
Polynomial Size Analysis
of First-Order Functions

Olha Shkaravska, Ron van Kesteren, and Marko van Eekelen

Institute for Computing and Information Sciences
Radboud University Nijmegen

{O.Shkaravska,R.vanKesteren,M.vanEekelen}@cs.ru.nl

Abstract. We present a size-aware type system for first-order shapely
function definitions. Here, a function definition is called shapely when the
size of the result is determined exactly by a polynomial in the sizes of
the arguments. Examples of shapely function definitions may be matrix
multiplication and the Cartesian product of two lists.

The type checking problem for the type system is shown to be unde-
cidable in general. We define a natural syntactic restriction such that the
type checking becomes decidable, even though size polynomials are not
necessarily linear or monotonic. Furthermore, a method that infers poly-
nomial size dependencies for a non-trivial class of function definitions is
suggested.1

Keywords: Shapely Functions, Size Analysis, Type Checking, Diophan-
tine equations.

1 Introduction

We explore typing support for checking size dependencies for shapely first-order
function definitions (functions for short). The shapeliness of these functions lies
in the fact that the size of the result is a polynomial in terms of the arguments’
sizes.

Without loss of generality, we restrict our attention to a language with poly-
morphic lists as the only data-type. For such a language, this paper develops
a size-aware type system for which we define a fully automatic type checking
procedure.

A typical example of a shapely function in this language is the Cartesian
product, which is given below. It uses the auxiliary function pairs that creates
pairs of a single value and the elements of a list. To get a Cartesian product,
cprod does this for all elements from the first list separately and appends the
resulting intermediate lists. Furthermore, the function definition of append is
assumed:

cprod(x , y) = match x with | nil ⇒ nil
| cons(hd , tl) ⇒ append(pairs(hd , y), cprod(tl , y))

1 This research is sponsored by the Netherlands Organisation for Scientific Research
(NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 351–365, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

352 O. Shkaravska, R. van Kesteren, and M. van Eekelen

where

pairs(x , y) = match y with | nil ⇒ nil
| cons(hd , tl) ⇒ cons(cons(x , hd , nil), pairs(x , tl))

Given two lists, for instance [1, 2, 3] and [4, 5], it returns the list with all
pairs created by taking one element from the first list and one element from the
second list: [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]. Hence, given two lists of
length n and m, it always returns a list of length nm containing pairs. This can
be expressed in a type by Ln(α) × Lm(α) → Ln∗m(L2(α)).

Shapeliness is restrictive, but it is an important foundational step. It makes
type checking decidable in the non-linear case and it allows to infer types “out-
of-the-box”, since experimental points are positioned exactly on the graph of the
polynomial. Exact sizes will be used in future work to derive lower/upper bounds
on the output sizes because many non-shapely functions may be transformed
into shapely in such a way that the new functions output-size polynomial will
be an lower/upper bound for output sizes of the original function. We need such
bounds for our AHA project.

1.1 Related Work

Information about input-output size dependencies is applied in time and space
analysis and optimization, because run time and heap-space consumption obvi-
ously depend on the sizes of the data structures involved in the computations.
Knowledge of the exact size of data structures can be used to improve heap
space analysis for expressions with destructive pattern matching. Amortized
heap space analysis has been developed for linear bounds by Hofmann and Jost
[5]. Precise knowledge of sizes is required to extend this approach to non-linear
bounds. Another application of exact size information is load distribution for
parallel computation. For instance, size information helps to distribute a storage
effectively and to safely store vector fragments [3].

The analysis of (exact) input-output size dependencies of functions itself has
been explored in a series of work. Some interesting work on shape analysis has
been done by Jay and Sekanina [7]. In this work, a shapely program expression
is translated into a corresponding abstract program expression over sizes. Thus,
the dependency of the result size on the argument sizes has the form of a program
expression. However, deriving an arithmetic function from it is beyond the scope
of their work.

Functional dependencies of sizes in a recurrent form may be derived via pro-
gram analysis and transformation, as in the work of Herrmann and Lengauer [6],
or through a type inference procedure, as presented by Vasconcelos and Ham-
mond [12]. Both results can be applied to non-shapely functions, higher-order
functions and non-linear size expressions. However, solving the recurrence equa-
tions to obtain a closed-form solution is left as an open problem for external
solvers. In the second paper monotonic bounds are studied.

To our knowledge, the only work yielding closed-form solutions for size depen-
dencies is limited to monotonic dependencies. For instance, in the well-known

Polynomial Size Analysis of First-Order Functions 353

work of Pareto [8], where non-strict sized types are used to prove termination,
monotonic linear upper bounds are inferred. There linearity is a sufficient con-
dition for the type checking procedure to be decidable.In the series of works
on polynomial quasi-interpretations [1] one studies polynomial upper bounds.
The checking and inference rely on real arithmetic. Our approach differs two-
fold. Firstly, quasi-interpretations give monotonic bounds. With non-monotonic
size dependencies polynomial quasi-interpretations may lead to significant over-
estimations. Secondly, to get exact bounds we use integer arithmetic instead of
the real one.

The approaches summarized in the previous paragraphs either leave the (pos-
sibly undecidable) solving of recurrences as a problem external to their approach,
or are limited to monotonic dependencies.

1.2 Contents of the Paper

In this work, we go beyond monotonicity and linearity and consider a type check-
ing procedure for a first-order functional programming language (section 2) with
polynomial size dependencies (section 3). We show that type checking is reduced
to the entailment checking over Diophantine equations. Type checking is shown
to be undecidable in general, but decidable under a natural syntactic condition
(“no-let-before-match”, section 4). We suggest a method for type inference in sec-
tion 5. It terminates on a nontrivial class of shapely functions. It non-terminates
when either the function under consideration non-terminates, or it is not shapely,
or its correct size dependency is rejected by the type-checker due type-checker’s
incompleteness. (Note that there is no complete shapeliness-checker.)

In section 6 we define a heap-aware semantics of types and expressions and
sketch the proof of the soundness statement with respect to this semantics.
Finally, in section 7 we overview the results and discuss further work.

2 Language

The typing system is designed for a first-order functional language over integers
and (polymorphic) lists.

The syntax of language expressions is defined by the following grammar, where
c ranges over integer constants, x and y denote zero-order program variables,
and f denotes a function name (the example in the introduction used a sugared
version of this syntax):

Basic b ::= c | nil | cons(x, y) | f(x1, . . . , xn)
Expr e ::= letfun f(x1, . . . , xn) = e1 in e2

| b | let x = b in e | if x then e1 else e2
| match x with � nil ⇒ e1

� cons(xhd, xtl) ⇒ e2

The syntax distinguishes between zero-order let-binding of variables and first-
order letfun-binding of functions. In a function body, the only free program

354 O. Shkaravska, R. van Kesteren, and M. van Eekelen

variables that may occur are its parameters: FV (e1) ⊆ {x1, . . . , xn}. The op-
erational semantics is standard, therefore the definition is postponed until it is
used to prove soundness (section 6.1).

We prohibit head-nested let-expressions and restrict sub-expressions in func-
tion calls to variables to make type-checking straightforward. Program expres-
sions of a general form may be equivalently transformed to expressions of this
form. It is useful to think of the presented language as an intermediate language.

3 Type System

Sized types are derived using a type and effect system in which types are anno-
tated with size expressions. Size expressions are polynomials representing lengths
of finite lists and arithmetic operations over these lengths:

SizeExpr p ::= IN | n | p + p | p − p | p ∗ p,

where n, possibly decorated with sub- and superscripts, denotes a size variable,
which stands for any concrete size (natural number). For any natural number k,
nk denotes the k-fold product n ∗ . . . ∗ n.

Zero-order types are assigned to program values, which are integers and finite
lists. The list type is annotated by a size expression that represents the length
of the list:

Types τ ::= Int | α | Lp(τ),

where α is a type variable. Note that this structure entails that if the elements of
a list are lists themselves, all these element-lists have to be of the same size. Thus,
instead of lists it would be more precise to talk about matrix-like structures. For
instance, the type L6(L2(Int)) is given to a list which elements are all lists of
exactly two integers, such as [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]].

It is easy to see that sets L0(Lm(Int)) are equal and contain the single el-
ement [] for all m. The similar holds for L0(Lm(α)). This induces the natural
equivalence relation on types. For instance Lq(L0(Lp(α))) ≡ Lq(L0(Lp′(α))). The
canonical representative of this class is Lq(L0(L0(α))). Everywhere below τ (dec-
orated with sub- or superscripts) denote in fact the canonical representative
of τ≡. The equivalence expresses the fact that sizes of lists that do not exist,
because a containing list is empty, are not important.

The sets FV (τ) and FVS(τ) of the free type and size variables of a type τ are
defined inductively in the obvious way. Note, that FVS(L0(Lm(α))) = ∅, since
the type is equivalent to L0(L0(α)).

Zero-order types without size or type variables are ground types:

GTypes τ• ::= τ such that FVS(τ) = ∅ ∧ FV (τ) = ∅ ,

First-order types are assigned to shapely functions over values of a zero-order
type. Let τ◦ denote a zero order type of which the annotations are all size
variables. First-order types are then defined by:

Polynomial Size Analysis of First-Order Functions 355

FTypes τf ::= τ◦
1 × . . . × τ◦

n → τn+1
such that FVS(∗τn+1) ⊆ FVS(∗τ◦

1) ∪ · · · ∪ FVS(∗τ◦
n)

for all instantiations * of type variables with size expressions.
Recalling the Cartesian product from the introduction, one expects append to

be of type Ln(α) × Lm(α) → Ln+m(α), pairs of type α × Lm(α) → Lm(L2(α)),
and cprod of type Ln(α) × Lm(α) → Ln∗m(L2(α)).

A context Γ is a mapping from zero-order variables to zero-order types. A
signature Σ is a mapping from function names to first-order types. The definition
of FVS (−) is straightforwardly extended to contexts.

3.1 Typing Rules

A typing judgment is a relation of the form D; Γ
Σ e : τ , where D is a set
of Diophantine equations which is used to keep track of the size information. In
the current language, the only place where size information is available is in the
nil-branch of the match-rule. The signature Σ contains the type assumptions for
the functions that are going to be checked.

In the typing rules, D
 p = p′ means that p = p′ is derivable from D from
equational reasoning in the ring of integers. D
 τ = τ ′ is a shorthand that
means that τ and τ ′ have the same underlying type and equality of their size
annotations is derivable. The typing judgment relation is defined by the following
rules:

D; Γ
Σ c :Int IConst
D
 τ = τ ′

D; Γ, x : τ
Σ x :τ ′ Var

FVS (Lp(τ)) ⊆ FVS (Γ) D
 p = 0
D; Γ
Σ nil :Lp(τ) Nil

D
 p = p′ + 1
D; Γ, hd : τ, tl : Lp′(τ)
Σ cons(hd , tl) :Lp(τ)

Cons

Γ (x) = Int D; Γ
Σ et :τ D; Γ
Σ ef :τ
D; Γ
Σ if x then et else ef :τ If

x /∈ dom(Γ) D; Γ
Σ e1 :τx D; Γ, x : τx
Σ e2 :τ
D; Γ
Σ let x = e1 in e2 :τ Let

p = 0, D; Γ, x : Lp(τ ′)
Σ enil :τ
hd , tl �∈ dom(Γ) D; Γ, hd : τ ′, x : Lp(τ ′), tl : Lp−1(τ ′)
Σ econs :τ

D; Γ, x : Lp(τ ′)
Σ match x with | nil ⇒ enil

| cons(hd , tl) ⇒ econs

:τ
Match

The rule LetFun demands that all defined functions, including recursive ones,
must be in the domain of the signature, and the corresponding first-order type
must pass type-checking. We do not prohibit calls of not-defined functions in the
code. In practice, a type checker may allow calls of undefined within the given
code functions. This happens when a specification comes from a trusty source.

356 O. Shkaravska, R. van Kesteren, and M. van Eekelen

Such relaxed treatment of LetFun does make sense for functions written in
another language. However, for the soundness proof one needs all called functions
to be defined within an expression under consideration.

Σ(f) = τ◦
1 × · · · × τ◦

n → τn+1
True; x1 : τ◦

1 , . . . , xn : τ◦
n
Σ e1 : τn+1 D; Γ
Σ e2 : τ ′

D; Γ
Σ letfun f(x1, . . . , xn) = e1 in e2 :τ ′ LetFun

In the FunApp-rule, Θ computes the substitution ∗ from the first argument
(whose size expressions, by definition of first order types, are always variables)
to the second argument, and the set C of equations over size expressions from
τ1

′×· · ·×τ ′
k. The set C contains p = p′ if and only the expressions are substituted

to the same size variable, like, for instance, to m in Lm(Int) × Lm(Int) → Int.

〈∗, C〉 = Θ(τ◦
1 × · · · × τ◦

n, τ1
′ × · · · × τn

′)
Σ(f) = τ◦

1 × . . . × τ◦
n → τn+1 D
 ∗(τn+1) = τ ′

n+1 D
 C

D; Γ, x1 : τ1
′, . . . , xn : τn

′
Σ f(x1, . . . , xk) :τn+1
′ FunApp

The type system needs no conditions on non-negativity of size expressions.
Size expressions in types of meaningful data structures are always non-negative.
The soundness of the type system (section 6.2) ensures that this property is
preserved throughout (the evaluation of) a well-typed expression.

3.2 Example of Type Checking

Because for every syntactic construction there is only one typing rule that is
applicable, type checking is straightforward. In the introduction, the Cartesian
product was presented using a “sugared” syntax. Here, we present the cprod
function in the language defined in section 2.

letfun cprod(x , y) = match x with | nil ⇒ nil
| cons(hd , tl) ⇒ let z1 = pairs(hd , y)

in let z2 = cprod(tl , y)
in append(z1, z2)

Functions pairs and append are assumed to be defined in the core syntax of
the language as well. Hence, Σ contains the following types:

Σ(append) = Ln(α) × Lm(α) → Ln+m(α)
Σ(pairs) = α × Lm(α) → Lm(L2(α))
Σ(cprod) = Ln(α) × Lm(α) → Ln∗m(L2(α))

To type-check cprod : Ln(α) × Lm(α) → Ln∗m(L2(α)) means to check:
Prove: x : Ln(α), y : Lm(α)
Σ ecprod :Ln∗m(L2(α)),

where ecprod is the function body. This is demanded by the first branch of the
LetFun-rule. Applying the Match-rule branches the proof:

Polynomial Size Analysis of First-Order Functions 357

Nil: n = 0; y : Lm(α)
Σ nil :Ln∗m(L2(α))
Cons: hd : α, x : Ln(α), tl : Ln−1(α), y : Lm(α)
Σ

let z1 = pairs(hd , y)
in let z2 = cprod(tl , y)
in append(z1, z2)

:Ln∗m(L2(α))

Applying the Nil-rule to the Nil-branch gives n = 0
 n ∗ m = 0, which is
trivially true. The Cons-branch is proved by applying the Let-rule twice. This
results in three proof obligations:

Bind-z1: hd : α, y : Lm(α)
Σ pairs(hd , y) :τ1
Bind-z2: tl : Ln−1(α), y : Lm(α)
Σ cprod(tl , y) :τ2
Body: z1 : τ1, z2 : τ2
Σ append(z1, z2) :Ln∗m(α)

From the applications of the FunApp-rule to Bind-z1 and Bind-z2 it follows
that τ1 should be Lm(L2(α)) and τ2 should be L(n−1)∗m(L2(α)). Lastly, applying
the FunApp-rule to Body yields the proof obligation
 (n−1)∗m+m = n∗m,
which is true in the axiomatics.

3.3 Example with Negative Coefficients

In contrast to the system presented by Vasconcelos and Hammond [12], where
only subtraction of constants are allowed, our system allows negative coefficients
in size expressions. Of course, this is only a valid size expression if the polynomial
is non-negative for all values of its variables. Here, we show an example where
this is the case. Given two lists, the function “subtracts” elements from lists
simultaneously, till one of the lists is empty. Then, the Cartesian product of the
rest list with itself is returned:

sqdiff (l1, l2) =
match l1 with | nil ⇒ cprod l2 l2

| cons(h, t) ⇒ match l2 with | nil ⇒ cprod l1 l1
| cons(h′, t′) ⇒ sqdiff (t, t′)

.

It can be checked that sqdiff has type Ln(α)×Lm(α) → L(n2+m2−2∗n∗m)(L2(α)).

4 Decidability Issues for Type Checking

In the examples above, type checking ends up with a set of entailments like
n = 0
 0 = n ∗ m or
 m + m ∗ (n − 1) = m ∗ n that have to hold. However,
we show that there is no procedure that can check all entailments that possibly
arise. To make type checking decidable, we formulate a syntactical condition on
the structure of a program expression that ensures the entailments have a trivial
form. The idea is to prohibit pattern-matchings in a let-body.

4.1 Type Checking in General Is Undecidable

We show that the existence of a procedure that may check all possible entail-
ments at the end of type checking is reduced to Hilbert’s tenth problem: whether

358 O. Shkaravska, R. van Kesteren, and M. van Eekelen

there exists a general procedure that given a polynomial with integer coefficients
decides if this polynomial has natural roots or not.2 Matiyasevich [10] has shown
that such a procedure does not exist. This means that type checking, in the gen-
eral case, is undecidable as well.

We show that type checking is reducible to a procedure of checking if arbitrary
size polynomials of shapely functions have natural roots. It turns out that the
latter is the same as finding natural roots of integer polynomials.

Consider the following expression eH with free variables x1, . . . , xk:

let x = f0(x1, . . . , xk) in match x with | nil ⇒ f1(x1, . . . , xk)
| cons(hd , tl) ⇒ f2(x1, . . . , xk)

We check if it has the type Ln1(α1) × . . . × Lnk
(αk) −→ Lp(n1,..., nk)(α), given

that fi : Ln1(α1) × . . . × Lnk
(αk) −→ Lpi(n1,..., nk)(α), with i = 0, 1, 2. Then at

the end of the type checking procedure we obtain the entailment:

p0(n1, . . . , nk) = 0
 p1(n1, . . . , nk) = p(n1, . . . , nk).

Even if p and p1 are not equal, say p1 = 0 and p = 1, it does not mean that
type checking fails; it might not be possible to enter the “bad” nil-branch. To
check if the nil-branch is entered means to check if p0 = 0 has a solution in
natural numbers. Thus, a type-checker for any size polynomial p0 must be able
to define if it has natural roots or not.

Checking if any size polynomial has roots in natural numbers, is the same
as checking whether an arbitrary polynomial has roots or not. For polynomials
q(n1, . . . , nk) = 0 if and only if q2(n1, . . . , nk) = 0 so it is sufficient to prove
that the square of any polynomial is a size polynomial for some shapely function.
First, note that any polynomial q may be presented as the difference q1 − q2 of
two polynomials with non-negative coefficients3. So, q2 = (q1 − q2)2 is a size
polynomial, obtained by superposition of sqdiff with q1 and q2. Here q1 and q2
are size polynomials with positive coefficients for corresponding compositions of
cprod and append functions.

So, existence of a general type-checker reduces to solving Hilbert’s tenth prob-
lem. Hence, type checking is undecidable.

We can show this in a more constructive way using the stronger form of the
undecidability of Hilbert’s tenth problem: for any type-checking procedure I
one can construct an expression, for which I fails to give the correct answer.
We will use the result of Matiyasevich who has proved the following: there is
a one-parameter Diophantine equation W (a, n1, . . . , nk) = 0 and an algorithm
which for given algorithm A produces a number aA such that A fails to give the
correct answer for the question whether equation W (aA, n1, . . . , nk) = 0 has
a solution in (n1, . . . , nk). So, if in the example above one takes the function

2 The original formulation is about integer roots. However, both versions are equivalent
and logicians consider natural roots.

3 If q = Σai1,...,ikxi1
1 . . . x

ik
k , then q1 = Σai1,...,ik

≥0ai1,...,ikxi1
1 . . . x

ik
k , and q2 =

Σai1,...,ik
<0|ai1,...,ik |xi1

1 . . . x
ik
k .

Polynomial Size Analysis of First-Order Functions 359

f0 such that its size polynomial p0 is the square of the W (aI , n1, . . . , nk) and
p = 1, p1 = 0, then the type checker I fails to give the correct answer for eH .

For checking a particular expression it is sufficient to solve the correspond-
ing sets of Diophantine equations. Type checking depends on decidability of
Diophantine equations from D in any entailment D
 p = p′, where p is not
equal to p′ in general (but might be if the equations from D hold). If we have
a solution for D we can substitute this solution in p and p′. A solution over
variables n1, . . . , nm, nm+1, . . . , nk is a set of equations ni = qi(nm+1, . . . , nk)
where 1 ≤ i ≤ m. The expressions for ni are substituted into p = p′ and one
trivially checks the equality of the two polynomials over nm+1, . . . , nk in the
axiomatics of the integers’ ring. Recall that two polynomials are equal if and
only if the coefficient at monomials with the same degrees of variables are equal.

4.2 Syntactical Condition for Decidability

The most simple way to ensure decidability is to require that all equations in D
have the form n = c, where c is a constant. This would in particular exclude the
example eH from above. As we will see below, this requirement can be fulfilled by
imposing a syntactical condition on program expressions: “no let before match”.

The refined grammar of the language is defined as the main grammar where
the let-construct in e is replaced by let x = b in enomatch with

enomatch := b | letfun f(x1, . . . , xn) = e in e′

| let x = b in enomatch | if x then e′nomatch else e′nomatch

Theorem 1. Let a program expression e satisfy the refined grammar, and let us
check the judgment True; x1 : τo

1 , . . . , xk : τo
k
Σ e : τ . Then, at the end of the

type-checking procedure one has to check entailments of the form

D
 p′ = p,

where D is a set of equations of the form n−c=0 for some n∈FVS (τo
1 × . . .×τo

k)
and constant c and p, p′ are polynomials in FVS(τo

1 × . . . × τo
k).

Sketch of the proof. Consider a path in the type checking tree which ends up
with some D
 p′ = p and let an equation q = 0 belong to D. It means that in
the path there is the nil-branch of the pattern matching for some x : Lq(τ).

By induction on the length of the path, one can show that q = n − c for
some size variable n ∈ FVS(τ1 × . . . × τk) and some constant c. This uses the
fact, that variables which are not free in an expression and pattern-matched
may be introduced only by another pattern-matching, but not a let-binding.
The technical report contains the full proof [11].

Note, that prohibiting pattern matching in let-bodies is very natural, since it
prohibits “risky” definitions of the form f(x) = g(f(f0(x))). Here x is a non-nil
list, and f0 is a function over lists, possibly with the property |f0(x)| ≥ |x|, with
| · | denoting length, so termination of f becomes questionable. In a “shapely
world” the condition |f0(x)| < |x| for all x starting from a certain x0, which
ensures termination, implies |f0(x)| = |x| − c or |f(x)| = c for some constant c.

360 O. Shkaravska, R. van Kesteren, and M. van Eekelen

In principle, any program expression that does not do pattern matching on a
variable bound by a let-expression may be recoded so that it satisfies the refined
grammar and defines the same map. For instance, an expression

let x ′ = f0(y) in match x with | nil ⇒ f1(x, x′)
| cons(hd , tl) ⇒ f2(x, x′)

and the expression
match x with | nil ⇒ let x′ = f0(y) in f1(x, x′)

| cons(hd , tl) ⇒ let x′ = f0(y) in f2(x, x′)
define the same map of lists.

Of course, the syntactical condition of the theorem may be relaxed. One may
allow expressions with pattern-matching in a let-body, assuming that functions
that appear in let-bindings, like f0, give rise to solvable Diophantine equations.
For instance, when p0 is a linear function, one of the variables is expressed via
the others and the constant and substituted into p1 = p. Or, p0 is a 1-variable
quadratic, cubic or degree 4 equation. We leave relaxations of the condition for
future work.

5 Method for Type Inference

Here we discuss type inference under the syntactical condition defined in the
previous section. Since we consider shapely functions, there is a way to reduce
type inference to type-checking using the well-known fact that a finite polynomial
is defined by a finite number of points.

For each size polynomial in the output type of a given function, one assumes
a hypothesis about the degree and the variables. Then, to obtain the coefficients,
the function is run (preferably in a sand-box) as many times as the number of
coefficients the polynomial has. This finite number of input-output size pairs
defines a system of linear equations, where the unknowns are the coefficients of
the polynomial. When (the sizes of the data-structures in) the set of input data
satisfies some criteria known from the polynomial interpolation theory [4,9], the
system has a unique solution. Input sizes that satisfy these criteria, which are
nontrivial for multivariate polynomials, can be determined algorithmically.

The interpolation theory used in the previous paragraph finds the Lagrange
interpolation of a size function. If the hypothesis about the degree and the vari-
ables of the size expression was correct, the Lagrange interpolation coincides
with that desired size function. To check if this is the case, the interpolation is
given to the type checking procedure. If it passes, it is correct. Otherwise, one
may repeat the procedure for a higher degree of the polynomial.

The method, that is the sequence of such loops, non-terminates when

– the function under consideration does not terminate on test data,
– the function is non-shapely,
– the function is shapely but the type-checker rejects it due to the type system’s

incompleteness (see 6.3). Note that no complete algorithm for shapeliness-
checking exists, even for functions subject to the syntactical restriction.

Polynomial Size Analysis of First-Order Functions 361

The method infers polynomial size dependencies for a nontrivial class of
shapely functions.

For instance, standard type inference for the underlying type system yields
that the function cprod has the following underlying type cprod : L(α)×L(α) −→
L(L(α)). Adding size annotations with unknown output polynomials gives cprod :
Ln(α)×Lm(α) −→ Lp1(Lp2(α)). We assume p1 is quadratic so we have to compute
the coefficients in its presentation:

p1(x, y) = a0,0 + a0,1x + a1,0y + a1,1xy + a0,2x
2 + a2,0y

2

Running the function cprod on six pairs of lists of length 0, 1, 2 yields:

n m x y cprod(x, y) p1(n, m) p2(n, m)
0 0 [] [] [] 0 ?
1 0 [0] [] [] 0 ?
0 1 [] [0] [] 0 ?
1 1 [0] [1] [[0, 1]] 1 2
2 1 [0, 1] [2] [[0, 2], [1, 2]] 2 2
1 2 [0] [1, 2] [[0, 1], [0, 2]] 2 2

This defines the following linear system for the external output list:

a0,0 = 0
a0,0 + a0,1 + a0,2 = 0
a0,0 + a1,0 + a2,0 = 0

a0,0 + a0,1 + a1,0 + a0,2 + a1,1 + a2,0 = 1
a0,0 + 2a0,1 + a1,0 + 4a0,2 + 2a1,1 + a2,0 = 2
a0,0 + a0,1 + 2a1,0 + a0,2 + 2a1,1 + 4a2,0 = 2

The unique solution is a1,1 = 1 and the rest of coefficients are zero. To verify
whether the interpolation is indeed the size polynomial, one checks if cprod :
Ln(α) × Lm(α) −→ Ln∗m(L2(α)). This is the case, as was shown in section 3.2.

As an alternative way of finding the coefficients, one could try to directly solve
the systems defined by entailments D
 p = p′. When the degree is assumed, the
unknowns in these systems are the polynomial coefficients. However, the systems
are nonlinear in general [11]. By combining testing with type checking we do not
have to solve these nonlinear Diophantine equations anymore.

6 Semantics of the Type System

Informally, soundness of the type system ensures that “well-typed programs
will not go wrong”. This is achieved by demanding that, when a function is
given meaningful values of the types required as arguments, the result will be a
meaningful value of the output type.

In section 6.1, we formalize the notion of a meaningful value using a heap-
aware semantics of types and give an operational semantics of the language.
Section 6.2 formulates the soundness statement with respect to this semantics
and sketches the proof. The system is shown not to be complete in section 6.3.

362 O. Shkaravska, R. van Kesteren, and M. van Eekelen

6.1 Semantics of Program Values and Expressions

In our semantic model, the purpose of the heap is to store lists. Therefore, it
essentially is a collection of locations l that can store list elements. A location is
the address of a cons-cell each consisting of a hd-field, which stores the value of
the list element, and a tl-field, which contains the location of the next cons-cell
of the list (or the NULL address). Formally, a program value is either an integer
constant, a location, or the null-address and a heap is a finite partial mapping
from locations and fields to such program values:

Val v ::= c | � | NULL � ∈ Loc c ∈ Int
Hp h : Loc ⇀ {hd, tl} ⇀ Val

We will write h[�.hd := vh, �.tl := vt] for the heap equal to h everywhere but
in �, which at the hd-field of � gets value vh and at the tl-field of � gets value vt.

The semantics w of a program value v is a set-theoretic interpretations with
respect to a specific heap h and a ground type τ , via the four-place relation
v |=h

τ w. Integer constants interprets themselves, and locations are interpreted
as non-cyclic lists:

i |=h
Int i

NULL |=h
L0(τ) []

� |=h
Ln(τ) whd :: wtl iff n ≥ 1, � ∈ dom(h),

h.�.hd |=h|dom(h)\{�}
τ whd,

h.�.tl |=h|dom(h)\{�}
Ln−1(τ) wtl

where h|dom(h)\{�} denotes the heap equal to h everywhere except for �, where
it is undefined.

When a function body is evaluated, a frame store maintains the mapping from
program variables to values. It only contains the actual function parameters, thus
preventing access beyond the caller’s frame. Formally, a frame store is a finite
partial map from variables to values:

Store s : ExpVar ⇀ Val

Using heaps and frame stores, and maintaining a mapping C from function
names to bodies for the functions definitions encountered, the operational se-
mantics of expressions is defined by the following rules:

c ∈ Int
s; h; C
 c � c; h

OSICons
s; h; C
 x � s(x); h

OSVar

s; h; C
 nil � NULL; h
OSNil

s(hd) = vhd s(tl) = vtl � /∈ dom(h)
s; h
 cons(hd , tl) � �; h[�.hd := vhd, �.tl := vtl]

OSCons

s(x) �= 0 s; h; C
 e1 � v; h′

s; h; C
 if x then e1 else e2 � v; h′ OSIfTrue

Polynomial Size Analysis of First-Order Functions 363

s(x) = 0 s; h; C
 e2 � v; h′

s; h; C
 if x then e1 else e2 � v; h′ OSIfFalse

s(x) = NULL s; h; C
 e1 � v; h′

s; h; C
 match x with | nil ⇒ e1
| cons(hd , tl) ⇒ e2

� v; h′ OSMatch-Nil

h.s(x).hd = vhd h.s(x).tl = vtl
s[hd := vhd, tl := vtl]; h
 e2 � v; h′

s; h; C
 match x with | nil ⇒ e1
| cons(hd , tl) ⇒ e2

� v; h′ OSMatch-Cons

s; h; C[f := ((x1, . . . , xn) × e1)]
 e2 � v; h′

s; h; C
 letfun f(x1, . . . , xn) = e1 in e2 � v; h′ OSLetFun

s(x1) = v1 . . . s(xm) = vn C(f) = (y1, . . . , yn) × ef

[y1 := v1, . . . , yn := vn]; h; C
 ef � v; h′

s; h; C
 f(x1, . . . , xn) � v; h′ OSFunApp

s; h; C
 e1 � v1; h1 s[x := v1]; h1; C
 e2 � v; h′

s; h; C
 let x = e1 in e2 � v; h′ OSLet

6.2 Soundness

In this subsection the soundness theorem is formulated and a proof is sketched.
The technical report [11] contains the full proof.

Let a valuation ε map size variables to concrete (natural) sizes and an instan-
tiation μ map type variables to ground types:

Valuation ε : SizeVar → IN
Instantiation η : TypeVar → τ•

Applied to a type, context, or size equation, valuations (and instantiations)
map all variables occurring in it to their valuation (or instantiation) images.

The soundness statement is defined by means of the following two predicates.
One indicates if a program value is meaningful with respect to a certain heap
and ground type. The other does the same for sets of values and types, taken
from a frame store and context respectively:

Validval(v, τ•, h) = ∃w[v |=h
τ w]

Valid store(vars , Γ, s, h) = ∀x∈vars [Valid val(s(x), Γ (x), h)]

Now the soundness statement is straightforward:

Theorem 2. Let s; h; []
 e � v; h′ and all called in e functions are defined
in it via the let-fun construct. Then for any context Γ , signature Σ and type τ ,
such that True; Γ
Σ e :τ is derivable in the type system, and any size valuation
ε and type instantiation η, it holds that if the store is meaningful w.r.t. the context
η(ε(Γ)) then the output value is meaningful w.r.t the type η(ε(τ)):

364 O. Shkaravska, R. van Kesteren, and M. van Eekelen

∀η,ε[Valid store(FV (e), η(ε(Γ)), s, h) =⇒ Valid val(v, η(ε(τ)), h′)]

Sketch of the proof. The proof is done by induction on the length of the oper-
ational semantics derivation tree and is presented in the technical report [11].
The proof for the let-rule relies on the benign sharing [5] of data structures. It
means that the heap data to be used further are not changed by the head expres-
sion in let. There are type systems approximating this semantic condition, e.g.
linear typing and uniqueness typing [2] We consider sharing aware type systems
separately and combine with the resource aware one afterwords.

6.3 Completeness

The system is not complete – there are shapely functions that are not well-
typed. For instance, the type checking fails for the function faildueif : Ln(Int) →
Ln(Int) defined by:

letfun faildueif(x) = let y = length(x) in if y then x else nil
where length(x) returns the length of list x. We believe that in some cases pro-
gram transformations might help to make such functions typable.

7 Conclusion and Further Work

We have presented a natural syntactic restriction such that type checking of a
size-aware type system for first-order shapely functions is decidable for polyno-
mial size expressions without any limitations on the degree of the polynomials.

A non-standard, practical method to infer types is introduced. It uses run-
time results to generate a set of equations. These equations are linear and hence
automatically solvable. The method terminates on a non-trivial class of shapely
functions.

7.1 Further Work

The system is defined for polymorphic lists. In principle, the system may be
extended so that more general data structures will be allowed. This extension
should not influence the approach itself, however it brings additional technical
overhead.

An obvious limitation of our approach is that we consider only shapely func-
tions. In practice, one is often interested to obtain upper bounds on space com-
plexity for non-shapely functions. A simple example where for a non-shapely
function an upper bound would be useful, is the function to insert an element
in a list, provided the list does not contain the element. In the future we plan to
consider code transformations which, given a non-shapely function f with upper
bound (worst-case) complexity c, translate it into a shapely function f’ with
complexity c. Effectively, this will make the analysis applicable to non-shapely
functions obtaining upper bounds on the space consumption complexity.

We plan to add non-trivial sizes to integers. At the same time leaving out
non-sized integers will result in lists with elements of different sizes. Hence, the

Polynomial Size Analysis of First-Order Functions 365

decision how to add sizes to integers is connected to the problem of using sized
and non-sized types within the same system. We leave it for future work based
on [12] and [7].

Addition of other data structures and extension to non-shapely functions will
open the possibility to use the system for an actual programming language.

References

1. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations, a way to control
resources. Theoretical Computer Science (to appear)

2. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6, 579–612
(1996)

3. Chatterjee, S., Blelloch, G.E., Fischer, A.L.: Size and access inference for data-
parallel programs. PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference
on Programming language design and implementation, pp. 130–144 (1991)

4. Chui, C., Lai, H.C.: Vandermonde determinant and Lagrange interpolation in Rs.
Nonlinear and convex analysis, pp. 23–35 (1987)

5. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. SIGPLAN Not. 38(1), 185–197 (2003)

6. Herrmann, C.A., Lengauer, C.: A transformational approach which combines
size inference and program optimization. In: Taha, W. (ed.) SAIG 2001. LNCS,
vol. 2196, pp. 199–218. Springer, Heidelberg (2001)

7. Jay, C.B., Sekanina, M.: Shape checking of array programs. In: Computing: the
Australasian Theory Seminar, Proceedings. Australian Computer Science Com-
munications, vol. 19, pp. 113–121 (1997)

8. Pareto, L.: Sized Types. Dissertation for the Licentiate Degree in Computing Sci-
ence. Chalmers University of Technology (1998)

9. Lorenz, R.A.: Multivariate Birkhoff Interpolation. LNCS, vol. 1516. Springer, Hei-
delberg (1992)

10. Matiyasevich, Y., Jones, J.-P.: Proof or recursive unsolvability of Hilbert’s tenth
problem. American Mathematical Monthly 98(10), 689–709 (1991)

11. Shkaravska, O., van Kesteren, R., van Eekelen, M.: polynomial size analysis of
first-order functions. Technical Report ICIS-R07004, Radboud University Nijmegen
(2007)

12. Vasconcelos, P.-B., Hammond, K.: Inferring cost equations for recursive, poly-
morphic and higher-order functional programs (Revised Papers). In: Trinder, P.,
Michaelson, G.J., Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 86–101. Springer,
Heidelberg (2004)

	Introduction
	Related Work
	Contents of the Paper

	Language
	Type System
	Typing Rules
	Example of Type Checking
	Example with Negative Coefficients

	Decidability Issues for Type Checking
	Type Checking in General Is Undecidable
	Syntactical Condition for Decidability

	Method for Type Inference
	Semantics of the Type System
	Semantics of Program Values and Expressions
	Soundness
	Completeness

	Conclusion and Further Work
	Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

