. The cru-
cial difference is that the matching operation is transitive for words but not for
2D points. An extension of near-duplicate documents are duplicates in XML
documents [23], where the set of terms is organized as tree.

Duplicates are often found by using a similarity measure. Such measures can
be manually defined, but in case of strings suitable similarity measures can
be learned automatically using a support vector machine [3], which improves
the detection accuracy. Another example of very difficult duplicates are those
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found in the WHO drug safety database [21]. In this case, a classification prob-
lem was solved in order to find a measure for comparison of the records. As
those duplicates themselves are very difficult to detect, it seems unlikely to find
subquadratic algorithms for this problem class. Fortunately, fuzzy duplicates of
2D-NMR spectra have a more simple definition, which does not require advanced
learning techniques.

The detection of duplicate records in data streams [9] or click streams [20] are
new variants of the problem. Here, duplicates have simple definitions and the
records have fixed length. NMR spectra have not that simple nature, e.g. the
number of peaks may differ between spectra (due to the experimental setup even
for chemical duplicates). Also the streaming scenario does not appear naturally
for 2D-NMR spectra. However, the used technique, namely Bloom filters, are
very promising and we will investigate in future research, whether Bloom filters
can be applied in our scenario as well.

The detection of duplicates in images [17] is slightly related to our research,
as 2D-NMR spectra could be thought as images as well. However, the used
techniques in [17] ensure invariance wrt. scaling, shifting and rotation, which is
not meaningful in case of 2D-NMR spectra.

The detection of duplicates is slightly related to collision detection in com-
puter graphics [7]. The problem in this concern is to find 2D or 3D objects with
overlapping boundaries in real time. The algorithms make the assumption, that
only a few bounding boxes of the objects are overlapping. However, in our set-
ting almost all bounding boxes of the spectra overlap. So, collision detection is
not applicable to our problem.

Record linkage and especially the sorted neighborhood method [14] is also
related to our approach. Sorted neighborhood determines for every object, in
our case a 2D NMR spectrum, a key by which the objected are ordered. A slid-
ing window is moved over the sorted sequence and objects within a window are
checked for duplicates. The assumption behind the method is, that duplicates
have the keys, which are close in the sorted object sequence. Key selection is
crucial for the method. The sorted neighborhood method has been successfully
used for identifying duplicates in customer databases with data objects con-
sisting mainly of discrete attributes. Since those attributes ensure transitivity
of duplicates, the key generation consists of selecting subsets of the discrete at-
tributes. As 2D-NMR spectra do not have discrete attributes, the construction of
a key is much more difficult. So far no promising technique is known for numeric
attributes.

3 Definition of Similarity and Fuzzy Duplicates

A 2D-NMR spectrum of an organic compound captures characteristics of the
chemical structure like rings and chains. As the shape of the measured peaks
varies between experiments (even with the same substance!), we use centroid
peak positions for the representation of the spectra. So, we define a spectrum as
a set of two-dimensional points:
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Definition 1. A 2D-NMR spectrum A is defined as a set of points {x1, . . . ,
xn} ⊂ R

2. The | · | function denotes the size of the spectrum |A| = n.

The number of peaks per spectrum is typically between 4 and 60. Our definition
of duplicates is based on the idea that peaks can be matched. As spectra are
measured experimentally, peak positions can differ even between technical repli-
cates3. For that reason, peaks cannot be matched by their exact positions, but
rather some slight deviations have to be allowed. A simple but effective approach
is to match peaks only within a small spatial neighborhood, The neighborhood
is defined by the ranges α and β:

Definition 2. A peak x from spectrum A matches a peak y from spectrum
B, iff |x.c − y.c| < α and |x.h − y.h| < β, where .c and .h denote the NMR
measurements for carbon and hydrogen respectively.

Based on the notion of matching peaks, we are ready to define a set-oriented
similarity measure, from which in turn we derive the definition of duplicates as
a special case. Note, that a single peak of a spectrum can match several peaks
from another spectrum. Given two spectra A and B, the subset of peaks from
A which find matching partners in B is denoted as matches(A, B) = {x : x ∈
A, ∃y ∈ B : x matches y}. The function matches is not symmetric, but helps to
define a symmetric similarity measure

Definition 3. Let be A and B two spectra and A′ = matches(A, B) and B′ =
matches(B, A), so similarity is defined as

sim(A, B) =
|A′| + |B′|
|A| + |B|

The measure is close to one if most peaks of both spectra are matching peaks.
Otherwise, the similarity drops towards zero.

An important special case of similarity search is the detection of duplicates
to increase the data quality of a collection of 2D-NMR-spectra. In addition to
the measurement inaccuracies, in case a substance is measured twice with a
high and low resolution, it may happen that neighboring peaks are merged to
a single one. A restriction to one-to-one relationships between matching peaks
can not handle such cases. This means that a single peak from spectrum A can
be matching partner for two close peaks from spectrum B.

We propose a definition of fuzzy duplicates based on the similarity measure
which can deal with the problems mentioned, namely deviances in peak mea-
surements as well as splitted/merged peaks.

Definition 4. A pair of 2D-NMR-spectra A and B are fuzzy duplicates, iff
sim(A, B) = 1.

3 A technical replicate is the same substance/molecule under the same experimental
conditions subjected to the measurement device at least twice.
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By that definition it is only required that every peak of a spectrum finds at least
one matching peak in the other spectrum. The parameters α and β can be set
with the application knowledge of typical variances of single peak measurements.
For our application, we chose α = 3 ppm (13C coordinate) and β = 0.3 ppm (1H
coordinate) if not stated otherwise.

3.1 Why Is the Problem Difficult?

The duplicate definition is not transitive, that means if A is duplicate of B and
B is duplicate of C that not necessarily A is duplicate of C. An example for this
fact is sketched in figure 2. The reason is the nature of continuous measurements
of the peak coordinates. The lack of transitivity has the consequence that a set

c
b

a

Fig. 2. The peak a from spectrum A matches peak b from spectrum B and b matches
c from spectrum C. However a and c are not matching.

of duplicate spectra (where all spectra are pairwise duplicates) cannot be repre-
sented by a single spectrum. Such a representative would ease the detection of
duplicates, since all duplicates of the representative are also pairwise duplicates.
Because fuzzy duplicates of 2D-NMR spectra do not have this property, all pairs
of the set have to be checked in order to calculate a set of duplicates. Thus, the
complexity of an algorithm which finds all duplicates in a set of spectra has a
quadratic worst case runtime O(n)2 in the number of spectra n. Therefore, we
have to resort to heuristics which reduce the experimental runtime on typical
data sets.

4 Spectra Transformation

The exact methods [15], which are guaranteed to have no false negatives, do not
scale to very large data sets, even when using peak selecting heuristics. Therefore,
we investigate methods which have significantly lower run time. The price for
the lower runtime is the possibility of false negatives, that means some duplicate
pairs could be missed. We will discuss later how to avoid false negatives.

The problem of finding fuzzy duplicates of 2D-NMR spectra is, that the dupli-
cate relation lacks transitivity. The reason is the continuous nature of the peak
measurements. So, the idea is to map the peaks to some discrete objects. Among
the many possibilities to do that, we will explore two principal alternatives
of those mappings. First, the peak coordinates are discretized and then those
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integers are concatenated to a fixed length vector. Second, the peaks of a spec-
trum are mapped to discrete objects so that a spectrum is represented by a set
of those objects.

The task of finding duplicate spectra is then reduced to finding duplicates
of integer vectors and duplicate sets of discrete objects respectively. Both of
the latter duplicate relations are transitive, so that a set of duplicates can be
specified by a single representative vector or set. In order to check whether a new
mapped spectrum belongs to a set of duplicates, it suffices to test the duplicate
relation with the representative of the set.

False negatives occur in this approach, when duplicate spectra are mapped to
different discrete objects. We propose mappings which map duplicate spectra to
discrete objects which are – if not identical – at least very similar.

4.1 Mapping to Integer Vectors

The first proposed mapping of 2D-NMR spectra maps transformed peaks to
coordinates of the discrete integer vectors. Such a mapping involves three issues,
namely (1) how to handle possible splits/merges of peaks, (2) how to order the
transformed peaks to a vector, and (3) how to chose the overall dimensionality
of the vectors.

Robustification: In order to handle the problem of peak splitting, some peak
x of a spectrum is selected and those peaks y are deleted from the same spec-
trum which are in the neighborhood of x. The neighborhood is given by N(x) =
{y : y �= x, |x.c−y.c| ≤ α and |x.c−y.c| ≤ β}. The peaks are selected in decreas-
ing order of |N(x)|, so that the peak with the largest number of neighbors is
selected first. The iteration stops when each peak in the spectrum is a singleton,
i.e. the neighborhoods of the remaining peaks are empty. The remaining peaks
are called the representative peak set of a spectrum. After this step, a one to one
relation between between peaks of duplicate spectra can be assumed.

Peak Ordering: The coordinates of the representative peaks of a spectrum
are discretized by binning. The question remains how to order the discretized
peak coordinates to form a vector, so that the order is not affected by small
measurement errors. The most robust order is to sort 13C- and 1H-coordinates
independently and discretize afterwards. The vector consists of a block of 13C-
coordinates followed by a block of 1H-coordinates. However, this procedure would
entirely ignore the joint distribution of 13C- and 1H-measurements but resorting
to the marginal distributions only. So, quite different spectra could be mapped
to the same integer vector.

The other extreme is to sort the peaks by one coordinate – say 13C – only,
and form a vector of alternating discretized 13C- and 1H-coordinates. The in-
formation of the joint distribution of 13C- and 1H- coordinates is retained in
this mapping. In case of two peaks with close 13C-coordinates but different 1H-
coordinates, measurement errors in the 13C-coordinate of a duplicate spectrum
could result in swaped order of the two peaks, which in effect also swaps the
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Fig. 3. Mapping of peaks from a spectrum to integer vectors for w = 2. The blocks of
the peaks are indicated by rectangles. The resulting integer vector of the discretized
spectrum is shown in the table underneath (last row). The windows and C and H blocks
within a window are shown in the second and third row respectively.

positions of the 1H-coordinates. In case of two spectra being duplicates their
integer vectors could be quite dissimilar, because of the difference in the swaped
1H-coordinates.

We propose an intermediate approach, which combines the robustness of the
first with the discrimination power of the second. The representative peaks of
a spectrum are sorted by one coordinate, say 13C. Starting with the peak of
the largest 13C-coordinate, we use a jumping window of w consecutive peaks.
We sort the 13C- and 1H- coordinates independently for the w peaks inside a
window, and arrange them in blocks as in the first approach. The last window
might contain less than w peaks if #peaks mod w �= 0. The important aspect
of this technique is, that peaks in the close neighborhood from another spectrum
map to the same sorted blocks, regardless of their order in the 13C- axis. The
problem of the second extreme approach can only occur at the jump positions.
So, by choosing w we can search for a tradeoff between robustness and retained
information. The process is illustrated in figure 3.

Although some peaks of duplicate spectra might map to different integer vec-
tors due to the binning process, i.e. close peaks coordinates are mapped to dif-
ferent bins, the difference is at most one bin per coordinate.

Overall dimensionality: The overall dimensionality D of the set of result-
ing spectra vectors S is determined by the spectrum having the largest set of
representative peaks D = max(#peaks(Si)). Since the spectra have different
numbers of representative peaks, we need to pad their integer vectors up to the
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fixed dimensionality D. Padding the vectors with zeroes increases their overall
similarity, whereas padding by random values would decrease their overall sim-
ilarity. Therefore we pad a vector by repeating the vector itself until the the
length of the maximal vector is reached, thereby retaining the similarity of the
original vectors.

4.2 Mapping to Discrete Sets

We introduce a simple grid-based mapping to map a spectrum to a set of discrete
objects, on which we will build a more sophisticated method.

Simple Grids. A simple grid-based method is to partition each of the both
axis of the two-dimensional peak space into intervals of same size. Thus, an
equidistant grid is induced in the two-dimensional peak space and a peak is
mapped to exactly one grid cell it belongs to. When a grid cell is identified by a
discrete integer vector consisting of the cells coordinates the mapping of a peak
x ∈ R

2 is formalized as

g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =
⌊

x.c

α

⌋
, gh(x.h) =

⌊
x.h

β

⌋

The quantities α and β are the extensions of a cell in the respective dimensions.
The grid is centered at the origin of the peak space.

Shifted Grids. A problem of the simple grid-based method is that peaks which
are very close in the peak space may be mapped to different grid cells, because a
cell border is between them. So proximity of peaks does not guaranty that they
are mapped to the same discrete cell.

o1

o o

o2

3
4

Fig. 4. The four grids are marked as follows: base grid is bold, (1, 0), (0, 1) are dashed
and (1, 1) is normal

Instead of mapping a peak to a single grid cell, we propose to map it to a set
of overlapping grid cells. This is achieved by several shifted grids of the same
granularity. In addition to the base grid some grids are shifted into the three
directions (1, 0)(0, 1)(1, 1). An illustration of the idea is sketched in figure 4. In
figure 4, one grid is shifted in each of the directions by half of the extent of a
cell. In general, there may be s − 1 grids shifted by fractions of 1/s, 2/s, . . . , s−1/s

of the extent of a cell in each direction respectively. For the mapping of the
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peaks to words which consist of cells from the different grids, two additional
dimensions are needed to distinguish (a) the s−1 grids in each direction and (b)
the directions themselves. The third coordinate represents the fraction by which
a cell is shifted and the fourth one represents the directions by the following
coding: value 0 is (0,0), 1 is (1,0), 2 is (0,1) and 3 is (1,1). So each peak is
mapped to a finite set of four-dimensional integer vectors. A nice property of
the mapping is that there exists at least one grid cell for every pair of matching
peaks both peaks are mapped to.

5 Approximate Methods as Filter

The proposed mappings of the 2D-NMR data to discrete objects cannot guar-
antee, that duplicate spectra are mapped exactly to the same discrete objects.
However, the mappings are designed in a way, that the mapped duplicate spectra
are at least very similar discrete objects. In this section we focus on methods,
which approximate similarity measures for those discrete objects (i.e. integer
vectors and discrete sets).

5.1 Locality Sensitive Hashing

A general approximation scheme is locality sensitive hashing (LSH) [16], which
is a distribution on a family of hash functions F on a collection of objects, such
that for two objects x, y

Prh∈F [h(x) = h(y)] = sim(x, y)

The idea is to construct k hash functions h on the set of objects according to
the family F . The percentage of collisions among the k pairs of hash values for
two objects estimates the probability of a collision and gives an approximative
similarity score. In general, the outcome of a hash function can be thought of
as an integer. So, the LSH-scheme maps each object to a k-dimensional integer
vector.

In case, two objects x, y are very similar, their integer vectors agree on all k
coordinates with high probability. Let be s = sim(x, y), s ∈ [0, 1] the similarity
between x, y, then the probability is sk that hi(x) = hi(y) agree for all 1 ≤ i ≤
k. To amplify that probability, the sampling process is repeated L times [10].
So, after L repetitions the probability that their integer vectors agree on all k
coordinates at least once is

Pr[1 ≤ i ≤ k : hi(x) = hi(y) at least once] = 1 − (1 − sk)L

Thus, the duplicate detection consist of finding L times the duplicates among
integer vectors and union the results. Finding groups of equal integer vectors
can be done by sorting, which has lower run time complexity than the naive
algorithm.

There are locality sensitive hashing schemes known for the following similarity
functions, Manhattan distance between fixed length integer vectors [11], and
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Jaccard coefficient for set similarity [4,6]. We briefly review the hashing schemes
for the similarity measures.

5.2 Manhattan Distance

Given a set of d-dimensional integer vectors with coordinates in the set {1,
. . . , C}, the Manhattan distance between two vectors is x, y ∈ X, d1(x, y) =∑d

i=1 |xi − yi|. Let be x = (x1, . . . , xd) a vector from X and u(x) = UnaryC(x1)
. . . UnaryC(xd) a transformation of x into a bit string, where UnaryC(a) is the
unary representation of a with C bits, i.e. a sequence of a ones followed by C −a
zeros. For any two vectors x, y ∈ X there is da(x, y) = dH(u(x), u(y)) with dH

is the Hamming distance, which gives the number of different bits between bit
strings. An appropriate family of hash functions with the LSH property consists
of hi(b), 1 ≤ i ≤ length(b), where hi(b) returns the ith bit from b.

Sampling uniformly from those hash functions and testing for collisions re-
duces to probabilistically counting the number of equal bits:

d1(x, y) = dH(u(x), u(y)) = dC(1 − Pr[hi(u(x)) = hi(u(y))])

with random hi, 1 ≤ i ≤ dC.
For the implementation of this LSH scheme, k random indices i1, . . . ik are

picked. The transformation into the Hamming space, which can be quite large,
is in practice not necessary. In order to find the value of hi(u(x)) we have to
look to which coordinate of the integer vector the index i belongs and if (i − 1
mod C) + 1 is larger than the integer value of that coordinate. So the hash
function for index i is

hi(u(x)) =

{
1 if (i − 1 mod C) + 1 ≤ x� i

C �+1

0 else

5.3 Jaccard Coefficient

Given two subsets A, B ⊂ U of a universe U the Jaccard coefficient is

simJ(A, B) =
|A ∩ B|
|A ∪ B|

The hash functions for the LSH scheme are constructed by random orderings of
the universe U . Such a random ordering can by viewed as a random permutation
π of the elements of U , where π(·) delivers the position of an element according
to π. The hash function hπ(A) = min{π(x) : x ∈ A} returns the smallest position
of an element of A with respect to the ordering π. Then for two sets A, B :

Pr[hπ(A) = hπ(B)] = simJ(A, B)

The probability is estimated by sampling from the set of possible permutations.
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Fig. 5. Density of the peaks of all spectra. Light gray means higher density. Note that
when plotting a spectrum with 13C as x-axis (0-220)ppm and 1H as y-axis (0-12)ppm,
aromatic structures are located in the upper right region and aliphatic structures are
located in lower left region.

6 Results

In this section we evaluate the proposed definition of duplicates and conduct
experiments to investigate the tradeoff between costs for candidate filtering of
the approximative methods and candidate checking of the exact methods.

6.1 2D-NMR Database

The substances included in the database are mostly secondary metabolites of
plants and fungi. They cover a representative area of naturally occurring com-
pounds and originate either from experiments or from simulations4 based on the
known structure of the compound. The database includes 1524 spectra with 2 to
60 peaks each, for a total of about 20,000 peaks. The density in the peak space
for all peaks in the database is shown in figure 5.

6.2 Performance Results of the Approximate Methods

We implemented the approximate methods as single SQL statements5 using
the SQL 1999 standard. The used data are the 1524 original spectra, which
contain 118 fuzzy duplicates. The run times of the approximate methods are
below 20 seconds for all methods. That is a large speedup with respect to the
exact methods as well as the heuristics proposed in [15], since those methods
run several minutes on that data. The actual speedup depends on the size of
the used data set, since the methods of the two classes have different runtime
complexities (n2 versus n log n).

For the approximate methods, we investigate the number of false positives
and false negatives for different numbers k of sampled hash functions. First, the
4 ACD/2D NMR predictor, version 7.08, http://www.acdlabs.com/
5 The code is available at http://users.informatik.uni-halle.de/∼hinnebur

http://users.informatik.uni-halle.de/~hinnebur


Fast Approximate Duplicate Detection for 2D-NMR Spectra 151

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000  1200  1400

#F
P

, #
F

N

k, #Sampled Hash Functions

False Negatives
False Positives

Fig. 6. Number of false positives and false negatives FP,FN for Manhattan with LSH
(L = 5) and diferent k for four repeated experiments

0 10 20 30 40

0
20

0
40

0
60

0
80

0

k

F
P

,F
N

False Negatives
False Positives

0 10 20 30 40

0
20

0
40

0
60

0
80

0

0 10 20 30 40

0
20

0
40

0
60

0
80

0

k

F
P

,F
N

False Positives
False Negatives

0 10 20 30 40

0
20

0
40

0
60

0
80

0

False Positives
False Negatives

Fig. 7. Number of false positives and false negatives for Jaccard coefficient with Min-
hashing (L = 5), simple grids (left) and shifted grids (right)

parameter L = 5 is fixed. For small k more spectra are likely to be reported
as similar. The larger k, the more the reported integer vectors as well as the
discrete sets have to be identical. Since our mapping to discrete integer vectors
and discrete sets respectively may cause false negatives, we want to allow a some
variability of the detected spectra.

A relevant performance measure is the number of false positives for very small
false negatives. At this point, the reported similar spectra can be subsequently
checked with the naive exact method to exclude the false positives. In that
respect, the approximate method acts as a strong filter while only few true
duplicates are missed. The results for Manhattan distance with LSH are shown
in figure 6. Here the number of false positives is about 390 without any false
negative. For Jaccard coefficient with Minhashing we tested the mapping to
simple grids and shifted grids. The number of false positives are about 900 and
500 respectively, as shown in figure 7.

As Jaccard coefficient with Minhashing gives more false negatives than the
Manhattan distance, additionally, we experimented with different values for L.
The results are shown in table 1. The table shows (especially in the two blocks
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Table 1. Number of false positives and false negatives for Jaccard coefficient with
Minhashing for different setting for L and k

k L Minhashing Minhashing+Shift
FN FP FN FP

2 1 42 9352 46 2918
3 1 59 252 55 558
4 1 67 170 57 168
5 1 69 57 66 47

2 5 19 15167 11 13828
3 5 32 2626 31 1540
4 5 39 514 36 547
5 5 46 199 47 183

5 10 35 444 31 285
5 15 26 654 17 481
5 20 25 836 16 584
5 50 20 1445 12 1119

Fig. 8. Two spectra as an example for a detected duplicate in our database: Peaks as
simple points from an experimental and predicted spectrum of β –Jonol. Note, that
each peak in A has matching peak in B according to α = 3.0ppm and β = 0.3ppm.

at the bottom) that increasing L produces more false positives while the number
of false negatives is reduced at the same time.

All reported measurements are averages of five runs. The main point is that
merely several hundreds of spectra must be explicitly checked as putative dupli-
cates compared to two millions (1524 · (1524 − 1)/2) for the naive method. For
comparison, the best exact heuristic reported in [15] still needs to check about
30,000 duplicate pairs with the naive method. So, approximate methods are a
huge performance gain.

In conclusion, the mapping to integer vector in combination with Manhattan
distance and LSH turned out to be the best method, delivering the least number
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of false positives and no false negatives. The mapping to shifted grids is better
than the mapping to simple grids, but the number of false positives is higher.
However, the minhashing method has a slight runtime advantage, since less hash
functions need to be sampled. This might be useful in case of very large data
sets.

6.3 Detected Duplicates

There were no duplicates intentionally included in the database. With a setting
of α = 3ppm and β = 0.3ppm, which are reasonable tolerances, 118 of 2,322,576
(naive method) possible pairs are reported as fuzzy duplicates.

The found duplicate pairs revealed the following types of classes of duplicates
occurring in practice: (i) accidental entry of the same spectra/substance with dif-
ferent names, (ii) spectra prediction software ignoring stereochemical quaternary
carbon configurations, (iii) some pairs consist of an experimental and a simu-
lated spectrum (see figure 8) of the same substance (which speaks for both our
duplicate definition and the simulation software), (iv) same chemical compound
in different measurement conditions (measurement frequency, solvent).

Due to the deletion of peaks in the preprocessing step, different substitutional
patterns are also candidates for near duplicates because a discrimination between
a peak splitting event or an additional substituent peak is not possible.

7 Conclusion

We proposed a simple and robust definition for fuzzy duplicates of 2D-NMR
spectra on the basis of co-matching peaks. Considering peak splitting as well
as inherent measurement errors are crucial to respect for in NMR- Data. We
described ideas and heuristics to embed 2D- spectra data into vector spaces and
discrete objects, to suitably interface NMR- data to data mining algorithms.
A scale up to large data volumes is achieved by applying approximate and fast
algorithms as preliminary filters prior to the computation of the exact duplicates,
avoiding the quadratic nature of searching for duplicates in sets of spectra.

We found that our mapping to integer vectors in combination with LSH and
Manhattan distance is more suitable for the task than mappings to discrete set
in combination with Jaccard coefficient and minhashing. A conservative choice
of the parameters guarantees no false negatives. The developed methods are the
foundation to start and manage a large collection of NMR spectra, which is part
of an ongoing metabolomics project at the IPB in Halle (Saale).
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Abstract. Nowadays, ontologies and machine learning constitute two major 
technologies for domain-specific knowledge extraction which are actively used 
in knowledge-based systems of different kind including expert systems, deci-
sion support systems, knowledge discovery systems, etc. While the aim of these 
two technologies is the same – the extraction of useful knowledge – little is 
known about how the two sources of knowledge can be successfully integrated. 
Today the two technologies are used mainly separate; even though the knowl-
edge extracted by the two is complementary and significant benefits can be ob-
tained if the technologies were integrated. This problem is especially important 
for biomedicine where relevant data are often naturally complex having large 
dimensionality and including heterogeneous features, and where a large body of 
knowledge is available in the form of ontologies. In this paper we propose one 
approach for improving the performance of machine learning algorithms by in-
tegrating the knowledge provided by ontologies. The basic idea is to redefine 
the concept of similarity for complex heterogeneous data by incorporating 
available ontological knowledge, creating a bridge between the two technolo-
gies. Potential benefits and difficulties of this integration are discussed, two 
techniques for empirical evaluation and fine-tuning of feature ontologies are de-
scribed, and an example from the field of paediatric cardiology is given 

1   Introduction 

Ontologies and machine learning constitute two major technologies for domain-
specific knowledge extraction actively used in knowledge-based systems of different 
kind including expert systems, decision support systems, knowledge discovery sys-
tems, etc. By establishing an explicit formal specification of the concepts in a particu-
lar domain and relations among them, ontologies provide the basis for reusing and 
integrating valuable domain knowledge within applications [13]. Machine learning 
algorithms are also actively applied in order to extract useful knowledge in different 
problem domains by searching for interesting patterns (dependencies) in large  
volumes of data [21]. 

The principal difference between the two technologies is that the first is usually 
expert-driven (ontologies are a result of the knowledge elicitation process from a 
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domain expert by knowledge engineers, and data is not necessarily involved in this 
process); while the latter is data-driven (the search for patterns is usually automatic 
and does not involve substantial interaction with the expert). While the aim of these 
two technologies is the same – the extraction of useful knowledge – little is known 
about how the two sources of knowledge can be successfully integrated.  

Traditional machine learning algorithms are not able to incorporate background 
domain knowledge, but instead work with a sequence of instances, where each in-
stance is represented by a single feature (attribute) vector describing the instance [21]. 
This limitation of traditional machine learning techniques is widely acknowledged 
today. The issue of learning from more complex data, and in particular similarity  
for complex heterogeneous data with rich background knowledge was, for example, 
in focus at the recent International Workshop on Mining Complex Data, MCD  
2006 [31].  

The principle of instance similarity is fundamental to the vast majority of machine 
learning algorithms. The main assumption in supervised, unsupervised and semi-
supervised machine learning algorithms is that the instances of the same class (clus-
ter) are more similar to each other than the instances of different classes (clusters). In 
this paper, we propose an approach to improving the performance of machine learning 
by redefining the concept of similarity with incorporating constraints provided by 
ontological domain knowledge, that is instead of simply providing the machine learn-
ing algorithm with unrelated features in the form of a single vector or a vector set, we 
will semantically enhance them by integrating the graph structures of relevant domain 
ontologies.  

We see two main benefits that can be obtained from this procedure: first and the 
most important, is that the performance of machine learning algorithms will be im-
proved by incorporating knowledge provided by domain ontologies. For example, the 
predictive accuracy of k-nearest neighbour classification can be improved. Second, a 
more practical and application-oriented advantage, is that an ontology, describing the 
interrelations between the features in a machine learning problem, can be presented to 
the user of a knowledge-based system via a Graphical User Interface, and provide an 
effective means of feature control and manipulation for decision support. Thus, the 
ontology will not be fixed, but will rather be integrated as a flexible wrapper for more 
efficient machine learning and knowledge discovery. Changes in the feature ontology, 
initiated by the user and leading to an increase in machine learning performance, may 
serve as an important source of novel knowledge in the domain. 

This paper is organised as follows. In Section 2 we briefly analyse major existing 
medical ontologies. In Section 3 we give an overview of related work in mining com-
plex data with taking into account feature semantics. In Section 4 we introduce the 
concept of feature ontology, consider how instance similarity can be redefined with it 
and discuss potential benefits of its use, and in Section 5 we consider one example 
application – the problem of predicting Atrial Septal Defect development. In  
Section 6 we present two techniques for the empirical evaluation of distance functions 
that can be used for the validation and fine-tuning of feature ontologies, and in  
Section 7 we conclude with a summary and directions for future research. 
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2   Ontologies in the Biomedical Domain 

Clinical and biomedical applications often have to deal with large volumes of com-
plex information originating from different sources, with different structures and 
different semantics. There is a long tradition of structuring clinical and biomedical 
information producing a vast number of standards and conceptual vocabularies that 
are reused in various medical applications. The efficient reuse of medical information 
requires the automatic processing, semantic integration, and semantic enhancement of 
medical knowledge resources enabled by an efficient and adequate knowledge organi-
sation mechanism. There exists a variety of knowledge organisation systems that can 
be used for capturing semantic knowledge, including taxonomies, thesauri, and on-
tologies. All of these knowledge organisation systems express, either implicitly or 
explicitly, a more or less detailed semantic model of the world [14]. 

A taxonomy establishes a classification hierarchy of terms [25] by subsuming simi-
lar objects under distinct classes and subclasses. In contrast to taxonomies, thesauri 
provide additional means for refining the established classification hierarchies by 
constituting a fixed set of predefined relations between the concepts, enabling, for 
instance, the specification of similar or synonymic concepts [22]. Thus, by specifying 
a terminology of a particular domain, thesauri allow for the sophisticated and detailed 
annotation of objects of interest.  

In computer science, an ontology is defined as “an explicit, formal specification of 
a shared conceptualisation” [13]. Through the specification of rules, ontologies enable 
the formulation of constraints, negations, logical functions, and mathematical opera-
tions. As taxonomies and thesauri are less expressive than ontologies, their captured 
content can easily be represented with ontological structures. 

As already mentioned, in the domain of healthcare and biomedical informatics, a 
number of different knowledge repositories have been developed. Figure 1 provides 
an overview of relevant medical knowledge bases ordered by their size, i.e. the num-
ber of concepts. As one can see, the knowledge bases vary in the size (from 900,000 
in UMLS to 40 in BioPax), in the way of knowledge organisation (ontology, meta-
thesauri, thesauri, and taxonomy), in the covered subject domain, and in the format. 

The Unified Medical Language System (UMLS) [8] originated in 1986 at the US 
National Library of Medicine (NLM) as a terminology integration project. It is a con-
trolled compendium of medical vocabularies enhanced by mappings between them, 
with over 900 thousand concepts and 12 million relations between them. UMLS has 
three major components:  

• the UMLS Meta-thesaurus being a repository of interrelated biomedical concepts 
integrating more than 60 families of biomedical vocabularies;  

• the UMLS Semantic Network providing high-level categories for classifying 
every concept from Meta-thesaurus; 

• the SPECIALIST lexicon yielding lexical resources and programmes for generat-
ing lexical variants of biomedical terms that enable the identification of lexically 
similar concepts. 
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Fig. 1. Overview of major biomedical knowledge bases  

UMLS concepts and relations are captured in a proprietary relational format and 
can either be accessed online via a web browser or are distributed on a CD-ROM or 
via FTP for offline usage. Although the access to the UMLS knowledge resources is 
free of charge, UMLS users have to sign a license agreement authorising them to use 
the UMLS content for research purposes. 

The International Classification of Diseases (ICD) [16] is published by the World 
Health Organization (WHO). By providing means for the classification of known 
diseases and other health-related problems, the ICD enables the storage, retrieval and 
statistical analysis of diagnostic information. It is a taxonomy covering approximately 
60 thousand concepts organised in 22 chapters of different classes of diseases. Its 
focus is to subsume similar diseases under classes, and infrequent diseases are some-
times combined without indicating profound similarity. ICD is commercially avail-
able on a CD or as a book. It can also be accessed free of charge with a web browser1 
and is a part of the UMLS knowledge repository. 

Medical Subject Headings (MeSH) [23] is a thesaurus used for indexing and anno-
tating journal articles and books in the PubMed database of biomedical literature. It 
establishes a set of poly-hierarchically structured concepts providing the basis for 
searching annotated medical literature at various levels of specificity. MeSH is cre-
ated and maintained by the US National Library of Medicine (NLM). The MeSH 
Thesaurus establishes approximately 22,500 concepts (e.g., Disease, Cardiovascular 
Disease, Congenital Heart Defect, Atrial Septal Defect) and 83 qualifiers (e.g., Diag-
nose or Ultrasonography). Both concepts and qualifiers are hierarchically structured 
ranging from the most general to the most specific ones. The qualifiers provide means 
for addressing a particular view of a concept, e.g. by attaching the qualifier Ultra-
sonography to the concept Atrial Septal Defect (ASD) one can emphasise the ultra-
sonography-related diagnostic aspects of ASD. The MeSH thesaurus can be 
downloaded from the US National Library of Medicine2 in the XML, ASCII, MeSH 

                                                           
1 See www.who.int/classifications/apps/icd/icd10online/ 
2 See www.nlm.nih.gov/mesh/MBrowser.html 
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Tree3, or MeSH MARC4 formats; it has also been converted to the RDF/OWL format 
[1][27]. It is also freely accessible through the UMLS knowledge repository. 

The Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) [29] 
is a thesaurus of healthcare terms, covering clinical data for various diseases, clinical 
findings, and procedures. SNOMED CT is supported and maintained by SNOMED 
International, a division of the College of American Pathologists (CAP). It covers 
approximately 400 thousand concepts with formal logic-based definitions organised 
in 18 top-level hierarchies. Besides the classical “is-a” relations, it specifies more than 
50 other relation types and encompasses more than 900 thousand instantiated rela-
tions. Being a very comprehensive standard, SNOMED CT cannot be provided and 
used in a classical book format, but has to be integrated into some access software. 
The SNOMED CT content is commercially distributed on CDs with or without addi-
tional access software and can be accessed free of charge via the SMOMED CT 
Browser5 or through the UMLS knowledge repository.  

The Gene-Ontology (GO) [3] project is a collaborative effort to provide a set of 
structured vocabularies for labelling gene products in different databases.  Aiming to 
establish a controlled vocabulary for describing the functions of genes in a species-
independent manner, the GO comprises of three independent vocabularies establish-
ing terms for annotating molecular functions, cellular components and biological 
processes in gene products. In short, molecular functions detail what a gene product 
does at the biochemical level, biological processes capture broad biological objectives 
and cellular components specify the location of a gene product within cellular struc-
tures and within macromolecular complexes. Its approximately 22 thousand concepts 
are organised as a directed acyclic graph, i.e. a hierarchical structure with concepts 
having one or more parents, and with two relations, “is-a” and “part-of”, linking the 
concepts. However, the GO specifies no associative relations across its three hierar-
chies. Being free of charge, the GO can be downloaded6 in many different formats, 
such as OWL, XML, OBO, free text, and MySQL, as well as can be accessed online 
via the GO browser AmiGO7.  

The Microarray Gene Expression Data (MGED) ontology [30] provides standard 
terms for the annotation of microarray experiments. The ontology was created and is 
maintained by the MGED Society, an international organisation of biologists, com-
puter scientists, and data analysts whose goal is to facilitate the sharing of microarray 
data generated by functional genomics and proteomics experiments. It encompasses 
229 concepts and 110 properties. The concepts are defined and structured by formal-
logic-based constraints, such as existential restrictions (specifying the existence of at 
least one relation of a given property to an individual being a member of a specific 
concept). Besides, MGED contains 658 instantiated concepts (instances) covering 
terms that are common to many microarrray experiments. MGED ontology is avail-
able for free in the OWL format. 

The Biological Pathway Exchange (BioPAX) project [4] is a collaborative com-
munity effort aiming at the developing of a common exchange format for biological 
                                                           
3 See www.nlm.nih.gov/mesh/mtr2007abt.htm 
4 See www.loc.gov/marc/specifications/speccharmarc8.html 
5 See snomed.vetmed.vt.edu/ sct/menu.cfm 
6  See  www.geneontology.org 
7  See www.godatabase.org/cgi-bin/amigo/go.cgi 
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pathway data, capturing the key elements of data models from a wide range of popu-
lar pathway databases. The established BioPax ontology covers metabolic pathway 
information, molecular interactions, protein post-translational modifications, and 
supports the Proteomics Standards Initiative (PSI). To cope with the complexity of 
pathway data, the BioPAX working group has decided to use a multi-level develop-
ment approach, i.e. BioPAX Level 1 is focused on the representation of metabolic 
pathway data, Level 2 expands the scope of Level 1 by including the representation of 
molecular binding interaction and hierarchical pathways, and further levels are also 
planned. The BioPAX Level 2 establishes 40 concepts and 33 properties. BioPAX is 
freely available and is currently implemented in the OWL format, but other imple-
mentations, such as XML Schema may be developed in the future.  

The Foundational Model of Anatomy (FMA) is the most comprehensive ontology 
of human “canonical” anatomy [26]. It is developed and maintained by the School of 
Medicine of the University of Washington and the US National Library of Medicine 
(NLM).  Beside the specification of anatomy taxonomy, i.e. an inheritance hierarchy 
of anatomical entities, the FMA provides definitions for conceptual attributes, part-
whole, location, and other spatial associations of anatomical entities. By additionally 
allowing for attributing relations (i.e. relations can be described in more detail by 
attaching additional attributes) FMA is particularly rich with respect to the specifica-
tion of relations and, thus, can cope with the requirements for the precise and com-
prehensive capturing of the structure of the body. FMA covers approximately 70 
thousand distinct anatomical concepts and more than 1.5 million relations instances 
from 170 relations types. The FMA is freely available as a Protégé 3.0 project or can 
be accessed via the web browser Foundational Model Explorer (FME)8. Moreover, 
there exist research approaches focusing on the conversion of the frame-based Protégé 
version of FMA to the OWL DL format [12]. 

3   Related Work: Mining Complex Data and Data Mining with 
Ontologies  

Medicine is a domain where large complex heterogeneous data sets are commonplace. 
Today, a single patient record may include, for example, demographic data, familiar 
history, laboratory test results, images (including echocardiograms, MRI, CT, an-
giogram etc), signals (e.g. EKG), genomic and proteomic samples, and history of 
appointments, prescriptions and interventions. And much if not all of this data may be 
relevant and may contain important information for decision support [19]. A success-
ful integration of heterogeneous data within a patient record thus becomes of para-
mount importance. Various techniques for mining complex data that try to take into 
account feature heterogeneity and inter-feature relations were recently suggested. 

Perhaps, the most straightforward way to construct a predictive model from  
heterogeneous data is simply to merge the heterogeneous features into a single het-
erogeneous feature-vector, neglect possible inter-relation among the features, and to 
employ some conventional inductive learning technique that is able to work  
with features of different types. For example, Berrar et al. [7] integrate clinical and  

                                                           
8 See fme.biostr.washington.edu:8089/FME/index.html 
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transcriptional data in order to get improved classification performance for lung can-
cer survival prediction. Different learning algorithms are compared; boosted C5.0 
decision trees, SVMs, probabilistic neural networks, k-nearest neighbour (k-NN), and 
MLP. MLP proved to be the most sensitive and less efficient with large heterogene-
ous feature vectors, while k-NN (somewhat surprisingly) and SVMs were the most 
robust classifiers resulting in the best predictive performance. Drawbacks of this “na-
ïve” approach include a high risk of overfitting, the need in relatively low dimension-
ality (“the curse of dimensionality”), and the fact that not every technique supports 
feature heterogeneity. 

A more sophisticated though not always applicable approach is to build an ensem-
ble of models, one for each type of data. Futschik et al. [11] claim to be the first to 
focus on the combination of clinical and microarray-based classifiers. The hypothesis 
is that clinical information could be enriched with microarray data such that a com-
bined ensemble predictor would perform better that a classifier based on either mi-
croarray data alone or clinical data alone. A Bayesian network was built on clinical 
data and an Evolving Fuzzy Neural Network (EFuNN) on microarray expression data 
in order to get an improved prediction accuracy for risk group prognosis in patients 
with lymphoma cancers. This approach has a number of advantages; 1) the heteroge-
neous data may be physically located at different sites and the computation can be 
parallelised; 2) there is relatively less risk of overfitting; 3) there is a possibility to 
apply more suitable techniques to a particular type of data (e.g., gene expression 
data), with a larger variety of available techniques. The main drawback of this ap-
proach is that it is usually applicable only when the different sources of data are rep-
resentative enough of the problem, so that two or more relatively strong (better than a 
random guess) models can be constructed for the problem at hand. 

Another common approach to take account of feature semantics for complex data 
consists in aggregating partial (dis)similarities computed on features of the same type 
possessing certain conceptual commonality. For example, Camps-Valls et al. [10] 
consider the use of composite kernels in order to combine spatial and spectral infor-
mation for the enhanced classification of hyperspectral images. The main assumption 
is that the composite representation will allow modelling the dependencies between 
the extracted features to some extent and this will lead to a more intuitive definition of 
similarity between instances. It was demonstrated that the use of such composite ker-
nels leads to a significant increase in predictive performance. However, the represen-
tation of feature interrelation is limited here to one-level grouping only (a grouping 
into non-overlapping feature subsets). 

Another important related branch of research is focused on the use of taxonomies 
and ontologies in order to improve data mining results (normally ontologies are used 
in order to redefine similarity in data mining). Usually, such studies are based on 
taxonomies which help to structure the instance space in homogeneously represented 
classification problems (such as texts, annotated images and genomic data). Normally, 
in the core of such studies there is a concept of taxonomic or semantic distance which 
depends on the location of two concepts/instances in the taxonomy (ontology). Per-
haps, the most well-studied area in this context is text mining where each document is 
often represented as a set of concepts (so called “bag-of-words” approach). The on-
tology used in this case can be a predefined graph-based model that reflects semantic 
relationship between concepts [24] or it can be derived from the texts themselves 
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using some unsupervised learning (one-level or hierarchical clustering) techniques 
(perhaps Baker and McCallum [5] were the first to apply this to text classification 
using so-called distributional clustering). Similar studies are done in order to find 
semantic similarity between annotated images for improved image retrieval based on 
the ontological representation of relations between the labels (see e.g. [17]). 

With the appearance of the extensive Gene Ontology (GO) and the more and more 
acknowledged role of personalised genomic medicine, there emerged studies that tried 
to use the GO in order to define semantic similarity between genes in a similar way as 
it was done before for texts and images. Thus, Azuaje and Bodenreider [2] demon-
strate that there is a significant correlation between the semantic similarity between a 
pair of genes and the probability of finding them in the same complex (cluster) in the 
analysis of gene expression data. This is claimed to be an assessment confirming to 
some extent the quality and consistency of the knowledge represented in the GO. In a 
related study, Bolshakova et al. [9] suggest to use the GO as the domain knowledge in 
order to validate clustering results and to determine the number of clusters in gene 
expression analysis. 

A similar attempt to enhance inter-case similarity with the domain semantics, for 
the field of medicine, was performed by Melton et al. [20]. The ontology used to 
define semantic similarity was SNOMED CT, and each patient was represented by a 
“bag of findings” (compared to the “bag-of-words” representation of texts), where 
findings included SNOMED CT concepts extracted from free texts (clinical notes, 
discharge summaries, etc) and coded procedure and diagnosis data (ICD9-CM codes), 
from the Columbia University Medical Center (CUMC) data repository in 1989 – 
2003. Patient cases included various disorders treated in the Medical Center. The use 
of taxonomic distance defined in SNOMED CT helped to improve the similarity as-
sessment a little in comparison with the simple “bag of findings” similarity, checked 
by the correlation with the expert-perceived similarity. Although being an interesting 
research about inter-patient similarity, this study is still quite far from its practical 
application, as long as this similarity assessment is quite noisy and still poorly corre-
lated with the expert-perceived similarity, and, on the other hand, most interesting for 
data mining medical data sets are rather disease-focused, where the “bag of findings” 
representation would not be suitable.  

In summary, most related studies on the use of ontologies in data mining are fo-
cused on homogeneously represented cases and concentrate mainly on taxonomic 
distance and ontologies with “is_a” relations. These techniques are not particularly 
suitable for mining complex medical data, as long as medical data are usually hetero-
geneous and disease-focused, where it does not often make much sense to split the 
instance space into hierarchical concepts. On the other hand, to the best of our knowl-
edge, no study focuses on mining disease-focused medical records with complex 
inter-feature relations. 

The use of domain semantics in order to improve similarity search and decision 
support is also under active study in the Case-Based Reasoning community [28]. 
Although, the focus in the so-called knowledge-intensive similarity measures is on 
creating a customised distance function for each particular feature, instead of the 
conventional Euclidean and Manhattan (city-block) metrics, and not on the total ag-
gregated distance (similarity). This research in CBR is rather complementary with  
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regards to the study presented in this paper in that the customised feature distances 
may be used as components in combination with a feature ontology which structures 
the feature space. 

4   Feature Ontology: Redefining the Distance with Complex Data 

As discussed above, today the most advanced ways of taking into account feature 
semantics in complex data consist in one-level feature grouping and either building a 
separate model for each semantic group (ensemble learning) or aggregating partial 
distances calculated within each group; or in the use of taxonomic distance over the 
hierarchical clustering of homogeneous features.   

The basic idea in our suggested approach is to improve the performance of ma-
chine learning by redefining the concept of similarity with incorporating constraints 
provided by ontological domain knowledge, that is instead of simply providing a 
machine learning algorithm with features in the form of a single vector or a set of 
vectors, they will be semantically enhanced by integrating the graph structures of 
relevant domain ontologies. This can be achieved through the integration of all related 
ontological knowledge in a single so-called Feature Ontology, systematically structur-
ising the feature space. The task of ontology integration is lately under active study in 
the area of ontology mapping [18]. Although a number of different solutions were 
proposed that may help in automating the integration in some cases, the process still 
remains routine and largely manual. The idea of structuring the feature space with a 
Feature Ontology is somewhat similar to object-oriented representation in CBR [6]. 

The main contribution of the feature ontology in terms of machine learning per-
formance is in a more logical distribution of weights in the feature space, reflecting 
the semantics of the domain. To give a simple example, imaging features should not 
outweigh clinical features just because their number can be more than a thousand. 
They should be considered equally important for determining the distance if they are 
situated at the same level of the feature ontology (unless the expert intentionally 
specifies that for the current task a particular branch of features is more important).  

A schematic distribution of weights in a feature ontology is shown in Figure 2. 
Feature ontology is a hierarchical structure in the form of a tree graph, where the 

nodes ( l
nN , where l is the level at which the node is situated, and n is the ordinal 

number of the node at level l) correspond to a group of features with common seman-

tics, starting from the root node 0N  combining all the relevant features, and the 

leaves ( l
nf ) include features. The tree structurises the feature space into k+1 levels. 

Leaves (features) can be situated at any level of the tree (although in the figure they 
are shown at level k+1 only for the sake of simplicity). The graph is weighted; 

weights are assigned to its edges (branches of the tree). Weight lm
nw  corresponds to 

the n-th child edge originating from the m-th node at level l.  
The weights of all child branches of a node in such a feature ontology should sum 

to one: ∑ =
n

lm
nw 1 . By default, if no prior knowledge is available, the weights of 

child branches should be equal. The weight of a particular feature l
nf  is defined as 
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the product of the weights in the tree on the path towards this feature: 
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nf . According to this definition, the deeper a node (or a feature) is in the 

hierarchy, the less influence it will have in the similarity assessment.  
The weights in the feature ontology can be established by an expert (satisfying to 

the defined constraints) and/or they can be fine-tuned with some machine learning 
algorithm (e.g. using a form of genetic search). The resulting feature weights can be 
used in combination with any distance function supporting feature weighting. In the 
simplest case, the overall distance can be calculated as the weighted average of con-
tributing partial distances corresponding to each relevant feature. Each partial distance 
may be different and may take into account the type and semantics of a particular 
feature but should be normalised (i.e., it should be in the range from 0 to 1).  
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Fig. 2. Schematic distribution of weights in a feature ontology 

One of the most common machine learning techniques where similarity between 
instances is explicitly calculated is instance-based learning (e.g., k-nearest neighbour 
classification, k-NN) [21]. The distance function that lies in the core of k-NN is nor-
mally defined for a single set of unrelated features representing the problem. By se-
mantically enhancing the set of relevant features by integrating medical domain 
knowledge and redefining the distance function, the patient diagnostic (classification) 
accuracy can be improved. This is the most important expected benefit from the use 
of the feature ontology. Presumably, feature ontology will also be useful for other 
learning techniques, implicitly taking instance similarity into account, in order to 
improve their performance. 

Besides the improved predictive performance, the graph-based representation of 
the feature ontology can be convenient for an expert in order to establish different 
feature weights by changing the weights of branches corresponding to a certain se-
mantic group of features, instead of assigning importance to each particular feature. 
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The feature ontology can be presented to the expert as part of the system’s GUI and 
might provide an effective way for feature control and manipulation for decision 
support. Thus, the ontology will not be fixed, but will rather be integrated as a flexible 
wrapper for more efficient machine learning and knowledge discovery. Changes in 
the feature ontology, initiated by the user and leading to an increase in machine learn-
ing performance, may also serve as an important source of novel knowledge in the 
subject domain.  

5   Example: Prognosis of Atrial Septal Defect Development 

The authors of this paper are participants of the EU’s 6th Framework Programme’s 
(FP6) Integrated Project “Health-e-Child” (www.health-e-child.org), which was 
started in 2006. The present study is motivated by the main objectives of the project. 
The focus of the project is on the vertical integration of biomedical data, information 
and knowledge spanning the entire spectrum from genetic to clinical to epidemiologi-
cal with the aim of gaining a comprehensive view of a child’s health and providing 
the basis for improving individual disease prevention, screening, early diagnosis, 
therapy and follow-up of paediatric diseases. Health-e-Child focuses on some care-
fully selected representative diseases in three different categories: paediatric heart 
diseases, inflammatory diseases, and brain tumours.  

Atrial Septal Defect (ASD) which is characterised by a hole in the atrial septum is 
a congenital heart defect, is perhaps the most common cause of Right Ventricle Over-
load (RVO) and is among the most common paediatric heart diseases [15]. Usually, 
the intervention to treat ASD is performed at a pre-school age (4-6 years of age). 
However, the size of the hole is constantly changing with time and in some cases the 
defect may get worse, so that time can be lost to do device closure (trans-
catheterisation), and only an open-heart surgery can be performed. On the other hand, 
in some cases the hole in the septum (even a moderate-sized one, even at the age  
of 4-6) may close on its own [15]. Up to know the phenomenon of ASD development 
is rather unclear to physicians and data-driven decision support will be of great help 
here. Another problem where decision support might be useful is possible complica-
tions after trans-catheterisation. E.g., there are cases where tissue erosion and rupture 
is reported, which might need another trans-catheterisation procedure, or even sur-
gery. Distinguishing potentially high-risk patients in terms of possible complications 
after ASD treatment is another important task in this context. 

Using different examinations and tests, such as echocardiogram, chest X-ray, 
electrocardiogram, Doppler study, MRI, and cardiac catheterisation, a physician 
collects all available information for determining the diagnose and the most suitable 
treatment. As the prognosis of ASD development depends on heterogeneous features 
of different kind representing clinical data, genetic data, ECG, and imaging data, the 
resulting feature space becomes quite complex. Therefore, we represent the features 
in a hierarchical semantically enhanced structure by establishing a feature ontology. 
By mapping and relating the concepts of the feature ontology to existing medical 
ontologies (see Section 2), valuable medical background knowledge, such as  
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relations between concepts, constraints, and axioms can be used for refining the 
feature ontology, providing the basis for improving the predictive performance of 
decision support.    

Integrating machine learning algorithms with feature ontologies is especially im-
portant and beneficial in problem domains where the structure of the feature space is 
complex and significantly unbalanced, where the features are diverse and represent 
heterogeneous concepts. This is often the case with biomedical problems, and the task 
of prognosis of cardiological disease (ASD) development is a good representative of 
such a problem. 

Figure 3 demonstrates an excerpt from the feature ontology for the problem of 
prognosis of ASD development. Some branches are marked with different weights, 
reflecting the relative importance of corresponding features (these weights are arbi-
trary and are used for the purpose of illustration only). The weights can be fine-tuned 
both by the expert and in an automated way using a machine learning technique (e.g., 
a genetic algorithm). Fine-tuning weights corresponding to different branches in the 
feature ontology for a particular problem may lead to the discovery of important prob-
lem-specific knowledge.  

 

Fig. 3. Example Feature Ontology for the problem of prognosis of ASD development 

Other information from the existing medical ontologies can be useful as well. For 
example, normal value ranges for different standard medical features can be extracted 
from ontologies (a light-blue box at the bottom demonstrates the normal range for 
Alanine in the figure). The normal value ranges are important for outlier removal and 
they may influence the distance metric as well. The feature ontology may also repre-
sent correlated or redundant features, which may have an influence on determining 



168 A. Tsymbal, S. Zillner, and M. Huber 

the inter-patient distance. In the given example, the blood volume of the right ventri-
cle cavity can be determined using both ultrasound and magnetic-resonance images 
(MRI). The estimate received with MRI is usually more exact, and the ultrasound 
estimate may be ignored when MRI information is available. 

6   Two Approaches to Distance Evaluation 

There are two basic approaches to distance evaluation that can be applied to the vali-
dation and fine-tuning of any distance function in general, and a feature ontology-
based distance in particular; evaluation based on expert-perceived similarity, and 
automatic data-driven wrapper-like evaluation. 

The first approach was used in [20]. Its main idea consists in ranking a set of in-
stances by a group of experts in a subject domain, according to the perceived similar-
ity to another control instance (this process can be repeated for a number of control 
instances). Then the resulting rankings can be compared with the one produced by the 
distance function under study. For example, Spearman’s rank correlation coefficient 
can be used for the comparison. The quality of the distance function is assumed here 
to be proportional to the average expert-function rank correlation (the bigger the aver-
age correlation between the expert- and distance function-produced ranks the better).  

A serious drawback of this approach is the fact that the expert-perceived similarity 
may be rather subjective and context-dependent. However, experiments show that 
inter-expert rank correlation is usually significant enough even for very heterogeneous 
complex domains as in [20], so that such a comparison is appropriate. Inter-expert rank 
correlation may serve as a measure of expert agreement and partly validity of such an 
approach. Due to the experts’ involvement, this approach may be applied to relatively 
small data sets only, which raises a question about the generality of findings. 

Another approach is to use the distance function under study as an element in a 
learning algorithm that is used as a wrapper. The assumption is that the quality of the 
distance function will then be reflected by the performance of the learning algorithm 
on validation data. This approach is often used in machine learning research; it is 
applied for parameter selection and tuning in machine learning algorithms [21]. Its 
advantage is that the distance function is evaluated (or updated) in the context of the 
task being solved. Thus, for our example from the previous section, a good distance 
function should result in a better predictive performance (classification accuracy) of 
ASD classification. Any appropriate data-driven validation technique can be used in 
combination with an appropriate learning algorithm for wrapper-based distance 
evaluation. For example, cross validation together with k-NN classification can be 
used in our example.  

One drawback of this approach is that enough data is needed in order to avoid po-
tential overfitting and to provide valid evaluation. Thus, in some domains there might 
be simply not enough data for a separate validation set, and sometimes even for cross 
validation (for ASD behaviour prognosis, the number of instances is normally of the 
order of 10, which is significantly exceeded by the number of features, which are of 
the order of 104 or even 105). When enough data is available, this approach can be 
applied iteratively, to search for a better distance function in the space of valid  
distance functions. 
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7   Conclusions 

In this paper we identify a problem, give a review of related work and propose one 
solution for the task of integration of machine learning techniques with existing onto-
logical knowledge, that is especially important for biomedical domains where data is 
often naturally complex and is represented by a large heterogeneous feature-vector. 
Our main assumption is that structurising the feature space into a so-called Feature 
Ontology will reflect semantics of the domain and thus may help in improving the 
performance of machine learning techniques, through the redefined distance (similar-
ity) function. We give an example for the task of prognosis of ASD development in 
children, and analyse two techniques that can be used for the evaluation and refining 
of a feature ontology. Beside the benefit in terms of improved predictive performance, 
the feature ontology may also become an important element of the Graphical User 
Interface, providing a means to data access and manipulation, in the context of the 
classification problem under consideration. 

We would like to emphasise here that, in the context of this integration, the task of 
the creation of feature ontology becomes central, and this task is, unfortunately, not 
trivial at all as it may seem (especially taking into account the common complexity of 
biomedical problem domains). Some techniques were developed, in the area of ontol-
ogy mapping, that may help to partially automate this process, though this process 
still remains largely routine and manual, needs a skilful expert and is based on the 
expert’s knowledge and intuition. The feature ontology needs to be carefully devel-
oped, and it needs to focus on the classification task under study (the feature space 
should be structured with the classification task in mind), otherwise it is difficult to 
expect an improved similarity measure. The usual computer science principle 
“GIGO” (Garbage In, Garbage Out) works here as well. If enough data is available, 
data-driven feature ontology refinement may be applied, taking the expert ontology as 
a starting point in the search. 

Our future work includes the creation and evaluation of feature ontologies for the 
medical problems within the Health-e-Child project. Another interesting direction for 
further research is the incorporation of various relations available in the existing on-
tologies in the distance calculation. For example, many ontologies include informa-
tion about correlation between relevant features. 
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Abstract. Ontologies are heavily used in life sciences so that there is increasing 
value to match different ontologies in order to determine related conceptual 
categories. We propose a simple yet powerful methodology for instance-based 
ontology matching which utilizes the associations between molecular-biological 
objects and ontologies. The approach can build on many existing ontology as-
sociations for instance objects like sequences and proteins and thus makes 
heavy use of available domain knowledge. Furthermore, the approach is flexi-
ble and extensible since each instance source with associations to the ontologies 
of interest can contribute to the ontology mapping. We study several ap-
proaches to determine the instance-based similarity of ontology categories. We 
perform an extensive experimental evaluation to use protein associations for 
different species to match between subontologies of the Gene Ontology and 
OMIM. We also provide a comparison with metadata-based ontology matching.  

Keywords: Ontology matching, instance-based matching, match evaluation. 

1   Introduction 

Ontologies become increasingly important in life sciences application domains. Typi-
cally, they are used to semantically describe molecular-biological objects, e.g., to 
annotate genes and proteins with information on the functions and processes they are 
involved in. Ontologies also provide controlled vocabularies for a uniform naming of 
concepts to help reduce variations in terminology. Within an ontology, concepts are 
usually interrelated with is-a and part-of relationships resulting in specialization/ 
generalization and aggregation hierarchies (trees) or complex graphs of concepts. A 
very popular ontology is the Gene Ontology (GO) consisting of three (sub-) ontolo-
gies on molecular functions, biological processes and cellular components [7].  
Genetic disorders are structured in Online Mendelian in Man (OMIM) [17]. 

The rapid increase in the number of life science data sources is accompanied by a 
similar growth in the number of ontologies and mappings between data sources and 
ontologies. This makes it increasingly valuable to match or align ontologies with each 
other to determine which of their concepts are semantically related. The resulting 
ontology mappings can be useful in many ways, in particular for enhanced analysis 
and annotation of genes, proteins or other objects of interest. For example, such ob-
jects may only be assigned to one particular ontology, say GO functions. An ontology 
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mapping between GO functions and GO processes can then be useful to newly assign 
the objects to the second (process) ontology. Curators could thus use ontology map-
pings to find missing ontology annotations and get recommendations for possible 
ontology associations. Conversely, existing ontology associations could be validated 
against a newly determined ontology mapping in order to locate potential mis-associa-
tions reducing data quality. Ontology mappings are also helpful for explorative data 
analysis, e.g., to find objects with similar ontological properties as interesting targets 
for a comparative analysis.   

Ontology matching is a general problem not limited to life sciences and has be-
come an active research area (see Related Work section).  Most previously proposed 
approaches to determine ontology mappings are metadata-based, i.e., they use the 
ontology representations themselves to find related concepts, in particular the names 
of concepts and contextual information like the names of the predecessor and succes-
sor concepts within the ontologies. Typically, name similarity is determined using 
generic (syntactical) string similarity functions on the names. However, in the absence 
of a globally standardized naming scheme such metadata-based approaches are of 
potentially little usefulness, especially for life science applications. This is because 
the same names may refer to completely different concepts while different names may 
describe the same concept. Furthermore, the concept granularities of different ontolo-
gies may widely differ so that comparing names may easily lead to correlations  
between incomparable concepts. 

Figure 1 illustrates some of the problems for sample entries of the GO subontolo-
gies on molecular functions (MF) and biological processes (BP). We observe that in 
both subontologies there are highly similar concept names with partially opposite 
semantics, e.g., Ion transporter activity and Anion transport or Organic anion trans-
porter activity and Inorganic anion transport. A name-based matching between mo-
lecular functions with biological processes would probably match these concepts 
despite potentially opposite semantics, e.g., Ion vs. Anion and Organic vs. Inorganic. 
This fact is also supported by [16] showing that nearly 65% of all concepts found in 
GO subontologies contain another GO concept as a proper substring. While more 
sophisticated matchers using helper ontologies like thesauri may somewhat reduce 
these problems there is no general solution due to the inherent difficulty to agree on 
common terms and constant creation of new terms.  

We therefore advocate for instance-based match approaches which utilize existing 
associations between ontology concepts and instances, i.e., molecular–biological 
objects like proteins or genes that are described or annotated by the ontology con-
cepts. This assumes that the real semantics of a concept is often better expressed by 
such existing object associations rather than metadata like the concept name. The 
example of Figure 1 shows such associations between species-specific proteins of the 
Ensembl data source [5] and describing concepts of the GO subontologies MF and BP 
and genetic disorders (GD) of OMIM. Intuitively, we assume that two concepts of 
different ontologies are related if their associated instances overlap, i.e., when the 
same instances are associated to them. The degree of concept similarity should take 
into account the number of shared associated objects or the relative size of the  
instance overlap.  
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...
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Fig. 1. Sample ontology entries and protein associations 

We make the following contributions:  

• We propose a simple yet powerful methodology for instance-based matching for 
life science ontologies utilizing existing associations between object data sources 
and ontologies. We outline several alternatives to determine the instance-based 
similarity between ontology concepts based on which the ontology mappings are 
determined. Each data source with associations to the ontologies to match can be 
used to derive a new ontology mapping. This way the domain-specific knowledge 
represented by the associations can be utilized to determine semantically meaning-
ful ontology mappings.  

• Our approach is flexible and extensible as several mappings between the same 
ontologies can be combined, e.g., mappings obtained for different data sources, 
species or similarity metrics. A combination with metadata-based match results is 
also feasible in order to improve recall and/or precision. Different ways for com-
bining ontology mappings can be employed, e.g., based on intersection or union.  

• We provide an extensive experimental evaluation for matching real ontologies, 
namely the three GO subontologies and OMIM, based on instance data for three 
species (human, mouse, rat). We consider direct associations between instances 
and concepts as well as indirect associations which take intra-ontology relation-
ships into account. We also provide a comparison with metadata-based ontology 
matching. The evaluation utilizes new approximate recall and precision metrics in 
order to deal with the problem that the perfect ontology mappings are generally 
unknown.  

The rest of the paper is organized as follows. Section 2 introduces the ontologies 
and instance associations used for our match evaluation. Section 3 presents the  
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similarity metrics we use to derive and evaluate ontology mappings. In Section 4 we 
discuss the experimental results for instance-based ontology matching while Section 5 
provides an experimental comparison with metadata-based ontology matching.  
Section 6 overviews related work and Section 7 concludes. 

2   Match Scenario: Ontologies and Instance Associations  

For our study, we assume that ontologies form a directed acyclic graph of concept 
nodes. The directed edges between concept nodes represent either is-a or part-of rela-
tionships. Concepts can have multiple associated instances, i.e., objects that are de-
scribed or classified by the concept. An instance can be associated with multiple con-
cepts, both leaf-level concepts but also to inner concepts of the ontology graph.  
Hence, the associations between objects (instances) and ontology concepts are of 
cardinality n:m.  

Our experimental evaluation covers four popular life science ontologies: the three 
Gene Ontology (GO) subontologies on molecular functions, biological processes and 
cellular components, and genetic disorders of OMIM1. To match these ontologies 
with each other we use protein associations for three species: Homo Sapiens (human), 
Mus Musculus (mouse) and Rattus Norvegicus (rat). The protein data and ontology 
associations are obtained from the Ensembl data source (www.ensembl.org).  

Table 1 provides base statistics on the considered ontologies, species-specific in-
stance data sources and protein-concept associations. The number of concepts per 
ontology is shown on top, the number of proteins per species on the left. For instance,  
 

Table 1. Quantity structure of utilized ontologies and instance sources* 

 #concepts  Gene Ontology OMIM** 

#proteins #assoc. 
  

 Molecular 
Functions 

Biological 
Processes 

Cellular 
Components 

Genetic 
Disorders 

   7,514 12,555 1,848 6,535 
 34%  24%  34%  25% Homo 

Sapiens 
43,605 

52% 58,539 45% 52,536 44% 37,640 4% 2,618 
 31%  22%  32%  0% Mus 

Musculus 
32,078 

61% 57,997 53% 47,646 54% 36,288 0% 0 
 29%  22%  29%  0% 

(d
ir

ec
t a

ss
oc

.)
 

Rattus 
Norvegicus 

33,745 
38% 29,665 33% 25,703 31% 18,519 0% 0 
 39%  35%  43%  25% Homo 

Sapiens 
43,605 

52% 164,014 45% 209,283 44% 149,548 4% 2,618 
 36%  33%  40%  0% Mus 

Musculus 
32,078 

61% 145,646 53% 181,583 54% 139,841 0% 0 
 34%  32%  37%  0% 

E
ns

em
bl
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.)
 

Rattus 
Norvegicus 

33,745 
38% 85,429 33% 107,022 31% 75,919 0% 0 

  * Release states: GO 01/20/2007, OMIM 01/28/2007, Ensembl Release 42 Dec. 2006. 
** We focus on phenotype descriptions, i.e., entries marked with #, % and without a mark. 

Please see http://www.ncbi.nlm.nih.gov/Omim/mimstats.html for more details. 
                                                           
1 OMIM was not originally developed as an ontology but provides a comprehensive set of 

terms (including term definitions, comments and associated literature) describing genetic dis-
orders which are frequently associated with objects of other data sources. Therefore, OMIM 
plays an ontology-like role in our evaluation study. 



176 T. Kirsten, A. Thor, and E. Rahm 

Number of associated
Molecular Functions

Number of associated
Biological Processes

Number of associated
Cellular Components

Mus MusculusHomo Sapiens

Rattus Norvegicus

242 86

96

1,954

253

3181

Mus MusculusHomo Sapiens

Rattus Norvegicus

288 110

133

2,452

201

4777

Mus MusculusHomo Sapiens

Rattus Norvegicus

60 22

10

505

53

912

2,530 2,324

2,162

3,018 2,810

2,709 536

630 589

 

Fig. 2. Quantity structure of ontology concepts with at least one associated protein in three 
selected species 

there are 7,514 molecular function concepts in GO and 43,605 human proteins in 
Ensembl. Furthermore, Table 1 contains the number of associations between proteins 
and ontology concepts which we separate in direct and indirect associations. Direct 
associations refer to the original associations recorded in Ensembl and assign objects 
to the most specific concept of an ontology. For example, there are 58,539 direct 
associations between human proteins and molecular functions and covering 52% of 
the human proteins and 34% of the functions. Hence, human protein associations 
support instance-based matching for up to 34% of the MF concepts. To increase the 
number of concepts that may be matched we also consider indirect associations which 
take into account the intra-ontology relationships between concepts. For this we sim-
ply assign the direct instances of a concept c also to its parents and grandparents 
within the ontology graph. In the example this provides human protein instances to 
39% of the function concepts, however at the expense of a massive increase in the 
number of object associations (164,014). 

We observe that the available object associations cover significant portions of the 
ontologies (25-39%) so that instance-based matching promises to provide many cor-
respondences between concepts. While OMIM has associations only for human pro-
teins, the GO ontologies are well connected to all three species. There is a similar 
number of object associations for human and mouse proteins while the coverage for 
rat is somewhat reduced. On average, an Ensembl protein is directly assigned to  
1.5-3.0 concepts of the GO subontologies. The average number of directly associated 
proteins per GO concept varies between 9 and 62 per species.  

Figure 2 illustrates the species-specific distribution of object associations for the 
three GO subontologies. For example, we observe that 1,954 molecular functions 
have protein associations to all three species, whereas merely 86 functions are exclu-
sively associated with mouse proteins. On average over 80% of the matched concepts, 
i.e., functions, processes, or components, are assigned to all three species. Consider-
ing species-specific associations is also helpful to determine species-specific ontology 
mappings. Furthermore, analysis tasks can benefit from focusing on species-specific 
concepts, e.g., to analyze an ontology mapping for the 86 mouse-specific GO func-
tions with respect to the 110 mouse-specific processes. 
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3   Similarity and Evaluation Metrics 

In order to match two ontologies O1 and O2 we need metrics to determine the similar-
ity between O1 concepts and O2 concepts. All pairs of concepts from O1 and O2 for 
which the similarity exceeds a certain minimal threshold are called correspondences 
and included in the match result (ontology mapping). The key idea of our instance-
based approach to ontology matching is to derive the similarity between concepts 
from the number of shared instances, i.e., the number of instances associated to both 
concepts. An important advantage for instance-based ontology matching is that the 
number of instance associations is typically higher than the number of concepts. This 
way the match accuracy of the approach can become rather robust against some 
wrong instance classifications. As discussed, another key advantage is that the  
instance-based approach is independent from concept names and other metadata. 

In the following we first present the used instance-based similarity metrics. We 
then discuss how to assess the quality of a match result in the absence of a perfect 
mapping.   

3.1   Instance-Based Similarity Metrics 

In this paper we study four metrics for determining the instance-based similarity be-
tween concepts c1∈CO1 and c2∈CO2 of different ontologies O1 and O2, namely base-
line, minimum, dice, and kappa similarity. Most of these metrics are well-know and 
have already been used in previous match studies (e.g., [8, 21]) however, not yet for 
an instance-based matching of life science ontologies.  To define the similarity of two 
concepts c1 and c2 we use the number of instances that are (or are not) associated to c1 
and c2. Figure 3 illustrates all relevant combinations for the instance cardinalities.  

For example,……… is the number of instances which are associated to c1 but not 
associated to c2. Furthermore,         is the total number of instances that are  
 

(not) as          associated to c1. Note that these numbers may be used either for directly  
 

associated instances as well as for indirectly associated instances.  
The baseline similarity metric already matches two concepts c1 and c2 if they share 

at least one object.  
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The baseline approach poses minimal requirements to match two concepts so that it 
can be expected to provide the maximal number of correspondences for instance-
based matching. To focus on concept combinations with a higher instance overlap it is 
necessary to take into account the number of instances per concept.  

The dice similarity metric [19] considers the concept cardinalities and the number 
of shared instances:  
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A high dice value indicates a significant instance overlap w.r.t. to both concepts.  
A potential limitation of the dice metric is that it can become quite small in case of 

larger cardinality differences, even if all instances of the smaller concept match to 
another concept. This aspect is taken care of by the minimum similarity metric which 
determines the relative instance overlap with respect to the smaller-sized concept: 

221121 ,],1...0[
),min(

),(
21

21

OO
cc

cc
Min CcCc

NN

N
ccSim ∈∈∀∈=  

Our last metric – the kappa similarity – is somewhat more complex and adopted 
from Cohen’s kappa coefficient [6]; it has also been adopted in [8] for an e-commerce 
application. The kappa coefficient measures the agreement of two raters classifying 
items (e.g., instances) into categories (e.g., concepts). We adopt the kappa coefficient 
to calculate two probabilities P and P’. P is the agreement among both concepts, i.e., 
the relative number of shared instances combined with the number of instances that 
do not appear in any of the two concepts. P’ is the probability that the agreement that 
one instance is assigned to both concepts is due to chance. Therefore P and P’ are 
defined as follows: 
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The kappa similarity for two concepts c1 and c2 is then defined as:  
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To test the significance of a match between the two concepts c1∈CO1 and c2∈CO2, 
we can utilize a test distribution Z as proposed in [8]. Z is defined as follows: 
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Z follows a normal distribution so that it can be compared with the standard normal 
distribution. A significant match correspondence can be assumed if Z exceeds the 
percentile of the standard distribution for a given significance level. 

It can easily been shown that for all correspondences between concepts c1 and  
c2, it holds: 
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3.2   Evaluation Metrics 

To evaluate the quality of a match result and thus the effectiveness of a match ap-
proach it is necessary to determine whether all real correspondences have been deter-
mined (completeness, high recall) and whether all determined correspondences are 
real correspondences (correctness, high precision). Exactly determining recall and 
precision thus requires the perfect match result to be known. Unfortunately, the per-
fect match result is generally unknown for large real-life match problems, especially 
for life science ontologies. A manual construction of a perfect match is also too labo-
rious and extremely difficult for broad ontologies such as the Gene Ontology. For our 
evaluation we therefore focus on the relative quality of the differently obtained match 
results and use rough approximations for recall and precision.  

With respect to recall or completeness we consider the so-called match coverage, 
i.e., the share of concepts that is covered by an ontology mapping, i.e., for which there 
is at least one correspondence in the match result. Let CO1-Match (CO2-Match) be the set of 
matched concepts of ontology O1 (O2) and CO1 (CO2) the set of all concepts of ontol-
ogy O1 (O2). We then define the match coverage of ontology O1 (O2) as follows: 
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Match coverage can be determined for any match approach, in particular both meta-
data-based and instance-based schemes. For instance-based approaches the maximal 
coverage is limited by the number of concepts which have at least one associated 
instance (w.r.t. the considered instance data source). To take this into account we 
additionally determine the instance match coverage which is defined as the ratio of 
the matched concepts w.r.t. to the concepts having at least one associated instance. 
Let CO1-Inst (CO2-Inst) be the set of concepts of ontology O1 (O2) having at least one 
associated instance. We then define the O1-specific and O2-specific instance match 
coverage as follows: 
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In addition, we can define the combined instance match coverage for a match result: 
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For estimating the precision of a match approach we determine the so-called match 
ratio, i.e., the ratio between the number of found correspondences and the number of 
matched concepts:   
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Analogously we define the combined match ratio. 
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In the above formulas, CorrO1-O2 denotes the set of found correspondences in a match 
result. The intuition is that the precision (and thus value) of a match result is better if 
a concept is not loosely matched to many other concepts but only to fewer (preferably 
the most similar) ones. The match ratio for the baseline matcher is expected to pro-
vide a worst-case value for instance-based matching and can thus be used as a yard-
stick. 

4   Instance-Based Match Results 

We first analyze different instance-based match results using direct association. We 
then study the impact of combining different match results (mappings) and the use of 
indirect associations. 

4.1   Match Results Using Direct Association 

We applied the introduced instance-based similarity metrics to determine ontology 
mappings between the three GO ontologies on molecular functions (MF), biological 
processes (BP), cellular components (CC) and genetic disorders (GD) of OMIM. We 
thus solved six match tasks: three to match between the GO subontologies (MF-BP, 
MF-CC, BP-CC) and three GO-OMIM match tasks (MF-GD, BP-GD, CC-GD). As 
discussed in Section 2, we utilize the Ensembl protein associations for the three spe-
cies Homo Sapiens, Mus Musculus and Rattus Norvegicus and first focus on direct 
associations. The three similarity metrics SimBase, SimMin, and SimDice are evaluated 
with a high similarity threshold of 1.0; for SimKappa we applied a significance level  
of 95%.   
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Fig. 4. Combined Instance Match Coverage of 
GO ontology mappings (direct associations) 

Table 2. Match Ratios of GO ontology 
mappings (direct associations; Homo 
Sapiens) 

 
MF – BP MF – CC BP – CC  

MF BP MF CC BP CC 
Base 20.4 17.0 7.6 28.6 9.8 46.3 
Min 4.4 4.0 2.2 7.8 2.4 8.6 
Dice 1.3 1.2 1.0 1.3 1.0 1.3 

Kappa 2.0 2.0 1.9 2.7 1.7 2.6  

Figure 4 illustrates the obtained values for combined instance match coverage for 
the three GO match tasks and the three considered species. Table 2 shows the corre-
sponding match ratios for Homo Sapiens; the match ratios for the other species are 
similar and omitted due to space constraints. We observe that there are big differences 
between the considered similarity metrics while the match coverage results are very 
similar for the three species. The latter is because the species-specific proteins match 
the same concepts to a large degree (as noted in Section 2) so that the derived  
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ontology mappings are also very similar for a given similarity metric and match task. 
As expected the baseline similarity metric SimBase achieved the best coverage (recall) 
and worst match ratios (precision) for all match tasks. Its instance match coverage is 
up to 99% (for Homo Sapiens and the MF – BP match) so that almost every concept 
with an associated instance is matched. On the other hand, match ratios achieve val-
ues between about 8 and 46, i.e., concepts are mapped to many other concepts indicat-
ing a low precision. On the other hand, SimDice and SimKappa turn out to be very re-
strictive with match ratios close to 1.0. This is they focus on the best matching con-
cepts. Unfortunately this is only achieved for very few correspondences so that the 
match coverage remains rather low (around 5-10% for SimDice and 10-20% for  Sim-
Kappa). For all match tasks the metric SimMin achieves very promising precision/recall 
values which lie between the extreme cases discussed so far. In particular instance 
match coverage is as good as between 60-80% while match ratios are significantly 
lower than for SimBase. On average, a concept is matched with 2–9 concepts of another 
ontology which is still a reasonably low number, e.g., to be checked by a biologist.  
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Fig. 5. Instance Match Coverage of GO-GD 
mappings (direct associations; Homo Sapiens) 

Table 3. Match Ratios of GO-GD mappings 
(direct associations; Homo Sapiens) 

 
MF – GD BP – GD CC – GD  
MF GD BP GD CC GD 

Base 7.1 4.3 2.5 6.3 2.5 3.4 
Min 5.9 3.5 2.5 4.6 1.7 3.4 
Dice 1.6 1.5 1.1 1.5 1.4 1.4 

Kappa 1.4 1.2 1.1 1.2 1.1 1.2  

The GO-OMIM match tasks are only performed for the species Homo Sapiens 
since there are no protein associations to OMIM for the other two species. Figure 5 
shows the instance match coverage for the three match tasks; Table 3 illustrates the 
corresponding match ratios. For these experiments (and in contrast to the previous 
match tasks) we observed substantial coverage differences for the individual ontolo-
gies so that we indicate the ontology-specific coverage values in Figure 5. We  
observe that for both SimBase and SimMin the instance match coverage of the GO on-
tologies is only about half of the instance coverage of GD (40-50% vs. more than 
88%). The reasons are twofold. On the one hand, many proteins are associated with 
concepts of the GO ontologies but have no correspondence to OMIM. On the other 
hand, if a protein is associated with OMIM then it is mostly also connected with a 
concept of the GO ontologies. For instance, there are 20,936 proteins of the Homo 
Sapiens that have at least one molecular function, but only 1,581 of these proteins are 
associated with a genetic disorder. Conversely, only 110 human proteins are described 
by a genetic disorder but not by a molecular function. 

The relative outcome for the different similarity metrics is in agreement with the 
observations made for the previous match tasks. While SimBase and SimMin have a  
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Fig. 6. Combined Instance Match Coverage of 
combined GO ontology mappings 

Table 4. Match Ratios of 
combined GO ontology map-
pings (Homo Sapiens ) 

 Match ∪ ∩ 
MF 4.6 1.2 

MF-BP 
BP 4.2 1.3 
MF 2.4 1.0 

MF-CC
CC 8.0 1.3 
BP 2.5 1.0 M

in
 –

 K
ap

pa
 

BP-CC 
CC 8.8 1.2 
MF 1.8 1.1 

MF-BP 
BP 1.8 1.1 
MF 1.8 1.0 

MF-CC
CC 2.6 1.3 
BP 1.6 1.0 
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– 
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BP-CC 
CC 2.4 1.5  

relatively high recall (instance match coverage), the metrics SimDice and SimKappa are 
very restrictive but precise (only about 1 to 2 correspondences per matched concept 
on average).   

4.2   Combining Ontology Mappings  

The match results discussed so far were each derived for a certain similarity metric 
and a species-specific set of instances. Combining several such ontology mappings 
for a given match task is a promising way to obtain an improved ontology mapping, 
e.g., with improved recall and/or precision.  For example, taking the union of two 
independently derived ontology mappings is likely to improve recall (coverage) while 
building the intersection can improve precision. Other combination strategies are also 
conceivable (e.g., weighted or majority-based selection of correspondences) but are 
not further considered in this paper.   

To illustrate the idea we analyze the combination of mappings obtained for differ-
ent similarity metrics. This is not useful for all metrics since according to Section 3 all 
instance-based similarity measures generate subsets of correspondences of the base-
line approach and SimDice produces a subset of correspondences of SimMin  . Therefore, 
we comparatively study the intersection and union of the ontology mappings gener-
ated by SimDice (SimMin) and SimKappa.  

Fig. 6 depicts the instance match coverage of the combined mappings between GO 
ontologies, while Table 4 shows the corresponding match ratios (for Homo Sapiens). 
We observe that the union mappings for SimMin and SimKappa only slightly improve 
coverage (84%) compared to SimMin (81%). The match ratios are also not signifi-
cantly higher than for SimMin alone (Table 2). This is because SimMin alone achieved 
already a high coverage so that SimKappa could add only few new correspondences. On 
the other hand, the union mapping between SimDice and SimKappa is very effective and 
more than doubles coverage (30%) compared to SimDice alone (12%). The match ratio 
still remains low (1.8–2.6) indicating a high-quality ontology mapping.   
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Fig. 7. Combined Instance Match Coverage of 
GO ontology mappings (indirect associations) 

Table 5. Match Ratios of GO ontology 
mappings (indirect associations; Homo 
Sapiens) 

MF – BP MF – CC BP – CC  
MF BP MF CC BP CC 

Base 90.2 60.4 27.2 96.2 38.8 210.2 
Min 16.6 10.9 7.4 23.3 6.6 33.9 
Dice 1.9 1.3 1.2 1.7 1.6 1.8 
Kappa 6.7 5.1 5.5 7.6 6.3 11.7  

4.3   Match Results Using Indirect Instance Associations 

Another way to improve match coverage is to not only consider direct but also indi-
rect object associations. As already discussed in Section 2 (Table 1), this increases the 
number of concepts for which instance-based matching can be applied (e.g., the num-
ber of GO processes with associated instances is increased by 45%). Although we 
restrict the propagation of object associations to two levels (parents, grandparents) the 
number of object associations is increased by almost a factor of 3 compared to direct 
associations.   

Figure 7 shows the instance match coverage results for the GO match tasks using 
indirect associations; Table 5 illustrates the corresponding match ratios (for the spe-
cies Homo Sapiens). The coverage for SimBase was already high for direct associa-
tions; the use of indirect associations primarily is thus little helpful but leads to ex-
tremely high match ratios (27–210). For SimMin, on the other hand, the instance match 
coverage improvement is substantial, e.g., from 61% (direct) to 86% (indirect) for the 
match BP - CC. However, match ratios are also increased, e.g., from 6 (direct, MF) to 
almost 17 (indirect, MF) for matching MF with BP using SimMin and human proteins.   

The results suggest that the use of indirect associations can be helpful but also be 
harmful. Hence we see a need for more sophisticated approaches to intelligently make 
use of intra-ontology relationships in combination with instance-based matching. One 
idea is to restrict the use of indirect associations to concepts that remain otherwise 
unmatched. Another option is to use direct associations to determine instance-based 
concept similarities which are then propagated along intra-ontology relationships by a 
context matcher [18].   

5   Metadata-Based Match Results   

5.1   Metadata Match Results Using Concept Names 

For comparison purposes we also use a simple metadata-based matcher to determine 
mappings between the considered ontologies. We apply a name matcher based on 
trigram similarity for comparing pairwise the concept names of different ontologies. 
Table 6 shows the name matcher results for the six match tasks by using the trigram 
similarity and different thresholds (≥ 0.5). Note that the match coverage values refer 
to all concepts not only to the ones with instances.  
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Table 6. Name matching results between selected ontologies 
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15,415 
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BP – CC 

CC 
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MF 7% 4.4 2% 1.1 <1% 1.0 <1% 1.0 

MF – GD 
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36 
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We observe a rather low number of correspondences especially for a similarity 
threshold of 0.7 or higher. This indicates a high diversity in the concept names so that 
name matching is not very effective. There are no correspondences with a threshold 
of 0.9 or greater (not shown in Table 6). The match coverage and match ratios grow 
for smaller similarity thresholds but probably due to many wrong correspondences.  

Most correspondences are found between molecular functions and biological proc-
esses which are the largest ontologies considered (Table 1). As already indicated by 
the examples in Figure 1 many similar terms only differ in pre-/suffixes or an addi-
tional word, such as activity for naming a function. Moreover, in many cases concepts 
inherit their name from their parents and use an additional term representing the spe-
cialization, such as transport, anion transport (both BP), transporter activity and 
anion transporter activity (both MF). Hence, if the additional word is short enough 
then concepts from different levels are matched, e.g., anion transport with transport 
activity. Of course, a low threshold (e.g., 0.5) can lead to the generation of false corre-
spondences, e.g., between the function Inorganic anion transporter activity (MF) and 
the process Organic anion transport (BP) due to a trigram similarity of 0.66. 

Most correspondences for OMIM GD are found for the GO subontology on bio-
logical processes. The reason is that some genetic disorders refer to biological proc-
esses, such that their names only differentiate in modified suffixes or additional 
words. For instance, the concepts vitamin A metabolism (BP) and vitamin A metabolic 
defect (GD) are matched with a trigram similarity of 0.72. Of course, low threshold 
values also lead to false positives matches, such as betaine transport (BP) and  
citrulline transport defect (GD) with a trigram similarity of 0.5. 

5.2   Comparison Between Metadata and Instance-Based Matching 

To study the relationship between metadata- and instance-based matchers, we analyze 
the union and intersection (overlap) of the generated ontology mappings. For this 
purpose, we combine the name matcher results (threshold ≥ 0.5) with the instance-
based results using the similarity metric SimMin (similarity threshold = 1) and direct 
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instance associations. Figure 8 shows the match coverage per ontology for the union 
results (species Homo Sapiens). The highest coverages are achieved for molecular 
functions (approx. 60%) in the combined MF–BP match result and for cellular com-
ponents (54%) in the BP–CC result, both when using a trigram similarity of 0.5. 
These high coverage values are mainly due to the name matcher. According to  
Table 6, the name-based correspondences for threshold 0.5 cover already 47% of the 
functions (match MF-BP) and 40% of the components (match BP-CC). For trigram 
thresholds of 0.6 and higher, match coverage is primarily influenced by instance-
based matching using SimMin. This is also the case for the unified match results  
between GO subontologies and OMIM; around 22% of the genetic disorders and 
between 11% (MF, BP) and 15% (CC) of GO subontology concepts are covered by 
using SimMin.  
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Fig. 8. Match Coverage per ontology for unified 
matches of SimName and SimMin (Homo Sapiens) 

Table 7. Match Ratios of combined 
ontology mappings between SimName 
(0.7) and SimMin  (Homo Sapiens) 

Match ∪ ∩ 
MF 4.1 1.0 

MF-BP
BP 3.7 1.0 
MF 2.2 1.0 

MF-CC
CC 6.7 1.0 
BP 2.4 1.0 

BP-CC
CC 7.6 1.3 
MF 5.8 1.0 

MF-GD
GD 3.4 1.0 
BP 5.4 0.0 

BP-GD
GD 4.5 0.0 
CC 12.9 0.0 

CC-GD
GD 2.5 0.0  

 
The match coverage of the intersection results is in most cases only 1% or less (and 

therefore not shown in an extra plot). This is because the name-based and instance–
based match results have only a very low number of correspondences in common. 
Especially for a lower trigram threshold (0.5) the vast majority of name correspon-
dences has no corresponding instance similarity. 

Table 7 illustrates the achieved match ratios for both, the union and intersection of 
the ontology mappings generated by the name matcher (similarity threshold = 0.7) 
and SimMin. We observe a moderate ratio (mostly less then 6) for the union results 
while the ratios for mapping intersection is seldom larger than 1.0. This is influenced 
by the fact that the number of correspondences is very low. The intersection of the 
mappings between genetic disorders and biological processes (cellular components) is 
even empty, therefore the match ratios also equal zero. 

The experiment shows that simple name matching is not very effective and less 
promising than the proposed instance-based approaches. Still we believe that more 
sophisticated metadata-based matchers may be helpful to complement instance-based 
matching and leave the investigation of such combined approaches for future work.   
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6   Related Work 

Overviews of approaches for ontology matching in general are given in [18, 10, 2, 
20]. Typically, matching utilizes metadata, associated instances or both. The match 
approaches [13, 15, 12, 1] are based on metadata, such as concept names, synonyms 
and descriptions, and applied in different domains. More specific to bioinformatics, 
[4] utilizes a metadata matcher to link GO with ChEBI, an ontology of chemical enti-
ties for biological interest.   

Instance-based ontology matching is investigated in [8, 9, 3, 11]. They follow statis-
tical or machine learning approaches and apply them in different application domains. 
[8] focuses on integrating internet catalogs, represented by hierarchical collections of 
web links. Similar to our study, it applies the Kappa similarity metric including a sig-
nificance test. [9] applies decision trees and Bayesian networks to create matches be-
tween GO subontologies that is different to our approach. It uses available annotations 
(instances) of two species (mouse and human) as training data and for cross validation 
to test the models. In contrast to our approach using the proposed evaluation metrics, the 
predicted match result is evaluated by a manual selection of 100 correspondences which 
are then validated by an expert (41 judged to be true, 42 judged to be plausible). [3] 
utilizes three non-lexical approaches to create ontology matches, namely a vector space 
model, a statistical co-occurrence analysis and association rule mining. In contrast to our 
match application where we are interested in correspondences between GO ontologies, 
they associate GO concepts without a distinction whether the concept is a function, 
process or component. Therefore, the result can also contain associations between con-
cepts of the same GO subontology, e.g., between two functions. [11] applies association 
rule mining and formal ontological concepts to create mappings between the GO subon-
tologies whereas we use simple and comprehensible metrics for ontology matching.  

[14] is a mixed match approach, i.e., it follows lexicographic and instance-based 
approaches, with the goal to create a second ontology layer that maps the GO sub-
ontologies. Instead of using complete concepts names as we have applied they create 
specific patterns for the metadata-based matching such that ontology-specific words 
(e.g., activity for molecular functions) are ignored. Moreover, it applies association 
rule mining by using available gene annotations and reuses existing associations to 
metabolic pathways to create ontology matches. In contrast to our match scenario, the 
generated matches are validated by human experts. 

7   Conclusions   

We proposed the use of simple instance-based approaches for matching life science 
ontologies. The idea is to utilize the domain knowledge expressed in existing object-
ontology associations for finding related concepts in different ontologies. The ap-
proach is extensible as ontology mappings obtained for different match approaches or 
different instance sources (e.g., different species) can be combined to improve overall 
recall or precision. We experimentally evaluated four alternatives for instance-based 
matching and one metadata-based approach for six match tasks involving the  
GO subontologies and OMIM. We observed that instance-based matching using the 
Sim Min metric achieves a high match coverage while limiting the number of  
correspondences per matched concept. 

In future work, we will further study combined approaches for ontology matching 
and the interplay between instance-based and metadata-based matching in life  
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sciences. We also plan applications that utilize the computed ontology mappings and 
gather user feedback to help validate the proposed match correspondences. 
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Abstract. Decoding the functional elements in an organism’s genome
requires the integration of a wide variety of experimental and computa-
tional data from a wide range of sources. The location of this data, viewed
as sequence features in the genome, must serve as one of the essential or-
ganizing principles for this integration. It is therefore important to have
a data integration system that takes advantage of this fact. As part of
the TESS project, we have developed a grammar-based data integration
and pattern search tool, Annotation Grammar and Extraction Language
(AnGEL), that follows this principle. AnGEL can represent most of the
current work in cis-regulatory module (CRM) modelling in an intuitive
way and can process data extracted from a variety of sources simulta-
neously. Here we describe AnGEL’s capabilities and illustrate its use by
querying for gene arrangements, CRMs, and protein domain structure.

1 Introduction

It is a common metaphor to speak of ‘breaking the regulatory code’ or ‘un-
derstanding the language of gene regulation’. We took this metaphor seriously
and have developed a grammar-based system that allows the user to search for
patterns of interest occurring in genome sequence and/or in experimental or
computational annotation of the genome. The tool, Annotation Grammar and
Extraction Language (AnGEL), is part of the Transcription Element Search Sys-
tem (TESS) project[1] and so was originally aimed at modeling cis-regulatory
modules (CRMs), but is more widely applicable. AnGEL adds a number of ex-
tensions to ordinary stochastic context free grammars (SCFGs) that allow it to
represent most of the current work in CRM modelling as well as supporting ad
hoc queries of biological interest such as gene and protein domain structure that
we demonstrate here. It uses plug-in software modules that allow it to extract
data from a variety of sources and then to integrate these data using a grammar
to describe the positional relations between the sequence and data. For example,
AnGEL can extract sequence from the UCSC DAS server[2], gene models from
an Oracle database, and perform local positional weight matrix (PWM) matches
to predict transcription factor binding sites (TFBS), in order to identify genes
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c© Springer-Verlag Berlin Heidelberg 2007



Data Integration and Pattern-Finding in Biological Sequence with AnGEL 189

that may be regulated by a particular CRM. We have also created the TESS
relational sub-schema as part of the Genomic Unified Schema (GUS) project[3]
to store AnGEL models so that they may form the basis for a knowledge ware-
house. AnGEL’s structured descriptions have the advantage of being interpretable
by humans, and in fact can be translated automatically into natural language
sentences.

Our goal in designing AnGEL was to create a tool that would allow a person
to readily create many different queries to find patterns of interest but to do this
in a common framework that allows for these, and more complicated, queries to
be captured as well. In addition, we wanted to be able to integrate and expand
upon existing techniques so that they could be compared on an equal footing.
To accomplish this AnGEL uses a combination of ideas from two bioinformatics
systems, K2/Kleisli[3,4] and GenLang[5,6,7,8]. Kleisli is a query system that
allows the user to formulate queries that span multiple databases. The query
author can specify that the query result be a list, set, or a multi-set. When the
query returns a list, the order of the rows matters and the result may contain
duplicate rows. For set and multi-set query results, the order does not matter
and there may (multi-set) or may not (set) be duplicate rows. Kleisli connects
to various data sources using drivers that create a suitable abstraction layer
between the Kleisli query engine and the data source. GenLang is a tool based on
a grammar formalism that adds extra capabilities on what is essentially a CFG.
The additions raise the formal power of the system to mild context-sensitivity
by allowing Genlang to recognize direct repeats and other constructs. Genlang
also includes the notion of reversing complementing DNA strings.

The outline of this paper is as follows. First we briefly introduce our notation
for stochastic context-free grammars (SCFG). Second, we describe the problems
one encounters when applying SCFGs to recognizing patterns in biological se-
quences to motivate the enhancements we have developed. Third, we describe the
enhancements and compare the resulting system to other grammar formalisms.
Finally, we demonstrate AnGEL’s usefullness by showing the queries for patterns
that represent a variety of CRM models as well as gene and protein domain
structure.

2 Background

A grammar is a set of rules that describe the structure of the legal sentences or
strings of a language. In a stochastic context-free grammars (SCFG) the rules
consist of a left-hand side (LHS) which is the name of a structure, and a right-
hand side (RHS) which is a list of the subparts of that structure. Rules are
usually hierarchical and often recursive. More formally, a SCFG G consists four
parts (V, Σ, P, S): a set of variables (V ) which are names for the structures of the
language, an alphabet (Σ) of letters (or terminals) that make up the strings of
the language, productions (P ) which are the rules defining the phrase structures,
and the special start variable (S) from which all legal strings are derived. Here
we consider context-free grammars where the rules all have the form:
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X −→ [pX,i] Y1, Y2, . . . Yn; (1)

The LHS, X ∈ V , is a variable name. In the RHS, [pX,i] is the probability of
this expansion for the LHS and the terms Yi ∈ V ∪ Σ are either variables or
letters. Each rule may have a different length and can even have no terms on
the right-hand side if the structure in question can consist of a phrase with zero
length. There may be more than one rule with a given variable on the left-hand
side; these represent alternative ways of forming a structure. The probabilities
of such productions, [pX,i], are subject to the condition that ∀X :

∑
i pX,i = 1.

Hidden Markov models (HMMs) are a subclass of stochastic grammars that
have been widely used to model protein domains[9,10,11], genes[12,13,14,15],
and promoters[16]. Positional weight matrices (PWMs)[17] are an even simpler
form of SCFG which are widely used to represent TFBSs and protein domains.

2.1 Applying Grammars to Gene Regulation

While GenLang formed the basis of a successful gene finder[6], experience sug-
gested some improvements for identifying CRMs. To see this, consider a grammar
rule for a CRM consisting of binding sites for three TFs that may occur in any
order. Part of the grammar would look something like this.

CRM −→ A, B, C | A, C, B | B, A, C | B, C, A | C, A, B | C, B, A; (2)

This is a cumbersome representation of what is a conceptually simple model.
In addition, what is the spacing between the elements of RHS? Ordinarily, the
tokens or strings for A, B, and C would have to appear immediately adjacent
to each other. This rarely occurs in biological situations. On the other hand
there must be some limit on the distance between each TFBS or at least on the
entire size of the match. While there might prove to be differences in spacing
preferences depending on the order of the sites, the simplest model is that the
spacing is subject to some common upper limit: a constraint that is not succinctly
expressible in this format. Furthermore, the first-encountered instance of a TFBS
may be poor and may precede a much better site. Thus we would like the parser
to be free to skip over TFBS in some cases. SCFGs do allow this, but at the cost
of a representation that is fairly difficult to specify manually for ad hoc queries.

A limitation of a string-based grammatical approach is that some sequence
features do not have a grammatical definition. Clearly features that are based on
experimental data, e.g., mutations, chromatin configuration, actual (as opposed
to predicted) TFBS, do not (initially) have a grammatical definition. There are
also features that are defined computationally, but can not be represented in
a SCFG. An example of this class are CpG islands defined as a region with at
least 50% C-G content and at least 60% as many CpG dinucleotides as expected.
Another example are conserved regions and BLAST hits. It is essential to include
these kinds of data when analyzing and modeling genomic sequence. Thus, while
ordinary SCFGs grammars offer a compelling scenario for intuitively describing
and combining models of sequence features, they need some modification before
being easily applicable. AnGEL is designed to address these issues.
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3 Methods

In this section we give a description of each the extensions included in AnGEL.
A more detailed description can be found elsewhere[18]. We envision this system
having a usefulness beyond the applications described in this work. There are,
therefore, features that we do not take advantage of or fully develop at this time.
Or current parser supports only non-recursive grammars and returns all possible
parses.

3.1 Sequence and Annotation Streams

AnGEL grammars describe patterns involving both sequence and sequence an-
notation. Sequence and annotation are organized in streams that each reference
the same sequence ID and have the same coordinate system. The primary se-
quence is placed in the main stream and is loaded by a main sequence plug-in
module. The AnGEL package includes several sequence plug-ins that read se-
quence from flat files using BioPerl[19], a DAS server, a GUS database instance,
or from internal memory. The AnGEL parser expects to be able to extract one or
more sequences from the sequence source and will parse each sequence in turn.
For example a DAS server may provide one sequence for each chromosome in a
genome, whereas a flat file may provide sequences consisting of just the proximal
promoter region for thousands of genes.

If a grammar makes reference to annotation on a sequence, then it must spec-
ify a rule to define how the corresponding stream is loaded with annotation. The
rule assigns a name to the stream and an annotation plug-in to populate the
stream with annotation data. The rule can also provide arguments to control
the behavior of the plug-in. During parsing, the parser will provide the anno-
tation plug-in with the ID of the sequence currently being parsed as well as
its actual sequence if need be. The plug-in can then access its data resource
to extract or create annotation for the sequence and place it in the stream.
Annotation is stored in the stream in a DAS-like hierarchical interval format.
Each interval has a name, type, start and end position, score, strand, and other
attributes. For example the GUS database plug-in that extracts gene models
includes intervals with the types ‘TranscriptionUnit’, ‘Tss’, ‘UpstreamRegion’,
‘Gene’, ‘FivePrimeRegion’, ‘Exon’, and ‘Intron’. Many different resources can
be accessed via plug-ins in one grammar. The only limitation is that they must
share the same set of sequence IDs so that the annotation can be correctly linked
to the sequence being parsed. The AnGEL package currently includes annotation
plug-ins that access GFF files, DAS servers, GUS databases, the EMBOSS[20]
package program newcpgreport, a PWM scoring program for TFBS from
TESS[1], and the TFBS predictor PSPAM[21]. Both sequence and annotation
plug-ins are implemented as Perl packages that must live up to a simple pro-
gramming interface standard. It is quite easy for a programmer to write new
plug-ins as described below.
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3.2 RHS Terminals

AnGEL uses an extended set of terminals for recognizing sequences and annota-
tion. First, individual lowercase or quoted letters of the sequence alphabet, e.g.,
a or "A" for adenine or "Q" for glutamine, can be used to match sequences letter
by letter. AnGEL also supports ‘smart’ alphabet matching such as the IUPAC-
defined abbreviations for ambiguous bases, e.g., "W" matches either an "A" or
"T". The AnGEL parser understands these abbreviations when matching DNA
sequence but uses ordinary exact matching when parsing AA sequence. It is easy
to create new smart alphabets if need be. Second, a sequence of letters can be
specified as a single RHS term rather than a series of terms, e.g., "TATA" instead
of "T", "A", "T", "A". Third, AnGEL includes a general gap character, ‘...’, that
matches any character of any alphabet. The range of possible lengths of a gap is
indicated with a term count as illustrated in Table 1. Gap characters are also a
signal to the parser that it can take shortcuts in identifying a match to the next
RHS term in the production. Fourth, because positional weight matrices are such
a big part of genomic sequence analysis, positional weight matrices are included
as a terminal. Fifth, AnGEL includes positional terminals that match a particular
absolute or relative position in a sequence. Sixth, AnGEL terminals can be a path
expression that is matched against annotation. The simplest path expression is a
single path term that consists of the name of the stream and the type of interval,
e.g., Genes::Intron. Multiple path terms can be joined together to form a path
expression using operators like ‘part-of’ (‘.’), ‘contained-in’ (‘/’) or ‘intersects’
(‘%’). Examples of each these terminals are shown in Table 1. Finally, a variable is
an alphanumeric string beginning with an uppercase letter, e.g., Crm1. Matches
to nonterminals are recorded in the main stream and can be included in a path
expression as, for example, ::Crm1. Overlap between terms is controlled on a
term-by-term basis; an ‘!’ following a term prevents the subsequent term from
overlapping it. The orientation or strand of a term is controlled by a leading ‘+’,
‘-’, or ‘*’ or the sense attribute of an annotation.

3.3 Collection Productions

Ordinary grammars require that the strings that match the terms of the right-
hand side of a production occur immediately adjacent to each other and in the
order the RHS specifies. AnGEL adds new collection productions that relax this
constraint. Table 2 contains examples of collection productions and their inter-
pretation. The collection type is indicated by a pair of brackets in the produc-
tion’s arrow. List (-[]->) productions release the adjacency constraint. Multi-
set (-<>->) productions release the order constraint as well, but still require
the number of each RHS term to be met. The number of instances is indicated
with the term count. Set (-{}->) productions only require one instance of each
RHS term. Finally, linear (-//->) productions are like set productions but they
allow features to be missing. The parsing each type of collection production is
accomplished by a specialized algorithm that avoids expanding the production
into an exponential number of equivalent ordinary productions. For example,
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Table 1. Examples of AnGEL terminals: Terminals are RHS terms that can be used
to recognize substrings, positions, or annotation in any of the data streams

AnGEL Syntax Meaning

gatw or "GATW" a consensus sequence for the GATA tran-
scription factor

...:{20,50} a gap of between 20 and 50 characters

<acgt; 10,0,0,0; 0,9,1,0; 0,0,1,9;
0,0,8,2>[score>=10.2]

a match to a PWM with a consensus of
‘ACTG′ that has a log-odds score of at
least 10.2

@@1000 position 1000 in a sequence

@-50 a position 50 characters from from the
end of the bounding interval

Annotation::CpgIsland a CpG island feature loaded into the An-
notation stream

Annotation::CpgIsland[length>=500] a CpG island longer than 500bp

Annotation::CpgIsland /
BindingSites::Sp1[score>=9]

an Sp1 site that is located inside a CpG
island

Gene::Intron[index=1] the first intron in a gene.

Gene::TranscriptStartSite %
Annotation::CpGIsland=>center

the center of a CpG island that overlaps
the start of transcription of a gene

when parsing a linear collection production (which emulates a logistic regression
model), AnGEL collects all of the feature instances in the bounds, then selects
the best (up to the term count limits) of these and reports that group as the
match. The score for a linear collection match amounts to the exponent in the
logistic regression formula. In all production types, the parser is not required to
match every letter or annotation in the current stream(s); it only has to find a
group of letters and annotations that meet the pattern of the grammar. Some
examples of each type are shown in Table 2.

3.4 Production Bounds

Faced with the freedom we have now given our grammars by relaxing the spacing,
order, and count of the RHS terms, we need some compensating ‘force’ to allow
the grammar to try to focus on statistically and biologically significant matches.
To do this we introduce production bounds. If a production is bounded, then any
match of the RHS of the production must satisfy the conditions of the bounds. A
production may have a numeric bound and/or a location bound. Numeric bounds
control the maximum size of a match to the production and are an easy way
to ensure that, for example, TFBS’s occur in close proximity. Location bounds
force a match to occur inside annotation intervals or instances of matches to
other productions. Contexts are specified using path expressions as described
earlier. The specifications of the two bounds are placed inside the production’s
arrow.
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Table 2. Examples of collection productions with various collection bounds

AnGEL Syntax Meaning
S ----> A, B; This is an ordinary production requiring

A and B to appear adjacent to each other.

S -{1[kb];;}-> A, B; This is a set production that can be no
longer than 1000bp. Since it is a set, A
and B can appear in any order.

S -<400[bp];;>-> A:2, B:3; This multi-set production requires two As
and three Bs within 400bp of each other.

S -(;Annotation::CpgIsland;)-> A; This ordinary production requires A to
occur inside an annotated CpG island.

S -[400[bp];Genes::Intron[1];]->
A, B, C;

Here we require three features to appear
in order within 400bp of each other and
in the first intron of a gene.

3.5 Scoring a Parse and Negated Features

AnGEL is based on a stochastic grammar formalism. Each terminal is expected
to produce a score which is interpreted as a log probability or log odds score.
Each RHS term can be preceded by a weight wi that is multiplied by the term’s
score to produce the effective term score. When a variable has more than one
definition, each production is given a probability p(Pj) which must sum to one.
The default weight is one and default probability is 1/|X| where |X| is the number
of productions for a given variable X. The score for a match of a production as
shown in Equation 1 is

score(X) = lg(p(Pj)) +
n∑

i=1

wi score(Yi) (3)

When a variable appears in a RHS its score is the score calculated as above. In
this way the scores are passed up the parse tree to the top. The score for the
start variable is the score for the parse.

Although RHS term weights are generally positive, they can be negative as
well. A negative weight can either be used to convert the scores of an annotation
source or to penalize the presence of a given feature. There is a special negative
term weight NO. If a feature is found that matches a term that has a weight of NO
then the entire match for that production is canceled. This feature allows AnGEL
grammars to require the absence of, for example, a TFBS for an inhibitor.

3.6 The GUS: Tess Relational Schema

One of the goals of the TESS component of the GUS schema is to support a
database of knowledge not just of facts. We want to store in our database not
just instances of CRMs or other patterns, but also models of these patterns.
Ideally the database representation would allow the models to be queried and to
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serve as a link between TFs, regulatory activity, and instances of binding sites
in regulatory regions. We have designed a part of the TESS section of the GUS
schema to store AnGEL grammars in a structured form, rather than as free text,
to facilitates queries against models. In addition AnGEL contains a comment
structuring convention that allows GUS primary keys to be attached to parts
of an AnGEL grammar so that parsing results can be loaded back into GUS
while maintaining a connection between the parsed feature and the grammar
fragment that identified or defined it. Use of this mechanism is optional and a
GUS database is not required to use AnGEL.

3.7 Data Plugin Specification

The programming specification for Perl plugins that generate or retrieve annota-
tion is simple and consists of the methods listed in Table 3. The init method is
called when the plugin object is created, but before its run-time parameters are
known. The initialize method is called once these parameters are known and
will typically connect to an external database if necessary. The prepareRegion
method will retrieve the data for a portion of the current sequence, format them
as AnGEL annotation features, and place the features in the plugin’s stream. Plu-
gins may implement region caching to improve performance. If the total amount
of annotation for a sequence is known to be small, then all of the annotation can
be retrieved during the beginEntry method. The init or initialize method
should set the NeedsSequence attribute for the plugin to indicate whether the
plugin will need the actual sequence to generate annotation. If none of the plu-
gins or grammar rules require the sequence it is not loaded, saving time and
memory. A similar set of methods is used for plugins that retrieve the main
sequence entities to be parsed.

4 Results

Now we show a series of examples of the application of AnGEL grammars to some
biological problems. We start with a few simple examples to cover the basics of

Table 3. Methods for annotation plugins. New plugins need only implement these
methods to access data from sources not covered in the AnGEL distribution.

Method Description
init set the attributes of the plugin object

getOptionDescriptions define grammar-settable options for run-time behavior

initialize prepare for a parsing run using option settings

beginEntry prepare for a new sequence entry

prepareRegion retrieve data for a region of the current sequence

discardRegion discard data for the current region

endEntry discard data for current sequence

finalize called after parsing is complete
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the system. Next we discuss how to represent many of the recent CRM modeling
techniques. Third, we consider an application for amino acid sequences.

4.1 Simple Examples

Our first example is a simple grammar to identify divergently-transcribed gene
pairs.

S -[1[kb];;]-> *Genes::Tss[sense=-1], *Genes::Tss[sense=1];

@Genes -> ’DAS::Gene’ --Types=’refGene’
--Categories = ’transcription’
--Server = ’http://genome.ucsc.edu/cgi-bin/das/hg18’ ;

The grammar requires the two transcription start sites to be within 1000bp, on
opposite strands, with the reverse-strand TSS on the 5’ side of the pair. The
example extracts gene annotation from the UCSC DAS server. AnGEL supports
macro expansion in grammars, so the annotation stream could be defined as a
macro that is expanded just prior to parsing. This helps separate the specifica-
tion of the arrangement of interest from the specification of the data sources.
Additional filtering could also be applied to, for example, limit the TSSs to only
full-length clones.

We can look for a specialized subset of these genes by requiring that a CpG
island cover both TSSs. In this case we have a grammar shown below which gets
CpG island features from the mysql server at UCSC. This source of CpG islands
can be combined with gene models from a different database.

S -[1[kb];CpgIsland::Feature;]-> *Genes::Tss[sense=-1],
*Genes::Tss[sense=1];

@CpgIsland -> ’UCSC::MySql::CpgIsland’
--mysqlServer=’genome-mysql.cse.ucsc.edu’ --mysqlPort=’3306’
--mysqlUser=’genome’ --mysqlPassword=’’ --genomeRelease=’hg17’;

The next grammar looks for transversion SNPs located inside likely p53 bind-
ing sites and illustrates more data integration. Such SNPs may have phenotypic
consequences. It uses experimental data generated by chromatin immunoprecip-
itation and paired end-tag sequencing (ChIP-PET) to identify regions of the
human genome to which the transcription factor p53 binds[22]. However, the
experimental data has limited resolution; the target regions are often a few hun-
dred base pairs long. A SNP in such a region may have no regulatory impact if
it is not located in the binding site. To increase resolution, we use a PWM for
p53 to identify likely binding sites in the target regions and look for SNPs in
these, much smaller, regions. To access the ChIP-PET locations, we cut them
from the supplemental data from [22] and pasted them into a text file. The SNPs
are extracted from the UCSC mysql database.
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S -[;ChipTfbs::P53/PwmTfbs::BindingSite;]-> *Snps::Transversion;

@ChipTfbs -> TextFile --tabFile=’p53-spots.tab’
--skipHeaderLinesN=0 --typeSpec=’P53’ --senseSpec=’+’
--ucscLocationSpec=’%2’ --nameSpec=’%3’ --scoreSpec=’%1’ ;

@PwmTfbs -> ’WMS’ --mat=’p53.pwm’ --id=’V_P53_02 --mlo=10.0
--mxd=100 --tpc=1.0 ;

@Snps -> ’UCSC::MySql::SNP’ --genomeRelease=’hg18’ --preload=0
--mysqlPort=’3306’ --mysqlUser=’genome’ --mysqlPassword=’’
--mysqlServer=’genome-mysql.cse.ucsc.edu’;

All of the grammars in this section can be run against the human genome in
about 1 to 2 hours on a 1GHz/1GB laptop when the remote data is taken from
a mysql or Oracle RDBMS. Using a DAS server for data slows the parsing down
significantly.

4.2 Modeling CRMs

AnGEL can emulate many of the models used in previous work on modeling
CRMs as well as express richer models. Here we review a few recent approaches
to CRM modeling and illustrate how they are represented in AnGEL. We then
show how these models can be combined and placed in larger contexts. In this
section we use a more abstract syntax to illustrate the form of the solution,
rather than an example of a particular model.

A simple CRM model is a cluster of a fixed set of TFBS. This is handled
directly with a set collection production, e.g.,

CRM
{n;loc;}−→ F1, F2, . . . , Fn; (4)

where n and loc are the optional bounds and the Fi are the TFBS. Instances
of this model include work by Kreiman[23], Hannenhalli and Levy[24], and
MSCAN[25]. The TOUCAN system [26] uses this model as well, though it can
also penalize missing features.

Another popular model is a cluster with a fixed number k of sites drawn from
a set of m possible TFs. There is no required order for the sites. This CRM is
modeled in AnGEL as follows:

CRM
<n;loc;>−→ F : k; (5)

F −→ F1 | F2 | · · · | Fm;

where Fi is the i-th feature of interest. CISTER[27] and an earlier, related, system
COMET[28], use this model but also include a Markov model of the background.
The grammar fragment in Equation 5 will find instances with exactly k TFBS,
even if there are more nearby. A small modification to the term count (shown in
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Equation 6) will find any cluster containing between kmin and kmax sites. If the
upper count bound kmax is left undefined, then as many sites as possible will be
included in the parse.

CRM
<n;loc;>−→ F : {kmin, kmax} e.g. CRM -<400[bp];;>-> F:{3,6}; (6)

Another way to make a site optional is to use a scoring formula such as
logistic regression. This approach was used for models of muscle [29] and liver[30]
regulatory regions. It is rendered in AnGEL using a linear collection production.

CRM −→ CrmFeats[score ≥ c]; (7)

CrmFeats
/n;loc;/−→ w1 F1, w2 F2, · · · , wm Fm;

where wi are the weights and c is a threshold needed to reject poor-scoring
hits. Note that AnGEL allows one to use features that are more complex than
individual binding sites as input to the logistic regression. For example, our
assessment grammar shown at the end of this section uses a set of three TFBS
as one of the logistic regression features.

A few CRM models consider the order of the sites. Older work by Frech
[31,32,33] and more recent work by Dohr [34] and Terai [35] use this model.
AnGEL can represent all of the models in these efforts using a list collection
production, i.e.,

CRM
[n;loc;]−→ F1, F2, . . . , Fn; (8)

Though it does not impose a fixed order, a Markov chain model developed
in by Thompson[36] learns which TFBS prefer to follow each other. Because
Markov chains are an instance of a stochastic grammar this can be rendered
easily in AnGEL.

Note that each of these models can be combined with other CRMs or placed in
a particular genomic context using AnGEL. For example the grammar fragment
below places a CRM model in a conserved region even if it was not originally
developed by considering conservation.

S -(;Conserved::Region;)-> CRM; @Conserved -> ...; @CRM -> ...;

Perhaps more interestingly, multiple CRMs can be placed in both proximal and
distal regions relative to a gene as this grammar fragment suggests.

S -[20[kb];Gene::Locus;]-> Enhancer, Proximal, Internal, Utr5;
Enhancer -(;Conserved::Feature;)-> Crm1;
Proximal -[400[bp];;]-> Crm2, TataBox::BindingSite, Gene::Tss;
Internal -[500[bp];Gene::Intron[1];]-> Crm3;
Utr5 -{;Gene::Exon[-1];}-> MiRnas;
Crm1 -> ... ; Crm2-> ... ; Crm3 -> ... ;
MiRnas-> ... ; Gene-> ... ; Conserved-> ... ; TataBox-> ... ;

To illustrate the parsing time for CRM grammars described in Equations 4 to
8, we used a liver-specific CRM (shown below) based on earlier work [30,37] which
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incorporates both the basic liver-specific determining factors Hnf1, Hnf3, and
Hnf4 as well as signal response factors GR, Oct1, and C/EBP. All of the TFBSs
are computationally predicted, but would work just as well with experimentally
identified sites.

S -{300[bp];Genes::UpstreamRegion;}-> *Hnf1::BindingSite,
*Hnf3::BindingSite, *Hnf4::BindingSite, GrCrm;

GrCrm -{100[bp];;}-> *GR::BindingSite, *Oct1::BindingSite,
*Cebp::BindingSite;

These simple and compound features were combined following the examples
above. In most cases parsing, 3KB regions covering 10,000 promoters in the
human genome (with repeat sequence masked) took less than 45 minutes on a
2.2GHz/4GB Intel-based server. The grammar patterned after Equation 4 took
twice as along because it had so many matches. Though this is too slow for
interactive use, it is perfectly acceptable for use in data analyses. The AnGEL
parsing program supports sequence-level parallelization which can dramatically
reduce parsing time when a compute cluster is available.

4.3 Protein Sequences

Here we show a simple example to indicate that AnGEL can also model problems
relevant to proteins. The WNT inhibitory factor 1 protein (WIF1) has a signal
peptide, WIF domain, and a Cripto growth factor domain. We show two simple
grammars to recognize other proteins with these domains. The first version con-
strains the order of the domains to be the same as in WIF1. The second version
keeps the signal protein at the N-terminus, but allows the other to domains to
occur in either order. This shows a simple instance of the ability of AnGEL to
apply constraints independently.

Wif1_like_Free -[;;]-> SignalPeptide[end <= 30], Domains::WIF,
Domains::Cripto;

Wif1_like_Fixed -[;;]-> SignalPeptide[end <= 30], OtherDomains;
OtherDomains -{;;}-> Domains::WIF, Domains::Cripto;

We note in passing that this same type of query can operate at a finer grained
level to implement a protein model like PRINTS[38] which identifies protein
domains using a fingerprint of short ungapped AA sequences.

4.4 Applications of AnGEL

As the following applications illustrate, AnGEL’s capabilities are useful to practic-
ing biologists. We have used the AnGEL system to provide a web query, available
at the EPConDB website[39], for genes that are potentially regulated in pancre-
atic islet cells. An AnGEL grammar is generated automatically based on the user’s
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input to a web form. The site uses DoTS transcripts[40] aligned to the mouse and
human genome and stored in our GUS database as a source of gene models. The
user-selectable location bound can be in a region defined relative to the TSS, or
in one or any of the introns of DoTS genes. The user selects which TFBS models
are of interest from a menu and inputs how many instances of each site are re-
quired, what the total spacing is, and whether the order matters. Predefined site
models may be either literal matches, e.g., an E-box is CAnnTG, or PWMs with
score thresholds based on estimated sensitivity. The user may also define consen-
sus sequences for TFs not included in our list. (As we load the results of ChIP-chip
and other similar experiments into EPConDB, we will augment the list of TFBS
with confirmed sites from these experiments.) When the search is done, the user
is presented with a list of the DoTS transcripts that contained their pattern as
well as the details of the arrangement and scores of the sites. The transcript list
can then be downloaded or used for further processing to help confirm the predic-
tions with the other tools in EPConDB. Visualization of matches on the genome
helps determine whether a rule has the intended behaviour. The AnGEL package
includes a program that converts parsing results to GFF or BED format suitable
for display on the UCSC and other genome browsers.

We have developed a machine learning algorithm that learns simple gram-
mars for patterns that are enriched in a set of sequences. Given a set of possible
features, the algorithm can learn the enriched component features, collection
type, cut-off scores, and size bound of a collect production. We have applied this
algorithm to identify possible partners of TFs that are the target of ChIP-chip
experiments. Such an experiment helps identify which genes are likely targets of
regulation by a particular transcription factor, but they do not explain why only
these genes are targeted when other genes have good binding sites as well. One
possible mechanism is that one or more TFs create the observed specificity by
working with the ChIP-chip target TF. We used the AnGEL system to identify
these TFs. First, in the case of C/EBP-beta binding during liver generation[41]
we were able to identify a rule involving three other TFs as a good explana-
tion of C/EBP-beta binding. In a second experiment[37] studying glucocorticoid
receptor (GR) binding in fasting mice we were able to identify a number of po-
tential partner TFs for GR, including AP-1, Gata-1, C/EBP-beta, and Oct-1.
We also identified the spacing constraints on these potential partners. Many of
the partners were supported by the literature.

5 Conclusion

We have given a brief introduction to our grammar-based query and data ex-
traction tool AnGEL and have demonstrated how a grammar formalism makes it
easy to express many of the current biosequence modeling techniques in a single
framework. We have also showed how it allows simple models to be extended by
combining them with other models and/or by placing them into a larger context
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of sequence features. AnGEL allows the grammar-based rules to operate on anno-
tation extracted from local or remote resources, such as databases, DAS servers,
flat files, and programs. Using a grammar allows a modeller to encapsulate local
constraints and to build a complex model from simple pieces. The introduction
of collection productions as a simple way of expressing otherwise complex mod-
els and the support for negation, provides an advance over other bioinformatics
tools of this kind. Finally, by providing a relational schema we have a system
capable of storing a wide variety of sequence models in a unified format. AnGEL
is available by contacting the authors.

Although AnGEL can be used for a variety of biological problems, its devel-
opment was driven by the problem of identifying CRMs. Essentially all of the
attempts to model CRMs have tried to identify the combination and possibly the
arrangement of TFBS that confer a particular regulatory function on a region
of the genome, e.g., causing expression in a particular tissue or developmental
stage. Early efforts considered mostly the position of TFBS relative to the tran-
scription start site (TSS) or the order and orientation of a pair of TFBS. Some
later work dropped order and orientation requirements and tried to identify the
collection of TFs that were involved with only loose constraints on their posi-
tions, e.g., limiting the distance between consecutive sites. While these methods
have achieved some success, the problem is still open. None of these efforts had
any means of defining the context of a CRM (beyond sequence conservation),
nor of easily combining CRMs to create larger complexes of CRMs to build up
a more complex model of gene regulation. As work in sea urchin has shown[42],
a full picture of a regulatory region can be very complex. Recently experiments
are generating new types of genome-scale data, e.g., global assessment of TF
binding[22], chromatin configuration[43], and histone modifications[44]. These
data will help shed light on regulatory mechanisms, but also pose new chal-
lenges for analysis. AnGEL offers the ability to integrate this kind of data to
build better models of gene regulation.
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Abstract. Using our dynamic Bayesian network with structural Expec-
tation Maximization (SEM-DBN), we develop a new framework to model
gene regulatory network from both gene expression data and transcrip-
tional factor binding site data. Only based on mRNA expression data, it
is not enough to accurately estimate a gene network. It is difficult for us
to estimate a gene network accurately only with the mRNA expression
data. In this paper, we use the transcription factor binding location data
in order to introduce the prior knowledge to SEM-DBN model. Gene ex-
pression data are also exploited specifically for likelihood. Meanwhile, we
incorporate the prior knowledge into every learning step by SEM rather
than only learning from the very beginning, which can compensate the
attenuation of the effect with location data. The effectiveness of our pro-
posed method is demonstrated through the analysis of Saccharomyces
cerevisiae cell cycle data. The combination of heterogeneous data from
multiple sources ensures that our results are more accurate than those
recovered from only gene expression data alone.

Keywords: gene regulatory networks, dynamic Bayesian network,
structural Expectation Maximization, microarray data, transcription
factor binding location data.

1 Introduction

The establishment of gene regulatory network is critical to the understanding
of the genetic regulation process. Several methodologies have been presented so
far to learn gene network from microarray data, such as Boolean networks [2,3],
differential equations [4,5], and Bayesian networks [6,7,8]. However, regulatory
networks of the cell depend not only on the transcriptional regulation but also
on the post-transcriptional and external signaling events. Recent studies show
that using only gene expression data is not sufficient for estimating gene net-
works accurately [11], since microarray data is limited by its environment quality.
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Therefore, the use of other biological knowledge together with microarray data
is important for extracting more reliable results.

Besides gene expression data, some other data sources are increasingly becom-
ing available to aid in discovery of gene regulatory network. How to efficiently
combine those different data sources together has become an important challenge
in recent years [1]. Hartemink [7] developed a Bayesian network model to use
location data corresponding to microarray data. Later, they improved to a dy-
namic Bayesian network to overcome the shortcoming of Bayesian[11]. Segal [9]
used different types of data to identify sets of genes, which interact together in a
cell or share common roles. In addition, there are some other methods that com-
bine microarray data with more biological knowledge, such as DNA sequences
of promoter elements [12,13] and protein-protein interaction [14,8].

In this paper, we propose a method for restructuring gene networks from
microarray data and transcription factor binding location data. Our model em-
beds structural expectation maximization (SEM) to dynamic Bayesian network
framework. We incorporate evidence from gene expression data through the like-
lihood, and from transcription factor binding location data through the prior.
Because large-scale, genome-wide location analysis of DNA-binding regulators
offers a second means for identifying regulatory relationships [10]. We expected
that such an algorithm could get a more accurate learning regulatory network
than methods based on gene expression data alone.

It is well-known that dynamic Bayesian network is a popular decision support
model [17], which allows different strategies to integrate two data sources [26].
The unique point of our method is that we incorporate SEM algorithm, an
efficient method to deal with missing data, to DBN framework. Our new dynamic
Bayesian network is referred to SEM-DBN in this paper. Furthermore, we use
the prior knowledge every learning step in our algorithm, in order to enhance
the effect of location data.

We evaluate our method through the analysis of Saccharomyces Cerevisiae
cell-cycle expression data. To evaluate our method, we conduct two experiments.
We estimated one gene network by gene expression data alone, and by combin-
ing of expression and location data. The experimental results successfully show
that the accuracy of the estimated gene network is improved after adding loca-
tion data to gene expression data. The details of the experimental analyses are
described in Section 4.

2 Methods for Estimating Gene Network

2.1 SEM-DBN Framework

As a graph model, a Bayesian network is defined by two parts. One is a graph
structure S , which is a directed acyclic graph (DAG) consisting of nodes and
directed acyclic edges. The other is a parameter vector Θ comprising a set of con-
ditional probability distributions. Given the parent Pa(i) of one node X(i), this



206 Y. Zhang et al.

node is conditionally independent of its non-descendants in a Bayesian network.
Under the Markov assumption, the joint probability distribution of network can
be written as:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Pai) (1)

Classical Bayesian network is unable to handle the cyclic edges [6]. Murphy and
Mian [16] first employed a dynamic Bayesian network (DBN) to build such a
gene expression model with cyclic edge, as shown in Fig.1. Apparently, the DBN
is able to avoid the ambiguity of the edge directions [17].

The following two assumptions [18] are regarded to be a basis of our transition
from a static Bayesian networks to a DBN: (1) the genetic regulation process
is Markovian, that is, the expression state of one gene at one time point is
dependent only on the expression state of other genes observed at the previous
one time point; (2) the dynamic causal relationships among genes are invariable
over all time slices, that is, the set of variables and conditionally probability
definitions of the DBN are the same for each of time points.

Fig. 1. Example of a cyclic network Bayesian network cannot handle the network (left)
that contains a cycle . However, the DBN can build a cyclic structure by dividing states
of a gene into different time slices (right).

In this case, the joint probability of network can be rewritten below

P (X11, . . . , Xnp) = P (X1)P (X2|X1) . . . P (Xn|Xn−1) (2)

where(Xi1, . . . , Xip)T is a state vector of the pth gene at time i , and

P (Xi|Xi−1) = P (Xi1|Pi−1,1) × . . . × P (Xip|Pi−1,p) (3)

where Pi−1,j denotes the state vector of the parent gene of the jth gene at i − 1
time.

Our eventual goal is to learn the network from the data set D generated
by microarray experiments and other data sources, which requires finding the
structure S and parameters Θ that maximizing P (S|D). To evaluate a network,
we need to define a scoring function assigned to the graph. The Bayesian score
is given below
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Score(S|D) =
P (D|S)P (S)

P (D)
(4)

Ignoring structure prior P (S) which will be discussed in Subsecsion 2.2 and the
evidence P (D), the problem becomes to find the best marginal likelihood given
the data. It follows

P (D|S) =
∫

P (D|Θ, S)P (Θ|S)dΘ (5)

Consequently, we will search for the DBN with highest score. Here we use an
evaluation score with penalty as depicted in the previous work of Kim et al[19],
|Θ| refers to the number of parameters used.

Score(S, Θ|D) = logP (D|Θ, S) − |Θ|
2

logp (6)

In the previous works [15,19], the dataset collected was assumed to be complete.
But when the dataset has missing values, we cannot compute the marginal like-
lihood in a closed form. The Expectation Maximization (EM) algorithm is a
commonly-used method to cope with missing data. In this article, we use the
structural EM (SEM) [20] to learn the network from partially observable gene
expression data. The concept is similar to that of the complete data problem, ex-
cept that the score of the network is found using the expected sufficient statistics
from the EM algorithm.

The EM algorithm has two steps. The E step assigns some random values to
parameter Θ , and then the expected sufficient statistics for missing values are
computed as:

E(NXi=k,Pai=l) = Σp
j=1P (Xi = k, Pai = l|dj , Θ, S) (7)

In the M step, the expected sufficient statistics are considered to be real sufficient
statistics from a complete dataset D̂. The next step is to estimate the value of
Θ that maximizes the marginal likelihood P (D̂|Θ, S) in formula (5),

θXi=k,Pai=l =
E(NXi=k,Pai=l)

ΣXiE(NXi=k,Pai=l)
(8)

In the structural EM,

E(NXi=k,Pai=l)S
′ ∼=

p∑
j=1

P (Xi = k, Pai = l|dj, Θ, S) (9)

The resulting algorithm is shown in Fig. 2

2.2 Informative Structure Priors

The criterion score, introduced in the previous section, contains two quantities:
the prior P (S) of the network, and the marginal likelihood of the data. The
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Fig. 2. Pseudo-code for structural EM

marginal likelihood shows the fitness of the model to the microarray data. The
biological knowledge can then be added into the prior probability of the network
P (S).

Transcription factor binding location data provide evidence about regulatory
relationship between a transcription factor and genes in the genome. This evi-
dence is reported as a p-value, the p-value definition shows that: the smaller the
p-value, the more likely the edge is to exist in the true structure[11].

We define random variable Pi on the interval [0,1], which is the p-value com-
puted in experiment. Ei is the edge, which is whether in the S or not.

P (Pi = p|Ei ∈ S) =
Ae−Ap

(1 − e−A)
(10)

P (Pi = p|Ei /∈ S) = 1 (11)

In the first case, Ei is present in structure S, Pi is a exponential distribution,
and A is the parameter, it can be seen from formula (10) . In the second case,
Ei is not present in structure S, Pi is uniformly distributed, as in formula (11).

We use B denote P (Ei ∈ S), according to Bayes rule, we can show that the
probability edge Ei is present after observing the corresponding p-value is:

P (Ej ∈ S|pj = p) =
ABe−Ap

ABe−Ap + (1 − B)(1 − e−A)
(12)

P (Ek /∈ S|pk = p) =
(1 − B)(1 − e−A)

ABe−Ap + (1 − B)(1 − e−A)
(13)
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The following decomposition calculates the complete log prior probability over
structures

logP (S) =
∑

Ei∈S

logP (Ej ∈ S|pj = p) +
∑

Ek /∈S

logP (Ek /∈ S|pk = p) (14)

Where formula (14) discards the normalizing constant term because it is the same
for all structures. We compute prior when we search for the highest score in our
SEM-DBN algorithm every time, which enhances the effect of prior information
in our estimating. The values of the two parameters (A and B)are critical to
the final result. We simply use P (Ei ∈ S) = B to indicate the probability that
one edge is present in structure. The edges will be more likely present in the
structure when B > 0.5 . Otherwise, prior is penalized if we make the selection
of B < 0.5 . In the special case of B = 0.5 , the prior over structures is uniform.

As for A , guessing is not a robust way for the results. We use a more robust
Bayesian approach that can avoid selecting only one single value and instead
marginalizes over an internal. We assume that A is wih uniformly distribution
over the interval [a, b]. So it follows

P (Ei ∈ S|pi = p) =
1

a − b

∫ b

a

ABe−Ap

ABe−Ap + (1 − B)(1 − e−A)
dA (15)

3 Results

3.1 Data Preparation

As a real data application, we applied our SEM-DBN method to uncover gene
regulatory networks. We analyze Saccharomyces Cerevisiae cell cycle gene ex-
pression data given by Spellman [21]. These data were treated by four different
methods: cdc15, cdc28, alpha-factor and elutriation. In the estimation of a gene
network, we used the times series data from the four methods, the number of
which was 24, 17, 18 and 14 respectively. We focus on a set of 14 genes, three of
which are known as transcription factors with available location data. We can
get their p-value from Lee’s experiments [22].

Before feeding into our SEM-DBN model, the continuous gene expression data
should be discretized. The level of data discretization is important for network
inference. Yu et al. [24] stated that three categories seem to best balance the
tradeoff between information loss and insufficient data for estimation. Therefore
the expression values here were discretized. According to Friedman et al. [6],
based on log-ratio cutoff of 0.5, we discretize the data in such a way that points
less than negative 0.5 were considered ”under-expressed (-1)”, those between
-0.5 and +0.5 were ”normal (0)”, while those above +0.5 were classed as ”over-
expressed (+1)”.

To evaluate the quality of the recovery network, some criteria are useful (Hus-
meier, et al., 2003): (1) the sensitivity, the proportion of recovered true edges
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in the target network, and (2) the specificity, the proportion of erroneously re-
covered spurious edges. There are the four values needed to be calculated: true
positive (TP, a link that exists both in the true network and the recovered net-
work), true negative (TN, a link that does not exist in either network), false
positive (FP, a link that exists only in the recovered network) and false negative
(FN, a link that exists only in the true network). Consequently, we can compute
the sensitivity and specificity from following two equations: sensitivity = TP/
(TP + FN) and the specificity = TN/ (TN + FP).

Our target dataset is stored in KEGG database [23] to be a cell-cycle sub-
network relative to G1 and S phases. The yeast cell cycle has many previously
established gene regulatory relationships from the KEGG, allowing confirmation
of the accuracy of our gene-gene relationship results. The experiments described
below are carried out with MATLAB Bayesian Network Toolbox [16] and Un-
scented Particle Filter Package [27]. Subsecsion 3.2 shows the results learning by
our new SEM-DBN method using expression data alone and jointly from both
expression data and location data.

3.2 The Experiments

We apply our SEM-DBN algorithm on the set of 14 genes, and there are three
transcription factors in our gene set, SWI4, SWI6 and MBP1. We first implement
our SEM-DBN to learn the network only by gene expression data and then learn
the network from both gene expression data and location data. In the second
experiment, when adjusting values of A and B, we choose A ranging from 2 to
5 as B = 0.1.

Fig.3 shows the pathway of the 14 genes in KEGG, which will be regarded as a
standard target to evaluate the results of our methods. Fig.4 is the reconstructed
gene network using only gene expression data via SEM-DBN method. Meanwhile,
Fig.5 shows learned network combining location data to expression data by our
SEM-DBN model. Both in Fig.4 and Fig.5, we used circle to represent the correct
estimation. Meanwhile, incorrectly inferred edges are marked with an ’X’, and
the triangle indicated either a misdirected edge or an edge skipping at most one
node [25]. There are two correct edges related to transcription factor in Fig.5,
when comparing with Fig.4. They are SWI4 to CLB5 (p-value = 0.000079),
SWI6 to CLB5 (p-value = 0.0000013). The two edges are detected because the
evidence of location data, which are below threshold for inclusion. Consequently,
when learning from both location data and expression data, the power of location
data is enhanced. Specifically, our algorithm exploit the joint learning for each
learning step instead of learning only from the initiation.

Table 1 is the results from our two experiments. Comparing the results that
are obtained by incorporating the location information into expression data with
the result from expression data alone given in Table 1, we could observe that
adding prior knowledge was capable of improving the accuracy.

From the summary in Table 1, it is clear that we reduced the wrong and mis-
directed edges when use location data as supplement. Therefore, the specificity
de-creases from 42.1% to 21.1%. Table 1 also shows that the sensitivity improves
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Fig. 3. This picture gives the target pathways from the KEGG
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Fig. 4. The picture indicates the result of
experiment using only expression data
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Fig. 5. The picture one demonstrates the
result of experiment 2 when combining ex-
pression data and location data

from 42.8% to 60.0%. It is apparent that the total number of edges decreased,
which is because we add the informative prior in SEM-DBN model. When there
are any inconsistent results between the prior and the posterior learning, the
present of the edge will be penalized. That is why the total learning edges de-
creased, but the correct edges still high.

At the same time, the parameter impacted within a limit range. During the
experiments, when adjust values of A and B, the results indicates that it is more
sensitive to the internal than the absolute values. B = 0.1 is proper for this case,
because it will let the structure learn the edge in the following steps by SEM
algorithm from a relative empty initiation.



212 Y. Zhang et al.

Table 1. Comparison of results achieved by our two experiments

Only expression data Expression data and location data

correct estimation 6 6

wrong estimation 4 3

misdirected and skipping 4 1

sensitivity 42.8% 60.0%

specificity 42.1% 21.1%

4 Conclusion

In this paper we developed a model for estimating gene regulatory networks
by combining microarray gene expression data and transcription factor bind-
ing location data. Our method based on the framework of dynamic Bayesian
network (DBN) with structural Expectation Maximization (SEM) learning al-
gorithm. An advantage of our method is that we introduce SEM algorithm to
improve the accuracy by handling the missing data. We introduce location data
to the model by the usage of an informative prior. Owing to the fact that dif-
ferent data sources have different noise distributions, the integration can reduce
the overall error present in the learned network.By adding transcription fac-
tor binding location data as a supplement with the real time series microarray
data of Saccharomyces Cerevisia cell cycle, we estimated the gene network more
accurately than using only microarray data. Specifically, the results indicated
that adding prior can lower the number of false negative edge than without
prior.

There are several research lines for the future work. First, our method is
strongly dependent on the quality of the microarray data. Second, the discretiza-
tion of data may lead to losing useful information and the data noise also has
an impact on the result. An extension to solve this problem is to improve our
method to deal with continuous data. In the future, one of our goals is to employ
the framework reported here to deal with other data sources, such as protein-
protein interaction, gene annotation, and promoter sequence. How to jointly
incorporate all these additional data sources as prior knowledge together may
be worth trying. Finally, our method can be used for either gene network model-
ing or many other problems of computational biology. The framework is a good
platform to investigate biological process.
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Abstract. Information about small genetic variations in organisms, known as
single nucleotide polymorphism (SNPs), is crucial to identify candidate genes
that have a role in disease susceptibility, a long-standing research goal in biology.
While a number of established public SNP databases are available, the specifica-
tion of effective techniques for SNP analysis remains an open issue. We describe
a secondary SNP database that integrates data from multiple public sources, de-
signed to support various experimental ranking models for SNPs. By prioritizing
SNPs within large regions of the genome, scientists are able to rapidly narrow
their search for candidate genes. In the paper we describe the ranking models, the
data integration architecture, and preliminary experimental results.

1 Introduction

The integration of scientific data sets can reveal opportunities for performing new forms
of data analysis that cannot be supported by individual data sets, or which would oth-
erwise lack sufficient coverage or depth. When the details of this analysis are known in
advance, then we can design the integrated schema and the necessary data transforma-
tion steps with the needs of the intended application in mind. However, in many cases,
converting the scientific ideas into concrete algorithms over the data is a non-obvious
task. Different approaches must be prototyped and experimented with, before the most
appropriate algorithm or model can be found. This requires a more flexible approach to
data integration, since we cannot afford to lose information in the integration that may
turn out to be critical to the implementation of the best analysis algorithm.

A problem in the life sciences that illustrates the need for experimentation, and con-
sequent complication of the integration process, is the identification of the genes that are
responsible for phenotypes in model organisms. A phenotypic trait is some observable
behaviour or disease response and includes, for example, body size and susceptibil-
ity to some disease. Many phenotypes are typically the result of complex interactions
among several genes, thus posing considerable challenges to the biologist wishing to
understand their genetic origins.

Establishing the relationship between phenotype and one or more regions of the
genome has been a research objective for quite some time [1]. The current methodology
for establishing the genes which may be responsible for a quantitative trait uses elabo-
rate breeding schemes to identify genomic regions where sequence differences among
strains of the organism under study can be correlated to differences in the phenotype of
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interest. These regions are known as Quantitative Trait Loci (QTLs). They vary in size
but inevitably contain many genes (100’s to 1000’s), all with the potential to influence
the trait by some means. The challenge for biologists is then to narrow this down to a
more manageable set of candidate genes, the roles of which can then be investigated
using less expensive and time consuming experimental techniques.

As a result of recent research on this problem, a large number of studies identifying
genetic variations within the mouse genome are now available, for many inbred strains
with documented phenotypes. Each variation takes the form of a Single Nucleotide
Polymorphism (SNP) — that is, a difference in a single base pair between one strain and
the reference strain of the model organism. SNPs thus provide a key tool for scientists
wishing to target likely candidate genes within a QTL. If a variation in phenotype (such
as susceptibility to a particular disease) has a genetic cause, then there should be clear
differences in the SNPs of the strains exhibiting this variation. Moreover, the locations
of the SNPs within the genome can indicate the genes that play a role in determining
whether an individual will exhibit the phenotype of interest or not. While it is clear that
some SNPs found in QTLs are more informative than others, the precise criteria needed
to isolate these SNPs are not completely clear, and their investigation is part of current
research. At the same time, the sheer volume of SNPs under consideration, typically of
the order of tens of thousands for a single QTL region, calls for an automation of the
analysis process. Our goal is to support this exploration by providing biologists with a
software environment for the semi-automated SNP analysis of SNP ”informativeness”.

Recognition of the value of SNPs in detecting the genes involved in specific phe-
notypes has fuelled the development of several publicly-accessible SNP databases. No-
table among these are Ensembl [5], dbSNP [14], the Perlegen Sciences database1, MGD
[4], UCSC [8], and Wellcome-CTC Mouse Strain SNP Genotype Set2. Each of these
resources allows the retrieval of SNPs from a given chromosome region, but they are
also highly heterogeneous, in terms of access mechanisms, structure, content and qual-
ity. For example, Ensembl contains high-quality data that has been assessed by expert
curators, while dbSNP contains more recent but more speculative SNPs that have not
been subjected to such rigorous quality control.

In order to get a good coverage of both strains and chromosomal regions for SNP
analysis, therefore, it is necessary to integrate data from several sources. Since data
volumes are high (there are currently around 8 million confirmed SNPs in the mouse
genome, for example), and since the various resources do not all provide suitable pro-
grammatic access to data, a materialised integration is necessary. However, at present,
the main purpose of this integration is not to support a specific known application but
to allow experimentation with a variety of hypothesised algorithms for assessing the
likely role of a SNP in producing a given phenotypic response. We do not know at the
outset what quality or coverage of SNPs will be required to provide reliable analyses
of this kind. Therefore, rather than a conventional, tight integration to a fixed common
schema, with “one-time” data cleaning steps, we have instead adopted a loose inte-
gration approach, which allows the user to experiment with different combinations of
sources and integration approaches.

1 Perlegen: http://www.perlegen.com/
2 http://www.well.ox.ac.uk/mouse/INBREDS/
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The first results of this experimentation have been implemented in a web-accessible
database called SNPit. The SNPit database is populated with a loose integration of SNP
and strain data covering the entire mouse genome. This paper describes our experiences
in constructing SNPit and the loose integration approach that supports it. We begin, in
Section 3, by describing the kinds of SNP scoring models that must be supported by
a system such as SNPit. We then discuss the integration problems that arise and our
solutions for them (Section 4), and present experimental evidence for the usefulness of
the resulting scores (Section 5). Finally, Section 6 concludes and outlines our plans for
further exploitation of the SNPit database through the discovery and implementation of
additional SNP scoring models.

2 Related Work

While many examples of data integration projects can be found in bioinformatics, it
is interesting to note the increased importance of automating SNP analysis, a sign that
the role of SNPs in the discovery of genes responsible for particular phenotypes is
widely recognized. It is no surprise, therefore, that a number of SNP searching tools are
available in the public domain. A common goal of these tools is to perform large-scale
searches through genome-wide collections of SNPs, in order to narrow the genotyping
analysis to a small set of “optimal” SNPs. Where the tools differ is in the specific type
of search filters, the analysis features offered, and the choice of primary data sources.
SNPHunter, for example, retrieves SNPs that lie inside or around a given candidate
gene [12]. The SNPper application described in [11] lets the user focus on highly poly-
morphic regions, and filter SNPs based on their submitter (since users may attribute
different reliability to SNPs coming from different submitters). Some systems, like
PolyDoms [7] and the SNP function portal [13], integrate multiple data sources, but
only one of these is a SNP database (dbSNP). The former provides filter options for
predicted functional properties of SNPs, such as “Damaging non-synonymous SNPs”,
while in the latter search criteria can be expressed on a long list of annotations obtained
from various other databases, e.g. at the genome, protein, pathway levels. Others, like
PupaSuite [2] and SNPeffect [9], add functionality to predict the functional effect of
SNPs on the structure and function of the affected protein.

We note two important differences between these tools and our SNPit database.
Firstly, we integrate multiple sources of SNP data, allowing users to perform searches
on specific sources, or to compare analysis results across sources. Secondly, since all the
cited tools are specific to the human genome, SNP analysis cannot be based on observed
phenotype differences among strains (because no collections of strains are available for
humans). In contrast, by targeting the mouse (an important model organism), we are
able to exploit the complete genome sequencing of different mouse strains, along with
the growing number of available QTLs already identified for the mouse. One secondary
mouse SNP database, called Mouse SNP Miner, is indeed described in the recent liter-
ature [10]; but it is designed to perform batch analysis of potential damaging effect of
SNPs, rather than for interactive search.
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3 Capturing SNP ”informativeness”

As mentioned, SNPs allow us to identify sets of candidate polymorphic genes within
a QTL region which may be responsible for the disease response (or other behaviour)
observed in various strains. The main intuition behind this process is the following:
since different strains of the model organism exhibit the phenotype in different ways,
if we can identify the regions of greatest genetic difference between those strains then
we can prioritise the genes that are located in those regions for further investigation. In
other words, we would like to rank the SNPs within a QTL in some way that indicates
the likelihood that it contributes to the phenotypic differences observed between strains.
From this, we can create a secondary ranking on the genes in which the SNPs appear.

In order to perform this ranking reliably, we need to gather together information
about as many known SNPs in the QTL as possible. Since no one database, at present,
can guarantee to provide this, we must collect data from several databases and integrate
it. Unfortunately, there is no single way to translate the biologists’ intuition regarding
the informativeness of SNPs in identifying candidate genes into a procedure precise
enough to be implemented in software. Therefore, we have proposed several different
variants on the basic score model. The integrated data must be able to support experi-
mentation with all these variants, so that their relative reliabilities can be explored.

The basic score model compares, for each SNP, the nucleotide base replacement ob-
served in a single, user-selected strain, i.e., the strain that exhibits the phenotype under
investigation, with those that occur in all other known strains. Each such alternative
base is called an allele. A SNP in which the allele for the selected strain is different
from that observed in all the others supports the hypothesis that the SNP plays a role
in the phenotype associated with the selected strain; the SNP should therefore receive a
high score.

To make this intuition precise, consider the set S = {S1, ..., SN} of all known mouse
strains (about 60) for which SNPs have been sequenced. Ideally, we would like to have
allele information about each SNP in the entire genome for each of the strains, i.e.,
Ai,j ∈ {G,C,A,T} for each SNP i and strain Sj . In reality, sequencing efforts focus on
particular genome regions and on particular strains, so that this information is missing
for some strains on some SNPs – we indicate missing alleles with Ai,j = N. Note that
the set Ai = {Ai,j , j : 1..N} of all alleles for a SNP is a bag, rather than as set, because
alleles from different strains may coincide, as shown in the example of Table 3(a).

In the basic score model, the user selects a single strain Sref ∈ S as the reference.
For each SNP i, we compute a base score si,0 as the number of non-null alleles Ai,j �=
N that are distinct from the reference, or j �= ref and Ai,j �= Ai,ref . This is then
normalized by the number n′

i of non-null, distinct alleles Ai,j for each j �= ref , to
yield the final score:

si,ref = si,0/n′
i

This model gives a high score to SNPs for which the selected strain has a unique allele
but where all other alleles are the same. Consider the example of Table 3(a), available
from Perlegen for SNP rs61647296 on chromosome 12. For selected strain A/J, the
allele G is indeed unique (s0 = 9 because 9 non-reference strains have allele T), and fur-
thermore, the only other known allele is T (n′ = 1). This yields a score sA/J = s0

n′ = 9.
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For comparison, in the SNP in Table 3(b) (rs61646963), the score for the reference
strain (allele G) is only 0.5, because the allele appears among the non-selected strains,
only one allele (A for strain BALB/cByJ) is different, and the non-selected strains
contain two distinct values.

Table 1. Strains and alleles example 1

(a)
Strain StrainAllele
DBA/2J T
A/J G
BALB/cByJ T
C3H/HeJ N
AKR/J T
FVB/NJ T
129S1/SvIm N
NOD/LtJ T
WSB/EiJ N
PWD/PhJ T
BTBR T+ tf N
CAST/EiJ T
MOLF/EiJ T
NZW/LacJ N
KK/HlJ N
C57BL/6J T

(b)
Strain StrainAllele
DBA/2J N
A/J G
BALB/cByJ A
C3H/HeJ G
AKR/J N
FVB/NJ N
129S1/SvIm G
NOD/LtJ N
WSB/EiJ N
PWD/PhJ N
BTBR T+ tf G
CAST/EiJ N
MOLF/EiJ N
NZW/LacJ G
KK/HlJ G
C57BL/6J G

In summary, this simple model rewards SNPs where the selected strain is unique,
and the alleles for all other strains are the same. Note that the score is 0 for SNPs where
the allele is missing for the selected strain.

The second score model, called the group score model, generalises the first by al-
lowing the comparison of two user-selected groups of strains, rather than comparing a
single strain against all others. This is useful because it is often the case that a particular
phenotype is observed in more than one strain. For example, it is common to want to
compare strains which are known to be susceptible to a particular disease with those
strains which are known to be resistant. There may be other strains for which we do
not know the phenotype, and these should be excluded from the analysis. This score
therefore rewards SNPs for which (i) the sets of alleles in the two selected groups are
disjoint, and (ii) the alleles for each individual group are homogeneous — in the ideal
case, the strains in one group will all exhibit one allele, while the strains in the other
group all exhibit another allele.

Consider two disjoint sets of strains S1 = {S1, ..., Sn} and S2 = {S′
1, ..., S

′
m},

and, for a given SNP, the corresponding bags of alleles A1 = {A1, ..., An} and A2 =
{A′

1, ..., A
′
m} (the SNP index i is omitted for simplicity). Let δ be the number of dis-

tinct, non-null alleles that are common to A1 and A2: δ = |A1 ∩ A2|, and n′, m′ the
number of distinct alleles in A1 and A2, respectively. We define three variations for the
group score. The simplest takes the form:

gs0(A1, A2) = 1 − δ

n′ + m′
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This model rewards disjoint sets of alleles, regardless of their internal homogeneity.
Note however that, when using gs0, one SNP for which one entire group of alleles is
null gets a perfect score, because δ = 0 in that case. This seems counter-intuitive, i.e.,
it would be misleading to give a high rank to SNPs for which a score simply cannot be
computed. To counter this effect, the second variation of the model, gs1, extends gs0
by introducing penalty factors with values proportional to the number of null alleles in
the groups under consideration:

p1 =
|{Aj ∈ A1|Aj = N}|

|A1|
(p2 is defined similarly for A2). The resulting adjusted score is

gs1(A1, A2) = gs0(A1, A2) · p1 · p2

Table 2. Strains and alleles example 2

(a)
Strain StrainAllele
DBA/2J G
A/J A
BALB/cByJ G
C3H/HeJ A
AKR/J G
FVB/NJ G
129S1/SvIm A
NOD/LtJ G
WSB/EiJ G
PWD/PhJ G
BTBR T+ tf A
CAST/EiJ G
MOLF/EiJ G
NZW/LacJ A
KK/HlJ A
C57BL/6J G

(b)
Strain StrainAllele
DBA/2J A
A/J N
BALB/cByJ A
C3H/HeJ N
AKR/J N
FVB/NJ A
129S1/SvIm N
NOD/LtJ A
WSB/EiJ N
PWD/PhJ T
BTBR T+ tf N
CAST/EiJ A
MOLF/EiJ N
NZW/LacJ N
KK/HlJ N
C57BL/6J A

Note that the values of penalties decrease as expected (because they are multiplying
factors) when the number of null alleles increases. Consider the example in Table 3(a),
and the two groups {A/J,BALB/cByJ} and {AKR/J,C57BL/6J}, corresponding to
allele groups A1 = {A,G} and A2 = {G,G}. We have δ = |{G,G}| = 1, n′ = n = 2,
m′ = 1, and gs1(A1, A2) = 2

3 , with no penalties since there are no missing alleles. The
effect of penalties can be observed in the example of Table 3(b), where the alleles for
A/J and AKR/J are missing. Here p1 = p2 = 1

2 , and gs1(A1, A2) = (1− 1
2 ) ·p1 ·p2 =

1
8 .

The third variation of this model accounts for the heterogeneity of each of the two
groups, represented by the elements h1 = n′

n and h2 = m′

m . The resulting score:

gs2(A1, A2) =
gs0(A1, A2)

h1 + h2

is lower for highly heterogeneous groups. Using gs2(), the score for the example of
Table 3(b) would become 4

9 , because h1 = 1, h2 = 1
2 . It is possible, of course, to
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combine gs1() and gs2() to take into account both penalties and group heterogeneity.
Note also that the scores do not take into account the number of strains in each group,
which is typically very small.

Preliminary results on the performance of one of these models, gs1(), are presented
in Section 5.

4 Gathering and Integrating SNP Data

From the SNP analysis described in the previous session, we derive a number of re-
quirements and design decisions for the management of SNP data. First of all, there
is choice of publicly-accessible databases containing SNP data for specific organisms
— including the mouse. These databases partially overlap in structure and content, de-
pending on the submission policy and procedures of the controlling organization. The
update frequency of the data, and thus its currency, also varies. Users tend to choose
among the available data sources based on their prior confidence in its reliability, pos-
sibly cross-referencing the retrieved data with other sources for validation afterwards.

There is currently no single reference data source for SNP data, and therefore SNPs
from multiple sources must be combined in order to achieve the coverage levels re-
quired by the score models described in the previous section. We have selected three of
the most prominent public SNP databases, on the basis of their completeness, authorita-
tiveness, and the complementarity of their respective content. First is Ensembl Mouse3,
a well-known source for the mouse genome, which is regarded as being of high quality
thanks to the team of expert curators who make sure that only confirmed and established
data is included. The second database is dbSNP, maintained by NCBI4; the quality of
its data is known to be less consistent, since the submission process involves relatively
little quality control. This, at the same time, makes dbSNP a good source for recently
discovered SNPs. Thirdly, we have selected the database from Perlegen Sciences, the
result of a project devoted specifically to sequencing the whole mouse genome across
15 mouse strains with high accuracy.

Programmatic access to these data sources is provided through a range of different
mechanisms, including Web services (for instance, NCBI’s eUtils), direct data layer
access (Ensembl accepts public connections to its mySQL database) and through bulk
data download. Since each region-wide SNP analysis involves retrieving and joining
data sets of the order of tens of thousands of elements, followed by the execution of ad
hoc algorithms, the performance of frequent bulk queries on the remote sources is likely
to be poor. There is thus a need for some form of data localization, and the potential
for developing further of analysis algorithms also requires the design of an integrated
schema.

4.1 Data Integration Approach

These considerations led us to the design of a new database for SNPs, called SNPit,
which consolidates data from the three data sources mentioned. Unlike typical OLAP

3 Ensembl Mouse genome: http://www.ensembl.org/Mus musculus/
4 dbSNP: http://www.ncbi.nlm.nih.gov/SNP/



222 P. Missier et al.

integration projects, the new schema is designed so that individual relations are very
similar in structure to the corresponding relations in the source schemas. In practice,
the database consists of a collection of materialized views on the sources, which can
be pairwise joined through the use of common identifiers for the SNPs. A sketch of
the data integration scenario appears in Figure 1, where the flow of SNP data across
the sources is highlighted (top half). Perlegen SNPs are gradually being submitted to
dbSNP, making this one of its major contributors (although the process is not yet com-
plete).5 In turn, data from dbSNP is gradually incorporated into Ensembl, through a
slower curation process. Ensembl also includes SNP data that has been discovered by
the ongoing sequencing work of the Sanger Institute in the UK.6 As the figure shows,
independent loading procedures processes have been setup for each of the three sources,
using various offline data transformation techniques. As a result, we expect some of the
Perlegen SNPs to appear in our dbSNP and Ensembl tables.

Maintaining separate sets of relations for each data sources has several advantages.
Firstly, by directing their queries to views on a specific source, users may limit the scope
of their analysis to familiar data. Secondly, overlapping SNPs from different sources are
retained as separate data items, thus avoiding the problem of having to resolve all possible
inconsistencies (eg different alleles detected for the same SNP and strain) upon loading.
Also, tracking the correct propagation of the same SNP information from one database
to the next can be done at the application level. Thirdly, both dbSNP and Ensembl are
subject to ongoing revision and using separate relations makes the reloading of updated
versions more manageable. Finally, since there is built-in redundancy in the loosely in-
tegrated schema, additional data sources with partially overlapping data may be added
without disrupting the schema. One minor shortcoming of this approach is the need to
create additional views for each useful combination of sources that are frequently queried
together. The schema is designed to model the following main aspects of SNP data:

– the one-to-many relationship between a SNP and the strains in which it is known
to occur. The number of strains alleles available for each SNP varies, in Ensembl,
between 1 and over 60, depending on the sequencing effort carried out by the orig-
inating lab. In general, we expect that the more alleles are available, the better the
chance of correlating the SNPs to phenotype differences among the strains;

– the position of the SNP, expressed as the number of bases from the start of a chro-
mosome. This translates into a one-to-many relationship between a gene (whose
position is identified by an interval of bases within a chromosome) and the SNPs
that occur within its boundaries.7

– SNP provenance, i.e., the submitter institution along with the version of the genome
used to specify the SNP position (called “build”), and other similar data;

– SNP location,i.e., whether the SNP occurs in a DNA fragment that is involved in the
translation process for protein synthesis (a coding region), or in a non-coding region.
This is relevant in assessing the potential consequences of a single-base mutation.

5 Perlegen currently contributes about 44% of the dbSNP SNPs.
6 http://www.sanger.ac.uk/
7 SNPs may also occur in between genes. For this reason, we have complemented the collection

of genes with a set of labels corresponding to the intergenic regions, for the purpose of our
study.
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Fig. 1. Primary sources and main relations for the SNPit database. The number figures are data
volumes for a single chromosome (12).

Both the Ensembl and the Perlegen views include SNP-to-strain and SNP-to-gene
relationships, and are used to calculate the score models for data in these sources. Native
Perlegen data does not include gene information, however, and we have had to add it to
our database separately, as part of the loading process. This was done using the mouse
genome in the Ensembl gene database. The provenance data is currently being used in a
separate study concerning methods to assess the reliability of SNPs (as opposed to their
“biological informativeness”), and is not discussed further in this paper. We plan to
exploit location data to improve upon our current score models for SNPs, as explained
in our conclusions section.

Successful joins in our schema rely upon the use of common SNP identifiers. Un-
fortunately, SNPs are given different types of identifier at different stages of their “ac-
ceptance” (they are also known by different names, as described in [3]). While a ref-
erence ID “rsId” (for instance rs61647296) is issued by Ensembl curators for ac-
cepted SNPs, Perlegen uses its own private naming scheme. To complicate matters still
further, dbSNP makes a distinction between the SNP reference ID (when available)
and the submitter ID ssID, issued by dbSNP at the time the SNP is entered into the
database. The purpose of using reference IDs is to represent SNPs that have been iden-
tified by more than one lab, using a submitter-independent numbering scheme. This
complicates the task of tracking multiple occurrences of the same SNP in our schema,
since, for example, only the Perlegen SNPs that have already reached Ensembl will
have an rsID. The bottom part of Figure 1 shows how rsID and ssID are used in
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Fig. 2. Score model selection in the SNPit application

combination with the dbSNP view, to mediate between the Ensembl and Perlegen views.
This means that the scope of a comparative analysis over the SNPs that occur in both
views is limited to the subset indicated by the dotted box. The numbers in the figure
provide an example, for one sample chromosome, of the amount of overlapping SNPs
among the sources.

4.2 The SNPit Web Application

The SNPit MySQL database contains the entire set of known mouse SNPs from the
three sources. A Web application (written using JSP technology) makes the score mod-
els available to end users. The application allows the biologist to (i) select SNPs for a
region of interest, eg. an entire QTL, or for a set of individual genes, with some filtering
capability, for example by selecting SNPs that belong to highly polymorphic regions;
and (ii) repeatedly apply various score models on this selection. The available scoring
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options are shown in Figure 2. At this stage, the application has already fetched about
38,000 SNPs from both Perlegen and Ensembl, for a user-specified region8. Next, users
may select a score model (three of them are available in the Web form), along with the
strain or strain groups they wish to analyse (Figure 2).

Once the user has selected their preferred ranking method, the SNPs are retrieved,
scored and displayed, as illustrated in Figure 3. The ranked SNPs are shown in the table
on the left (with the name of each associated gene shown in the leftmost column). On
the right of the main SNP result table, we also show histograms of the score distribution
for the returned SNPs. Ideally, we would hope to see a highly skewed distribution, with
most of the SNPs receiving low scores, but with a long thin tail showing a small number
of high scoring SNPs. In order to assist the user in understanding the characteristics
of this tail, we also display the histogram using a log-linear scale, which amplifies
the results in the tail. The application is scheduled to be released for public access in

Fig. 3. Ranked SNPs in the SNPit application

the near future. In addition, Web Service access to the analysis functionality is also
being implemented. This will make the score models available to scientific workflow
applications, i.e., as part of the myGrid suite of services, which includes the Taverna
workflow management system [6].

8 The Ensembl data source is known in the application as “Biomart”, since the Biomart version
of the data has been used to populate the view. Biomart (http://www.biomart.org) is an open
source project that makes data available as a data mart for analysis purposes.



226 P. Missier et al.

5 Experimental Evaluation of the Score Models

The integrated views of SNP data that we have created for the SNPit application are
only of value if they can support experimentation with different score models. In this
section, we describe how we have evaluated the gs1() model over the integrated views.

5.1 Experiment Design

The goal of the experiments was twofold: firstly, to assess the performance of the gs1()
model, i.e., to determine how well the resulting SNP ranking reflects an expert’s judg-
ment of their informativeness. More importantly, we also wanted to test the hypothesis
that the SNP ranking induces a meaningful ranking on the genes themselves, by placing
the best candidates at the top with sufficiently high accuracy.

The gs1() model was evaluated using three independent, manually selected test data
sets consisting of SNPs from three separate, highly polymorphic QTL regions on the
mouse genome, two on chromosome 12, with a size of 23 (denoted as Chr12-A) and 6
Mbases (Chr12-B), respectively, and one on chromosome 17 (8.2 Mbases), denoted as
Chr17. In the experiment, the biologist selected a limited number of SNPs from a few
genes that are known to be good candidates for a particular phenotype. The selection
was made based on the known difference in phenotype between two groups of strains;
the same two groups were then used to assign a gs1() score to all the SNPs in the
selected regions. The main limitation factor for the size of the test sets, as is usually the
case, is the amount of effort required to manually sift through the SNPs (the number
of SNPs found in each of these regions ranges in the tens of thousands, as shown in
Table 3).

5.2 SNP-Level Performance

A common way of assessing the performance of a score model is to compare the com-
puted ranking with a correct binary classification (i.e., interesting vs. non-interesting)
for a test data set. The performance can then be expressed in a standard way using a
ROC curve, in which the ratios of false positives to true positives are plotted for various
ranking thresholds.

In our case, two problems complicate this procedure. Firstly, biologists find that pro-
viding positive examples, i.e. for ”definitely interesting SNPs”, is much easier that pro-
viding negative examples. This reflects the nature of the experimental process, whereby
the initial, large set of SNPs are all considered potentially interesting, and experimental

Table 3. SNPs and genes volume for the experiment QTL regions
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evidence as well as prior experience is applied to make some of them stand out as gen-
uinely important. Thus, while it is natural for the expert to indicate that a data element
is of interest, ruling it out completely seems harder. The second problem is the high cost
of manual SNP analysis, which results in a small test set (less than 100 SNPs for each
of three experiments).

Given these limitations, we decided to perform only an informal SNP analysis, and
instead invest additional expert time into higher-level gene-level analysis. Thus, we
only count the user-selected SNPs which are found towards the top of our ranking (the
true positives), normalized by the total number of user-selected positives. These rates
are greater than 95% throughout (details are omitted due to space constraints), with the
exception of one of the three experiments. In that case, SNP information was simply
missing from the Ensembl database at the entire gene level. The ability to perform
the same analysis on alternate data sources for the same region proved important in
this case; indeed, the corresponding rate for the Perlegen SNPs, our second source, is
unsurprisingly high.

5.3 Gene-Level Performance

In the second part of the performance assessment, the genes corresponding to the test
SNPs were compared to the genes for the top-ranked SNPs. As we have mentioned,
not all SNPs occur within genes – many occur in between genes, and indeed, these
SNPs may be among the most important, since some of these inter-genic regions are
responsible for controlling the transcription rates of the neighbouring genes. We use
labels of the form “between X and Y” to record the location of each such SNP; these
labels count as actual genes for the purposes of our study.

The comparison of the automatically and manually ordered genes was performed as
follows. For each of the three test data sets (i.e. regions), the entire set of genes for that
region was ranked according to the underlying ranking of their corresponding SNPs,
using a novel metric that we call density of interesting SNPs. Specifically, suppose that
X SNPs are known for gene G, and that x SNPs out of the X are above a given threshold
t, applied to the computed ranking. We say that G has a density x/X of interesting
genes at threshold t. This choice of ranking metric follows the intuition that, from a
biology perspective, a gene whose SNPs are considered for the most part informative,
according to our definition based of strain differences, has a higher chance of explaining
the phenotype than genes with only few interesting SNPs.

As in the case of the SNPs, we were again only given positive examples of strong
candidate genes by the biologist, making it difficult to estimate the number of false
negatives. In this case, however, the number of genes is much smaller than the number
of SNPs (less than one hundred for each experiment). Thus we can afford to have our
biologist manually analyse the top-ranked genes, in order to identify additional posi-
tives that may have escaped attention due to the size of the original list of genes. These
represent the real added-value information to the biologist: interesting genes that have
been spotted only thanks to the ranking model.

Thus, our performance model is based on a two-step process, whereby the expert first
provides an initial list of positive examples, which is used to plot a ROC curve where
all the non-selected genes are assumed to be negatives. This is a pessimistic estimate,
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(a) Chr17

(b) Chr12-A

(c) Chr12-B

Fig. 4. ROC curves for gene-level scores
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because each non-selected gene in the top ranks counts as a false positive. Then, the
expert identifies additional positives from the list. These count as true positives if they
lie above the threshold, and as false negatives otherwise. Although non-selected genes
are again considered negatives, the new curve obtained from this list is more realistic.

Concerning the choice of threshold t used to compute the gene SNP density, we ob-
serve that the model only assigns a handful of scores from the available [0,1] interval,
namely 0, .25. .5, .67, and 1, effectively creating a discrete classification. This is due to
the very small size (2) of the strain groups selected by the analyst for the comparison9,
which limits the possible overlaps among the alleles. By observing the frequency of oc-
currence of each score over all SNPs, we may select a suitable threshold that captures
the majority of them – this is typically score = 1 for Perlegen, and score > 0 for En-
sembl. With this assumption, we compute interesting SNP density as the ratio of SNPs
that are above the threshold, to the total SNPs for the gene.

The resulting curves for each of the three experiments and for the two data sources
are shown in Figure 4. In this type of chart, good results are represented by curves
that rapidly reach the upper left corner, representing a region of many true positives
and few false positives. Although not conclusive, our preliminary results are promising.
The first chart shows the improvement of the additional expert selection (indicated as
”second round”). This effect seems to be reverted in the last chart; this may be due to
the relatively large number of false negatives, i.e., interesting genes with low ranking.
The initial, subjective reaction from our users is that this level of accuracy may already
be sufficient to significantly accelerate the search for candidate genes.

We are now experimenting with further score models that exploit some of the addi-
tional information associated to the SNPs, notably whether the SNP occurs in a coding
region of the gene, and whether the base substitution actually causes a change in the
corresponding amino acid. This additional knowledge can be used to improve upon our
models, for example by adding weight factors to SNPs. Most of the required informa-
tion for this study is already captured in our schema.

6 Conclusions

The problem of correlating phenotype with genotype information is important to deter-
mine the genetic cause of diseases. SNPs play an important role in current methodology,
but their high volume limits the potential for their exploitation.

In this paper we have described an approach to partially automate SNP analysis,
based on a data integration architecture that makes it easy to implement ranking models
on large collections of SNPs, using multiple data sources. In our loose integration ap-
proach, we begin by capturing the essential attributes of SNPs as views on the primary
sources, and then materialize the views into our new SNPit database.

We have shown encouraging experimental results for the initial SNP ranking models
implemented using the database. We are now experimenting with more elaborate models,

9 This could be due to the complexity involved in manual analysis when larger groups are cho-
sen, and we expect that automated support will encourage the biologists to investigate analyses
involving more strains.
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that take into account the relative importance of individual SNPs, e.g. based on their
location in the genome, as well as provenance information to assess their trustworthiness.
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Abstract. Data integration projects in the life sciences often gather
data on a particular subject from multiple sources. Some of these sources
overlap to a certain degree. Therefore, integrated search results may be
supported by one, few, or all data sources. To reflect these differences,
results should be ranked according to the number of data sources that
support them. How such a ranking should look like is not clear per se.
Either, results supported by only few sources are ranked high because
this information is potentially new, or such results are ranked low because
the strength of evidence supporting them is limited.

We present two scoring schemes to rank search results in the inte-
grated protein annotation database Columba. We define a surprising-
ness score, preferring results supported by few sources, and a confidence
score, preferring frequently encountered information. Unlike many other
scoring schemes our proposal is purely data-driven and does not require
users to specify preferences among sources. Both scores take the concrete
overlaps of data sources into account and do not presume statistical inde-
pendence. We show how our schemes have been implemented efficiently
using SQL.

1 Introduction

In research on molecular biology, very often knowledge from different domains
is needed to answer practical questions. Imagine a researcher asking for the
three-dimensional structure of a protein that participates in a certain metabolic
pathway and is associated with a certain disease. This researcher has to query
multiple data sources. For instance, she could access the Protein Data Bank
(PDB) [1] for the protein structure, KEGG [7] for pathway information, and
PubMed to find information about protein-disease associations. However, for
the latter two aspects many other data sources could be used as well.

We call those different aspects of biomedical objects a domain. For a protein
such domains are 3D structure, sequence, fold, functional classification, other
proteins it interacts with, processes it is involved in, diseases it is associated
with, etc. For many domains there exist multiple sources. For example, infor-
mation about pathways can be found in KEGG [7], aMAZE [9], Reactome [6],
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Fig. 1. The figures in brackets state the total number of enzyme-enzyme pairs that
are connected through a chain of reaction → substrate → reaction. The figures in the
different partitions show the number of pairs that occur in only one, two, or all three
data sources.

and several other resources. These resources usually overlap extensionally, i.e.,
store the same information (and not only the same kind of information) because
they partially draw their content from the same data sets. For three sources on
pathways the overlap can be seen in Figure 1. But the sources also contain dif-
ferent and potentially unique information, due to different methodology used to
curate, integrate, select, or produce the data. Thus, when a researcher looks for
the pathways a given protein is involved in, the results may vary considerably
depending on the chosen source. We want to provide users with a ranking of
search results depending on the particular set of data sources that support it.

1.1 Data Model

We assume that a user is interested in information about a particular class of
biological entities, called the primary domain P . Objects in P are described by
objects in other data sources. A group of data sources that contain information
about the same type of entities or even the same entities is called secondary
domain Di. The content of secondary domains is comprised of data from various
data sources Si1, . . . , Sim and link sources Ri1, . . . , Ril, where i is the secondary
domain. If the domain is clear i can be omitted.

The link sources R1, . . . , Rl contain entries (s, p) with s ∈ Si and p ∈ P , i.e.,
they provide links between objects in data sources of a secondary domain and
objects in the primary domain. Thus, every object in a data source of domain
Di is linked through link sources to one or more objects in P and vice versa. We
also say that an object in P is annotated by objects in data sources of Di. This
situation is depicted in Figure 2.

A query selects entries from P by setting conditions on annotations in different
domains. The result of a query, written as res(q) is the set of objects in P that
comply with these conditions through at least one data and one link source for
every domain mentioned in q. For a single result p ∈ res(q) we say that the result
is supported by at least one qualified annotation in every secondary domain. As
the data and link sources in a domain overlap, an annotation supporting a result
may stem from different data sources and may be linked by different link sources.
According to the degree of dependence between the data and link sources of a



What’s New? What’s Certain? 233

Fig. 2. The objects in the primary domain P are annotated by objects from three
secondary domains (D1 . . . D3). Every domain contains several secondary data and
link sources.

domain, certain combinations of sources frequently support query results, while
other combination of sources rarely do. We make use of this fact to assign query
results scores for confidence and surprisingness.

1.2 Scoring of Results

This paper is about ranking results in a setting described above. Integrating many
sources instead of manually selecting some (the ’best’ ones) comes at the risk of
large result sets. Therefore, ranking of results becomes important. However, rank-
ing is not a one-dimensional problem. Clearly, a user is most confident in results
supported by all data sources. In the previous example a result that is supported
by KEGG, aMAZE, and Reactome is one where users will be most confident that
it is biologically true. However, such results are sort-of common place and thus
potentially boring. Some researcher might be more interested in the contrary, i.e.,
surprising results supported by only few sources. For example, a result supported
by Reactome but not by aMAZE is rather unexpected, because Reactome is much
smaller. Thus, a-priori chances to find a result supported only by Reactome are
small. If this occurs it makes a good starting point for a more thorough investi-
gation with a higher chance to produce some new findings.

Both scores, confidence and surprisingness, are important. It depends on the
concrete application which ranking scheme should be used for a search. In this
paper we present a method to compute both scores for integrated search results
over multiple domains where each domain is formed from multiple data and link
sources. In contrast to much of the related work, our method does not require
expert knowledge, but is merely based on the properties of the data sources
themselves, i.e., the overlaps between them.

1.3 Paper Outline

The paper is structured as follows. We discuss related work in the next sec-
tion. The surprisingness score is defined in Section 3 and the confidence score
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in Section 4. In Section 5 we show how to expand both measures to multi-
domain queries. Section 6 describes the application of the scores in the integrated
database Columba. Section 7 shows how to implement the scoring scheme and
also gives some experimental results. Section 8 concludes the paper.

2 Related Work

One option to use information from different data sources is to provide the user
only with information supported by all selected data sources, i.e., the information
a user is most confident in. Marcotte et al. [10] proposed such a method for
the reconstruction of metabolic pathways from protein-protein interaction data.
Clearly, their results are highly trustworthy, but a biologically correct protein-
protein interaction supported only by some data sources will not be considered.
In contrast Yanai & DeLisi [17] used a union of different interaction data sources.
This leads to good coverage, as all known interactions are listed, but possibly
also many incorrect protein-protein interactions are included.

The problem of giving the user all possible information ordered according to
some criteria is addressed by many projects. Internet search engines rank hits ac-
cording to their expected usefulness for the query. The protein-protein database
STRING [12] integrates information on protein-protein interactions from dif-
ferent data sources such as high-throughput experiments, literature search, or
sequence comparison. A confidence score for every object is created. This score
is either uniform within a data source, e.g., for an integrated source without
further knowledge, or individual for every object, e.g., when text mining meth-
ods are used to extract protein-protein interactions from publications. Similar
methods have been described in the area of functional analysis of microarray ex-
periments [5]. A general framework for specifying and using such quality scores
for query optimization and result ranking has been proposed in [13]. All these
methods build on expert knowledge about the data sources. Such ratings are
highly subjective and not easy to obtain.

In this paper we propose a method that ranks results without the need for
expert knowledge. A similar idea was proposed by Florescu et al. in [4] for the
purpose of query optimization. Given a query they want to optimize the ratio
between the execution cost and the size of the result set. To answer the query they
first estimate which sources will return most results and then choose k sources,
based on the selectivity of the source and the overlap with other sources.

A different approach is described by Lacroix et al. in [8] for estimating the size
of the result set. They assume a network of interlinked sources and data objects. A
query poses conditions on a start source and returns results from a primary source
by analyzing all paths from the start to the primary source. To estimate the size
of the result set they pre-compute overlap statistics for different paths using sam-
pling. In Bleiholder et al. [2] these overlap statistics are used to optimize queries
over multiple data sources to solve the Budgeted Maximum Coverage problem. In
contrast to this work, we use a simpler model (primary and secondary sources)
and focus on ranking of results in result sets, not on query optimization.
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3 Surprisingness of Results

We now present a framework for measuring the surprisingness of a search result.
Confidence will be defined in Section 4. We develop our model starting from
a single domain with a single data and link source and then extend it to mul-
tiple data and link sources. The extension to multi-domain queries is given in
Section 5.

We assume that the result set contains objects from the primary source. The
user can restrict this set by setting conditions on objects in secondary domains.
An object in the primary source is contained in the result set if it is supported
by at least one qualified annotation in every queried domain.

3.1 Single Data Source

We start with the simple scenario of a single domain D, a single data source S,
and a single link source R as shown in Figure 3(a). Without loss of generality
we assume that every annotation s ∈ S is linked to at least one object p ∈ P
through at least on link r ∈ R (we can safely delete all other annotations and
links since they can never select entries in P ). A query selects objects in D and
determines the set of objects in P that are linked by at least one link in R.

For a given query q we calculate the probability that a randomly chosen object
p ∈ P is part of the result set of q. We first derive the a-priori probability that a
randomly chosen annotation s ∈ S is linked to a randomly chosen object p ∈ P :

P ((s, p) ∈ R) =
|R|

|P × S| =
|R|

|P | ∗ |S| (1)

A randomly chosen p ∈ P takes part in the query result if it is linked to at
least one qualified annotation s ∈ S by at least one link r ∈ R. If we assume
that q selects k annotations and take into account that a single object in P can
be selected by multiple annotations in S, then the probability that a concrete
p ∈ res(q) is selected is precisely the probability that not none of the k selected
annotations is linked to p, which gives:

P (p ∈ res(q)) = 1 −
(

1 − |R|
|P | ∗ |S|

)k

(2)

Clearly, we could also estimate the value of k a-priori using attribute selectivities.
Note that this formula ranks all objects in a result set of a query equal. This is
expected, as we want to rank a result by the subset of sources that supports it
in any domain. Therefore, differences in the computed score only appear when
more than one source is present.

3.2 Multiple Sources in a Single Domain

We now extend our framework to the case of m data sources Si and l link sources
Rj , 1 ≤ i ≤ m and 1 ≤ j ≤ l for a single domain D as shown in Figure 3(b).
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(a) Single data and link source. (b) Multiple data and link sources.

Fig. 3. An object p ∈ P is supported by objects s ∈ Si in a domain

An object p ∈ P is in the result set of a given query q if it is supported by
at least one qualified annotation s linked through at least one link r. However,
s as well as r can be contained in various combination of sources. Consider the
situation shown in Figure 3(b) with three overlapping data sources S1, S2, and
S3 and two overlapping link sources R1 and R2. S1 and S3 strongly overlap, while
S2 mostly contains divergent data. In this situation it is likely that a query result
is linked to a qualified annotation contained in (S1 ∩ S3)\S2 or S2\(S1 ∪ S3).
Such query results shall be assigned a low score for surprisingness. We would
rate a result more unlikely and therefore more surprising that is supported by
a qualified annotation in S3\(S1 ∪ S2). Clearly, to compute the score we also
have to consider over which combination of link sources s is linked to p. Note
that according to our understanding of surprisingness, a high score might also be
assigned to results with incorrect annotations. This is in the line of our argument,
since errors can be considered surprising and certainly require user attention.

The space of all annotations in D is partitioned into disjoint subsets according
to the overlaps of data and link sources. Some of these subsets are represented by
different colors in Figure 3(b). We call these partitions in data sources Z1, . . . , Zn.
The assignment of annotations to partitions can be representedby a domain-vector
v of size m∗ l for a domain with m data and l link sources. If annotation s ∈ Si and
(s, p) ∈ Rj we set vi,j = 1, and vi,j = 0 otherwise. In Figure 3(b) an annotation
contained in S1 ∩ S3\S2 that is linked over R1 corresponds to the domain-vector
vi,1 = 101 and vi,2 = 000. It follows that 2m∗l different domain vectors are possi-
ble. Now consider a single annotation s selected by q. Intuitively, a p linked to s is
the more surprising, the smaller the partition Zk is in which s lies.

However, we need some more work to derive a suitable definition for surpris-
ingness. We compute the surprisingness for each annotation selected by a query
which might later be aggregated into a score for an object p linked to multiple
annotations. Let Zk be the partition in which an annotation s lies that is selected
by a query q. We estimate the probability that p is verified by all sources that
contain Zk and no others, which depends on the a-priori overlaps of sources.
That means, we want to know how likely it is that a result for a given query is
verified by a certain combination of available sources. The less likely, the more
surprising is the result.

To answer this we first estimate the probability that for a given query a result
is verified by a particular data source Sx provided that it is verified by at least
one source in D. This is different from Equation 2 because p can be selected by
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other sources than Sx. Let qSx denote the subset of res(q) that is verified by Sx.
Using Bayes’s Theorem we get:

P (p ∈ qSx|p ∈ res(q)) =
P (p ∈ res(q)|p ∈ qSx) ∗ P (p ∈ qSx)

P (p ∈ res(q))
(3)

Clearly, the probability that an object is verified by at least one data source
provided that it is verified by a particular Sx, P (p ∈ res(q)|p ∈ qSx), is 1
because the first event logically implies the second one. The a-priori probability
P (p ∈ res(q)) is given by Equation 2, where |S| now denotes the set of all
unique annotations in D. We only miss the a-priori probability P (p ∈ qSx). For
this probability we must take into account that not every object in S is contained
in Sx and not every link in R links annotations s ∈ Sx to a p ∈ P . We therefore
can identify a subset of R, denoted as Rx, that only contains links from s ∈ Sx.
Analogously, we can distinguish a subset of P , called Px that contains entries p
that are supported by an annotation s ∈ Sx.

P (p ∈ qSx) = 1 −
(

1 − |Px|
|P | ∗ |Sx|

|S| ∗ |Rx|
|Px| ∗ |Sx|

)k

= 1 −
(

1 − |Rx|
|P | ∗ |S|

)k
(4)

Thus, Equation 3 can be rewritten as:

P (p ∈ qSx|p ∈ res(q)) =
1 −

(
1 − |Rx|

|P |∗|S|
)k

1 −
(
1 − |R|

|P |∗|S|
)k

(5)

We now determine the probability that a particular p is supported by qualified
annotations in a partition Zk. Here as well we denote the subset of res(q) verified
by annotations in Zk as qZk. This gives:

P (p ∈ qZk|p ∈ res(q)) =
1 −

(
1 −

∣∣∣ ⋂
Si⊇Zk

Ri

∖ ⋃
Si �⊇Zk

Ri

∣∣∣
|P |∗|S|

)k

1 −
(
1 − |R|

|P |∗|S|
)k

(6)

3.3 Surprisingness Score of a Single Annotation

To value the surprisingness of a single annotation we use the measure of self-
information as defined by Shannon. Consider a domain-vector v as a symbol
in a message, the self-information of v, I(v), depends on the probability of its
occurrence and is defined as I(v) = − log2(P (v)). Accordingly, we calculate the
surprisingness score for p that is contained in the result set of a given query by
applying the probability that p is supported by an s ∈ Zk using Equation 7.
Definition 1 formalizes this approach:
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Definition 1 (Surprisingness for a single annotation). Let q be a query
selecting an annotation s, let p be linked to s, and let s lie in partition Zk of D.
The surprisingness S(p, s) of p with respect to s is defined as:

S(p, s) = − log2 P (p ∈ qZk|p ∈ res(q)) (7)

3.4 Surprisingness Score for a Single Domain

Equation 7 only gives the probability that a given p is linked to a given anno-
tation s selected by a query q. But we want a score for p given all its linked
annotations selected by q, as shown in Figure 4. Therefore, we will need to
aggregate scores of multiple s.

Fig. 4. An object linked to two qualified annotations

Suppose, the primary domain contains protein structures and the secondary
domain multiple data sources about scientific publications. Assume we query
with a keyword and receive a structure p that is linked to multiple qualified
publications. If all publications are contained in the same combination of data
sources, intuitively the number of publications that verify p does not influence
its surprisingness. In this case p shall be assigned the same surprisingness score
as assigned to a single publication. Now imagine p is linked to multiple qualified
publications contained in different combinations of data sources as depicted in
Figure 4. Clearly, if most selected publications linked to p are highly surprising
we also want to assign p a high surprisingness score. We therefore define the
surprisingness of p as the average of the surprisingness scores for every qualified
publication that supports p.

Definition 2 (Surprisingness for multiple annotations). Let q be a query
and p ∈ res(q) be linked to a set T of annotations selected by q. The surprising-
ness S(p, T ) of p is defined as:

S(p, T ) =
1

|T |
∑
s∈T

S(p, s) (8)

4 Confidence of Results

As explained in Section 1, researches are not solely interested in highly surprising
query results but also in trustworthy results. A researcher might want to rank
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those results high that are likely to be correct. Having multiple data sources in
a domain, intuitively every data source that verifies a query result p increases
the confidence in the correctness of p. Thus, a straightforward method to value
the confidence of a query result would be to count the number of sources verify-
ing the result. But here too we have to consider that the different data sources
within a domain are not independent. If, for example, a query result p is ver-
ified by two data sources, the confidence in p being correct is the higher the
lower the degree of dependence between those data sources is, because then
it is more likely that information contained in both sources is the outcome
of independent experiments rather than information stemming from the same
resource.

Consider again the situation shown in Figure 3(b). We are most confident in
annotations that are contained in S1 ∩ S2 ∩ S3 and linked through both link
sources R1 and R2. If we consider annotations s1 ∈ (S1 ∩ S3)\S2 and s2 ∈ (S1 ∩
S2)\S3, both linked only over R1, we intuitively assign s2 a higher confidence
score because S1 and S3 strongly overlap, while S1 and S2 do not. More generally,
for the confidence score we want to use the probability that an annotation is
contained in a combination of sources given that the annotation is contained in
at least one source.

Definition 3 (Confidence for a single annotation). Let q be a query se-
lecting an annotation s, let p be linked to s through r, and let s be contained in
the the partition Zk. The confidence C(p, s) of p with respect to s is defined as:

C(p, s) = 1 − log2

∣∣ ⋂
Si⊇Zk

Si

∣∣
∣∣ ⋃
Si⊇Zk

Si

∣∣ (9)

Resulting from Definition 3 the score for a p linked to an annotation s that
is contained in only one source is 1. Note, the confidence score for p1 that is
annotated by s1 ∈ Zk is always lower or equal to the score for p2 annotated
by s2 ∈ Zl, with Zl being the intersection between data sources in Zk and an
additional data source Si.

So far, we considered the confidence for a result supported by only a single
annotation. We shall now show how to aggregate confidence scores for multiple
annotations. While the number of qualified annotations linked to a query result
p does not influence its score for surprisingness, it clearly enhances the trust in
the correctness of p. As we consider every single annotation as an evidence that
p is an answer to a given query we sum up the confidence scores of all qualified
annotations linked to p to calculate the confidence score of p.

Definition 4 (Confidence for multiple annotations). Let q be a query and
p ∈ res(q) be linked to a set T of annotations selected by q. The confidence
C(p, T ) of p is defined as:

C(p, T ) =
∑
s∈T

C(p, s) (10)
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5 Multi-domain Query Results

In the last two sections we defined scores for surprisingness and confidence for
single domain queries. In this section we explain how to use these values to
compute a surprisingness and confidence score in a multi-domain setting.

We assume that different secondary domains are statistically independent. We
can make that assumption as according to our model we group data sources that
contain information about the same type of biological entities in one domain.
To compute an overall surprisingness score we add up scores from all secondary
domains given in a query. We do this as we consider a result surprising when
it is surprising for at least one domain. In contrast, for the confidence, only
those results of multi-domain queries shall be ranked high that have high confi-
dence scores in many domains. To ensure this, we normalize single domain scores
resulting from Equation 10 before multiplying all scores for the multi-domain
confidence score.

6 Multi-domain Setting: Columba

In this section we introduce our real world example, where the scores presented
in this paper are beneficial. We developed the integrated database Columba [14].
This database focuses on protein structures from the Protein Data Bank (PDB)
[1] that are annotated by objects of different domains, such as fold, sequence,
function, publication, metabolic pathway, or taxonomic classification.

We apply our scoring methods for ranking query results to parts of the
Columba database. We use as primary domain the protein structures given by
the PDB. Objects in the PDB are annotated by the secondary domains sequence,
publication, and metabolic pathway as shown in Figure 5.

Fig. 5. The PDB annotated by secondary domains that contain multiple data sources.
Note, the size and overlap of data and link sources does not necessarily reflect reality.

The domain sequence contains the data source Swiss-Prot [3] and has three
different link sources linking entries from Swiss-Prot to entries in the PDB,
namely PDBSWS [11], Seq2Struct [16], and MSD [15]. The overlap of link sources
is given by identical entries in the sources.
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Data sources for the domain metabolic pathway are KEGG [7], aMAZE [9], and
Reactome [6]. To compare these heterogeneous data sources we extract informa-
tion on the level of reactions. We store enzyme-enzyme pairs that are connected
through a path enzyme → reaction → substrate → reaction → enzyme. The
overlap of data sources is given by identical enzyme-enzyme pairs. If we consider
enzymes as nodes and a pair of enzymes as edges in a graph we can compute
paths between enzymes. We therefore can answer queries such as ”Which PDB
entries are less than 3 steps away from an enzyme with EC number 2.7.1.1 (Hex-
okinase)”. The data sources are linked to the PDB through EC numbers given
in the PDB as well as in the three data sources.

In the third domain publications we use PubMed as data source. The articles
referenced in PubMed can be linked directly to the PDB using the references
given in the PDB. But articles in PubMed can also be linked to the PDB via
Swiss-Prot.

A multi-domain query for this setting is for example ”Give me all protein
structures that are up to 7 steps away from an enzyme with EC number 1.14.16.1
(Phenylalanine hydroxylase), linked to entries in Swiss-Prot that contain the
keyword Phenylalanine catabolism, and linked to publications that mention the
disease Phenylketonuria”. This query returns in total 17 PDB chains. Using our
scoring scheme we can rank the results according to their surprisingness and
their confidence.

7 Implementation and Evaluation

In this section we show which values can be precomputed and how to implement
this computation inside a relational database environment. We additionally show
for some exemplary queries the impact of surprisingness and confidence scores.

7.1 Precomputation of Values

To compute the surprisingness of an object S(p, T ) we must first compute for
every object in a domain the probability P (p ∈ qZk|p ∈ res(q)) as given by
Equation 6. We therefore require information about the size of the primary
domain and the size of data and link sources in secondary domains. To gather
|P | we simply count the number of objects in the primary domain. To gather
|S| and |R| we first have to integrate all objects of the data and link sources
of Di and then count the number of unique objects in both integrated sources.
Knowing these values we can compute the value c1 = 1 − |R|

|P |∗|S| for domain Di.
But we also require the size of different partitions of data and link sources. To
gather these data we precompute and store the domain-vector v for every unique
object in S of dimension Di. We can determine the size for every partition Zk

by determining the frequency of different patterns in v, denoted as freq(v). But
to solve Equation 6 we require the value for the size of partitions in the link
sources, denoted as link size(v). We can determine link size(v) by summing up
for every s ∈ Zk the number of (s, p) ∈ R. Knowing this value we can compute
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the value c2 = 1 − link size(v)
|P |∗|S| . The only value in Equation 6 that can not be

precomputed is k, the number of qualified objects in Di. But we can substitute
variables in Equation 6 to gain the following equation for S(p, s):

S(p, s) =
1 − (c2)k

1 − (c1)k
(11)

To compute the confidence score for a result p we must compute C(p, s) as given
by Equation 9. Here we require the size of all unions and intersections of data
sources Si that contain s. Both values are independent of a particular query
and therefore can be precomputed using freq(v). For a given domain-vector v of
length n the sum of freq(v ′) with v′ : v′ ∧ v = v is the size of the intersection
and the sum of freq(v ′′) with v′′ : v′′ ∧ v 	= 0n is the size of the union for a
combination of sources. We can thus write Equation 9 as:

C(p, s) = 1 −

∑
v′∧v=v

freq(v′)
∑

v′′∧v �=0n

freq(v′′)
(12)

We can precompute the confidence score C(p, s) for all possible intersections of
sources in Di, but we have to store 2m∗l confidence values for one domain with
m data and l link sources. This means, we can precompute the size of partitions
and unions only for a limited number of data and link sources. But we expect
that in real world applications such as Columba this will not be a problem. If
the problem arises, some heuristics for precomputation must be introduced.

7.2 Implementation

Precomputation. The integrated database Columba is implemented on Post-
GreSQL 8.2. In Columba every data and every link source is stored in its own
table. For every domain we store the domain-vectors v in a separate table. We
precompute and store all sizes and frequencies mentioned in the last section in
statistics tables. To compute freq(v ′) and freq(v ′′) we use the provided functions
bit and() and bit or()of PostGreSQL.

Execution of Queries. We now describe how to use the precomputed values
to compile a ranked result set for a given query. The compilation of the result
set with scores is done in four steps. For every domain given in the query we first
select all annotations s fulfilling the conditions posed in the query and link them
to entries in P . In this step we also return the precomputed values for every
pair (p, s), including C(p, s). In the second step we determine k and calculate
S(p, s). In the third step we aggregate the surprisingness and confidence scores
of a single domain for an object p. In the last step – if the query poses conditions
on multiple domains – we aggregate the scores for an object p over all domains.

We will explain this by a simple example that selects chains of protein struc-
tures from the PDB that are supported by entries in Swiss-Prot, which contain
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the keyword Phenylalanine catabolism. Figure 6 shows the SQL query to find
all combinations of PDB chains and qualified entries in Swiss-Prot. For every
combination we return the values for c1 and c2 and the confidence score C(p, s).
In the next step we determine k by counting all unique Swiss-Prot ids and then
compute S(p, s). In the last step we aggregate the scores for every PDB chain
by averaging over the surprisingness scores and sum over the confidence scores.

SELECT seq_int_links.pdb_chain, swissprot.id,
stats.c1, stats.c2, stats.confidence_ps

FROM swissprot, seq_int_data, seq_int_links, stats
WHERE swissprot.keyword = ’Phenylalanine catabolism’
AND swissprot.id = seq_int_data.swissprot_id
AND seq_int_data.vector = stats.vector
AND swissprot.id = seq_int_links.swissprot_id

Fig. 6. SQL query to return all PDB chain - Swiss-Prot id combinations given the
keyword Phenylalanine catabolism and some constants

7.3 Evaluation

Overlap of Sources in Columba. The three data sources that link Swiss-
Prot entries to chains in the PDB have an overlap of 51,051, i.e., most of the
links of MSD (total 69,785) and PDBSWS (total 69,303) are contained in that
overlap (data not shown). Seq2Struct contains in total 216,539 links, i.e., most
links between the PDB and Swiss-Prot are only contained in that source. The
overlap for the data sources of metabolic networks is given in Figure 1. aMAZE
contains the highest number of enzyme-enzyme combinations, mainly due to
the fact that reactions in aMAZE are always bi-directional. In the publications
domain we have 73,945 links from PDB chains directly to PubMed, most of
which are contained in the 223,156 links over Swiss-Prot to PubMed.

Queries on Columba. To evaluate our approach we queried the Columba
database using keywords on a single domain, e.g., ”Give me all PDB chains anno-
tated by Swiss-Prot entries that contain the keyword Phenylalanine catabolism”.
We used all distinct keywords from Swiss-Prot (in total 881) to query the se-
quence domain and 1,000 randomly chosen MeSH terms to query the publication
domain. For evaluation we excluded empty result sets and result sets in which
all entries had the same confidence or surprisingness score. This results in 727
result sets for the sequence domain and 695 for the publication domain.

For every result set we normalized the confidence and surprisingness scores to
gain values between 0 and 1. We sorted entries in the result set into 11 buckets
([0, 0.1), [0,1, 0.2), ..., and an own bucket for [1]) according to their confidence
or surprisingness scores. Figures 7(a)-(d) show the average frequencies of entries
in a bucket for the result sets of the sequence and publication domain.

Figures 7(a) and (c) show that on average only 14 % of the entries in a result
set for the sequence and 12 % for the publication domain have a normalized
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(b) Surprisingness – sequence domain.
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(c) Confidence – publication domain.
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(d) Surprisingness – publication domain.

Fig. 7. Average frequency and standard deviation of normalized confidence and sur-
prisingness scores for queries on the sequence and the publication domain

confidence value of 1. Most entries in the result set (50 % for sequence and 82 %
for publication domain) have normalized confidence values between 0 and 0.2.
Figures 7(b) and (d) show the data for the surprisingness score. In both domains
on average about 9 % of entries in result sets have a normalized surprisingness
score of 1. Here as well the largest bucket is the bucket that contains entries
with scores between 0 and 0.1. The high standard deviation for all buckets can
be explained by varying distributions of scores within the result sets. Consider
a result set in which the entries only have two different scores, which is typical
for small result sets. Clearly, a subset of entries will be in the bucket with value
1, while the other subset is in one of the remaining 10 buckets. This subset
can contain one entry or all but one entry of the result set. The figures for the
metabolic pathway domain are not displayed. Concluding, the figures indicate
that both scores will nicely rank entries in the result set for the given domains.

We now present an exemplary query on multiple domains and parts of its
result set. The query ”Give me all PDB chains that are annotated by Swiss-
Prot entries with the keyword Glycolysis, that are linked to PubMed articles
containing the word Glycolysis, and that are at most three steps away from
the protein with EC number 2.7.1.1 (Hexokinase)” returns 109 chains from the
PDB. Table 1(a) and 1(b) show the top 5 results sorted either by confidence or
surprisingness.

The most confident results are structures for the protein phosphoglucose iso-
merase. This is expected as the protein is only one reaction away from the
hexokinase in the glycolysis pathway. Note, the top 5 most surprising results
contain completely different chains in the PDB, including a pyruvate kinase
(1pky) that is also in the glycolysis pathway, but further away from hexokinase
than phosphoglucose isomerase.



What’s New? What’s Certain? 245

Table 1. The top 5 query results for different sorting

(a) Sorted by Confidence

PDB
id

chain Confidence Surprising-
ness

1dqr A 1.0 20.6
1dqr B 1.0 20.6
1g98 A 0.6 18.3
1g98 B 0.6 18.3
1xtb A 0.6 18.3

(b) Sorted by Surprisingness

PDB
id

chain Confidence Surprising-
ness

1pky C 0.1 22.8
2pgi - 0.5 22.2
1c7q A 0.5 22.2
1c7r A 0.5 22.2
1i33 D 0.1 22.2

8 Conclusion

In this paper we defined the surprisingness and the confidence score for an object
in a result set that is annotated by multiple, possibly overlapping data sources.
Both scores can be used to rank objects in a result set. We showed its appli-
cability to biological data using parts of the integrated database Columba. In
the future we plan to integrate both scoring schemes in the Columba web inter-
face. In addition we will further investigate the possibility to extend both score
definitions to also account for the distribution of source combinations within a
single result set.
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Abstract. This paper presents the LSLink (or Life Science Link)
methodology that provides users with a set of tools to explore the rich
Web of interconnected and annotated objects in multiple repositories,
and to identify meaningful associations. Consider a physical link between
objects in two repositories, where each of the objects is annotated with
controlled vocabulary (CV) terms from two ontologies. Using a set of
LSLink instances generated from a background dataset of knowledge we
identify associations between pairs of CV terms that are potentially sig-
nificant and may lead to new knowledge. We develop an approach based
on the logarithm of the odds (LOD) to determine a confidence and sup-
port in the associations between pairs of CV terms. Using a case study of
Entrez Gene objects annotated with GO terms linked to PubMed objects
annotated with MeSH terms, we describe a user validation and analysis
task to explore potentially significant associations.

Keywords: links between data objects, annotations, associations, con-
trolled vocabularies, LOD, confidence and support scores, life science link
(LSLink).

1 Introduction

The vast amounts of knowledge that is being generated by the biological enter-
prise is captured and represented in a variety of disparate resources. This data
is typically annotated with links to concepts from different ontologies. Data ob-
jects in one repository are also physically linked to objects in other repositories.
The semantics of these physicals links is typically not explicit and not accessible
to the scientists.

Biologists spend countless hours navigating this Web of inter-connected re-
sources, following physical links from objects in one repository to objects in
another, then following links from the data to annotations and back to the
data, trying to aggregate the information that they need. While the annotated
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Fig. 1. Interconnected Web of Entrez Gene, OMIM and PubMed Resources

data objects and their physical links form a rich knowledge base, few tools al-
low users to explore the knowledge captured in these richly annotated graphs,
and to find meaningful associations. This paper presents the Life Science Link
(LSLinks) methodology [19] that will provide users with tools to explore the Web
of interconnected and annotated objects in multiple repositories, and identify
meaningful patterns.

Consider a simplified Web of interconnected resources shown in Figure 1.
It includes three resources, Entrez Gene [20], OMIM [13] and PubMed [34],
represented by rectangles. Objects in each data resource are annotated with
terms from multiple controlled vocabularies (CVs); they are represented by ovals.
A physical link between two data resources is represented by the relationship
(association) diamond. The physical link occurs at the level of the data objects;
for example, there is a many-to-many relationship between objects in Entrez
Gene and OMIM, between objects in Entrez Gene and PubMed, etc. Thus, an
object in Entrez Gene, annotated with Gene Ontology (GO) terms [11] can
be linked to an object in PubMed, annotated with Medical Subject Headings
(MeSH) terms [22]. Similarly, OMIM objects may be annotated with terms from
the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [30],
and they may be linked to objects in Entrez Gene and PubMed.

The LSLinks methodology provides a language and data model that allows
a user to specify an experiment protocol or workflow to collect a background
dataset of data objects, physical links between data objects, and the annotations
(controlled vocabulary or CV terms) on the data objects. Next, LSLink instances
are generated to represent the knowledge in the background dataset. An LSLink
instance associates a pair of CV terms, where each CV term annotates one of the
data objects that are connected by a physical link. The pairs of CV terms occur
in two different ontologies. In the dataset used in this paper, LSLink instances
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associate a GO term with a MeSH term, where the GO term annotates an entry
in Entrez Gene that has a physical link to an entry in PubMed that is annotated
with the MeSH term. An example LSLink instance is provided in a later section.

Given some user query dataset, e.g., the LSLinks from a background dataset
relevant to some specific gene, there may be many thousands of associations
among the CV terms annotating the data objects. Among them, we must identify
those that are potentially significant, so they can be used to annotate the link
or analyzed to obtain meaningful knowledge. We develop an approach based
on the logarithm of the odds (LOD) [3], to determine a confidence and support
[1,2] in the associations between the pairs of CV terms. Users may then analyze
those associations that score high in both confidence and support, to explore
significant LSLinks that may lead to new knowledge. The contributions of this
paper are as follows:

– The definition of a background dataset (and user dataset) of LSLink in-
stances that associate pairs of CV terms from two ontologies annotating two
data objects connected by a physical link.

– The definition of an LOD based confidence and support score, to identify
potentially significant pairs of associations of CV terms in the dataset(s).

– A tool to assist users to identify queries and to analyze and evaluate the
importance and meaningful nature of associations that are uncovered by the
LSLink instances.

– A preliminary validation using LSLink instances generated from the physical
links between Entrez Gene records annotated with GO terms and PubMed
records annotated with MeSH terms.

The paper is organized as follows: Section 2 presents related work and
Section 3 illustrates the LSLink methodology. In Section 4, we define the LOD
based confidence and support. In Section 5, we use a case to illustrate how back-
ground and user datasets are generated. Section 6 presents a user interface, user
analysis and validation. Section 7 concludes.

2 Related Work

There has been much research and development on interconnecting knowledge
sources. The three major repositories NCBI, DDBJ and EBI have made sig-
nificant efforts recently to provide integrated access, e.g., Links, LinkOut, and
Entrez Gene at NCBI [34], LinkDB [10] at DDBJ, and Integr8 [16] at EBI.
However, beyond providing ease of access to related material in allied databases,
these typically do not attempt to enhance the representation and the semantics
of individual links. Observe that navigational links are useful only to the extent
that their semantics is readily visible to the user. Unfortunately this semantics
remains in many cases unspecified. With a vast and growing network of links
(and therefore paths between objects) it becomes urgent to remedy this situa-
tion by specifying as clearly as possible the semantics connecting linked pairs of
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objects. This situation is further complicated as the same pair of objects may
be directly and indirectly connected in numerous ways.

However, research on link semantics is slowly evolving especially given recent
examples of projects enhancing specific links [21,29,14,23]. For example, links
in PDBSProtEC [21] identify SwissProt codes and Enzyme Commission num-
bers (EC numbers) for chains in the Protein Databank (PDB). The mapping
identified by the links are useful to understand structure-function relationships.
Protein-Interaction Map (PIMtool) [29] provides links from proteins to various
kinds of interactions reported in multiple datasets. The relationships observed
in these links are the protein-protein interactions, which do not connect the
knowledge to genes or other data resources. In Information Hyperlinked over
Proteins (iHOP) [14], there are links that connect genes and proteins to articles.
It is an online service that provides a gene-guided network to access PubMed
abstracts. By using genes and proteins as hyperlinks between sentences and ab-
stracts, the information in PubMed is converted into navigable links. Sentences
in a PubMed abstract are ranked with respect to the experimental evidence of
the interaction between the proteins that appear in the sentence. Recently, Bio-
DASH [23] is a semantic Web prototype of a drug development dashboard that
generates links to associate disease, compounds, molecular biology, and path-
way knowledge Unfortunately, while all of these projects enhance specific links,
the enhancements are typically hardcoded to a specific dataset or task. In other
words these efforts do not provide a general methodology for using the knowl-
edge captured by these links to query and analyze across multiple independent
datasets, to use multiple ontologies, and to be used by multiple applications or
tools. The design of such a methodology is in fact a distinctive feature in our
research.

Our research on link semantics also has knowledge discovery and text mining
implications. The key goal in text mining is to come up with novel and interesting
hypotheses typically involving a pair of objects such as a disease and a drug
or a gene and a disease. A variety of approaches have been explored as for
example those that focus on the free-text of MEDLINE records [9,31], those
that exploit the MeSH terms associated with records [28,15,33,24], those that
exploit the full text of published documents [17] etc. Our effort is similar to that
of [33,24] that exploit interconnections between terms belonging to different
vocabularies. In addition to labeling links with linked terms, our method has
the potential to suggest novel connections through uncommon yet meaningfully
paired terms.

Finally, our research contributes to annotation research. A key activity in
bioinformatics is the annotation of genes/proteins from different species with
terms from Gene Ontology [5,12]. While manual annotation is most common,
there are several automatic or semi-automatic annotation efforts. This includes
the the design of automatic annotation methods in the BioCreAtIvE I initiative
[4], supervised machine learning based approaches [26], unsupervised methods
[6], and n-gram based statistical models built using full text [25]. Research by
Couto et al. substantiates uncurated annotations using a text similarity based
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method which also identifies novel annotations [7]. Note that our research is
distinctive in that we are focussed on the semantic annotation of links between
pairs of objects.

3 LSLink Methodology

Figure 2 presents the LSLink methodology by discussing its application to the
task of generating LSLink instances between Entrez Gene and PubMed. The
first step is to specify a protocol to navigate the objects in the resources and
the physical links between the objects. In this example, the background dataset
includes all entries in Entrez Gene that are human genes and annotated with
GO terms, and all the entries that they reach in PubMed, following four types of
physical links. The details of the experiment protocol to create the dataset is in
Section 5. The next step is to specify the CV terms that must be extracted. In
addition to identifying the sets of terms, one can also identify semantic concepts
that are to be used to create the background dataset; an example is in Section
5. The next two steps are to generate the LSLink instances and calculate the
confidence and support in associations of CV terms.

The left part of Figure 3 is a graphical representation of the physical link
between Entrez Gene and PubMed. There are links between the objects e1 and
e2 of Entrez Gene and objects p1 and p2 of PubMed. The terms ga, gb, ma

and mb annotate these objects. Each object is associated with two terms. The
physical links are between e1 and p1, e1 and p2, and e2 and p2. The right part of
Figure 3 shows the corresponding LSLink instances. If we consider the physical
link between e1 and p1, the two CV terms ga and gb annotating e1 and the two
CV terms ma and mb annotating p1, then there will be four LSLink instances.
An example instance is the following: (ga, e1, ma, p1).

4 Calculating Confidence and Support in LSLinks

We regard the LSLinks derived from the physical link between Entrez Gene and
PubMed as a background dataset that generates associations between terms from
the GO and MeSH controlled vocabularies. This dataset may produce thousands
of associations and many may not be not meaningful (false positives). Our task is
to identify those associations that are significant, i.e., biologically meaningfully,
and hopefully of interest to users.

A natural approach for doing this is by considering the perspective of a user,
represented by a query of interest. For example, assume that a user is interested
in a specific gene X. Then we may define a query dataset of LSLink instances that
contains a subset of the background dataset, and are associated with this gene
object. Our overall strategy is to use the query dataset to identify interesting
LSLinks. We note that a particular association that is significant in one query
dataset may not be significant for another query dataset.

Since we expect the vast majority of associations in the user query dataset to
be irrelevant (false positives), we determine the confidence and support estimates
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Fig. 2. Methodology to generate LSLink instances between Entrez Gene (annotated
with GO) and PubMed (annotated with MeSH)

for each association. We rank the associations based on these scores and only
select those that exceed some user defined threshold. The confidence and support
calculations will involve statistics from the background dataset to ensure that
we are identifying non random phenomenon. Our calculations are based on the
Logarithm of the Odds (LOD) score - a score that has been used frequently, along
with its variant forms, in text mining research [18,27]. We note that there are
alternate techniques to determine confidence and support, e.g., association rule
mining, [1,2]. The problem of mining association rules is to generate association
rules between sets of items in a large database of transactions, and to find all
significant association rules.

The log odds (LOD) ratio score used here measures the extent to which the
association deviates from one resulting from chance alone (a random associa-
tion). We note that support reflects the relative ratio of LSLinks instances that
associate the two CV terms with respect to all LSLinks instances in the dataset.
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Fig. 3. Graphical representation of LSLink instances between Entrez Gene and
PubMed

Confidence reflects the relative ratio of LSLinks instances that associate the two
CV terms with respect to those LSLinks instances that are associated with one
of the CV terms. Users may then analyze those associations that score high in
both confidence and support since they are potentially significant associations
that could be used to annotate the links and also lead to new knowledge. We
further note that give the universe of terms, data objects and physical links
between data objects, there are many possible approaches to obtain expressions
for support and confidence. We made what we consider to be reasonable choices.
The notation and definitions that we use are as follows:

– Two data resources:
• Entrez Gene (E)
• PubMed (P )

– Data objects:
• e1, e2, . . . in E
• p1, p2, . . . in P

– Two controlled vocabularies (CVs), one for each data resource:
• Gene Ontology (GO, G)
• Medical Subject Headings (MeSH, M)

– CV terms annotating data objects:
• CV terms ga, gb, . . . in G annotate objects in E.
• CV terms ma, mb, mc, . . . in M annotate objects in P .

– Term probability:
• Estimated using data object level term frequencies

∗ Pr(ga, E) = number of objects containing term ga in E
total number of objects in E

∗ Pr(mc, P ) = number of objects containing term mc in P
total number of objects in P

• Estimated using annotation level term frequencies
∗ Pr′(ga, E) = number of annotations that are ga in E

total number of annotations in E

∗ Pr′(mc, P ) = number of annotations that are mc in P
total number of annotations in P
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• If we assume that an object receives a specific annotation only once,
then the value of the numerator for the two alternative term probabil-
ity expressions will be the same. Hence the relative rankings of term
probabilities will be the same. The assumption holds for both the GO
annotations for Entrez genes and the MeSH terms for PubMed records.
We choose the first expression for simplicity; the number of data objects
is much smaller than the number of annotations.

– Link annotation probabilities estimated from the user query dataset:

• Assumption: Given #(ga|ga ∈ ei), #(mc|mc ∈ pk) distinct CV terms
annotating two objects ei, pk, respectively, and a physical link between
ei and pk, there are #(ga|ga ∈ ei) × #(mc|mc ∈ pk) LSLink instances,
where a pair of CV terms is specified in each LSLink.

∗ Pr′(ga, E′, mc, P
′) =

number of LSLinks in user query results containing terms ga and mc

total number of LSLinks in user query results

• Conditional link annotation probability conditioned on either CV term
appearing in the LSLink instances.

∗ Pr′(ga, E′, mc, P
′|ga, mc) =

number of LSLinks in user query results containing terms ga and mc

number of LSLinks in user query results containing terms ga or mc

– LOD based confidence and support:

• LOD based confidence equals to the logarithm of the conditional link
annotation probability given the appearance of either CV term divided
by the corresponding term probabilities.

∗ Conf(ga, E′, mc, P
′) = log(Pr′(ga,E′,mc,P ′|ga,mc)

Pr(ga,E)Pr(mc,P ) )
• LOD based support equals to the logarithm of the link annotation prob-

ability divided by the corresponding term probabilities.

∗ Supp(ga, E
′, mc, P

′) = log( Pr′(ga,E′,mc,P ′)
Pr(ga,E)Pr(mc,P ) )

5 Data Collection and Analysis

We discuss a case study where the background dataset includes LSLinks gener-
ated from Entrez Gene entries representing human genes with GO annotation
and the PubMed entries that they reach along with their MeSH annotations.
Note that this is one of the three links in Figure 1.

5.1 Background Dataset

We construct the background LSLink dataset as follows:

1. Retrieve all human gene objects in Entrez Gene and extract their GO anno-
tations.

2. Follow all links from these objects to PubMed objects. There are four types
of links. We do not use this knowledge in this study, but will distinguish
them in future work.
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Table 1. Background dataset

Number of active human gene objects in Entrez Gene 38,608
Number of distinct GO terms extracted 6,038
Number of distinct PubMed objects that are reached via four link types 141,745
Number of distinct MeSH descriptors extracted 14,387
Number of distinct MeSH qualifiers extracted 82
Number of distinct MeSH descriptors that are major topics 11,103
Number of LSLinks generated 12,461,601
Number of distinct association pairs of GO Term and MeSH descriptors 1,742,325

(a) Gene References Into Function (GeneRIF) provided by the National Li-
brary of Medicine (NLM). These links are produced through user sub-
missions in an Entrez Gene record or through manual curation from the
published literature by staff of the NLM.

(b) Human Immunodeficiency Virus Type 1 (HIV-1) links provided by the
National Institute of Allergy and Infectious Diseases (NIAID). These
interactions are reported in the Human Protein Interaction Database,
and there are links to PubMed publications that support the described
interaction.

(c) General Interactions submitted by scientists with links to PubMed pub-
lications that support the described interaction.

(d) GO annotations provided by GOA. These links are generated by a com-
bination of electronic mapping and manual curation.

3. Extract all MeSH annotations for the PubMed objects reached in step 2. We
limit our protocol to use only the most relevant MeSH terms identified as
topic headings in the PubMed publications.

The statistics for the background dataset as of January 18th, 2007 is reported
in Table 1. There are 162,637 records for human in Entrez Gene, but we do not
use the ones that were discontinued or replaced by other records.

5.2 User Query Dataset

We support multiple user scenarios for querying the background dataset. The
input can be a simple set of gene symbols, object identifiers or medical terms.
The scenarios include the following:

1. To find highly related articles associated with a human gene, we retrieve
gene objects that are associated with a human gene symbol and follow all
LSLinks to PubMed objects (in the background dataset).

2. A scientist wants to know all human genes associated with some set of ar-
ticles. We retrieve these objects in PubMed and follow all links to human
gene objects (in the background dataset).

3. A scientist is interested in specific medical terms and would like to retrieve
highly related human genes. We retrieve objects in PubMed associated with
these MeSH terms and follow all links to human gene objects (in the back-
ground dataset).
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Table 2. 11 user queries on human genes

Human gene name Number of Number of distinct Number of distinct MeSH Number of
(official symbol) GO terms directly linked descriptors w/ major topic LSLinks

in the gene PubMed objects in the PubMed objects
APOE 27 407 452 41,985
BRCA1 45 444 372 83,286
BRCA2 16 175 186 13,056
CFTR 17 275 306 17,459
DMD 18 160 157 11,142

HEMA (F8) 7 115 140 2,667
IFNG 26 286 549 36,504

P53 (TP53) 52 1,615 1,243 398,268
PSEN1 40 230 251 36,040
PSEN2 22 84 114 6,952
TNF 33 884 1,155 140,943

Given a user query, we first retrieve the dataset corresponding to the query.
Table 2 reports on the user query dataset for 11 human gene symbols. The second
column reports on the number of GO terms annotating the gene objects. The
third column reports on the number of PubMed objects that are directly linked
from the corresponding gene object. The final column reports on the number of
distinct MeSH terms extracted from the linked PubMed objects.

5.3 Confidence and Support of Associations

We process a specific user query dataset as follows to determine the confidence
and support of the associations in that dataset:

– Determine the term probabilities for the corresponding GO and MeSH terms,
ea and mc, respectively, using the background dataset.

– Determine the link annotation probabilities for associations of pairs of terms,
ea and mc, using all relevant LSLink instances in the user query dataset.

– Determine the LOD score for confidence and support in all pairs of associa-
tions of CV terms (ea,mc).

– Select a cutoff (threshold) for the confidence and support in the associations
based on the distribution of LOD scores for this dataset.

– Finally, we applied some additional filtering steps. First, we limited our
dataset to MeSH terms that were identified as topic headings in the PubMed
object. Further, we identified the semantic type of the MeSH terms using a
resource [8] that provided a many-to-many mapping between MeSH terms
and semantic types. The semantic types that are of interest to the evaluation
task could be selected by the user.

We made a number of assumptions and simplifications in our analysis and we
discuss these issues next. First, multiple sources provide annotations and it is well
understood that the confidence in the association is not identical. We assume
equal confidence in all annotations. Determining if significant associations of
terms also correlate with high confidence in the annotation will be addressed
in future work. Second, terms within an ontology have relationships with other
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terms, e.g., their parent and child terms. These relationships may impact the
knowledge obtained from our associations. Our current approach to compute
LOD scores does not consider such relationships and their possible impact. This
will be future research.

6 User Interface and Evaluation

In this section, we discuss the tools provided to users and we discuss the outcome
of a preliminary validation study. Each user query dataset may yield hundreds
or thousands of associations and users need the support of analysis tools to visu-
alize the associations and assist in their exploration. The following are example
features of an analysis tool:

– Given some GO term (or MeSH term) present all the associations of that
term that are significant with respect to a threshold selected by the user.

– Group the significant associations based on semantic knowledge. An example
is the semantic type associated with the MeSH terms.

– Group associations using either a GO term or MeSH term, so that users can
analyze groups of associations rather than individual associations.

We aim for an interactive interface where the user can browse some results
and then specify particular terms of interests in either vocabulary. This type of
”relevance feedback” may be used to further refine information that is presented
in an iterative manner. For example, the initial query provided by the user may
be refined after the user has had an opportunity to look at the kinds of links
presented that were found to be significant.

6.1 Sample User Interface

Figures 4 and 5 describe the interface that the scientist can use to analyze
associations for some user dataset of LSLinks. We consider a simple query where
the scientist identifies a gene symbol. Based on this dataset of LSLinks that are
associated with the Entrez Gene record, the LOD based confidence and support
scores are determined. We show only the LOD based confidence scores.

A threshold for significance can be determined by the scientist based on the
range of scores for this dataset. A histogram of the distribution of confidence
scores is in Figure 6. The left side of the figure presents the range of confidence
scores for two human genes, APOE and CFTR, in the form of a histogram. For
APOE, there are 12,204 associations and the rating ranges from 0.17 to 7.16
with a mean 4.24 and median 4.28. The variance of confidence scores appears to
be much greater for APOE.

On the right Figure 6, we report on the range of confidence scores for asso-
ciations that involve two GO terms, apolipoprotein E receptor binding and cyto-
plasm. The associations of the GO term apolipoprotein E receptor binding yields
higher confidence scores compared to associations of the GO term cytoplasm. To
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Fig. 4. User interface showing human gene APOE with GO term apolipoprotein E
receptor binding

explain, the former term appears only once in the human gene APOE object,
but the later term annotates 1,541 gene objects in the background dataset.

The scientist can then select a threshold LOD score. The system will use this
threshold to identify all associations that exceed the score. The user can then
either select a GO term (Figure 4) or a MeSH term (Figure 5). The interface will
order all associations for this GO or MeSH term, based on the LOD score, and
display these associations. Not that here we ordered the associations based on
the confidence score. Figure 5 illustrates the result when the user selected asso-
ciations of the MeSH term Central Nervous System Infections with a threshold
of 6.50 on the confidence score for the APOE dataset.

Fig. 5. User interface showing human gene APOE with MeSH descriptor name Central
Nervous System Infections with confidence threshold over 6.50
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Fig. 6. Histograms on numbers of associations in two human genes (APOE and CFTR)
and two GO terms in the APOE dataset

6.2 User Validation

A preliminary validation task was conducted to explore methods for assess-
ing the LSLinks strategy. We identified associations that exceed a threshold on
confidence and had them rated along two independent dimensions. The first
dimension is to assign a score for a meaningful association; the rating is as
follows: (Meaningful, Maybe Meaningful, Not Meaningful). The second dimen-
sion is to assign a rating based on whether the association is already known;
this score is as follows: (Widely Known, Somewhat Known, Maybe Known, Un-
known/Surprising).

The evaluation team (2 scientists) chose six genes and classified the top 20
associations. The associations that they examined for human gene CFTR are
shown in Table 3. A majority of these associations were identified as meaningful
and well known. Some associations were identified as possibly meaningful / not
well known. Two associations were not semantically meaningful; we note that
we have not determined the reason for these false positives. To complete the
evaluation, we also examined a random sampling of associations with medium
or low scores for confidence. The association of the GO term chloride ion binding
with the MeSH term Phosphoprotein Phosphatase (Enzyme) had a medium score
of 3.12. The association is not meaningful. The association of the GO term
membrane with the MeSH term Cloning, Molecular (Laboratory Procedure) had
a low score of 0.65. Both terms are generic and the association is not meaningful.

To summarize, the validation was successful since it identified that the signif-
icant associations are also meaningful.

While the validation did not immediately identify new interesting knowledge
this is not unexpected. First, these genes are well studied so many associations
are already known. Second, many MeSH terms are general terms used to classify
the content of the paper rather than identifying specific results reported in the
paper. Consequently, we do not expect that these general terms will lead to
interesting results and the evaluation team planned to identify more specific
MeSH terms using the semantic types of these terms.

The evaluation team further determined that more meaningful results would
be obtained by combining these associations with additional knowledge about
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Table 3. User evaluation of the human CFTR gene dataset

LOD LOD
based based GO term MeSH descriptor w/ major Mean- Known
Conf. Supp. topic (semantic type) ingful
7.34 6.12 ATP-binding and phosphorylation- Mucociliary Clearance yes well known

dependent chloride channel activity (Organ or Tissue Function)
7.34 6.12 channel-conductance-controlling Mucociliary Clearance yes well known

ATPase activity (Organ or Tissue Function)
7.34 6.12 ATP-binding and phosphorylation- Salmonella typhi yes well known

dependent chloride channel activity (Bacterium)
7.34 6.12 channel-conductance-controlling Salmonella typhi yes well known

ATPase activity (Bacterium)
. . . . . . . . . . . . . . . . . .
6.85 5.64 ATP-binding and phosphorylation- Pancreatitis, Alcoholic not well known

dependent chloride channel activity (Disease or Syndrome)
6.85 5.64 channel-conductance-controlling Pancreatitis, Alcoholic not well known

ATPase activity (Disease or Syndrome)
6.74 5.52 ATP-binding and phosphorylation- Fimbriae Proteins (Amino maybe not known

dependent chloride channel activity Acid, Peptide, or Protein)
6.74 5.52 channel-conductance-controlling Fimbriae Proteins (Amino maybe not known

ATPase activity Acid, Peptide, or Protein)
. . . . . . . . . . . . . . . . . .
6.72 5.87 ATP-binding and phosphorylation- Cystic Fibrosis yes well known

dependent chloride channel activity (Disease or Syndrome)
. . . . . . . . . . . . . . . . . .
6.62 6.08 channel-conductance-controlling Cystic Fibrosis yes well known

ATPase activity Transmembrane Conductance
Regulator (Amino Acid,
Peptide, or Protein)

. . . . . . . . . . . . . . . . . .
6.60 5.38 ATP-binding and phosphorylation- Pseudomonas Infections yes somewhat

dependent chloride channel activity (Disease or Syndrome)
6.60 5.38 channel-conductance-controlling Pseudomonas Infections yes somewhat

ATPase activity (Disease or Syndrome)
6.57 5.34 ATP-binding and phosphorylation- Fallopian Tube Diseases yes somewhat

dependent chloride channel activity (Disease or Syndrome)
6.57 5.34 channel-conductance-controlling Fallopian Tube Diseases yes somewhat

ATPase activity (Disease or Syndrome)

the genes. They suggested exploring the associations between GO terms and
phenotypes using the link from Entrez Gene to OMIM and the link from Entrez
Gene to PharmGKB [32]. We note that the link from Entrez Gene to OMIM
was identified in our initial study and we plan to extend to the second link.

6.3 Frequency Analysis

A further conclusion of the validation task was that some meta-level analysis
is needed. One suggestion was to examine groups of associations rather than
individual associations and the group frequency of occurrence. The rationale for
the frequency analysis is that the GO terms associated with the gene record were
determined a priori based on known knowledge about the gene. On the other
hand, scientists may not have studied all the knowledge in the PubMed articles
linked to the gene record and annotated the PubMed record with this knowledge.
Hence, grouping the associations by MeSH terms may help to uncover hidden
but possibly significant patterns. The higher frequency reflects those MeSH terms
that are associated with many GO terms for some user query (gene). For those
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Table 4. Highest frequencies of associations in the human gene APOE dataset with
threshold 6.50 on LOD based confidence score

MeSH descriptor w/ major topic Number of associated GO terms
Akathisia, Drug-Induced (Disease or Syndrome) 5
Apolipoprotein E4 (Amino Acid, Peptide, or Protein) 5
Candidiasis, Cutaneous (Disease or Syndrome) 5
Central Nervous System Infections (Disease or Syndrome) 5
Hyperlipoproteinemia Type V (Disease or Syndrome) 5
Tinea Versicolor (Disease or Syndrome) 5
Hyperlipoproteinemia Type III (Disease or Syndrome) 5
Dyslipidemias (Disease or Syndrome) 5

terms of interest, the distribution of these GO terms in the GO hierarchy may
also be relevant in identifying meaning.

We consider those associations that are above a user specific threshold for the
LOD score. We then group these associations by the MeSH terms. Table 4 iden-
tifies the results for the user query on gene APOE with 6.50 as the threshold on
the confidence score. The first column identifies the MeSH term, and the second
column identifies the cardinality of GO terms associated with the MeSH term.
The highest cardinality is 5 in APOE, and the five GO terms are apolipoprotein
E receptor binding, vasodilation, tau protein binding, regulation of axon exten-
sion and response to reactive oxygen species. The corresponding LOD scores are
descending from the top row to the bottom row.

7 Conclusion

We presented the LSLinks methodology to explore the rich Web of interconnected
and annotated objects in multiple repositories, and to identify meaningful pat-
terns. We generate a set of LSLink instances to represent a background dataset
of knowledge. We then identify those associations of pairs of CV terms that are
potentially significant and may lead to new knowledge. We develop an approach
based on the logarithm of the odds (LOD) to determine a confidence and sup-
port in the associations between the pairs of CV terms. We created an initial
dataset of LSLinks from Entrez Gene objects annotated with GO terms linked
to PubMed objects annotated with MeSH terms. We reported on the results of
a preliminary user validation.

In future work, we will extend the dataset to include additional links so that
associations across multiple resources can be analyzed. We will also extend the
methodology to include more semantic knowledge associated with the CV terms,
e.g., semantic types or other knowledge within an ontology. We will investigate
how relationships within an ontology may impact the significance of some asso-
ciations among CV terms. We also plan to further study cases where the associa-
tions are judged to be not meaningful. We will also further analyze techniques to
identify significant associations, e.g., association rule mining techniques and also
consider modifications to our approach to determine support and confidence.
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Abstract. We describe our biomedical concept annotator designed for online 
environments, CONANN, which takes a biomedical source phrase and finds the 
best-matching biomedical concept from a domain resource. Domain concepts 
are defined in resources such as the United States National Library of 
Medicine’s Unified Medical Language System Metathesaurus. CONANN uses 
an incremental filtering approach to narrow down a list of candidate phrases 
before deciding on a best match. We show that this approach has the advantage 
of improving annotation speed over an existing state-of-the-art concept 
annotator, facilitating the use of concept annotation in online environments. Our 
main contributions are 1) the design of a phrase-unit concept annotator more 
readily usable in online environments than existing systems, 2) the introduction 
of a model which uses semantically focused words in a given ontology (e.g., 
UMLS) to measure coverage, called Inverse Phrase Frequency, and 3) the use 
of two different filters to measure coverage and coherence between a source 
phrase and a domain-specific candidate phrase. An intrinsic evaluation 
comparing CONANN’s concept output to a state-of-the-art concept annotator 
shows our system has an annotation precision ranging from 90% for exact 
match concept to 95% for relaxed concept matching while average phrase 
annotation time is eighteen times faster. In addition, an extrinsic evaluation 
using the generated concepts in a text summarization task shows no significant 
degradation when using CONANN. 

Keywords: Biomedical semantic annotation, biomedical concept mapping,  
concept annotation. 

1   Introduction 

The biomedicine community maintains large and continuously-updated information 
sources. For example, United States National Library of Medicine’s PubMed  
service contains in excess of 16 million publications from over 5,000 worldwide 
biomedicine-related journals [1]. The PubMed service consists of publication 
abstracts which can link with full-texts. For physicians and biomedical researchers, 
finding and using relevant texts within these large resources can be challenging. To 
address this challenge, annotation systems using domain-specific concepts, rather than 
terms, have been developed. Examples of such systems include MetaMap Transfer 
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(MetaMap) [2], SAPHIRE [3], and KnowledgeMap [4]. Among the benefits of using 
concepts, rather than terms, is 1) synonym merging, where synonymous phrases are 
merged to a single concept, and 2) the use of a domain-specific language for 
querying. Biomedical concept annotations have been used in applications for indexing 
and retrieval, data mining, decision support, patient records, medical curriculum 
searching, and text summarization [2] [4] [5]. 

The task of a concept annotator is to map each text unit (typically a phrase) of a 
source text into one or more domain-specific concepts. In some systems, such as 
MetaMap [2], efforts are made to find a best-matching concept, while in other 
systems, such as IndexFinder [6], all possible concepts are found. Almost all existing 
concept annotators are slow performing, precluding their use in online applications, 
where the text is annotated dynamically, rather than statically. In typical search and 
retrieval applications, static annotation is fine since neither the text nor the concept 
resource is expected to change. However, in some applications, dynamic annotation is 
needed to allow for changing concept resources (such as UMLS and NCI Thesaurus) 
or unseen texts. An annotation system designed for online use can avoid concept 
annotation maintenance issues by providing annotations dynamically (at runtime), but 
require a level of acceptable end-user response time. 

In this paper, we describe our biomedical concept annotator, CONANN, which 
supports both dynamic and static concept annotation. The current concept resource is 
UMLS, but can support other concept resources as well. We chose UMLS because a) 
it is an actively developed resource and is paired with a state-of-the-art annotator 
called MetaMap; and b) UMLS has been used for indexing and data mining work, 
which is most closely related to our work [2]. Its design is intended to achieve faster 
annotation time per phrase while maintaining annotation accuracy competitive with 
existing biomedical annotation systems. Such an online biomedical annotation 
concept system has the advantages of supporting texts unknown to the system ahead 
of time, as well as providing for constantly changing concept resources, which is 
common in a field such as biomedicine. These advantages overcome the limitations of 
purely static biomedical concept annotators, which form the majority of existing 
systems.  

Our main contributions are 1) the design of a phrase-unit concept annotator more 
readily usable in online environments than existing systems, 2) the introduction of a 
model which uses semantically focused words in a given ontology (e.g., UMLS) to 
measure coverage, called Inverse Phrase Frequency, and 3) the use of two different 
filters to measure coverage and coherence between a source phrase and a domain-
specific candidate phrase. 

This paper is organized as follows. Section 2 provides background on the 
biomedical resource we use for concept annotation of texts. Section 3 discusses the 
architecture of our concept annotator system, as well as the algorithms for two 
important parts of the mapping process. Section 4 describes previous work in this 
area. Section 5 describes our evaluation methods, and Section 6 discusses the 
evaluation results. Section 7 concludes. 
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2   Background 

2.1   Biomedical Concept Resource 

Automated semantic annotation is the process of mapping data instances to an 
ontology [7], [8]. In the biomedical domain, the National Library of Medicine 
(http://www.nlm.nih.gov/) provides resources for identifying concepts and their 
relationships under the framework of the Unified Medical Language System (UMLS). 
The UMLS Metathesaurus contains concepts and real-world instances of the concepts, 
including a concept name and its synonyms, lexical variants, and translations [9], 
known as concept instances. A concept name is the name given to a particular UMLS 
concept. 

2.2   Text-to-Concept Mapping Process 

The task of a biomedical concept annotator is to map small text units in the source 
text to concept instances which in turn, determine the concept name the text unit 
should have. For example, assuming our ontology consists of the single concept 
Multiple Myeloma and the five concept instances {Multiple Myeloma, Myeloma, 
Plasma Cell Myeloma, Myelomatosis, Plasmacytic myeloma}, the phrase 
“Plasmacytic myeloma” is mapped to the concept Multiple Myeloma. Some systems 
focus on finding all possible matches, while other systems find the best possible 
match.  

3   Concept Annotator - CONANN 

In this section, we discuss the general design of our CONANN concept annotator and 
describe how the UMLS domain resource is pre-processed for use within CONANN. 
In addition, we detail CONANN’s coverage and coherence filter algorithms. 

3.1   Architectural Overview 

CONANN finds the best matching concept for a source phrase and uses an 
incremental approach, as shown in Figure 1. There are several phrase types used by 
CONANN. A source phrase is a phrase from the source text which the system will 
attempt to annotate with a biomedical concept. A concept instance is phrase 
belonging to a UMLS concept (each UMLS concept is associated with one or more 
synonymous phrases). Candidate phrases are concept instances having words in 
common with the source phrase. A candidate concept identifies the UMLS concept a 
candidate phrase belongs to. A concept name is the name given to a particular UMLS 
concept. The idea of CONANN is to successively filter out candidate concepts using 
basic techniques, and compute more complex candidate phrase scores for a small 
subset of possible candidate phrase matches. This approach is different than existing 
approaches, which typically score a candidate phrase completely in one pass and then 
rank the set of resulting concepts [10], [2]. 
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In CONANN, a list of candidate phrases is generated based on the overlap of 
words from the source phrase and all concept instances. If only a single candidate 
phrase exists, its associated concept name is returned. If there is more than one 
candidate phrase generated, filtering process to remove unlikely candidate phrases 
begins. The candidate phrase filters are based on n-gram co-occurrences between the 
source phrase and the candidate phrases. The incremental filtering is done to improve 
computational efficiency by applying successively more computationally complex 
filters.  

 

Fig. 1. Architecture of CONANN 

The overall annotation strategy for a single source phrase is in the following order: 

1. Candidate Phrase Generation: Construct a list of candidate phrases based on the 
common words between all concept instances and the source phrase. If only one 
candidate phrase remains in the list, return its associated concept name. 

2. Incremental Filtering: Filter the list of candidate phrases using one or more 
filters (see Section 3.4). After each filter is applied, if only one candidate phrase 
remains, its associated concept name is returned. In this work, we apply two filters 
sequentially. The first filter measures coherence, which is identified by using word 
order, and the second filter measures coverage (i.e. common words) between a source 
phrase and a concept instance. 

3. Final Mapping: If more than one candidate phrase remains in the list of 
candidate phrases after all filters have been applied, the candidate phrases are passed  
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to a final stage to perform concept mapping. Final concept mapping finds the best 
matching candidate phrase among the remaining candidate phrases. Our approach to 
final concept mapping is to sum the number of candidate phrases belonging to each 
UMLS concept, and then choose the concept(s) with the largest number of candidate 
phrases (see Section 3.5).  

3.2   Domain Resource Pre-processing 

Domain resource processing is done once with each new domain resource and then 
stored externally. Domain resource processing consists of converting UMLS text-
based resources into a format usable for fast in-memory access (Section 3.2.1). In 
addition, calculations which can be performed ahead of time, such as inverse phrase 
frequency (described in Section 3.2.2) are completed. 

3.2.1   Table Generation for Fast Lookup 
CONANN uses a set of pre-processed hash tables to allow fast in-memory lookup of 
words and candidate phrases. The use of such in-memory tables has been shown to 
dramatically increase the response time of concept annotators [6]. Nine hash tables 
are generated for rapid in-memory lookup, divided into 5 categories: concepts, 
phrases, words, variants, and language model. The hash tables are built based on the 
UMLS text-based files, specifically the ones included in the latest MetaMap release, 
version 2.4.b. These tables are loaded from external storage at CONANN startup as 
part of CONANN initialization, and remain in main memory until the annotator is 
shutdown. 

3.2.2   Inverse Phrase Frequency Calculation 
As part of pre-processing, each word in the UMLS is given a weight based on its 
usage in all concept instances within UMLS. In information retrieval, inverse 
document frequency value (IDF) uses the frequency of a word across all documents as 
a way to identify semantically-focused words [11]. Semantically-focused words do 
not frequently occur across all documents within a collection, and thus are more likely 
to have more discrimination. TF*IDF is a family of information retrieval algorithms 
which consider how often a word appears in a document (TF – term frequency) and 
contrasts with the overall importance of a word in a set of documents (IDF – inverse 
document frequency). To apply the ideas of TF*IDF [12] to CONANN, each UMLS 
concept instance is substituted for document, resulting in a weight called Inverse 
Phrase Frequency (IPF), shown in Figure 2. Each unique UMLS word is assigned its 
semantic importance based on its inverse phrase frequency value. More semantically 
important words will be given a higher weight than semantically unimportant words. 
The idea is to give some indication of the importance of a word in UMLS based on its 
usage within all UMLS concept instances. Term frequency, typically combined with 
IDF in information retrieval, is not considered here since we hypothesize it is highly 
likely the frequency for each word within a phrase will be one, due to the short length 
of phrases. Existing annotators typically use a binary membership value to measure 
word coverage, while the IPF value replaces the binary value with a word weight. 
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in

N
logFrequencyPhraseInverse =                                     (1) 

Fig. 2. Inverse Phrase Frequency. N is the number of UMLS phrases, i is a UMLS word, and ni 
is the number of phrases word i appears in UMLS. 

3.3   Candidate Phrase List Generation 

The first step in annotating a source phrase is to find a list of all possible candidate 
phrases in UMLS. This pool of phrases represents possible matches with the source 
phrase. Finding candidate phrases is done in a series of steps: a) remove stop words 
from the source phrase; b) map remaining source phrase words to their uninflected 
base forms; and c) find UMLS concept instances which have one or more words in 
common with the source phrase. Stop words are removed from the source phrase by 
removing all words from the source phrase which do not appear in UMLS. 
Remaining words in the source phrase are mapped to their UMLS base form using 
available UMLS inflection and word variant information. For example, ‘cancers’ is 
mapped to ‘cancer.’ A candidate phrase list is then generated by finding all concept 
instances which contain one or more of the base-form words in the source phrase. 
For example, the phrase lung cancer will find candidate phrases having the words 
lung and cancer, which will return candidate phrases such as {lung, chronic 
obstructive lung disease, lung cancer, liver cancer}. It is not required that a 
candidate phrase have all words in common with a given source phrase, since exact 
mappings between a source phrase and concept instances are expected to be rare. In 
addition to finding all candidate phrases having one or more of the base words, the 
same process is repeated for all word variants of the base word. For example, 
pulmonary is a variant of lung, so phrases such as pulmonary carcinoma will be 
added to the list of candidate phrases. 

3.4   Incremental Filtering 

The incremental filtering is used to improve computational efficiency by applying 
successively more computationally complex filters. Two filtering approaches, 
coverage and coherence filters are used. 

3.4.1   Coverage Filter 
Coverage measures the overlap of common words between a source phrase and a 
candidate phrase. In contrast to existing systems such as MetaMap [2], SAPHIRE 
[10], and IndexFinder [6], which consider the count of words in common between a 
source phrase and a candidate phrase, the scoring of coverage in CONANN considers 
the contribution of each word in the source phrase, as measured by each word’s IPF 
value. Each candidate phrase is given a score determined by the sum of its words’ IPF 
values, called the PhraseCoverageIPF score, as shown in Figure 3. 
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Fig. 3. Phrase Coverage IPF. N is the number of words in a phrase. IPF is the inverse phrase 
frequency value of wordi. 

Once the PhraseCoverageIPF values are computed for all candidate phrases, a 
threshold value is chosen as the mean plus one standard deviation of the 
PhraseCoverageIPF values for the set of candidate phrases. The idea is that a 
candidate phrase consisting of more semantically-focused words is treated as a better 
mapping candidate phrase and therefore has a higher possibility of being passed as 
input to the next filter (e.g., Coherence filter). All candidate phrases whose 
PhraseCoverageIPF values is greater than or equal to the threshold value are passed to 
the final concept mapper. There are two exceptions to consider: (a) if there is an exact 
match between a source phrase and one of the candidate phrases, the candidate 
concept associated with the candidate phrase is returned; and (b) if no candidate 
phrases have a PhraseCoverageIPF value greater than or equal to the threshold, the 
candidate phrases with the highest PhraseCoverageIPF value are passed to the final 
concept mapper (if there is only one such candidate phrase with a high 
PhraseCoverageIPF, its candidate concept is returned).  

3.4.2   Coherence Filter 
Coherence is a complimentary filter to coverage. While coverage looks at the 
commonality of words between a source phrase and a candidate phrase, coherence 
measures their common word order. The idea is that the common syntactic ordering 
of source phrase and concept instances will remove candidate phrases which have 
some words in common but are in a different order, indicating the concept instance 
may be expressing a different concept than the source phrase. The use of IPF values is 
not used in Coherence, since we are considering word position rather than word 
importance. We measure coherence using skip bigrams [13]. A skip bigram is a word 
pair which allows for an intervening word gaps. A skip bigram list for a phrase is 
generated by walking the phrase words from start to end, and pairing each word with 
each word following it, in pairs. An example list of skip bigrams is shown in Table 1.  

The advantage of a skip bigram is that it measures word order while allowing 
intervening words to appear. A candidate phrase is scored by by first generating a skip 
bigram list for both the candidate phrase and the source phrase, and then calculating 
recall, as shown in Figure 4, which measures the degree of skip-bigram overlap 
between the source and the candidate phrases. The performance of skip-bigrams has 
been evaluated in machine translation evaluation and summary evaluation, and has 
been shown to perform at or above state-of-the-art measures with less complexity 
[14]. CONANN uses the recall measure, since it has been shown in machine 
translation evaluation research that n-gram recall is the biggest factor in evaluations 
using n-gram measures [15]. Once all candidate phrases have been scored, candidate 
phrases are pruned based on the same two standard deviation method used in the 
coverage filter (see Section 3.4.1). 
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Table 1. Skip-bigrams for the phrase abnormal body temperature elevation 

Skip Bigram 
abnormal, body 

abnormal, temperature 
abnormal, elevation 
body, temperature 

body, elevation 
temperature, elevation 

 

se)didatePhraigrams(CanCountSkipB

Phrase),CandidateurcePhraseBigrams(SoCommonSkip
  Recall =             (3) 

Fig. 4. Skip-bigram recall measure [13] 

3.5   Final Concept Mapping 

The final mapping of a source phrase to a UMLS concept is performed after the 
coverage and coherence filters have been applied to a list of candidate phrases. The 
remaining candidate phrases are then grouped by the concepts they belong to. Each 
candidate concept is then scored based on the number of candidate phrases it contains. 
The highest scoring candidate concept is then output as the concept for the source 
phrase. In the event of tie scores, multiple candidate concepts can be output. The idea 
is that the number of candidate phrases per concept after filtering gives an indication 
of the matching likelihood of a source phrase to a concept. 

4   Related Work 

Most work in semantic annotation for biomedical text is performed to support 
semantic indexing/retrieval and data mining of biomedical texts [2]. Our work is most 
closely related to MetaMap [2], KnowledgeMap [4], and  SAPHIRE [3]. We focus on 
scoring candidate phrases, since that is one of the primary differences between 
systems, SAPHIRE uses simple and partial mapping, and for candidate phrase scoring 
combines measures of term overlap, term proximity, and length of term matches. 
KnowledgeMap uses simple and partial matching, and for candidate phrase scoring 
uses an exact match approach and if no matches are found, performs iterative variant-
word-generation and re-matching. KnowledgeMap also offers a disambiguation stage 
which uses concept co-occurrence information derived from existing medical texts to 
find a best-matching concept. MetaMap uses simple, partial and complex mapping. 
MetaMap scores candidate phrases using a mixture of four different scores: a) 
Centrality where a source phrase head term used in concept instance; b) Variation 
how far a source phrase term variant is from concept instance term; c) Coverage 
which measures the overlap between source phrase and concept instance terms, 
ignoring gaps; and d) Coherence which finds term sequence overlaps between source 
phrase and concept instance. Compared to SAPHIRE, our CONANN uses simple and 
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partial matching, but does not score every candidate phrase for final mapping. Like 
KnowledgeMap and MetaMap, we incorporate word variants of the source phrase, but 
we do not incorporate disambiguation or exact matching as KnowledgeMap does or 
extensive word variants generation as MetaMap does. Our system reduces 
computational complexity by deferring complex scoring until after most candidate 
phrases have been eliminated. In addition, we build a language model of each 
concept’s phrases, whereas existing systems consider each candidate phrase as 
independent of one another, even from the same concept. 

Other related systems include SENSE [16], which translates source and concept 
instance to low-level semantic factors, then performs exact matching of the semantic 
factors; Concept Locator [17] which simply sub-divides a phrase & looks for exact 
matches; PhraseX [18] which focuses on phrase identification and performs an exact 
match with candidate phrases; and IndexFinder [6] which treats the source text as a 
bag of words and finds all matching words, regardless of their location.  

5   Evaluation 

Evaluation of the annotation system is done using both an intrinsic and an extrinsic 
method. The intrinsic evaluation is intended to evaluate the speed and accuracy of 
CONANN against an existing biomedical concept annotator. Four different versions 
of CONANN are used based on the filtering method(s): a) Coherence only; b) 
Coverage only; c) Coverage+Coherence, and d) Coherence+Coverage. For (c) and 
(d), the difference is only in the order of the two filters. The extrinsic evaluation is 
designed to measure the effect of annotation output on a task. We chose text 
summarization using concepts as the task, since text summarization can use the 
phrase, phrase location, and phrase concept mapping output produced by the 
annotators. This information is combined to identify important areas with a text.  
The best performing filter in the intrinsic evaluation, Coherence+Coverage, was then 
used in the CONANN for the extrinsic evaluation. 

5.1   Intrinsic Evaluation 

The intrinsic evaluation is intended to evaluate the speed and accuracy of CONANN 
against an existing biomedical concept annotator. We use the MetaMap system [2] 
provided by the United States National Library of Medicine as the baseline system. 
MetaMap maps biomedical text to concepts stored in the Metathesaurus. The text-to-
concept mapping in the MetaMap application is done through a natural language 
processing approach. Sentences are first identified, and then noun phrases are 
extracted from each sentence. MetaMap proceeds through several stages to map a 
noun phrase to one or more concepts. It is possible a noun phrase can map to more 
than one concept. In this case, no disambiguation step is performed, and MetaMap 
returns multiple concepts.  

The corpus of noun phrases was generated from a citation database of 
approximately 1,200 oncology clinical trial papers physicians feel are important to the 
field [19]. Of the 1,200 papers cited, 24 were randomly selected based on the 
minimum requirements of the ROUGE summary evaluation tool [20]. The PDF 
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versions of these 24 papers were then converted to plain-text format. The resulting 
text was processed by MetaMap to find all noun phrases and their corresponding 
concept annotations in the 24 papers, resulting in a corpus of 4,410 unique phrases. 
The corpus was pruned to retain only those phrases which MetaMap annotated with a 
single concept, allowing for meaningful mapping comparisons between the two 
systems. There were 1,628 phrases with a single MetaMap concept annotation. This 
set of phrases was used to perform the evaluation. Therefore we assume that the 
precision of MetaMap concept annotation is 100%. 

To measure the amount of time it takes for MetaMap to annotate the test corpus of 
phrases, MetaMap was executed using the 1,628 phrases as input. We used the 
MetaMap API [21] to annotate each phrase. MetaMap provides various APIs to 
annotate different text chunk sizes, including document, document section, sentence, or 
term. We used to the term method so that MetaMap would not need to expend effort 
finding phrase boundaries, as it would do if passed a document, document section, or 
sentence to annotate. CONANN was then executed against the same set of 1,628 
phrases and its annotation time measured. CONANN also produced concept annotations 
for the list of phrases. These mappings were then compared to MetaMap, producing the 
annotation precision metric described in the following paragraph. Three back-to-back 
runs of each system were performed, and the system restarted after each run to remove 
variations caused by the operating environment, such as file system caching. 

Accuracy is measured by comparing CONANN’s annotation of each phrase to the 
MetaMap’s annotation output for each phrase. There are two measures for the 
intrinsic evaluation: (a) precision, and (b) phrase annotation time. The first measure 
looks at the accuracy of the concept annotation, and the second measure looks at the 
speed of the concept annotation. The Annotation Precision measure uses the same 
idea as in the precision measure in information retrieval, but adapted to fit concept 
mapping [22]. Annotation Precision is defined as the fraction of mapped concepts 
which are correct. In this evaluation, we used Single Concept matching, where a 
correct match is counted only if CONANN directly generates a single concept which 
matches the MetaMap single concept, and Relaxed Matching where CONANN 
generates five top concepts. A correct match is counted if any of the five concepts 
generated by CONANN match the MetaMap single concept. Recall is not considered 
because the source phrase corpus that is correctly annotated by MetaMap is only 
provided to CONANN to annotate, and so recall is not meaningful for this evaluation. 
For measuring speed, the average time to annotate a phrase is used, which is 
calculated by taking the total annotation time divided by the total number of phrases 
annotated. Annotation time is defined as the time it takes to annotate a single phrase, 
and does not include the annotator initialization, which can be significant, as shown in 
Figure 5. Total annotation time is the time it takes to annotate all phrases in the 
corpus, excluding annotator initialization. 

5.2   Extrinsic Evaluation 

The output of a concept annotator is a list of phrases and their associated domain-
specific concepts. This output is an intermediate format, not directly useable by an 
end-user. The extrinsic evaluation is a complimentary evaluation to the intrinsic, 
designed to show the usefulness of the concept output in some task. We selected text 
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summarization as the end-user task. We used two probabilistic summarizers, FreqDist 
[5] and a version of SumBasic [23] modified to use concepts rather than terms. Both 
summarizers only use concept frequency as the sole feature to select salient sentences. 
The output of a concept annotator is used for the input to the summarizers. Both 
summarizers’ performance is entirely reliant on the frequency of concepts identified 
in the texts. It is expected if the concept annotation is accurate, summarization 
performance will improve because the concepts will have identified important areas 
within a text. Conversely, if the concept annotation is not accurate, text 
summarization performance will degrade. 

The corpus of 24 texts (see Section 5.1) is annotated using both CONANN and 
MetaMap. The FreqDist and modified version of the SumBasic summarizers are  
then used to generate a summary of each of the 24 texts using the concept output from 
both annotators. The summary output from both summarizers is evaluated against 
manual summaries generated from domain experts using the ROUGE tool (Recall-
Oriented Understudy for Gisting Evaluation) [24]. ROUGE is an automated 
evaluation tool which compares a system-generated summary from an automated 
system with one or more ideal summaries produced by people. ROUGE uses n-gram 
co-occurrence to determine the overlap between a summary and the models. An n-
gram can be considered as one or more consecutive words. The ROUGE parameters 
from the DUC 2005 conference [25] are used to evaluate system summarizer 
performance. Two recall scores are extracted from the output of ROUGE to measure 
each summarizer: ROUGE-2 and ROUGE-SU4, which are also the measures used by 
DUC 2005. ROUGE-2 evaluates bigram co-occurrence while ROUGE-SU4 evaluates 
skip-bigrams with a maximum distance of 4 words. The ROUGE scores indicate the  
n-gram overlap between the source text and the model summaries.  

6   Results 

The intrinsic evaluation compares the speed and accuracy of our CONANN versus the 
MetaMap baseline system. The extrinsic evaluation compares the use of the generated 
concept annotations on a text summarization task. 

6.1   Intrinsic Evaluation Results 

The first measurement is annotator initialization time, which is the time to load 
domain-specific resources into memory and prepare for annotation. Figure 5 shows 
the initialization time for each run of both annotators. For MetaMap, initialization 
time ranged from 1.3 to 1.6 minutes, while for our CONANN, initialization time 
ranged from 17 to 20 seconds. Both systems exhibit stable initialization behavior. 

Figure 6 presents the total time to annotate all 1,628 phrases in the evaluation 
corpus. MetaMap total annotation time was consistent across all three runs at 5.7 
minutes, while CONANN ranged from 14.5 to 16.5 seconds on all three runs.  
Figure 7 shows the average time to annotate each phrase for each run of the annotator. 
Average Phrase Annotation Time is calculated by taking the total annotation time and 
dividing it by 1,628, which is the total number of phrases annotated. MetaMap 
average time to annotate a phrase was 208 milliseconds, while CONANN ranged 
from 9 to 10 milliseconds per phrase across all three runs. 
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Fig. 5. Annotator initialization time 
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Fig. 6. Total annotation time 
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Fig. 7. Average phrase annotation time 
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Fig. 8. Annotator Precision 

While CONANN is over four times faster in initialization and over twenty times 
faster in average annotation time, the trade-off for the faster performance is less 
precision as compared to MetaMap (i.e., we assume that the precision of MetaMap 
concept annotation is 100%). CONANN was measured at 90% precision for exact 
concept matching, and 95% precision for relaxed concept matching using the best 
performing Coherence+Coverage filter. The Coverage+Coherence filter had seven 
percent worse precision than Coherence+Coverage, indicating that the filtering order 
is important. The worst performing filter is Coherence alone when selecting a single 
concept, but jumps significantly higher when relaxed matching is used, indicating 
the correct concepts are available but candidate phrase order alone is not enough to 
achieve final best mapping. The Coverage filter alone had a precision equal to 
Coverage+Coherence, indicating the Coverage filter is a strong filter which removes 
candidate phrases which would have been selected by the Coherence filter. To 
counter this effect, placing the Coherence filter before the Coverage filter results in 
candidate phrases with strong ordering being selected, which are then further refined 
by using the semantic focusing of the Coverage filter. Figure 8 summarizes the 
CONANN precision scores for each filter. Section 6.2 presents an evaluation to 
determine the impact of the lower precision scores on a task which uses the concept 
annotation. 

6.2   Extrinsic Evaluation Results 

Table 2 shows the ROUGE-2 and ROUGE-SU4 scores for evaluating text 
summarization performance using the CONANN (Coherence+Coverage) and 
MetaMap annotator output. For the ROUGE-2 metric, MetaMap slightly outperforms 
CONANN using FreqDist (1% difference), while CONANN outperforms MetaMap 
using SumBasic by 7%. The results are similar for the ROUGE-SU4 scores. FreqDist 
using MetaMap has an approximately 2% advantage over FreqDist using CONANN. 
SumBasic using MetaMap has an approximately 5% advantage over SumBasic with 
CONANN. We conclude that CONANN performs very closely to MetaMap in the  
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extrinsic text summarization task. In addition, CONANN has a time advantage of 
performing annotation over twenty times faster than a state-of-the-art system, 
facilitating its use in online environments. 

Table 2. Text summarization task performance using Coherence+Coverage version of 
CONANN (see Section 5.2 for more information on ROUGE) 

Summarization Method ROUGE-2 Score ROUGE-SU4 Score 

FreqDist using MetaMap  0.1207 0.2200 

FreqDist using CONANN 0.1192 0.2161 

   

SumBasic using CONANN 0.1178 0.2098 

SumBasic using MetaMap  0.1094 0.2003 

7   Conclusion 

We presented an online biomedical concept annotator, CONANN, which takes a 
source phrase, identifies potential matching concepts and phrases in a domain-specific 
thesaurus, uses an incremental filter approach to remove candidate phrases using a 
variation of inverse document frequency, and maps the source phrase to best-
matching concepts.  

An intrinsic evaluation was performed to compare CONANN’s concept output to 
MetaMap’s output. In addition, an extrinsic evaluation was performed to measure the 
usefulness of the concept output of each annotator. CONANN initialization time is 
four times faster and average annotation time per phrase is twenty times faster than a 
state-of-the-art concept annotator. The speed advantage is at some cost in accuracy, as 
the single concept mapping precision compared to MetaMap is 90%. However, this 
loss of accuracy did not significantly impact the use of the CONANN’s output in a 
text summarization task. 

Future work includes finding methods to reduce the size of the initial candidate list, 
incorporating concept disambiguation, and using other parts of UMLS to improve 
precision, such as preferred terms or most frequent vocabulary sources. In addition, 
while CONANN has been evaluated with UMLS as the domain resource, we would 
like to explore the result of using CONANN with other domain resources. Our 
eventual goal is to provide a biomedical concept annotator operating at the phrase 
level which has high accuracy compared to existing systems, and which can operate 
in an online environment. Such a system would be useful for ad-hoc physician and 
biomedical research tasks such as summarizing texts and semantic search. 
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