
Embedding Pure Type Systems
in the Lambda-Pi-Calculus Modulo

Denis Cousineau and Gilles Dowek

École polytechnique and INRIA
LIX, École polytechnique, 91128 Palaiseau Cedex, France

Cousineau@lix.polytechnique.fr
http://www.lix.polytechnique.fr/~cousineau

Gilles.Dowek@polytechnique.edu
http://www.lix.polytechnique.fr/~dowek

Abstract. The lambda-Pi-calculus allows to express proofs of minimal
predicate logic. It can be extended, in a very simple way, by adding com-
putation rules. This leads to the lambda-Pi-calculus modulo. We show
in this paper that this simple extension is surprisingly expressive and, in
particular, that all functional Pure Type Systems, such as the system F,
or the Calculus of Constructions, can be embedded in it. And, moreover,
that this embedding is conservative under termination hypothesis.

The λΠ-calculus is a dependently typed lambda-calculus that allows to express
proofs of minimal predicate logic through the Brouwer-Heyting-Kolmogorov in-
terpretation and the Curry-de Bruijn-Howard correspondence. It can be ex-
tended in several ways to express proofs of some theory. A first solution is to
express the theory in Deduction modulo [7,9], i.e. to orient the axioms as rewrite
rules and to extend the λΠ-calculus to express proofs in Deduction modulo [3].
We get this way the λΠ-calculus modulo. This idea of extending the dependently
typed lambda-calculus with rewrite rules is also that of Intuitionistic type theory
used as a logical framework [13].

A second way to extend the λΠ-calculus is to add typing rules, in particular
to allow polymorphic typing. We get this way the Calculus of Constructions
[4] that allows to express proofs of simple type theory and more generally the
Pure Type Systems [2,15,1]. These two kinds of extensions of the λΠ-calculus
are somewhat redundant. For instance, simple type theory can be expressed
in deduction modulo [8], hence the proofs of this theory can be expressed in
the λΠ-calculus modulo. But they can also be expressed in the Calculus of
Constructions. This suggests to relate and compare these two ways to extend
the λΠ-calculus.

We show in this paper that all functional Pure Type Systems can be em-
bedded in the λΠ-calculus modulo using an appropriate rewrite system. This
rewrite system is inspired both by the expression of simple type theory in Deduc-
tion modulo and by the mechanisms of universes à la Tarski [12] of Intuitionistic
type theory. In particular, this work extends Palmgren’s construction of an im-
predicative universe in type theory [14].

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 102–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 103

1 The λΠ-Calculus

The λΠ-calculus is a dependently typed lambda-calculus that permits to con-
struct types depending on terms, for instance a type array n, of arrays of size
n, that depends on a term n of type nat. It also permits to construct a function
f taking a natural number n as an argument and returning an array of size
n. Thus, the arrow type nat ⇒ array of simply typed lambda-calculus must
be extended to a dependent product type Πx : nat (array x) where, in the
expression Πx : A B, the occurrences of the variable x are bound in B by the
symbol Π (the expression A ⇒ B is used as a shorter notation for the expression
Πx : A B when x has no free occurrence in B). When we apply the function f
to a term n, we do not get a term of type array x but of type array n. Thus,
the application rule must include a substitution of the term n for the variable
x. The symbol array itself takes a natural number as an argument and returns
a type. Thus, its type is nat ⇒ Type, i.e. Πx : nat Type. The terms Type,
nat ⇒ Type, . . . cannot have type Type, because Girard’s paradox [10] could
then be expressed in the system, thus we introduce a new symbol Kind to type
such terms. To form terms, like Πx : nat Type, whose type is Kind, we need
a rule expressing that the symbol Type has type Kind and a new product rule
allowing to form the type Πx : nat Type, whose type is Kind. Besides the vari-
ables such as x whose type has type Type, we must permit the declaration of
variables such as nat of type Type, and more generally, variables such as array
whose type has type Kind. This leads to introduce the following syntax and
typing rules.

Definition 1 (The syntax of λΠ). The syntax of the λΠ-calculus is

t = x | Type | Kind | Πx : t t | λx : t t | t t

The α-equivalence and β-reduction relations are defined as usual and terms are
identified modulo α-equivalence.

Definition 2 (The typing rules of λΠ−).

Empty
[] well-formed

Γ � A : Type
Declaration x not in Γ

Γ [x : A] well-formed

Γ � A : Kind
Declaration2 x not in Γ

Γ [x : A] well-formed

Γ well-formed
Sort

Γ � Type : Kind

Γ well-formed x : A ∈ Γ
Variable

Γ � x : A

104 D. Cousineau and Gilles Dowek

Γ � A : Type Γ [x : A] � B : Type
Product

Γ � Πx : A B : Type

Γ � A : Type Γ [x : A] � B : Kind
Product2

Γ � Πx : A B : Kind

Γ � A : Type Γ [x : A] � B : Type Γ [x : A] � t : B
Abstraction

Γ � λx : A t : Πx : A B

Γ � t : Πx : A B Γ � u : A
Application

Γ � (t u) : (u/x)B

It is useful, in some situations, to add a rule allowing to build type families by
abstraction, for instance λx : nat (array (2×x)) and rules asserting that a term
of type (λx : nat (array (2 × x)) n) also has type array (2 × n). This leads to
introduce the following extra typing rules.

Definition 3 (The typing rules of λΠ). The typing rules of λΠ are those of
λΠ− and

Γ � A : Type Γ [x : A] � B : Kind Γ [x : A] � t : B
Abstraction2

Γ � λx : A t : Πx : A B

Γ � A : Type Γ � B : Type Γ � t : A Conversion A ≡β B
Γ � t : B

Γ � A : Kind Γ � B : Kind Γ � t : A Conversion2 A ≡β B
Γ � t : B

where ≡β is the β-equivalence relation.

It can be proved that types are preserved by β-reduction, that β-reduction is
confluent and strongly terminating and that each term has a unique type modulo
β-equivalence.

The λΠ-calculus, and even the λΠ−-calculus, can be used to express proofs
of minimal predicate logic, following the Brouwer-Heyting-Kolmogorov interpre-
tation and the Curry-de Bruijn-Howard correspondence. Let L be a language in
predicate logic, we consider a context Γ formed with a variable ι of type Type –
or variables ι1, . . . , ιn of type Type when L is many-sorted —, for each function
symbol f of L, a variable f of type ι ⇒ . . . ⇒ ι ⇒ ι and for each predicate
symbol P of L, a variable P of type ι ⇒ . . . ⇒ ι ⇒ Type.

To each formula P containing free variables x1, . . . , xp we associate a term
P ◦ of type Type in the context Γ, x1 : ι, . . . , xp : ι translating each variable,
function symbol and predicate symbol by itself and the implication symbol and
the universal quantifier by a product.

To each proof π, in minimal natural deduction, of a sequent A1, . . . , An � B
with free variables x1, . . . , xp, we can associate a term π◦ of type B◦ in the
context Γ, x1 : ι, . . . , xp : ι, α1 : A◦

1, . . . , αn : A◦
n. From the strong termination of

the λΠ-calculus, we get cut elimination for minimal predicate logic. If B is an
atomic formula, there is no cut free proof, hence no proof at all, of � B.

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 105

2 The λΠ-Calculus Modulo

The λΠ-calculus allows to express proofs in pure minimal predicate logic. To
express proofs in a theory T , we can declare a variable for each axiom of T and
consider proofs-terms containing such free variables, this is the idea of the Logical
Framework [11]. However, when considering such open terms most benefits of
termination, such as the existence of empty types, are lost.

An alternative is to replace axioms by rewrite rules, moving from predicate
logic to Deduction modulo [7,9]. Such extensions of type systems with rewrite
rules to express proofs in Deduction modulo have been defined in [3] and [13].
We shall present now an extension of the λΠ-calculus: the λΠ-calculus modulo.

Recall that if Σ, Γ and Δ are contexts, a substitution θ, binding the variables
declared in Γ , is said to be of type Γ � Δ in Σ if for all x declared of type
T in Γ , we have ΣΔ � θx : θT , and that, in this case, if ΣΓ � u : U , then
ΣΔ � θu : θU .

A rewrite rule is a quadruple l −→Γ,T r where Γ is a context and l, r and T
are β-normal terms. Such a rule is said to be well-typed in the context Σ if, in
the λΠ-calculus, the context ΣΓ is well-formed and the terms l and r have type
T in this context.

If Σ is a context, l −→Γ,T r is a rewrite rule well-typed in Σ and θ is a
substitution of type Γ � Δ in Σ then the terms θl and θr both have type θT
in the context ΣΔ. We say that the term θl rewrites to the term θr.

If Σ is a context and R a set of rewrite rules well-typed in the λΠ-calculus
in Σ, then the congruence generated by R, ≡R, is the smallest congruence such
that if t rewrites to u then t ≡R u.

Definition 4 (λΠ-modulo). Let Σ be a context and R a rewrite system in Σ.
Let ≡βR be the congruence of terms generated by the rules of R and the rule β.

The λΠ-calculus modulo R is the extension of the λΠ-calculus obtained by
replacing the relation ≡β by ≡βR in the conversion rules

Γ � A : Type Γ � B : Type Γ � t : A Conversion A ≡βR B
Γ � t : B

Γ � A : Kind Γ � B : Kind Γ � t : A Conversion2 A ≡βR B
Γ � t : B

Notice that we can also extend the λΠ−-calculus with rewrite rules. In this
case, we introduce conversion rules, using the congruence defined by the system
R alone.

Example 1. Consider the context Σ = [P : Type, Q : Type] and the rewrite
system R formed with the rule P −→ (Q ⇒ Q). The term λf : P λx : Q (f x)
is well-typed in the λΠ-calculus modulo R.

3 The Pure Type Systems

There are several ways to extend the functional interpretation of proofs to sim-
ple type theory. The first is to use the fact that simple type theory can be

106 D. Cousineau and Gilles Dowek

expressed in Deduction modulo with rewrite rules only [8]. Thus, the proofs of
simple type theory can be expressed in the λΠ-calculus modulo, and even in
the λΠ−-calculus modulo. The second is to extend the λΠ-calculus by adding
the following typing rules, allowing for instance the construction of the type
ΠP : Type (P ⇒ P).

Γ � A : Kind Γ [x : A] � B : Type
Product3

Γ � Πx : A B : Type

Γ � A : Kind Γ [x : A] � B : Kind
Product4

Γ � Πx : A B : Kind

Γ � A : Kind Γ [x : A] � B : Type Γ [x : A] � t : B
Abstraction3

Γ � λx : A t : Πx : A B

Γ � A : Kind Γ [x : A] � B : Kind Γ [x : A] � t : B
Abstraction4

Γ � λx : A t : Πx : A B

We obtain the Calculus of Constructions [4].
The rules of the simply typed λ-calculus, the λΠ-calculus and of the Calculus

of Constructions can be presented in a schematic way as follows.

Definition 5 (Pure type system). A Pure Type System [2,15,1] P is defined
by a set S, whose elements are called sorts, a subset A of S ×S, whose elements
are called axioms and a subset R of S × S × S, whose elements are called rules.
The typing rules of P are

Empty
[] well-formed

Γ � A : s
Declaration s ∈ S and x not in Γ

Γ [x : A] well-formed

Γ well-formed
Sort 〈s1, s2〉 ∈ A

Γ � s1 : s2

Γ well-formed x : A ∈ Γ
Variable

Γ � x : A

Γ � A : s1 Γ [x : A] � B : s2 Product 〈s1, s2, s3〉 ∈ R
Γ � Πx : A B : s3

Γ � A : s1 Γ [x : A] � B : s2 Γ [x : A] � t : B
Abstraction 〈s1, s2, s3〉 ∈ R

Γ � λx : A t : Πx : A B

Γ � t : Πx : A B Γ � u : A
Application

Γ � (t u) : (u/x)B

Γ � A : s Γ � B : s Γ � t : A Conversion s ∈ S A ≡β B
Γ � t : B

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 107

The simply typed λ-calculus is the system defined by the sorts Type and Kind,
the axiom 〈Type, Kind〉 and the rule 〈Type, T ype, T ype〉. The λΠ-calculus is the
system defined by the same sorts and axiom and the rules 〈Type, T ype, T ype〉
and 〈Type, Kind, Kind〉. The Calculus of Constructions is the system defined by
the same sorts and axiom and the rules 〈Type, T ype, T ype〉, 〈Type, Kind, Kind〉,
〈Kind, T ype, T ype〉 and 〈Kind, Kind, Kind〉. Other examples of Pure Type Sys-
tems are Girard’s systems F and Fω.

In all Pure Type Systems, types are preserved under reduction and the β-
reduction relation is confluent. It terminates in some systems, such as the λΠ-
calculus, the Calculus of Constructions, the system F and the system Fω. Unique-
ness of types is lost in general, but it holds for the λΠ-calculus, the Calculus
of Constructions, the system F and the system Fω, and more generally for all
functional Pure Type Systems.

Definition 6 (Functional Type System). A type system is said to be func-
tional if

〈s1, s2〉 ∈ A and 〈s1, s3〉 ∈ A implies s2 = s3

〈s1, s2, s3〉 ∈ R and 〈s1, s2, s4〉 ∈ R implies s3 = s4

4 Embedding Functional Pure Type Systems in the
λΠ-Calculus Modulo

We have seen that the λΠ-calculus modulo and the Pure Type Systems are two
extensions of the λΠ-calculus. At a first glance, they seem quite different as the
latter adds more typing rules to the λΠ-calculus, while the former adds more
computation rules. But they both allow to express proofs of simple type theory.

We show in this section that functional Pure Type Systems can, in fact, be
embedded in the λΠ-calculus modulo with an appropriate rewrite system.

4.1 Definition

Consider a functional Pure Type System P = 〈S, A, R〉. We build the following
context and rewrite system.

The context ΣP contains, for each sort s, two variables

Us : Type and εs : Us ⇒ Type

for each axiom 〈s1, s2〉, a variable

ṡ1 : Us2

and for each rule 〈s1, s2, s3〉, a variable

Π̇〈s1,s2,s3〉 : ΠX : Us1 (((εs1 X) ⇒ Us2) ⇒ Us3)

The type Us is called the universe of s and the symbol εs the decoding function
of s.

108 D. Cousineau and Gilles Dowek

The rewrite rules are
εs2(ṡ1) −→ Us1

in the empty context and with the type Type, and

εs3(Π̇〈s1,s2,s3〉 X Y) −→ Πx : (εs1 X) (εs2 (Y x))

in the context X : Us1 , Y : (εs1 X) ⇒ Us2 and with the type Type.
These rules are called the universe-reduction rules, we write ≡P for the equiv-

alence relation generated by these rules and the rule β and we call the λΠP -
calculus the λΠ-calculus modulo these rewrite rules and the rule β. To ease
notations, in the λΠP -calculus, we do not recall the context ΣP in each sequent
and write Γ � t : T for ΣP Γ � t : T , and we note ≡ for ≡P when there is no
ambiguity.

Example 2. The embedding of the Calculus of Constructions is defined by the
context

˙Type : UKind UType : Type UKind : Type

εType : UType ⇒ Type εKind : UKind ⇒ Type

Π̇〈Type,Type,Type〉 : ΠX : UType (((εType X) ⇒ UType) ⇒ UType)

Π̇〈Type,Kind,Kind〉 : ΠX : UType (((εType X) ⇒ UKind) ⇒ UKind)

Π̇〈Kind,Type,Type〉 : ΠX : UKind (((εKind X) ⇒ UType) ⇒ UType)

Π̇〈Kind,Kind,Kind〉 : ΠX : UKind (((εKind X) ⇒ UKind) ⇒ UKind)

and the rules
εKind(˙Type) −→ UType

εType(Π̇〈Type,Type,Type〉 X Y) −→ Πx : (εType X) (εType (Y x))

εKind(Π̇〈Type,Kind,Kind〉 X Y) −→ Πx : (εType X) (εKind (Y x))

εType(Π̇〈Kind,Type,Type〉 X Y) −→ Πx : (εKind X) (εType (Y x))

εKind(Π̇〈Kind,Kind,Kind〉 X Y) −→ Πx : (εKind X) (εKind (Y x))

Definition 7 (Translation). Let Γ be a context in a functional Pure Type
System P and t a term well-typed in Γ , we defined the translation |t| of t in Γ ,
that is a term in λΠP , as follows

– |x| = x,
– |s| = ṡ,
– |Πx : A B| = Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|), where s1 is the type of A,

s2 is the type of B and s3 the type of Πx : A B,
– |λx : A t| = λx : (εs |A|) |t|,
– |t u| = |t| |u|.

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 109

Definition 8 (Translation as a type). Consider a term A of type s for some
sort s. The translation of A as a type is

‖A‖ = εs |A|.

Note that if A is a well-typed sort s′ then

‖s′‖ = εs ṡ′ ≡P Us′ .

We extend this definition to non well-typed sorts, such as the sort Kind in the
Calculus of Constructions, by

‖s′‖ = Us′

The translation of a well formed context is defined by

‖[]‖ = [] and ‖Γ [x : A]‖ = ‖Γ‖[x : ‖A‖]

4.2 Soundness

Proposition 1

1. |(u/x)t| = (|u|/x)|t|, ‖(u/x)t‖ = (|u|/x)‖t‖.
2. If t −→β u then |t| −→β |u|.

Proof

1. By induction on t.
2. Because a β-redex is translated as a β-redex.

Proposition 2. ‖Πx : A B‖ ≡P Πx : ‖A‖ ‖B‖

Proof. Let s1 be the type of A, s2 that of B and s3 that of Πx : A B. We have
‖Πx : A B‖ = εs3 |Πx : A B| = εs3 (Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|))
≡P Πx : (εs1 |A|) (εs2 ((λx : (εs1 |A|) |B|) x)) ≡P Πx : (εs1 |A|) (εs2 |B|)
= Πx : ‖A‖ ‖B‖.

Example 3. In the Calculus of Constructions, the translation as a type of ΠX :
Type (X ⇒ X) is ΠX : UType ((εType X) ⇒ (εType X)). The translation as a
term of λX : Type λx : X x is the term λX : UType λx : (εTypeX) x. Notice
that the former is the type of the latter. The generalization of this remark is the
following proposition.

Proposition 3 (Soundness)

If Γ � t : B in P then ‖Γ‖ � |t| : ‖B‖ in λΠP .

Proof. By induction on t.

– If t is a variable, this is trivial.
– If t = s1 then B = s2 (where 〈s1, s2〉 is an axiom), we have ṡ1 : Us2 = ‖s2‖.

110 D. Cousineau and Gilles Dowek

– If t = Πx : C D, let s1 be the type of C, s2 that of D and s3 that of t. By
induction hypothesis, we have

‖Γ‖ � |C| : Us1 and ‖Γ‖, x : ‖C‖ � |D| : Us2

i.e.
‖Γ‖, x : (εs1 |C|) � |D| : Us2

Thus
‖Γ‖ � (Π̇〈s1,s2,s3〉 |C| λx : (εs1 |C|) |D|) : Us3

i.e.
‖Γ‖ � |Πx : C D| : ‖s3‖

– If t = λx : C u, then we have

Γ, x : C � u : D

and B = Πx : C D. By induction hypothesis, we have

‖Γ‖, x : ‖C‖ � |u| : ‖D‖

i.e.

‖Γ‖, x : (εs1 |C|) � |u| : ‖D‖ then ‖Γ‖ � λx : (εs1 |C|) |u| : Πx : ‖C‖ ‖D‖

i.e.
‖Γ‖ � |t| : ‖Πx : C D‖

– If t = u v, then we have

Γ � u : Πx : C D, Γ � v : C

and B = (v/x)D. By induction hypothesis, we get

‖Γ‖ � |u| : ‖Πx : C D‖ = Πx : ‖C‖ ‖D‖ and ‖Γ‖ � |v| : ‖C‖

Thus
‖Γ‖ � |t| : (|v|/x)‖D‖ = ‖(v/x)D‖

4.3 Termination

Proposition 4. If λΠP terminates then P terminates.

Proof. Let t1 be a well-typed term in P and t1, t2, . . . be a reduction sequence of
t1 in P . By Proposition 3, the term |t1| is well-typed in λΠP and, by Proposition
1, |t1|, |t2|, . . . is a reduction sequence of |t1| in λΠP . Hence it is finite.

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 111

4.4 Confluence

Proposition 5. For any functional Pure Type System P , the relation −→ is
confluent in λΠP

Like that of pure λ-calculus, the reduction relation of λΠP is not strongly con-
fluent. Thus, we introduce another reduction relation (−→��) that can reduce,
in one step, none to all the βR-redices that appears in a term, that is strongly
confluent and such that −→∗

�� = −→∗. Then, from the confluence of the rela-
tion −→�� , we deduce that of the relation −→. See the long version of the paper
for the full proof.

5 Conservativity

Let P be a functional Pure Type System. We could attempt to prove that if
the type ‖A‖ is inhabited in λΠP , then A is inhabited in P , and more precisely
that if Γ is a context and A a term in P and t a term in λΠP , such that
‖Γ‖ � t : ‖A‖, then there exists a term u of P such that |u| = t and Γ � u : A.
Unfortunately this property does not hold in general as shown by the following
counterexamples.

Example 4. If P is the simply-typed lambda-calculus, then the polymorphic
identity is not well-typed in P , in particular:

nat : Type � ((λX : Type λx : X x) nat) : (nat ⇒ nat)
however, in λΠ , we have

nat : ‖Type‖ � ((λX : ‖Type‖ λx : ‖X‖ x) |nat|) : ‖nat ⇒ nat‖.

Example 5. If 〈s1, s2, s3〉 ∈ R, ΣP � Π̇〈s1,s2,s3〉 : ‖ΠX : s1 ((X ⇒ s2) ⇒ s3)‖
but the term Π̇〈s1,s2,s3〉 is not the translation of any term of P .

Therefore, we shall prove a slightly weaker property: that if the type ‖A‖ is
inhabited by a normal term in λΠP , then A is inhabited in P . Notice that this
restriction vanishes if λΠP is terminating.

We shall prove, in a first step, that if ‖Γ‖ � t : ‖A‖, and t is a weak η-long
normal term then there exists a term in u such that such that |u| = t and
Γ � u : A. Then we shall get rid of this restriction on weak η-long forms.

Definition 9. A term t of λΠP is a weak η-long term if and only if each occur-
rence of Π̇〈s1,s2,s3〉 in t, is in a subterm of the form (Π̇〈s1,s2,s3〉 t1 t2) (i.e. each
occurrence of Π̇〈s1,s2,s3〉 is η-expanded).

Definition 10 (Back translation). We suppose that P contains at least one
sort: s0. Then we define a translation from λΠP to P as follows:

– x∗ = x, s∗ = s0 ṡ∗ = s, U∗
s = s,

– (Πx : A B)∗ = Πx : A∗ B∗,
– (λx : A t)∗ = λx : A∗ t∗,

112 D. Cousineau and Gilles Dowek

– (Π̇〈s1,s2,s3〉 A B)∗ = Πx : A∗ (B∗ x),
– (εs u)∗ = u∗,
– (t u)∗ = t∗ u∗ otherwise.

Proposition 6. The back translation (.)∗ is a right inverse of |.| and ‖.‖ i.e. for
all t such that |t| (resp. ‖t‖) is well defined, |t|∗ = t (resp. ‖t‖∗ = t).

Proof. By induction on the structure of t.

Proposition 7. For all t, u terms and x variable of λΠP ,

1. ((u/x)t)∗ = (u∗/x)t∗

2. If t −→ u then t∗ −→∗
β u∗ in P .

Proof

1. By induction on t.
2. If t −→β u then t∗ −→β u∗, and if t −→R u, then t∗ = u∗.

Proposition 8. For all terms A, B of P and C, D of λΠP (such that ‖A‖ and
‖B‖ are well defined),

1. If A ≡
β

B, then ‖A‖ ≡ ‖B‖.
2. If C ≡ D, then C∗ ≡

β
D∗.

3. If ‖A‖ ≡ ‖B‖, then A ≡
β

B.
4. If C ≡ ‖A‖, then C ≡ ‖C∗‖.

Proof

1. By induction on the length of the path of β-reductions and β-expansions
between A and B, and by Proposition 1.

2. By the same reasoning as for the first point, using Proposition 7.
3. By the second point and Proposition 6.
4. By the first and second points and Proposition 6.

Proposition 9 (Conservativity). If there exists a context Γ , a term A of P ,
and a term t, in weak η-long normal form, of λΠP , such that ‖Γ‖ � t : ‖A‖,
Then there exists a term u of P such that |u| ≡ t and Γ � u : A.

Proof. By induction on t.

• If t is a well-typed product or sort, then it cannot be typed by a translated
type (by confluence of λΠP).

• If t = λx : B t′. The term t is well typed, thus there exists a term C of λΠP ,
such that ‖Γ‖ � t : Πx : B C . Therefore ‖A‖ ≡ Πx : B C (α).
And Πx : B C ≡ ‖(Πx : B C)∗‖ = ‖Πx : B∗ C∗‖ ≡ Πx : ‖B∗‖ ‖C∗‖
In particular (by confluence of λΠP),

B ≡ ‖B∗‖, C ≡ ‖C∗‖ and ‖Γ‖ � λx : B t′ : Πx : ‖B∗‖ ‖C∗‖

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 113

Therefore ‖Γ‖, x : ‖B∗‖ � t′ : ‖C∗‖. The term λx : B t′ is in weak η-long
normal form, thus t′ is also in weak η-long normal form, and, by induction
hypothesis, there exists a term u′ of P , such that |u′| ≡ t′ and
Γ, x : B∗ � u′ : C∗. Therefore Γ � λx : B∗ u′ : Πx : B∗ C∗ (β). Moreover,
A ≡β Πx : B∗ C∗ by (α) and Proposition 8. Thus, by the conversion rule
of P , we get Γ � λx : B∗ u′ : A.
And |λx : B∗ u′| = λx : ‖B∗‖ |u′| ≡ λx : B t′ = t.

• If t is an application or a variable, as it is normal, it has the form x t1 . . . tn
for some variable x and terms t1, . . . , tn. We have ‖Γ‖ � x t1 . . . tn :
‖A‖ (α0).
� If x is a variable of the context ΣP ,

∗ If x = ṡ1 (where 〈s1, s2〉 is an axiom of P),
then n = 0 (because t is well typed) and ‖A‖ = Us2 .
We have � s1 : s2 in P , therefore Γ � s1 : s2.

∗ If x = Us (where s is a sort of P), then n = 0 and ‖A‖ ≡ Type.
That’s an absurdity by confluence of λΠP .

∗ If x = εs (where s is a sort of P), then, as t is well typed n ≤ 1.
� If n = 1, then ‖Γ‖ � t1 : Us, and ‖A‖ ≡ Type (absurdity).
� If n = 0, then ‖A‖ ≡ Us ⇒ Type, thus by Propositions 8 and 2,

Us ⇒ Type ≡ ‖(Us ⇒ Type)∗‖ = ‖s ⇒ s0‖ ≡ ‖s‖ ⇒ ‖s0‖.
Therefore Type ≡ ‖s0‖ (absurdity).

∗ If x = Π̇〈s1,s2,s3〉 (where 〈s1, s2, s3〉 is a rule of P), then as t is
well-typed and in weak η-long form, n = 2. We have ‖A‖ ≡ Us3

thus A ≡ s3 by Proposition 8.
And ‖Γ‖ � t1 : Us1 i .e. ‖Γ‖ � t1 : ‖s1‖.
And ‖Γ‖, t1 : Us1 � t2 : ((εs1t1) ⇒ Us2) (α1)
t1 is also in weak η-long normal form, then, by induction hypothesis,
there exists a term u1 of P such that:

|u1| ≡ t1 and Γ � u1 : s1 (β1)
Then, by (α1), ‖Γ‖, t1 : ‖s1‖ � t2 : ‖u1 ⇒ s2‖.
In particular, ‖Γ‖, t1 : ‖s1‖ � t2 : ‖u1‖ ⇒ ‖s2‖.
However t2 is also in weak η-long normal form, then there exists a
term t′2 (in weak η-long normal form) of λΠP such that

t2 = λx : ‖u1‖ t′2 and ‖Γ‖, x : ‖u1‖ � t′2 : ‖s2‖
By induction hypothesis, there exists a term u′

2 of P , such that
|u′

2| ≡ t′2 and Γ, x : u1 � u′
2 : s2 (β2)

Then we choose u = Πx : u1 u′
2 that verifies Γ � u : s3 , by (β1),

(β2), and the fact that 〈s1, s2, s3〉 is a rule of P . And, finally,
|u| = Π̇〈s1,s2,s3〉|u1| (λx : (εs1 |u1|) |u′

2| ≡ Π̇〈s1,s2,s3〉t1 t2 = t

� If x is a variable of the context Γ ,
For k ∈ {0, .., n}, let (Hk) be the statement: ”The term x t1 . . . tk is
typable in ‖Γ‖ and its type is in the image of ‖.‖”.
We first prove (H0),. . . ,(Hn) by induction.

� k = 0 : x is a variable of the context Γ , then there exists a well typed
term or a sort T in P such that Γ contains x : T . Therefore ‖Γ‖
contains x : ‖T ‖.

114 D. Cousineau and Gilles Dowek

� 0 ≤ k ≤ n − 1 : We suppose (Hk).
x t1 . . . tk+1 is well typed in Γ , then there exists terms D and E
of λΠP such that ‖Γ‖ � tk+1 : D (δ1) ,
‖Γ‖ � x t1 . . . tk : Πy : D E (δ2), and ‖Γ‖ � x t1 . . . tk+1 : E (δ3).
However, by (Hk), we can type x t1 . . . tk by a translated type in
‖Γ‖, then by (δ2) and Proposition 8, Πy : D E ≡ Πy : ‖D∗‖ ‖E∗‖ .
In particular, E ≡ ‖E∗‖ (η1) ,
We conclude, by (δ3), (η1) and the conversion rule of λΠP .

Then, if n = 0, we take u = x and Γ contains x : T with ‖T ‖ ≡ ‖A‖.
And, if n > 0, then, by (α0), there exists terms B and C of λΠP such
that ‖Γ‖ � tn : B (θ1) and ‖Γ‖ � x t1 . . . tn−1 : Πy : B C (θ2)
with ‖A‖ ≡ (tn/y)C (θ3) . Then, by (Hn−1), (θ2), and Proposition 8.4,
Πy : B C ≡ Πy : ‖B∗‖ ‖C∗‖ , therefore B ≡ ‖B∗‖ and C ≡ ‖C∗‖.
Thus, ‖Γ‖ � tn : ‖B∗‖ and ‖Γ‖ � x t1 . . . tn−1 : ‖Πy : B∗ C∗‖.
tn and x t1 . . . tn−1 are both in weak η-long normal form, then, by
induction hypothesis, there exists terms w1 and w2 of P such that:

|w1| ≡ x t1 . . . tn−1 and Γ � w1 : Πy : B∗ C∗

|w2| ≡ tn and Γ � w2 : B∗

Let u = w1 w2, we have:
|u| = |w1| |w2| ≡ x t1 . . . tn−1 tn and Γ � u : (w2/y)C∗.

However, by (θ3) and Proposition 8, we have:
A ≡ (t∗n/y)C∗ ≡ (w2/y)C∗ , and, finally, Γ � u : A .

Finally, we get rid of the weak η-long form restriction with the following
Propositions.

Proposition 10. For all terms A, B of λΠP , and for all well typed term or
sort C of P ,

1. If A −→ B then A” −→∗ B”
2. If A ≡ B then A” ≡ B”
3. If A is in weak η-long form, then A” −→∗

β A, in particular A” ≡ A
4. ‖C‖” ≡ ‖C‖
5. If A ≡ ‖C‖ then A” ≡ A

Proof

1. If A −→β B, then A” −→β B” (by induction on A).
If A −→R B,
– for all axiom 〈s1, s2〉, (εs2 (ṡ1))” = εs2 (ṡ1) −→R Us1 = (Us1)”.
– for all rule 〈s1, s2, s3〉, (εs3(Π̇〈s1,s2,s3〉C D))” =

εs3((λx : Us1λy : ((εs1 x) ⇒ Us2) (Π̇〈s1,s2,s3〉 x y))C” D”)
−→2

β εs3(Π̇〈s1,s2,s3〉C” D”) −→R Πx : (εs1 C”) (εs2 (D” x))
= Πx : (εs1 C”) (εs2 (D x)”)

2. By induction on the number of derivations and expansions from A to B.
3. By induction on A, remarking that (Π̇〈s1,s2,s3〉 t1 t2)” −→2

β Π̇〈s1,s2,s3〉 t1” t2”.
4. A translated term ‖C‖ is in weak η-long form.
5. If A ≡ ‖C‖ then A” ≡ ‖C‖” ≡ ‖C‖, by the the second and fourth points.

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 115

Proposition 11. Let t be a normal term of λΠP ,

if ‖Γ‖ � t : ‖A‖ then ‖Γ‖ � t” : ‖A‖

Proof. By induction on t.

• If t is a well-typed product or sort, then it cannot be typed by a translated
type (by confluence of λΠP).

• If t = λx : B u, then there exists a term C of λΠP , such that
‖A‖ ≡ Πx : B C (α), with Γ, x : B � u : C.
By (α), we have B ≡ ‖B∗‖ (β) and C ≡ ‖C∗‖. Thus Γ, x : ‖B∗‖ � u : ‖C∗‖.
Then, by induction hypothesis, we have Γ, x : ‖B∗‖ � u” : ‖C∗‖, therefore
Γ � λx : ‖B∗‖ u” : Πx : ‖B∗‖ ‖C∗‖ ≡ ‖A‖ thus Γ � λx : B u” : ‖A‖,
by (β). Finally, by (β) and the Proposition 10.5, λx : B u” ≡ λx : B” u”,
therefore, by subject reduction, Γ � t” = λx : B” u” : ‖A‖

• If t is an application or a variable, as it is normal, it has the form x t1 . . . tn
for some variable x and terms t1, . . . , tn. We have ‖Γ‖ � x t1 . . . tn :
‖A‖ (α0).
� If x is a variable of the context ΣP ,

∗ If x = ṡ1 (where 〈s1, s2〉 is an axiom of P),
then n = 0 (because t is well typed) and we have (ṡ1)” = ṡ1.

∗ If x = Us (where s is a sort of P), then n = 0 and ‖A‖ ≡ Type.
That’s an absurdity by confluence of λΠP .

∗ If x = εs (where s is a sort of P), then, as t is well typed n ≤ 1.
� If n = 1, then ‖Γ‖ � t1 : Us, and ‖A‖ ≡ Type (absurdity).
� If n = 0, we have (εs)” = εs

∗ If x = Π̇〈s1,s2,s3〉 (where 〈s1, s2, s3〉 is a rule of P), then as t is well-
typed, n ≤ 2. Moreover, Π̇〈s1,s2,s3〉, (Π̇〈s1,s2,s3〉 t1), and (Π̇〈s1,s2,s3〉
t1 t2) have the same types than their weak η-long forms.

� If x is a variable of the context Γ ,
∗ If n = 0, we have x” = x.
∗ If n > 0, then there exists terms B and C of λΠP such that

‖Γ‖ � tn : B (α1) and ‖Γ‖ � x t1 . . . tn−1 : Πy : B C (α2)
with ‖A‖ ≡ (tn/y)C (α3) . As in the proof of Proposition 9, we
can type x t1 . . . tn−1 by a translated type, then Πy : B C ≡ Πy :
‖B∗‖ ‖C∗‖ . In particular, B ≡ ‖B∗‖ and C ≡ ‖C∗‖.
Thus, ‖Γ‖ � tn : ‖B∗‖ and ‖Γ‖ � x t1 . . . tn−1 : ‖Πy : B∗ C∗‖.
By induction hypothesis, we have ‖Γ‖ � tn” : ‖B∗‖ and
‖Γ‖ � x t1” . . . tn−1” : Πy : ‖B∗‖ ‖C∗‖. Finally, by (α3) and
Proposition 10.5, ‖Γ‖ � t” = x t1” . . . tn” : (tn”/y)C ≡ ‖A‖.

Theorem 1. Let P be a functional Pure Type System, such that λΠP is ter-
minating. The type ‖A‖ is inhabited by a closed term in λΠP if and only if the
type A is inhabited by a closed term in P .

Proof. If A has a closed inhabitant in P , then by Proposition 3, ‖A‖ has a
closed inhabitant in λΠP . Conversely, if ‖A‖ has a closed inhabitant then, by
termination of λΠP and Proposition 11, it has a closed inhabitant in weak η-long
normal form and by Proposition 9, A has a closed inhabitant in P .

116 D. Cousineau and Gilles Dowek

Remark 1. This conservativity property we have proved is similar to that of
the Curry-de Bruijn-Howard correspondence. If the type A◦ is inhabited in λΠ-
calculus, then the proposition A is provable in minimal predicate logic, but not all
terms of type A◦ correspond to proofs of A. For instance, if A is the proposition
(∀x P (x)) ⇒ P (c), then the normal term λα : (Πx : ι (P x)) (α c) corresponds
to a proof of A but the term λα : (Πx : ι (P x)) (α ((λy : ι y) c)) does not.

Remark 2. There are two ways to express proofs of simple type theory in the
λΠ-calculus modulo. We can either use directly the fact that simple type theory
can be expressed in Deduction modulo [8] or first express the proofs of simple
type theory in the Calculus of Constructions and then embed the Calculus of
Constructions in the λΠ-calculus modulo.

These two solutions have some similarities, in particular if we write o the
symbol UType. But they have also some differences: the function λx x of simple
type theory is translated as the symbol I — or as the term λ1 — in the first
case, using a symbol I — or the symbols λ and 1 — specially introduced in the
context to express this particular theory, while it is expressed as λx x using the
symbol λ of the λΠ-calculus modulo in the second.

More generally in the second case, we exploit the similarities of the λΠ-
calculus modulo and simple type theory — the fact that they both allow to
express functions — to simplify the expression while the first method is com-
pletely generic and uses no particularity of simple type theory. This explains why
this first expression requires only the λΠ−-calculus modulo, while the second
requires the conversion rule to contain β-conversion.

References

1. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, pp. 117–309. Ox-
ford University Press, Oxford (1992)

2. Berardi, S.: Towards a mathematical analysis of the Coquand-Huet Calculus of
Constructions and the other systems in Barendregt’s cube, manuscript (1988)

3. Blanqui, F.: Definitions by rewriting in the Calculus of Constructions. Mathemat-
ical Structures in Computer Science 15(1), 37–92 (2005)

4. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76, 95–120 (1988)

5. Cousineau, D.: Un plongement conservatif des Pure Type Systems dans le lambda
Pi modulo, Master Parisien de Recherche en Informatique (2006)

6. Dougherty, D., Ghilezan, S., Lescanne, P., Likavec, S.: Strong normalization of the
dual classical sequent calculus, LPAR-2005 (2005)

7. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

8. Dowek, G., Hardin, T., Kirchner, C.: HOL-lambda-sigma: an intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science 11,
1–25 (2001)

9. Dowek, G., Werner, B.: Proof normalization modulo. The. Journal of Symbolic
Logic 68(4), 1289–1316 (2003)

Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 117

10. Girard, J.Y.: Interprétation Fonctionnelle et Élimination des Coupures dans
l’Arithmétique d’Ordre Supérieur, Thèse de Doctorat, Université Paris VII (1972)

11. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (1993)

12. Martin-Löf, P.: Intuitionistic Type Theory, Bibliopolis (1984)
13. Nordström, B., Petersson, K., Smith, J.M.: Martin-Löf’s type theory. In: Abramsky,

S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, pp.
1–37. Clarendon Press, Oxford (2000)

14. Palmgren, E.: On universes in type theory. In: Twenty five years of constructive
type theory. Oxford Logic Guides, vol. 36, pp. 191–204. Oxford University Press,
New York (1998)

15. Terlouw, J.: Een nadere bewijstheoretische analyse van GSTT’s, manuscript (1989)

	The $\lambda \Pi$-Calculus
	The $\lambda \Pi$-Calculus Modulo
	The Pure Type Systems
	Embedding Functional Pure Type Systems in the $\lambda \Pi$-Calculus Modulo
	Definition
	Soundness
	Termination
	Confluence

	Conservativity

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

