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Preface

This volume represents the proceedings of the Eighth International Conference
on Typed Lambda Calculi and Applications, TLCA 2007, held in Paris, France
during 26–28 June 2007, in conjunction with RTA. It contains the abstracts of
the invited talks by Frank Pfenning and Patrick Baillot, plus 25 contributed pa-
pers. The contributed papers were selected from a total of 52 submissions. The
conference program included an invited talk by Greg Morrisett and a special
evening talk by Henk Barendregt, on “Diamond Anniversary of Lambda Calcu-
lus.” I wish to express my gratitude to the members of the Program Committee
and to all the referees for their contribution in preparing a very interesting sci-
entific program. Moreover, I thank, the members of the Organizing Committee
for their hard work and the sponsoring institutions.

April 2007 Simona Ronchi Della Rocca
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On a Logical Foundation for
Explicit Substitutions

Frank Pfenning

Department of Computer Science
Carnegie Mellon University

fp@cs.cmu.edu
http://www.cs.cmu.edu/~fp

Traditionally, calculi of explicit substitution [1] have been conceived as an im-
plementation technique for β-reduction and studied with the tools of rewriting
theory. This computational view has been extremely fruitful (see [2] for a recent
survey) and raises the question if there may also be a more abstract underlying
logical foundation.

Some forms of explicit substitution have been related to cut in the intuition-
istic sequent calculus [3]. While making a connection to logic, the interpretation
of explicit substitutions remains primarily computational since they do not have
a reflection at the level of propositions, only at the level of proofs.

In recent joint work [4], we have shown how explicit substitutions naturally
arise in the study of intuitionistic modal logic. Their logical meaning is embodied
by a contextual modality which captures all assumptions a proof of a proposition
may rely on. Explicit substitutions mediate between such contexts and therefore,
intuitively, between worlds in a Kripke-style interpretation of modal logic.

In this talk we review this basic observation about the logical origin of explicit
substitutions and generalize it to a multi-level modal logic. Returning to the
computational meaning, we see that explicit substitutions are the key to a λ-
calculus where variables, meta-variables, meta-meta-variables, etc. can be unified
without the usual paradoxes such as lack of α-conversion. We conclude with
some speculation on potential applications of this calculus in logical frameworks
or proof assistants.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of
Functional Programming 1(4), 375–416 (1991)

2. Kesner, D.: The theory of calculi with explicit substitutions revisited. Unpublished
manuscript (October (2006)

3. Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent cal-
culus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp.
61–75. Springer, Heidelberg (1995)

4. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. Transactions
on Computational Logic (To appear, 2007)
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From Proof-Nets to Linear Logic Type Systems
for Polynomial Time Computing

Patrick Baillot�

LIPN, CNRS & Université Paris 13,
99 av. J-B. Clément, 93430 Villetaneuse, France

patrick.baillot@lipn.univ-paris13.fr

Abstract. In this presentation we give an overview of Dual Light Affine
Logic (DLAL), a polymorphic type system for lambda calculus ensuring
that typable lambda terms are executable in polynomial time. We stress
the importance of proof-nets from Light linear logic for the design of this
type system and for a result establishing that typable lambda-terms can
be evaluated efficiently with optimal reduction. We also discuss the issue
of DLAL type inference, which can be performed in polynomial time for
system F terms. These results have been obtained in collaborations with
Terui [1], Atassi and Terui [2], and Coppola and Dal Lago [3].

Implicit Computational Complexity (ICC) is concerned with the study of
computation with bounded time or memory. It has emerged from early works
such as those of Leivant [4], Bellantoni and Cook [5], Jones [6], Leivant and
Marion [7]. Lambda calculus and functional programming play a key role in this
field. A particular interest is attached to feasible computing, by which we mean
computing in polynomial time in the size of the input (PTIME).

Instead of seeing execution time simply as a result of observation, the driving
motivation here is to shed some light on the nature of feasible computing, by
unveiling some invariants or some programming methodologies which can in a
modular way ensure that the resulting programs remain in the feasible class.
Challenging goals in this area are to obtain manageable programming languages
for feasible computing or to delineate some constructive proof systems in which
extracted programs would be certified to be of polynomial time complexity.

An important issue is that of intensional expressivity: even if all polynomial
time functions are representable, not all ICC systems have the same expressive
power when it comes to implement concrete algorithms.

Linear Logic. Here we focus our attention on the linear logic approach to
ICC, which is based on the proofs-as-programs correspondence. By giving a log-
ical status to the operation of duplication linear logic provides a fine-grained
way to study and control the dynamics of evaluation. Indeed various choices
of rules for the modalities (exponential connectives), regulating duplication, re-
sult in variants of linear logic with different bounds on proof normalization (cut
elimination).
� Partially supported by project NO-CoST (ANR, JC05 43380).

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 2–7, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



From Proof-Nets to Linear Logic Type Systems 3

This approach lead in particular to Bounded (BLL) [8], Soft (SLL) [9] and
Light (LLL) linear logics [10] (or its variant Light Affine Logic LAL [11]), which
correspond to PTIME computation. The language used is that of proof-nets, a
graph syntax for proofs. Using the Curry-Howard correspondence the system
LAL for instance gives a calculus for polynomial time computing in the ICC
approach (see e.g. [12]).

Types. We will describe a type system for lambda calculus obtained from Light
linear logic, called Dual Light Affine Logic (DLAL). If a term acting say, on binary
lists, is well typed in DLAL, then it runs in polynomial time. The advantage here
with respect to LAL is that the source language, lambda calculus, is a standard
one and the discipline for ensuring polynomial time bounds is managed by the
type system. A nice aspect also w.r.t. other type-based ICC systems such as e.g.
[13] is that the lambda calculus does not contain constants and recursor, but
instead the data types and the corresponding iteration schemes are definable, as
in system F. Indeed, DLAL, as other type systems from Light logics can be seen
as a refinement of system F types.

Proof-Nets and Boxes. Essentially a DLAL type derivation corresponds to an
LAL proof-net. The main extra information with respect to the underlying system
F term lies in the presence of boxes, corresponding to the use of modalities. Boxes
are a standard notion in the proof-net technology. They are usually needed to
perform proof-net normalization. We emphasize here a double aspect of boxes
in Light logics:

– from a methodological point of view: boxes are a key feature in Light logics
(and thus in the design of Light type systems) because they allow to enforce
some invariants which guarantee the complexity bound;

– from an operational point of view: boxes can somehow be forgotten for eval-
uation of (typable) terms; this can be achieved either by using the DLAL
type system and β reduction, or by using optimal reduction, that is to say
graph rewriting.

We will illustrate this double aspect of boxes and the interplay between lambda
terms and proof-nets (Fig 1) by discussing the DLAL type assignment system,
optimal reduction of typable terms and finally DLAL type inference.

1 Type System DLAL and Proof-Nets

Dual Light Affine Logic (DLAL ) is a type system derived from Light Affine
Logic [1]. Its type language is defined by:

A, B ::= α | A � B | A ⇒ B | §A | ∀α.A ,

where � (resp. ⇒) is a linear (resp. non-linear) arrow connective. An integer
called depth is attached to each derivation. The main property of DLAL is:

Theorem 1. If a lambda term t is typable in DLAL with a type derivation of
depth d, then any β reduction sequence of t has length bounded by O(|t|2d

).
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Lambda

calculus

Light
Proof nets

reduction

definition of type systems

type inference

explicit

Sharing graphs:

Optimal 

(constraints solving)

proof of P−soundness

complexity
bounds

Fig. 1. Lambda terms and Light proof-nets

DLAL can be translated in LAL using (A ⇒ B)∗ = !A∗ � B∗. Consequently any
DLAL type derivation corresponds to an LAL proof-net. These proof-nets have
two kinds of boxes: !-boxes, which are duplicable, and §-boxes which are not.
The depth of a DLAL derivation corresponds to the maximal nesting of boxes in
the corresponding proof-net.

All polynomial time functions can be represented in DLAL. However its inten-
sional expressivity, as that of other Light logic systems, is actually quite weak
(some simple PTIME system F terms are non typable). On the other hand test-
ing if a term is typable can be done efficiently, as we will see in Section 3. This
illustrates a kind of trade-off in ICC languages between the algorithmic expres-
sivity on the one hand and the easiness of verifying if a program belongs to the
language on the other.

2 Evaluating Without Boxes: Optimal Reduction

Boxes are an important information in proof-nets and are needed for their nor-
malization (see e.g. [14]). However it turns out that DLAL typable lambda terms
can be evaluated with a local graph-rewriting procedure (without the boxes):
Lamping’s abstract algorithm for optimal reduction. The advantage of this ab-
stract algorithm with respect to Lamping’s general algorithm [15,16] is that no
bookkeeping is needed for managing the indices, which makes it particularly
simple.

The fact that Lamping’s algorithm is correct for LAL or EAL (Elementary
Affine Logic) typed terms was actually a main motivation for the study of
these systems for quite a while [17]. However a recent result [3] is that Lamp-
ing’s abstract algorithm applied to DLAL or LAL typable terms is of similar
complexity as proof-net reduction, that is to say polynomial in the size, if the
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depth is fixed. This has been achieved by using as tools proof-nets and context
semantics ([18]).

3 Recovering Boxes: Type Inference by Linear
Programming

We stressed that typable lambda terms can be evaluated efficiently without the
typing information. So, why would we need types anyway then? Actually the
typing can be important: (i) to get an explicit complexity bound for the reduction
(Theorem 1); (ii) for modularity: to be able to combine terms together and stay
in the typable class.

The specificity of DLAL type inference is the inference of modalities, so we
consider as input a system F typed lambda term. Concretely type inference in
DLAL for this term can then be performed by decorating the syntax tree of the
term with boxes and the types with modalities, that is to say by constructing
a proof-net. An algorithm searching for such decorations by using constraints
generation and solving has been given in [2] (Fig. 2), after works on related
systems, e.g. in [19,20,21].

constraints 
system

generation

constraints

 lambda term
system F

solving

complexity bound
polynomial

/  Proof net lambda term
parameterized DLAL type derivation

Fig. 2. DLAL type inference

The algorithm relies on two ingredients:

– analysing where non-linear application (and hence !-box) is needed: this is
expressed by boolean constraints ;

– searching for a suitable distribution of boxes (! or §-boxes): the key point
here is to assign integer parameters for the number of (box) doors on each
edge, and to search for instantiations of these parameters for which valid
boxes can be reconstructed.

In this way a set of constraints on boolean (bi) and integer (ni) parameters is
associated to a term, expressing its typability. It contains:

boolean constraints, e.g. b1 = b2, b1 = 0
linear constraints, e.g.

∑
i ni ≤ 0

mixed boolean/linear constraints, e.g. b1 = 1 ⇒
∑

i ni ≤ 0.

A resolution method for solving the constraints system is given by the follow-
ing two-step procedure:
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1. boolean phase: search for the minimal solution to the boolean constraints.
This corresponds to doing a linearity analysis (determine which applications
are linear and which ones are non-linear).

2. linear programming phase: once the constraints system is instantiated with
the boolean solution, we get a linear constraints system, that can be solved
with linear programming methods. This corresponds to finding a concrete
distribution of boxes satisfying all the conditions.

This resolution procedure is correct and complete and it can be performed in
polynomial time w.r.t. the size of the original system F term. Any solution of
the constraints system gives a valid DLAL type derivation.
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Strong Normalization and
Equi-(Co)Inductive Types

Andreas Abel�

Department of Computer Science, University of Munich
Oettingenstr.67, D-80538 München, Germany

abel@tcs.ifi.lmu.de

Abstract. A type system for the lambda-calculus enriched with recur-
sive and corecursive functions over equi-inductive and -coinductive types
is presented in which all well-typed programs are strongly normalizing.
The choice of equi-inductive types, instead of the more common iso-
inductive types, influences both reduction rules and the strong normal-
ization proof. By embedding iso- into equi-types, the latter ones are
recognized as more fundamental. A model based on orthogonality is con-
structed where a semantical type corresponds to a set of observations,
and soundness of the type system is proven.

1 Introduction

Theorem provers based on the Curry-Howard-Isomorphism, such as Agda, Coq,
Epigram, or LEGO are built on dependent types and use inductive and coin-
ductive types to formalize data structures, object languages, logics, judgments,
derivations, etc. Proofs by induction or coinduction are represented as recursive
or corecursive programs, where only total programs represent valid proofs. As
a consequence, only total programs, which are defined on all well-typed inputs,
are accepted, and totality is checked by some static analysis (in case of Coq),
or ensured by construction (in case of Epigram), or simply assumed (in case of
LEGO and the current version of Agda).

Hughes, Pareto, and Sabry [16] have put forth a totality check based on sized
types, such that each well-typed program is already total. Designed originally
for embedded systems it has become attractive for theorem provers because of
several advantages: First of all, its soundness can be proven by an interpretation
of types as sets of total programs, as noted by Giménez [13]. Since soundness
proofs for dependent types are delicate, the clarity that sized types offer should
not be underestimated. Secondly, checking termination through types integrates
the features of advanced type systems, most notably higher-order functions,
higher-order types, polymorphism, and subtyping, into the termination check

� Research supported by the coordination action TYPES (510996) and thematic net-
work Applied Semantics II (IST-2001-38957) of the European Union and the project
Cover of the Swedish Foundation of Strategic Research (SSF).

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 8–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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without extra effort. Some advanced examples of what one can do with type-
based termination, but not with syntactical, “term-based” termination checks,
are given in other works of the author [4,3,2]. And last, type-based termination
is just (a) sized inductive and coinductive types with subtyping induced by the
sizes plus (b) typing rules for recursive and corecursive functions which ensure
well-foundedness by checking that sizes are decreased in recursive instances.
Due to this conceptual simplicity it is planned to replace the current term-based
termination check in Coq by a type-based one; in recent works, sized types have
been integrated with dependent types [9,10].

Dependently typed languages, such as the languages of the theorem provers
listed above, need to compare terms for equality during type-checking. In the
presence of recursion, this equality test is necessarily incomplete.1 A common
heuristics is to normalize the terms and compare them for syntactic equality. In
general, these terms are open, i. e., have free variables, and normalization takes
place in all term positions, also under binders. This complicates matters consid-
erably: Although a function is total in a semantical sense and terminates on all
closed terms under lazy evaluation, it will probably diverge on open terms under
full evaluation.2 Hence, unfolding recursion has to be sensibly restricted during
normalization. In related work [13,8], inductive types are given by constructors,
and a recursive function is only unfolded if its “recursive” argument, i. e., the
argument that gets smaller in recursive calls, is a constructor.

We take a more foundational approach and consider a language, Fω̂, without
constructors. Programs of Fω̂ are just λ-terms over constants fixμ

n and fixν
n which

introduce recursive and corecursive functions with n leading “parametric”, i. e.,
non-recursive arguments. A recursive function fixμ

n s t1 . . . tn v with body s, para-
metric arguments ti and recursive argument v is unfolded if v is a value, i. e.,
a λ-abstraction or an under-applied, meaning not fully applied, (co)recursive
function. A corecursive function fixν

n s t1 . . . tn is unfolded if it is in evaluation
position, e. g., applied to some term. In this article, we prove that this strategy is
strongly normalizing for programs which are accepted by the sized type system.

For now, Fω̂ does not feature dependent types—they are not essential to
studying the operational semantics, but cause considerable complications in the
normalization proof. However, Fω̂ has arbitrary-rank polymorphism, thus, ele-
mentary data types like unit type, product type and disjoint sum can be defined
by the usual Church-encodings. Inductive types are not given by constructors;
instead we have least fixed-point types μaF which denote the ath iteration of
type constructor F . Semantically μ0F is empty, μa+1F = F (μaF ), and for limit
ordinals λ, μλF denotes the union of all μaF for a < λ. It may help to think
of the size index a as an strict upper bound for the height of the inhabitants of
μaF , viewed as trees. Dually, we have sized coinductive types νaF , and a denotes

1 And one would not expect that this test succeeds for the equation f (fix (g ◦ f)) =
fix (f ◦ g) given arbitrary (well-typed programs) f and g.

2 Consider the recursive zero-function zero x = match x with 0 �→ 0 | y + 1 �→ zero y. If
applying zero to a variable triggers unfolding of recursion, normalization of zero will
diverge.
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the minimum number of elementary destructions one can safely perform on an
element of νaF , which is, in case of streams, the minimum number of elements
one can read off this stream.

With sum and product types, common inductive types can be expressed as
μaF for a suitable F ; their constructors are then simply λ-terms. However, there
is a design choice: equi-inductive types have μa+1F = F (μaF ) as a type equation
in the system; iso-inductive types stipulate that μa+1F and F (μaF ) are only
isomorphic, witnessed by a folding operation in : F (μaF ) → μa+1F and an
unfolding operation out : μa+1F → F (μaF ). The iso-approach has been taken in
previous work by the author [3] and seems to be more common [12,6,19,7], since it
has a simpler theory. We go the foundational path and choose the “equi” flavor,
which has consequences for the operational semantics and the normalization
proof: since there are less syntactical “clutches” to hold on, more structure has
to be built in the semantics.

Overview. In Section 2 we present System Fω̂ with typing rules which only accept
strongly normalizing functions. In Section 3 we motivate the reduction rules of
Fω̂ which are affected by equi-(co)inductive types. By embedding iso- into equi-
inductive types in Section 4, we justify that equi-types are more fundamental
than iso-types. We then proceed to develop a semantical notion of type, based
on strong normalization and orthogonality (Section 5). Finally, we sketch the
soundness proof for Fω̂ in Section 6 and discuss some related work in Section 7.

2 System Fω̂

Like in System Fω, expressions of Fω̂ are separated into three levels: kinds, type
constructors, and terms (objects). Figure 1 summarizes the first two levels. In
contrast to the standard presentation, we have a second base kind, ord, whose in-
habitants are syntactic ordinals. Canonical ordinals are either snı = s (s . . . (s ı))
(notation: ı + n), the nth successor of an ordinal variable ι, or ∞, the closure
ordinal of all inductive and coinductive types of Fω̂. In spite of the economic
syntax, expressions of kind ord, which we will refer to as size expressions, se-
mantically denote ordinals up to the ωth uncountable (see Sect. 5.3). We use the
metavariable a to range over size expressions and the metavariable ı to range
over size variables. The metavariable X ranges over type constructor variables,
which includes size variables.

Another feature of Fω̂ are polarized kinds [27,5,1]. Function kinds are labeled
with a polarity p that classifies the inhabiting type constructors as covariant
(p = +), contravariant (p = −), or non-variant (p = ◦), the last meaning mixed
or unknown variance. Inductive types are introduced using the type constructor
constant

μκ : ord +→ (κ +→ κ) +→ κ.

We write μκ a F usually as μa
κF and drop index kind κ if clear from the con-

text. The underlying type constructor F : κ
+→ κ must be covariant—otherwise

divergence is possible even without recursion (Mendler [21])—and κ must be a
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Syntactic categories.

p ::= + | − | ◦ polarity
κ ::= ∗ | ord | pκ → κ′ kind
κ∗ ::= ∗ | pκ∗ → κ′

∗ pure kind
a, b, A, B, F, G ::= C | X | λX :κ. F | F G (type) constructor
C ::= → | ∀κ | μκ∗ | νκ∗ | s | ∞ constructor constant
Δ ::= � | Δ, X :pκ polarized context

The signature Σ assigns kinds to constants (κ
p→ κ′ means pκ → κ′).

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

μκ∗ : ord +→ (κ∗
+→ κ∗)

+→ κ∗ inductive constructors

νκ∗ : ord −→ (κ∗
+→ κ∗)

+→ κ∗ coinductive constructors

s : ord +→ ord successor of ordinal
∞ : ord infinity ordinal

Notation.
∇ for μ or ν

∇a for ∇a
∀X :κ. A for ∀κ(λX :κ. A)

∀XA for ∀X :κ. A
λXF for λX :κ. F

Ordering and composition of polarities.

p ≤ p ◦ ≤ p +p = p −− = + ◦p = ◦ pp′ = p′p

Inverse application of a polarity to a context.

p−1� = �
+−1Δ = Δ
−−1(Δ, X :pκ) = (−−1Δ), X : (−p)κ

◦−1(Δ, X :◦κ) = (◦−1Δ), X :◦κ
◦−1(Δ, X :+κ) = ◦−1Δ
◦−1(Δ, X :−κ) = ◦−1Δ

Kinding Δ � F : κ.

kind-c
C :κ ∈ Σ

Δ � C : κ
kind-var

X :pκ ∈ Δ p ≤ +
Δ � X : κ

kind-abs
Δ, X :pκ � F : κ′

Δ � λX :κ. F : pκ → κ′ kind-app
Δ � F : pκ → κ′ p−1Δ � G : κ

Δ � F G : κ′

Fig. 1. Fω̂: Kinds and constructors
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pure kind, i. e., not mention ord. The last condition seems necessary to define a
uniform closure ordinal for all inductive types, meaning an ordinal ∞ such that
μ∞F = F (μ∞F ). Inductive types are covariant in their size argument; the sub-
typing chain μaF ≤ μa+1F ≤ μa+2F ≤ · · · ≤ μ∞F holds. Dually, coinductive
types, which are introduced by the constant

νκ : ord −→ (κ +→ κ) +→ κ,

are contravariant, and we have the chain ν∞F ≤ · · · ≤ νa+2F ≤ νa+1F ≤ νaF .
Type constructors are identified modulo βη and the laws s ∞ = ∞ and ∇a+1F =
F (∇aF ), where ∇ is a placeholder for μ or ν, here and in the following. Type
constructor equality is kinded and given by the judgement Δ � F = F ′ : κ for
a kinding context Δ. Exept β and η, we have the axioms Δ � s ∞ = ∞ : ord
and Δ � ∇sa

κ F = F (∇a
κ F ) : κ for wellkinded F and a : ord. Similarly, we have

kinded higher-order subtyping Δ � F ≤ F ′ : κ induced by Δ � a ≤ s a : ord and
Δ � a ≤ ∞ : ord. Due to space restrictions, the rules have to be omitted, please
find them in the author’s thesis [2, Sect. 2.2].

Figure 2 displays terms and typing rules of Fω̂. Besides λ-terms, there are
constants fixμ

n to introduce functions that are recursive in the n + 1st argument,
and constants fixν

n to introduce corecursive functions with n arguments. The
type A(ı) of a recursive function introduced by fixμ

n must be of the shape

∀X. A1 → · · · → An → μıF 0 G0 → · · · → μıFm Gm → C,

where the Ai are contravariant in the size index ı, C is covariant, and the F j and
Gj do not mention ı. This criterion is written as A fixμ

n-adm. (More precisely,
a function of this type is simultaneously recursive in the arguments n + 1 to
n + m + 1, but we are only interested in the first recursive argument.) Note
that if the variance conditions were ignored, non-terminating functions would
be accepted [3]. The type of a corecursive function fixν

n s with n arguments has
to be of the form

∀X. A1 → · · · → An → νıF G

where the Ai are again contravariant in ı and F and G do not mention ı (criterion
A fixν

n-adm).
Basic data types like unit, product, and sum can be added to the system, but

we define them impredicatively (see Figure 2) since minimality of the system is
a stronger concern in this work than efficiency. Some examples for sized types
are:

Nat : ord +→ ∗
Nat := λı. μıλX. 1 + X

List : ord +→ ∗ +→ ∗
List := λıλA. μıλX. 1 + A × X

Tree : ord +→ ∗ −→ ∗ +→ ∗
Tree := λıλBλA. μıλX. 1 + A × (B → X)

Stream : ord −→ ∗ +→ ∗
Stream := λıλA. νıλX. A × X

A rich collection of examples is provided in the author’s thesis [2, Sect. 3.2].
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Syntactic categories.

Var 
 x variable
Tm 
 r, s, t ::= x | λxt | r s | fixμ

n | fixν
n term (n ∈ N)

Val 
 v ::= λxt | fix∇n | fix∇ns t (where |t| ≤ n) value (∇ ∈ {μ, ν})
Eframe 
 e( ) ::= s | fixμ

n s t1..n evaluation frame
Ecxt 
 E ::= Id | E ◦ e [Id(r) = r, (E ◦ e)(r) = E(e(r))] evaluation context
Cxt 
 Γ ::= � | Γ, x :A | Γ, X :pκ typing context

Well-formed typing contexts.

cxt-empty � cxt
cxt-tyvar

Γ cxt
Γ, X :◦κ cxt

cxt-var
Γ cxt Γ � A : ∗

Γ, x :A cxt

Typing Γ � t : A.

ty-var
(x :A) ∈ Γ Γ cxt

Γ � x : A
ty-abs

Γ, x :A � t : B

Γ � λxt : A → B

ty-app
Γ � r : A → B Γ � s : A

Γ � r s : B
ty-sub

Γ � t : A Γ � A ≤ B : ∗
Γ � t : B

ty-gen
Γ, X :◦κ � t : F X

Γ � t : ∀κF
ty-inst

Γ � t : ∀κ F Γ � G : κ

Γ � t : F G

ty-rec
Γ � A : ord → ∗ A fix∇n-adm Γ � a : ord

Γ � fix∇n : (∀ı :ord. A ı → A (ı + 1)) → A a
∇ ∈ {μ, ν}

Impredicative definition of unit, product, and sum type.

1 := ∀C. C → C : ∗
× := λAλB∀C. (A → B → C) → C : ∗ +→ ∗ +→ ∗
+ := λAλB∀C. (A → C) → (B → C) → C : ∗ +→ ∗ +→ ∗

Reduction t −→ t′: Closure of the following axioms under all term constructors:

(λxt) s −→ [s/x]t
fixμ

ns t1..n v −→ s (fixμ
ns) t1..n v if v �= fixν

n′s′ t1..n′

e (fixν
ns t1..n) −→ e (s (fixν

ns) t1..n) if e �= fixμ
n′s

′ t1..n′

Fig. 2. Fω̂: Terms and type assignment

3 Operational Semantics

In this section, the reduction rules for recursive and corecursive functions are
developed. It is clear that unrestricted unfolding of fixed points fix s −→ s (fix s)
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leads immediately to divergence. In the literature on type-based termination
with iso-inductive types one finds the sound reduction rule fixμ

ns t1..n (in r) −→
s (fixμ

ns) t1..n (in r), which requires the recursive argument to be a canonical in-
habitant of the inductive type. Since the canonical inhabitants for equi-inductive
types can be of any shape, we liberalize this rule to

fixμ
ns t1..n v −→ s (fixμ

ns) t1..n v, (1)

where v is a value; in our case a λ-abstraction, or an under-applied (co)recursive
function.

Elements of a coinductive type should be delayed by default, they should only
be evaluated when they are observed, or forced, i. e., when they are surrounded
by a non-empty evaluation context e. A candidate for a reduction rule is

e (fixν
ns t1..n) −→ e (s (fixν

ns) t1..n). (2)

It is easy to find well-typed diverging terms if less than n arguments t1..n are
required before the fixed-point can be unfolded.

Evaluation contexts e( ) are either applications s or recursive functions
fixμ

n s t1..n . The second form is necessary because, before reduction (1) can be
performed, the recursive argument has to be evaluated, hence, must be in eval-
uation position. However, we run into problems if a corecursive value is in a
recursive evaluation context, e. g., fixμ

0 (λxx) (fixν
0 (λzy)). Such a term can be

well-typed3 if we use types like μλX. νλY. A. Depending on which fixed-point
we unfold we get completely different behavior: the recursion fixμ

0 can be un-
folded ad infinitum, the term diverges. If we unfold the corecursion fixν

0 , we
arrive at fixμ

0 (λxx) y, which is blocked. Another bad example is fixμ
0 s (fixν

0s) with
s = λzλxx. If we unfold recursion, we arrive at the normal form fixν

0s. Otherwise,
if we first unfold corecursion, we obtain fixμ

0 s (λxx) which has normal form λxx;
the calculus is not locally confluent.

In this article, we restore acceptable behavior in the following way: A corecur-
sive value inside a recursive evaluation context should block reduction, terms like
fixμ

0 s (fixν
0 s′) should be considered neutral, like variables. The drawback of this

decision is that types like νıλX. Listj X (non-wellfounded, but finitely branching
trees) are not well-supported by the system: Applying the List-length function to
such a tree, like fixν

0λx.singletonList(x), will not reduce. This seems to be a high
price to pay for equi-(co)inductive types; in the iso-version, such problems do not
arise. However, as we will see in the next section, even with these blocked terms,
the equi-version is able to completely simulate reduction of the iso-version, so
we have not lost anything in comparison with the iso-version, but we can gain
something by improving the current reduction strategy in the equi-version.

4 Embedding Iso- into Equi-(Co)Inductive Types

Why are we so interested in equi-inductive types, if they cause us trouble? Be-
cause they are the more primitive notion. Strong normalization for iso-inductive
3 Note that fixμ

0 λxx : (μaλXX) → C and fixν
0λxx : νaλXX.
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types can be directly obtained from the result for equi-inductive types, since
there exists a trivial type and reduction preserving embedding. Let Delayκ be
defined by recursion on the pure kind κ as follows:

Delay∗ (A) := 1 → A
Delaypκ→κ′ (F ) := λX :κ. Delayκ′(FX)

Then we can define iso-inductive μκ and iso-coinductive νκ types in Fω̂ as follows:

∇κ := λıλF :κ. ∇ı
κ Delayκ(F )

in∇(t) := λzt where z 
∈ FV(t) out∇(r) := r ()

Now inμ(t) is a non-corecursive value for each term t, and outν( ) is an applicative
evaluation context, so we obtain in Fω̂ the reductions typical for iso-types:

fixμ
ns t1..n (inμ(r)) −→ s (fixμ

ns) t1..n (inμ(r))
outν(fixν

ns t1..n) −→ outν(s (fixν
ns) t1..n).

The reverse embedding, however, is not trivial. Since in the equi-system, folding
and unfolding of inductive types can happen deep inside a type, equi-programs
are not typable in the iso-system without major modifications. Only typing
derivations of the equi-system can be translated into typing derivations of the
iso-system. Thus, we consider equi-systems as more fundamental than
iso-systems.

5 Semantical Types

A strongly normalizing term t ∈ SN is a term for which each reduction se-
quence ends in a value or a neutral term. A neutral term has either a variable
in head position, or, in our case, a blocking fixμ-fixν combination. We define SN
inductively, extending previous works [15,28,17] by rules for (co)recursive terms
(see Figure 3). Rule sn-roll is sound, but not strictly necessary; however, it
simplifies the proof of extensionality (see lemma).

Safe reduction t�t′ is a variant of weak head reduction which preserves strong
normalization in both directions. In particular, SN is closed under safe expansion
(rule sn-exp). This works because we require s ∈ SN in rule shr-β.

Lemma 1 (Properties of SN)

1. Extensionality: If r x ∈ SN then r ∈ SN.
2. Closure: If r ∈ SN and r � r′ or r � r′ then r′ ∈ SN.
3. Strong normalization: If r ∈ SN then there are no infinite reduction sequences

r −→ r1 −→ r2 −→ . . . .
4. Weak head normalization: If r ∈ SN then r � r′ and r′ ∈ SNe ∪ Val.

Alternatively, one can take 3. as the defining property of SN and from this prove
1., 2., and the sn- and sne-rules in Figure 3. Property 4. holds then also, but
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Strongly normalizing evaluation contexts E ∈ Scxt.

sc-id

Id ∈ Scxt
sc-app

E ∈ Scxt s ∈ SN
E ◦ ( s) ∈ Scxt

sc-rec
E ∈ Scxt s, t1..n ∈ SN
E ◦ (fixμ

ns t1..n ) ∈ Scxt

Strongly normalizing neutral terms r ∈ SNe.

sne-var
E ∈ Scxt

E(x) ∈ SNe
sne-fix

μ
fix

ν E ∈ Scxt s, t, s′, t′ ∈ SN
E(fixμ

ns t1..n (fixν
n′s′ t′

1..n′)) ∈ SNe

Strongly normalizing terms t ∈ SN.

sn-sne
r ∈ SNe
r ∈ SN

sn-abs
t ∈ SN

λxt ∈ SN
sn-fix

t ∈ SN
fix∇nt ∈ SN

|t| ≤ n + 1

sn-exp
r � r′ r′ ∈ SN

r ∈ SN
sn-roll

s (fixν
ns) t ∈ SN

fixν
ns t ∈ SN

|t| ≤ n

Safe reduction t � t′ (plus reflexivity and transitivity).

shr-β
s ∈ SN

E((λxt) s) � E([s/x]t)
shr-rec

v �= fixν
n′s′ t′

1..n′

E(fixμ
ns t1..n v) � E(s (fixμ

ns) t1..n v)

shr-corec

e �= fixμ
n′s

′ t′
1..n′

E(e(fixν
ns t1..n)) � E(e(s (fixν

ns) t1..n))

Fig. 3. Strongly normalizing terms

only because there are no “junk terms” like 0 (λxx) in our language which block
reduction but are neither neutral nor values.

In the remainder of this section, we prepare for the model construction for
Fω̂ that will verify strong normalization. As usual, we interpret types as sets A
of strongly normalizing terms, where A is closed under safe expansion. In the
iso-case, we could interpret a coinductive type C := [[νa+1F ]] as {r | out r ∈
[[F (νaF )]]}, or in words, as these terms r whose canonical observation out r is
already well-behaved. A corecursive object, say fixν

0s can enter C by the safe
expansion out (fixν

0s) � out (s (fixν
0s)) provided that s (fixν

0s) ∈ C already. In the
equi-case, however, a canonical observation is not available, we have no choice
than to set the interpretation of C to the semantical type [[F (νaF )]]. How can
now fixν

0s enter C? The solution is that each semantical type A is characterized by
a set of evaluation contexts, E , such that t ∈ A iff E(t) ∈ SN for all E ∈ E . This
characterization automatically ensures that A is closed under safe reduction and
expansion. Now fixν

0 s enters C through the safe expansion E(fixν
0s)�E(s (fixν

0s)).
Formally, this will be proven in Lemma 5. In the following, we give constructions
and properties of semantical types. Due to lack of space, the presentation is
rather dense, more details can be found in the author’s thesis [2].
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5.1 Orthogonality

We say that term t is orthogonal to evaluation context E,

t ⊥ E :⇐⇒ E(t) ∈ SN.

We could also say t behaves well in E. A semantical type A is the set of terms
which behave well in all E ∈ E , where E is some set of strongly normalizing
evaluation contexts. The space of semantical types is called SAT.

E⊥ := {t | t ⊥ E for all E ∈ E}
A⊥ := {E | t ⊥ E for all t ∈ A}
SAT := {E⊥ | {Id} ⊆ E ⊆ Scxt} saturated sets
N := Scxt⊥ ⊃ SNe neutral terms
S := {Id}⊥ s.n. terms
A := A⊥⊥ closure
A → E⊥ := {Id, E ◦ ( s) | E ∈ E , s ∈ A}⊥ function space
⋂

A :=
⋂

A for A ⊆ SAT infimum
⋃

A :=
⋃

A for A ⊆ SAT supremum

The greatest semantical type is S = SN; the least semantical type N contains all
terms which behave well in all good contexts, including the variables and even
more, all safe expansions of strongly normalizing neutral terms. But due to rule
sne-fix

μ
fix

ν , also some corecursive values inhabit N , e. g., fixν
0λzy.

Lemma 2 (Properties of saturated sets)

1. Galois connection: A⊥ ⊇ E ⇐⇒ A ⊆ E⊥. This implies A ⊆ A⊥⊥, A ⊆
B =⇒ A⊥ ⊇ B⊥, and A⊥⊥⊥ = A⊥, and the same laws for Es.

2. Biorthogonal closure: If A ⊆ S then {Id} ⊆ A⊥ ⊆ Scxt and A⊥⊥ ∈ SAT.
3. De Morgan 1:

⋂
i∈I E⊥

i = (
⋃

i∈I Ei)⊥.
4. De Morgan 2:

⋃
i∈I E⊥

i ⊆ (
⋂

i∈I Ei)⊥.
5. Reduction/expansion closure: If t ∈ E⊥ and t � t′ or t � t′ then t′ ∈ E⊥.
6. Normalization: If t ∈ A ∈ SAT then either t ∈ N or t � v.
7. Function space: If A ⊆ S and B ∈ SAT then A → B ∈ SAT.
8. Infimum and supremum: If A ⊆ SAT then

⋂
A ∈ SAT and

⋃
A ∈ SAT.

In general, the inclusion in law De Morgan 2 is strict; thus, taking the orthogonal
seems to be an intuitionistic rather than a classical negation.

Lemma 3 (Abstraction and application). Let B ∈ SAT.

1. If Var ⊆ A and r s, [s/x]t ∈ B for all s ∈ A, then r, λxt ∈ A → B.
2. If r ∈ A → B and s ∈ A then r s ∈ B.

The proof of 1. uses extensionality (Lemma 1) to show r ⊥ Id from r x ∈ B.
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5.2 Recursion and Corecursion, Semantically

In this section, we characterize admissible types for recursion and corecursion in
our semantics and prove semantical soundness of type-based termination. Let O
denote some initial segment of the set-theoretic ordinals.

The semantic type family A ∈ O → SAT is admissible for recursion on the
n + 1st argument if

adm-μ-shape there is an index set K and there are
B1, . . . , Bn, I, C ∈ K × O → SAT such that for all α ∈ O,

A(α) =
⋂

k∈K(B1..n(k, α) → I(k, α) → C(k, α)),
adm-μ-start I(k, 0) ⊆ N for all k ∈ K, and
adm-μ-limit

⋂
α<λ A(α) ⊆ A(λ) for all limits λ ∈ O \ {0}.

In adm-μ-shape, the intersection
⋂

stands for a quantification over types, the
Bi for non-recursive arguments, the I for the recursive argument of inductive
type, and C for the result type.

Lemma 4 (Recursion is a function). Let A ∈ O → SAT be admissible for
recursion on the n + 1st argument. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O,
then fixμ

ns ∈ A(β) for all β ∈ O.

Proof. By transfinite induction on β ∈ O [2, Lemma 3.32].

The soundness of corecursion makes crucial use of our definition of a semantical
type by a set of evaluation contexts. It also requires that coinductive types denote
the whole term universe S in the 0th iteration (adm-ν-start).

The semantic type family A ∈ O → SAT is admissible for corecursion with n
arguments if

adm-ν-shape for some index set K and B1..n, C ∈ K × O → SAT,
A(α) =

⋂
k∈K(B1..n(k, α) → C(k, α)) for all α ∈ O,

adm-ν-start S ⊆ C(k, 0) for all k ∈ K, and
adm-ν-limit

⋂
α<λ A(α) ⊆ A(λ) for all limits λ ∈ O \ {0}.

Lemma 5 (Corecursion is a function). Let A ∈ O → SAT be admissible for
corecursion with n arguments. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O, then
fixν

ns ∈ A(β) for all β ∈ O.

Proof. By transfinite induction on β ∈ O [2, Lemma 3.37].

5.3 Lattices and Iteration

The saturated sets form a complete lattice [[∗]] = SAT with least element ⊥∗ := N
and greatest element �∗ := S. It is ordered by inclusion �∗ := ⊆ and has ar-
bitrary infima inf∗ :=

⋂
and suprema sup∗ :=

⋃
. Let [[ord]] := [0; �ord] be

an initial segment of the set-theoretic ordinals which is closed under suprema,
such that all (co)inductive types reach their fixpoint at ordinal �ord. An upper
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bound for the �ord is the ωth uncountable [3], although the true closure ordinal
is probably much smaller, and it would be interesting to find out more about
it. With the usual ordering on ordinals, [[ord]] constitutes a complete lattice as
well. Function kinds [[◦κ → κ′]] := [[κ]] → [[κ′]] are interpreted as set-theoretic
function spaces; a covariant function kind denotes just the monotonic functions
and a contravariant kind the antitonic ones. For all function kinds, ordering is
defined pointwise: F �pκ→κ′ F ′ :⇐⇒ F(G) �κ′ F ′(G) for all G ∈ [[κ]]. Simi-
larly, ⊥pκ→κ′

(G) := ⊥κ′
is defined pointwise, and so are �pκ→κ′

, infpκ→κ′
, and

suppκ→κ′
.

For monotone F ∈ [[κ]] +→ [[κ]] we define iteration from below and above as
usual:

μ0F = ⊥κ

μα+1F = F(μαF)
μλF = supκ

α<λ μαF

ν0F = �κ

να+1F = F(ναF)
νλF = infκ

α<λ ναF
For fixed F , μαF is monotonic in α and ναF is antitonic in α.

6 Soundness

For a constructor constant C :κ, the semantics [[C]] ∈ [[κ]] is defined as follows:

[[→]](A, B ∈ [[∗]]) := A → B
[[μκ]](α)(F ∈ [[κ]] +→ [[κ]]) := μαF
[[νκ]](α)(F ∈ [[κ]] +→ [[κ]]) := ναF
[[∀κ]](F ∈ [[κ]] → [[∗]]) :=

⋂
G∈[[κ]] F(G)

[[∞]] := �ord

[[s]](�ord) := �ord

[[s]](α < �ord) := α + 1

We extend this semantics to constructors F in the usual way.
Let θ be a partial mapping from constructor variables to sets. We say θ ∈ [[Δ]]

if θ(X) ∈ [[κ]] for all (X : pκ) ∈ Δ. A partial order on valuations is defined by
θ � θ′ ∈ [[Δ]] :⇐⇒ θ(X) �p θ′(X) ∈ [[κ]] for all (X : pκ) ∈ Δ. Herein, we have
used �− for �, and �◦ for =, and �+ as synonym for �.

Theorem 1 (Soundness of type-related judgements). Let θ, θ′ ∈ [[Δ]].

1. If Δ � F : κ then [[F ]]θ ∈ [[κ]].
2. If Δ � F = F ′ : κ and θ � θ′ ∈ [[Δ]], then [[F ]]θ � [[F ′]]θ′ ∈ [[κ]].
3. If Δ � F ≤ F ′ : κ and θ � θ′ ∈ [[Δ]], then [[F ]]θ � [[F ′]]θ′ ∈ [[κ]].
4. If Δ � A fixμ

n-adm, then [[A]]θ is admissible for recursion on the n + 1st arg.
5. If Δ � A fixν

n-adm, then [[A]]θ is admissible for corecursion with n arguments.

We extend valuations θ to term variables and say θ ∈ [[Γ ]] if θ(X) ∈ [[κ]] for all
(X : pκ) ∈ Γ and θ(x) ∈ [[A]]θ for all (x : A) ∈ Γ . Let �t�θ denote the capture-
avoiding substitution of θ(x) for x in t, simultaneously for all x ∈ FV(t).

Theorem 2 (Soundness of Fω̂). If Γ � t : A and θ ∈ [[Γ ]] then �t�θ ∈ [[A]]θ.

The theorem is proved by induction on the typing derivation [2, Thm. 3.49].
As a consequence, taking θ(x) = x for all (x : A) ∈ Γ and θ(X) = �κ for all
(X :pκ) ∈ Γ , we get t = �t�θ ∈ [[A]]θ ⊆ SN.
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7 Conclusion

We have presented a type system for termination of recursive functions over
equi-inductive and -coinductive types and shown its soundness by a model based
on orthogonality. All reductions of the corresponding iso-system are simulated,
hence, termination of the iso-system follows as a special case.

Parigot [24] already introduces equi-inductive types to model efficient recur-
sion schemes in system AF2, second order functional arithmetic. Raffalli [26]
considers also equi-coinductive types. However, recursion is limited to Mendler-
style (co)iteration [22], preventing a direct implementation of primitive recursive
programs such as factorial. Iteration is but a special case of the recursion scheme
of the present work, which generalizes course-of-value recursion.

Orthogonality has been introduced by Girard for the semantics of linear logic;
it pops up again in Ludics [14]. Parigot has implicitly used orthogonality to
prove strong normalization of second-order classical natural deduction [25]. His
work has been extended by Matthes to positive fixed-point types [20]. Lindley
and Stark [18] use orthogonality to show strong normalization of the monadic
lambda-calculus and give credit to Pitts. Vouillon and Melliès [30] model recur-
sive types with orthogonality, Vouillon [29] bases subtyping rules for union types
on orthogonality.

Related works on type-based termination include: Hughes, Pareto, and Sabry
[16], who treat first-order inductive and coinductive types that close at itera-
tion ω. Their system is also equi in spirit [23, Ch. 3.10], however, they do not
give reduction rules but construct a denotational model. Barthe et al. [8] prove
strong normalization for recursive functions over sized inductive types of kind ∗.
Although there are no explicit (un)folding operations in and out, the only way to
generate inductive data is via constructors for labeled sums, which is crucially in
the reduction rule for recursion. Thus, the system is iso in disguise, in is merged
into the constructors, and out into case distinction. Blanqui [10] considers type-
based termination for his Calculus of Algebraic Constructions—iso-inductive in
spirit—which subsumes the Calculus of Inductive Constructions (CIC). Barthe,
Gregoire, and Pastawski [9] have extended type-based termination to the CIC.
Xi [31] bases termination on dependent types, albeit only dependencies on in-
teger expressions, which gives him a great flexibility in termination measures.
Since in his system a typing context can become unsatisfiable, he only shows
call-by-value normalization of closed programs. Blanqui and Riba [11] manage
to avoid unsatisfiable contexts, and thus, recover strong normalization.

In our treatment of equi-(co)inductive types, it is a bit unsatisfactory that
terms like fixμ

0s (fixν
0 s′) are blocked. One could think of allowing both unfoldings,

arriving at a non-confluent calculus. The techniques described in this paper are
then no longer sufficient to prove strong normalization, but maybe methods used
for normalization of classical logic could be employed.
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Abstract. We define an effective, sound and complete game semantics
for HAinf, Intuitionistic Arithmetic with ω-rule. Our semantics is equiva-
lent to the original semantics proposed by Lorentzen [6], but it is based on
the more recent notions of ”backtracking” ([5], [2]) and of isomorphism
between proofs and strategies ([8]). We prove that winning strategies
in our game semantics are tree-isomorphic to the set of proofs of some
variant of HAinf, and that they are a sound and complete interpretation
of HAinf.

1 Why Game Semantics of Intuitionistic Arithmetic?

In [7], S.Hayashi proposed the use of an effective game semantics in his Proof
Animation project. The goal of the project is ”animating” (turning into algo-
rithms) proofs of program specifications, in order to find bugs in the way a
specification is formalized. Proofs are formalized in classical Arithmetic, and the
method chosen for “animating” proofs is a simplified version of Coquand’s game
interpretation ([4], [5]) of PAinf, classical arithmetic with ω-rule. The interest of
the game interpretation is that it interprets rules of classical arithmetic by very
simple operations, like arithmetical operation, reference to a pointer, adding and
removing elements to a stack.

Coquand, however, defined implication A → B as classical implication, as
“A is false or B is true”. In real proofs, instead, we often use the constructive
definition of implication A ⇒ B, which is: ”assume A in order to prove B”.
A ⇒ B is classically equivalent to “A is false or B is true”, but this means that
in order to interpret a proof in Coquand’s semantics we have first to modify it.
If we want some control and understanding of the algorithm we extract from a
proof, instead, it is crucial to animate the original proof.

In this paper we adapt Coquand’s game semantics of PAinf to game semantics
of Intuitionistic Arithmetic HAinf with intuitionistic implication ⇒. Our semantics
is equivalent to the original Lorentzen’s game semantics [6], and also bears some
similarity with Hyland-Ong game semantics for simply typed lambda terms [10].
The main difference between our semantics and Lorentzen’s semantics is that
we do no not add dummy moves when interpreting connectives, but when in-
terpreting implication (see [1], §4.4 for a discussion). Reducing the number of
dummy moves is crucial in order to make evident the relationship between a
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game strategy and the intuitionistic proof interpreted by the strategy. The main
difference between our semantics and Hyland-Ong’s semantics is, instead, that
we consider all connectives as Lorentzen did. In this way the difference between
the game interpretation for implication and the game interpretation for all other
connectives becomes evident.

The game interpretation of the intuitionistic implication introduced in this
paper aims to be one step in the Proof Animation project. What is still missing
are game semantics combining all features of real proofs: classical logic, intu-
itionistic implication, cut rule, induction rule, and so forth. We claim that the
semantics introduced in this paper can also be used to interpret Cut rule through
the notion of dialogue, as it was done by Coquand, Hyland-Ong and Herbelin.
We did not include Cut rule for reason of space. Even without Cut rule, we can
use our semantic to interpret the evidence provided by an intuitionistic proof
in term of very simple operations, without blurring the relation with the proof
structure during the interpretation.

1.1 The Plan of the Paper

This is the plan of the paper. In §2 we introduce the language of arithmetic.
In §3 we introduce our game semantics. In §4 we introduce HAinf, intuitionistic
arithmetic with ω-rule. In §5, 6 we prove that winning strategies of our seman-
tics are tree-isomorphic the proofs of some variant of HAinf, and that our game
semantics is sound and complete for HAinf. For a discussion of our definition of
game, for one example of winning strategy and for one example of play we refer
to [1], §4, 9, 10.

2 The Language of Arithmetic

In this section we introduce a language LHA for first order arithmetic, the notion
of judgement, and the notion of sequent. In the next section we define our game
semantics.

LHA has a connective A ⇒ B denoting intuitionistic implication. We also in-
troduce a ”game language” LG ⊃ LHA for game semantics. The formulas of LG
denote games interpreting formulas of LHA. Each connective of LHA corresponds
to some operator defining games in LG, operator which we will denote with the
same symbol. In this way each formula of LHA will be also considered as a de-
notation for some game in LHA interpreting it. The only difference between LG
and LHA is that HA has one extra connective →. The connective → denotes one
binary operator on games, used as an intermediate step in the interpretation of
intuitionistic implication ⇒.

We divide the formulas of the game language LG into disjunctive and conjunc-
tive, by generalizing the usual distinction between disjunctive and conjunctive
formulas we have in Logic. We consider A ⇒ B a conjunction, and A → B a dis-
junction. The language LHA, for intuitionistic arithmetic, consists of all formulas
of LG which are →-free.
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Definition 1

– LG is the first order language including a r.e. set of function symbols for
recursive functions (at least 0, S, +, ∗), and a r.e. set of predicate symbols for
recursive predicates (at least <, =), and the connectives T, F, ∧, ∨, ¬, ⇒, ∀, ∃
and →. We call T, F “true” and “false”, and we consider them different
from all atomic formulas.

– LHA, the language of intuitionistic arithmetic, is the sub-language of LG con-
sisting of all formulas which are →-free. L+, the language of positive formu-
las, is the sub-language of LHA consisting of all formulas which are ¬, ⇒, →-
free. LG0, LHA0, L+

0 are the sets of closed formulas of LG, LHA, L+.
– If A ∈ LG is F , or is atomic, or starts with ∨, →, ∃, we say that A is disjunc-

tive. If A ∈ LG0 is T , or starts with ∧, ⇒, ¬, ∀, we say that A is conjunctive.

We consider T conjunctive because the constant true is equivalent to an empty
conjunction. We consider F disjunctive because the constant false is equivalent to
an empty disjunction. We consider (arbitrarily) all atomic formulas disjunctive.
The only non-trivial choice is considering A ⇒ B conjunctive and A → B
disjunctive: we discuss this choice in [1], §4.4. ¬A is taken conjunctive by analogy
with A ⇒ F , which is equivalent to ¬A. We use t, u, v, . . . to denote closed terms
of LG0. We use A, B, C, D, A1, B1, C1, D1, . . . to denote closed formulas of LG0,
and a, b, c, . . . for atomic closed formulas.

We consider the usual subformula relation between closed formulas, with the
additional clauses: the only immediate subformula of A ⇒ B is A → B, and:
the only subformula of a atomic is T or F , according if a is true or false.

Definition 2 (Immediate Subformula relation <1 over LG0)

– T, F have no immediate subformula. If A ∈ LG0 is atomic, the only immedi-
ate subformula of A is T if A is true, and F if A is false. The immediate
subformulas of A ∨ B, A ∧ B, A → B are A, B. The only immediate subfor-
mula of A ⇒ B is A → B. The only immediate subformula of ¬A is A. The
immediate subformulas of ∀x.A[x], ∃x.A[x] are all A[t] for t closed term of
LG. If A is an immediate subformula of B, we write A <1 B (or B >1 A).
The subformula relation < is the transitive closure of <1.

– Assume A <1 C. If C = ¬A, A → B, we say that A is negative in C. In all
other cases, we say that A is positive in C.

– An occurrence of a subformula B in A is any sequence A0, . . . , An with A0 =
A, and Ai >1 Ai+1 for all i < n, and An = B. The occurrence is positive if
Ai+1 is negative in Ai for an even number of i, the occurrence is negative,
if Ai+1 is negative in Ai for an odd number of i.

We use the informal notion of tree and all tree terminology (children, father,
ascendant, descendant, branch, leaf). The subformula tree of C ∈ LG0 is the
tree of all subformula occurrences of C, ordered by the subformula relation <.
If C ∈ LHA, then C by definition is →-free. Yet, the subformula tree of C in
LG0 can include occurrences of some A → B, the children of the occurrences
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A ⇒ B of the tree. The only difference between an occurrence of A ⇒ B and
an occurrences of A → B is that the former is conjunctive while the latter is
disjunctive. This duplication of nodes looks useless, but it will play a crucial
role in the completeness result. If we restrict the subformula relation to LHA,
then we skip A → B. In this case the immediate subformulas of A ⇒ B are
A, B, as expected. We now formally define the notion of judgement and sign of
a judgement.

Definition 3 (Judgement and Sign of a Judgement). Let A ∈ LG0.

1. We call t.A and f.A judgements, and we read them “A is true”, “A is false”.
We call s the sign of sA, and we say the sign is positive if s = t., is negative
if s = f.. We denote by s⊥ the opposite sign of s: s⊥ = f. if s = t., and
s⊥ = t. if s = f..

2. We say that t.A is a disjunctive judgement (respectively, a conjunctive judge-
ment) if A is a disjunctive formula (respectively, a conjunctive formula).

3. We say that f.A is a disjunctive judgement (respectively, a conjunctive judge-
ment) in the opposite case, namely, if A is a conjunctive formula (respec-
tively, a disjunctive formula).

By switching the sign of a formula we switch conjunctive and disjunctive judge-
ments. For instance, t.A ⇒ B is conjunctive, while f.A ⇒ B is disjunctive.
There is a sub-judgement relation analogous to the sub-formula relation, except
that the judgements have opposite signs whenever the subformula is negative.

Definition 4 (Immediate sub-judgement relation). Let A ∈ LG0. We say that
s′A′ is an immediate sub-judgement of sA, and we write s′A′ <1 sA, if A′ <1 A,
and: s′ = s if A′ is positive in A, and s′ = s⊥ if A′ is negative in A. The sub-
judgement relation < is the transitive closure of <1.

For instance, the immediate sub-judgements of t.A → B are f.A and t.B, while
the immediate sub-judgements of f.A → B are t.A and f.B. If we restrict the
sub-judgement relation to judgements of LHA, then the immediate sub-judgements
of t.A ⇒ B are f.A, t.B, as expected.

We will now introduce a notion of pointed sequent: sequents having one “active
formula” in evidence. We first recall what (finite) multisets are. A multiset is
a set with possibly repetitions, in which elements x1, . . . , xn are distinguished
through the use of labels. We use positive integers as labels. We formalize a
multiset X with the set of its indexes paired with the corresponding elements:
X = {〈i1, x1〉, . . . , 〈in, xn〉}, with 0 < i1 < . . . < in. We often write X =
x1, . . . , xn, leaving i1, . . . , in implicit: the actual indexing is irrelevant. We use
Γ, Δ, Γ ′, Δ′, . . . to denote multisets of closed formulas in LG0. {A} is the multiset
consisting of one pair 〈j, A〉 for some j > 0. We denote the disjoint union of two
multisets Γ and Δ with Γ, Δ. By renaming indexing, we can always assume two
multisets are disjoint. We denote Γ, {A} with Γ, A.

Definition 5 (Intuitionistic Sequents and occurrences). Let Γ = {〈j1, A1〉, . . . ,
〈jn, An〉} and {〈j, D〉} be two multisets over LG0, with disjoint set of indexes,
and 0 < j1 < . . . < jn.
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– An intuitionistic sequent on LG0 is any pair Γ 
 {D}. A sequent is on LHA0
if all its formulas are.

– The indexing of Γ 
 {D} is the union of indexing of Γ and {D}. We call
the index i > 0 of A in Γ 
 D an occurrence of A in Γ 
 D.

– A pointed sequent is a pair 〈Γ 
 D, i〉 of an intuitionistic sequent on LG0, and
an occurrence i > 0 of some A in Γ 
 D. We call i the active occurrence of
the sequent.

– 〈Γ 
 D, i〉 has canonical indexing if j = 1, j1 = 2, . . . , jn = n + 1. The
canonical version 〈Γ ′ 
 D′, i′〉 of Γ 
 D is obtained by replacing j with 1,
j1 with 2, . . . , jn with n + 1, and defining i′ = 1 if i = j, and i′ = k + 1 if
i = jk for some k.

From now on, we usually consider intuitionistic pointed sequents, and we call
them just “sequents”, for short. The canonical indexing 〈Γ ′ 
 D′, i′〉 of 〈Γ 
 D, i〉
is obtained by renaming the indexes of 〈Γ 
 D, i〉. The two sequents will be
equivalent in our semantics. Also any two sequents 〈Γ 
 D, i〉 and 〈Γ 
 D, j〉,
having different active formulas, will be equivalent. In logic, the indexing of Γ ,
and the active formula of a sequent are an irrelevant information. We can drop
them and we can write a sequent just as Γ 
 D. However, we need the indexing
of Γ and the active formula when defining the game interpretation.

Occurrences of a formula in a sequent have a sign, according to the side of the
sequent they belong to. The sign of an occurrence, like the sign of a judgement,
switches conjunctive and disjunctive formulas.

Definition 6 (Sign of a formula in a sequent)

– A formula occurrence in Γ 
 D has sign t. (is positive) if it is in the right-
hand-side. It has sign f. (is negative) if it is in the left-hand-side.

– Assume A is a positive occurrence. Then A is a disjunctive occurrence if A
is a disjunctive formula, and a conjunctive occurrence if A is a conjunctive
formula.

– Assume A is a negative occurrence. Then A is a disjunctive occurrence if A
is a conjunctive formula, and a conjunctive occurrence if A is a disjunctive
formula.

We introduce two operations on sequents. The operation 〈Γ 
 D, i〉+sA adds an
active formula A of sign s to the sequent 〈Γ 
 D, i〉 (and removes D, if we add
A to the right-hand-side), and chooses some index n + 1 for A. The operation
〈Γ 
 D, i〉+bck(j) changes the active formula of 〈Γ 
 D, i〉 from i to j (provided
j is an index of Γ 
 D).

Definition 7

1. For all positive integers j we introduce the notation bck(j).
2. Moves is a set of operators on sequents, consisting of all judgements sA and

all notations bck(j).
3. Assume 〈Γ 
 D, i〉 is any sequent, having maximum index n. Let A ∈ LG0,

j > 0. We define a sequent 〈Γ 
 D, i〉 + m for any operator m ∈ Moves, by
cases over m, as follows.
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– 〈Γ 
 D, i〉 + f.A = 〈Γ, A 
 D, n + 1〉 (the sequent has active formula A,
of sign f., and index n + 1).

– 〈Γ 
 D, i〉 + t.A = 〈Γ 
 A, n + 1〉 (the sequent has active formula A, of
sign t., and index n + 1).

– 〈Γ 
 D, i〉 + bck(j) = 〈Γ 
 D, j〉 if j is an index of Γ 
 D, and
= 〈Γ 
 D, n〉 o.w..

The sequent 〈Γ 
 D, i〉 + sA has the same indexing of 〈Γ 
 D, i〉, plus
the index n + 1 for A, and minus the index of D if s = t.. The sequent
〈Γ 
 D, i〉 + bck(j) has the same indexing of 〈Γ 
 D, i〉

4. 〈Γ 
 D, i〉 + 〈m1, . . . , mk〉 = (. . . (〈Γ 
 D, i〉 + m1) + . . .) + mk.

We denote the active formula of a sequent boldface, for instance: Γ,A 
 D for a
negative occurrence of A, and Γ, A 
 D for a positive occurrence of D. Any two
sequents over LHA0, differing only for the active occurrence, like Γ,A 
 D and
Γ, A 
 D, will be equivalent in our game semantics (by Theorem 3). This is not
always the case for a sequent of LG0.

3 Game Semantics for Arithmetical Formulas

In this section we define our game semantics for formulas of LG0. In the next
section we unfold our definition and discuss its consequences.

We interpret (pointed) sequents 〈Γ 
 D, i〉 as games are between two sides,
E and A. E is a single, finite and fallible being we call Eloise, able to learn from
her mistakes. A is a potentially infinite array of omniscient, infallible beings
we call the Abelard’s, one for each move of the play. The omniscience of the
Abelard’s compensates the ability of Eloise to learn from her mistakes. Having
one Abelard for each move of the game, instead, is just a colorful way of saying
that Abelard decides his next move by considering only the previous move of
the play. Therefore the replies of Abelard to two different moves are independent
each other, and we can imagine they are made by two different individuals. Eloise
can use all previous moves of the play to decide her next move, therefore her
moves are related each other and we image them as made by a single individual.

The play between E , A is interpreted as a debate. The play between E and
each Abelard is called a “thread” in the play (we use the word “thread” with its
informal meaning in Computer Science). In each position of the play, E defends
a thesis, and one Abelard attacks it, or vice versa. Moves done in defence of a
thesis cannot be retracted, for all players. The weak player, E , can retract finitely
many times a move done while attacking a thesis of A. The strong players, the
Abelard’s, can never retract a move (neither in attack, nor in defence). There
is also a thesis for the whole play. E claims that some Γ 
 D is true, while the
array of Abelard’s claims that Γ 
 D is false. We interpret truth of Γ 
 D by
the existence of a recursive winning strategy for E on the game associated to the
pointed sequent 〈Γ 
 D, i〉, for some i.

We first introduce plays and correct moves. Moves include moves of Tarski
plays [9]. This kind of move is called a logical move, and denoted by a judgement
sA. There is a new kind of moves, “backtracking”, when E comes back to the
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move number i of the play, retracts the move she did after it, and selects a
new move, with the goal of learning better and better moves in this way. This
kind of move is called a structural move, and denoted by bck(i). The idea of
backtracking is taken from [4], [5], [2] (a similar idea can be found in [10], where
it is used to interpret λ-terms). However, backtracking in our game semantics for
intuitionism has a severe limitation: E can backtrack to any judgement having
a negative sign, but only to the last judgement having a positive sign.

Definition 8 (Moves, positions and plays)

1. The set of all moves is Moves (Def. 7.2). A logical move is any judgment
sA. A structural move is any notation bck(i).

2. drop �∈ Moves is a special symbol, meaning: “I quit”.
3. A position Q is any non-empty finite sequence over Moves, starting with

some t.A. We write P ≤ Q if P is a prefix of Q.
4. A finished play P , or just a “play” for short, is either a sequence Q, drop, for

some position Q, or an infinite sequence over Moves, starting with some t.A.
5. If Q is any position, the indexing of logical moves (or judgements) in Q is:

1 for the first logical move, 2 for the second one, and so forth.

Informally, we could describe a position as an “unfinished play”. We define now
the player E/A moving from a given position Q, and the set of correct moves from
Q. Only E can move bck(i), that is, only E can “backtrack” to the judgement
number i of Q, with the further limitation that if i is the index of a positive
judgement, this judgement has to be the last positive judgement of Q. Since
E can come back to the logical move number i, the last logical move for E is
not, necessarily, the last logical move of the sequence. We call the last logical
move for E : the active move of the position. For each position Q we define: the
backtracking indexes, the active move and its index, the next player moving and
its correct moves.

Definition 9 (Correct moves). Let P be any position, having n > 0 logical
moves.

1. i is a backtracking index of P , a bck-index for short, if: : (i) 1 ≤ i ≤ n; (ii)
if the i-th judgement is positive, then the i-th judgement is the last positive
judgement of P .

2. If the last move of P is sA, the active move of P is sA, of index n.
3. If the last move of P is bck(i), the active move of P is the logical move of

index i of P if i is a bck-index of P , the logical move of index n o.w..
4. If the active move of P is a disjunctive judgement, the player moving from

P is E.
5. If the active move of P is a conjunctive judgement, the player moving from

P is A.
6. If p is the player moving from P , and sA the active move, the correct moves

of p are:
– drop (to drop out from the game)
– any s′A′ <1 sA,
– if p = E, also bck(i), for any i bck-index of P .
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7. Q is a correct extension of P if Q ≥ P , and for any P ≤ R@〈m〉 ≤ Q, the
move m is correct from R.

If the active move of P is t.A, we say that E defends, in P , the thesis A, while
some Abelard attacks the thesis A. If the active move of P is f.A, we say that
E attacks, in P , the thesis A while some Abelard defends the thesis A. We now
define the winner and the loser for any (finished) play P .

Definition 10 (loser and winner of a play). Let P be any play.

1. If P = Q, drop, and p is the player moving from Q, then p loses in P , and
its opponent wins.

2. If P is infinite, then E loses in P , and A wins.

We allow a play to use any position P as initial segment. The game associated
GP to a position P is the set of all positions we can reach from P using only
correct moves of the next player. Positions and sequents are interchangeable
notions. Any position P is associated to some sequent seq(P ) = 〈Γ 
 D, i〉 (see
the definition below). seq(P ) is defined by interpreting each move m in P as an
operation building a sequent, by Def. 7.4. We imagine that, in the position P , E
claims that 〈Γ 
 D, i〉 is true, and A claims it is false. Conversely, any pointed
sequent 〈Γ 
 D, i〉 is associated to some canonical position P = pos(Γ 
 D, i),
and to some game G(Γ 
 D, i) having P as initial position.

Definition 11. Assume P = t.A, m1, . . . , mk is any position with n > 0 logical
moves. Let 〈Γ 
 D, i〉 be any pointed sequent, with canonical indexing 〈Γ ′ 

D′, i′〉, and Γ = A1, . . . , An.

1. The game GP associated to P is the set of all correct extensions of P .
2. The sequent seq(P ) associated to P is 〈∅ 
 A, 1〉 + m1 + . . . + mk (see Def.

7.4).
3. The position pos(Γ 
 D, i) associated to 〈Γ 
 D, i〉 is: t.D, f.A1, . . . , f.An

if i′ = n + 1, and = t.D, f.A1, . . . , f.An, bck(i′) if 1 ≤ i′ ≤ n.
4. If P = pos(Γ 
 D, i), then G(Γ 
 D, i) = GP . G(D) = G(
 D, 1).

By definition unfolding, we can check that “taking the associated position” and
“taking the associated sequent” are two operations inverse each other (up to
index renaming).

Lemma 1. Let 〈Γ ′ 
 D′, i′〉 be the canonical indexing of the sequent 〈Γ 
 D, i〉,
and P = pos(Γ 
 D, i) be the position associated to 〈Γ 
 D, i〉. Then seq(P ) =
〈Γ ′ 
 D′, i′〉 (i.e., “the sequent associated to the position associated to a sequent
is the sequent itself”, up to index renaming).

The initial position of the game G(Γ 
 D, i) is P = pos(Γ 
 D, i). In the initial
position of G(Γ 
 D, i), E claims that seq(P ) = 〈Γ ′ 
 D′, i′〉 is true, while A
claims it is false. The initial position of G(A) is pos(
 A, 1) = t.A. We will now
define winning strategies for E on a game as particular recursive trees. We first
define a coding for recursive trees, and an indexing Children(x) for the children
of a node x.
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Definition 12 (Coding recursive trees)

– A tree T over M is any set of finite lists over M , including the empty list 〈〉
and closed under prefix.

– If x ∈ T , then Children(x) = {m ∈ M |x@〈m〉 ∈ T } is an indexing for the
children of a node x.

– A tree is recursive if it is coded by a recursive set.
– A labeling over a tree is any map l : T → I assigning some label l(x) ∈ I to

each x ∈ T .

From now on, we always code trees by sets of lists. If x, y are lists, we denote
the concatenation of x, y by x@y. We define winning strategies for E on a game
GP as particular recursive well-founded trees σ on the set Moves. Here is how
σ works. During the play, the current position of the play is always P@x, for
some x ∈ σ. σ is defined in such a way that, whenever E moves from P@x,
there is exactly one child x@〈m〉 ∈ σ of the current node x ∈ σ. m ∈ Moves
is the correct move �= drop suggested by σ to E from P@x. Since m ∈ Moves,
then E cannot play drop. Whenever A moves, instead, the children y of x are all
x@〈m〉 ∈ Moves which are correct moves �= drop of A from P@x. E chooses the
child x@〈m〉 corresponding to the actual move m by A (unless A plays drop,
in which case play ends). Since σ is well-founded, after finitely many moves the
play ends. The loser is necessarily A, because A is the only player who can play
drop.

Definition 13 (Recursive winning strategies for E on GP ). Fix any position P .
Let σ be any tree over the set Moves.

1. For any x ∈ T , we call seqP (x) = seq(P@x) the sequent labeling x.
2. σ is a strategy for E on GP if for all x ∈ T , if p is the player moving from

P@x:
– if p = E, then Children(x) = {m}, for some correct move m �= drop

from P@x.
– if p = A, then Children(x) is the set of all correct moves �= drop from

P@x.
3. σ is winning if it is a well-founded tree. σ is recursive if it is a recursive tree.

We can now define validity in our game semantics.

Definition 14. Let 〈Γ 
 D, i〉 be any sequent of LG0.

1. σ |= 〈Γ 
 D, i〉 if σ is a recursive winning strategy for E on G(Γ 
 D, i).
2. G |= 〈Γ 
 D, i〉 if ∃σ.σ |= 〈Γ 
 D, i〉.
3. G |= D if G |= 〈
 D, 1〉.

We can characterize a strategy on any game GP as follows:

Lemma 2. σ is a recursive winning strategy for E on GP if and only if σ is a
recursive well-founded tree, and, for all x ∈ σ, if the active move of P@x is sA,
then:
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– either sA is disjunctive and Children(x) = {bck(j)}, for some j bck-index
of P@x,

– or sA is disjunctive and Children(x) = {s′A′}, for some s′A′ <1 sA,
– or sA is conjunctive and Children(x) = {s′A′|s′A′ <1 sA}.

Proof. By unfolding Def. 13, 9.

In §6 we will prove that for all D ∈ LHA0 we have G |= D if and only if D is a
theorem of HAinf, Infinitary Intuitionistic Arithmetic with ω-rule.

4 HAinf, Intuitionistic Arithmetic with ω-Rule

In this section we introduce HAinf, an infinitary sequent calculus (with pointed
sequents) for Intuitionistic Arithmetic. We also introduce an infinitary logic Ginf

for deriving validity of formulas of LG0 in our game semantics. Proofs in Ginf are
isomorphic to winning strategies (Theorem 2). Eventually, in §6 we prove that
Ginf is a conservative extension of HAinf, and we conclude that our game semantics
is sound and complete for HAinf.

The language of HAinf is LHA0 and the language for Ginf is LG0. We first define
logical rules of Ginf and HAinf a synthetic way, using the operation 〈Γ 
 D, i〉+sA
from Def. 7. Then we unfold our definition, in order to check that it is equivalent
to the usual one for HAinf.

Definition 15

– (Logical Rules for HAinf) Assume 〈Γ 
 D, i〉 is a sequent of LHA0, with active
formula A of sign s. Let s′A′ <1 sA in LHA0. Then a logical rule of conclusion
〈Γ 
 D, i〉 has premise one 〈Γ 
 D, i〉 + s′A′ if sA is disjunctive, and all
〈Γ 
 D, i〉 + s′A′ if sA is conjunctive.

– (Logical Rules for Ginf). The definition is obtained from the definition for
HAinf, by replacing the language LHA0 with the language LG0.

In Ginf, for each sequent there is (at most) one logical rule having conclusion this
sequent. In the definition above, there are 11 possible cases for A: A true or false
atomic formula, or A starting any of the 9 connectives of LG. There are 2 possible
signs. Therefore there are at most 11 × 2 = 22 possible cases for logical rules.
There is no logical rule, however, if sA is disjunctive and there is no s′A′ <1 sA,
because a logical rule for a disjunctive sA requires one s′A′ <1 sA. The are only
two cases of this kind: sA = t.F, f.T , both disjunctive and without immediate
sub-judgements. Therefore, if we unfold the definition of logical rule, we obtain
22 − 2 = 20 cases for a logical rule in Ginf

1:

Definition 16 (Logical Rules for Ginf). We write the active occurrence of any
sequent boldface.
1 In Def. 16 there are, in fact, 21 different patterns, because there are two patterns in

the case A is an implication B → C, and A is in the right-hand-side of a sequent.
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– (Rules for F, T )

Γ,F 
 D Γ 
 T

– (Atomic logical rules) For any a atomic false, and any b atomic true (true
and false in the standard model N):

Γ, a,F 
 D

Γ, a 
 D
Γ 
 F
Γ 
 a

Γ, b,T 
 D

Γ,b 
 D
Γ 
 T
Γ 
 b

– (Conjunctive logical rules for ∧, ∀, ∨, ∃)

Γ 
 Ci (for i = 1, 2)
Γ 
 C1 ∧ C2

Γ 
 A[t] (for all closed terms t)
Γ 
 ∀x.A

Γ, C1 ∨ C2,Ci 
 D (for i = 1, 2)
Γ,C1 ∨ C2 
 D

Γ, ∃x.A,A[t] 
 D (for all closed terms t)
Γ, ∃x.A 
 D

– (Disjunctive logical rules for ∧, ∀, ∨, ∃). Let i = 1 or i = 2, and t be any
closed term.

Γ 
 Ci

Γ 
 C1 ∨ C2

Γ 
 A[t]
Γ 
 ∃x.A

Γ, C1 ∧ C2,Ci 
 D

Γ,C1 ∧ C2 
 D

Γ, ∀x.A,A[t] 
 D

Γ, ∀x.A 
 D

– (Logical rules of implication →) The logical rule for A → B in the right-
hand-side has two sub-cases.

Γ,A 
 A → B

Γ 
 A → B
Γ 
 B

Γ 
 A → B
Γ, A → B 
 A Γ, A → B,B 
 D

Γ,A → B 
 D

– (Logical rules of intuitionistic implication ⇒)

Γ 
 A → B
Γ 
 A ⇒ B

Γ, A ⇒ B,A → B 
 D

Γ,A ⇒ B 
 D

– (Logical rules of negation)

Γ,A 
 ¬A

Γ 
 ¬A
Γ, ¬A 
 A
Γ, ¬A 
 D

We can unfold the logical rules for HAinf in a similar way. The only difference
between HAinf and Ginf is that in HAinf the rules for A → B are skipped, and
the rules for A ⇒ B have hypotheses with active formulas A, B, because the
immediate subformulas of A ⇒ B in LHA are A, B:

Γ,A 
 A ⇒ B

Γ 
 A ⇒ B
Γ 
 B

Γ 
 A ⇒ B
Γ, A ⇒ B 
 A Γ, A ⇒ B,B 
 D

Γ,A ⇒ B 
 D
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We consider only one structural rule both for HAinf and Ginf, Exchange, switching
the active formula of a sequent.

Definition 17 (Structural Rule for HAinf and Ginf: Exchange). Let Γ 
 D be any
sequent, and i, j any two occurrences of formulas of Γ 
 D.

– The Exchange rule, or E-rule for short, is the following: derive 〈Γ 
 D, j〉
from 〈Γ 
 D, j〉 + bck(i).

– DisjE, ConjE, ConjE→-rules are the restriction of the E-rule, when the oc-
currence j is, respectively: disjunctive, conjunctive, conjunctive and equal to
B1 → B2 for some B1, B2.

– The Exchange rules for HAinf, Ginf are E and ConjE.

By unfolding the definition of 〈Γ 
 D, j〉 + bck(i), we can write the E-rule as
follows: for any two occurrences i, j of Γ 
 D,

〈Γ 
 D, i〉
〈Γ 
 D, j〉

E-rule says that two sequents differing only for the active formula are equiva-
lent. In §5, we will prove that ConjE is conditionally derivable in Ginf from DisjE
for all sequents of LHA (i.e., for all sequents without →). We will deduce that Ginf

is a conservative extension of HAinf. Besides, strategies in our game semantics and
proofs of Ginf can be identified (see Theorem 2). By combining the two remarks,
we will conclude that our game semantics are sound and complete for HAinf.

Proofs of HAinf (of Ginf) are all well-founded recursive trees, labeled with se-
quents, and such that the sequent labeling each node is the conclusion of some
rule of HAinf (of Ginf). We code proofs as trees over Moves, in order to stress the
similarity between proofs of Ginf and winning strategies.

Definition 18. Fix any sequent S = 〈Γ 
 D, i〉 of LG0 (of LHA0). Assume Π is
any well-founded, recursive tree over Moves.

1. The labeling of Π with sequents is, for all x = 〈m1, . . . , mk〉 ∈ Π: seqS(x) =
S + m1 + . . . + mk (see Def. 7.4).

2. Π is a proof of S in HAinf (in Ginf) if for all x ∈ Π, there is some rule
of HAinf (in Ginf) whose conclusion is: seqS(x), and whose assumptions are:
{seqS(x@〈m〉) |x@〈m〉 ∈ Π}.

3. S is provable in HAinf (in Ginf) if there is some proof Π of S in HAinf (in Ginf).

We unfold the definition above, in order to explain how we code each rule of
HAinf and Ginf. The root of Π is coded 〈〉. Assume x ∈ Π , and the sequent seq(x)
labeling x has active move sA. If x is the conclusion of some logical rule, then the
children of x in Π are coded by all (by some) x@〈s′A′〉, for s′A′ <1 sA, according
if x is conjunctive or disjunctive. If x is the conclusion of some structural rule,
then the children of x in Π are coded by some x@〈bck(i)〉.
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Introduction rule for → from Natural Deduction (if Γ, A 
 B, then Γ 

A → B) is conditionally derivable in HAinf

2. All other structural rules are deriv-
able in LHA: identity, weakening, exchange (for all formulas), contraction in the
left-hand side and cut. For instance, all previous rules in the left-hand side im-
plicitly include contraction. Indeed, from C1 ∧ C2, C1 
 D we infer C1 ∧C2 
 D,
instead of C1 ∧ C2, C1 ∧ C2 
 D. We can characterize proofs of Ginf.

Lemma 3. Let Π be any well-founded recursive tree over Moves. Assume S =
〈Γ 
 D, i〉. Then Π is a proof of S in Ginf if and only if, for all x ∈ Π, if the
active formula A of seqS(x) has sign s, then:

– either sA is disjunctive and Children(x) = {bck(j)}, for some index j of
seqS(x);

– or sA is disjunctive and Children(x) = {s′A′}, for some s′A′ <1 sA.
– or sA is conjunctive and Children(x) = {s′A′|s′A′ <1 sA}.

Proof. By definition unfolding, and because the only structural rule of Ginf is
ConjE.

We will prove in Theorem 3 that Ginf is a conservative extension of HAinf. In
§3, from this fact we will derive that our game semantic is sound and complete
for HAinf.

5 Conjunctive Structural Rule Is Conditionally Derivable

In this section we state the fact that ConjE (conjunctive structural rule, §4) is
derivable from the other rules of Ginf, for all sequents of LHA (i.e., →-free). We
will deduce that Ginf is a conservative extension of HAinf. For reason of spaces,
proofs are omitted, but they can be found in [1], §7.

Theorem 1 (ConjE is derivable from DisjE in Ginf). If Ginf +ConjE proves 〈Γ 

A, i〉, and Γ 
 A is in LHA0, the Ginf proves 〈Γ 
 A, i〉.

We end this section with one corollary, Ginf is a conservative extension of HAinf,
and one easy remark, provability and validity are invariant under index renaming.

Corollary 1

1. Ginf + ConjE is a conservative extension of HAinf

2. Ginf is a conservative extension of HAinf.

Lemma 4 (Index renaming). Assume 〈Γ 
 D, i〉 is any sequent of LG0, 〈Γ ′ 

D′, i′〉 is its canonical indexing.

1. 〈Γ 
 D, i〉 is provable in HAinf if and only if 〈Γ ′ 
 D′, i′〉 is provable in HAinf

2. G |= 〈Γ 
 D, i〉 if and only if G |= 〈Γ ′ 
 D′, i′〉.
2 Proof. If Γ, A � B, then Γ, A � A → B by the right rule for A → B. We obtain

Γ,A � A → B by Exchange, and we conclude Γ � A → B again by the right rule
for A → B.
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6 An Isomorphism Between Proofs and Strategies

In this section we prove, as Lorentzen did for his game semantics [6], that our
game semantics for HAinf is sound and complete. We actually prove more, namely
that winning strategies of the semantics and proofs of the variant Ginf of HAinf

can be identified. This improvement of Lorentzen’s result is inspired by the
isomorphism between classical proofs and strategies defined in ([8]).3 A sample
of this identification can be seen in [1], §9. We start proving a relation between
positions of a game and the corresponding sequents.

Lemma 5. Let P be any position. Let s1A1, . . . , snAn be the list of judgements
in P . Assume 〈Γ 
 D, i〉 = seq(P ). Then:

1. (j index of seq(P )) ⇔ (j backtracking position of P ).
2. P, seq(P ) have the same maximum index.
3. Γ = {〈k, Ak〉|sk = f.} ( = all negative judgements, with the index they have

in P ).
4. D = {〈k, Ak〉}, for the last k such that sk = t. (= the last positive judgement,

with its index in P ).
5. i = the index of the active move of P .

Proof. We will prove point 3, 4, 5 by simultaneous induction over the length of
P . Points 1, 2 are implied by points 3, 4. Indeed, the set of bck-indexes of P
consists of all indexes of negative judgement, and of the last positive judgement,
and by 3, 4, of all indexes of seq(P ). P, seq(P ) have the same maximum index,
because the largest index of P is equal to the largest bck-index of P .

If P = t.A, then 3, 4, 5 are immediate from the definition of seq. Assume
P = Q, m, for some position Q with n > 0 judgements, and some m ∈ Moves.
Let n = the maximum index of seq(Q) = (by ind.hyp. on Q) the maximum
index of Q.

Assume m = sA. Then sA has index n + 1 in P , seq(P ). If s = f., then sA is
added to the left-hand-side of seq(Q), and is added to the negative judgements
of Q. If s = t., then sA is replaced to the right-hand-side of seq(Q), and is
replaced to the last positive judgement of Q. We deduce 3, 4. n + 1 is the active
occurrence of seq(P ) and the active move of P . We deduce 5.

Assume m = bck(j). Then seq(P ), seq(Q) have the same left- and right- hand
side, and P, Q have the same sub-list of judgements. Since Q satisfies 3, 4, then
P satisfies 3, 4. The active occurrence of seq(P ) is j if and only if j is an index
of seq(Q), it is n o.w.. The active move of P is j if and only if j is a bck-index
of Q, it is n o.w.. By ind. hyp. on Q, we deduce that the active occurrence of
seq(P ) and the active move of P are the same. We conclude 5.

Isomorphism Theorem says that recursive winning strategies for E and proofs
of Ginf are isomorphic, and in fact, with the coding we have chosen, identical.

Theorem 2 (Isomorphism theorem). Fix any pointed sequent S = 〈Γ 
 A, i〉
having a canonical indexing and n > 0 formulas. Then:
3 Another proof-strategy isomorphism result of the same kind can be found in [3].
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(Π is a proof of 〈Γ 
 A, i〉 in Ginf) ⇔ (Π is a recursive winning strategy for E
on G(Γ 
 A, i))

Proof. Let P = pos(Γ 
 D, i). By Lemma 1, and the fact that S = 〈Γ 
 D, i〉
has a canonical indexing, we have seq(P ) = S. By Lemma 3, Π is a proof of
S in Ginf if and only if Π is a recursive well-founded tree, and, for all x ∈ Π , if
seqS(x) has active formula A of sign s, then

1. either sA is disjunctive and Children(x) = {bck(j)} for some j index of
seqS(x);

2. or sA is disjunctive and Children(x) = {s′A′}, for some s′A′ <1 sA;
3. or sA is conjunctive and Children(x) = {s′A′|s′A′ <1 sA}.

By definition, seqS(x) = S + x = seq(P ) + x = seq(P@x). Therefore the
predicate “j index of seqS(x)” in the first clause is equivalent to “j index of
seq(P@x)”. By Lemma 5.1 applied to (j index of seq(P@x)), clause 1 above is
equivalent to:

1. Children(x) = {bck(j)} for some j bck-index of P@x.

By Lemma 5.5, the hypothesis “A active formula of seq(P@x), of sign s” is
equivalent to: “sA active move of P@x”. By Lemma 2, the assumption about Π ,
if reformulated in this way, is equivalent to the definition of recursive winning
strategy for E on GP = G(Γ 
 D, i).

Soundness and Completeness are immediate from the Isomorphism Theorem.

Theorem 3 (Completeness Theorem). Let 〈Γ 
 A, i〉 be any pointed sequent of
LHA0. Then:

(HAinf proves 〈Γ 
 A, i〉) ⇔ G |= 〈Γ 
 A, i〉.

Proof. In view of Lemma 4, we can assume that 〈Γ 
 D, i〉 has a canonical
indexing, so we can apply Theorem 2. Now suppose 〈Γ 
 A, i〉 has a proof Π in
HAinf. By Corollary 1, 〈Γ 
 A, i〉 has a proof Π ′ in Ginf. By Theorem 2, Π ′ is also
a recursive winning strategy for E on G(Γ 
 A, i). Suppose the converse: E has
some recursive winning strategy σ on G(Γ 
 A, i). By Theorem 2 again, σ is a
proof of 〈Γ 
 A, i〉 in Ginf, and by Corollary 1 we have a proof in in HAinf.

As a consequence of the main Theorem, we check that our game semantics
does not validate some true positive formula, while it validates the negation of
all false positive formulas.

Corollary 2. Let A ∈ L+
0 (i.e., A is ¬, ⇒, →-free).

1. For some true A we have ¬(G |= A).
2. G |= A 
 F if and only if A is false (in the standard model of N).

Proof

1. Let ∀y.P (x, y) be any non-decidable predicate, and P⊥ be the complement
of P . Then A = ∀x.(∀y.P (x, y) ∨ ∃y.P⊥(x, y)) is an instance of Excluded
Middle. A is true, but it cannot be proved in HAinf. By Theorem 3 we conclude
¬(G |= A).
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2. A 
 F is a theorem of HAinf if and only if it is a theorem of PAinf, classical
arithmetic with ω-rule, because the rules of HAinf, PAinf for positive formulas
in the left-hand-side are the same. By completeness of HAinf w.r.t. game
semantics (Theorem 3), and of PAinf w.r.t. first order semantics (folklore), we
conclude G |= A 
 F if and only if A 
 F is true, that is, if and only if A is
false.
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Abstract. Safety is a syntactic condition of higher-order grammars that
constrains occurrences of variables in the production rules according to
their type-theoretic order. In this paper, we introduce the safe lambda
calculus, which is obtained by transposing (and generalizing) the safety
condition to the setting of the simply-typed lambda calculus. In con-
trast to the original definition of safety, our calculus does not constrain
types (to be homogeneous). We show that in the safe lambda calculus,
there is no need to rename bound variables when performing substitu-
tion, as variable capture is guaranteed not to happen. We also propose an
adequate notion of β-reduction that preserves safety. In the same vein
as Schwichtenberg’s 1976 characterization of the simply-typed lambda
calculus, we show that the numeric functions representable in the safe
lambda calculus are exactly the multivariate polynomials; thus condi-
tional is not definable. Finally we give a game-semantic analysis of safety:
We show that safe terms are denoted by P-incrementally justified strate-
gies. Consequently pointers in the game semantics of safe λ-terms are
only necessary from order 4 onwards.

1 Introduction

Background

The safety condition was introduced by Knapik, Niwiński and Urzyczyn at FoS-
SaCS 2002 [12] in a seminal study of the algorithmics of infinite trees generated
by higher-order grammars. The idea, however, goes back some twenty years to
Damm [6] who introduced an essentially equivalent1 syntactic restriction (for
generators of word languages) in the form of derived types. A higher-order gram-
mar (that is assumed to be homogeneously typed) is said to be safe if it obeys
certain syntactic conditions that constrain the occurrences of variables in the
production (or rewrite) rules according to their type-theoretic order. Though the
formal definition of safety is somewhat intricate, the condition itself is manifestly
important. As we survey in the following, higher-order safe grammars capture
fundamental structures in computation, offer clear algorithmic advantages, and
lend themselves to a number of compelling characterizations:

1 See de Miranda’s thesis [8] for a proof.

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 39–53, 2007.
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– Word languages. Damm and Goerdt [7] have shown that the word languages
generated by order-n safe grammars form an infinite hierarchy as n varies
over the natural numbers. The hierarchy gives an attractive classification of
the semi-decidable languages: Levels 0, 1 and 2 of the hierarchy are respec-
tively the regular, context-free, and indexed languages (in the sense of Aho
[4]), although little is known about higher orders.

Remarkably, for generating word languages, order-n safe grammars are
equivalent to order-n pushdown automata [7], which are in turn equivalent
to order-n indexed grammars [14,15].

– Trees. Knapik et al. have shown that the Monadic Second Order (MSO)
theories of trees generated by safe (deterministic) grammars of every finite
order are decidable2.
They have also generalized the equi-expressivity result due to Damm and
Goerdt [7] to an equivalence result with respect to generating trees: A ranked
tree is generated by an order-n safe grammar if and only if it is generated
by an order-n pushdown automaton.

– Graphs. Caucal [5] has shown that the MSO theories of graphs generated3

by safe grammars of every finite order are decidable. However, in a recent
preprint [10], Hague et al. have shown that the MSO theories of graphs
generated by order-n unsafe grammars are undecidable, but deciding their
modal mu-calculus theories is n-EXPTIME complete.

Overview

In this paper, we aim to understand the safety condition in the setting of the
lambda calculus. Our first task is to transpose it to the lambda calculus and
pin it down as an appropriate sub-system of the simply-typed theory. A first
version of the safe lambda calculus has appeared in an unpublished technical
report [3]. Here we propose a more general and cleaner version where terms are
no longer required to be homogeneously typed (see Section 2 for a definition).
The formation rules of the calculus are designed to maintain a simple invariant:
Variables that occur free in a safe λ-term have orders no smaller than that of
the term itself. We can now explain the sense in which the safe lambda calculus
is safe by establishing its salient property: No variable capture can ever occur
when substituting a safe term into another. In other words, in the safe lambda
calculus, it is safe to use capture-permitting substitution when performing β-
reduction.

There is no need for new names when computing β-reductions of safe λ-terms,
because one can safely “reuse” variable names in the input term. Safe lambda
calculus is thus cheaper to compute in this näıve sense. Intuitively one would
expect the safety constraint to lower the expressivity of the simply-typed lambda
calculus. Our next contribution is to give a precise measure of the expressivity

2 It has been recently been shown [19] that trees generated by unsafe deterministic
grammars (of every finite order) also have decidable MSO theories.

3 These are precisely the configuration graphs of higher-order pushdown systems.
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deficit of the safe lambda calculus. An old result of Schwichtenberg [21] says
that the numeric functions representable in the simply-typed lambda calculus
are exactly the multivariate polynomials extended with the conditional function.
In the same vein, we show that the numeric functions representable in the safe
lambda calculus are exactly the multivariate polynomials.

Our last contribution is to give a game-semantic account of the safe lambda
calculus. Using a correspondence result relating the game semantics of a λ-term
M to a set of traversals [19] over a certain abstract syntax tree of the η-long
form of M (called computation tree), we show that safe terms are denoted by
P-incrementally justified strategies. In such a strategy, pointers emanating from
the P-moves of a play are uniquely reconstructible from the underlying sequence
of moves and the pointers associated to the O-moves therein: Specifically, a P-
question always points to the last pending O-question (in the P-view) of a greater
order. Consequently pointers in the game semantics of safe λ-terms are only
necessary from order 4 onwards. Finally we prove that a η-long β-normal λ-term
is safe if and only if its strategy denotation is (innocent and) P-incrementally
justified.

2 The Safe Lambda Calculus

Higher-Order Safe Grammars

We first present the safety restriction as it was originally defined [12]. We consider
simple types generated by the grammar A ::= o | A → A. By convention, →
associates to the right. Thus every type can be written as A1 → · · · → An → o,
which we shall abbreviate to (A1, · · · , An, o) (in case n = 0, we identify (o) with
o). The order of a type is given by ord(o) = 0 and ord(A → B) = max(ord(A) +
1, ord(B)). We assume an infinite set of typed variables. The order of a typed
term or symbol is defined to be the order of its type.

A (higher-order) grammar is a tuple 〈Σ, N , R, S〉, where Σ is a ranked alpha-
bet (in the sense that each symbol f ∈ Σ has an arity ar (f) ≥ 0) of terminals4;
N is a finite set of typed non-terminals; S is a distinguished ground-type symbol
of N , called the start symbol; R is a finite set of production (or rewrite) rules,
one for each non-terminal F : (A1, . . . , An, o) ∈ N , of the form Fz1 . . . zm → e
where each zi (called parameter) is a variable of type Ai and e is an applica-
tive term of type o generated from the typed symbols in Σ ∪ N ∪ {z1, . . . , zm}.
We say that the grammar is order-n just in case the order of the highest-order
non-terminal is n.

The tree generated by a recursion scheme G is a possibly infinite applica-
tive term, but viewed as a Σ-labelled tree; it is constructed from the terminals
in Σ, and is obtained by unfolding the rewrite rules of G ad infinitum, replacing
formal by actual parameters each time, starting from the start symbol S. See
e.g. [12] for a formal definition.

4 Each f ∈ Σ of arity r ≥ 0 is assumed to have type (o, · · · , o
� �� �

r

, o).
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g

a g

a h

h...

Example 1. Let G be the following order-2 recursion scheme:

S → H a
H zo → F (g z)

F φ(o,o) → φ (φ (F h))

where the arities of the terminals g, h, a are 2, 1, 0 respectively.
The tree generated by G is defined by the infinite term g a (g a (h (h (h · · ·)))).
A type (A1, · · · , An, o) is said to be homogeneous if ord(A1) ≥
ord(A2) ≥ · · · ≥ ord(An), and each A1, . . . , An is homogeneous
[12]. We reproduce the following definition from [12].

Definition 1 (Safe grammar). (All types are assumed to be homogeneous.)
A term of order k > 0 is unsafe if it contains an occurrence of a parameter of
order strictly less than k, otherwise the term is safe. An occurrence of an unsafe
term t as a subexpression of a term t′ is safe if it is in the context · · · (ts) · · ·,
otherwise the occurrence is unsafe. A grammar is safe if no unsafe term has an
unsafe occurrence at a right-hand side of any production.

Example 2. (i) Take H : ((o, o), o), f : (o, o, o); the following rewrite rules are
unsafe (in each case we underline the unsafe subterm that occurs unsafely):

G(o,o) x → H (f x)
F ((o,o),o,o,o) z x y → f (F (F z y) y (z x))x

(ii) The order-2 grammar defined in Example 1 is unsafe.

Safety Adapted to the Lambda Calculus

We assume a set Ξ of higher-order constants. We use sequents of the form Γ �Ξ

M : A to represent terms-in-context where Γ is the context and A is the type
of M . For simplicity we write (A1, · · · , An, B) to mean A1 → · · · → An → B,
where B is not necessarily ground.

Definition 2. (i) The safe lambda calculus is a sub-system of the simply-
typed lambda calculus defined by induction over the following rules:

(var)
x : A �Ξ x : A

(const) �Ξ f : A
f ∈ Ξ (wk)

Γ �Ξ s : A

Δ �Ξ s : A
Γ ⊂ Δ

(app)
Γ �Ξ s : (A1, . . . , An, B) Γ �Ξ t1 : A1 . . . Γ �Ξ tn : An

Γ �Ξ st1 . . . tn : B
ord(B) 
 ord(Γ )

(abs)
Γ, x1 : A1, . . . , xn : An �Ξ s : B

Γ �Ξ λx1 . . . xn.s : (A1, . . . , An, B)
ord(A1, . . . , An, B) 
 ord(Γ )

where ord(Γ ) denotes the set {ord(y) : y ∈ Γ} and “c 
 S” means that c is a
lower-bound of the set S. For convenience, we shall omit the subscript from �Ξ

whenever the generator-set Ξ is clear from the context.
(ii) The sub-system that is defined by the same rules in (i), such that all types
that occur in them are homogeneous, is called the homogeneous safe lambda
calculus.
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The safe lambda calculus deviates from the standard definition of the simply-
typed lambda calculus in a number of ways. First the rules (app) and (abs)
respectively can perform multiple applications and abstract several variables at
once. (Of course this feature alone does not alter expressivity.) Crucially, the side-
conditions in the application rule and abstraction rules require that variables in
the typing context have order no smaller than that of the term being formed. We
do not impose any constraint on types. In particular, type-homogeneity as used
originally to define safe grammars [12] is not required here. Another difference
is that we allow Ξ-constants to have arbitrary higher-order types.

Example 3 (Kierstead terms). Consider the terms M1 = λf.f(λx.f(λy.y)) and
M2 = λf.f(λx.f(λy.x)) where x, y : o and f : ((o, o), o). The term M2 is not safe
because in the subterm f(λy.x), the free variable x has order 0 which is smaller
than ord(λy.x) = 1. On the other hand, M1 is safe.

It is easy to see that valid typing judgements of the safe lambda calculus satisfy
the following simple invariant:

Lemma 1. If Γ � M : A then every variable in Γ occurring free in M has order
at least ord(M).

When restricted to the homogeneously-typed sub-system, the safe lambda cal-
culus captures the original notion of safety due to Knapik et al. in the context
of higher-order grammars:

Proposition 1. Let G = 〈Σ, N , R, S〉 be a grammar and let e be an applicative
term generated from the symbols in N ∪Σ∪{ zA1

1 , · · · , zAm
m }. A rule Fz1 . . . zm →

e in R is safe if and only if z1 : A1, · · · , zm : Am �Σ∪N e : o is a valid typing
judgement of the homogeneous safe lambda calculus.

In what sense is the safe lambda calculus safe? A basic idea in the lambda cal-
culus is that when performing β-reduction, one must use capture-avoiding sub-
stitution, which is standardly implemented by renaming bound variables afresh
upon each substitution. In the safe lambda calculus, however, variable capture
can never happen (as the following lemma shows). Substitution can therefore be
implemented simply by capture-permitting replacement, without any need for
variable renaming. In the following, we write M{N/x} to denote the capture-
permitting substitution5 of N for x in M .

Lemma 2 (No variable capture). There is no variable capture when per-
forming capture-permitting substitution of N for x in M provided that Γ, x : B �
M : A and Γ � N : B are valid judgments of the safe lambda calculus.

Proof. We proceed by structural induction. The variable, constant and appli-
cation cases are trivial. For the abstraction case, suppose M = λy.R where
y = y1 . . . yp. If x ∈ y then M{N/x} = M and there is no variable capture.
5 This substitution is done by textually replacing all free occurrences of x in M by

N without performing variable renaming. In particular for the abstraction case we
have (λy1 . . . yn.M){N/x} = λy1 . . . yn.M{N/x} when x �∈ {y1 . . . yn}.
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If x �∈ y then we have M{N/x} = λy.R{N/x}. By the induction hypoth-
esis there is no variable capture in R{N/x}. Thus variable capture can only
happen if the following two conditions are met: x occurs freely in R, and some
variable yi for 1 ≤ i ≤ p occurs freely in N . By Lemma 1, the latter con-
dition implies ord(yi) ≥ ord(N) = ord(x). Since x �∈ y, the former condition
implies that x occurs freely in the safe term λy.R therefore Lemma 1 gives
ord(x) ≥ ord(λy.R) ≥ 1 + ord(yi) > ord(yi) which gives a contradiction. 
�

Remark 1. A version of the No-variable-capture Lemma also holds in safe gram-
mars, as is implicit in (for example Lemma 3.2 of) the original paper [12].

Example 4. In order to contract the β-redex in the term

f : (o, o, o), x : o � (λϕ(o,o)xo.ϕ x)(f x) : (o, o)

one should rename the bound variable x with a fresh name to prevent the cap-
ture of the free occurrence of x in the underlined term during substitution.
Consequently, by the previous lemma, the term is not safe. Indeed, it cannot be
because ord(x) = 0 < 1 = ord(fx).

Note that it is not the case that λ-terms that satisfy the No-variable-capture
Lemma are necessarily safe. For instance the β-redex in λyozo.(λxo.y)z can be
contracted using capture-permitting substitution, even though the term is not
safe.

Reductions and Transformations Preserving Safety

From now on we will use the standard notation M [N/x] to denote the substi-
tution of N for x in M . It is understood that, provided that M and N are safe,
this substitution is capture-permitting.

Lemma 3 (Substitution preserves safety). If Γ, x : B � M : A and Γ �
N : B then Γ � M [N/x] : A.

This is proved by an easy induction on the structure of the safe term M .
It is desirable to have an appropriate notion of reduction for our calculus.

However the standard β-reduction rule is not adequate. Indeed, safety is not pre-
served by β-reduction as the following example shows. Suppose that w, x, y, z : o
and f : (o, o, o) ∈ Σ then the safe term (λxy.fxy)zw β-reduces to (λy.fzy)w
which is unsafe since the underlined order-1 subterm contains a free occurrence
of the ground-type z. However if we perform one more reduction we obtain the
safe term fzw. This suggests an alternative notion of reduction that performs
simultaneous reduction of “consecutive” β-redexes. In order to define this reduc-
tion we first introduce the appropriate notion of redex.

In the simply-typed lambda calculus a redex is a term of the form (λx.M)N .
In the safe lambda calculus, a redex is a succession of several standard redexes:
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Definition 3. Let l ≥ 1 and n ≥ 1. We use the abbreviations x and x : A for
x1 . . . xn and x1 : A1, . . . , xn : An respectively.

A safe redex is a safe term of the form (λx.M)N1 . . . Nl such that the vari-
ables x are abstracted altogether by one instance of the (abs) rule and the term
(λx.M) is applied to N1, . . . , Nl by one instance of the (app) rule.

Thus M , the Ni’s and the redex itself are all safe terms. For instance, in the
case n < l, a safe redex has a derivation tree of the following form:

. . .

Γ, x : A � M : (An+1, . . . , Al, B)
Γ � λx.M : (A1, . . . , Al, B)

(abs)
. . .

Γ � N1 : A1
. . .

. . .

Γ � Nl : Al

Γ � (λx.M)N1 . . . Nl : B
(app)

We are now in a position to define a notion of reduction for safe terms.

Definition 4. We use the abbreviations x = x1 . . . xn, N = N1 . . . Nl. The
relation βs is defined on the set of safe redexes as:

βs = { (λx.M)N1 . . . Nl �→ λxl+1 . . . xn.M
[
N/x1 . . . xl

]
, for n > l}

∪ { (λx.M)N1 . . . Nl �→ M [N1 . . .Nn/x] Nn+1 . . . Nl, for n ≤ l} .

where M [R1 . . . Rk/z1 . . . zk] denotes the simultaneous substitution of R1,. . . ,Rk

for z1, . . . , zk in M . The safe β-reduction, written →βs , is the compatible
closure of the relation βs with respect to the formation rules of the safe lambda
calculus.

Remark: The βs-reduction is a multi-step β-reduction i.e. →β⊂→βs⊂�β .

Lemma 4 (βs-reduction preserves safety). If Γ � s : A and s →βs t then
Γ � t : A.

Proof. It suffices to show that the relation βs preserves safety. Suppose that s βs t
where s is the safe-redex (λx1 . . . xn.M)N1 . . . Nl with x1 : B1, . . . , xn : Bn and
M of type C. W.l.o.g we can assume that the last rule used to form the term s
is (app) i.e. not the weakening rule (wk), thus we have Γ = fv(s).

Suppose n > l then A = (Bl+1, . . . , Bn, C). By Lemma 3 we can form the
safe term Γ, xl+1 : Bl+1, . . . xn : Bn � M

[
N/x1 . . . xl

]
: C. By Lemma 1, since

s is safe, all the variables in Γ have order ≥ ord(A). This ensures that the side-
condition of the (abs) rule is verified if we abstract the variables xl+1 . . . xn,
which gives us the judgement Γ � t : A.

Suppose n ≤ l. The substitution lemma gives Γ � M [N1 . . . Nn/x] : C and
using (app) we form Γ � t : A. 
�

In general, safety is not preserved by η-expansion; for instance we have
� λyozo.y : (o, o, o) but �� λxo.(λyozo.y)x : (o, o, o). However safety is preserved
by η-reduction:

Lemma 5 (η-reduction preserves safety). Γ � λϕ.sϕ : A with ϕ not occur-
ring free in s implies Γ � s : A.
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Proof. Suppose Γ � λϕ.sϕ : A. If s is an abstraction then by construction of
the safe term λϕ.sϕ, s is necessarily safe. If s = N0 . . . Np with p ≥ 1 then
again, since λϕ.N0 . . . Npϕ is safe, each of the Ni is safe for 0 ≤ i ≤ p and for
any z ∈ fv(λϕ.sϕ), ord(z) ≥ ord(λϕ.sϕ) = ord(s). Since ϕ does not occur free
in s we have fv(s) = fv(λϕ.sϕ), thus we can use the application rule to form
fv(s) � N0 . . .Np : A. The weakening rules permits us to conclude Γ � s : A. 
�
The η-long normal form (or simply η-long form) of a term is obtained by hered-
itarily η-expanding every subterm occurring at an operand position. Formally
the η-long form �t� of a term t : (A1, . . . , An, o) with n ≥ 0 is defined by cases
according to the syntactic shape of t:

�λx.s� = λx.�s�
�xs1 . . . sm� = λϕ.x�s1� . . . �sm��ϕ1� . . . �ϕn�

�(λx.s)s1 . . . sp� = λϕ.(λx.�s�)�s1� . . . �sp��ϕ1� . . . �ϕn�
where m ≥ 0, p ≥ 1, x is a variable or constant, ϕ = ϕ1 . . . ϕn and each ϕi : Ai

is a fresh variable.

Lemma 6 (η-long normalization preserves safety). If Γ � s : A then
Γ � �s� : A.

Proof. First we observe that for any variable or constant x : A we have x :
A � �x� : A. We show this by induction on ord(x). It is verified for any ground
type variable x since x = �x�. Step case: x : A with A = (A1, . . . , An, o) and
n > 0. Let ϕi : Ai be fresh variables for 1 ≤ i ≤ n. Since ord(Ai) < ord(x) the
induction hypothesis gives ϕi : Ai � �ϕi� : Ai. Using (wk) we obtain x : A, ϕ :
A � �ϕi� : Ai. The application rule gives x : A, ϕ : A � x�ϕ1� . . . �ϕn� : o and
the abstraction rule gives x : A � λϕ.x�ϕ1� . . . �ϕn� = �x� : A.

We now prove the lemma by induction on s. The base case is covered by the
previous observation. Step case:
– s = xs1 . . . sm with x : (B1, . . . , Bm, A), A = (A1, . . . , An, o) for some m ≥

0, n > 0 and si : Bi for 1 ≤ i ≤ m. Let ϕi : Ai be fresh variables for
1 ≤ i ≤ n. By the previous observation we have ϕi : Ai � �ϕi� : Ai, the
weakening rule then gives us Γ, ϕ : A � �ϕi� : Ai. Since the judgement
Γ � xs1 . . . sm : A is formed using the (app) rule, each sj must be safe
for 1 ≤ j ≤ m, thus by the induction hypothesis we have Γ � �sj� : Bj

and by weakening we get Γ, ϕ : A � �sj� : Bj . The (app) rule then gives
Γ, ϕ : A � x�s1� . . . �sm��ϕ1� . . . �ϕn� : o. Finally the (abs) rule gives Γ �
λϕ.x�s1� . . . �sm��ϕ1� . . . �ϕn� = �s� : A, the side-condition of (abs) being
verified since ord(�s�) = ord(s).

– s = ts0 . . . sm where t is an abstraction. For some fresh variables ϕ1, . . . , ϕn

we have �s� = λϕ.�t��s0� . . . �sm��ϕ1� . . . �ϕn�. Again, using the induction
hypothesis we can easily derive Γ � λϕ.�t��s0� . . . �sm��ϕ1� . . . �ϕn� : A.

– s = λη.t where η : B and t : C is not an abstraction. The induction hypoth-
esis gives Γ, η : B � �t� : C and using (abs) we get Γ � λη.�t� = �s� : A. 
�

Note that the converse does not hold in general, for instance λxo.f (o,o,o)xo is
unsafe although �λx.fx� = λxoyo.fxy is safe.
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Numeric Functions Representable in the Safe Lambda Calculus

Natural numbers can be encoded into the simply-typed lambda calculus using
the Church Numerals: each n ∈ N is encoded into the term n = λsz.snz of type
I = ((o, o), o, o) where o is a ground type. In 1976 Schwichtenberg [21] showed
the following:

Theorem 1 (Schwichtenberg 1976). The numeric functions representable by
simply-typed λ-terms of type I → . . . → I using the Church Numeral encoding
are exactly the multivariate polynomials extended with the conditional function.

If we restrict ourselves to safe terms, the representable functions are exactly the
multivariate polynomials:

Theorem 2. The functions representable by safe λ-expressions of type I →
. . . → I are exactly the multivariate polynomials.

Corollary 1. The conditional operator C : I → I → I → I verifying Ctyz →β

y if t →β 0 and Ctyz →β z if t →β n + 1 is not definable in the safe simply-typed
lambda calculus.

Proof. Natural numbers are encoded using Church Numerals: n = λsz.snz. Ad-
dition: For n, m ∈ N, n + m = λα(o,o)xo.(nα)(mαx). Multiplication: n.m =
λα(o,o).n(mα). All these terms are safe and clearly any multivariate polynomial
P (n1, . . . , nk) can be computed by composing the addition and multiplication
terms as appropriate.

For the converse, let U be a safe λ-term of type I → I → I. The generalization
to terms of type In → I for n > 2 is immediate (they correspond to polynomials
with n variables). W.l.o.g we can assume that U = λxyαz.u where u is a safe
term of ground type in β-normal form with fv(u) ⊆ {x, y : I, z : o, α : o → o}.

Notation: Let T be a set of terms of type τ → τ and T ′ be a set of terms of
type τ then T · T ′ denotes the set of terms {ss′ : τ | s ∈ T ∧ s′ ∈ T ′}. We also
define T k · T ′ recursively as follows: T 0 · T ′ = T ′ and for k ≥ 0, T k+1 · T ′ =
T · (T k · T ′) (i.e. T k · T ′ denotes {s1(. . . (sks′)) | s1, . . . , sk ∈ T ∧ s′ ∈ T ′}). We
define T + · T ′ =

⋃
k>0 T k · T ′ and T ∗ · T ′ = (T + · T ′) ∪ T ′. For two sets of terms

T and T ′, we write T =β T ′ to express that any term of T is β-convertible to
some term t′ of T ′ and reciprocally.

Let us write N τ for the set of β-normal terms of type τ where τ ranges in
{o, o → o, I} and with free variables in {x, y : I, z : o, α : o → o}. We write Aτ

for the subset of N τ consisting of applications only (i.e. not abstractions). Let B
be the set of terms of type (o, o) defined by B = {α}∪{λa.b | b ∈ {a, z}, a �= z}.
It is easy to see that the following equations hold:

AI = {x, y}
N (o,o) = B ∪ AI · N (o,o) = (AI)∗ · B

A(o,o) = {α} ∪ (AI)+ · B
Ao = N o = {z} ∪ A(o,o) · N o = (A(o,o))∗ · {z}



48 W. Blum and C.-H.L. Ong

Hence Ao = ({α} ∪ {x, y}+ · ({α} ∪ {λa.b | b ∈ {a, z}, a �= z}))∗ · {z}. Since u is
safe, it cannot contain terms of the form λa.z with a �= z occurring at an operand
position, therefore since u belongs to Ao we have:

u ∈
(
{α} ∪ {x, y}+ · {α, i}

)∗ · {z} (1)

where i is the identity term of type o → o.
We observe that ki =β i for all k ∈ N and for l ≥ 1, for all k1, . . . kl ∈ N,

k1 . . . klα =β k1 × . . . × klα. Hence for all m, n ∈ N we have:

{m, n}+ · {α, i} =β {i} ∪ {minjα | i + j ≥ 1}
= {minjα | i, j ≥ 0} (since i = 0α)

(2)

therefore:

u[m, n/x, y] ∈ ({α} ∪ {m, n}+ · {α, i})∗ · {z} (by eq. 1)

=β

(
{α} ∪ {minjα | i, j ≥ 0}

)∗
· {z} (by eq. 2)

=β

{
minjα | i, j ≥ 0

}∗
· {z} (αz =β 1αz).

Furthermore, for all m, n, r, i, j ∈ N we have minjα(αrz) =β αr+minj

z, hence
u[mn/x, y] =β αp(m,n)z where p(m, n) =

∑
0≤k≤d miknjk for some ik, jk ≥ 0,

k ∈ {0, .., d} and d ≥ 0. Thus Umn =β p(m, n). 
�

For instance, the term C = λFGHαx.H(λy.Gαx)(Fαx) used by Schwichtenberg
[21] to define the conditional operator is unsafe since the underlined subterm is
of order 1, occurs at an operand position and contains an occurrence of x of
order 0.

3 A Game-Semantic Account of Safety

Our aim here is to characterize safety, which is a syntactic property, by game se-
mantics. Because of length restriction, we shall assume that the reader is familiar
with the basics of game semantics. (For an introduction, we recommend [2]). Re-
call that a justified sequence over an arena is an alternating sequence of O-moves
and P-moves such that every move m, except the opening move, has a pointer to
some earlier occurrence of the move m0 such that m0 enables m in the arena. A
play is just a justified sequence that satisfies Visibility and Well-Bracketing. A
basic result in game semantics is that λ-terms are denoted by innocent strategies,
which are strategies that depends only on the P-view of a play. The main result
(Theorem 3) of this section is that if a λ-term is safe, then its game semantics (is
an innocent strategy that) is P-incrementally justified. In such a strategy, point-
ers emanating from the P-moves of a play are uniquely reconstructible from the
underlying sequence of moves and pointers from the O-moves therein: Specifi-
cally a P-question always points to the last pending O-question (in the P-view)
of a greater order.
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The proof of Theorem 3 depends on a Correspondence Theorem (see the long
version of this paper) that relates the strategy denotation of a λ-term M to the
set of traversals over a certain abstract syntax tree of the η-long form of M . In
the language of game semantics, traversals are just (concrete representations of)
the uncovering (in the sense of Hyland and Ong [11]) of plays in the strategy
denotation.

The useful transference technique between plays and traversals was originally
introduced by one of us [19] for studying the decidability of MSO theories of in-
finite structures generated by higher-order grammars (in which the Σ-constants
are at most order 1, and uninterpreted). The long version of the paper presents
an extension of this framework to the general case of the simply-typed lambda
calculus with free variables of any order. A new traversal rule is introduced
to handle nodes labelled with free variables. Also new nodes are added to the
computation tree to account for the answer moves of the game semantics, thus
enabling the framework to model languages with interpreted constants such as
PCF (by adding traversal rules to handle constant nodes).

Incrementally-Bound Computation Tree

In [19] the computation tree of a grammar is defined as the unravelling of a
finite graph representing the long transform of a grammar. Similarly we define
the computation tree of a λ-term as an abstract syntax tree of its η-long nor-
mal form. We write l(t1, . . . , tn) with n ≥ 0 to denote the tree with a root
labelled l with n children subtrees t1, . . . , tn. In the following, judgements of
the form Γ � M : T refer to simply-typed terms not necessarily safe unless
mentioned.

Definition 5. The computation tree τ(M) of a simply-typed term Γ � M : T
with variable names in a countable set V is a tree with labels in {@} ∪ V ∪
{λx1 . . . xn | x1, . . . , xn ∈ V} defined from its η-long form as follows:

for n ≥ 0 and s : o, τ(λx1 . . . xn.s) = λx1 . . . xn(t) where τ(s) = λ(t)
for m ≥ 0 and x ∈ V , τ(xs1 . . . sm : o) = λ(x(τ(s1), . . . , τ(sm)))

for m ≥ 1, τ((λx.t)s1 . . . sm : o) = λ(@(τ(λx.t), τ(s1), . . . , τ(sm))) .

Even-level nodes are λ-nodes (the root is on level 0). A single λ-node can repre-
sent several consecutive variable abstractions or it can just be a dummy lambda
if the corresponding subterm is of ground type. Odd-level nodes are variable or
application nodes.

The order of a node n, written ord(n), is defined as follows: @-nodes have
order 0. The order of a variable-node is the type-order of the variable labelling it.
The order of the root node is the type-order of (A1, . . . , Ap, T ) where A1, . . . , Ap

are the types of the variables in the context Γ . Finally, the order of a lambda
node different from the root is the type-order of the term represented by the
sub-tree rooted at that node.
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We say that a variable node n labelled x is bound by a node m, and m is
called the binder of n, if m is the closest node in the path from n to the root
such that m is labelled λξ with x ∈ ξ. We introduce a class of computation trees
in which the binder node is uniquely determined by the nodes’ orders:

Definition 6. A computation tree is incrementally-bound if for all variable
node x, either x is bound by the first λ-node in the path to the root with order
> ord(x) or x is a free variable and all the λ-nodes in the path to the root except
the root have order ≤ ord(x).

Proposition 2

(i) If M is safe then τ(M) is incrementally-bound.
(ii) Conversely, if M is a closed simply-typed term and τ(M) is incrementally-

bound then the η-long form of M is safe.

The assumption that M is closed is necessary. For instance for x, y : o, the two
identical computation trees τ(λxy.x) and τ(λy.x) are incrementally-bound but
λxy.x is safe and λy.x is not.

P-Incrementally Justified Strategy

We now consider the game-semantic model of the simply-typed lambda calculus.
The strategy denotation of a term is written [[Γ � M : T ]]. We define the order
of a move m, written ord(m), to be the length of the path from m to its furthest
leaf in the arena minus 1. (There are several ways to define the order of a move;
the definition chosen here is sound in the current setting where each question
move in the arena enables at least one answer move.)

Definition 7. A strategy σ is said to be P-incrementally justified if for any
play s q ∈ σ where q is a P-question, q points to the last unanswered O-question
in �s� with order strictly greater than ord(q).

Note that although the pointer is determined by the P-view, the choice of the
move itself can be based on the whole history of the play. Thus P-incremental
justification does not imply innocence.

The definition suggests an algorithm that, given a play of a P-incrementally
justified denotation, uniquely recovers the pointers from the underlying sequence
of moves and from the pointers associated to the O-moves therein. Hence:

Lemma 7. In P-incrementally justified strategies, pointers emanating from P-
moves are superfluous.

Example 5. Copycat strategies, such as the identity strategy idA on game A or
the evaluation map evA,B of type (A ⇒ B) × A → B, are all P-incrementally
justified.6

6 In such strategies, a P-move m is justified as follows: either m points to the preceding
move in the P-view or the preceding move is of smaller order and m is justified by
the second last O-move in the P-view.
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The Correspondence Theorem gives us the following equivalence:

Proposition 3. For a β-normal term Γ � M : T , τ(M) is incrementally-bound
if and only if [[Γ � M : T ]] is P-incrementally justified.

λ3

f2

λy1

x0

Example: Consider the β-normal term Γ � f(λy.x) : o where y : o
and Γ = f : ((o, o), o), x : o. The figure on the right represents its
computation tree with the node orders given as superscripts. Node x is
not incrementally-bound therefore τ(f(λy.x)) is not incrementally-bound
and by Proposition 3, [[Γ � f(λy.x) : o]] is not incrementally-justified (al-
though [[Γ � f : ((o, o), o)]] and [[Γ � λy.x : (o, o)]] are).
Propositions 2 and 3 allow us to show the following:

Theorem 3 (Safety and P-incremental justification)

(i) If Γ � M : T is safe then [[Γ � M : T ]] is P-incrementally justified.
(ii) If � M : T is a closed simply-typed term and [[� M : T ]] is P-incrementally

justified then the η-long form of the β-normal form of M is safe.

Putting Theorem 3(i) and Lemma 7 together gives:

Proposition 4. In the game semantics of safe λ-terms, pointers emanating
from P-moves are unnecessary i.e. they are uniquely recoverable from the un-
derlying sequences of moves and from O-moves’ pointers.

In fact, as the last example highlights, pointers are entirely superfluous at order
3 for safe terms. This is because for question moves in the first two levels of an
arena, the associated pointers are uniquely recoverable thanks to the visibility
condition. At the third level, the question moves are all P-moves therefore their
associated pointers are uniquely recoverable by P-incremental justification. This
is not true anymore at order 4: Take the safe term ψ : (((o4, o3), o2), o1) �
ψ(λϕ.ϕa) : o0 for some constant a : o, where ϕ : (o, o). Its strategy denotation
contains plays whose underlying sequence of moves is q0 q1 q2 q3 q2 q3 q4. Since q4
is an O-move, it is not constrained by P-incremental justification and thus it can
point to any of the two occurrences of q3.7

Safe PCF and Safe Idealised Algol

PCF is the simply-typed lambda calculus augmented with basic arithmetic opera-
tors, if-then-else branching and a family of recursion combinator YA : ((A, A), A)
for any type A. We define safe PCF to be PCF where the application and ab-
straction rules are constrained in the same way as the safe lambda calculus. This
7 More generally, a P-incrementally justified strategy can contain plays that are not

“O-incrementally justified” since it must take into account any possible strategy
incarnating its context, including those that are not P-incrementally justified. In the
given example, the version of the play that is not O-incrementally justified is involved
in the strategy composition [[� M2 : (((o, o), o), o)]]; [[ψ : (((o, o), o), o) � ψ(λϕ.ϕa) : o]]
where M2 denotes the unsafe Kierstead term.
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language inherits the good properties of the safe lambda calculus: No variable
capture occurs when performing substitution and safety is preserved by the re-
duction rules of the small-step semantics of PCF. Using a PCF version of the
Correspondence Theorem we can prove the following:

Theorem 4. Safe PCF terms have P-incrementally justified denotations.

Similarly, we can define safe IA to be safe PCF augmented with the impera-
tive features of Idealized Algol (IA for short) [20]. Adapting the game-semantic
correspondence and safety characterization to IA seems feasible although the
presence of the base type var, whose game arena comN × exp has infinitely
many initial moves, causes a mismatch between the simple tree representation
of the term and its game arena. It may be possible to overcome this problem
by replacing the notion of computation tree by a “computation directed acyclic
graph”.

The possibility of representing plays without some or all of their pointers un-
der the safety assumption suggests potential applications in algorithmic game
semantics. Ghica and McCusker [9] were the first to observe that pointers are
unnecessary for representing plays in the game semantics of the second-order
finitary fragment of Idealized Algol (IA2 for short). Consequently observational
equivalence for this fragment can be reduced to the problem of equivalence of
regular expressions. At order 3, although pointers are necessary, deciding ob-
servational equivalence of IA3 is EXPTIME-complete [18,17]. Restricting the
problem to the safe fragment of IA3 may lead to a lower complexity.

4 Further Work and Open Problems

The safe lambda calculus is still not well understood. Many basic questions
remain. What is a (categorical) model of the safe lambda calculus? Does the
calculus have interesting models? What kind of reasoning principles does the
safe lambda calculus support, via the Curry-Howard Isomorphism? Does the
safe lambda calculus characterize a complexity class, in the same way that the
simply-typed lambda calculus characterizes the polytime-computable numeric
functions [13]? Do incrementally-justified strategies compose? Is the addition
of unsafe contexts to safe ones conservative with respect to observational (or
contextual) equivalence?

With a view to algorithmic game semantics and its applications, it would be
interesting to identify sublanguages of Idealised Algol whose game semantics
enjoy the property that pointers in a play are uniquely recoverable from the
underlying sequence of moves. We name this class PUR. IA2 is the paradigmatic
example of a PUR-language. Another example is Serially Re-entrant Idealized
Algol [1], a version of IA where multiple uses of arguments are allowed only if
they do not “overlap in time”. We believe that a PUR language can be obtained
by imposing the safety condition on IA3. Murawski [16] has shown that obser-
vational equivalence for IA4 is undecidable; is observational equivalence for safe
IA4 decidable?
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Abstract. Refinement calculi are program logics which formalize the
“top-down” methodology of software development promoted by Dijkstra
and Wirth in the early days of structured programming. I present here
the shallow embedding of a refinement calculus into Coq constructive
type theory. This embedding involves monad transformers and the com-
putational reflexion of weakest-preconditions, using a continuation pass-
ing style. It should allow to reason about many ML programs combining
non-functional features (state, exceptions, etc) with purely functional
ones (higher-order functions, structural recursion, etc).

1 Introduction

The refinement calculus of [Mor90] is the kernel of the B method [Abr96] which
has been successfully applied in large industrial projects [Beh99]. This paper
presents the marriage of this refinement calculus with the Calculus of Inductive
Constructions [Coq88, PM93], the constructive type theory of Coq [Coq04]. This
marriage is interesting for both formalisms. On the Coq side, refinement calculus
provides a simple and efficient embedding of computational behaviors which are
not natively available in Coq: side-effects and partial functions. Here, partial
functions may involve undefined behaviors or non-termination, interpreted in
partial or total correctness. On the other side, this marriage shows that all kinds
of Coq computation can be fully integrated into refinement calculus: pattern-
matching, structural recursion over inductive types, and higher-order functions.
Moreover, because Coq is a typed lambda-calculus with types and propositions
as first-class citizens (see Figure 1), it is more than a higher-order logic: it is
also a programming language where propositions and proofs are first-class values.
Hence, programming computations of WP (Weakest-Preconditions) in Coq is
very easy because substitutions of variable are expressed at an abstract level.
This allows to use Coq as the kernel of a refinement prover, with two benefits.
First, all libraries and tools developed for Coq can be reused in refinement
proofs. Second, refinement rules are formally proved. In particular, the reflexion
of WP-computations ensures their soundness w.r.t. purely deductive rules.

Section 2 motivates this work by the formalization of reasoning about higher-
order imperative functions in Coq. It illustrates that this reasoning may combine
equational reasoning in monads with Hoare logic. This leads me to introduce
Dijkstra Specification Monads (abbreviated DSM). Section 3 defines DSM as a
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“Type” is the type of types. In order to avoid logical paradoxes, each of its occurrence
is implicitly indexed with a natural, such that in Type:Type, the left index is
strictly lower than the right one.

“Prop” is the type of logical propositions. In Curry-Howard style, propositions are
represented as types, and proofs as lambda-terms. Hence, if A:Prop then A:Type.

“forall x:A,B” is the type of functions “fun x:A => b” when if x:A then b:B. This type
is also logically interpreted as universal quantification or as implication.

“A -> B” is a synonym of forall (x:A),B when x does not occur free in B.
“A*B” is the type of pairs “(x,y)” where x:A and y:B.
“A /\ B” represents conjunction and is like A*B at Prop level.
“exists x:A,B” represents existential quantification (defined as a dependent-pair).
“x=y” means that every property satisfied by x is satisfied by y (Leibniz’s equality).

Fig. 1. A very short description of Coq syntax

very simple combination of monads and lattices in Coq, where the order re-
lation is refinement. Then, it presents a Tarski fixpoint theorem, which makes
DSM adapted to reason about non-terminating programs. Section 4 gives the
modular construction of the state DSM. This construction uses a WP calculus
embedded in Coq as a CPS (Continuation-Passing Style) semantics of DSM. It
is also based on the state monad transformer. Hence, it could be easily adapted
for other monad transformers like exception monad transformer. With an ex-
ample combining partial functions and structural recursion, Section 5 illustrates
that refinement formulae may be simplified by computing WP. Then, it shows
how interactive refinement proofs mix deduction and WP-computation. Finally,
Section 6 explains how the state DSM is used to prove higher-order imperative
programs, and in particular how Hoare logic is expressed in the state DSM.

2 Reasoning on Higher-Order Imperative Functions
in Coq

Let me first introduce a higher-order imperative example in Ocaml syntax.
Given nat the type of natural numbers and bintree the type of binary trees:

type nat = O | S of nat;; type bintree = Leaf | Node of bintree*bintree;;

Given n: nat, and f: bintree->unit (f is an action parametrized by a binary
tree), I consider below a function enumBT such that (enumBT n f) calls successively
f over all and only binary trees of height n, but only once for a given tree.

let rec enumBT n f = match n with
| O -> f Leaf
| (S p) -> enumBT p (fun l ->

enumBT p (fun r -> f(Node(l,r))) ;
enumlt p (fun r -> f(Node(l,r)) ; f(Node(r,l))))

and enumlt n f = match n with
| O -> () | (S p) -> enumBT p f ; enumlt p f
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The main advantage of this CPS-like implementation is to call f as soon as
a tree is computed, before computing the next tree. Function enumBT is defined
mutually recursively over n with enumlt which enumerates binary trees with a
height strictly lower than n. Then, it uses the fact that in a tree of height (S n),
either its two children have a height equal to n, or one of them has a height
equals to n and the other has a height strictly lower than n.

In order to reason about this simple function in Coq, we may use a style
inspired by Hoare logic. Unfortunately, a simple Hoare logic does not allow us
to reason on such a higher-order imperative function. Actually, we need here
extensions of Hoare logic as those recently proposed in [Hon05]. Alternatively,
I simply propose here to specify this program using an equality on programs.
Hence, I have proved in Coq (see [Bou06]) that for a given n, there exists l

of type (list bintree) such that l contains only all binary trees of height n

without duplicates, and such that (enumBT n f)≡(iter l f) where “iter l f” calls
f on successive elements in l, and relation ≡ is an observational equivalence on
expressions. Here, the expression language is formalized as a monad.

2.1 Axioms of Monads in Coq

A monad is a categorical structure expressing non-purely functional features like
state or exception handling, finite non-determinism and environment interactions
[Mog91, Pey93]. My Coq axiomatization of monads is given Figure 2:
– K is a parametrized type such that (K A) represents the type of an expression

returning a value of type A. Hence, values of the monad are any Coq values.
– equiv is an “observational” equivalence on expressions.
– val is side-effect free operator to lift a value into an expression.
– bind corresponds to a “let-in” construct in ML: it generalizes sequence of

imperative languages. The power of this operator is to allow any Coq function
as second argument.

Using the predefined type unit of single value tt, we say a monadic expression
is an instruction if its type is (K unit). The skip instruction is thus (val tt).
Sequencing instructions is just applying bind:
Definition seq (A:Type) (i1:K unit) (i2:K A): K A := bind i1 (fun => i2).
Implicit Arguments seq [A].

In the following, I use the notation If cond Then i1 Else i2 as a macro for
bind cond (fun b:bool => if b then i1 else i2). This lifts the if-then-else cons-
truction of Coq into monad expressions. It is easy to prove that the monadic if-
then-else is compatible with equivalence of expressions. More generally, all purely
functional constructions are lifted to monad expressions, such that the lifted
construction is compatible with equivalence. Hence, monads support naturally
pattern-matching, structural recursion, and higher-order functions. Here, I lift
functions at monad expressions using call-by-value evaluation, like in ML. For
example, the Coq type for enumBT is nat -> (bintree -> K unit) -> K unit.

2.2 Marrying Monads with Hoare Logic

The previous example is rather simple because enumBT do not modify the state
directly. On other examples, we may need to specify a modification of the state
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Constants of monads are:

K: Type -> Type.
equiv: forall (A:Type), (K A) -> (K A) -> Prop.
val: forall (A:Type), A -> (K A).
bind: forall (A B:Type), (K A) -> (A -> (K B)) -> (K B).

To have a lighter syntax, I require (with the commands below) that Coq infers type
parameters (like A) of equiv, val and bind like a ML compiler:

Implicit Arguments equiv [A].
Implicit Arguments val [A].
Implicit Arguments bind [A B].

Hence, axioms of monads are expressed as:

equiv refl: forall (A:Type) (x:(K A)), equiv x x.
equiv sym: forall (A:Type) (x y:(K A)), (equiv x y)->(equiv y x).
equiv trans: forall (A:Type) (x y z:(K A)),
(equiv x y) -> (equiv y z) -> (equiv x z).

bind compat: forall (A B:Type) (k1 k2:(K A)) (f1 f2: A -> (K B)),
(forall (x:A), equiv (f1 x) (f2 x)) ->

(equiv k1 k2) -> (equiv (bind k1 f1) (bind k2 f2)).
bind val l: forall (A B:Type) (a:A) (f:A->(K B)),

equiv (bind (val a) f) (f a).
bind val r: forall (A:Type) (k:(K A)), equiv (bind k (fun a => val a)) k.
bind assoc: forall (A B C:Type) (k:(K A)) (f: A->(K B)) (g: B -> (K C)),

equiv (bind (bind k f) g) (bind k (fun a => bind (f a) g)).

Fig. 2. Coq interface for monads

as in Hoare logic. In particular, let me consider an expression e of type K A in
a state monad: e works on a global state of type St (hence, the type of St is
Type) and returns a result of type A. The state monad provides two specific
operators set: St->(K unit), to update the current value of the global state, and
get: (K St), to read the current value of the global state. These operators satisfy
the following three axioms:
get set: equiv (bind get set) skip.
set get: forall (st:St), equiv (seq (set st) get) (seq (set st) (val st)).
set set: forall (st1 st2:St), equiv (seq (set st1) (set st2)) (set st2).

A Hoare specification of e can be seen as the pair of two predicates: a precon-
dition P: St->Prop on the initial state, and a postcondition Q: St->St->A->Prop
on the initial state, the final state and the result. In total-correctness semantics,
such a specification is interpreted through the following formula:
forall (sti:St), (P sti) -> exists stf:St, exists r:A,

(Q sti stf r) /\ (equiv (seq (set sti) e) (seq (set stf) (val r))).

Fortunately, Dijkstra has invented a weakest-precondition calculus to simplify
this tedious formula. Hence, there is a function wp of type:
wp: forall (A:Type),(K A) -> (St -> A -> Prop) -> St -> Prop.
Implicit Arguments wp [A].
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such that the preceding tedious formula is equivalent to

forall (sti:St), (P sti) -> (wp e (Q sti) sti)

and such that wp is a CPS semantics of the state monad where continuations
are predicates on the final state and the result (postconditions). In other words,
wp discharges the user to infer manually the two existential connectors of the
tedious formula.

This paper shows that refinement calculus is a marriage of monads and Hoare
logic such that WP are hidden in the refinement order. Hence, from the user point
of view, reasoning with refinement is very natural, because this order generalizes
the equality of monads. Formally, my refinement calculus is based on Dijkstra
Specification Monads: a combination of monads and lattices in Coq.

3 Lattice Theory of Dijkstra Specification Monads

Given a particular monad M , let me explain informally how to define the Dijkstra
Specification Monad (or DSM in short) of M . It is an extension of M with
two non-deterministic operators that transform the “programming language” of
M into a “specification language”. DSM are special cases of monads. Thus, to
distinguish expressions of M and expressions of its DSM, the former are called
programs and the latter are called specifications.

Very roughly, a specification describes a set of programs that implement it.
This set is closed under observational equivalence. A specification S1 refines a
specification S2, if and only if every implementation of S1 also implements S2.
A program is a special case of specification which is only implemented by itself
(modulo observational equivalence). More generally, composition operators of M
are lifted in its DSM as the closure (under observational equivalence) of their
pointwise extension. The DSM of M extends its expression language with two
operators called sync and choice corresponding respectively to the intersection
and the union of a family of specifications.

Below, I define DSM axiomatically. This axiomatization is sufficient to develop
Tarski’s fixpoint theory. Hence, even if all computations of the original monad M
terminate, its associated DSM is expressive enough to represent non-terminating
expressions. It can thus be used to reason about programs of an extension of M
with fixpoint operators. This idea is illustrated in Section 6.2.

3.1 Axioms of DSM

A DSM is a monad, that provides a preorder refines (reflexive and transitive)
such that its associated equivalence is equiv. In other words, equiv s1 s2 must
be equivalent to (refines s1 s2) /\ (refines s2 s1).
refines: forall (A:Type), (K A)->(K A)->Prop.
Implicit Arguments refines [A].

Furthermore, the operator bind must be monotonic (increasing) for this pre-
order. Hence, all functional features (pattern-matching, structural recursion, ...)
are lifted as monotonic constructions. The expression language of monads is
extended with two primitive operators:
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– any: forall (A:Type), (K A) such that any A is implemented by any concrete
value of the type A. If A is empty, then any A has no implementation.

– sync: forall (A B:Type), (A -> (K B)) -> (K B) (with A and B as implicit argu-
ments) such that for any a:A, every implementation of sync s must be an
implementation of s a. If A is empty, we say that sync s aborts: it is refined by
any specification and refines only aborting specifications.

More formally, these operators must satisfy the following five axioms:
any refined: forall (A:Type) (a:A), refines (val a) (any A).
any refines: forall (A B:Type) (s1:A -> K B) (s2:K B),
(forall (a:A), refines (s1 a) s2) -> refines (bind (any A) s1) s2.

sync refines: forall (A B:Type) (s:A -> K B) (a:A), refines (sync s) (s a).
sync refined: forall (A B:Type) (s1:(K B)) (s2:A -> (K B)),
(forall (a:A), refines s1 (s2 a)) -> (refines s1 (sync s2)).

bind sync indep: forall (A B C:Type) (s1:K C) (s2:K B) (s3:B -> K C),
(A -> refines s1 (bind s2 s3))

-> refines s1 (bind (sync (fun :A => s2)) s3).

Axioms sync refines and sync refined express that sync s is the greatest lower
bound1 of s (where s is a family of specifications indexed over A). Let me now
explain the interest and the meaning of other axioms. First, I need to define
choice from bind and any:
Definition choice (A B:Type) (s:A -> K B): (K B) := bind (any A) s.
Implicit Arguments choice [A B].

Combining axioms of bind with respectively any refined and any refines, I de-
rive the following two lemmas:
Lemma choice refined: forall (A B:Type) (s:A -> K B) (a:A),
(refines (s a) (choice s)).

Lemma choice refines: forall (A B:Type) (s1:A -> K B) (s2:K B),
(forall (a:A), refines (s1 a) s2) -> (refines (choice s1) s2).

These two properties express that choice s is the least upper bound of s. There is
thus a relative symmetry between choice and sync with respect to refines. How-
ever, choice distributes over bind whereas sync does not. Indeed, the following
lemma is a consequence of bind associativity:
Lemma choice bind distr: forall (A B C:Type) (s1:A -> K B) (s2:B -> K C),

equiv (bind (choice s1) s2) (choice (fun x:A => bind (s1 x) s2)).

But, this property is not satisfied by sync. For example, let me define s1 as
fun b:bool => val b and s2 as fun x:bool => skip. Applying our intuitive model,
sync s1 is the intersection of (val true) and (val false): it represents the empty
set. Thus, the left side of the refinement goal, bind (sync s1) s2, is empty. On
the right side, fun x => bind (s1 x) s2 is equivalent to fun x:bool => skip. Hence,
its intersection is equivalent to skip and thus non-empty.

1 If S1 refines S2, I consider that S1 is smaller than S2, according to their intuitive
meaning as sets of implementations. But, in the literature about refinement, the dual
view is also often considered.
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Actually, axiom bind sync indep is a weak form of distributivity, when the
intersection ranges over an empty family or a singleton. In particular, the fol-
lowing definition uses sync to derive a require operator that sets a precondition
(I use here the fact that Prop is a subtype of Type). The proof of bind require

below uses axiom bind sync indep.

Definition require (P:Prop):(K unit) := sync (fun :P => skip).

Instruction require P expresses that P is assumed by implementations (any im-
plementation is authorized if P does not hold). Using sync and bind axioms, we
show that such preconditions can only be weakened in refinement.
Lemma bind require: forall (A:Type) (p1 p2:Prop) (s1 s2:K A),

(p2 -> (p1 /\ refines s1 s2)) ->
refines (seq (require p1) s1) (seq (require p2) s2).

Lemma require True: equiv (require True) skip.

Symmetrically, I introduce an operator ensure to set a postcondition. Instruc-
tion ensure P expresses that P is guaranteed by implementations.
Definition ensure (P:Prop): (K unit) := choice (fun :P => skip).
Lemma bind ensure: forall (A:Type) (p1 p2:Prop) (s1 s2:K A),
(p1 -> (p2 /\ refines s1 s2)) ->

refines (seq (ensure p1) s1) (seq (ensure p2) s2).
Lemma ensure True: equiv (ensure True) skip.

3.2 Fixpoint Theory of DSM

Using sync, I adapt here in Coq the Tarski’s proof of existence of a smallest
fixpoint for any monotonic function in a complete lattice. The main trick of this
proof is the higher-order scheme (i.e. a specification “computing” a specification)
in the definition of the smallest fixpoint operator below. Indeed, sfix F is defined
as the intersection of all prefixpoints of F (i.e. sp such that (F sp) refines sp):
Definition sfix (A:Type) (F:(K A) -> (K A)) : (K A) :=
sync (fun sp:(K A) => seq (require (refines (F sp) sp)) sp).

Implicit Arguments sfix [A].

I first prove that sfix refines every prefixpoint of F.
Theorem sfix smallest: forall (A:Type) (F:(K A) -> (K A)) (sp:K A),

(refines (F sp) sp) -> (refines (sfix F) sp).

Then, I prove that under the assumption that F is monotonic, then sfixF F is a
fixpoint (and it is the smallest by sfix smallest):
Theorem sfix fix: forall (A:Type) (F:(K A) -> (K A)),
(forall (x y:K A), refines x y -> refines (F x) (F y))
-> equiv (sfix F) (F (sfix F)).

Actually the proofs of these two theorems are very simple applications of the
axioms and the hypotheses.

The greatest fixpoint operator follows a symmetric construction, and has sym-
metric properties. These fixpoint operators are monotonic (see [Bou06]). I have
also defined a notion of well-founded fixpoints for recursive functions return-
ing a specification. These well-founded fixpoints are unique and preserve such
properties as determinism and weak-termination (see [Bou06]).
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4 Modular Construction of the State DSM

In the previous section, DSM are defined axiomatically. On the contrary, this
section gives particular models of DSM. They are used in next sections to simplify
reasoning about refinement formulae.

Let me start with an intuitive model of the pure DSM, the DSM of the pure
monad (i.e. the monad of purely functional expressions). In this model, a spec-
ification is defined as a pair of a precondition (i.e. a proposition assumed by
implementations) and a postcondition (i.e. a predicate on the result computed
by implementations). Formally, the definition below makes K A a product type
with Build K as constructor, and pre and post as projections (parameter A being
implicit):

Record K (A:Type): Type := { pre: Prop ; post: A -> Prop }.

Definition refines (A:Type) (s1 s2:K A): Prop
:= pre s2 -> ( pre s1 /\ (forall a:A, post s1 a -> post s2 a) ).

Definition val (A:Type) (a:A): K A := Build K True (fun b => a=b).

Definition bind (A B:Type) (s1:K A) (s2:A -> K B): (K B) :=
Build K (pre s1 /\ (forall a:A, post s1 a -> pre (s2 a)))

(fun b => exists a:A, post s1 a /\ post (s2 a) b).

Definition any (A:Type): K A := Build K True (fun a:A => True).

Definition sync (A B:Type) (s:A -> K B) : K B :=
Build K (exists a:A, pre (s a))

(fun b => forall a:A, pre (s a) -> post (s a) b).

It is straightforward to show that the previous definitions satisfy DSM axioms.
Moreover, they are fully compatible with higher-order schemes like the one used
in sfix definition. In particular, I have carefully avoided to define K as an in-
ductive type that encodes the abstract syntax of specifications. Indeed, such an
inductive definition would introduce universe constraints forbidding higher-order
schemes.

In conclusion, this model is intuitive and simple, but not very interesting in
practice: specifications are interpreted as huge formulae, because of bind defi-
nition. Now, I first present a second model which is logically equivalent to the
previous one. It is based on WP and produces simpler formulae. Then, I give a
model for the state DSM, the DSM of the state monad.

4.1 Construction of the Pure DSM from Weakest-Preconditions

The WP semantics improves the previous one by translating computational
contents of specifications into Coq computations. Due to the presence of non-
determinism, there are two notions of weakest-preconditions. They are expressed
below using the pre/post semantics of specifications. Hence, let us assume a type
A, and a specification s of type (K A).
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Given a postcondition R on the result of s, the strong demonic weakest-
precondition of s for R, noted (sdemon s R), is the necessary and sufficient con-
dition which must hold for R to be satisfied however s is implemented. Hence,
(sdemon s) has type (A->Prop)->Prop and satisfies:

forall R:A->Prop, (sdemon s R) <-> ((pre s) /\ forall a:A, (post s a)->(R a))

On the contrary, assuming that (pre s) holds, the angelic weakest-precondition
of s for R is the necessary and sufficient condition which ensures that there exists
an implementation of s satisfying R.

(pre s) -> forall R:A->Prop, (angel s R)<->(exists a:A, (post s a) /\ (R a))

In classical logic, these two notions can be defined dually using Excluded-Middle.
For instance, (angel s R) could be defined as not (sdemon s (fun a => not (R a))).
In Coq which is an intuitionistic logic, these two notions are not dual. But, a
big interest of Coq is that WP are computed inside the logic.

Actually, to simplify the definition of angel and have better properties, I
impose angel to satisfy the following property:

forall R:A->Prop, (angel s R) <-> (exists a:A, (post s a) /\ (R a))

In particular, this implies that angel is monotonic (like sdemon):

forall (R1 R2:A->Prop), (forall a, R1 a -> R2 a) -> (angel s R1)->(angel s R2)

Moreover, using the following two properties (which derive from previous defi-
nitions), pre and post can now be defined from sdemon and angel:
(pre s) <-> (sdemon s (fun => True)).
forall (a:A), (post s a) <-> (angel s (fun b => a=b)).

Hence, instead of defining specifications using a pre/post pair, I now define them
as the following triple:
Record K (A:Type) : Type := {

sdemon: (A -> Prop) -> Prop;
angel: (A -> Prop) -> Prop;
WPcorrect: forall R : A -> Prop,
( sdemon R <-> ( sdemon (fun => True)

/\ forall a:A, (angel (fun b => a=b)) -> R a )
) /\ (angel R <-> (exists a:A, (angel (fun b => a=b)) /\ R a))

}.
Actually, with this definition, I proved all standard properties of the WP-calculus
without introducing abstract syntax for specifications.

In the following, I still continue to use pre and post, but these constructions are
now derived from sdemon and angel using the previous equivalences. Refinement
is directly defined by translating the pre/post semantics:
Definition refines (A:Type) (s1 s2:K A): Prop
:= (pre s2) -> (sdemon s1 (fun a => post s2 a)).

At last, I present below the definition of pure DSM operators through Coq

formulae. Indeed, their WPcorrect component is not very human-friendly (see the
real Coq code in [Bou06]). Hence, val, bind and any are defined such that
forall (A:Type) (a:A) (R:A->Prop),
(sdemon (val a) R = R a) /\ (angel (val a) R = R a)
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forall (A B:Type) (s1:(K A)) (s2:A->(K B)) (R:B->Prop),
(sdemon (bind s1 s2) R = sdemon s1 (fun a => sdemon (s2 a) R))

/\ (angel (bind s1 s2) R = angel s1 (fun a => angel (s2 a) R))

forall (A:Type) (R:A->Prop),
(sdemon (any A) R = forall a:A,R a) /\ (angel (any A) R = exists a:A,R a)

Now, I must define sync. But, WP of sync are not very simple. Thus, I derive
sync from require, where require is satisfying:

forall (P:Prop) (R:unit->Prop),
(sdemon (require P) R = (P /\ R tt)) /\ (angel (require P) R = R tt)

Below, sync is defined from other operators, assuming that choice and ensure

are defined according to Section 3.1 (their definitions depend only on bind, val
and any). This definition of sync is only valid in the pure DSM.

Definition sync (A B:Type) (s:A -> K B) :=
seq (require (exists a:A, pre (s a)))

(choice (fun b => seq (ensure (forall a, pre (s a) -> post (s a) b))
(val b))).

These definitions satisfy the DSM axioms. Moreover, on the programming part of
the language (here val and bind), sdemon and angel perform CPS computations.
Examples of WP computed by Coq are given in Section 5.

4.2 Construction of the State DSM from the Pure DSM

This section presents how the state DSM is derived from the pure DSM, by
applying the state monad transformer. Intuitively, a monad transformer is a
function from monads to monads that extends the input monad with specific
constructions (see [Lia96, Ben02]). A monad transformer is simply given by a
transformation on the type constructor K, by an embedding of the expressions of
the input monads, and by a generic transformation on composition operators of
the input monad. However, the properties of the specific operators of the input
monad are not necessarily fully preserved in the output monad.

Hence, in our case, we have to prove that applying the state monad trans-
former on the pure DSM, we obtain a DSM (it is a state monad by construction).
From now, constructions of the pure DSM are prefixed by “F.”: the non-prefixed
names are only used to denote constructions of the state DSM. It is easy to prove
that the following definitions satisfy axioms of DSM (and of state monads):

Definition K (A:Type) := St -> F.K (St*A).
Definition refines (A:Type) (s1 s2:St -> F.K (St*A))
:= forall st:St, F.refines (s1 st) (s2 st).

Definition val (A:Type) (a:A): K A := fun st => F.val (st,a).
Definition bind (A B:Type) (s:K A) (f:A -> K B): K B
:= fun st => F.bind (s st) (fun p => let (stf,a):=p in (f a stf)).

Definition set (st:St): K unit := fun => F.val (st,tt).
Definition get: K St := fun st => F.val (st,st).
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Definition any (A:Type): K A
:= fun st => F.bind (F.any A) (fun a => F.val (st,a)).

Definition sync (A B:Type) (s:A->K B) := fun st => F.sync (fun x => s x st).

Weakest-preconditions on the state DSM are also derived from the pure DSM:
Definition sdemon (A:Type) (s:K A) (R:St->A->Prop) (st:St)
:= F.sdemon (s st) (fun p => let (stf,a):=p in (R stf a)).

This method allows me also to extend the state DSM with exception-handling,
using the exception monad transformers. It could also probably be applied with
many other monad transformers.

5 WP-Computations in Interactive Refinement Proofs

In a refinement prover like B, refinement formulae are automatically translated
into first-order “proof obligations” through WP-computations. This is expressed
in the pure DSM by the following rule:
Lemma wp refines: forall (A:Type) (s1 s2:F.K A),
(F.pre s2 -> F.sdemon s1 (fun a => F.post s2 a)) -> F.refines s1 s2.

Indeed, application of this lemma replaces the current refinement goal by the
formula in hypothesis, that Coq can then simplify by computing effectively
“F.pre s2”, “F.sdemon s1” and “F.post s2”.

Let me run this rule on an example. First, I introduce an operator abort that
sets a false precondition, and thus, behaves like an error-raising operator. Given
a type A, abort A could be defined as seq (require False) (any A). Here, in the
pure DSM, I use an (observationally) equivalent definition, but with optimized
WP. Hence, F.abort is defined such that
forall (A:Type) (R:A->Prop),
(F.sdemon (F.abort A) R = False) /\ (F.angel (F.abort A) R = False).

Second, I introduce two function definitions:
– Function pred computes the predecessor of a natural n, or aborts if n is zero.

Definition pred (n:nat): F.K nat := match n with | 0 => F.abort nat
| (S p) => F.val p

end.

– Function minus computes n−m when n ≥ m. If n < m, it aborts. It is defined
by structural recursion over parameter m as indicated by struct keyword.
Fixpoint minus (n m:nat) {struct m}: F.K nat :=

match m with | 0 => F.val n
| (S p) => F.bind (pred n) (fun n’ => minus n’ p)

end.

At last, let me consider the following three goals (below literals are expanded in
Peano numbers by the Coq parser). The first goal does not hold, because the
left side aborts, whereas the right side does not. The second goal holds, because
the right side aborts. The third goal is an expected property of minus.
forall (n:nat), F.refines (minus 100 (500+n)) (F.any nat).
forall (n:nat) (sp:F.K nat), F.refines sp (minus 100 (500+n)).
forall (n:nat), F.refines (minus (500+n) 500) (F.val n).
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After introduction of variables and application of wp refines, the first goal is
reduced to (nat -> True) -> False. In the same way, the second goal is reduced
to False -> F.sdemon sp (fun :nat => False) and the third goal is reduced to
True -> n = n. Here, we benefit from the fact that 500+n is reduced by Coq

to S500 n. Of course, Coq can discharge automatically the two last formulae.
Moreover, combining induction over m, transitivity of refinement and lemma

wp refines, I have established the correctness of minus in Coq interactive prover:

Lemma minus correctness: forall (m n:nat), m <= n ->
F.refines (minus n m)

(F.choice (fun k => F.seq (F.ensure (n=m+k)) (F.val k))).

This small example illustrates that refinement is very convenient to handle par-
tial functions in Coq and that computations of WP can involve structural re-
cursion and pattern-matching.

5.1 Mixing Deductions and WP-Computations in the Pure DSM

In the presence of higher-order functions, wp refines rule does not suffice. For ex-
ample, because of higher-order parameters, sdemon and angel are not necessarily
eliminated from the resulting formula. Moreover, reasoning about higher-order
functions often requires to find a good instantiation of a higher-order lemma.
Hence, the user needs to control WP-computations such that in refinement
proofs, deductions and WP-computations may be interlaced. The deduction
rules in refinement proofs are: reflexivity, transitivity of refinement, associativity,
monotonicity of bind, and other lemmas derived from DSM axioms.

In the pure DSM, three simplifying rules involving bind operator are given be-
low. Property bind simpl left indicates that “(F.refines (F.bind s1 s2) s3)”
can be deduced from “(F.sdemon s1 (fun a => F.refines (s2 a) s3))”. If s1 is
simple enough, this last formula is simplified such that s1 and sdemon do not
appear any more. Hence, this lemma allows to perform a kind of partial evalu-
ation of bind into the left side of the refinement goal. The two others lemmas
correspond respectively to a simplification of bind in the right part of the refine-
ment goal, or in both part of the refinement goal.

Lemma bind simpl left: forall (A B:Type)(s1:F.K A)(s2:A->F.K B)(s3:F.K B),
F.sdemon s1 (fun a=>F.refines (s2 a) s3) -> F.refines (F.bind s1 s2) s3.

Lemma bind simpl right: forall (A B:Type)(s1:F.K A)(s2:A->F.K B)(s3:F.K B),
F.angel s1 (fun a=>F.refines s3 (s2 a)) -> F.refines s3 (F.bind s1 s2).

Lemma bind simpl both: forall (A B:Type) (s1 s3:F.K A) (s2 s4:A -> F.K B),
F.sdemon s1 (fun a => F.refines (s2 a) (s4 a))
-> F.refines s1 s3 -> F.refines (F.bind s1 s2) (F.bind s3 s4).

5.2 Mixing Deductions and WP-Computations in the State DSM

I now briefly explain how the previous ideas are extended to reason in the state
DSM. In the state DSM, it is convenient to reason with a restricted form of
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refinement formulae that compares specifications for a given initial state. Below,
I define refInEnv relation from refines:
Definition refInEnv (st:St) (A:Type) (s1 s2: K A)
:= (refines (seq (set st) s1) (seq (set st) s2)).

Implicit Arguments refInEnv [A].

Actually, refinement proofs can use refInEnv instead of refines, because of the
following property:
forall (A:Type)(s1 s2:K A), refines s1 s2 <-> forall st, refInEnv st s1 s2.

The interest of refInEnv is that conditions over the initial state are propagated
from the hypotheses without a loss of information, as exemplified below on the
state DSM version of bind simpl both.
Lemma bind simpl both: forall (A B:Type)(s1 s3:K A)(s2 s4:A->K B)(st:St),
sdemon s1 (fun stf a => refInEnv stf (s2 a) (s4 a)) st

-> refInEnv st s1 s3 -> refInEnv st (bind s1 s2) (bind s3 s4).

6 Proof of Programs with the State DSM

As DSM are monads, equational reasoning presented Section 2 has actually been
performed in the state DSM (see [Bou07]). I have also proved other small higher-
order imperative functions which have led me to design the simplification rules
given in the previous section (see [Bou06]).

Thus, here, I first show how Hoare logic reasoning on first order imperative
programs is encoded into the state DSM. Then, I explain how while-loops are
expressed in the state DSM, for partial or total correctness. These ideas have
been experimented with the total-correctness proof of a sort on arrays [Bou06].

6.1 Hoare Specifications

On the state DSM, given a predicate q: St -> A -> Prop, I define absPost q as
the specification of imperative expressions that admits q as postcondition:
Definition absPost (A:Type) (q:St -> A -> Prop) : K A :=

choice (fun stf =>
choice (fun a => seq (ensure (q stf a)) (seq (set stf) (val a)))).

Implicit Arguments absPost [A].

Given e of type (K A) in the state DSM, the Hoare specification of e (see Sec-
tion 2.2) is now expressed by the following formula:
forall sti:St, (P sti) -> refInEnv sti e (absPost (Q sti))

The conclusion of this formula can be simplified using the following rule:
Lemma absPost2wp: forall (A:Type) (s:K A) (q:St->A->Prop) (st:St),

(sdemon s q st) -> (refInEnv st s (absPost q)).

Applying this rule generates proof obligations corresponding to those of Hoare
logic, except for function calls. Indeed, in a function call, my WP-computations
unfold the function definition (functions are used as white-boxes), whereas stan-
dard WP-computations use the specification of the function (functions are used
as black-boxes). Hence, before to apply my WP-simplifications, the user has to
replace function calls by their specification using monotonicity rules: currently,
the user-control on WP computations comes at this price.
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6.2 Non-terminating Expressions

I illustrate here on a while-loop operator that non-terminating expressions can be
represented by smallest fixpoints in partial correctness semantics, or by greatest
fixpoints in total correctness semantics. First, I define the “unfolding” of a while-
loop computation w where cond and body represent respectively the condition and
the body of this computation.
Definition unfoldW (cond:K bool) (body w:K unit): K unit :=

If cond Then (seq body w) Else skip.

Then, while cond body is defined as the smallest fixpoint of unfoldW cond body.
Definition while (cond:K bool) (body:K unit) := sfix (unfoldW cond body).

Operator while corresponds to a while-loop in partial correctness: termination
is not guaranteed. In the state DSM, I have defined from while, a whileWF

operator corresponding to total correctness. Actually, whileWF cond body calls
while cond body under a precondition, which expresses that, in the state transfor-
mation induced by the sequence of cond and body, the state strictly decreases with
respect to a well-founded relation. In other words, whileWF requires a property
implying its termination. When whileWF appears in the left side of a refinement
goal, this property must be proved. Moreover, whileWF cond body is refined by
any fixpoint of unfoldW cond body, because under its assumption of termination,
there is a unique fixpoint. Hence, whileWF is a greatest fixpoint (see [Bou06]).

7 Conclusion

WP have been invented in [Dij75], inspiring the refinement calculus of [Bac78].
Then, the calculus has been developed by many other authors. In particular,
[Bun97] presents a refinement for a higher-order expressions language which
shares many aspects with my DSM theory. In parallel, [Gor88] promoted the
use of higher-order logics to formalize particular programming logics like Hoare
logic. It inspired many works. Among them, [Bod99] formalizes B in Coq using
a pre/post semantics. Actually, [vW94] inspired my first attempts to formalize
refinement calculus in Coq. I was also interested in combining monads with
Hoare logic [Fil03, Sch03, Nan06] and encoding WP as CPS [Aud99].

With respect to all these works, the main contributions of my formalization
seem to be: to extend refinement calculus with higher-order functions and struc-
tural recursion, to propose its modular construction using monad transformers,
to embed its fixpoint theory into constructive type theory, to program WP as
continuations in an intuitionistic logic, and to define simplification rules of refine-
ment formulae in interactive proofs. As a result, Coq now embeds the refinement
calculus of [Mor90]. The refinement calculus of [Bac98] has stronger properties,
but its perfect symmetry seems to deeply rely on the axiom of Excluded-Middle.

In the future, refinement calculus could be for Coq what monads have been
to Haskell. But there is a long road ahead: for instance, to address the frame
problem and data refinement. A long-term goal is to provide a notion of “abstract
machines” like in B [Abr96]: combining abstract machines and higher-order func-
tions would give an object-oriented flavor to the specification language.
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Abstract. We describe a new method to represent (partial) recursive
functions in type theory. For every recursive definition, we define a
co-inductive type of prophecies that characterises the traces of the com-
putation of the function. The structure of a prophecy is a possibly infinite
tree, which is coerced by linearisation to a type of partial results defined
by applying the delay monad to the co-domain of the function. Using
induction on a weight relation defined on the prophecies, we can reason
about them and prove that the formal type-theoretic version of the recur-
sive function, resulting from the present method, satisfies the recursive
equations of the original function. The advantages of this technique over
the method previously developed by the authors via a special-purpose
accessibility (domain) predicate are: there is no need of extra logical ar-
guments in the definition of the recursive function; the function can be
applied to any element in its domain, regardless of termination prop-
erties; we obtain a type of partial recursive functions between any two
given types; and composition of recursive functions can be easily defined.

1 Introduction

The implementation of general recursive functions in type theory has received
wide attention in the last decade, and several methods to implement recursive
algorithms and reason about them have been described in the literature.

We give a survey of different approaches in the related work section of a
previous article [6]. After the publication of that paper, the type-theory based
proof assistant Coq [14,3] has been extended with a new feature to define total
recursive functions that expands the native structural recursion. The feature
Function (based on the work by Balaa and Bertot [1]) facilitates the definition of
total functions that have a well-founded relation associated to them. In addition,
the tactic functional induction (based on the work by Barthe and Courtieu
[2]) has been added to the system, providing induction principles that follow
the definition of structurally recursive functions. These contributions enlarge
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the class of total recursive functions that can be studied in Coq. There are,
however, functions that lay outside the reach of these new features, for example,
all strictly partial recursive functions. Our main goal in this work is to provide
a good general type-theoretic treatment of recursive computations (partial or
not).

We have previously worked on two methods to tackle this issue. The first
method [6,4,7] consists in characterising the inputs on which the function ter-
minates by an inductive (domain) predicate easily defined from the recursive
equations, and then defining the function itself by recursion on the proof that
the input argument satisfies this domain predicate. The second method [8] con-
sists in defining co-inductive types of partial elements and implementing general
recursive functions by co-recursion on these types.

Both methods have pros and cons.
The first method has two main advantages. First, the type-theoretic equa-

tions defining the function are almost identical to the recursive equations in a
functional programming language, except that the former require proof terms
for the domain predicate as additional arguments. Second, it is easy to reason
about a function formalised with this method by induction on its domain pred-
icate. A disadvantage is that the application of a function to a certain input
always requires a proof that the input satisfies the domain predicate defined for
the function; as a consequence, the function can only be applied to arguments
for which we know how to construct such a proof.

On the other hand, a function formalised with the second method requires
no additional logical arguments in its definition and, hence, the function can be
applied even to arguments for which it might not terminate. The main disad-
vantage is that reasoning about functions formalised in this way is much more
involved than with the first method.

Here, we show a new way of representing general recursive functions in in-
tensional type theory, where we adapt some of the ideas of the first method
to facilitate the definition of functions with the second one and the subsequent
reasoning about their formalisation. In other words, we propose a co-inductive
version of the Bove/Capretta method.

Throughout this paper we will use a generalisation of the Fibonacci function
as a running example to illustrate the notions we are presenting. This algorithm
is defined as follows:

F : N → N

F 0 = a
F 1 = b + c ∗ F (g 0)
F (S (S n)) = F (g n) + F (g (S n)).

where a, b and c are natural numbers and g : N → N. We can get the standard
Fibonacci sequence by letting a = 1, b = 1, c = 0, and letting g be the identity
function.

Observe that the totality of F depends on the definition of g: with the same
choices of a, b, c, but choosing for g the successor function, we obtain a function
that is defined in 0 but diverges for any other value.
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This paper is organised as follows. In Section 2, we recall how to define a
recursive function with the inductive Bove/Capretta method. Sections 3 and
4 present, respectively, the prophecies, that is, the co-inductive version of the
Bove/Capretta method, and their evaluation procedure. In Section 5, we show
the validity of this new method. Finally, Section 6 presents some conclusions.

We have formalised the running example in the proof assistant Coq. As an
additional example, we have also formalised the quicksort algorithm using the
method we present here. The files of both formalisations are available on the
web at the address: http://www.cs.ru.nl/~venanzio/Coq/prophecy.html.

2 Overview of the Bove/Capretta Method

We outline the general steps of the inductive Bove/Capretta method by showing
how an algorithm defined by general recursive equations can be formalised in
type theory.

Let f be a recursive function defined by a series of (non-overlapping) equa-
tions. We assume that the informal definition of the function has the following
form:

f : A → B
· · ·
f p = e[(f p1), . . . , (f pn)]
· · ·

where “f p = · · · ” is one of the recursive equations defining f . The term p is
a pattern, possibly containing variables that can occur in the right-hand side of
the equation. The right-hand side is an expression e, recursively calling f on the
arguments p1, . . . , pn.

For an argument a matching the pattern p, there are three phases in the com-
putation of (f a): first, from the argument a, the recursive arguments a1, . . . , an

are computed; then, the program f is recursively applied to these arguments;
and finally, the results of the recursive calls are fed into the operator e to obtain
the final result. This three-steps process is general and can be used to give a
very abstract notion of computable function [9].

We recall that the Bove/Capretta method consists in characterising the do-
main of a function by an inductive predicate with (in principle) one constructor
for each of the equations defining the function1. The constructor corresponding
to each equation takes as parameters assumptions stating that the recursive ar-
guments in the equation satisfy the domain predicate. The general form of the
domain predicate for the function f above is as follows:

Df : A → Prop
· · ·
dp : (Γp)(Df p1) → · · · → (Df pn) → (Df p)
· · ·

1 Equations with a case-expression on their right-hand side can give raise to sev-
eral constructors. See [6] for a more detailed explanation on how to handle these
equations.
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where Γp is a context local to the equation, comprising the variables that occur
in p.

For our example we have

DF : N → Prop
d0 : (DF 0)
d1 : (DF (g 0)) → (DF 1)
dS : (n : N)(DF (g n)) → (DF (g (S n))) → (DF (S (S n)))

The type-theoretic version of f takes as an extra argument a proof that the
input satisfies the domain predicate, and it is defined by structural recursion on
this extra argument:

f : (y : A)(Df y) → B
· · ·
f p (dp

−→x h1 · · · hn) = e[(f p1 h1), . . . , (f pn hn)]
· · ·

For the F function we get:

F : (m : N)(DF m) → N

F 0 d0 = a
F 1 (d1 h) = b + c ∗ (F (g 0) h)
F (S (S n)) (dS n h1 h2) = F (g n) h1 + F (g (S n)) h2

For a complete description of this method and for more examples of its appli-
cation, the reader is referred to [6,4,7].

3 Views and Prophecies

We can consider an alternative representation of the domain Df of f where we
ignore the elements of A altogether. Below we present the general form of this
new domain type which we call Af , and its corresponding instance for the F
function which we call NF.

Af : Type
· · ·
cp : Γp → Af → · · · → Af

︸ ︷︷ ︸
n times

→ Af

· · ·

NF : Type
c0 : NF

c1 : NF → NF

cS : N → NF → NF → NF

Using the terminology of [12], we call Af a view of the domain.
We now formalise f as a function on this new type:

f� : Af → B
· · ·
f� (cp

−→x t1 · · · tn) = e[(f� t1), . . . , (f� tn)]
· · ·
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The variables in Γp are still required as parameters of the constructor cp, even
if they do not occur in the arguments of the branches, since they may occur in
the operator e.

For our example we obtain

F� : NF → N

F� c0 = a
F� (c1 h) = b + c ∗ (F� h)
F� (cS n h1 h2) = F� h1 + F� h2

We can see Af as the type of abstract inputs for the function f . It is easy to
obtain the elements in Af from the elements of A satisfying Df :

ıf : (y : A)(Df y) → Af

· · ·
ıf p (dp

−→x h1 · · · hn) = cp
−→x (ıf p1 h1) · · · (ıf pn hn)

· · ·
The reverse direction is however not possible, since elements in Af can be con-
structed in an arbitrary way, completely disconnected from the behaviour of the
function f . The possible projections of those elements in A have absolutely no
reason to satisfy Df . Consider for example the element (cS 10 c0 c0) for our
example of the function F.

We now try to dualise the inductive Bove/Capretta method by using a
co-inductive approach. The idea is that, instead of defining an inductive char-
acterisation of the domain, we define a co-inductive characterisation of the
co-domain of the function:

CoInductive Bf : Type
· · ·
be : Γe → Bf → · · · → Bf

︸ ︷︷ ︸
n times

→ Bf

· · ·

where Γe is the context comprising the variables occurring free in e. In principle,
Γe could coincide with Γp; however, some of the variables in the pattern p may
not be needed for the computation of e and hence, they could be omitted in Γe

2.
Observe that the definition of Bf is identical to that of Af except for the

contexts appearing in the equations of both definitions, and for the fact that it
is a co-inductive definition instead of an inductive one.

The co-inductive characterisation of the co-domain of F is defined as

CoInductive N
F : Type
f0 : N

F

f1 : N
F → N

F

fS : N
F → N

F → N
F.

2 Actually, in some cases, not even all the variables that are free in e need to be
included in Γe; for example, the Natural argument n is omitted from the constructor
fS in the definition of N

F.
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We now give a version of f that has Bf as co-domain:

f� : A → Bf

· · ·
f� p = be

−→
x′ (f� p1) · · · (f� pn)

· · ·

This definition is sound because the co-recursive calls (f� p1), . . . , (f� pn) are
guarded by the constructor be (see [11] for further reading on this issue).

We can see Bf as the type of abstract outputs in the same way we saw Af as
the type of abstract inputs. In a certain sense, the elements of Bf are a prediction
of the structure of the result. For this reason we will call them prophecies.

The version of F using a co-inductive co-domain is

F� : N → N
F

F� 0 = f0
F� 1 = f1 (F� (g 0))
F� (S (S n)) = fS (F� (g n)) (F� (g (S n)).

4 Evaluating the Prophecies

The relation between Bf and B is not very clear: since the elements of Bf may
represent infinite computations, they do not always correspond to elements of
B. Instead, we can find a correspondence between Bf and the type of partial
elements of B defined in [8] as:

CoInductive Bν : Type
return : B → Bν

step : Bν → Bν

Following [8], we use the notations �b� for (return b) and � x for (step x). The
definition above means that an element of Bν can be either a finite sequence of
� steps followed by the return of a value of B, or an infinite sequence of � steps.
So Bν represents the partial elements of B.

Our goal is then to represent the program f in type theory as a function
with type A → Bν . To accomplish this, we need to define an evaluation oper-
ator evaluatef : Bf → Bν . Notice that Bf has a tree structure, since elements
constructed by be correspond to nodes of branching degree n, while Bν has a
linear structure given by a sequence of � steps. The problem consists in linearis-
ing a tree or, in computational terms, sequentialising a parallel computation. To
achieve this, we create a stack of calls and we execute them sequentially. Every
call, when evaluated, can in turn generate new calls that are added to the stack.
The stack is represented by a vector. The empty vector is denoted by 〈 〉. We
use the notation 〈x1, . . . , xn; −→v 〉 to denote the vector whose first n elements are
x1, . . . , xn and whose elements from the (n + 1)th on are given by the vector −→v .
In the case where −→v is the empty vector, we simply write 〈x1, . . . , xn〉. In what
follows, Ak represents the type of vectors of elements in A with length k.
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The evaluation operator also has an extra parameter: a function that will
compute the final result from the results of the recursive calls on the elements
in the stack. This is similar to continuation-passing programming [13].

The co-recursive evaluation function θf , defined below, performs the sequen-
tialisation we just mentioned. The function is defined by cases on the length of
the vector and, when the vector is not empty, by cases on its first element.

θf : (k : N)(Bf )k → (Bk → B) → Bν

θf 0 〈 〉 h = �h 〈 〉�
· · ·
θf (S k) 〈(be

−→
x′ y1 · · · yn); −→v 〉 h = �(θf (n + k) 〈y1, . . . , yn; −→v 〉 h′)

where h′ 〈z1, . . . , zn; −→u 〉 = h 〈e[z1, . . . , zn]; −→u 〉
· · ·

Notice that the recursive call in the function θf are guarded by the constructor
�, hence this is a valid co-fixpoint definition.

In our running example for the function F we obtain:

θF : (k : N)(NF)k → (Nk → N) → N
ν

θF 0 〈 〉 h = �h 〈 〉�
θF (S k) 〈f0; −→v 〉 h = �(θF k −→v h′)

where h′ −→u = h 〈a; −→u 〉
θF (S k) 〈(f1 y); −→v 〉 h = �(θF (S k) 〈y; −→v 〉 h′)

where h′ 〈z; −→u 〉 = h 〈(b + c ∗ z); −→u 〉
θF (S k) 〈(fS y1 y2); −→v 〉 h = �(θF (2 + k) 〈y1, y2; −→v 〉 h′)

where h′ 〈z1, z2; −→u 〉 = h 〈(z1 + z2); −→u 〉

The evaluation function, both in its general form and its instantiation for our
example, is defined as follows:

evaluatef : Bf → Bν

evaluatef y = θf 1 〈y〉 (λ〈z〉.z)
evaluateF : N

F → N
ν

evaluateF y = θF 1 〈y〉 (λ〈z〉.z)

where λ〈z〉.z denotes the function giving the only element of a vector of length
one.

Finally, we define the desired functions f and F:

f : A → Bν

f x = evaluatef (f� x)
F : N → N

ν

F n = evaluateF (F� n).

5 Validity of the Prophecy Method

We want to prove that the formal version of the function f defined with the
prophecy method is a correct implementation of the informal recursive function.
Specifically, we want to prove the validity of the equations defining the function.

Remember that f may return an element consisting of infinite computation
steps when applied to certain inputs. The inductive relation (defined in [8])
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Value : Aν → A → Prop, for which we use the notation ( ↓ ), characterises ter-
minating computations. The expression (x ↓ a) states that the element x of Aν

converges to the value a in A. Its inductive definition has two rules:

�a� ↓ a

x ↓ a

� x ↓ a
.

We now formulate the recursive equations in terms of ( ↓ ) and we prove
that our implementation of the function satisfies them.

For each non-recursive equation f p = a in the informal definition of f , where
a may contain occurrences of the variables in Γ but no recursive calls to f , we
would like to show that the formal version of f satisfies

∀−→x : Γ, f p ↓ a;

where −→x are the variables defined in the context Γ , and for each recursive
equation of the form f p = e[(f p1), . . . , (f pn)] in the informal definition of f ,
we would like to show that its formalisation is such that

∀−→x : Γ, ∀r1, . . . , rn : B, (f p1) ↓ r1 → · · · → (f pn) ↓ rn → (f p) ↓ e[r1, . . . , rn].

For our example function F, we want to prove the following three statements

(F 0) ↓ a,

∀m : N, (F (g 0)) ↓ m → (F 1) ↓ (b + c ∗ m),

∀n, m1, m2 : N, (F (g n)) ↓ m1 → (F (g (S n))) ↓ m2 →
(F (S (S n)))) ↓ (m1 + m2).

On the road to proving these results, let us consider more closely the meaning
of prophecies. A prophecy can be seen as the tree representation of the compu-
tation of the result of an expression. That is, it would be the computation trace,
if parallel evaluation were allowed. For example the prophecy

be

−→
x′ y1 · · · yn

specifies a parallel computation in which we first evaluate the subtrees y1, . . . , yn

and, if all these computations terminate giving r1, . . . , rn as result, respectively,
then we obtain the output by computing the expression e[r1, . . . , rn].

Recall that, since types of partial elements like Bν represent computations in
a sequential model, we could not directly define the evaluation of a prophecy fol-
lowing the above intuition, but we needed to use the sequentialising operator θf .

We can characterise the behaviour of (θf k −→v h) as follows:

(evaluatef vi) converges for every prophecy vi in the vector −→v : (Bf )k

if and only if (θf k −→v h) converges; moreover, in case they converge, if
zi : B is the value of (evaluatef vi) for 0 � i � k, then (h 〈z1, . . . , zk〉) is
the value of (θf k −→v h).
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The characterisation of θf is described in the following lemma, where the
inductive relation (−→v � −→u ) expresses that (evaluatef vi) ↓ ui for 0 � i � k,
where vi is the ith element of −→v : (Bf )k and ui is the ith element of −→u : Bk.

Lemma 1

∀k : N, ∀−→v : (Bf )k, ∀h : Bk → B, ∀b : B,
(θf k −→v h) ↓ b ←→ ∃−→u : Bk, (−→v � −→u ) ∧ (h −→u = b).

In order to prove Lemma 1 we define a weight on prophecies and vectors of
prophecies. Intuitively, the weight of a finite prophecy indicates the size of the
prophecy. The weight of a prophecy, when defined, must be a positive natural
number. Moreover, the weight of a tree-structured prophecy y will only be defined
if the weights of all its children are defined. In addition, the weight of y has to
be strictly greater than the sum of the weights of its children.

Since prophecies need not be well-founded trees, it is not possible to define
their weights by a total function. Instead, the weight of a prophecy is defined
as an inductive relation Wght : Bf → N → Prop with a constructor for each
constructor in the set of prophecies. For each constant constructor b : Bf , there
is a weight constructor of the form

wghtb : Wght b 1
,

and for each non-constant constructor be : Γe →

n times
︷ ︸︸ ︷
Bf → · · · → Bf → Bf , there is

a weight constructor of the form

−→
x′ : Γe h1 : Wght y1 w1 · · · hn : Wght yn wn

wghtbe
−→
x′ h1 · · · hn : Wght (be

−→
x′ y1 · · · yn) (S (w1 + · · · + wn))

.

The weight of a vector of prophecies is the sum of the weights of its elements
plus its length, and it is given by an inductive relation
Weight : (k : N)(Bf )k → N → Prop defined as follows:

weight0 : Weight 0 〈〉 0
hy : Wght y wy hv : Weight k −→v wv

weightS k hy hv : Weight (S k) 〈y; −→v 〉 (S (wy + wv))
.

The statement of Lemma 1 can now be restrained to those vectors of prophe-
cies that have a weight. This makes it easier to prove the lemma by applying
course-of-value induction on the weight of the vector. Later, in lemmas 3 and 5,
we show that the restriction can be relaxed because all converging prophecies
have a weight.

Lemma 2

∀ w : N, ∀k : N, ∀−→v : (Bf )k, Weight k −→v w →
∀h : Bk → B, ∀b : B, (θf k −→v h) ↓ b ←→ ∃−→u : Bk, (−→v � −→u ) ∧ (h −→u = b).



Computation by Prophecy 79

Proof. By course-of-value induction on the weight w and cases on k. Recall that
the value of k determines the structure of the vector v. When v is not empty, we
also perform cases on its first element.

If k = 0, then −→v = 〈 〉. By definition of θf , we have (θf 0 〈 〉 h) = �h 〈 〉�
and, therefore, it must be that b = (h 〈 〉) and −→u = 〈 〉. Hence, the statement is
true.

If k = (S k′) then −→v = 〈y;
−→
v′ 〉. We now perform case analysis on y.

Let y be a leaf. We know that the vector
−→
v′ must have a weight w′ and

moreover, w′ must be strictly smaller than w, w′ < w. Both directions of the
lemma can now be easily proved by induction hypothesis on the weight w′, and
by definition of the functions θf and evaluatef .

Let y have a tree structure, that is, y = (be

−→
x′ y1 · · · yn). Given h, by definition

of θf we get

θf (S k′) 〈(be

−→
x′ y1 · · · yn);

−→
v′ 〉 h = �(θf (n + k′) 〈y1, . . . , yn;

−→
v′ 〉 h′)

with (h′ 〈z1, . . . , zn; −→u 〉) = h 〈e[z1, . . . , zn]; −→u 〉. Hence, for any given b, we have
the equivalence

(θf (S k′) −→v h) ↓ b ←→ (θf (n + k′) 〈y1, . . . , yn;
−→
v′ 〉 h′) ↓ b. (1)

The new vector of prophecies has a smaller weight than the original one, since
we replaced the first element in the vector by all its children. That is, there is a
weight w′ such that (Weight (n + k′) 〈y1, . . . , yn;

−→
v′ 〉 w′) and w′ < w. Therefore

we can apply the induction hypothesis to w′, h′ and b and obtain that

(θf (n + k′) 〈y1, . . . , yn;
−→
v′ 〉 h′) ↓ b ←→

∃〈z1, . . . , zn; −→u 〉 : Bn+k′
, (〈y1, . . . , yn;

−→
v′ 〉 � 〈z1, . . . , zn; −→u 〉) ∧

(h′ 〈z1, . . . , zn; −→u 〉 = b).
(2)

In addition, the weight of 〈y1, . . . , yn〉 is strictly smaller than the weight of the
vector −→v , so we can apply the inductive hypothesis again with the continuation
h = λ〈z1, . . . , zn〉.e[z1, . . . , zn] to obtain

∀b : B, (θf n 〈y1, . . . , yn〉 (λ〈z1, . . . , zn〉.e[z1, . . . , zn])) ↓ b ←→
∃−→z : Bn, (〈y1, . . . , yn〉�−→z ) ∧ ((λ〈z1, . . . , zn〉.e[z1, . . . , zn]) −→z = b).

(3)

Now we prove the main statement.
In the direction from left to right, let us assume (θf (S k′) −→v h) ↓ b. By the

equivalence in (1), we have that (θf (n + k′) 〈y1, . . . , yn;
−→
v′ 〉 h′) ↓ b. Now, by

the instantiated induction hypothesis in (2), we know that there exists a vector
〈z1, . . . , zn; −→u 〉 with the stated properties. In particular, (evaluatef yi) ↓ zi for
0 � i � n, and hence 〈y1, . . . , yn〉 � 〈z1, . . . , zn〉.

Let z = e[z1 · · · zn]; we claim that 〈z; −→u 〉 is the vector satisfying the conclusion
of the the lemma. We need to prove that

(〈y;
−→
v′ 〉 � 〈z; −→u 〉) ∧ (h 〈z; −→u 〉 = b),
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which amounts to proving that (evaluatef y) ↓ z, since the rest follows from the
equivalence in (2). By definition of evaluatef , we need to prove that

(θf 1 〈(be
−→x y1 · · · yn)〉 (λ〈z′〉.z′)) ↓ e[z1 · · · zn].

By unfolding the definition of θf , we obtain that this statement is equivalent to
the following:

(θf n 〈y1, . . . , yn〉 (λ〈z1, . . . , zn〉.e[z1, . . . , zn])) ↓ e[z1 · · · zn]. (4)

We now instantiate (3) with b = e[z1 · · · zn], and we apply the right-to-left
direction of the resulting equivalence with the vector 〈z1, . . . , zn〉 and the corre-
sponding proofs of the needed hypotheses. We obtain then a proof of the claim
in (4).

In the direction from right to left, assume that

∃〈z; −→u 〉 : Bk, (〈y;
−→
v′ 〉 � 〈z; −→u 〉) ∧ (h 〈z; −→u 〉 = b).

Then (evaluatef y) ↓ z and, since y = (be
−→x y1 · · · yn), by the definitions of

evaluatef and θf , we can apply the left-to-right direction of (3) with b = z. Thus,
there exists a vector 〈z1, . . . , zn〉 such that (evaluatef yi) ↓ zi for 0 � i � n, and
e[z1 · · · zn] = z.

We can now use the right-to-left direction of (2) with the vector
〈z1, . . . , zn; −→u 〉 and the corresponding proofs of the needed hypotheses.

Finally, the equivalence in (1) allows us to conclude that
(θf (S k′) 〈y; −→v 〉 h) ↓ b. ��

In the next three lemmas, we show that all converging prophecies have a weight.
This allows us to eliminate the weight constraint in Lemma 2, which in turn,
easily allows us to obtain a proof of Lemma 1.

Lemma 3

∀k : N, ∀−→v : (Bf )k, ∀h : Bk → B, ∀b : B,
(θf k −→v h ↓ b) → ∃ w, Weight k −→v w.

Proof. By induction on the structure of the proof of (θf k −→v h) ↓ b, and by
cases on the vector and, when the vector is not empty, on its first element. ��

Lemma 4

∀y : Bf , ∀b : B, (evaluatef y) ↓ b → ∃w, Wght y w.

Proof. By definition of the operator evaluatef and Lemma 3. ��

Lemma 5

∀k : N, ∀−→v : (Bf )k, ∀−→u : (B)k, (−→v � −→u ) → ∃ w, Weight k −→v w.
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Proof. By induction on k, using Lemma 4 on each of the elements in the vec-
tor −→v . ��

Finally, we are in the position of proving the validity of the equations defining
the function f . Proving the validity of non-recursive equations is immediate: we
only need to reduce the functions f and then evaluatef to obtain the desired
result. The validity of the recursive equations can be proved by using Lemma 1.

Theorem 1 (Validity of Recursive Equations)

∀−→x : Γ, ∀r1, . . . , rn : B, (f p1) ↓ r1 → · · · → (f pn) ↓ rn → (f p) ↓ e[r1, . . . , rn].

Proof. Assume that (f pi) ↓ ri, for 1 � i � n. By definition of f this means that
evaluatef (f� pi) ↓ ri. Unfolding definitions, we have that:

f p = evaluatef (f� p)
= θf 1 〈(f� p)〉 (λ〈z〉.z)
= θf 1 〈be

−→
x′ (f� p1) · · · (f� pn)〉 (λ〈z〉.z)

= �(θf n 〈(f� p1), · · · , (f� pn)〉 λ〈z1, . . . , zn〉.e[z1, . . . , zn]).

The conclusion easily follows now by applying the second constructor of the
inductive relation ( ↓ ) and the right-to-left direction of Lemma 1. ��

In the specific case of the function F, Theorem 1 gives the validity of the equations
presented in page 77.

When reasoning about recursive functions, an inversion principle given by the
converse of Theorem 1 may be useful.

Theorem 2 (Inversion Principle for Recursive Equations)

∀−→x : Γ, ∀b : B, (f p) ↓ b →
∃r1, . . . , rn : B, (f p1) ↓ r1 ∧ · · · ∧ (f pn) ↓ rn ∧ b = e[r1, . . . , rn].

Proof. By the left-to-right direction of Lemma 1. ��

6 Conclusions

This article describes a new method to represent (partial) recursive functions in
type theory. It combines ideas from our previous work on the subject, namely,
the one characterising the inputs on which a function terminates by an induc-
tive (domain) predicate [6,4,7], and the one implementing recursive functions by
co-recursion on co-inductive types of partial elements [8].

Given the recursive equations for a computable function f : A → B, we define
a co-inductive set Bf of prophecies representing the traces of the computation
of the function. This set is the dual of the predicate defining the domain of
the function as described in [6]. It is easy to define a formal recursive function
f� : A → Bf returning prophecies as output. The type-theoretic version of the
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original function is then a function whose co-domain is the set Bν of partial
elements as studied in [8]. This function is defined by linearising the prophecy
obtained from the formal recursive function f�. The linearisation is done by an
operator θf with two parameters: a stack of recursive calls and a continuation
function that will compute, when possible, the final result.

We prove that a function formalised in type theory with this new method
satisfies all the equations (recursive or not) of its informal version.

We illustrate the method on a toy example, a generalisation F of the Fibonacci
function. The development for F has been fully formalised in the proof assistant
Coq [14,3]. In addition, we also performed a complete formalisation of the quick-
sort algorithm following this method, and of the proofs stating the validity of the
equations for the algorithm. The files of both formalisations are available on the
web at the address: http://www.cs.ru.nl/~venanzio/Coq/prophecy.html.

At the moment, the method has been tested just on simple recursive programs,
that is, not nested or mutually recursive. The formalisation of mutually recursive
functions usually presents no major problems in systems like Coq, but on the
other hand, nested functions are not trivial to formalise. Already our previous
work (using the domain predicates) on nested recursive functions [5] could not
directly be translated into Coq because the proof assistant lacks support for
inductive-recursive definitions, as described by Dybjer in [10].

As can be seen from the proofs, the method is general and can be adapted to
every simple recursive program. However, we have yet to formalise the mecha-
nisation process and therefore, the user must go through the tedious but trivial
process of adapting definitions and proofs. It would be desirable, in a future
stage, to fully automatise the definitions of the set of prophecies, of the function
θf , and the related proofs from the set of (recursive) equations given by the user.

As mentioned before, this technique has several advantages over the method
we have previously developed via a special-purpose accessibility (domain) predi-
cate [6,4,7]; namely, there is no need of extra logical arguments in the definition
of the recursive function; the function can be applied to any element in its do-
main, regardless of termination properties; we obtain a type of partial recursive
functions between any two given types; and composition of recursive functions
can be easily defined through the usual composition of monadic function (see [8]
for further reading on this point).
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Abstract. We give an arithmetical proof of the strong normalization of
the λ-calculus (and also of the λμ-calculus) where the type system is the
one of simple types with recursive equations on types.

The proof using candidates of reducibility is an easy extension of the
one without equations but this proof cannot be formalized in Peano
arithmetic. The strength of the system needed for such a proof was not
known. Our proof shows that it is not more than Peano arithmetic.

1 Introduction

The λ-calculus is a powerful model for representing functions. In its un-typed
version, every recursive function can be represented. But, in this model, a term
can be applied to itself and a computation may not terminate. To avoid this
problem, types are used. In the simplest case, they are built from atomic types
with the arrow and the typing rules say that a function of type U → V may only
be applied to an argument of type U . This discipline ensures that every typed
term is strongly normalizing, i.e. a computation always terminate.

In this system (the simply typed λ-calculus), Church numerals, i.e. the terms
of the form λfλx(f (f . . . (f x))), are codes for the integers. They are the
only terms (in normal form) of type (o → o) → (o → o). Thus, functions on
the integers can be represented but Schwichtenberg [38] has shown that very few
functions are so. He showed that the extended polynomials (i.e. polynomials with
positive coefficients together with a conditional operator) are the only functions
that can be represented there. Other type systems were then designed to allow
the representation of more functions. They are built in different ways.

The first one consists in extending the set of terms. For example, in Gödel
system T , the terms use the usual constructions of the λ-calculus, the constant
0, the constructor S and an operator for recursion. The types are built from
the atomic type N with the arrow. This system represents exactly the functions
whose totality can be shown in Peano first order arithmetic.

The second one consists in keeping the same terms but extending the type
system. This is, for example, the case of Girard system F where the types can
use a second order universal quantifier. There, the type of the integers is given
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by ∀X ((X → X) → (X → X)). This system represents exactly the functions
whose totality can be shown in Peano second order arithmetic.

A third way consists in extending the logic. In the Curry-Howard correspon-
dence, the previous systems correspond to intuitionistic logic. Other systems
correspond to classical logic. There, again, new constructors for terms are intro-
duced. This is, for example, the case of Parigot’s λμ-calculus [35].

Since the introduction of Girard system F for intuitionistic logic and Parigot’s
λμ-calculus for classical logic, many others, more and more powerful, type sys-
tems were introduced. For example, the calculus of constructions (Coquand &
Huet [7]) and, more generally, the Pure Type Systems.

It is also worth here to mention the system TTR of Parigot [33] where some
types are defined as the least fixed point of an operator. This system was intro-
duced, not to represent more functions, but to represent more algorithms. For
example, to be able to represent the integers in such a way that the predeces-
sor can be computed in constant time, which is not the case for the previous
systems.

These systems all satisfy the subject reduction (i.e. the fact that the type
is preserved by reduction), the strong normalization (i.e. every computation
terminates) and, for the systems based on simple types, the decidability of type
assignment.

We study here other kinds of extension of the simply typed λ-calculus, i.e.
systems where equations on types are allowed. These types are usually called
recursive types. For more details see, for example, [3]. They are present in many
languages and are intended to be able to be unfolded recursively to match other
types. The subject reduction and the decidability of type assignment are pre-
served but the strong normalization may be lost. For example, with the equation
X = X → T , the term (δ δ) where δ = λx (xx) is typable but is not strongly
normalizing. With the equation X = X → X , every term can be typed.

By making some natural assumptions on the recursive equations the strong
normalization can be preserved. The simplest condition is to accept the equation
X = F (where F is a type containing the variable X) only when the variable
X is positive in F . For a set {Xi = Fi / i ∈ I} of mutually recursive equations,
Mendler [29] has given a very simple and natural condition that ensures the
strong normalization of the system. He also showed that the given condition is
necessary to have the strong normalization. His proof is based on the reducibility
method. The condition ensures enough monotonicity to have fixed point on the
candidates. But this proof (using candidates of reducibility) cannot be formalized
in Peano arithmetic and the strength of the system needed for a proof of the
strong normalization of such systems was not known.

In this paper, we give an arithmetical proof of the strong normalization of the
simply typed λ-calculus (and also of the λμ-calculus) with recursive equations
on types satisfying Mendler’s condition.

This proof is an extension of the one given by the first author for the simply
typed λ-calculus. It can be found either in [8] (where it appears among many
other things) or as a simple unpublished note on the web page of the first author
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[9]. Apparently, proof methods similar to that used here were independently
invented by several authors (Levy, van Daalen, Valentini and others). The proof
for the λμ-calculus is an extension of the ones given in [11] or [12].

The paper is organized as follows. In section 2 we define the simply typed
λ-calculus with recursive equations on types. To help the reader and show the
main ideas, we first give, in section 3, the proof of strong normalization for the
λ-calculus. We generalize this proof to the λμ-calculus in section 4. In section
5, we give two examples of applications of systems with recursive types. We
conclude in section 6 with some open questions.

2 The Typed λ-Calculus

Definition 1. Let V be an infinite set of variables.

1. The set M of λ-terms is defined by the following grammar

M ::= V | λV M | (M M)

2. The relation � on M is defined as the least relation (compatible with the
context) containing the rule (λx M N) � M [x := N ]. As usual, �∗ (resp.
�+) denotes the reflexive and transitive (resp. transitive) closure of �.

Definition 2. Let A be a set of atomic constants and X = {Xi / i ∈ I} be a
set of type variables.

1. The set T of types is defined by the following grammar

T ::= A | X | T → T

2. When E = {Fi / i ∈ I} is a set of types, the congruence ≈ generated by E
is the least congruence on T such that Xi ≈ Fi for each i ∈ I.

Definition 3. Let ≈ be a congruence on T . The typing rules of the typed system
are given below where Γ is a context, i.e. a set of declarations of the form x : U
where x ∈ V and U ∈ T .

Γ, x : U � x : U
ax

Γ � M : U U ≈ V

Γ � M : V
≈

Γ, x : U � M : V

Γ � λx M : U → V
→i

Γ � M1 : U → V Γ � M2 : U

Γ � (M1 M2) : V
→e

Lemma 1. Let ≈ be a congruence generated by a set of types.

1. If U ≈ V1 → V2, then U ∈ X or U = U1 → U2.
2. If U1 → V1 ≈ U2 → V2, then U1 ≈ U2 and V1 ≈ V2.
3. If Γ � x : T , then x : U occurs in Γ for some U ≈ T .
4. If Γ � λx M : T , then Γ, x : U � M : V for some U, V such that U → V ≈ T .
5. If Γ � (M N) : T , then Γ � M : U → V , Γ � N : U for some V ≈ T and U .
6. If Γ, x : U � M : T and U ≈ V , then Γ, x : V � M : T .
7. If Γ, x : U � M : T and Γ � N : U , then Γ � M [x := N ] : T .

Proof. Easy. �
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Theorem 1. If Γ � M : T and M �∗ M ′, then Γ � M ′ : T .

Proof. It is enough to show that if Γ � (λx M N) : T , then Γ � M [x := N ] : T .
Assume Γ � (λx M N) : T . By lemma 1, Γ � λx M : U → V , Γ � N : U and
V ≈ T . Thus, Γ, x : U ′ � M : V ′ and U ′ → V ′ ≈ U → V . By lemma 1, we have
U ′ ≈ U and V ′ ≈ V . Thus, Γ, x : U � M : V . Since Γ � N : U and V ≈ T , the
result follows immediately. �

Definition 4. Let X ∈ X . We define the subsets T +(X) and T −(X) of T as
follows.

– X ∈ T +(X)
– If U ∈ (X − {X}) ∪ A, then U ∈ T +(X) ∩ T −(X).
– If U ∈ T −(X) and V ∈ T +(X), then U → V ∈ T +(X) and V → U ∈

T −(X).

Definition 5. We say that a congruence ≈ is good if the following property
holds: for each X ∈ X , if X ≈ T , then T ∈ T +(X).

Examples
In each of the following cases, the congruence generated by the given equations
is good.

1. X1 ≈ (X1 → X2 → Y ) → Y and X2 ≈ (X2 → X1 → Y ) → Y .
2. X1 ≈ X2 → X1 and X2 ≈ X1 → X2.
3. The same equations as in case 2 and X3 ≈ F (X1, X2) → X3 where F is any

type using only the variables X1, X2.
4. The same equations as in case 3 and X4 ≈ X5 → G(X1, X2, X3) → X4,

X5 ≈ X4 → H(X1, X2, X3) → X5 where G, H are any types using only the
variables X1, X2, X3.

In the rest of the paper, we fix a finite set E = {Fi / i ∈ I} of types and we
denote by ≈ the congruence generated by E. We assume that ≈ is good.

Notations and Remarks

– We have assumed that the set of equations that we consider is finite. This is
to ensure that the order on I given by definition 6 below is well founded. It
should be clear that this is not a real constraint. Since to type a term, only a
finite number of equations is used, we may consider that the other variables are
constant and thus the general result follows immediately from the finite case.

– If M is a term, cxty(M) will denote the structural complexity of M .
– We denote by SN the set of strongly normalizing terms. If M ∈ SN , we

denote by η(M) the length of the longest reduction of M and by ηc(M) the
pair 〈η(M), cxty(M)〉.

– We denote by M � N the fact that M is a sub-term of a reduct of N .
– As usual, some parentheses are omitted and, for example, we write (M P Q)

instead of ((M P ) Q). More generally, if −→
O is a finite sequence O1, . . . , On

of terms, we denote by (M −→
O ) the term ((. . . (M O1) . . . On−1) On) and by−→

O ∈ SN the fact that O1, . . . , On ∈ SN .
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– If σ is the substitution [x1 := N1, . . . , xn := Nn], we denote by dom(σ) the
set {x1, . . . , xn}, by Im(σ) the set {N1, . . . , Nn} and by σ ∈ SN the fact
that Im(σ) ⊂ SN .

– If σ is a substitution, z 
∈ dom(σ) and M is a term, we denote by [σ+z := M ]
the substitution σ′ defined by σ′(x) = σ(x) for x ∈ dom(σ) and σ′(z) = M .

– In a proof by induction, IH will denote the induction hypothesis. When the
induction is done on a tuple of integers, the order always is the lexicographic
order.

3 Proof of the Strong Normalization

3.1 The Idea of the Proof

We give the idea for one equation X ≈ F . The extension for the general case is
given at the beginning of section 3.4.

It is enough to show that, if M, N are in SN , then M [x := N ] ∈ SN . Assum-
ing it is not the case, the interesting case is M = (x P ) with (N P1) 
∈ SN where
P1 = P [x := N ] ∈ SN . This implies that N �∗ λyN1 and N1[y = P1] 
∈ SN .
If we know that the type of N is an arrow type, we get a similar situation to
the one we started with, but where the type of the substituted variable has de-
creased. Repeating the same argument, we get the desired result, at least for N
whose type does not contain X . If it is not the case, since, by repeating the same
argument, we cannot come to a constant type (because such a term cannot be
applied to something), we come to X . Thus, it remains to show that, if M, N
are in SN and the type of x is X , then M [x := N ] ∈ SN .

To prove this, we prove something a bit more general. We prove that, if
M, σ ∈ SN where σ is a substitution such that the types of its image are in
T +(X), then M [σ] ∈ SN . The proof is done, by induction on ηc(M) as follows.
As before, the interesting case is M = (x P ), σ(x) = N �∗λyN1, P1 = P [σ] ∈ SN
and N1[y = P1] 
∈ SN . Thus, there is a sub-term of a reduct of N1 of the form
(y N2) such that (P1 N2[y := P1]) 
∈ SN but N2[y := P1] ∈ SN . Thus P1 must
reduce to a λ.

This λ cannot come from some x′ ∈ dom(σ), i.e. P �∗ (x′ −→
Q). Otherwise,

the type of P would be both positive (since P �∗ (x′ −→
Q) and the type of x′ is

positive) and negative (since, in M , P is an argument of x whose type also is
positive). Thus the type of P1 (the same as the one of P ) does not contain X .
But since N1, P1 are in SN , we already know that N1[y = P1] must be in SN . A
contradiction. Thus, P �∗ λx1M1 and we get a contradiction from the induction
hypothesis since we have M1[σ′] 
∈ SN for M1 strictly less than M . The case
when y has more than one argument is intuitively treated by “repeat the same
argument” or, more formally, by lemma 8 below.

As a final remark, note that many lemmas are stated in a negative style and
thus may seem to hold only classically. This has been done in this way because we
believe that this presentation is closer to the intuition. However, it is not difficult
to check that the whole proof can be presented and done in a constructive way.
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3.2 Some Useful Lemmas on the Un-Typed Calculus

Lemma 2. Assume M, N,
−→
O ∈ SN and (M N

−→
O ) 
∈ SN . Then, for some term

M ′, M �∗ λx M ′ and (M ′[x := N ] −→
O ) 
∈ SN .

Proof. Since M, N,
−→
O ∈ SN , an infinite reduction of P = (M N

−→
O ) looks like

P �∗ (λx M ′ N ′ −→
O′)� (M ′[x := N ′]

−→
O′)� . . . and the result immediately follows

from the fact that (M ′[x := N ] −→
O ) �∗ (M ′[x := N ′]

−→
O′). �

Lemma 3. Let M be a term and σ be a substitution. Assume M, σ ∈ SN and
M [σ] 
∈ SN . Then (σ(x)

−−→
P [σ]) 
∈ SN for some (x −→

P ) � M such that
−−→
P [σ] ∈ SN .

Proof. A sub-term M ′ of a reduct of M such that ηc(M ′) is minimum and
M ′[σ] 
∈ SN has the desired form. �

Lemma 4. Let M be a term and σ be a substitution such that M [σ] �∗ λzM1.
Then
- either M �∗ λzM2 and M2[σ] �∗ M1

- or M �∗ (x −→
N ) for some x ∈ dom(σ) and (σ(x)

−−→
N [σ]) �∗ λzM1.

Proof. This is a classical (though not completely trivial) result in λ-calculus.
Note that, in case M ∈ SN (and we will only use the lemma in this case), it
becomes easier. The proof can be done by induction on ηc(M) by considering
the possibility for M : either λyM1 or (λyM1 P

−→
Q) or (x −→

N ) (for x in dom(σ)
or not). �

3.3 Some Useful Lemmas on the Congruence

Definition 6. We define on I the following relations

– i ≤ j iff Xi ∈ var(T ) for some T such that Xj ≈ T .
– i ∼ j iff i ≤ j and j ≤ i.
– i < j iff i ≤ j and j 
∼ i

It is clear that ∼ is an equivalence on I.

Definition 7

1. Let Xi = {Xj / j ≤ i} and X ′
i = {Xj / j < i}.

2. For Y ⊆ X , let T (Y) = {T ∈ T / var(T ) ⊆ Y} where var(T ) is the set of
type variables occurring in T .

3. For i ∈ I, we will abbreviate by Ti the set T (Xi) and by T ′
i the set T (X ′

i ).
4. If ε ∈ {+, −}, ε will denote the opposite of ε. The opposite of + is - and

conversely.

Lemma 5. Let i ∈ I. The class of i can be partitioned into two disjoint sets i+

and i− satisfying the following properties.
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1. If ε ∈ {+, −}, j ∈ iε and Xj ≈ T , then for each k ∈ iε, T ∈ T ε(Xk) and for
each k ∈ iε, T ∈ T ε(Xk).

2. Let j ∼ i. Then, if j ∈ i+, j+ = i+ and j− = i− and if j ∈ i−, j+ = i− and
j− = i+.

Proof. This follows immediately from the following observation. Let i ∼ j and
Xi ≈ T ≈ U . Choose an occurrence of Xj in T and in U . Then, these occurrences
have the same polarity. This is because, otherwise, since i ≤ j, there is a V such
that Xj ≈ V and Xi occurs in V . But then, replacing the mentioned occurrences
of Xj by V in T and U will contradict the fact that ≈ is good. �

Definition 8. Let i ∈ I and ε ∈ {+, −}. We denote T ε
i = {T ∈ Ti / for each

j ∈ iε, T ∈ T ε(Xj) and for each j ∈ iε, T ∈ T ε(Xj)}.

Lemma 6. Let i ∈ I and ε ∈ {+, −}.

1. T ε
i ∩ T ε

i ⊆ T ′
i .

2. If U ∈ T ε
i and U ≈ V , then V ∈ T ε

i .
3. If U ∈ T ε

i and U ≈ U1 → U2, then U1 ∈ T ε
i and U2 ∈ T ε

i .

Proof. Immediate. �

Notations, Remarks and Examples

– If the equations are those of the case 4 of the examples given above, we have
1 ∼ 2 < 3 < 4 ∼ 5 and, for example, 1+ = {1} and 1− = {2}, 3+ = {3},
3− = ∅, 4+ = {4} and 4− = {5}.

– If T is a type, we denote by lg(T ) the size of T . Note that the size of a type
is, of course, not preserved by the congruence. The size of a type will only
be used in lemma 7 and the only property that we will use is that lg(U1)
and lg(U2) are less than lg(U1 → U2).

– By the typing rules, the type of a term can be freely replaced by an equivalent
one. However, for i ∈ I and ε ∈ {+, −}, the fact that U ∈ T ε

i does not change
when U is replaced by V for some V ≈ U . This will be used extensively in
the proofs of the next sections.

3.4 Proof of the Strong Normalization

To give the idea of the proof, we first need a definition.

Definition 9. Let E be a set of types. Denote by H [E ] the following property:
Let M, N ∈ SN . Assume Γ, x : U � M : V and Γ � N : U for some Γ, U, V

such that U ∈ E. Then M [x := N ] ∈ SN .

To get the result, it is enough to show H [T ]. The proof that any typed term is
in SN is then done by induction on cxty(M). The only non trivial case is M =
(M1 M2). But M =(xM2)[x := M1] and the result follows from H [T ] and the IH.

We first show the following (see lemma 7). Let Y ⊆ X . To prove H [T (Y)], it
is enough to prove H [{X}] for each X ∈ Y.
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It is thus enough to prove of H [{Xi}] for each i ∈ I. This is done by induction
on i. Assume H [{Xj}] for each j < i. Thus, by the previous property, we know
H [T ′

i ]. We show H [{Xi}] essentially as we said in section 3.1. The only difference
is that, what was called there “ X is both positive and negative in T ” here means
T is both in T +

i and T −
i . There we deduced that X does not occur in T . Here

we deduce T ∈ T ′
i and we are done since we know the result for this set.

Lemma 7. Let Y ⊆ X be such that H [{X}] holds for each X ∈ Y. Then
H [T (Y)] holds.

Proof. Let M, N be terms in SN . Assume Γ, x : U � M : V and Γ � N : U
and U ∈ T (Y). We have to show M [x := N ] ∈ SN .

This is done by induction on lg(U). Assume M [x := N ] 
∈ SN . By lemma
3, let (xP

−→
Q) � M be such that P1,

−→
Q1 ∈ SN and (N P1

−→
Q1) 
∈ SN where

P1 = P [x := N ] and −→
Q1 =

−−−−−−−→
Q[x := N ]. By lemma 2, N �∗ λx1N1 and (N1[x1 :=

P1]
−→
Q1) 
∈ SN .

If U is a variable (which is in Y since U ∈ T (Y)), we get a contradiction since
we have assumed that H [{X}] holds for each X ∈ Y.

The type U cannot be a constant since, otherwise x could not be applied to
some arguments.

Thus U = U1 → U2. In the typing of (N P1
−→
Q1), the congruence may have

been used and thus, by lemma 1, there are W1 ≈ U1, W2 ≈ U2, U ≈ W1 → W2
and Γ, x1 : W1 � N1 : W2 and Γ � P1 : W1. But then, we also have Γ, x1 : U1 �
N1 : U2 and Γ � P1 : U1. Now, by the IH, we have N1[x1 := P1] ∈ SN since
lg(U1) < lg(U). Since Γ, z : U2 � (z −→

Q1) : V ′ for some V ′ and Γ � N1[x1 := P1] :
U2, by the IH since lg(U2) < lg(U), we have (N1[x1 := P1]

−→
Q1) = (z −→

Q1)[z =
N1[x1 := P1]] ∈ SN . Contradiction. �
For now on, we fix some i and we assume H [{Xj}] for each j < i. Thus, by lemma
7, we know that H [T ′

i ] holds. It remains to prove H [{Xi}] i.e. proposition 1.

Definition 10. Let M be a term, σ be a substitution, Γ be a context and U be
a type. Say that (σ, Γ, M, U) is adequate if the following holds.

– Γ � M [σ] : U and M, σ ∈ SN .
– For each x ∈ dom(σ), Γ � σ(x) : Vx and Vx ∈ T +

i .

Lemma 8. Let n, m be integers, −→
S be a sequence of terms and (δ, Δ, P, B) be

adequate. Assume that

1. B ∈ T −
i − T ′

i and Δ � (P [δ] −→S ) : W for some W .
2. −→

S ∈ SN , P ∈ SN and ηc(P ) < 〈n, m〉.
3. M [σ] ∈ SN for every adequate (σ, Γ, M, U) such that ηc(M) < 〈n, m〉.

Then (P [δ] −→
S ) ∈ SN .
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Proof. By induction on the length of −→
S . If −→

S is empty, the result follows from
(3) since ηc(P ) < 〈n, m〉. Otherwise, let −→

S = S1
−→
S2 and assume that P [δ]�∗λz R.

By lemma 4, there are two cases to consider:

– P �∗ λz R′. We have to show that Q = (R′[δ + z := S1]
−→
S2) ∈ SN . Since

B ∈ T −
i , by lemmas 1 and 6, there are types B1, B2 such that B ≈ B1 → B2

and Δ, z : B1 � R′ : B2 and Δ � S1 : B1 and B1 ∈ T +
i and B2 ∈ T −

i .
Since ηc(R′) < 〈n, m〉 and ([δ + z = S1], Δ ∪ {z : B1}, R′, B2) is adequate, it
follows from (3) that R′[δ + z := S1]] ∈ SN .

- Assume first B2 ∈ T ′
i . Since (z′ −→S2) ∈ SN and Q = (z′ −→S2)[z′ := R′[δ +

z := S1]], the result follows from H [T ′
i ].

- Otherwise, the result follows from the IH since ([δ + z = S1], Δ ∪ {z :
B1}, R′, B2) is adequate and the length of −→

S2 is less than the one of −→
S .

– If P �∗ (y −→
T ) for some y ∈ dom(δ). Then Δ � (δ(y)

−−→
T [δ]) : B. By the

definition of adequacy, the type of y is in T +
i and B ∈ T −

i ∩ T +
i ⊆ T ′

i .
Contradiction. �

Lemma 9. Assume (σ, Γ, M, A) is adequate. Then M [σ] ∈ SN .

Proof. By induction on ηc(M). The only non trivial case is M = (x Q
−→
O ) for

some x ∈ dom(σ). Let N = σ(x).
By the IH, Q[σ],

−−→
O[σ] ∈ SN . By lemma 1, we have Vx ≈ W1 → W2, Γ � Q[σ] :

W1 and Γ � (N Q[σ]) : W2. Moreover, by lemma 6, W1 ∈ T −
i and W2 ∈ T +

i .
Since M [σ] = (z −→

O )[σ + z := (N Q[σ])], η((z −→
O )) ≤ η(M), cxty((z −→

O )) <
cxty(M) and W2 ∈ T +

i , it is enough, by the IH, to show that (N Q[σ]) ∈ SN .
Assume that N �∗ λy N ′. We have to show that N ′[y := Q[σ]] ∈ SN .

- Assume first W1 ∈ T ′
i . The result follows from H [T ′

i ].
- Otherwise, assume N ′[y := Q[σ]] 
∈ SN . Since N ′, Q[σ] ∈ SN , by lemma 3,

(y −→
L ) � N ′ for some −→

L such that
−−−−−−−−→
L[y := Q[σ]] ∈ SN and (Q[σ]

−−−−−−−−→
L[y := Q[σ]])


∈ SN . But this contradicts lemma 8. Note that, by the IH, condition (3) of this
lemma is satisfied. �

Proposition 1. Assume Γ, x : Xi � M : U and Γ � N : Xi and M, N ∈ SN .
Then M [x := N ] ∈ SN .

Proof. This follows from lemma 9 since ([x := N ], Γ, M, U) is adequate. �

4 The Typed λμ-Calculus

Definition 11

1. Let W be an infinite set of variables such that V ∩ W = ∅. An element of V
(resp. W) is said to be a λ-variable (resp. a μ-variable). We extend the set
of terms by the following rules

M ::= . . . | μW M | (W M)
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2. We add to the set A the constant symbol ⊥ and we denote by ¬U the type
U → ⊥.

3. We extend the typing rules by

Γ, α : ¬U � M : ⊥
Γ � μαM : U

⊥e
Γ, α : ¬U � M : U

Γ, α : ¬U � (α M) : ⊥ ⊥i

where Γ is now a set of declarations of the form x : U and α : ¬U where x
is a λ-variable and α is a μ-variable.

4. We add to � the following reduction rule (μαM N) � μαM [α = N ] where
M [α = N ] is obtained by replacing each sub-term of M of the form (α P )
by (α (P N)). This substitution will be called a μ-substitution whereas the
(usual) substitution M [x := N ] will be called a λ-substitution.

Remarks

– Note that we adopt here a more liberal syntax (also called de Groote’s cal-
culus [13]) than in the original calculus since we do not ask that a μα is
immediately followed by a (β M) (denoted [β]M in Parigot’s notation).

– We also have changed Parigot’s typing notations. Instead of writing M :
(Ax1

1 , . . ., Axn
n � B, Cα1

1 , . . . , Cαm
m ) we have written x1 : A1, . . . , xn : An, α1 :

¬C1, . . . , αm : ¬Cm � M : B but, since the first introduction of the λμ-
calculus, this is now quite common.

– Unlike for a λ-substitution where, in M [x := N ], the variable x has disap-
peared it is important to note that, in a μ-substitution, the variable α has
not disappeared. Moreover its type has changed. If the type of N is U and,
in M , the type of α is ¬(U → V ) it becomes ¬V in M [α = N ].

– The definition of good congruence is the same as before. As a consequence,
we now have the following facts. If U ≈ ⊥, then U = ⊥ and, if ¬U ≈ ¬V ,
then U ≈ V .

– We also extend all the notations given in section 2. Finally note that lemma
1 remains valid. Moreover, they are easily extended by lemma 10 below.

Lemma 10

1. If Γ � μα M : U , then Γ, α : ¬V � M : ⊥ for some V such that U ≈ V .
2. If Γ, α : ¬U � (α M) : T , then Γ, α : ¬U � M : U and T = ⊥.
3. If Γ, α : ¬(U → V ) � M : T and Γ � N : U , then Γ, α : ¬V � M [α = N ] : T .

Theorem 2. If Γ � M : T and M �∗ M ′, then Γ � M ′ : T .

Proof. It is enough to show that, if Γ � (μα M N) : T , then Γ � μα M [α =
N ] : T . Assume Γ � (μα M N) : T . By lemma 1, Γ � μα M : U → V , Γ � N : U
and V ≈ T . Thus, Γ, α : ¬T ′ � M : ⊥ and T ′ ≈ U → V . By lemma 1, we have
Γ, α : ¬(U → V ) � M : ⊥. Since Γ � N : U and V ≈ T , Γ, α : ¬V � M [α = N ] :
⊥. Then Γ � μα M [α = N ] : V and Γ � μα M [α = N ] : T . �
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4.1 Some Useful Lemmas on the Un-Typed Calculus

Lemma 11. Let M be a term and σ = σ1 ∪ σ2 where σ1 (resp. σ2) is λ (resp.
μ) substitution. Assume M [σ] �∗ μαM1 (resp. λyM1). Then

- either M �∗ μαM2 (resp. λyM2) and M2[σ] �∗ M1

- or (M �∗ (x −→
N ) for some x ∈ dom(σ1) and (σ(x)

−−→
N [σ]) �∗ μαM1 (resp.

λyM1).

Proof. A μ-substitution cannot create a λ or a μ (see, for example, [11]) and
thus, the proof is as in lemma 4. �

Lemma 12. Assume M, P,
−→
Q ∈ SN and (M P

−→
Q) 
∈ SN . Then either (M �∗

λxM1 and (M1[x := P ] −→
Q) 
∈ SN) or (M �∗ μαM1 and (μαM1[α = P ] −→

Q) 
∈
SN).

Proof. As in lemma 2. �

Lemma 13. Let M be a term and σ be a λ-substitution. Assume M, σ ∈ SN

and M [σ] 
∈ SN . Then (σ(x)
−−→
P [σ]) 
∈ SN for some (x −→

P ) � M such that−−→
P [σ] ∈ SN .

Proof. As in lemma 3. �

Definition 12. A μ-substitution σ is said to be fair if, for each α ∈ dom(σ),
α 
∈ Fv(σ) where x ∈ Fv(σ) (resp. β ∈ Fv(σ)) means that x ∈ Fv(N) (resp.
β ∈ Fv(N)) for some N ∈ Im(σ).

Lemma 14. Let σ be is a fair μ-substitution, α ∈ dom(σ) and x 
∈ Fv(σ) (resp.
β 
∈ Fv(σ)), then M [σ][x := σ(α)] = M [x := σ(α)][σ] (resp. M [σ][β = σ(α)] =
M [β = σ(α)][σ]).

Proof. Immediate. �

Lemma 15. Let M, N be terms and σ be a fair μ-substitution. Assume M [σ],
N ∈ SN but (M [σ] N) 
∈ SN . Assume moreover that M [σ] �∗ μαM1. Then,
for some (α M2) � M , we have (M2[σ′] N) 
∈ SN and M2[σ′] ∈ SN where
σ′ = [σ + α = N ].

Proof. By lemma 11, we know that M �∗μαM ′
1 for some M ′

1 such that M ′
1[σ]�∗

M1. Let M ′ be a sub-term of a reduct of M such that 〈η(M ′[σ]), cxty(M ′)〉 is
minimum and M ′[σ′] 
∈ SN . We show that M ′ = (α M2) and has the desired
properties. By minimality, M ′ cannot be of the form λxP , μβP nor (β P ) for
β 
= α or β 
∈ dom(σ).

If M ′ = (P1 P2). By the minimality of M ′, P1[σ′], P2[σ′] ∈ SN . Thus, by
lemma 11 and 12, P1 �∗ λxQ (resp. P1 �∗ μβQ) such that Q[σ′][x := P2[σ′]] =
Q[x := P2][σ′] 
∈ SN (resp. Q[σ′][β = P2[σ′]] = Q[β = P2][σ′] 
∈ SN) and this
contradicts the minimality of M ′.
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If M ′ = (β P ) for some β ∈ dom(σ). Then (P [σ′] σ(β)) 
∈ SN and, by
the minimality of M ′, P [σ′] ∈ SN . Thus, by lemmas 11, 12 and 14, P �∗ λxQ
(resp. P �∗ μγQ) such that Q[σ′][x := σ(β)] = Q[x := σ(β)][σ′] 
∈ SN (resp.
Q[σ′][γ = σ(β)] = Q[γ = σ(β)][σ′] 
∈ SN) and this contradicts the minimality
of M ′.

Thus M ′ = (α M2) and its minimality implies M2[σ′] ∈ SN . �

4.2 Proof of the Strong Normalization

We use the same notations as in section 3.

Lemma 16. Let Y ⊆ X be such that H [{X}] holds for each X ∈ Y. Then
H [T (Y)] holds.

Proof. Assume that H [{X}] holds for each X ∈ Y. The result is a special case
of the following claim.

Claim : Let M be a term, U, V be types such that U ∈ T (Y) and σ be a λ-
substitution such that, for each x, σ(x) = Nx[τx] where τx is a fair μ-substitution
such that dom(τx)∩Fv(M [σ]) = ∅. Assume Γ � M : V and for each x ∈ dom(σ),
x : U ∈ Γ . Assume finally that M and the Nx[τx] are in SN . Then, M [σ] ∈ SN .

Proof. By induction on 〈lg(U), ηc(M), ηc(σ)〉 where η(σ) =
∑

η(Nx) and
cxty(σ) =

∑
cxty(Nx) and, in the sums, each occurrence of a variable counts

for one. For example, if there are two occurrences of x1 and three occurrences of
x2, cxty(σ) = 2 cxty(N1) + 3 cxty(N2). Note that we really mean cxty(Nx) and
not cxty(Nx[τx]) and similarly for η.

The only non trivial case is when M = (x Q
−→
O ) for x ∈ dom(σ). By the IH,

Q[σ],
−−→
O[σ] ∈ SN . It is enough to show that (Nx[τx] Q[σ]) ∈ SN since M [σ] can

be written as M ′[σ′] where M ′ = (z
−−→
O[σ]) and σ′(z) = (Nx[τx] Q[σ]) and (since

the size of the type of z is less than the one of U) the IH gives the result. By
lemma 12, we have two cases to consider.

– Nx[τx] �∗ λyN1. By lemma 11, Nx �∗ λyN2 and the proof is exactly the same
as in lemma 7.

– Nx[τx] �∗ μαN1. By lemma 15, let (α N2) � Nx be such that N2[τ ′] ∈ SN
and R = (N2[τ ′] Q[σ]) 
∈ SN where τ ′ = [τx + α = Q[σ]]. But R can be
written as (y Q)[σ′] where σ′ is the same as σ except that σ′(y) = N2[τ ′].
Note that (y Q) is the same as (or less than) M but one occurrence of x
has been replaced by the fresh variable y. The substitution τ ′ is fair and
dom(τ ′)∩Fv((y Q)) = ∅. The IH gives a contradiction since ηc(σ′) < ηc(σ).
Note that the type condition on σ′ is satisfied since Nx has type U , thus α
has type ¬U and thus N2 also has type U . �

For now on, we fix some i and we assume H [{Xj}] for each j < i. Thus, by
lemma 16, we know that H [T ′

i ] holds. It remains to prove H [{Xi}] i.e. proposi-
tion 2.



96 R. David and K. Nour

Definition 13. Let M be a term, σ = σ1 ∪ σ2 where σ1 (resp. σ2) is a λ (resp.
μ) substitution, Γ be a context and U be a type. Say that (σ, Γ, M, U) is adequate
if the following holds:

– Γ � M [σ] : U and M, σ ∈ SN .
– For each x ∈ dom(σ1), Γ � σ(x) : Vx and Vx ∈ T +

i .

Note that nothing is asked on the types of the μ-variables.

Lemma 17. Let n, m be integers, −→
S be a sequence of terms and (δ, Δ, P, B) be

adequate. Assume that

1. B ∈ T −
i − T ′

i and Δ � (P [δ] −→S ) : W for some W .
2. −→

S ∈ SN , P ∈ SN and ηc(P ) < 〈n, m〉.
3. M [σ] ∈ SN for every adequate (σ, Γ, M, U) such that ηc(M) < 〈n, m〉.

Then (P [δ] −→S ) ∈ SN .

Proof. By induction on the length of −→
S . The proof is as in lemma 8. The new

case is P [δ] �∗ μαR (when −→
S = S1

−→
S2). By lemma 11, we have two cases to

consider.

– P �∗ μαR′. We have to show that Q = (μαR′[δ + α = S1]
−→
S2) ∈ SN . By

lemma 10, the properties of ≈ and since B ∈ T −
i , there are types B1, B2

such that B ≈ B1 → B2 and Δ � μαR′[δ +α = S1] : B2 and B2 ∈ T −
i . Since

ηc(R′) < 〈n, m〉 and ([δ + α = S1], Δ ∪ {α : ¬B2}, μαR′, B2) is adequate, it
follows from (3) that R′[δ + α = S1] ∈ SN .

- Assume first B2 ∈ T ′
i . Since (z′ −→S2) ∈ SN and Q = (z′ −→S2)[z′ := μαR′[δ+

α = S1]], the result follows from H [T ′
i ].

- Otherwise, the result follows from the IH since ([δ + α = S1], Δ ∪ {α :
¬B2}, μαR′, B2) is adequate and the length of −→

S2 is less than the one of
−→
S .

– P �∗ (y −→
T ) for some λ-variable y ∈ dom(δ). As in lemma 8. �

Lemma 18. Assume (σ, Γ, M, A) is adequate. Then M [σ] ∈ SN .

Proof. As in the proof of the lemma 16, we prove a more general result. Assume
that, for each x ∈ dom(σ1), σ1(x) = Nx[τx] where τx is a fair μ-substitution such
that dom(τx) ∩ Fv(M [σ]) = ∅. We prove that M [σ] ∈ SN .

By induction on ηc(M) and, by secondary induction, on ηc(σ1) where η(σ1)
and cxty(σ1) are defined as in lemma 16. The proof is as in lemma 16. The
interesting case is M = (x Q

−→
O ) for some x ∈ dom(σ1). The case when Nx[τx]�∗

λyN ′ is as in lemma 9. The new case is when Nx[τx] �∗ μαN ′. This is done as
in lemma 16. Note that, for this point, the type was not used. �

Proposition 2. Assume Γ, x : Xi � M : U and Γ � N : Xi and M, N ∈ SN .
Then M [x := N ] ∈ SN .

Proof. This follows from lemma 18 since ([x := N ], Γ, M, U) is adequate. �
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5 Some Applications

5.1 Representing More Functions

By using recursive types, some terms that cannot be typed in the simply typed
λ-calculus become typable. For example, by using the equation X ≈ (X → T ) →
T , it is possible to type terms containing both (x y) and (y x) as sub-terms. Just
take x : X and y : X → T . By using the equation X ≈ T → X , it is possible to
apply an unbounded number of arguments to a term.

It is thus natural to try to extend Schwichtenberg’s result and to determine
the class of functions that are represented in such systems and, in particular, to
see whether or not they allow to represent more functions. Note that Doyen [15]
and Fortune & all [16] have given extensions of Schwichtenberg’s result.

Here is an example of function that cannot be typed (of the good type) in the
simply typed λ-calculus.

Let Nat = (X → X) → (X → X) and Bool = Y → (Y → Y ) where X, Y
are type variables. Let ñ = λfλx (f (f . . . x) . . .) be the church numeral
representing n and 0 = λxλy y, 1 = λxλy x be the terms representing false and
true. Note that ñ has type Nat and 0, 1 have type Bool .

The term Inf = λxλy (xM λz1 (y M λz0)) where M = λx λy (y x) has been
introduced by B.Maurey. It is easy to see that, for every n, m ∈ N, the term
(Inf m̃ ñ) reduces to 1 if m ≤ n and to 0 otherwise. Krivine has shown in [24]
that the type Nat → Nat → Bool cannot be given to Inf in system F but, by
adding the equation X ≈ (X → Bool ) → Bool , it becomes typable. Our example
uses the same ideas.

Let ≈ be the congruence generated by X ≈ (X → Bool) → Bool . For each n ∈
IN∗, let Inf n =λx (xM λy1 (Mn−1 λy0)) where (Mk P ) = (M (M . . . (M P ))).

Proposition 3. For each n ∈ IN∗ we have � Inf n : Nat → Bool.

Proof. We have x : X → Bool , y : X � (y x) : Bool , then � M : (X →
Bool ) → (X → Bool ), thus � (ñ M) : (X → Bool ) → (X → Bool ). But
� λy0 : X → Bool , therefore � (ñ M λy0) : X → Bool .

We have x : X, y : X → Bool � (y x) : Bool , then � M : X → X , thus
x : Nat � (xM) : X → X . But � λy1 : (X → Bool ) → Bool , therefore
x : Nat � (xM λy1) : X .

We deduce that x : Nat � ((ñ M λy0) (xM λy1)) : Bool , then x : Nat �
(xM λy1 (Mn−1 λy0)) : Bool and thus � Inf n : Nat → Bool . �

Proposition 4. For each n ∈ IN∗ and m ∈ IN, (Inf n m̃) reduces to 1 if m ≤ n
and to 0 otherwise.

Proof. (Inf n m̃) �∗ (Mm λy1 (Mn−1 λy0)) �∗ (Mn−1 λy0 (Mm−1 λy1)) �∗

(Mm−1 λy1 (Mn−2 λy0)) �∗ (Mn−2 λy0 (Mm−2 λy1)) �∗ . . .
�∗1 if m ≤ n and 0 otherwise. �
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Remarks
Note that for the (usual) simply typed λ-calculus we could have taken for X and
Y the same variable but, for propositions 3 and 4, we cannot assume that X = Y
because then the condition of positivity would not be satisfied. This example is
thus not completely satisfactory and it actually shows that the precise meaning
of the question “which functions can be represented in such systems” is not so
clear.

5.2 A Translation of the λμ-Calculus into the λ-Calculus

The strong normalization of a typed λμ-calculus can be deduced from the one of
the corresponding typed λ-calculus by using CPS translations. See, for example,
[14] for such a translation. There is another, somehow simpler, way of doing such
a translation. Add, for each atomic type X , a constant aX of type ¬¬X → X .
Using these constants, it is not difficult to get, for each type T , a λ-term MT

(depending on T ) such that MT has type ¬¬T → T . This gives a translation
of the λμ-calculus into the λ-calculus from which the strong normalization of
the λμ-calculus can be deduced from the one of the λ-calculus. This translation,
quite different from the CPS translations, has been used by Krivine [26] to code
the λμ-calculus with second order types in the λC-calculus.

With recursive equations, we do not have to add the constant aX since we
can use the equation X ≈ ¬¬X . We give here, without proof, the translation.
We denote by S≈ the simply typed λ-calculus where ≈ is the congruence on T
(where A = {⊥}) generated by X ≈ ¬¬X for each X and by Sλμ the usual (i.e.
without recursive types) λμ-calculus.

Definition 14

1. We define, for each type T , a closed λ-term MT such that �≈ MT : ¬¬T → T
as follows. This is done by induction on T .
– M⊥ = λx (x I) where I = λx x.
– If X ∈ X , MX = I.
– MU→V = λxλy (MV λz(x λt(z (t y))))

2. We define a translation from Sλμ to S≈ as follows.
– x∗ = x.
– (λxM)∗ = λxM∗.
– (M N)∗ = (M∗ N∗).
– (μα M)∗ = (MU λα M∗) if α has the type ¬U .
– (α M)∗ = (α M∗).

For a better understanding, in the translation of μαM and (α M), we have kept
the same name to the variable α but it should be clear that the translated terms
are λ-terms with only on kind of variables.

Lemma 19. If Γ �λμ M : U then Γ �≈ M∗ : U .

Lemma 20. Let M, N be typed λμ-terms. If M � N , then M∗ �+ N∗.

Proof. It is enough to check that (μαM N)∗ �+ (μαM [α = N ])∗. �
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Theorem 3. The strong normalization of S≈ implies the one of Sλμ.

Proof. By lemmas 19 and 20. �
Remark
Note that the previous translation cannot be used to show that the λμ-calculus
with recursive types is strongly normalizing since having two equations (for
example X ≈ ¬¬X and X ≈ F ) is problematic.

6 Remarks and Open Questions

1. The proof of the strong normalization of the system D of intersection types
[6] is exactly the same as the one for simple types. Is it possible to extend
our proof to such systems with equations ? Note that the sort of constraints
that must be given on the equations is not so clear. For example, what
does that mean to be positive in A ∧ B ? To be positive both in A and
B ? in one of them ? It will be interesting to check precisely because, for
example, it is known that the system1 given by system D and the equations
X ≈ (Y → X) ∧ (X → X) and Y ≈ X → Y is strongly normalizing (but
the proof again is not formalized in Peano arithmetic) though the positivity
condition is violated.

2. We could add other typing rules and constructors to ensure that, intuitively,
X represents the least fixed point of the equation X ≈ F . This kind of thing
is done, for example, in TTR. What can be said for such systems?

3. There are many translations from, for example, the λμ-calculus into the λ-
calculus that allows to deduce the strong normalization of the former by the
one of the latter. These CPS transformations differ from the one given in
section 5.2 by the fact that the translation of a term does not depend on its
type. What is the behavior of such translations with recursive equations ?
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Abstract. The lambda-Pi-calculus allows to express proofs of minimal
predicate logic. It can be extended, in a very simple way, by adding com-
putation rules. This leads to the lambda-Pi-calculus modulo. We show
in this paper that this simple extension is surprisingly expressive and, in
particular, that all functional Pure Type Systems, such as the system F,
or the Calculus of Constructions, can be embedded in it. And, moreover,
that this embedding is conservative under termination hypothesis.

The λΠ-calculus is a dependently typed lambda-calculus that allows to express
proofs of minimal predicate logic through the Brouwer-Heyting-Kolmogorov in-
terpretation and the Curry-de Bruijn-Howard correspondence. It can be ex-
tended in several ways to express proofs of some theory. A first solution is to
express the theory in Deduction modulo [7,9], i.e. to orient the axioms as rewrite
rules and to extend the λΠ-calculus to express proofs in Deduction modulo [3].
We get this way the λΠ-calculus modulo. This idea of extending the dependently
typed lambda-calculus with rewrite rules is also that of Intuitionistic type theory
used as a logical framework [13].

A second way to extend the λΠ-calculus is to add typing rules, in particular
to allow polymorphic typing. We get this way the Calculus of Constructions
[4] that allows to express proofs of simple type theory and more generally the
Pure Type Systems [2,15,1]. These two kinds of extensions of the λΠ-calculus
are somewhat redundant. For instance, simple type theory can be expressed
in deduction modulo [8], hence the proofs of this theory can be expressed in
the λΠ-calculus modulo. But they can also be expressed in the Calculus of
Constructions. This suggests to relate and compare these two ways to extend
the λΠ-calculus.

We show in this paper that all functional Pure Type Systems can be em-
bedded in the λΠ-calculus modulo using an appropriate rewrite system. This
rewrite system is inspired both by the expression of simple type theory in Deduc-
tion modulo and by the mechanisms of universes à la Tarski [12] of Intuitionistic
type theory. In particular, this work extends Palmgren’s construction of an im-
predicative universe in type theory [14].
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1 The λΠ-Calculus

The λΠ-calculus is a dependently typed lambda-calculus that permits to con-
struct types depending on terms, for instance a type array n, of arrays of size
n, that depends on a term n of type nat. It also permits to construct a function
f taking a natural number n as an argument and returning an array of size
n. Thus, the arrow type nat ⇒ array of simply typed lambda-calculus must
be extended to a dependent product type Πx : nat (array x) where, in the
expression Πx : A B, the occurrences of the variable x are bound in B by the
symbol Π (the expression A ⇒ B is used as a shorter notation for the expression
Πx : A B when x has no free occurrence in B). When we apply the function f
to a term n, we do not get a term of type array x but of type array n. Thus,
the application rule must include a substitution of the term n for the variable
x. The symbol array itself takes a natural number as an argument and returns
a type. Thus, its type is nat ⇒ Type, i.e. Πx : nat Type. The terms Type,
nat ⇒ Type, . . . cannot have type Type, because Girard’s paradox [10] could
then be expressed in the system, thus we introduce a new symbol Kind to type
such terms. To form terms, like Πx : nat Type, whose type is Kind, we need
a rule expressing that the symbol Type has type Kind and a new product rule
allowing to form the type Πx : nat Type, whose type is Kind. Besides the vari-
ables such as x whose type has type Type, we must permit the declaration of
variables such as nat of type Type, and more generally, variables such as array
whose type has type Kind. This leads to introduce the following syntax and
typing rules.

Definition 1 (The syntax of λΠ). The syntax of the λΠ-calculus is

t = x | Type | Kind | Πx : t t | λx : t t | t t

The α-equivalence and β-reduction relations are defined as usual and terms are
identified modulo α-equivalence.

Definition 2 (The typing rules of λΠ−).

Empty
[ ] well-formed

Γ � A : Type
Declaration x not in Γ

Γ [x : A] well-formed

Γ � A : Kind
Declaration2 x not in Γ

Γ [x : A] well-formed

Γ well-formed
Sort

Γ � Type : Kind

Γ well-formed x : A ∈ Γ
Variable

Γ � x : A
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Γ � A : Type Γ [x : A] � B : Type
Product

Γ � Πx : A B : Type

Γ � A : Type Γ [x : A] � B : Kind
Product2

Γ � Πx : A B : Kind

Γ � A : Type Γ [x : A] � B : Type Γ [x : A] � t : B
Abstraction

Γ � λx : A t : Πx : A B

Γ � t : Πx : A B Γ � u : A
Application

Γ � (t u) : (u/x)B

It is useful, in some situations, to add a rule allowing to build type families by
abstraction, for instance λx : nat (array (2×x)) and rules asserting that a term
of type (λx : nat (array (2 × x)) n) also has type array (2 × n). This leads to
introduce the following extra typing rules.

Definition 3 (The typing rules of λΠ). The typing rules of λΠ are those of
λΠ− and

Γ � A : Type Γ [x : A] � B : Kind Γ [x : A] � t : B
Abstraction2

Γ � λx : A t : Πx : A B

Γ � A : Type Γ � B : Type Γ � t : A Conversion A ≡β B
Γ � t : B

Γ � A : Kind Γ � B : Kind Γ � t : A Conversion2 A ≡β B
Γ � t : B

where ≡β is the β-equivalence relation.

It can be proved that types are preserved by β-reduction, that β-reduction is
confluent and strongly terminating and that each term has a unique type modulo
β-equivalence.

The λΠ-calculus, and even the λΠ−-calculus, can be used to express proofs
of minimal predicate logic, following the Brouwer-Heyting-Kolmogorov interpre-
tation and the Curry-de Bruijn-Howard correspondence. Let L be a language in
predicate logic, we consider a context Γ formed with a variable ι of type Type –
or variables ι1, . . . , ιn of type Type when L is many-sorted —, for each function
symbol f of L, a variable f of type ι ⇒ . . . ⇒ ι ⇒ ι and for each predicate
symbol P of L, a variable P of type ι ⇒ . . . ⇒ ι ⇒ Type.

To each formula P containing free variables x1, . . . , xp we associate a term
P ◦ of type Type in the context Γ, x1 : ι, . . . , xp : ι translating each variable,
function symbol and predicate symbol by itself and the implication symbol and
the universal quantifier by a product.

To each proof π, in minimal natural deduction, of a sequent A1, . . . , An � B
with free variables x1, . . . , xp, we can associate a term π◦ of type B◦ in the
context Γ, x1 : ι, . . . , xp : ι, α1 : A◦

1, . . . , αn : A◦
n. From the strong termination of

the λΠ-calculus, we get cut elimination for minimal predicate logic. If B is an
atomic formula, there is no cut free proof, hence no proof at all, of � B.
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2 The λΠ-Calculus Modulo

The λΠ-calculus allows to express proofs in pure minimal predicate logic. To
express proofs in a theory T , we can declare a variable for each axiom of T and
consider proofs-terms containing such free variables, this is the idea of the Logical
Framework [11]. However, when considering such open terms most benefits of
termination, such as the existence of empty types, are lost.

An alternative is to replace axioms by rewrite rules, moving from predicate
logic to Deduction modulo [7,9]. Such extensions of type systems with rewrite
rules to express proofs in Deduction modulo have been defined in [3] and [13].
We shall present now an extension of the λΠ-calculus: the λΠ-calculus modulo.

Recall that if Σ, Γ and Δ are contexts, a substitution θ, binding the variables
declared in Γ , is said to be of type Γ � Δ in Σ if for all x declared of type
T in Γ , we have ΣΔ � θx : θT , and that, in this case, if ΣΓ � u : U , then
ΣΔ � θu : θU .

A rewrite rule is a quadruple l −→Γ,T r where Γ is a context and l, r and T
are β-normal terms. Such a rule is said to be well-typed in the context Σ if, in
the λΠ-calculus, the context ΣΓ is well-formed and the terms l and r have type
T in this context.

If Σ is a context, l −→Γ,T r is a rewrite rule well-typed in Σ and θ is a
substitution of type Γ � Δ in Σ then the terms θl and θr both have type θT
in the context ΣΔ. We say that the term θl rewrites to the term θr.

If Σ is a context and R a set of rewrite rules well-typed in the λΠ-calculus
in Σ, then the congruence generated by R, ≡R, is the smallest congruence such
that if t rewrites to u then t ≡R u.

Definition 4 (λΠ-modulo). Let Σ be a context and R a rewrite system in Σ.
Let ≡βR be the congruence of terms generated by the rules of R and the rule β.

The λΠ-calculus modulo R is the extension of the λΠ-calculus obtained by
replacing the relation ≡β by ≡βR in the conversion rules

Γ � A : Type Γ � B : Type Γ � t : A Conversion A ≡βR B
Γ � t : B

Γ � A : Kind Γ � B : Kind Γ � t : A Conversion2 A ≡βR B
Γ � t : B

Notice that we can also extend the λΠ−-calculus with rewrite rules. In this
case, we introduce conversion rules, using the congruence defined by the system
R alone.

Example 1. Consider the context Σ = [P : Type, Q : Type] and the rewrite
system R formed with the rule P −→ (Q ⇒ Q). The term λf : P λx : Q (f x)
is well-typed in the λΠ-calculus modulo R.

3 The Pure Type Systems

There are several ways to extend the functional interpretation of proofs to sim-
ple type theory. The first is to use the fact that simple type theory can be



106 D. Cousineau and Gilles Dowek

expressed in Deduction modulo with rewrite rules only [8]. Thus, the proofs of
simple type theory can be expressed in the λΠ-calculus modulo, and even in
the λΠ−-calculus modulo. The second is to extend the λΠ-calculus by adding
the following typing rules, allowing for instance the construction of the type
ΠP : Type (P ⇒ P ).

Γ � A : Kind Γ [x : A] � B : Type
Product3

Γ � Πx : A B : Type

Γ � A : Kind Γ [x : A] � B : Kind
Product4

Γ � Πx : A B : Kind

Γ � A : Kind Γ [x : A] � B : Type Γ [x : A] � t : B
Abstraction3

Γ � λx : A t : Πx : A B

Γ � A : Kind Γ [x : A] � B : Kind Γ [x : A] � t : B
Abstraction4

Γ � λx : A t : Πx : A B

We obtain the Calculus of Constructions [4].
The rules of the simply typed λ-calculus, the λΠ-calculus and of the Calculus

of Constructions can be presented in a schematic way as follows.

Definition 5 (Pure type system). A Pure Type System [2,15,1] P is defined
by a set S, whose elements are called sorts, a subset A of S ×S, whose elements
are called axioms and a subset R of S × S × S, whose elements are called rules.
The typing rules of P are

Empty
[ ] well-formed

Γ � A : s
Declaration s ∈ S and x not in Γ

Γ [x : A] well-formed

Γ well-formed
Sort 〈s1, s2〉 ∈ A

Γ � s1 : s2

Γ well-formed x : A ∈ Γ
Variable

Γ � x : A

Γ � A : s1 Γ [x : A] � B : s2 Product 〈s1, s2, s3〉 ∈ R
Γ � Πx : A B : s3

Γ � A : s1 Γ [x : A] � B : s2 Γ [x : A] � t : B
Abstraction 〈s1, s2, s3〉 ∈ R

Γ � λx : A t : Πx : A B

Γ � t : Πx : A B Γ � u : A
Application

Γ � (t u) : (u/x)B

Γ � A : s Γ � B : s Γ � t : A Conversion s ∈ S A ≡β B
Γ � t : B



Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo 107

The simply typed λ-calculus is the system defined by the sorts Type and Kind,
the axiom 〈Type, Kind〉 and the rule 〈Type, T ype, T ype〉. The λΠ-calculus is the
system defined by the same sorts and axiom and the rules 〈Type, T ype, T ype〉
and 〈Type, Kind, Kind〉. The Calculus of Constructions is the system defined by
the same sorts and axiom and the rules 〈Type, T ype, T ype〉, 〈Type, Kind, Kind〉,
〈Kind, T ype, T ype〉 and 〈Kind, Kind, Kind〉. Other examples of Pure Type Sys-
tems are Girard’s systems F and Fω.

In all Pure Type Systems, types are preserved under reduction and the β-
reduction relation is confluent. It terminates in some systems, such as the λΠ-
calculus, the Calculus of Constructions, the system F and the system Fω. Unique-
ness of types is lost in general, but it holds for the λΠ-calculus, the Calculus
of Constructions, the system F and the system Fω, and more generally for all
functional Pure Type Systems.

Definition 6 (Functional Type System). A type system is said to be func-
tional if

〈s1, s2〉 ∈ A and 〈s1, s3〉 ∈ A implies s2 = s3

〈s1, s2, s3〉 ∈ R and 〈s1, s2, s4〉 ∈ R implies s3 = s4

4 Embedding Functional Pure Type Systems in the
λΠ-Calculus Modulo

We have seen that the λΠ-calculus modulo and the Pure Type Systems are two
extensions of the λΠ-calculus. At a first glance, they seem quite different as the
latter adds more typing rules to the λΠ-calculus, while the former adds more
computation rules. But they both allow to express proofs of simple type theory.

We show in this section that functional Pure Type Systems can, in fact, be
embedded in the λΠ-calculus modulo with an appropriate rewrite system.

4.1 Definition

Consider a functional Pure Type System P = 〈S, A, R〉. We build the following
context and rewrite system.

The context ΣP contains, for each sort s, two variables

Us : Type and εs : Us ⇒ Type

for each axiom 〈s1, s2〉, a variable

ṡ1 : Us2

and for each rule 〈s1, s2, s3〉, a variable

Π̇〈s1,s2,s3〉 : ΠX : Us1 (((εs1 X) ⇒ Us2) ⇒ Us3)

The type Us is called the universe of s and the symbol εs the decoding function
of s.
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The rewrite rules are
εs2(ṡ1) −→ Us1

in the empty context and with the type Type, and

εs3(Π̇〈s1,s2,s3〉 X Y ) −→ Πx : (εs1 X) (εs2 (Y x))

in the context X : Us1 , Y : (εs1 X) ⇒ Us2 and with the type Type.
These rules are called the universe-reduction rules, we write ≡P for the equiv-

alence relation generated by these rules and the rule β and we call the λΠP -
calculus the λΠ-calculus modulo these rewrite rules and the rule β. To ease
notations, in the λΠP -calculus, we do not recall the context ΣP in each sequent
and write Γ � t : T for ΣP Γ � t : T , and we note ≡ for ≡P when there is no
ambiguity.

Example 2. The embedding of the Calculus of Constructions is defined by the
context

˙Type : UKind UType : Type UKind : Type

εType : UType ⇒ Type εKind : UKind ⇒ Type

Π̇〈Type,Type,Type〉 : ΠX : UType (((εType X) ⇒ UType) ⇒ UType)

Π̇〈Type,Kind,Kind〉 : ΠX : UType (((εType X) ⇒ UKind) ⇒ UKind)

Π̇〈Kind,Type,Type〉 : ΠX : UKind (((εKind X) ⇒ UType) ⇒ UType)

Π̇〈Kind,Kind,Kind〉 : ΠX : UKind (((εKind X) ⇒ UKind) ⇒ UKind)

and the rules
εKind( ˙Type) −→ UType

εType(Π̇〈Type,Type,Type〉 X Y ) −→ Πx : (εType X) (εType (Y x))

εKind(Π̇〈Type,Kind,Kind〉 X Y ) −→ Πx : (εType X) (εKind (Y x))

εType(Π̇〈Kind,Type,Type〉 X Y ) −→ Πx : (εKind X) (εType (Y x))

εKind(Π̇〈Kind,Kind,Kind〉 X Y ) −→ Πx : (εKind X) (εKind (Y x))

Definition 7 (Translation). Let Γ be a context in a functional Pure Type
System P and t a term well-typed in Γ , we defined the translation |t| of t in Γ ,
that is a term in λΠP , as follows

– |x| = x,
– |s| = ṡ,
– |Πx : A B| = Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|), where s1 is the type of A,

s2 is the type of B and s3 the type of Πx : A B,
– |λx : A t| = λx : (εs |A|) |t|,
– |t u| = |t| |u|.
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Definition 8 (Translation as a type). Consider a term A of type s for some
sort s. The translation of A as a type is

‖A‖ = εs |A|.

Note that if A is a well-typed sort s′ then

‖s′‖ = εs ṡ′ ≡P Us′ .

We extend this definition to non well-typed sorts, such as the sort Kind in the
Calculus of Constructions, by

‖s′‖ = Us′

The translation of a well formed context is defined by

‖[ ]‖ = [ ] and ‖Γ [x : A]‖ = ‖Γ‖[x : ‖A‖]

4.2 Soundness

Proposition 1

1. |(u/x)t| = (|u|/x)|t|, ‖(u/x)t‖ = (|u|/x)‖t‖.
2. If t −→β u then |t| −→β |u|.

Proof

1. By induction on t.
2. Because a β-redex is translated as a β-redex.

Proposition 2. ‖Πx : A B‖ ≡P Πx : ‖A‖ ‖B‖

Proof. Let s1 be the type of A, s2 that of B and s3 that of Πx : A B. We have
‖Πx : A B‖ = εs3 |Πx : A B| = εs3 (Π̇〈s1,s2,s3〉 |A| (λx : (εs1 |A|) |B|))
≡P Πx : (εs1 |A|) (εs2 ((λx : (εs1 |A|) |B|) x)) ≡P Πx : (εs1 |A|) (εs2 |B|)
= Πx : ‖A‖ ‖B‖.

Example 3. In the Calculus of Constructions, the translation as a type of ΠX :
Type (X ⇒ X) is ΠX : UType ((εType X) ⇒ (εType X)). The translation as a
term of λX : Type λx : X x is the term λX : UType λx : (εTypeX) x. Notice
that the former is the type of the latter. The generalization of this remark is the
following proposition.

Proposition 3 (Soundness)

If Γ � t : B in P then ‖Γ‖ � |t| : ‖B‖ in λΠP .

Proof. By induction on t.

– If t is a variable, this is trivial.
– If t = s1 then B = s2 (where 〈s1, s2〉 is an axiom), we have ṡ1 : Us2 = ‖s2‖.
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– If t = Πx : C D, let s1 be the type of C, s2 that of D and s3 that of t. By
induction hypothesis, we have

‖Γ‖ � |C| : Us1 and ‖Γ‖, x : ‖C‖ � |D| : Us2

i.e.
‖Γ‖, x : (εs1 |C|) � |D| : Us2

Thus
‖Γ‖ � (Π̇〈s1,s2,s3〉 |C| λx : (εs1 |C|) |D|) : Us3

i.e.
‖Γ‖ � |Πx : C D| : ‖s3‖

– If t = λx : C u, then we have

Γ, x : C � u : D

and B = Πx : C D. By induction hypothesis, we have

‖Γ‖, x : ‖C‖ � |u| : ‖D‖

i.e.

‖Γ‖, x : (εs1 |C|) � |u| : ‖D‖ then ‖Γ‖ � λx : (εs1 |C|) |u| : Πx : ‖C‖ ‖D‖

i.e.
‖Γ‖ � |t| : ‖Πx : C D‖

– If t = u v, then we have

Γ � u : Πx : C D, Γ � v : C

and B = (v/x)D. By induction hypothesis, we get

‖Γ‖ � |u| : ‖Πx : C D‖ = Πx : ‖C‖ ‖D‖ and ‖Γ‖ � |v| : ‖C‖

Thus
‖Γ‖ � |t| : (|v|/x)‖D‖ = ‖(v/x)D‖

4.3 Termination

Proposition 4. If λΠP terminates then P terminates.

Proof. Let t1 be a well-typed term in P and t1, t2, . . . be a reduction sequence of
t1 in P . By Proposition 3, the term |t1| is well-typed in λΠP and, by Proposition
1, |t1|, |t2|, . . . is a reduction sequence of |t1| in λΠP . Hence it is finite.
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4.4 Confluence

Proposition 5. For any functional Pure Type System P , the relation −→ is
confluent in λΠP

Like that of pure λ-calculus, the reduction relation of λΠP is not strongly con-
fluent. Thus, we introduce another reduction relation ( −→�� ) that can reduce,
in one step, none to all the βR-redices that appears in a term, that is strongly
confluent and such that −→∗

�� = −→∗. Then, from the confluence of the rela-
tion −→�� , we deduce that of the relation −→. See the long version of the paper
for the full proof.

5 Conservativity

Let P be a functional Pure Type System. We could attempt to prove that if
the type ‖A‖ is inhabited in λΠP , then A is inhabited in P , and more precisely
that if Γ is a context and A a term in P and t a term in λΠP , such that
‖Γ‖ � t : ‖A‖, then there exists a term u of P such that |u| = t and Γ � u : A.
Unfortunately this property does not hold in general as shown by the following
counterexamples.

Example 4. If P is the simply-typed lambda-calculus, then the polymorphic
identity is not well-typed in P , in particular:

nat : Type � ((λX : Type λx : X x) nat) : (nat ⇒ nat)
however, in λΠ , we have

nat : ‖Type‖ � ((λX : ‖Type‖ λx : ‖X‖ x) |nat|) : ‖nat ⇒ nat‖.

Example 5. If 〈s1, s2, s3〉 ∈ R, ΣP � Π̇〈s1,s2,s3〉 : ‖ΠX : s1 ((X ⇒ s2) ⇒ s3)‖
but the term Π̇〈s1,s2,s3〉 is not the translation of any term of P .

Therefore, we shall prove a slightly weaker property: that if the type ‖A‖ is
inhabited by a normal term in λΠP , then A is inhabited in P . Notice that this
restriction vanishes if λΠP is terminating.

We shall prove, in a first step, that if ‖Γ‖ � t : ‖A‖, and t is a weak η-long
normal term then there exists a term in u such that such that |u| = t and
Γ � u : A. Then we shall get rid of this restriction on weak η-long forms.

Definition 9. A term t of λΠP is a weak η-long term if and only if each occur-
rence of Π̇〈s1,s2,s3〉 in t, is in a subterm of the form (Π̇〈s1,s2,s3〉 t1 t2) (i.e. each
occurrence of Π̇〈s1,s2,s3〉 is η-expanded).

Definition 10 (Back translation). We suppose that P contains at least one
sort: s0. Then we define a translation from λΠP to P as follows:

– x∗ = x, s∗ = s0 ṡ∗ = s, U∗
s = s,

– (Πx : A B)∗ = Πx : A∗ B∗,
– (λx : A t)∗ = λx : A∗ t∗,
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– (Π̇〈s1,s2,s3〉 A B)∗ = Πx : A∗ (B∗ x),
– (εs u)∗ = u∗,
– (t u)∗ = t∗ u∗ otherwise.

Proposition 6. The back translation (.)∗ is a right inverse of |.| and ‖.‖ i.e. for
all t such that |t| (resp. ‖t‖) is well defined, |t|∗ = t (resp. ‖t‖∗ = t).

Proof. By induction on the structure of t.

Proposition 7. For all t, u terms and x variable of λΠP ,

1. ((u/x)t)∗ = (u∗/x)t∗

2. If t −→ u then t∗ −→∗
β u∗ in P .

Proof

1. By induction on t.
2. If t −→β u then t∗ −→β u∗, and if t −→R u, then t∗ = u∗.

Proposition 8. For all terms A, B of P and C, D of λΠP (such that ‖A‖ and
‖B‖ are well defined),

1. If A ≡
β

B, then ‖A‖ ≡ ‖B‖.
2. If C ≡ D, then C∗ ≡

β
D∗.

3. If ‖A‖ ≡ ‖B‖, then A ≡
β

B.
4. If C ≡ ‖A‖, then C ≡ ‖C∗‖.

Proof

1. By induction on the length of the path of β-reductions and β-expansions
between A and B, and by Proposition 1.

2. By the same reasoning as for the first point, using Proposition 7.
3. By the second point and Proposition 6.
4. By the first and second points and Proposition 6.

Proposition 9 (Conservativity). If there exists a context Γ , a term A of P ,
and a term t, in weak η-long normal form, of λΠP , such that ‖Γ‖ � t : ‖A‖,
Then there exists a term u of P such that |u| ≡ t and Γ � u : A.

Proof. By induction on t.

• If t is a well-typed product or sort, then it cannot be typed by a translated
type (by confluence of λΠP ).

• If t = λx : B t′. The term t is well typed, thus there exists a term C of λΠP ,
such that ‖Γ‖ � t : Πx : B C . Therefore ‖A‖ ≡ Πx : B C (α).
And Πx : B C ≡ ‖(Πx : B C)∗‖ = ‖Πx : B∗ C∗‖ ≡ Πx : ‖B∗‖ ‖C∗‖
In particular (by confluence of λΠP ),

B ≡ ‖B∗‖, C ≡ ‖C∗‖ and ‖Γ‖ � λx : B t′ : Πx : ‖B∗‖ ‖C∗‖
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Therefore ‖Γ‖, x : ‖B∗‖ � t′ : ‖C∗‖. The term λx : B t′ is in weak η-long
normal form, thus t′ is also in weak η-long normal form, and, by induction
hypothesis, there exists a term u′ of P , such that |u′| ≡ t′ and
Γ, x : B∗ � u′ : C∗. Therefore Γ � λx : B∗ u′ : Πx : B∗ C∗ (β). Moreover,
A ≡β Πx : B∗ C∗ by (α) and Proposition 8. Thus, by the conversion rule
of P , we get Γ � λx : B∗ u′ : A.
And |λx : B∗ u′| = λx : ‖B∗‖ |u′| ≡ λx : B t′ = t.

• If t is an application or a variable, as it is normal, it has the form x t1 . . . tn
for some variable x and terms t1, . . . , tn. We have ‖Γ‖ � x t1 . . . tn :
‖A‖ (α0).
� If x is a variable of the context ΣP ,

∗ If x = ṡ1 (where 〈s1, s2〉 is an axiom of P ),
then n = 0 (because t is well typed) and ‖A‖ = Us2 .
We have � s1 : s2 in P , therefore Γ � s1 : s2.

∗ If x = Us (where s is a sort of P ), then n = 0 and ‖A‖ ≡ Type.
That’s an absurdity by confluence of λΠP .

∗ If x = εs (where s is a sort of P ), then, as t is well typed n ≤ 1.
� If n = 1, then ‖Γ‖ � t1 : Us, and ‖A‖ ≡ Type (absurdity).
� If n = 0, then ‖A‖ ≡ Us ⇒ Type, thus by Propositions 8 and 2,

Us ⇒ Type ≡ ‖(Us ⇒ Type)∗‖ = ‖s ⇒ s0‖ ≡ ‖s‖ ⇒ ‖s0‖.
Therefore Type ≡ ‖s0‖ (absurdity).

∗ If x = Π̇〈s1,s2,s3〉 (where 〈s1, s2, s3〉 is a rule of P ), then as t is
well-typed and in weak η-long form, n = 2. We have ‖A‖ ≡ Us3

thus A ≡ s3 by Proposition 8.
And ‖Γ‖ � t1 : Us1 i .e. ‖Γ‖ � t1 : ‖s1‖.
And ‖Γ‖, t1 : Us1 � t2 : ((εs1t1) ⇒ Us2) (α1)
t1 is also in weak η-long normal form, then, by induction hypothesis,
there exists a term u1 of P such that:

|u1| ≡ t1 and Γ � u1 : s1 (β1)
Then, by (α1), ‖Γ‖, t1 : ‖s1‖ � t2 : ‖u1 ⇒ s2‖.
In particular, ‖Γ‖, t1 : ‖s1‖ � t2 : ‖u1‖ ⇒ ‖s2‖.
However t2 is also in weak η-long normal form, then there exists a
term t′2 (in weak η-long normal form) of λΠP such that

t2 = λx : ‖u1‖ t′2 and ‖Γ‖, x : ‖u1‖ � t′2 : ‖s2‖
By induction hypothesis, there exists a term u′

2 of P , such that
|u′

2| ≡ t′2 and Γ, x : u1 � u′
2 : s2 (β2)

Then we choose u = Πx : u1 u′
2 that verifies Γ � u : s3 , by (β1),

(β2), and the fact that 〈s1, s2, s3〉 is a rule of P . And, finally,
|u| = Π̇〈s1,s2,s3〉|u1| (λx : (εs1 |u1|) |u′

2| ≡ Π̇〈s1,s2,s3〉t1 t2 = t

� If x is a variable of the context Γ ,
For k ∈ {0, .., n}, let (Hk) be the statement: ”The term x t1 . . . tk is
typable in ‖Γ‖ and its type is in the image of ‖.‖”.
We first prove (H0),. . . ,(Hn) by induction.

� k = 0 : x is a variable of the context Γ , then there exists a well typed
term or a sort T in P such that Γ contains x : T . Therefore ‖Γ‖
contains x : ‖T ‖.
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� 0 ≤ k ≤ n − 1 : We suppose (Hk).
x t1 . . . tk+1 is well typed in Γ , then there exists terms D and E
of λΠP such that ‖Γ‖ � tk+1 : D (δ1) ,
‖Γ‖ � x t1 . . . tk : Πy : D E (δ2), and ‖Γ‖ � x t1 . . . tk+1 : E (δ3).
However, by (Hk), we can type x t1 . . . tk by a translated type in
‖Γ‖, then by (δ2) and Proposition 8, Πy : D E ≡ Πy : ‖D∗‖ ‖E∗‖ .
In particular, E ≡ ‖E∗‖ (η1) ,
We conclude, by (δ3), (η1) and the conversion rule of λΠP .

Then, if n = 0, we take u = x and Γ contains x : T with ‖T ‖ ≡ ‖A‖.
And, if n > 0, then, by (α0), there exists terms B and C of λΠP such
that ‖Γ‖ � tn : B (θ1) and ‖Γ‖ � x t1 . . . tn−1 : Πy : B C (θ2)
with ‖A‖ ≡ (tn/y)C (θ3) . Then, by (Hn−1), (θ2), and Proposition 8.4,
Πy : B C ≡ Πy : ‖B∗‖ ‖C∗‖ , therefore B ≡ ‖B∗‖ and C ≡ ‖C∗‖.
Thus, ‖Γ‖ � tn : ‖B∗‖ and ‖Γ‖ � x t1 . . . tn−1 : ‖Πy : B∗ C∗‖.
tn and x t1 . . . tn−1 are both in weak η-long normal form, then, by
induction hypothesis, there exists terms w1 and w2 of P such that:

|w1| ≡ x t1 . . . tn−1 and Γ � w1 : Πy : B∗ C∗

|w2| ≡ tn and Γ � w2 : B∗

Let u = w1 w2, we have:
|u| = |w1| |w2| ≡ x t1 . . . tn−1 tn and Γ � u : (w2/y)C∗.

However, by (θ3) and Proposition 8, we have:
A ≡ (t∗n/y)C∗ ≡ (w2/y)C∗ , and, finally, Γ � u : A .

Finally, we get rid of the weak η-long form restriction with the following
Propositions.

Proposition 10. For all terms A, B of λΠP , and for all well typed term or
sort C of P ,

1. If A −→ B then A” −→∗ B”
2. If A ≡ B then A” ≡ B”
3. If A is in weak η-long form, then A” −→∗

β A, in particular A” ≡ A
4. ‖C‖” ≡ ‖C‖
5. If A ≡ ‖C‖ then A” ≡ A

Proof

1. If A −→β B, then A” −→β B” (by induction on A).
If A −→R B,
– for all axiom 〈s1, s2〉, (εs2 (ṡ1))” = εs2 (ṡ1) −→R Us1 = (Us1)”.
– for all rule 〈s1, s2, s3〉, (εs3(Π̇〈s1,s2,s3〉C D))” =

εs3((λx : Us1λy : ((εs1 x) ⇒ Us2) (Π̇〈s1,s2,s3〉 x y))C” D”)
−→2

β εs3(Π̇〈s1,s2,s3〉C” D”) −→R Πx : (εs1 C”) (εs2 (D” x))
= Πx : (εs1 C”) (εs2 (D x)”)

2. By induction on the number of derivations and expansions from A to B.
3. By induction on A, remarking that (Π̇〈s1,s2,s3〉 t1 t2)” −→2

β Π̇〈s1,s2,s3〉 t1” t2”.
4. A translated term ‖C‖ is in weak η-long form.
5. If A ≡ ‖C‖ then A” ≡ ‖C‖” ≡ ‖C‖, by the the second and fourth points.
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Proposition 11. Let t be a normal term of λΠP ,

if ‖Γ‖ � t : ‖A‖ then ‖Γ‖ � t” : ‖A‖

Proof. By induction on t.

• If t is a well-typed product or sort, then it cannot be typed by a translated
type (by confluence of λΠP ).

• If t = λx : B u, then there exists a term C of λΠP , such that
‖A‖ ≡ Πx : B C (α), with Γ, x : B � u : C.
By (α), we have B ≡ ‖B∗‖ (β) and C ≡ ‖C∗‖. Thus Γ, x : ‖B∗‖ � u : ‖C∗‖.
Then, by induction hypothesis, we have Γ, x : ‖B∗‖ � u” : ‖C∗‖, therefore
Γ � λx : ‖B∗‖ u” : Πx : ‖B∗‖ ‖C∗‖ ≡ ‖A‖ thus Γ � λx : B u” : ‖A‖,
by (β). Finally, by (β) and the Proposition 10.5, λx : B u” ≡ λx : B” u”,
therefore, by subject reduction, Γ � t” = λx : B” u” : ‖A‖

• If t is an application or a variable, as it is normal, it has the form x t1 . . . tn
for some variable x and terms t1, . . . , tn. We have ‖Γ‖ � x t1 . . . tn :
‖A‖ (α0).
� If x is a variable of the context ΣP ,

∗ If x = ṡ1 (where 〈s1, s2〉 is an axiom of P ),
then n = 0 (because t is well typed) and we have (ṡ1)” = ṡ1.

∗ If x = Us (where s is a sort of P ), then n = 0 and ‖A‖ ≡ Type.
That’s an absurdity by confluence of λΠP .

∗ If x = εs (where s is a sort of P ), then, as t is well typed n ≤ 1.
� If n = 1, then ‖Γ‖ � t1 : Us, and ‖A‖ ≡ Type (absurdity).
� If n = 0, we have (εs)” = εs

∗ If x = Π̇〈s1,s2,s3〉 (where 〈s1, s2, s3〉 is a rule of P ), then as t is well-
typed, n ≤ 2. Moreover, Π̇〈s1,s2,s3〉, (Π̇〈s1,s2,s3〉 t1), and (Π̇〈s1,s2,s3〉
t1 t2) have the same types than their weak η-long forms.

� If x is a variable of the context Γ ,
∗ If n = 0, we have x” = x.
∗ If n > 0, then there exists terms B and C of λΠP such that

‖Γ‖ � tn : B (α1) and ‖Γ‖ � x t1 . . . tn−1 : Πy : B C (α2)
with ‖A‖ ≡ (tn/y)C (α3) . As in the proof of Proposition 9, we
can type x t1 . . . tn−1 by a translated type, then Πy : B C ≡ Πy :
‖B∗‖ ‖C∗‖ . In particular, B ≡ ‖B∗‖ and C ≡ ‖C∗‖.
Thus, ‖Γ‖ � tn : ‖B∗‖ and ‖Γ‖ � x t1 . . . tn−1 : ‖Πy : B∗ C∗‖.
By induction hypothesis, we have ‖Γ‖ � tn” : ‖B∗‖ and
‖Γ‖ � x t1” . . . tn−1” : Πy : ‖B∗‖ ‖C∗‖. Finally, by (α3) and
Proposition 10.5, ‖Γ‖ � t” = x t1” . . . tn” : (tn”/y)C ≡ ‖A‖.

Theorem 1. Let P be a functional Pure Type System, such that λΠP is ter-
minating. The type ‖A‖ is inhabited by a closed term in λΠP if and only if the
type A is inhabited by a closed term in P .

Proof. If A has a closed inhabitant in P , then by Proposition 3, ‖A‖ has a
closed inhabitant in λΠP . Conversely, if ‖A‖ has a closed inhabitant then, by
termination of λΠP and Proposition 11, it has a closed inhabitant in weak η-long
normal form and by Proposition 9, A has a closed inhabitant in P .
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Remark 1. This conservativity property we have proved is similar to that of
the Curry-de Bruijn-Howard correspondence. If the type A◦ is inhabited in λΠ-
calculus, then the proposition A is provable in minimal predicate logic, but not all
terms of type A◦ correspond to proofs of A. For instance, if A is the proposition
(∀x P (x)) ⇒ P (c), then the normal term λα : (Πx : ι (P x)) (α c) corresponds
to a proof of A but the term λα : (Πx : ι (P x)) (α ((λy : ι y) c)) does not.

Remark 2. There are two ways to express proofs of simple type theory in the
λΠ-calculus modulo. We can either use directly the fact that simple type theory
can be expressed in Deduction modulo [8] or first express the proofs of simple
type theory in the Calculus of Constructions and then embed the Calculus of
Constructions in the λΠ-calculus modulo.

These two solutions have some similarities, in particular if we write o the
symbol UType. But they have also some differences: the function λx x of simple
type theory is translated as the symbol I — or as the term λ1 — in the first
case, using a symbol I — or the symbols λ and 1 — specially introduced in the
context to express this particular theory, while it is expressed as λx x using the
symbol λ of the λΠ-calculus modulo in the second.

More generally in the second case, we exploit the similarities of the λΠ-
calculus modulo and simple type theory — the fact that they both allow to
express functions — to simplify the expression while the first method is com-
pletely generic and uses no particularity of simple type theory. This explains why
this first expression requires only the λΠ−-calculus modulo, while the second
requires the conversion rule to contain β-conversion.
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Abstract. In 1994 Herbelin started and partially achieved the pro-
gramme of showing that, for intuitionistic implicational logic, there is
a Curry-Howard interpretation of sequent calculus into a variant of the
λ-calculus, specifically a variant which manipulates formally “applicative
contexts” and inverts the associativity of “applicative terms”. Herbelin
worked with a fragment of sequent calculus with constraints on left intro-
duction. In this paper we complete Herbelin’s programme for full sequent
calculus, that is, sequent calculus without the mentioned constraints, but
where permutative conversions necessarily show up. This requires the
introduction of a lambda-like calculus for full sequent calculus and an
extension of natural deduction that gives meaning to “applicative con-
texts” and “applicative terms”. Such extension is a calculus with modus
ponens and primitive substitution that refines von Plato’s natural de-
duction; it is also a “coercion calculus”, in the sense of Cervesato and
Pfenning. The proof-theoretical outcome is noteworthy: the puzzling re-
lationship between cut and substitution is settled; and cut-elimination in
sequent calculus is proven isomorphic to normalisation in the proposed
natural deduction system. The isomorphism is the mapping that inverts
the associativity of applicative terms.

1 Introduction

Herbelin’s CSL’94 paper [11] is an integrated contribution into two closely related
subjects: structural proof theory and the study of the computational interpreta-
tion of sequent calculus. Here, structural proof theory is taken in the restricted
sense of the study of the relationship between natural deduction and sequent
calculus, the two kinds of proof systems introduced since the subject was born
[10]. Such relationship is a puzzle that constantly attracted attention during the
last 70 years [10,18,22,17,14,20]. The study of the computational interpretation
of sequent calculus, with the purpose of extending the Curry-Howard correspon-
dence, is a relatively recent topic, with the first explicit contributions starting
in the early 1990’s [9,21,13]. An integrated contribution to the two subjects is
desirable: one should understand the differences and similarities between natu-
ral deduction and sequent calculus, if one wants to extend the Curry-Howard
correspondence; and a way of expressing those differences and similarities is,
precisely, via the corresponding computational interpretations.

Herbelin’s paper initiates the programme of defining a λ-calculus (with a
strongly normalising set of reduction rules) such that, by means of the calculus,

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 118–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the following two goals are achieved simultaneously: (1) to give a convincing
computational interpretation of (a fragment of) sequent calculus, along the lines
of the Curry-Howard correspondence; and (2) to express the difference between
sequent calculus and natural deduction, reducing it to the mere inversion of the
associativity of applicative terms.

Herbelin studied a fragment LJT of sequent calculus LJ and gave its compu-
tational interpretation in terms of the so-called λ-calculus. Contrary to earlier
contributions, whose focus was on the feature of pattern matching, in λ the nov-
elty is the existence of an auxiliary syntactic class of applicative contexts. In the
case of intuitionistic implication, an applicative context is simply a list of terms,
understood as a “multiary” argument for functional application. Hence, “applica-
tive terms” in λ have the form t[u1, ..., um]. Herbelin concludes that the difference
between sequent calculus and natural deduction resides in the organization of ap-
plicative terms: sequent calculus is right-associative t(u1 :: ...(un :: [])), whereas
natural deduction is left-associative (...(MN1)...Nm).

Herbelin’s paper achieved (1) for LJT and has the merit of suggesting that
(2) can be achieved. Verification of (2) happened in later papers. The mapping
that inverts the associativity of applicative terms is proved in [3] to be a bijec-
tion between normal λ-terms and cut-free λ-terms, in [5] to be an isomorphism
between the λ-calculus and a fragment of λ, and in [6] to be an isomorphism
between an extension of the λ-calculus and a larger fragment of λ. Fulfillment of
(2) is useful for (1), because only an isomorphic natural deduction system gives
rigorous meaning to “applicative context” and “applicative term”.

Notwithstanding the parts of Herbelin’s programme already completed (in-
cluding the extension of (1) to classical logic in [2]), a lot remains unfinished.
LJT is a permutation-free fragment, where only a restricted form of left intro-
duction is available and where the computational meaning of permutation (so
typical of sequent calculus) is absent. In addition, the fulfilment of (2), in con-
nection with larger fragments of sequent calculus, requires the extension of the
natural deduction system. One idea for this extension is in [6], and turns out to
be the idea of defining natural deduction as a “coercion calculus”, in the sense
of Cervesato and Pfenning [1]. Another idea is that of generalised elimination
rules, due to von Plato [20].

In the setting of intuitionistic implicational logic, we contribute to the com-
pletion of Herbelin’s programme for full sequent calculus, that is, sequent calcu-
lus without constraints on left introductions (but where permutative conversions
necessarily show up). The computational interpretation is in terms of a λ-calculus
λGtz with a primitive notion of applicative context, taken in a natural, generalised
sense. In order to fulfil (2), a system of natural deduction λNat is defined that
extends and refines von Plato’s natural deduction. It is a calculus with modus
ponens and primitive substitution and it is also a coercion calculus. Then we
prove that λGtz ∼= λNat in the fullest sense: the mapping that inverts the associa-
tivity of applicative terms is a sound bijection between the sets of terms of the
two calculi and, in addition, establishes an isomorphism between cut-elimination
in λGtz and normalisation in λNat. Strong cut-elimination for λGtz is proved via
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an interpretation into the calculus of “delayed substitutions” λs of [7]; strong
normalisation for λNat follows by isomorphism. These results constitute, for the
logic under analysis here, considerable improvements over [11,1,20,6].

The paper is organized as follows. Section 2 presents λGtz. Section 3 presents
λNat. Sections 4 and 5 prove and analyze λGtz ∼= λNat. Section 6 concludes.

Notations: Types (=formulas) are ranged over by A, B, C and generated from
type variables using the “arrow type” (=implication), written A ⊃ B. Contexts
Γ are consistent sets of declarations x : A. “Consistent” means that for each
variable x there is at most one declaration in Γ . The notation Γ, x : A always
produces a consistent set. Meta-substitution is denoted with square brackets
[ /x] . All calculi in this paper assume Barendregt’s variable convention (in par-
ticular we take renaming of bound variables for granted).

Naming of Systems: Sequent calculi are denoted λS (where S is some tag);
natural deduction systems introduced here are denoted λS ; more or less tradi-
tional systems of natural deduction are denoted λS.

2 Sequent Calculus

The sequent calculus we introduce is named λGtz (read “λ-Gentzen”).

Expressions and Typing Rules: There are two sorts of expressions in λGtz:
terms t, u, v and contexts k.

(Terms) t, u, v ::= x | λx.t | tk
(Contexts) k ::= (x)v | u :: k

Terms are either variables x, y, z, abstractions λx.t or cuts tk. Contexts are either
a selection (x)v or a linear left introduction u :: k, often called a cons. x is bound
in (x)v. 1 A computational reading of contexts is as a prescription of what to
do next (with some expression that has to be plugged in). A selection (x)v says
“substitute for x in v” and a cons u :: k says “apply to u and proceed according
to k”. A cut tk is a plugging of a term t in the context k. We will use the following
abbreviations: [] = (x)x, [u1, ..., un] = u1 :: ...un :: [], and 〈u/x〉t = u(x)t.

The typing rules of λGtz are as follows:

Γ, x : A � x : A
Axiom

Γ, x : A � t : B

Γ � λx.t : A ⊃ B
Right

Γ � u : A Γ ; B � k : C

Γ ; A ⊃ B � u :: k : C
Left

Γ � t : A Γ ; A � k : B

Γ � tk : B
Cut

Γ, x : A � v : B

Γ ; A � (x)v : B
Selection

1 In order to save parentheses, the scope of binders extends to the right as far as
possible.



Completing Herbelin’s Programme 121

There are two sorts of sequents in λGtz, namely Γ � t : A and Γ ; A � k : B. The
distinguished position in the antecedent of sequents of the latter kind contains
the selected formula. There is a typing rule Selection that selects an antecedent
formula. Besides this rule, there are the axiom rule, the introductions on the
left(=antecedent) and on the right(=succedent) of sequents, and the cut.

The typing rules follow a reasonable discipline: active formulas in the an-
tecedent of sequents have to be previously selected (the B in Left and one A
in Cut); and a formula introduced on the left is selected. The latter constraint
implies that a left introduction u :: k is a linear introduction, because there
cannot be an implicit contraction. Full left introduction is recovered as a cut
between an axiom and a linear left introduction, corresponding to x(u :: k). The
cut-elimination process will not touch these trivial cuts. More generally, given
a context k, xk represents the inverse of a selection, that is, the operation that
takes a formula out of the selection position and gives it name x. An implicit
contraction may happen here.

Reduction Rules: The reduction rules of λGtz are as follows:

(β) (λx.t)(u :: k) → 〈u/x〉(tk) (σ) 〈t/x〉v → [t/x]v
(π) (tk)k′ → t(k@k′) (μ) (x)xk → k, if x /∈ k

where
(u :: k)@k′ = u :: (k@k′) ((x)v)@k′ = (x)vk′

By cut-elimination we mean βπσ-reduction. Rules β, π and σ aim at eliminating
all cuts that are not of the form x(u :: k). The procedure is standard. If a cut
is a key-cut (both cut-formulas main(=introduced) in the premisses) with cut-
formula A ⊃ B, the cut is reduced to two cuts, with cut-formulas A and B. This
is rule β. If a cut, not of the form x(u :: k), is not a key cut, this means that
it can be permuted to the right (rule σ) or to the left (rule π). The particular
case of σ when v = x is named ε and reads 〈t/x〉x → t or t[] → t. A term t is a
βπσ-normal form iff it is generated by the following grammar:

t, u, v ::= x | λx.t | x(u :: k)
k ::= (x)v | u :: k

(1)

There is a further reduction rule, named μ, of a different nature. It undoes the
sequence of inferences consisting of un-selecting and selecting the same formula,
if no implicit contraction is involved. A similar rule has been defined for Parigot’s
λμ-calculus [16], but acting on the RHS of sequents.

Consider the term (λx.t)(u :: k). After a β-step, we get v = 〈u/x〉(tk). If u is
a cut t′k′, v is both a σ- and a π-redex. In this case, there is a choice as to how
to continue evaluation. Opting for σ gives ([u/x]t)k, whereas the π option gives
t′(k′@(x)tk). According to [2], this choice is a choice between a call-by-name and
a call-by-value strategy of evaluation.

Strong Normalisation: We give a proof of strong normalisation for λGtz by
defining a reduction-preserving interpretation in the λs-calculus of [7].
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The terms of λs are given by:

M, N, P ::= x | λx.M | MN | 〈N/x〉M

This set of terms is equipped with the following reduction rules:

(β) (λx.M)N → 〈N/x〉M (π1) (〈P/x〉M)N → 〈P/x〉(MN)
(σ) 〈N/x〉M → [N/x]M (π2) 〈〈P/y〉N/x〉M → 〈P/y〉〈N/x〉M

where meta-substitution [N/x]M is defined as expected. In particular

[N/x]〈P/y〉M = 〈[N/x]P/y〉[N/x]M .

Let π = π1 ∪ π2. We now define a mapping ( )∗ : λGtz → λs. More precisely,
mappings ( )∗ : λGtz − Terms → λs − Terms and ( , )∗ : λs − Terms × λGtz −
Contexts → λs − Terms are defined by simultaneous recursion as follows:

x∗ = x (M, (x)v)∗ = 〈M/x〉v∗
(λx.t)∗ = λx.t∗ (M, u :: k)∗ = (Mu∗, k)∗

(tk)∗ = (t∗, k)∗

The idea is that, if t, ui and v are mapped by ( )∗ to M , Ni and P , respectively,
then t(u1 :: · · · um :: (x)v) is mapped to 〈MN1 · · ·Nm/x〉P .

Proposition 1. Let R ∈ {β, π, σ, μ}. If t →R u in λGtz, then t∗ →+
βπσ u∗ in λs.

Proof: Follows from the following four facts: (i) (〈N/x〉M, k)∗→+
π 〈N/x〉(M, k)∗;

(ii) ((M, k)∗, k′)∗ →+
π (M, append(k, k′))∗; (iii) ([t/x]u)∗ = [t∗/x]u∗; and (iv)

〈M/x〉(N, k)∗ →σ ([M/x]N, k)∗, if x /∈ k. �

Theorem 1 (Strong cut-elim.). Every typable t ∈ λGtz is βπσμ-SN.

Proof: [7] proves that every typable t ∈ λs is βπσ-SN (if we use for λs the ob-
vious typing rules). The theorem follows from this fact, the previous proposition
and the fact that ( )∗ preserves typability. �

Related Systems: We can easily embed LJ in λGtz, if we define LJ as the
typing system for some obvious term language. The embedding is given by:

Axiom(x) � x Left(x, L1, (y)L2) � x(u1 :: (y)u2)
Right((x)L) � λx.t Cut(L1, (x)L2) � t1(x)t2

The cut-free LJ terms correspond to the sub-class of terms in (1) such that k in
x(u :: k) has to be a selection (y)v. These correspond also to von Plato’s “fully
normal ” natural deductions. βπσ-normal forms correspond exactly to Schwicht-
enberg’s multiary cut-free terms [19]. We refer to these as Schwichtenberg nfs.

A context u1 :: ... :: um :: (x)x (m ≥ 0) is called an applicative context, and
may be regarded as a list [u1, ..., um], if we think of (x)x as []. If every context in
a term t is applicative, t is a λ-term. A term t is βπσ-normal and only contains
applicative contexts iff t is a cut-free λ-term, in the sense of [11]. We refer to
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such terms as Herbelin nfs. They are given by t, u ::= x | λx.t | x(u :: k) and k ::=
[] | u :: k. Another characterisation of this set is as the set of Schwichtenberg’s
terms (1) normal w.r.t. certain permutative conversions [19].

Every cut in λGtz is of the form t(u1 :: ... :: um :: (x)v), with m ≥ 0. Several
interesting fragments of λGtz may be obtained by placing restrictions on m. There
is a m ≥ 1-fragment, which gives a version of the system λJm studied in [8].
There is a m ≤ 1-fragment, which gives a version λgs of the λg-calculus with
explicit substitution λgs, to be defined in the next section. The m ≤ 1-terms are
the terms normal w.r.t. the following permutation rule

(ν) t(u :: v :: k) → t(u :: (z)z(v :: k)) ,

with z /∈ v, k. Notice that →ν⊆→−1
μ . Clearly, ν is terminating and locally con-

fluent. The ν-nf of t is written ν(t).

3 Natural Deduction

The natural deduction system we introduce is named λNat (read “λ-natural”).
It is an improvement of natural deduction with general elimination rules.

Natural Deduction with General Elimination Rules: This system [20]
may be presented as a type system for the λ-calculus with generalized appli-
cation. The latter is the system ΛJ of [12], which we rename here as λg, for
the sake of uniformity with the names of other calculi. Terms of λg are given by
M, N, P ::= x | λx.M | M(N, x.P ). The typing rule for generalized application is

Γ � M : A ⊃ B Γ � N : A Γ, x : B � P : C

Γ � M(N, x.P ) : C
gElim

The λg-calculus has two reduction rules:

(β) (λx.M)(N, y.P ) → [[N/x]M/y]P
(π) M(N, x.P )(N ′, y.P ′) → M(N, x.P (N ′, y.P ′)) .

Rule π corresponds to the permutative conversion allowed by general elimina-
tions. The βπ-normal terms are given by M, N, P ::= x | λx.M | x(N, y.P ) and
correspond to von Plato’s “fully normal” natural deductions. A βπ-normal form
M is called a Mints normal form if, for every application x(N, y.P ) in M , P is
y-normal [4]. P is y-normal if P = y or P = y(N ′, y′.P ′) and y /∈ N ′, P ′ and P ′

is y′-normal. Another characterisation of Mints nfs is as βπ-normal forms which
are, in addition, normal w.r.t. a set of permutation rules given in [4].

The λgs-calculus is the following version of λg with explicit substitution. A
new term constructor, explicit substitution 〈N/x〉M , is added. In rule β

(β) (λx.M)(N, y.P ) → 〈N/x〉〈M/y〉P ,

two explicit substitutions are generated, instead of two calls to the meta-substitu-
tion. π stays the same. Finally, the calculus contains a new reduction rule, named
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σ, and defined by 〈N/x〉M → [N/x]M . A λgs-term is in βπσ-normal form iff it
is a λg-term in βπ-normal form.2

The usual λ-calculus embeds in λg by setting MN = M(N, x.x). Likewise,
modus ponens (=Gentzen’s elimination rule for implication) may be seen as the
particular case of the gElim where B = C and the rightmost premiss is omitted.
The set of β-normal λ-terms is in bijective correspondence with the set of Mints
normal forms [14,4].

Motivation for λNat: If one sees generalised application M(N, x.P ) as a sub-
stitution subst(MN, x.P ) (the notation here is not important), then one can say
that in λg every ordinary application MN occurs as the actual parameter of a
substitution. This situation has a defect: it is cumbersome to write iterated, ordi-
nary applications. For instance, MNN ′ is written subst(subst(MN, x.x)N ′, y.y),
with x, y fresh. A solution is to allow m ≥ 0 application as actual parameters of
substitutions: subst(MN1...Nm, x.P ). The particular case m = 0 encompasses
explicit substitution. The usefulness of allowing m > 1 is precisely in having the
alternative way subst(MNN ′, x.x) of writing MNN ′.

Expressions and Typing Rules: There are two syntactic classes in λNat: terms
M, N, P and elimination expressions E.

(Terms) M, N, P ::= x | λx.M | {E/x}P
(Elimination-Expressions) E ::= hd(M) | EN

Terms are either variables x, y, z, abstractions λx.M or (primitive) substitutions
{E/x}P . Elimination expressions (EEs, for short) are either coercions hd(M)
(a.k.a. heads) or eliminations EN . So an EE is a sequence of zero or more
eliminations starting from a coerced term and ending as the actual parameter
of a substitution. Hence, every substitution has the form {hd(M)N1...Nm/x}P ,
with m ≥ 0. Generalised elimination is recovered as {hd(M)N/x}P , that is the
particular case m = 1. Ordinary elimination is {hd(M)N/x}x. We will use the
following abbreviations: ap(E) = {E/z}z, MN = ap(hd(M)N) and 〈N/x〉M =
{hd(N)/x}M .

The typing rules of λNat are as follows:

Γ, x : A � x : A
Assumption

Γ, x : A � M : B

Γ � λx.M : A ⊃ B
Intro

Γ � E : A ⊃ B Γ � N : A
Γ � EN : B

Elim

Γ � E : A Γ, x : A � P : B

Γ � {E/x}P : B
Subst

Γ � M : A
Γ � hd(M) : A

Coercion

There are two sorts of sequents in λNat, namely Γ � M : A and Γ � E : A. The
typing system contains an assumption rule, an introduction rule, an elimination
2 For a slightly different definition of λgs see [7].
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rule and a rule for typing substitution. These are standard, except for the use
of two sorts of sequents. The coercion rule changes the kind of sequent. The
displayed formula of the coercion rule is the coercion formula. The construction
ap(E) (={E/x}x) represents the inverse of the coercion rule.

Reduction Rules: The reduction rules of λNat will act on the head of sub-
stitutions {hd(M)N1...Nm/x}P . In order to have access to such heads, it is
convenient to introduce the following syntactic expressions:

C ::= {[]/x}P | N · C

These expressions are called meta-contexts of λNat. As opposed to the contexts of
λGtz, which are formal expressions of λGtz, meta-contexts are not formal expres-
sions of λNat, but rather a device in the meta-language. Intuitively, a meta-
context is a substitution with a “hole”: {[]N1...Nk/x}P . Formally, given E,
we define C[E] (the result of filling E in the hole of C) by recursion on C:
({[]/x}P )[E] = {E/x}P and (N · C)[E] = C[EN ]. So N · C can be thought
of as the meta-context C[[]N ].

The reduction rules of λNat are as follows:

(β) C[hd(λx.M)N ] → 〈N/x〉(C[hd(M)]) (σ) 〈M/x〉P → [M/x]P
(π) C[hd({E/x}P )] → {E/x}(C[hd(P )]) (μ) {E/x}(C[hd(x)]) → C[E]

There are three reduction rules, β, π and σ, enforcing every head to be of the
form hd(x) and to be in the function position of some application (hence not in
the actual-parameter position of some substitution). The βπσ-normal forms are
given by:

M, N, P ::= x | λx.M | {EN/x}P
E ::= hd(x) | EN

Later on, we will refer to this set as A .
By normalisation we mean βπσ-reduction. At the level of derivations, the

normality criterion is: a derivation in λNat is βπσ-normal if every coercion for-
mula occurring in it is an assumption and the main premiss of an elimination.
This extends von Plato’s criterion of normality. Indeed, if m is always 1 in
{hd(M)N1...Nm/x}P , coercion formula = main premiss of elimination, and the
criterion boils down to: the main premiss of an elimination is an assumption.

The particular case P = x of rule σ reads ap(hd(M)) → M and is named ε.
There is a fourth reduction rule, named μ, which is a handy tool not available in
λg. Consider the λ-term xN1N2, that is, ap(hd(ap(hd(x)N1))N2). After a π step
we get {hd(x)N1/z1}{hd(z1)N2/z2}z2 (zi’s fresh), which is a βπσ-normal form,
if N1, N2 are. After a μ step one gets ap(hd(x)N1N2), which is much simpler.

Related Systems: A term M is βπσ-normal and only contains substitutions
of the form ap(E) iff M is a normal term of Cervesato and Pfenning’s coercion
calculus in [1]. Later on, we will refer to the class of such terms as B . They



126 J. Esṕırito Santo

are given by M, N ::= x | λx.M | ap(EN) and E ::= hd(x) | EN . Another char-
acterisation of this set is as the set of β-normal forms of λN , a coercion calculus
studied in [5].

Fragments of λNat are determined by placing restrictions on the number m
in {hd(M)N1...Nm/x}P . There is a m ≤ 1-fragment, which gives a version λgs

of the λg-calculus with explicit substitution λgs. The β-rule of λgs is recovered
as follows. Let C = {[]/y}P . Then {hd(λx.M)N/y}P = C[hd(λx.M)N ] →β

〈N/x〉C[hd(M)] = 〈N/x〉〈M/y〉P . The π-rule of λgs is recovered as follows. Let
E = hd(M)N and C = N ′ · {[]/y}P ′. Then {hd({hd(M)N/x}P )N ′/y}P ′ =
C[hd({E/x}P )] →π {E/x}C[hd(P )] = {hd(M)N/x}{hd(P )N ′/y}P ′.

The m ≤ 1-terms are the terms normal w.r.t. the following permutation rule

(ν) {ENN ′/y}P → {EN/z}{hd(z)N ′/y}P ,

with z /∈ N ′, P . Notice that ν ⊆ μ−1. Clearly, ν is terminating and locally
confluent. The ν-nf of M is written ν(M).

4 Isomorphism

Mappings Ψ and Θ: We start with a mapping Ψ : λNat − Terms −→ λGtz −
Terms. Let Ψ(M) = t, Ψ(Ni) = ui and Ψ(P ) = v. The idea is to map, say,
{hd(M)N1N2N3/x}P to t(u1 :: u2 :: u3 :: (x)v). This is achieved with the help
of an auxiliary function Ψ ′ : λNat − EEs × λGtz − Contexts −→ λGtz − Terms as
follows:

Ψ(x) = x Ψ ′(hd(M), k) = (ΨM)k
Ψ(λx.M) = λx.ΨM Ψ ′(EN, k) = Ψ ′(E, ΨN :: k)

Ψ({E/x}P ) = Ψ ′(E, (x)ΨP )

Next we consider a mapping Θ : λGtz − Terms −→ λNat − Terms. Let Θ(t) =
M , Θ(ui) = Ni and Θ(v) = P . The idea is to map, say, t(u1 :: u2 :: u3 :: (x)v)
to {hd(M)N1N2N3/x}P . This is achieved with the help of an auxiliary function
Θ′ : λNat − EEs × λGtz − Contexts −→ λNat − Terms as follows:

Θ(x) = x Θ′(E, (x)v) = {E/x}Θv
Θ(λx.t) = λx.Θt Θ′(E, u :: k) = Θ′(EΘu, k)

Θ(tk) = Θ′(hd(Θt), k)

Contexts vs Meta-contexts: Let MetaContexts be the set of meta-contexts
of λNat. It is obvious that there is a connection between contexts of λGtz and meta-
contexts of λNat. There is a function Θ : Contexts → MetaContexts defined
by Θ(x)v = {[]/x}Θv and Θu::k = Θu ·Θk, and a function Ψ : MetaContexts →
Contexts defined by Ψ{[]/x}P = (x)ΨP and ΨN ·C = ΨN :: ΨC .

We can identify each meta-context C of λNat with a function of type EEs →
Substs, where Substs is the set {M ∈ λNat : M is of the form {E/x}P}; it is the
function that sends E to C[E] (hence C(E) = C[E]). Now let k be a context of
λGtz and consider Θ′( , k) : EEs → Substs. By induction on k one proves easily
that Θ′( , k) and Θk are the same function, i.e. Θk[E] = Θ′(E, k).
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Theorem 2 (Isomorphism). Mappings Ψ and Θ are sound, mutually inverse
bijections between the set of λGtz-terms and the set of λNat-terms. Moreover, for
each R ∈ {β, σ, π, μ}:

1. t →R t′ in λGtz iff Θt →R Θt′ in λNat.
2. M →R M ′ in λNat iff ΨM →R ΨM ′ in λGtz.

Proof: For bijection, prove ΘΨM = M and ΘΨ ′(E, k) = Θ′(E, k) by simulta-
neous induction on M and E, and prove ΨΘt = t and ΨΘ′(E, k) = Ψ ′(E, k),
by simultaneous induction on t and k. It follows that k = ΨC iff C = Θk. As
to isomorphism, the “if” statements follow from the “only if” statements and
bijection. We just sketch the “only if” statement 1, which is proved together
with the claim that, if k →R k′ in λGtz, then, for all E, Θk[E] →R Θ′

k[E] in
λNat. The proof is by simultaneous induction on t →R t′ and k →R k′, and uses
the following properties of Θ: (i) if Θ′(E′, k) = Θ′(E, (x)v) then Θ′(E′, k@k′) =
{E/x}Θ′(hd(Θv), k′); (ii) Θ(〈u/x〉t) = 〈Θu/x〉Θt; (iii) Θ([u/x]t) = [Θu/x]Θt.
Here are the base cases:

Case β.

Θ((λx.t)(u :: k)) = Θu::k[hd(λx.Θt)] = (Θu · Θk)[hd(λx.Θt)] = Θk[hd(λx.Θt)Θu]
↓

Θ(〈u/x〉(tk))
(ii)
= 〈Θu/x〉Θ(tk) = 〈Θu/x〉Θk[hd(Θt)]

Case π. Suppose Θ′(hd(Θt), k) = Θ′(E, (x)v).

Θ((tk)k′) = Θk′ [hd(Θ′(hd(Θt), k))] = Θk′ [hd(Θ′(E, (x)v))] = Θk′ [hd({E/x}Θv)]
↓

Θ(t(k@k′)) = Θ′(hd(Θt), k@k′)
(i)
= {E/x}Θ′(hd(Θv), k′) = {E/x}Θk′ [hd(Θv)]

Case σ: Θ(〈t/x〉v)
(ii)
= 〈Θt/x〉Θv →σ [Θt/x]Θv

(iii)
= Θ([t/x]v).

Case μ: Θ(x)xk[E] = {E/x}Θ(xk) = {E/x}Θk[hd(x)] → Θk[E]. �

Corollary 1 (SN). Every typable t ∈ λNat is βπσμ-SN.

Proof: From Theorems 1 and 2. �

5 Analyzing the Isomorphism

Cut vs Substitution, Left Introduction vs Elimination, Cut-Eliminat-
ion vs Normalisation: There is an entanglement in the traditional mappings
between natural deduction and sequent calculus. An elimination is translated
as a combination of cut and left introduction [10] and a left introduction is
translated as a combination of elimination and meta-substitution [18]. With
these mappings one proves that normalisation is a “homomorphic” image of
cut-elimination [22,17].3

3 For a study of the traditional mappings between sequent calculus and natural de-
duction, and some of their optimizations, see [7].
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The typing system of λNat clarifies the puzzling relation between cut and
substitution. Consider rule Cut in λGtz and rule Subst in λNat. First, we observe,
as Negri and von Plato in [15], that the right cut-formula of Cut, but not the
right substitution formula in Subst, may be the conclusion of a sequence of left
introductions. Second, and here comes the novelty, we may also observe that
the left substitution formula in Subst, but not left cut-formula in Cut, may be
the conclusion of a sequence of elimination rules. So, cut is more general on the
right, whereas substitution is more general on the left.

Mapping Ψ establishes bijective correspondences between occurrences of elimi-
nation EN (resp. of substitution {E/x}P ) in the source term and occurrences of
left introduction u :: k (resp. of cut tk) in the target term (inversely for Θ). So the
entanglement of traditional mappings is solved, and the outcome is that normal-
ization in λNat becomes the isomorphic image, under Θ, of cut-elimination in λGtz.

Applicative Terms: The presentation of sequent calculus and natural deduc-
tion as systems λGtz and λNat, respectively, reduces the difference between the two
kinds of systems to the difference between two ways of organizing “applicative
terms”. By “applicative term” we mean the following data: a function (or head),
m arguments (m ≥ 1) and a continuation (or tail). The notion of applicative
term is intended as a common abstraction to the notions of cut in λGtz

t(u1 :: ... :: um :: (x)v) , (2)

and substitution in λNat

{hd(M)N1...Nm/x}P . (3)

When (2) and (3) are regarded in the abstract way of just providing the data
that constitutes an applicative term, the only difference that remains between
the two expressions is that (2) associates to the right, so that the head t is at
the surface and the continuation (x)v is hidden at the bottom of the expression,
whereas (3) associates to the left, so that the head hd(M) is hidden at the bottom
of the expression, and the continuation x, P is at the surface. The isomorphism
λGtz ∼= λNat may, then, be described as a mere inversion of the associativity of
applicative terms.

Interpretations of λGtz: From the previous paragraph follows that an interpre-
tation of λGtz is as a λ-calculus with right associative applicative terms. Another
interpretation is as a formalized meta-calculus for λNat (and not for a smaller
natural deduction system, like λg or λgs, let alone λ). Contexts in λGtz are
the formal counterpart to meta-contexts in λNat and the interpretation of cut
Θ(tk) = Θk[hd(Θt)] is “fill Θt in the hole of Θk”.

Variants of the Isomorphism: λGtz ∼= λNat is a particular manifestation of
the isomorphism between sequent calculus and natural deduction. For instance,
if rule π of λGtz is taken in the call-by-name version (tk)(u :: k′) → t(k@(u :: k′))
[2], avoiding a critical pair with σ, then there is corresponding version for rule
π of λNat C[hd({E/x}P )N ] → {E/x}(C[hd(P )N ]).
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λGtz � Ψ, Θ � λNat

λgs
��

νν
��

Schwichtenberg nfs

βπσ

��
�Ψ Θ� A

βπσ

��

von Plato nfs

βπσ

�� ��
νν ��

Herbelin nfs

��

...................

� Ψ Θ � B

��

...................

Mints nfs

��

........................
��

νν
��

Fig. 1. Particular cases of the isomorphism and important classes of terms

Another variant of rule π is the “eager” variant, determined by a slight change
in the definition of @: ((x)V )@k = (x)V k, if V is a value (i.e. variable or ab-
straction); and ((x)tk′)@k = (x)t(k′@k). So, one keeps pushing k until a value
is found.

Let {Es/xs}P denote a sequence of substitutions {E1/x1}...{En/xn}P . The
eager variant of π for natural deduction is C[hd({Es/xs}V )]→{Es/xs}C[hd(V )].
So, the eager variant takes a sequence of substitutions out, as opposed to the
lazy variant, which takes them one by one.

Theorem 2 still holds with eager π. In the proof fact (i) becomes slightly dif-
ferent: if Θ′(E′, k) = {Es/xs}V then Θ′(E′, k@k′) = {Es/xs}Θ′(hd(V ), k′).

Particular Cases of the Isomorphism: We now analyze the diagram in Fig-
ure 1. The m ≤ 1-fragment λgs of λGtz and the m ≤ 1-fragment λgs of λNat

are two copies of λgs, hence isomorphic. They are identified in Figure 1. In
both cases, the fragment consists of the ν-nfs. The isomorphism λgs ∼= λgs is
a degenerate form of Theorem 2, with Θ and Ψ translating between t(x)v and
{hd(M)/x}P , and between t(u :: (x)v) and {hd(M)N/x}P . The latter are two
decompositions of generalised elimination:

Γ � t : A ⊃ B

Γ � u : A

Γ, x : B � v : C

Γ ; B � (x)v : C
Selection

Γ ; A ⊃ B � u :: (x)v : C
Left

Γ � t(u :: (x)v) : C
Cut
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Γ � M : A ⊃ B
Γ � hd(M) : A ⊃ B

Coercion
Γ � N : A

Γ � hd(M)N : B
Elim

Γ, x : B � P : C

Γ � {hd(M)N/x}P : C
Subst

The λ-calculus is absent from Figure 1 (λ-terms form a subset of λgs), but
there are three sets in bijective correspondence with the set of β-normal λ-terms,
namely Herbelin nfs , B and Mints nfs , the lower triangle. Herbelin nfs ∼=
Mints nfs was known [4], the bijection being the restriction of ν to
Herbelin nfs . A degenerate form of Theorem 2 is Herbelin nfs ∼= B . The lat-

ter bijection (but not the former) extends to another bijection, namely
Schwichtenberg nfs ∼= A (the former bijection does not extend to another

bijection because many “multiary” cut-free derivations in Schwichtenberg nfs

have the same ν-normal form in von Plato nfs ). The bijection
Schwichtenberg nfs ∼= A is in turn the residue of the isomorphism λGtz ∼= λNat,

because it is the bijection between the sets of βπσ-nfs. The dotted arrows rep-
resent three reduction relations generated by permutative conversions. Two of
such relations have been characterised [4,19].

6 Final Remarks

Contributions and Related Work: This paper completes Herbelin’s pro-
gramme, for the logic under analysis here. As compared to [11], we covered full
sequent calculus, where the constraints on left introduction that define Herbe-
lin’s fragment LJT are dropped, but where the phenomenon of permutative
conversions, typical of sequent calculus, shows up. In addition, we fully achieved
the second goal of Herbelin’s programme, residually present in [11], implicitly
considered in [1] and already addressed in [5,6]. The improvement over [1] and
[5,6] is that the spine calculus, when restricted to the logic of this paper, and
the sequent systems in [5,6] are all fragments of Herbelin’s LJT and, therefore,
are under the restrictions already mentioned.

In order to fully achieve the secondgoal, one has to define an extension of natural
deduction that combines the idea of coercion calculus with von Plato’s idea of gen-
eralised elimination rule [20]. On the one hand, von Plato’s work goes much farther
than this paper, in that [20] covers the whole language of first order logic; on the
other hand, it lacks an analysis of the correspondence between cut-elimination and
normalisation, indispensable to attaining the second goal. This paper may then be
seen as containing an extension of von Plato’s work. Not only we extended and re-
fined system λg (and here it is quite appealing that we end up in a system where
generalised application is decomposed into modus ponens and substitution), but
also we give the precise connection between generalised normalisation and cut-
elimination, which is this: von Plato’s normalisation, taken in the already slightly
extended sense embodied in system λgs, is the common core of cut-elimination (in
λGtz) and normalisation (in λNat) - in particular, it is a fragment of the former.
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Once one has the natural deduction system λNat, one can clarify the con-
nection between cut and substitution, and translate between sequent calculus
and natural deduction in a way that the classical mappings of Gentzen [10] and
Prawitz [18] never could: elimination and substitution correspond to left intro-
duction and cut, respectively. At the term calculi level, this mapping inverts the
associativity of applicative terms, as envisaged by Herbelin. Then, such bijection
at the level of proofs proves to be an isomorphism between cut-elimination and
normalisation. This result improves, for the logic examined here, the classical
results of Zucker and Pottinger [22,17].

Applications and Future Work: An issue that deserves further consideration
is the use of languages λGtz and λNat in practice. As emphasized in [1], the spine
calculus, Herbelin’s λ and - we add - λGtz, give a useful representation of λ-terms
for procedures that act on the head of applicative terms, like normalisation or uni-
fication. It seems that the role of languages like λGtz or λNat is not as languages
in which someone writes his programs, but either as internal languages for sym-
bolic systems, like theorem provers, or as intermediate languages for compilers of
functional languages. On the other hand, languages λGtz and λNat are good tools
for doing proof theory efficiently, as this paper shows. We plan to keep using these
languages in a more comprehensive study of permutative conversions.As the study
of rule ν shows so far, calculus λNat is no worse than calculus λGtz for that purpose.

Conclusions: Herbelin’s seminal suggestion in [11] is that the (computational)
difference between sequent calculus and natural deduction may be reduced to a
mere question of representation of λ-terms, when these are conceived in a suffi-
ciently extended sense. We proposed an abstract, robust extension of the concept
of λ-term, under two concrete representations (λGtz-terms and λNat-terms), and
studied the languages where these representations live. Representation ques-
tions (like whether there is direct head access in applicative terms) prove to
have impact in the real word [1]. But, as expected, they also impact on founda-
tional matters. Indeed, they allow a radical answer to a long-standing problem
of structural proof-theory: if normalisation is extended as we propose, then the
meaning of λGtz ∼= λNat is that cut-elimination and normalisation are really the
same process, they only look different because they operate with different rep-
resentations of the same objects.

Acknowledgments. The author is supported by FCT, through Centro de
Matemática, Universidade do Minho. We have used Paul Taylor’s macros for
typesetting Fig. 1.
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Abstract. The intuitionistic fragment of the call-by-name version of
Curien and Herbelin’s λμμ̃-calculus is isolated and proved strongly nor-
malising by means of an embedding into the simply-typed λ-calculus.
Our embedding is a continuation-and-garbage-passing style translation,
the inspiring idea coming from Ikeda and Nakazawa’s translation of
Parigot’s λμ-calculus. The embedding simulates reductions while usual
continuation-passing-style transformations erase permutative reduction
steps. For our intuitionistic sequent calculus, we even only need “units
of garbage” to be passed. We apply the same method to other calculi,
namely successive extensions of the simply-typed λ-calculus leading to
our intuitionistic system, and already for the simplest extension we con-
sider (λ-calculus with generalised application), this yields the first proof
of strong normalisation through a reduction-preserving embedding.

1 Introduction

CPS (continuation-passing style) translations are a tool with several theoretical
uses. One of them is an interpretation between languages with different type
systems or logical infra-structure, possibly with corresponding differences at the
level of program constructors and computational behavior. Examples are when
the source language (but not the target language): (i) allows permutative con-
versions, possibly related to connectives like disjunction [4]; (ii) is a language for
classical logic, usually with control operators [9,10,13]; (iii) is a language for type
theory [1,2] (extending (ii) to variants of pure type systems that have dependent
types and polymorphism).

This article is about CPS translations for intuitionistic sequent calculi. The
source and the target languages will differ neither in the reduction strategy
(they will be both call-by-name) nor at the types/logic (they will be both based
on intuitionistic implicational logic); instead, they will differ in the structural
format of the type system: the source is in the sequent calculus format (with
cut and left introduction) whereas the target is in the natural deduction format
(with elimination/application). From a strictly logical point of view, this seems
a new proof-theoretical use for double-negation translations.
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Additionally, we insist that our translations simulate reduction. This is a
strong requirement, not present, for instance in the concept of reflection of [23].
It seems to have been intended by [1], however does not show up in the journal
version [2]. But it is, nevertheless, an eminently useful requirement if one wants
to infer strong normalisation of the source calculus from strong normalisation
of the simply-typed λ-calculus, as we do. In order to achieve simulation, we de-
fine continuation-and-garbage passing style (CGPS) translations, following an
idea due to Ikeda and Nakazawa [13]. Garbage will provide room for observing
reduction where continuation-passing alone would inevitably produce an identi-
fication, leading to failure of simulation in several published proofs for variants
of operationalized classical logic, noted by [20] (the problem being β-reductions
under vacuous μ-abstractions). As opposed to [13], in our intuitionistic setting
garbage can be reduced to “units”, and garbage reduction is simply erasing a
garbage unit.

The main system we translate is the intuitionistic fragment of the call-by-
name restriction of the λμμ̃-calculus [3], here named λJmse. The elaboration of
this system is interesting on its own. We provide a CPS and a CGPS translation
for λJmse. We also consider other intuitionistic calculi, whose treatment can be
easily derived from the results for λJmse. Among these is included, for instance,
the λ-calculus with generalised application. For all these systems a proof of strong
normalisation through a reduction-preserving embedding into the simply-typed
λ-calculus is provided for the first time.

The article is organized as follows: Section 2 presents λJmse. Sections 3 and
4 deal with the CPS and the CGPS translation of λJmse, respectively. Section 5
considers other intuitionistic calculi. Section 6 compares this work with related
work and concludes.

2 An Intuitionistic Sequent Calculus

In this section, we define and identify basic properties of the calculus λJmse. A
detailed explanation of the connection between λJmse and λμμ̃ is left to the end
of this section.

There are three classes of expressions in λJmse:

(Terms) t, u, v ::= x | λx.t | {c}
(Co-terms) l ::= [] | u :: l | (x)c
(Commands) c ::= tl

An evaluation context E is a co-term of the form [] or u :: l. Terms can be
variables (of which we assume a denumerable set ranged over by letters x, y,
w, z), lambda-abstractions λx.t or coercions {c} from commands to terms1. A
value is a term which is either a variable or a lambda-abstraction. We use letter
V to range over values. Co-terms provide means of forming lists of arguments,

1 A version of λJmse with implicit coercions would be possible but to the detriment
of the clarity, in particular, of the reduction rule ε below.
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generalised arguments [14], or explicit substitutions. The latter two make use
of the construction (x)c, a new binder that binds x in c. A command tl has a
double role: if l is of the form (x)c, tl is an explicit substitution; otherwise, tl is
a general form of application.

In writing expressions, sometimes we add parentheses to help their parsing.
Also, we assume that the scope of binders λx and (x) extends as far as possible.
Usually we write only one λ for multiple abstraction.

In what follows, we reserve letter T (“term in a large sense”) for arbitrary
expressions. We write x /∈ T if x does not occur free in T . Substitution [t/x]T of a
term t for all free occurrences of a variable x in T is defined as expected, where
it is understood that bound variables are chosen so that no variable capture
occurs. Evidently, syntactic classes are respected by substitution, i. e., [t/x]u is
a term, [t/x]l is a co-term and [t/x]c is a command.

The calculus λJmse has a form of sequent for each class of expressions:

Γ � t : A Γ |l : A � B Γ
c−→ B

Letters A, B, C are used to range over the set of types (=formulas), built from
a base set of type variables (ranged over by X) using the function type (that we
write A ⊃ B). In sequents, contexts Γ are viewed as finite sets of declarations
x : A, where no variable x occurs twice. The context Γ, x : A is obtained from
Γ by adding the declaration x : A, and will only be written if this yields again
a valid context, i. e., if x is not declared in Γ .

The typing rules of λJmse can be presented as follows, stressing the parallel
between left and right rules:

Γ |[] : A � A
LAx

Γ, x : A � x : A
RAx

Γ � u : A Γ |l : B � C

Γ |u :: l : A ⊃ B � C
LIntro

Γ, x : A � t : B

Γ � λx.t : A ⊃ B
RIntro

Γ, x : A
c−→ B

Γ |(x)c : A � B
LSel

Γ
c−→ A

Γ � {c} : A
RSel

Γ � t : A Γ |l : A � B

Γ
tl−→ B

Cut

Besides admissibility of usual weakening rules, other forms of cut are admis-
sible as typing rules for substitution for each class of expressions.

We consider the following base reduction rules on expressions:

(β) (λx.t)(u :: l) → u((x)tl) (μ) (x)xl → l, if x /∈ l
(π) {tl}E → t (l@E) (ε) {t[]} → t
(σ) t(x)c → [t/x]c,
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where, in general, l@l′ is a co-term that represents an “eager” concatenation of
l and l′, viewed as lists, and is defined as follows2:

[]@l′ = l′ (u :: l)@l′ = u :: (l@l′) ((x)tl)@l′ = (x)t (l@l′)

The one-step reduction relation → is inductively defined as the compatible clo-
sure of the reduction rules.

The reduction rules β, π and σ are relations on commands. The reduction
rule μ (resp. ε) is a relation on co-terms (resp. terms). Rules β and σ generate
and execute an explicit substitution, respectively. Rule π appends fragmented
co-terms, bringing the term t of the π-redex {tl}E closer to root position. Also,
notice here the restricted form of the outer co-term E. This restriction charac-
terizes call-by-name reduction [3]. A μ-reduction step that is not at the root has
necessarily one of two forms: (i) t(x)xl → tl, which is the execution of a linear
substitution; (ii) u :: (x)xl → u :: l, which is the simplification of a generalised
argument. Finally, rule ε erases an empty list under { }. Notice that empty lists
are important under (x). Another view of ε is as a way of undoing a sequence of
two coercions: the “coercion” of a term t to a command t[], immediately followed
by coercion to a term {t[]}. By the way, {c}[] → c is a π-reduction step. Most of
these rules have genealogy: see Section 5.

The βπσ-normal forms are obtained by constraining commands to one of the
two forms V [] or x(u :: l), where V, u, l are βπσ-normal values, terms and co-
terms respectively. The βπσε-normal forms are obtained by requiring addition-
ally that, in coercions {c}, c is of the form x(u :: l) (where u, l are βπσε-normal
terms and co-terms respectively). βπσε-normal forms correspond to the multiary
normal forms of [24]. If we further impose μ-normality as in [24], then co-terms
of the form (x)x(u :: l) obey to the additional restriction that x occurs either in
u or l.

Subject reduction holds for →. This fact is established with the help of
the admissible rules for typing substitution and with the help of yet another
admissible form of cut for typing the append operator.

We offer now a brief analysis of critical pairs in λJmse 3. There is a self-
overlap of π ({{tl}E}E′), there are overlaps between π and any of β ({(λx.t)(u ::
l)}E), σ ({t(x)c}E) and ε (the latter in two different ways from {t[]}E and
{{tl}[]}). Finally, μ overlaps with σ (t(x)xl for x /∈ l). The last three critical
pairs are trivial in the sense that both reducts are identical. Also the other
critical pairs are joinable in the sense that both terms have a common →∗-
reduct. We only show this for the first case: {tl}E → t(l@E) by π, hence also
{{tl}E}E′ → {t(l@E)}E′ =: L. On the other hand, a direct application of π

2 Concatenation is “eager” in the sense that, in the last case, the right-hand side is
not (x){tl}l′ but, in the only important case that l′ is an evaluation context E, its
π-reduct. One immediately verifies l@[] = l and (l@l′)@l′′ = l@(l′@l′′) by induction
on l. Associativity would not hold with the lazy version of @. Nevertheless, one
would get that the respective left-hand side reduces in at most one π-step to the
right-hand side.

3 For higher-order rewrite systems, see the formal definition in [18].
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yields {{tl}E}E′ → {tl}(E@E′) =: R. Thus the critical pair consists of the
terms L and R. L → t((l@E)@E′) and R → t(l@(E@E′)), hence L and R are
joinable by associativity of @.

Since the critical pairs are joinable, the relation → is locally confluent [18].
Thus, from Corollary 1 below and Newman’s Lemma, → is confluent on typable
terms.

λJmse as the Intuitionistic Fragment of CBN λμμ̃. An appendix to this ar-
ticle recalls the (call-by-name) restriction of Curien and Herbelin’s λμμ̃-calculus
[3]. The reader should have in mind the non-standard naming of reduction rules.

Let ∗ be a fixed co-variable. The intuitionistic terms, co-terms and commands
are generated by the grammar.

(Terms) t, u, v ::= x | λx.t | μ∗.c
(Co-terms) e ::= ∗ | u :: e | μ̃x.c
(Commands) c ::= 〈t|e〉

Terms have no free occurrences of co-variables. Each co-term or command has
exactly one free occurrence of ∗. Sequents are restricted to have exactly one
formula in the RHS. Therefore, they have the particular forms Γ � t : A, Γ |e :
A � ∗ : B and c : (Γ � ∗ : B). We omit writing the intuitionistic typing rules.
Reduction rules read as for λμμ̃, except for π and μ̃:

(π) 〈μ∗.c|E〉 → [E/∗]c (μ̃) μ∗.〈t|∗〉 → t

Since ∗ /∈ t, [E/∗]t = t. Let us spell out [E/∗]c and [E/∗]e.

[E/∗]〈t|e〉 = 〈t|[E/∗]e〉 [E/∗](u :: e) = u :: [E/∗]e
[E/∗]∗ = E [E/∗](μ̃x.c) = μ̃x.[E/∗]c

If we define rule π as 〈μ∗.〈t|e〉|E〉→〈t|[E/∗]e〉 and [E/∗](μ̃x.〈t|e〉)= μ̃x.〈t|[E/∗]e〉
we can avoid using [E/∗]c altogether.

The λJmse-calculus is obtained from the intuitionistic fragment as a mere
notational variant. The co-variable ∗ disappears from the syntax. The co-term ∗
is written []. {c} is the coercion of a command to a term, corresponding to μ∗.c.
This coercion is what remains of the μ binder in the intuitionistic fragment. Since
there is no μ, there is little sense for the notation μ̃. So we write (x)c instead
of μ̃x.c. Reduction rule μ̃ now reads {t[]} → t and is renamed as ε. Sequents
Γ |e : A � ∗ : B and c : (Γ � ∗ : B) are written Γ |e : A � B and Γ

c−→ B.
Co-terms are ranged over by l (instead of e) and thought of as generalised lists.
Finally, [E/∗]l is written l@E.

3 CPS for λJmse

We fix a ground type (some type variable) ⊥. Then, ¬A := A ⊃ ⊥, as usual in
intuitionistic logic. While our calculus is strictly intuitionistic in nature, a double-
negation translation nevertheless proves useful for the purposes of establishing
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strong normalisation, as has been shown by de Groote [4] for disjunction with
its commuting conversions. A type A will be translated to A = ¬¬A∗, with
the type A∗ defined by recursion on A (where the definition of A is used as an
abbreviation): X∗ = X ; (A ⊃ B)∗ = ¬B ⊃ ¬A. This symmetrically-looking
definition of (A ⊃ B)∗ is logically equivalent to A ⊃ ¬¬B. The additional
double negation of B is needed to treat cuts with co-terms ending in (x)c (that
are already present as generalised application in λJ, see Section 5).

The translation of all syntactic elements T will be presented in Plotkin’s [21]
colon notation (T : K) for some term K taken from simply-typed λ-calculus. A
term t of λJmse will then be translated into the simply-typed λ-term

t = λk.(t : k)

with a “new” variable k. The definition of (T : K) uses the definition of t as an
abbreviation (the variables m, w are supposed to be “fresh”):

(x : K) = xK ([] : K) = λw.wK
(λx.t : K) = K(λwx.wt) (u :: l : K) = λw.w(λm.m (l : K)u)
({c} : K) = (c : K) ((x)c : K) = λx.(c : K)

(t[] : K) = (t : K)
(t(u :: l) : K) = (t : λm.m (l : K)u)

(t(x)c : K) = (λx.(c : K))t

The translation obeys to the following typing:

Γ � t : A Γ � K : ¬A∗

Γ � (t : K) : ⊥
Γ

c−→ A Γ � K : ¬A∗

Γ � (c : K) : ⊥

Γ |l : A � B Γ � K : ¬B∗

Γ � (l : K) : ¬A

Only the first premise in all these three rules refers to λJmse, the other ones to
simply-typed λ-calculus. Γ is derived from Γ by replacing every x : C in Γ by
x : C. As a direct consequence (to be established during the proof of the above
typings), type soundness of the CPS translation follows:

Γ �λJmse t : A =⇒ Γ �λ t : A

This CPS translation is also sound for reduction, in the sense that each re-
duction step in λJmse translates to zero or more β-steps in λ-calculus. Because
of the collapsing of some reductions, this result does not guarantee yet strong
normalisation of λJmse.

Proposition 1. If t → u in λJmse, then t →∗
β u in the λ-calculus.

Proof. Simultaneously we prove T → T ′ =⇒ (T : K) →∗
β (T ′ : K) for T, T ′

terms, co-terms or commands. More specifically, at the base cases, the CPS
translation does the following: identifies ε and π-steps; sends one μ-step into
zero or more β-steps in λ-calculus; sends one β or σ-step into one or more β-
steps in λ-calculus. ��
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4 CGPS for λJmse

This is the central mathematical finding of the present article. It is very much
inspired from a “continuation and garbage passing style” translation for Parigot’s
λμ-calculus, proposed by Ikeda and Nakazawa [13]. While they use garbage to
overcome the problems of earlier CPS translations that did not carry β-steps to
at least one β-step if they were under a vacuous μ-binding, as reported in [20],
we ensure proper simulation of ε, π and μ. Therefore, we can avoid the separate
proof of strong normalisation of permutation steps alone that is used in addition
to the CPS in [4] (there in order to treat disjunction and not for sequent calculi
as we do).

We use the type 
 for “garbage”, i. e., terms that are carried around for
their operational properties, not for denotational purposes. We only require the
following from 
: There is a term s(·) : 
 → 
 such that s(x) →+

β x. This can,
e. g., be realised by 
 := ⊥ → ⊥ and s(·) := λx.(λy.x)(λz.z). We abbreviate
[t; u] := (λx.t)u for some x /∈ t. Then, [t; u] →β t, and Γ � t : A and Γ � u : B
together imply Γ � [t; u] : A.

The only change w. r. t. the type translation in CPS is that, now,

A = 
 ⊃ ¬¬A∗

is used throughout, hence, again, X∗ = X and (A ⊃ B)∗ = ¬B ⊃ ¬A.
We define the simply-typed λ-term (T : G, K) for every syntactic construct

T of λJmse and simply-typed λ-terms G (for “garbage”) and K. Then, the
translation of term t is defined to be

t = λgk.(t : g, k)

with “new” variables g, k, that is again used as an abbreviation inside the recur-
sive definition of (T : G, K) as follows (the variables m, w are again “fresh”):

(x : G, K) = x s(G)K ([] : G, K)=λw.w s(G)K
(λx.t : G, K) = [K(λwx.wt); G] (u :: l : G, K)=λw.w s(G)(λm.m (l : G, K)u)
({c} : G, K) = (c : G, K) ((x)c : G, K)=λx.(c : G, K)

(t[] : G, K)=(t : s(G), K)
(t(u :: l) : G, K)=(t : s(G), λm.m (l : G, K)u)

(t(x)c : G, K)=(λx.(c : G, K))t

If one removes the garbage argument, one precisely obtains the CPS translation.
The translation obeys to the following typing:

Γ � t : A Γ � G : 
 Γ � K : ¬A∗

Γ � (t : G, K) : ⊥
Γ |l : A � B Γ � G : 
 Γ � K : ¬B∗

Γ � (l : G, K) : ¬A

Γ
c−→ A Γ � G : 
 Γ � K : ¬A∗

Γ � (c : G, K) : ⊥

For Γ see the previous section. Therefore (and to be proven simultaneously),
the CGPS translation satisfies type soundness, i. e., Γ � t : A implies Γ � t : A.
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Lemma 1

1. [t/x](T : G, K) = (T : [t/x]G, [t/x]K) for T any u, l or c such that x /∈ T .
2. [t/x](T : G, K) →∗

β ([t/x]T : [t/x]G, [t/x]K) for T any u, l or c.
3. G and K are subterms of (T : G, K) for T any u, l or c.
4. (l : G, K)t →∗

β (tl : G, K)
5. λx.(xl : G, K) →+

β (l : G, K) if x /∈ l.
6. (a) (tl : s(G), λm.m(l′ : G, K)u) →+

β (t (l@(u :: l′)) : G, K)
(b) (l : s(G), λm.m(l′ : G, K)u) →+

β (l@(u :: l′) : G, K)

Proof. 1./2./3. Each one by simultaneous induction on terms, co-terms and com-
mands. 4./5. Case analysis on l. 6. By simultaneous induction on l. ��
If we remove the garbage argument in statements 6 and 5 of this lemma, we
can no longer guarantee one or more β-steps in λ-calculus. In the first case we
have identity, whereas in the second case we have zero or more β-steps in λ-
calculus. These differences account for the gain of simulation of π and μ-steps,
when moving from CPS to CGPS.

Theorem 1 (Simulation). If t → u in λJmse, then t →+
β u in the λ-calculus.

Proof. Simultaneously we prove: T → T ′ =⇒ (T : G, K) →+
β (T ′ : G, K) for

T, T ′ terms, co-terms or commands. We illustrate the cases of the base rules.
Case β: (λx.t)(u :: l) → u(x)tl.

((λx.t)(u :: l) : G, K) = (λx.t : s(G), λm.m(l : G, K)u)
= [(λm.m(l : G, K)u)(λwx.wt); s(G)]

→3
β (λx.(l : G, K)t)u

→∗
β (λx.(tl : G, K))u (Lemma 1.4)

= (u(x)tl : G, K)

Case π: {tl}E → t (l@E). Sub-case E = [].

({tl}[] : G, K) = (tl : s(G), K) →+
β (tl : G, K) (Lemma 1.3/1.1)

= (t (l@[]) : G, K).

Sub-case E = u :: l′.
({tl}(u :: l′) : G, K) = (tl : s(G), λm.m(l′ : G, K)u)

→+
β (t (l@(u :: l′)) : G, K) (Lemma 1.6)

Case σ: t(x)c → [t/x]c.

(t(x)c : G, K) = (λx.(c : G, K))t
→β [t/x](c : G, K)
→∗

β ([t/x]c : G, K) (Lemma 1.2)

Case μ: (x)xl → l, if x /∈ l.

((x)xl : G, K) = λx.(xl : G, K) →+
β (l : G, K) (Lemma 1.5)

Case ε: {t[]} → t.

({t[]} : G, K) = (t[] : G, K) = (t : s(G), K) →+
β (t : G, K)
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The cases corresponding to the closure rule t → t′ =⇒ tl → t′l (resp. l →
l′ =⇒ tl → tl′) can be proved by case analysis on l (resp. l → l′). The cases
corresponding to the other closure rules follow by routine induction. ��

Remark 1. Unlike the failed simulation by CPS reported in [20] that only oc-
curred with the closure rules, the need for garbage in our translation is already
clearly visible in the subcase E = [] for π and the case ε. But the garbage is also
effective for the closure rules, where the most delicate rule is the translation of
t(u :: l) that mentions l and u only in the continuation argument K to t’s trans-
lation. Lemma 1.3 is responsible for propagation of simulation. The structure of
our garbage – essentially just “units of garbage” – can thus be easier than in
the CGPS in [13] for λμ-calculus since there, K cannot be guaranteed to be a
subterm of (T : G, K), again because of the problem with void μ-abstractions.
The solution of [13] for the most delicate case of application is to copy the K
argument into the garbage. We do not need this in our intuitionistic calculi.

Corollary 1. The typable terms of λJmse are strongly normalising.

Recalling our discussion in Section 2, we already could have inferred strong
normalisation of λJmse from that of λμμ̃, which has been shown directly by
Polonovski [22] using reducibility candidates and before by Lengrand’s [16] em-
bedding into a calculus by Urban that also has been proven strongly normalizing
by the candidate method. Our proof is just by a syntactic transformation to
simply-typed λ-calculus.

5 CGPS for Other Intuitionistic Calculi

As a consequence of the results of the previous section, we obtain in this section
the embedding, by a CGPS translation, of several intuitionistic calculi into the
simply-typed λ-calculus. These intuitionistic calculi are successive extensions of
the simply-typed λ-calculus that lead to λJmse, as illustrated in the diagram
below, and include both natural deduction systems and other sequent calculi.

λJmse �e
λJms � s

λJm � m
λJ � J

λ

Each extension step adds both a new feature and a reduction rule to the
preceding calculus. The following table summarizes these extensions.

calculus reduction rules feature added
λ β
λJ β, π generalised application
λJm β, π, μ multiarity
λJms β, π, μ, σ explicit substitution
λJmse β, π, μ, σ, ε empty lists of arguments

The scheme for naming systems and reduction rules intends to be systematic
(and in particular explains the name λJmse).
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The path between the two end-points of this spectrum visits and organizes
systems known from the literature. λJ is a variant of the calculus ΛJ of [14]. λJm

is a variant of the system in [8]. λJmse is studied in [7] under the name λGtz .
This path is by no means unique. Other intermediate systems could have been
visited (like the multiary λ-calculus λm, named λPh in [8]), had the route been a
different one, i. e., had the different new features been added in a different order.

Each system L ∈ {λJ, λJm, λJms} embeds in the system immediately after it
in this spectrum, in the sense of existing a mapping simulating reduction. Hence,
strong normalisation is inherited from λJmse all the way down to λJ. Also, each
L ∈ {λJ, λJm, λJms} has, by composition, an embedding gL in λJmse. It can be
shown that there is a CGPS translation of each L so that this CGPS translation
is the composition of gL with the CGPS translation of λJmse. It follows that the
CGPS translation of each L simulates reduction, that is, is an embedding of L
in the λ-calculus. Let us see all this with some detail.

λJ-Calculus. The terms of λJ are generated by the grammar:

t, u, v ::= x | λx.t | t(u, x.v)

Construction t(u, x.v) is called generalised application. Following [14], (u, x.v)
is called a generalised argument; they will be denoted by the letters R and
S. Typing rules for x and λx.t are as usual and omitted. The typing rule for
generalised application is:

Γ � t : A ⊃ B Γ � u : A Γ, x : B � v : C

Γ � t(u, x.v) : C
GApp

Reduction rules are as in [14], except that π is defined in the “eager” way:

(β) (λx.t)(u, y.v) → [[u/x]t/y]v (π) tRS → t(R@S)

where the generalised argument R@S is defined by recursion on R:

(u, x.V )@S = (u, x.V S) (u, x.tR′)@S = (u, x.t(R′@S)) ,

for V a value, i. e., a variable or a λ-abstraction. The operation @ is associative,
which allows to join the critical pair of π with itself as before for λJmse. The
other critical pair stems from the interaction of β and π and is joinable as well.

Strong normalisation of typable terms immediately follows from that of ΛJ in
[15], but in the present article, we even get an embedding into λ.

In defining the embeddings m, s and e we omit the clauses for variables and
λ-abstraction, because in these cases the embeddings are defined homomorphi-
cally. Although we won’t use it, we recall the embedding J : λ → λJ just for
completeness: J(tu) = J(t)(J(u), x.x).

λJm-Calculus. We offer now a new, lighter, presentation of the system in [8].
The expressions of λJm are given by the grammar:

(Terms) t, u, v ::= x | λx.t | t(u, l) (Co-terms) l ::= u :: l | (x)v
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The application t(u, l) is both generalised and multiary. Multiarity is the ability
of forming a chain of arguments, as in t(u1, u2 :: u3 :: (x)v). By the way, this
term is written t(u1, u2 :: u3 :: [], (x)v) in the syntax of [8]. There are two kinds
of sequents: Γ � t : A and Γ |l : A � B. Typing rules are as follows:

Γ � t : A ⊃ B Γ � u : A Γ |l : B � C

Γ � t(u, l) : C
GMApp

Γ, x : A � v : B

Γ |(x)v : A � B
Sel

Γ � u : A Γ |l : B � C

Γ |u :: l : A ⊃ B � C
LIntro

We re-define reduction rules of [8] in this new syntax. Rule μ can now be
defined as a relation on co-terms. Rule π is changed to the “eager” version,
using letters R and S for generalised arguments, i. e., elements of the form (u, l).

(β1) (λx.t)(u, (y)v) → [[u/x]t/y]v (π) tRS → t(R@S)
(β2) (λx.t)(u, v :: l) → ([u/x]t)(v, l) (μ) (x)x(u, l) → u :: l, if x /∈ u, l

β = β1 ∪β2. The generalised argument R@S is defined with the auxiliary notion
of the co-term l@S that is defined by recursion on l by (u :: l)@S = u :: (l@S),
((x)V )@S = (x)V S, for V a value, and ((x)t(u, l))@S = (x)t(u, l@S). Then,
define R@S by (u, l)@S = (u, l@S). Since the auxiliary operation @ can be
proven associative, this also holds for the operation @ on generalised arguments.
Apart from the usual self-overlapping of π that is joinable by associativity of @,
there are critical pairs between βi and π that are joinable. The last critical pair
is between β1 and μ and needs a β2-step to be joined.

The embedding m : λJ→λJm is given by m(t(u, x.v))=m(t)(m(u), (x)m(v)).

λJms-Calculus. The expressions of λJms are given by:

(Terms) t, u, v ::= x | λx.t | tl (Co-terms) l ::= u :: l | (x)v

The construction tl has a double role: either it is a generalised and multiary
application t(u :: l) or it is an explicit substitution t(x)v. The typing rules for
u :: l and (x)v are as in λJm. Construction tl is typed by:

Γ � t : A Γ |l : A � B

Γ � tl : B
Cut

The reduction rules are as follows:

(β) (λx.t)(u :: l) → u((x)tl) (σ) t(x)v → [t/x]v
(π) (tl)(u :: l′) → t (l@(u :: l′)) (μ) (x)xl → l, if x /∈ l

where the co-term l@l′ is defined by (u :: l)@l′ = u :: (l@l′), ((x)V )@l′ = (x)V l′,
for V a value, and ((x)tl)@l′ = (x)t (l@l′). Again, @ is associative and guarantees
the joinability of the critical pair of π with itself. The critical pairs between β
and π and between σ and μ are joinable as for λJmse. The overlap between σ
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and π is bigger than in λJmse since the divergence arises for t((x)v)(u :: l) with
v an arbitrary term whereas in λJmse, there is only a command at that place.
Joinability is nevertheless easily established.

Comparing these reduction rules with those of λJm, there is only one β-
rule, whose effect is to generate a substitution. There is a separate rule σ for
substitution execution. The embedding s : λJm → λJms is characterized by
s(t(u, l)) = s(t)(s(u) :: s(l)).

Finally, let us compare λJms and λJmse. In the former, any term can be in
the scope of a selection (x), whereas in the latter the scope of a selection is a
command. But in the latter we have a new form of co-term []. Since in λJmse

we can coerce any term t to a command t[], we can translate λJms into λJmse,
by defining e((x)t) = (x)e(t)[]. In fact, one has to refine this idea in order to get
simulation of reduction. The embedding e : λJms → λJmse obeys the following:

e(tl) = {e(t)e(l)} e((x)V ) = (x)e(V )[] e((x)tl) = (x)e(t)e(l)

Proposition 2. Each of the embeddings m, s and e simulates reduction.

Proof. We just sketch the proof for e (the others are easier). We prove

t → t′ =⇒ e(t) →+ e(t′) and e((x)t) →+ e((x)t′), for any t, t′ ∈ λJms

simultaneously with l → l′ =⇒ e(l) →+ e(l′). In particular, the following fact is
used: [e(t)/x]e(T ) →∗

ε e([t/x]T ), for T a term or a co-term. ��

Since each of m, s and e preserves typability, it follows from Corollary 1 that:

Corollary 2. The typable terms of λJms, λJm and λJ are strongly normalising.

CGPS Translations. We define CGPS translations for λJms, λJm and λJ.
The translation of types is unchanged. In each translation, we just show the
clauses that are new.

1. For λJms one has (the first rule just replaces c by vl in the rule for λJmse):

(t(x)vl : G, K) = (λx.(vl : G, K))t
(t(x)V : G, K) = (λx.(V : s(G), K))t
((x)v : G, K) = λx.(v : s(G), K)

2. For λJm: (t(u, l) : G, K) = (t : s(G), λm.m (l : G, K)u).
3. Finally, for λJ: (t(u, x.v) : G, K) = (t : s(G), λm.m (λx.(v : s(G), K))u).

These translations are coherent with the CGPS translation for λJmse:

Proposition 3. Let L ∈ {λJms, λJm, λJ}. Let fL be the embedding of L in its
immediate extension and let gL be the embedding of L in λJmse. Then, for all
t ∈ L, t = fL(t). Hence, for all t ∈ L, t = gL(t).

Theorem 2 (Simulation). Let L ∈ {λJms, λJm, λJ}. If t → u in L, then
t →+

β u in the λ-calculus.

Proof. By Propositions 2 and 3 and Theorem 1. ��
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6 Further Remarks

This article provides reduction-preserving CGPS translations of λJmse and other
intuitionistic calculi, hence obtaining embeddings into the simply-typed
λ-calculus and proving strong normalisation. As a by-product, the connections
between systems like λJ and λJm and the intuitionistic fragment of λμμ̃ are
detailed.

In the literature one finds strong normalisation proofs for sequent calculi
[5,6,16,17,22,25], but not by means of CPS translations; or CPS translations
for natural deduction systems [1,2,4,13,19].

This article provides, in particular, a reduction-preserving CGPS translation
for the lambda-calculus with generalised applications λJ. [19] covers full propo-
sitional classical logic with general elimination rules and its intuitionistic impli-
cational fragment corresponds to λJ. However, [19] does not prove a simulation
by CPS in our sense (permutative conversions are collapsed), so an auxiliary
argument in the style of de Groote [4], involving a proof in isolation of SN for
permutative conversions, is used.

In Curien and Herbelin’s work [3,11] one finds a CPS translation ( )n of the
call-by-name restriction of λμμ̃. We compare ( )n with our ( ). (i) ( )n generalises
Hofmann-Streicher translation [12]; ( ) generalises Plotkin’s call-by-name CPS
translation [21]. (ii) ( )n does not employ the colon operator; ( ) does employ
(we suspect that doing administrative reductions at compile time is necessary to
achieve simulation of reduction); (iii) ( )n is defined for expressions where every
occurrence of u :: l is of the particular form u :: E; no such restriction is imposed
in the definition of ( ). (iv) at some points it is unclear what the properties of
( )n are, but no proof of strong normalisation is claimed; the CGPS ( ) simulates
reduction and thus achieves a proof of strong normalisation.

The results obtained extend to second-order calculi (this extension is omitted
for space reasons). We plan to extend the technique of continuation-and-garbage
passing to λμμ̃ and to dependently-typed systems. We tried to extend the CGPS
to CBN λμμ̃, described in the appendix, but already for a CPS translation, we
do not see how to profit from the continuation argument for the translation of
co-terms and commands. Moreover, a special case of the rule we call π corre-
sponds to the renaming rule a(μb.M) → [a/b]M of λμ-calculus. This rule is
evidently not respected by the CGPS translation by Ikeda and Nakazawa [13]
(nor by the CPS they recall) since the continuation argument K is omitted in
the interpretation of the left-hand side but not in the right-hand side. So, new
ideas or new restrictions will be needed.
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A The Call-by-Name λμμ̃-Calculus

In this appendix we recall the call-by-name restriction of λμμ̃-calculus [3] (with
the subtraction connective left out). Expressions are either terms, co-terms or
commands and are defined by:

t, u, v ::= x | λx.t | μa.c e ::= a | u :: e | μ̃x.c c ::= 〈t|e〉

Variables (resp. co-variables) are ranged over by x, y, z (resp. a, b, c). An eval-
uation context E is a co-term of the form a or u :: e.

There is one kind of sequent per each syntactic class

Γ � t : A|Δ Γ |e : A � Δ c : (Γ � Δ)

Typing rules are as in [3]. We consider 5 reduction rules:

(β) 〈λx.t|u :: e〉 → 〈u|μ̃x.〈t|e〉〉 (μ) μ̃x.〈x|e〉 → e, if x /∈ e
(π) 〈μa.c|E〉 → [E/a]c (μ̃) μa.〈t|a〉 → t, if a /∈ t
(σ) 〈t|μ̃x.c〉 → [t/x]c

These are the reductions considered by Polonovski in [22], with three provisos.
First, the β-rule for the subtraction connective is not included. Second, in the
π-rule, the co-term involved is an evaluation context E; this is exactly what
characterizes the call-by-name restriction of λμμ̃ [3]. Third, the naming of the
rules is non-standard. Curien and Herbelin (and Polonovski as well) name rules
π and σ as μ, μ̃, respectively. The name μ has moved to the rule called se in
[22]. By symmetry, the rule called sv by Polonovski is now called μ̃. The reason
for this change is explained by the spectrum of systems in Section 5: the rule we
now call π (resp. μ) is the most general form of the rule with the same name in
the system λJ (resp. λJm), and therefore its name goes back to [14] (resp. [8],
actually back to [24]).
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Abstract. We analyze in game-semantical terms the finitary fragment
of the linear π-calculus. This calculus was introduced by Yoshida, Honda,
and Berger [NYB01], and then refined by Honda and Laurent [LH06].

The features of this calculus - asynchrony and locality in particular -
have a precise correspondence in Game Semantics. Building on work by
Varacca and Yoshida [VY06], we interpret π-processes in linear strate-
gies, that is the strategies introduced by Girard within the setting of
Ludics [Gir01]. We prove that the model is fully complete and fully ab-
stract w.r.t. the calculus.

1 Introduction

In this paper we show a precise correspondence between the strategies of Ludics
[Gir01] and the linear π-calculus [NYB01]. Ludics has been introduced by Girard
as an abstract game semantical model; the strategies, which here we call linear
strategies, can be seen as a refinement of Hyland-Ong innocent strategies [HO00].
The linear π-calculus is a typed version of asynchronous π-calculus introduced
by Yoshida, Honda and Berger. We interpret π-processes of the finitary fragment
of the calculus into linear strategies. We prove that the model is fully complete
w.r.t. the calculus.

Our analysis makes explicit an exact correspondence between process calculi
features and game-semantical notions, in particular between asynchrony and
innocence. Moreover, the names discipline of Ludics exactly matches that of the
internal π-calculus.

The Linear π-Calculus: The linear π-calculus has been introduced by N.
Yoshida and K. Honda in order to study strong normalization [NYB03], infor-
mation flow security [KHY00, YH05], and other interesting properties of the
calculus. The typing is based on Linear Logic.

The typing has recently be refined by Honda and Laurent [LH06], which estab-
lish a precise correspondence with polarized proof-nets. Hence typed π−calculus,
Linear Logic, proof-nets, linear strategies fit together as aspects of the same
broader picture.
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The main features of the linear π-calculus are the following (for an in-depth
discussion of these aspects, and their significance in concurrent and distributed
computation, we refer to [SW01]):

Asynchrony: the act of sending a datum and the act of receiving it are separate.
In particular no process need to wait to send a datum.

Internal mobility: only private (fresh) names can be communicated (by an
output action).

Locality: names received in input are only used as output (and dually names
sent in output are only used for input).

Linearity: The linearity constraint gives a discipline over the use of names. In
particular it states that each linear name must be used at most once in the
process.

In this paper, we study the finitary fragment of linear π-calculus, i.e. the frag-
ment of linear π that does not contain the recursion and replication operators.

Ludics is a Game model, developed as an abstraction of Linear Logic. The
strategies are a linear version of Hyland-Ong innocent strategies.

A key role is played by the notion of name (address), which play the same role
as that of process calculus channel in an internal calculus (Sangiorgi’s π − I). As
we observed in previous work [FP06], the discipline on names imposed in [Gir01]
is closely related to that of internal π-calculus.

Some other features which are specific to the Ludics setting - and fundamental
for our interpretation of πprocesses - is the existence of ’incomplete’ strategies,
which terminate with an error state, and the treatment of the additives (corre-
sponding to a prefixed summation).

Here we only use the basic level of the Ludics setting. Here we do not explore
the full architecture, which however appears of great interest in the study of
process calculi. In fact, Ludics: (i) comes equipped with a build-in notion of
observational equivalence, (ii) has an interactive definition of types.

We expect that our work can open the way for applying the general setting
of Ludics to a semantical analysis of process calculi. On the other direction,
we hope to have an insight, making possible to import techniques concerning
parallel execution and non-determinism which are well developed in the study
of concurrency. In current work (see Section 5), we are exploring a possible
extension of linear strategies with non-determinism.

Strategies and Processes. In this paper, we highlight the following corre-
spondence:

asynchrony – innocence (which we discuss in Section 4.1)
internal mobility – names discipline in Ludics
locality – alternating arena.

2 The Calculus

In this section we describe the finitary fragment of the linear π-calculus ([NYB01],
[LH06]). We first discuss the untyped syntax and then introduce the typed setting.
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2.1 Syntax and Reduction Rules

The syntax of the finitary linear π-calculus is given by the following grammar:

P ::= u(x).P | u(x)P | P |P | νx P |0

where is imposed that

internal mobility only private (fresh) names can be passed by an output
action.

locality in a(x).P the names x are distinct and cannot be used as subject of
an input action (and dually for a(x)P ).

Observe the two constructs (blocking input and asynchronous output) that mark
the asynchrony of the calculus. The input u(x).P is blocking, i.e. the process
waits for some input from the environment. The output u(x)P is the binding
asynchronous output construct, defined in [NYB01]. The encoding in the stan-
dard π-calculus is the following:

u(x)P =def νx(u〈x〉|P )

This means that the continuation P can evolve in an independent way with
respect to the output. If the output has no continuation (since the environment
does not answer to it), we write u(x).

Operational Semantics. Reduction rules and structural congruence are those
defined in [NYB03]. The main reduction rule is the following:

u(x).P |u(x)Q −→ νx (P |Q) (1)

which corresponds to the consumption of an asynchronous message by a receptor.
To ensure the asynchrony of the output, the following rule is also added

P −→ P ′ ⇒ u(x)P −→ u(x)P ′ (2)

Structural congruence is defined in term of the standard rules, extended with
the following axioms (which allow to infer interaction under a prefixing output)

x(u) y(v)P ≡ y(v)x(u)P if x �∈ v and y �∈ u (3)
x(u) (P |Q) ≡ (x(u)P )|Q if u �∈ Q (4)

νy x(u)P ≡ x(u) νy P if y �∈ {x, u} (5)

2.2 The Typing System

We assume a countable set of names, ranged over by u, v, x, y . . ..
A type is assigned to a name in order to specify its use (the assignment is written

a : T where a is a name and T is a type). In particular, the capability a name can
have, i.e. input, output or match, is specified by the polarity of the type: negative
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(T−), positive (T +), or neutral (	). Moreover, the type of a name u disciplines also
the data (names) which can be delivered using u. For example we write u :

⊗
i∈I Ti

to express that the channelu canbe used in outputmode to send ann-upla of names
x where each xi has type Ti. The syntax for the types is the following:

T ::= T + positive |T− negative | 	 neutral
T + ::= 0 send error |

⊗
i∈I T−

i output channel
T− ::= 
 non-reception |

˙
i∈IT

+
i input channel

Given a type T , its dual (T⊥) is defined as 
⊥ = 0 and (
˙

i∈ITi)⊥ =
⊗

i∈I(Ti)⊥.
A type environment (denoted by the letters Γ, Δ, . . .) gives a well-formed

judgement on processes. It is a list of distinct names, each with a type assign-
ment:

Γ = x1 : T1, . . . , xn : Tn

A type environment Γ can be thought of as a partial function from names
to types. Hence we write Dom(Γ ) for the set of names that occur in Γ ; if
Γ = x : T, Δ, we have Γ (x) = T . With a slight abuse of notation, given a type
environment Γ we denote by Γ = Γ+, Γ �, Γ− its partition in positive, negative
and neutral types.

The following operation on type environments is introduced in order to put
the environments together when performing parallel composition of processes.
Intuitively, this operation takes the union of two type environment and matches
the names which appear in both environments.

Definition 2.1 (�-operator). Let Γ and Δ be two type environments such
that, for all x ∈ Dom(Γ ) ∩ Dom(Δ) we have Γ (x) = Δ(x)⊥. Γ � Δ is the
environment Ξ such that Dom(Ξ) = Dom(Γ ) ∪ Dom(Δ) and

Ξ(x) =

⎧
⎨

⎩

Γ (x) if x �∈ Dom(Δ)
Δ(x) if x �∈ Dom(Γ )
	 otherwise

Lemma 2.1. � is a partial commutative associative operator on type
environments.

Typing Rules. Typing judgements are in the form P �Γ and the corresponding
typing rules are given in 1. The (ZERO)-rule types 0, that is the termination
signal given by the process to the environment: it can be viewed as an error
state or a lack of answer by the process to a question given by the environment.
The (TOP)-rule, on the other hand, types the environment inaction, i.e a lack
of answer by the environment to a question given by the process: note that in
the process u(x) we have the continuation empty (the empty space), and it cor-
responds to the environment inaction on the channel x or a lack of answer on
channel x). (NEG) and (POS) ensure the linearity constraint on names. Note
the polarity constraint given in the rule (NEG): this ensures the decomposition
of a given process into sub-processes with one negative port. The (PAR)-rule en-
sures the well-definiteness properties of the parallel composition. The (RES)-rule
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Table 1. Typing rules for the finitary π-calculus

0�
(ZERO)

�a : � (TOP)
P � Γ π(T ) ∈ {+, �}

P � Γ, x : T
(WEAK)

P � x1 : T −
1 , . . . , xn : T −

n , Γ

ū(x) P � u :
⊗

i∈I T −
i , Γ

(POS)
P � x1 : T+

1 , . . . , xn : T+
n , Γ+

u(x).P � u :
˙

i∈IT
+
i , Γ+

(NEG)

P � Γ Q � Δ

P |Q � Γ � Δ
(PAR)

P � Γ, x : T π(T ) ∈ {−, �}
νx P � Γ

(RES)

allows that only negative and neutral name can be restricted since they carry
actions which expect their dual action to exist in the environment.

With respect to the given typing rules, we have the following results:

Proposition 2.1 (subject congruence). If P � Γ and P ≡ Q, then Q � Γ .

Proposition 2.2 (subject reduction). If P � Γ and P −→ Q, then Q � Γ .

Note. The purpose of the rule (TOP) is to state the name a to which the type

 is associated.

In this sense, it is a way to report the environment inaction on a given channel
x: it means that the environment knows the channel x but it does not use it. A
more rigorous way to express this would be to annotate the negative inaction
type with a name (
x), and making the rule (POS) more complicated.

The environment inaction should not be confused with process termination,
which we denoted with 0.

Properties of the Typing System. The typing system guarantee the following
properties:

Proposition 2.3. Let P � Γ . Then

linearity: for all x ∈ Dom(Γ ) such that Γ (x) �=	, x occurs at most once in P .
subject reduction: P −→∗ Q then Q � Γ
strong confluence: P −→ Qi (i = 1, 2) then either Q1 ≡ Q2 or there exists R

such that Qi −→ R

2.3 The Additive Structure

We (sketch how to) extend the calculus with two new constructs: the branching
input and the selective output1 (in Linear Logic, these constructs correspond to

1 Our approach is closely inspired by [NYB03, VY06].
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the additive connectives; in a functional programming language, they correspond
respectively to the case and to the select constructs).

The syntax is the following:

The construct a Φi∈I ini(xi).Pi is the branching input. It corresponds to an
external choice (a choice by the environment). We may see a as a multi-port
channel: the process waits the environment to choose one of the components,
and then evolves in the corresponding branch Pi. The reduction rule is

Two different branches Pi and Pj represent different evolutions of the system,
which are in conflict.

The construct ainj(xj)Pj is the selective output, which corresponds to an
internal choice. If we want to have determinism, we need to impose that this
choice is unique.

The positive and negative types are now:
T + ::= 0 zero |

⊕
i∈I

⊗
k∈Ki

T−
k selective output

T− ::= 
 inaction | Φi∈I

˙
k∈KiT

+
k branching input

The typing rules are as in table (1), where we replace the (NEG) and (POS)
rules with the following ones:

Pj � x1j : T1j , . . . , xnj : Tnj , Γ j ∈ I

uinj(xj) Pj � u :
⊕

i∈I

⊗
k∈Ki

Tki, Γ
pos

∀i.Pi � x1i : T1i, . . . , xni : Tni, Γ
+

u
˘

i∈I ini(xi).Pi � u :
˘

i∈I

˙
k∈Ki

Tki, Γ
+
neg

All previous results (subject reduction, confluence, etc.) can be extended.

2.4 Refinements of the Typing System

The typing system can be refined by means of several constraints. In particular,
Honda and Laurent establishes a hierarchy of classes of processes by adding
constraints. The most relevant ones are acyclicity and sequentiality. We refer to
[NYB01, NYB03, LH06] for the technical details.

Acyclicity: a process is deadlock-free if it never reduces to stuck configurations
(an example of stuck configuration is given by the process νa, b(a.b|b.a): here
we have a cyclic dependency between a and b that blocks further reductions).
The acyclicity constraint is added to control the way the resources are used
by processes in order to avoid deadlocks. In [NYB03] acyclic processes are
proved to be strongly normalizing.

Sequentiality: a process is sequential if at each step of reduction has at most
one active output i.e. if there are multiple open inputs, the process can
answer to only one of them. In [NYB01] sequential processes are used to
provide a fully abstract encoding of PCF and in [LH06] sequential process
are used to characterize polarized proof nets.

P ::= a
¯
i∈I

ini(xi).Pi | ainj(xj)Pj | P |P | νxP | 0

a
¯
i∈I

ini(xi).Pi|āinj(xj)Qj → νxjPj |Qj
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Important Note. From now on we assume the acyclicity constraint in our typ-
ing rules since it guarantees the good behaviour of parallel composition. However,
we do not assume sequentiality.

For this reason, in the model we use the variant of linear strategies which has
been defined in [CF05] (there called L-forests) and which correspond to proves
in Multiplicative Additive Linear Logic plus the Mix rule. If we add sequentiality,
we exactly obtain the strategies defined in [Gir01] (there called designs).

3 The Model

In this section we reformulate the definitions given in [Gir01, CF05]. We use the
same notion of strategy as in Ludics, but types are here directly interpreted as
arenas (as in [Fag05]), to make more direct and explicit the construction defined
in [Gir01]. The full interactive construction of types which belongs to Ludics
would be possible -and very interesting- but it would be much less compact.

Our presentation is non-standard also in that: we use process calculus lan-
guage to help the intuition. Moreover, we highlight the fact that a strategy is
an event structure, and exploit the notion of conflict to describe the additive
structure.

3.1 Name and Actions

Let us consider an action in the sense of π-calculus: u(x). To specify an action
we need three data: the name u used as a channel, the set x of names that can be
communicated on that channel, and the way the channel u can be used (input,
output, etc.), i.e. its polarity. The same three data are specified by actions as
defined in [Gir01]. Moreover, there is a coding, which is in many respect similar
to that of De Bruijn notation.

Names and Actions in Ludics. A notion which is crucial both in the π-calculus
and in Ludics is that of name ( in [Gir01] names are called addresses). A name
can be seen as a channel, which is used to send or receive data which are names
themselves.

Let the set N of the names (ranged over by u, v, x, y, . . .) be the strings of
natural numbers. Given a name u ∈ N , the set {u.i|i ∈ N} corresponds to all
data (names) that can be communicated using u.

This leads to an intuitive notion of action: an action is a pair (u, I), with
I ⊂ N, which specifies a name u used as channel and the set of names that will
be communicated on that channel. By construction, to characterize such a set,
it is enough to give the set of suffixes I that will be added to the name u.

Summing up, the action a = (u, I) can communicate the names u.i, with
i ∈ I. We write name(a) for u.

Example. Consider the process u(x, y).x̄(z) We can use the following renam-
ing: x := u.1, y := u.2, z := u.1.1 We write u(x, y) as (u, {1, 2}), and x̄(z) as
(u.1, {1}).
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Polarities. A polarized action is an action a together with a polarity, positive
(a+) or negative (a−), which specifies the capability of the name, that is if the
channel is used for sending in output (positive) or receiving in input (negative).

Zero. The set of actions is extended with a special action, denoted by †, which
indicates termination with an error. By definition, the action † is positive.

We will interpret the zero of process calculus with †, as 0 establishes the
termination of the process. Intuitively, it states that player has no answer to an
opponent move; in this senses it represents an error state.

Enabling Relation. We say that the action a = (u, I) generates the names u.i,
written a � u.i. Given two actions a, b, we write a � b if a � name(b). We call
the relation a � b between actions enabling relation.

The enabling relation establishes dependency between the actions. This leads
us to the notion of arena.

3.2 Arenas

In this section we define the notion of arena; arenas will interpret types. An
arena is given by an interface and a forest of polarized actions, where the forest
is induced by the enabling relation, which establishes dependency between the
actions.

The interface of an arena specifies the names on which a strategy on that
arena can communicate with the rest of the world. An interface I is a set of
initial names I = {u, v, . . .} together with a polarity function π : I → {+, −}.
We impose that the set of negative names is either empty or a singleton.

Given an interface I, an arena on I is a set of polarized actions together with
the enabling relation b � c (defined above), such that it satisfies the following
conditions:

– the enabling relation is arborescent;
– The action c is minimal (denoted � c) iff name(c) ∈ I;
– the polarity of each minimal action c is that specified by the interface for

name(c); if a � b then the actions a and b have opposite polarity.

Given an arena of interface I, we partition the trees according to the name
of the root. If A is the set of all trees whose root uses the name u, we will
write u : A. We will denote an arena of interface I = {u1, . . . , uk} by Γ = u1 :
A1, . . . , uk : Ak.

The polarity induces a partition of the names in the interface, and hence of
the arena, into positive names (the outputs) and negative names (the inputs).
With a slight abuse of notation, we write Γ = Γ+, Γ−. An arena is said positive
if Γ− is empty (all names are positive), negative otherwise.

Arena Constructions. We consider the following constructions on arenas.

Empty. The empty forest is an arena (positive or negative, according to the
interface). We indicate the positive empty arena with Γ : 0 and the negative
one with u : 
.
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Dual. If u : A is an arena, its dual u : A⊥ is obtained by changing the polarity
of u. Hence the actions are the same but the induced polarity is inverted.

Product. Let {u.i : Ai|i ∈ I} be a family of arenas of negative (resp. positive)
polarity. We define the arena u :

∏
i∈I Ai by rooting all Ai on top of the

action (u, I). If the polarity of u is positive (resp. negative), then we write

Sum. Let {u : Ai|i ∈ I} be a family of arenas on the same interface and such
that all roots are pairwise disjoint (hence, if (u, I) and (u, J) are roots of two
distinct arenas, then I �= J). We define the arena u :

∑
i∈I Ai as the union

of all the forests. If the polarity of the root is positive (resp. negative), then
we write

3.3 Strategies

A strategy is here a forest of occurrences of actions. On the occurrences of actions
is defined an order, which we denote by ≤. We write e <1 e′ if the node e is
immediate predecessor of e′.

Definition 3.1 (strategy). Let Γ be an arena. A strategy σ on the arena Γ
(written σ : Γ ) is given by a forest 〈E, ≤〉, where E is a set of nodes, and ≤ is an
arborescent partial order; the nodes are labelled by polarized actions2 in Γ ∪{†};
the polarity and the name of a node (written π(e) and name(e)) are those of the
labelling action. Formally, there is a labelling function λ : E → Γ ∪ {†} which
satisfies the following conditions.

justification: For each node e, its labelling action is either initial (� λ(e)) or
there exits a preceding node e′ < e such that λ(e′) � λ(e).

alternance: If e <1 e′ then they have opposite polarity
innocence: If e <1 e′ and e is positive, then λ(e) � λ(e′).
positivity: If e is maximal (i.e. there exists no e′ such that e < e′), then e is

positive. Moreover, if Γ is positive then the strategy is non empty.

We denote the empty strategy with ∅ and the strategy whose unique action
is a † with Dai.

3.4 Linear Strategies

In this section we describe linear strategies (as defined in [CF05]) which can be
seen as an abstraction of Multiplicative-Additive Linear Logic with Mix.

Let us first introduce apart the definition of multiplicative strategy. This is a
special case of linear strategy (which is enough to understand most of this paper).
A strategy is multiplicative if no two labels use the same name. The more
general definition below takes into account the repetitions due to the additive
structure.
2 Hence nodes are occurences of actions.

∏
i∈I Ai =

⊗
i∈I Ai (resp.

∏
i∈I Ai =

˙
i∈I Ai).

∑
i∈I Ai =

˘
i∈I Ai (resp.

∑
i∈I Ai =

⊕
i∈I Ai).
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Let σ : Γ be a strategy. We call cell a set of nodes that have the same name
and the same predecessor. We call positive (resp. negative) a cell whose nodes
are occurrences of positive (resp. negative) actions.

Starting from the notion of cell, we define on the nodes of a strategy the
relation # of conflict as the smallest binary symmetric relation which satisfy
the following conditions:

immediate conflict e1#e2 if they are distinct and belongs to the same cell;
inheritance if k1 < k2 and k1#k3 then k2#k3.

Definition 3.2 (linear strategy). A strategy σ : Γ is linear if it satisfies the
following conditions

linearity for all distinct occurrences of actions k1, k2, if name(k1) = name(k2)
then k1#k2

determinism All non singleton cells are negative (i.e., every time there is a
choice -expressed by the conflict relation- the choice belongs to Opponent).

Observe that a linear strategy is multiplicative if all its cells are singletons,
i.e. the conflict relation # is empty.

3.5 Totality

Typed processes will be interpreted into linear strategies which are total.

Definition 3.3 (totality). A linear strategy σ : Γ is total if, for each negative
action c in the arena:

1. if � c , then it occurs in σ (i.e. there is a node e ∈ σs.t. λ(e) = c);
2. if b � c, each occurrence of b in σ is followed by an occurrence of c (i.e., for

each e ∈ σ, λ(e) = b =⇒ ∃e′ ∈ sigma s.t. e <1 e′ and λ(e′) = c).

3.6 Composition of Strategies

Given two strategies σ1, σ2, we can compose them if they have compatible inter-
faces i.e. there is a common name that appear in both interfaces with opposite
polarity.

A cut net is a finite set R = {σ1, . . . , σn} of strategies such that (i) each
name occurs at most in two interfaces, once as a positive name and once as a
negative name, (ii) the graph which has as vertexes the interfaces and an edge
connecting any two interfaces with a common name is acyclic.

The interface of the cut net is the interface induced by the names of the
interfaces which are not a cut. For example, given a cut net whose strategies have
interface u+, a+ and a−, b+, c+ and b−, d+, the cut net has interface u+, c+, d+.

We do not give details here on the composition of strategies, whose definition
is given in [Gir01]. The result of composing the strategies in a cut-net R is called
normal form of R, which we denote by R∗. This is a linear strategy having as
interface the interface of the cut net.
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3.7 Set of Independent Strategies

S = {σi : Γi|i ∈ I} is a set of independent strategies if (i) Dai ∈ S and
any two distinct strategies have disjoint interfaces. For example, two strategies
σ1 : {u+, v+} and σ2 : {z−, t+} are independent, while two strategies with
interfaces {u+, v+} and {v−, t+} are not.

A set of independent strategies S = {σi : Γi|i ∈ I} has interface Δ = ∪Γi and
we write S : Δ.

Composition. Given two set Σ = {σi : Γi|i ∈ I}, Ψ = {ψj : Δj |j ∈ J} of inde-
pendent strategies, we define their composition Σ; Ψ as follows. Given C = Σ∪Ψ ,
we obtain a new set of independent strategies by partitioning the set C into cut-
nets, according to the interfaces: we consider the graph whose vertices are the
non-empty interfaces, and draw an edge between interfaces which contain dual
names. The operation is only defined if the graph is acyclic, and each name ap-
pears at most in two distinct interfaces, with opposite polarity. The partition of
the graph into connected components induces a partition of the strategies into
cut nets R1, . . . , Rn; we have Σ; Ψ = {R∗

1, . . . , R
∗
n}, which is a set of independent

strategies.

4 The Interpretation

In this section , we interpret types with arenas, type environments with sets
of arenas, and processes with linear strategies. For clarity, here we only show
how to deal with the multiplicative case. To deal with the additive case is a
straightforward extension (but the syntax becomes harder to read).

Interpretation of Types

[[u : 
]] = u : 

[[Γ : 0]] = Γ : 0

[[u :
⊗

i∈I

Ti]] = u :
⊗

i∈I

[[u.i : Ti]]

[[u : Ω
i∈I

Ti]] = u : Ω
i∈I

[[u.i : Ti]]

Interpretation of type environments. The interpretation of a type environment is
the juxtaposition of the interpretation of each type whose polarity is non neutral.

Interpretation of Processes. A typed process is interpreted into a set of indepen-
dent strategies. The most interesting case is that of a typed process P �Γ , where
Γ has at most a negative type; this process will be interpreted into a strategy σ
on the arena [[Γ ]].

We use the following constructions on sets of independent strategies (see
[CF05]) to give a semantics respectively to prefixed input, asynchronous out-
put and the scope operator.
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boxing: given a set Σ of independent strategies on u.1 : T +
1 , . . . , u.n : T +

n , Γ+

and a negative action k = (u, I)−, the strategy
obtained by prefixing the union of all strategies in Σ with k.

rooting: given a set Σ of independent strategies and a positive action k =
(u, I)+, the set of strategies k ◦Σ is that obtained by adding a node of label
(u, I), and making it precede only the nodes whose name is generated by
(u, I) (where (u, I) � u.i). Observe that, since the nodes of name u.i are
negative, they are roots. Hence we are prefixing with a node of label (u, I)
all strategies on u.i : T−

i .
restriction given a set of independent strategies Σ we obtain Σ \ u by erasing

all trees whose root has name u.

Let P � Γ . The interpretation is then defined in the following way

1. [[0 � ]] = {Dai}
2. [[ � x : 
]] = {∅, Dai}
3. [[u(x)P � u :

⊗
i∈I T−

i , Γ ]] = (u, I) ◦ [[P [xi := u.i] � u.1 : T−
1 . . . u.n : T−

n , Γ ]]
where x = 〈x1, . . . , xn〉 and I = {1, . . . , n}

Dai}
5. [[νxP � Γ ]] = [[P � Γ, x : T ]] \ x
6. [[P1|P2 � Γ � Δ]] = [[P1 � Γ ]]; [[P2 � Δ]] supposing that P1 � Γ and P2 � Δ

4.1 Innocence and Asynchrony

An innocent strategy specifies what is Player answer to any Opponent move
without having any information on the way in which Opponent plays. This means
that after a Player move, we only know which Opponent moves are enabled, but
we do not know if and in which order they will be played. Technically, each
Opponent move immediately follows the Player move which enables it.

In our strategies, the causal order between actions takes into account the con-
straints which are given by the typing (the arena). Thus, for example, if the
name x is generated by the action u(x), any action using the channel x causally
depends on u(x) also in the strategy. Moreover, the strategy can introduce ad-
ditional order. However, if the strategy is innocent, the extra order is only on
pairs (Opponent move, Player move).

Innocence can be seen as the game-semantical counterpart of asynchrony and
corresponds to the fact that in the asynchronous π-calculus, the input (Oppo-
nent move/negative action) is prefixing and blocking, while the output (Player
move/positive action) is not. For output we use rooting: the only constraints we
have are those fixed by the arena. Boxing instead introduces additional order.

The correspondence between innocent strategies and processes in an asyn-
chronous π calculus appears clearly when analyzing the normal forms
(section 4.4).

4. [[u(x).P � u :
˙

i∈I T
+
i , Γ

+]] = {(u, I).[[P [xi := u.i] � u.1 : T+
1 . . . u.n : T+

n , Γ
+]]

k.Σ : u :
˙

i T
+
i , Γ

+ is
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4.2 Full Completeness

Proposition 4.1 (Validity). If P � Γ is a process, its interpretation [[P ]] on
[[Γ ]] is a set of independent strategies, where each strategy is total (on the corre-
sponding arena).

Proposition 4.2 (Correctness). The interpretation satisfies the following. If
P ≡ Q then [[P ]] = [[Q]]

If P −→ Q then [[P ]] = [[Q]]

Proposition 4.3 (Completeness). Let Γ = Γ−, Γ+ be the arena interpreting
a typing environment Γ−, Γ+, where Γ− is either empty or a singleton. If σ is
a linear strategy on that arena, and σ is total, then σ is the interpretation of a
process P � Γ−, Γ+.

We sketch the proof, only dealing with the multiplicative case.

Proof. We associate to the strategy the typing derivation of a process. The proof
is by induction on the size |σ| of σ, where the size of a strategy is the number
of its actions which are not †.

|σ| = 0 and σ negative. Being negative, the interface contains a negative
name, u, corresponding to the negative arena u : A. As σ is the empty strategy,
for it to be total the arena u : A must be empty. This case corresponds to the
TOP rule (possibly followed by weakening).

|σ| = 0 and σ positive. We have that σ = Dai; this correspond to the zero
rule (possibly followed by weakening).

|σ| > 0 and σ negative. This case correspond to the NEG rule. We have
that σ = (u, I).σ′ is a total strategy on the arena u : A, Γ+, where A = ΓIAi

and σ′ is a total positive strategy on the arena u.i : Ai, . . . Γ
+. To check totality,

we observe that the Positivity condition implies that σ′ is non empty.
|σ| > 0 and σ positive. We have that σ is a forest of positive strategies. Let

us analyze each single connected component (each tree), on the opportune arena
(the arena containing the names used by the strategy). Putting them together
will correspond to the PAR rule (possibly followed by weakening).

Assume that σ = (u, I). ∪i∈I σi. This is a strategy on the arena u : A, Γ+,
where A = ⊗IAi. All the addresses used in each σi are distinct, hence we can
partition Γ+ into Γ+

1 , ..., Γ+
k according to the names of the actions which are

initial in each σi. Each σi is a total negative strategy on the arena u.i : Ai, Γ
+

i .

4.3 Full Abstraction

By using the same technique as in [NYB03], we have the following result of
full abstraction, where the notion of operational equivalence is the typed weak
bisimilarity (≈) defined in [NYB03].

Proposition 4.4 (full abstraction). P � Γ ≈ Q � Γ ⇐⇒ [[P � Γ ]] = [[Q � Γ ]]
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Let us sketch the proof. All typed processes are strongly normalizing, hence we
can define two processes to be equivalent if they reduce to the same normal form,
up to structural congruence. Such an equivalence is the same as ≈, and we can
take the (unique) term in normal form as canonical representative in each class
of π-terms. The key result is the following lemma.

Lemma 4.1. Let P � Γ and Q � Γ be in normal form. P ≈ Q if and only if
P ≡ Q.

4.4 Normal Forms

In [NYB03] is given a canonical characterization of normal forms: each term in
normal form can be written as a parallel composition of sub-processes which have
a Bohm-tree like structure. These trees exactly correspond to Ludics strategies.

Example. Let us consider two normalized terms which are structurally equivalent
(both are typed on

u(x1, x2).x1(w1)x2(w2)w1(z1).0|w2(z2).0 ≡ u(x1, x2).x1(w1) w1(z1).0|x2(w2) w2(z2).0

By reordering the actions performed by the two processes according to the La-
belled Transition System, we obtain the tree on the left hand side below. On
the right hand side, instead, we have the interpretation as linear strategy on the
right: there is an exact correspondence.

u(x1, x2)

x1(w1)

w1(z1)

0

x1(w1)

w1(z1)

0

(u, {1, 2})−

(u.1, {1})+

(u.1.1, {1})−

†

(u.2, {1})+

(u.2.1, {1})−

†

5 Discussion and Future Work

We have shown a precise correspondence between the finitary fragment of the
linear π-calculus [NYB01, NYB03] and the linear strategies introduced by Girard
in the setting of ludics [Gir01].

Building on this core, we aim at extending the calculus and the model with
non-determinism, recursion and replication, by following the approach proposed
by [VY06].

Moreover, it is possible to use the full architecture of Ludics, and in particular
the interactive constructions on types, and we are interested in exploring also
this direction.

Non Determinism. In current work [FP07] we extend the calculus and the model
with internal choice, i.e. with non determinism.

On one side, we add to the calculus a τ -prefixed sum (
∑

i τ.Pi)

Γ = u : (⊗(`T+
1 )) ` (⊗(`T+

2 ))):
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On the other side, the set of actions is extended with neutral actions, and a
non deterministic choice is modeled by a cell of neutral actions. Non-determinism
has the same behavious as the additive structure, but the actions labelling the
cell are “silent”.

Recursion and Replication. In this paper we have worked a finitary version of
the linear π-calculus, in order to establish a correspondence with the existing
setting of Ludics, as defined in [Gir01]. However, we expect to be able to extend
the model both wiht replication (by using techniques similar to those which are
developped in [VY06]) and with recursion.
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Differential Structure in
Models of Multiplicative Biadditive

Intuitionistic Linear Logic
(Extended Abstract)
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Abstract. In the first part of the paper I investigate categorical mod-
els of multiplicative biadditive intuitionistic linear logic, and note that
in them some surprising coherence laws arise. The thesis for the second
part of the paper is that these models provide the right framework for
investigating differential structure in the context of linear logic. Conse-
quently, within this setting, I introduce a notion of creation operator (as
considered by physicists for bosonic Fock space in the context of quan-
tum field theory), provide an equivalent description of creation operators
in terms of creation maps, and show that they induce a differential oper-
ator satisfying all the basic laws of differentiation (the product and chain
rules, the commutation relations, etc.).

1 Introduction

Recent developments in the model theory of linear logic, starting with the work
of Ehrhard [6,7], have uncovered a variety of models with differential structure.
Examples include Köthe sequence spaces [6], finiteness spaces [7], the relational
model, generalised species of structures [11,12], interaction systems [15], and
complete semilattices [4]. This differential structure manifests itself as differential
operators. In this context, a differential operator is a natural linear map

!A � B �� !A � A � B (1)

that, when embedded as a map

A �� B �� A �� (A � B) (2)

in the !-Kleisli category, enjoys the properties and satisfies the laws of dif-
ferentiation. Intuitively, such an operator D provides a linear approximation
D[f]x : A � B for every function f : A �� B at any point x : A.

The algebra underlying these models has also been investigated recently.
Ehrhard and Regnier [8], isolated local-additive and commutative bialgebraic-
exponential structure and explained, amongst other things, how they support

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 163–177, 2007.
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the product rule. Blute, Cockett, and Seely [4], considered local-additive and ex-
ponential structure further supporting the chain rule. A common feature of these
two approaches is that they take the local-additive structure, which allows mor-
phisms to be added and is the minimal expression of linear-algebraic structure,
as primitive. However, since local-additive structure in the presence of product
structure is equivalent to biproduct structure, one may instead take as primitive
the latter; which, furthermore, has the added bonus of inducing commutative
bialgebraic-exponential structure. This is the viewpoint advocated here. It leads
to the consideration of models of multiplicative biadditive intuitionistic linear
logic, in which the additive structures (given by product and coproduct) coin-
cide (as a biproduct), and to the thesis that these provide the right framework
for investigating differential structure in the context of linear logic.

The present work is close in spirit to that of Blute, Cockett, and Seely [4] on
differential categories, especially their Section 4. For latter comparison, I now
highlight the relevant parts of their development. A notion of differential operator
essentially as in (1) is introduced (see [4, Definition 2.3]). This is so that, for
instance, the induced differential operator as in (2) satisfies the usual product
and chain rules. Differential operators are shown to be in correspondence with
so-called deriving transformations of the form

∂ : A ⊗ !A �� !A (3)

(see [4, Definition 2.5 and Proposition 2.6]). Moreover, these are further seen to
correspond to certain natural maps

η : A �� !A (4)

(see [4, Definition 4.11 and Theorem 4.12]).
Without loss of generality, my analysis of differential structure starts with the

consideration of operators as in (3). These I call creation operators; as, inter-
preting the exponential as the bosonic Fock space construction [5], that models
quantum systems of many identical non-interacting particles, they intuitively
correspond to operators modelling particle creation. Indeed, categorical models
of multiplicative intuitionistic linear logic come equipped with a canonical notion
of annihilation operator

∝ : !A �� A ⊗ !A

with respect to which creation operators are shown to satisfy the commutation
relations (see e.g. [14]). The above forms for creation and annihilation operators
is non-standard; the standard forms are derivable.

The concept of creation operator given in this paper is novel and differs from
that of deriving transformation mentioned above. This is clearly seen by com-
paring Theorem 4.1 below, which establishes a bijective correspondence between
creation operators and certain natural maps as in (4), that I call creation maps,
and [4, Corollary 4.13], which provides the corresponding result for deriving
transformations. A crucial difference between the axiomatisations is that the
one provided here, besides being sharper, involves an axiom describing the in-
teraction between the differential structure and the monoidal strength of the



Differential Structure in Models of Intuitionistic Linear Logic 165

exponential. The present axiomatisation of creation maps has been directly influ-
enced by and developed through a thorough analysis of the differential structure
of generalised species of structures [10,11], which is a bicategorical generalisation
of that of the relational model of linear logic.

Organisation and Contribution of the Paper. Section 2 provides basic
background on biproduct structure. The emphasis there is on giving an algebraic
presentation, analysing some of its consequences (importantly commutative bial-
gebraic structure), and then characterising it in terms of enrichment. I guess that
these results are folklore. However, I do not know references for them. In Sec-
tion 3, I define categorical models of multiplicative biadditive intuitionistic linear
logic to be models of multiplicative intuitionistic linear logic, as have been con-
sidered in the literature, equipped with biproduct structure compatible with the
monoidal structure. This directly induces commutative bialgebraic-exponential
structure. More surprisingly, I note that in these models some unexpected co-
herence laws arise. These are important for the analysis of differential structure
carried over in Section 4. As mentioned above, differential structure is first anal-
ysed in terms of creation operators, for which the commutation relations with
respect to a canonical notion of annihilation operator hold. Subsequently, cre-
ation operators are characterised in terms of the simpler notion of creation maps.
These are shown to induce differential operators satisfying all the basic laws of
differentiation. Finally, Section 5 concludes with general remarks and prospects
for further work.

2 Biproduct Structure and Enrichment

Biproduct Structure. I give an algebraic presentation of biproduct structure,
both on categories and on monoidal categories. This is the key to the modelling
of biadditive structure in models of linear logic.

Definition 2.1. A biproduct structure on a category is given by a symmetric
monoidal structure (⊥�, +×) on it together with natural transformations

⊥� u

��������� ⊥�

A

Δ �������

n ���������

A+×A
∇

�������
A+×A

such that:

1. (A, u,∇) is a commutative monoid.

⊥�+×A
u+×1 ��

∼=
���

�

����
��

A+×A

∇
��

A+×⊥�1+×u��

∼=
���

�

		���
�

A

A+×A+×A
∇+×1 ��

1+×∇
��

A+×A

∇
��

A+×A ∇
�� A
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A+×A
γ ��

∇ 

�
��

���
��

A+×A

∇����
��

��
��

A

2. (A, n, Δ) is a commutative comonoid.

A

∼=
���

�

		���
� Δ

��
∼=

��
��

����
��

⊥�+×A A+×A
n+×1
��

1+×n

�� A+×⊥�

A
Δ ��

Δ

��

A+×A

1+×Δ

��
A+×A

Δ+×1
�� A+×A+×A

A
Δ

����
���

��
�

Δ



�
��

��
���

A+×A γ
�� A+×A

Definition 2.2. A biproduct structure is degenerate whenever the following fur-
ther law

A+×A

∇



�
��

��
���

A

Δ

����������

1
�� A

is satisfied.

The terminology of Definition 2.1 is justified by the following result.

Proposition 2.1. In a category with biproduct structure (⊥�, +×; u, ∇; n, Δ) the
following hold.

1. ⊥� is a zero object; that is, it is both initial and terminal.
2. The diagram

A ∼= �� A+×⊥� 1+×u �� A+×B
u+×1�� ⊥�+×B ∼=�� B

is a coproduct.
3. The diagram

A ∼=�� A+×⊥� 1+×n�� A+×B
n+×1 �� ⊥�+×B ∼= �� B

is a product.

That ⊥� is initial and Proposition 2.1(2) follow from Definition 2.1(1); dually,
that ⊥� is terminal and Proposition 2.1(3) follow from Definition 2.1(2).



Differential Structure in Models of Intuitionistic Linear Logic 167

Corollary 2.1. In a category with biproduct structure (⊥�, +×; u, ∇; n, Δ), the
natural transformations u, ∇, n, Δ are monoidal; that is,

u⊥� = n⊥� = 1⊥�

uA+×B = ⊥� ∼= �� ⊥�+×⊥� uA+×uB�� A+×B

nA+×B = A+×B
nA+×nB�� ⊥�+×⊥� ∼= �� ⊥�

and
∇⊥�+×⊥� = ⊥�+×⊥� ∼= �� ⊥�

∇A+×B = A+×B+×A+×B
1+×γ+×1�� A+×A+×B+×B

∇A+×∇B�� A+×B

Δ⊥�+×⊥� = ⊥� ∼= �� ⊥�+×⊥�

ΔA+×B = A+×B
ΔA+×ΔB�� A+×A+×B+×B

1+×γ+×1�� A+×B+×A+×B

It is important for our latter development to note that biproduct structure is
equivalent to commutative bialgebraic structure.

Proposition 2.2. In a category with biproduct structure (⊥�, +×; u, ∇; n, Δ), the
commutative monoid and comonoid structures (u, ∇; n, Δ) form a commutative
bialgebra; that is, u and ∇ are comonoid homomorphisms and, equivalently, n

and Δ are monoid homomorphisms.

A

n



�
��

��
��

⊥�

u

��							

1
�� ⊥�

A+×A
∇ ��

Δ+×Δ

��

A
Δ �� A+×A

A+×A+×A+×A
1+×γ+×1

�� A+×A+×A+×A

∇+×∇
��

A
Δ

��











⊥�

u
�������

∼=
��

����

A+×A

⊥�+×⊥�
u+×u

��







A
n

���
��

��

A+×A

∇ ��







n+×n ��








 ⊥�

⊥�+×⊥�
∼=��

����

Enrichment. I now recall the characterisation of biproduct structure in the
context of enrichment.

Let Mon (CMon) be the symmetric monoidal category of (commutative)
monoids with respect to the universal bilinear tensor product. Recall that
Mon-categories (CMon-categories) are categories all of whose homs [A, B] come
equipped with a (commutative) monoid structure (0A,B, +A,B) such that com-
position is strict and bilinear; that is,

0B,C f = 0A,C and f 0C,A = 0C,B

for all f : A �� B, and

g (f + f ′) = g f + g f ′ and (g + g ′) f = g f + g ′ f

for all f, f ′ : A �� B and g, g ′ : B �� C.



168 M.P. Fiore

Proposition 2.3. The following are equivalent.

1. Categories with biproduct structure.
2. Mon-categories with (necessarily enriched) finite products.
3. CMon-categories with (necessarily enriched) finite products.

The enrichment of categories with biproduct structure is given by convolu-
tion (see e.g. [21]) as follows:

0 = (A
n �� ⊥� u �� B)

f + g = (A
Δ �� A+×A

f+×g �� B+×B
∇ �� B)

For SLat the symmetric monoidal category of semilattices with respect to the
universal bilinear tensor product we have the following result, which justifies the
terminology of Definition 2.2.

Proposition 2.4. The following are equivalent.

1. Categories with degenerate biproduct structure.
2. SLat-categories with (necessarily enriched) finite products.

Biproduct and Monoidal Structure. I further consider biproduct structure
on symmetric monoidal categories. To this end, note that in a monoidal category
with tensor ⊗ and binary products × there is a natural distributive law as follows:

� = 〈π1 ⊗ 1, π2 ⊗ 1〉 : (A × B) ⊗ C �� (A ⊗ C) × (B ⊗ C)

Definition 2.3. A symmetric monoidal structure (I, ⊗) and a biproduct struc-
ture (⊥�, +×; u, ∇; n, Δ) on a category are compatible whenever the following hold:

⊥� ⊗ C
u⊗1

����
���

�

��

A ⊗ C

n⊗1 ��������

n ����
���

��
A ⊗ C

⊥�
u

���������

(A+×A) ⊗ C

�

��

∇⊗1

����������

A ⊗ C

Δ⊗1 ����������

Δ ���������� A ⊗ C

(A ⊗ C)+×(A ⊗ C)

∇
����������

Recall that a Mon-enriched (symmetric) monoidal category is a (symmetric)
monoidal category with a Mon-enrichment for which the tensor is strict and
bilinear; that is, such that

0X,Y ⊗ f = 0X⊗A,Y⊗B and f ⊗ 0X,Y = 0A⊗X,B⊗Y

for all f : A �� B, and

g ⊗ (f + f ′) = g ⊗ f + g ⊗ f ′ and (g + g ′) ⊗ f = g ⊗ f + g ′ ⊗ f

for all f, f ′ : A �� B and g, g ′ : X �� Y.
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Propositions 2.3 and 2.4 extend to the symmetric monoidal setting.

Proposition 2.5. The following are equivalent.

1. Categories with compatible symmetric monoidal and biproduct structures.
2. Mon-enriched symmetric monoidal categories with (necessarily enriched)

finite products.
3. CMon-enriched symmetric monoidal categories with (necessarily enriched)

finite products.

Corollary 2.2. The following are equivalent.

1. Categories with compatible symmetric monoidal and degenerate biproduct
structures.

2. SLat-enriched symmetric monoidal categories with (necessarily enriched)
finite products.

3 Models of Multiplicative Biadditive Intuitionistic
Linear Logic

Models of Multiplicative Intuitionistic Linear Logic. I recall the defi-
nition of categorical model of multiplicative intuitionistic linear logic as it has
been developed in the literature, see e.g. [17,20,2,3,1,18,19].

Definition 3.1. An L!⊗-model is given by a category equipped with

1. a symmetric monoidal structure (I, ⊗);
2. a symmetric monoidal endofunctor

(
!, ϕI : I �� !I, ϕ : !A⊗ !B �� !(A⊗B)

)
;

3. a monoidal comonad structure A
ε�� !A

δ �� !!A;

4. a monoidal commutative comonoid structure I
e�� !A

d �� !A ⊗ !A

subject to the following compatibility laws:

!A

e

��

δ �� !!A

!e

��
I ϕI

�� !I

!A

d

��

δ �� !!A
d!

��������������

!d

��
!A ⊗ !A

δ⊗δ
�� !!A ⊗ !!A ϕ!A,!A

�� !(!A ⊗ !A)

(5)
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Amongst the many coherence conditions imposed by the above definition on
L!
⊗-models (for which see e.g. [3]) note the following two:

!A ⊗ !B
ϕ ��

e⊗e

��

!(A ⊗ B)

eA⊗B

��
I ⊗ I ∼= �� I

(6)

!A ⊗ !B
ϕ ��

d⊗d

��

!(A ⊗ B)

dA⊗B

��
!A ⊗ !A ⊗ !B ⊗ !B

1⊗γ⊗1
�� !A ⊗ !B ⊗ !A ⊗ !B

ϕ⊗ϕ
�� !(A ⊗ B) ⊗ !(A ⊗ B)

(7)

Definition 3.2. An L!
⊗,×-model is an L!

⊗-model on a category with finite prod-
ucts (�, ×).

In this context, we obtain the Seely monoidal natural isomorphism

s : !A ⊗ !B ∼= �� !(A × B)

given by the composite

!A ⊗ !B
δ⊗δ �� !!A ⊗ !!B

ϕ �� !(!A ⊗ !B)
!〈ε⊗e,e⊗ε〉�� !

(
(A ⊗ I) × (I ⊗ B)

)
∼= �� !(A × B)

with inverse

!(A × B)
d �� !(A × B) ⊗ !(A × B)

!(1×n)⊗!(n×1)�� !(A × �) ⊗ !(� × B) ∼= �� !A ⊗ !B

Also the map sI = I
ϕI �� !I

!n �� !� is an isomorphism, with inverse e : !� �� I.
It follows that the diagrams

!A

d

����
��

���
�� !Δ

��











!A ⊗ !A sA,A

∼= �� !(A × A)

(8)

!A

e

����
��

��
�� !n

���
��

��
��

�

I sI

∼= �� !�
(9)

commute; so that the contraction and weakening maps, d and e, arise from the
product structure via the Seely isomorphims.
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Proposition 3.1. In an L!
⊗,×-model the following coherence law holds.

!A ⊗ !B
s

∼=
��

δ⊗δ

��

!(A × B)

δA×B

��
!!A ⊗ !!B ϕ!A,!B

�� !(!A ⊗ !B)
!s

∼= �� !!(A × B)

(10)

The proof uses the definition of s, and the monoidality and associativity laws
of δ.

Models of Multiplicative Biadditive Intuitionistic Linear Logic. I de-
fine categorical models of multiplicative biadditive intuitionistic linear logic to
be models of multiplicative intuitionistic linear logic equipped with compatible
biproduct structure. This is somewhat in the vein of Blute, Cockett, and Seely [4,
Section 4].

Definition 3.3. An L!
⊗,+×-model is an L!

⊗-model equipped with a biproduct
structure (⊥�, +×; u, ∇; n, Δ) compatible with the symmetric monoidal structure
(I, ⊗).

In this context, and via the monoidality of the Seely isomorphisms, the commuta-
tive bialgebra structure induced by the biproduct structure yields commutative
bialgebraic-exponential structure.

Definition 3.4. In L!
⊗,+×-models, the coweakening and cocontraction maps,

ı and m, are defined as follows:

ı = I ∼=

sI �� !⊥� !u �� !A

m = !A ⊗ !A
sA,A

∼=
�� !(A+×A)

!∇ �� !A

Proposition 3.2. In an L!
⊗,+×-model, the natural transformations

I ı

���������� I

!A
d

�������

e ����������

!A ⊗ !A
m

�������
!A ⊗ !A

form a commutative bialgebra.

More surprisingly, the following result exhibits three coherence laws enjoyed by
L!
⊗,+×-models that can respectively be thought of as a kind of unfolding of the

coherence conditions (5), (6), (7).
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Theorem 3.1. In an L!
⊗,+×-model the following coherence laws hold.

1.

!A
δ �� !!A

!A ⊗ !A

m

��

δ⊗δ
�� !!A ⊗ !!A ϕ!A,!A

�� !(!A ⊗ !A)

!m

��

(11)

2.
!A ⊗ !B

ϕ �� !(A ⊗ B)

I ⊗ !B

ı⊗1
����������

1⊗e ����������

I ⊗ I ∼= �� I

ıA⊗B

��

(12)

3.

!A ⊗ !B
ϕ �� !(A ⊗ B)

!A ⊗ !A ⊗ !B

m⊗1

��

1⊗1⊗d

��
!A ⊗ !A ⊗ !B ⊗ !B

1⊗γ⊗1
�� !A ⊗ !B ⊗ !A ⊗ !B

ϕ⊗ϕ
�� !(A ⊗ B) ⊗ !(A ⊗ B)

m

��

(13)

The proof of Theorem 3.1(1) uses the definition of m and the coherence law (10).
The proof of Theorem 3.1(2) uses the coherence law (9), the definitions of sI

and ı, the monoidality of (!, ϕI, ϕ), and the strictness of the tensor product to
show that both composites are equal to the following one

I ⊗ !B ∼= �� !B
!0 �� !(A ⊗ B)

Finally, the proof of Theorem 3.1(3) uses the product structure of (⊥�, +×), the
bilinearity of the tensor product, the definitions of m and s−1, the coherence
law (8), and the monoidality of d.

4 Differential Structure

The analysis of differential structure in L!
⊗,+×-models follows.

Creation Operators. The starting point is the definition of annihilation and
creation operators; the terminology for which is justified by Proposition 4.1.
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Definition 4.1. In an L!
⊗-model, the annihilation operator ∝ : !A �� A ⊗ !A

is the natural transformation given by the following composite

!A
d �� !A ⊗ !A

ε⊗1 �� A ⊗ !A

Definition 4.2. A creation operator in an L!
⊗,+×-model is a natural transfor-

mation
∂ : A ⊗ !A �� !A

satisfying the following laws.

1. Strength.

A ⊗ !A ⊗ !B
∂⊗1 ��

1⊗1⊗∝
��

!A ⊗ !B
ϕ �� !(A ⊗ B)

A ⊗ !A ⊗ B ⊗ !B
1⊗γ⊗1

�� A ⊗ B ⊗ !A ⊗ !B
1⊗1⊗ϕ

�� A ⊗ B ⊗ !(A ⊗ B)

∂A⊗B

��

(14)

2. Comonad.

A ⊗ !A

1⊗e ���
��������

∂ �� !A
ε �� A

A ⊗ I

∼=����

������
A ⊗ !A

1⊗d

��

∂ �� !A
δ �� !!A

A ⊗ !A ⊗ !A
∂⊗δ

�� !A ⊗ !!A

∂!

��

(15)

3. Multiplication.

A ⊗ !A ⊗ !A
∂⊗1 ��

1⊗m ������������� !A ⊗ !A
m �� !A

A ⊗ !A

∂

��









(16)

The above form for creation and annihilation operators is non-standard. More
commonly, see e.g. [14], the literature deals with creation operators ∂v : !A �� !A
for vectors v : I �� A and annihilation operators ∝v ′ : !A �� !A for covectors
v ′ : A �� I. In the present setting, these are derived as follows:

∂v = !A ∼= �� I ⊗ !A
v⊗1 �� A ⊗ !A

∂ �� !A

∝v ′ = !A
∝ �� A ⊗ !A

v ′⊗1 �� I ⊗ !A ∼= �� !A

Proposition 4.1. Creation and annihilation operators in L!
⊗,+×-models satisfy

the following commutation relations:

1. ∝∂ = 1 + (1 ⊗ ∂)(γ ⊗ 1)(1 ⊗ ∝) : A ⊗ !A �� A ⊗ !A
2. ∂ (1 ⊗ ∂) = ∂ (1 ⊗ ∂) (γ ⊗ 1) : A ⊗ A ⊗ !A �� !A
3. (1 ⊗ ∝)∝ = (γ ⊗ 1)(1 ⊗ ∝)∝ : !A �� A ⊗ A ⊗ !A
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It follows that

∝v ′∂v =
(
!A ∼= �� I ⊗ !A

(v ′v)⊗1�� I ⊗ !A ∼= �� !A
)

+
(
!A

∂v∝v ′ �� !A
)

∂u∂v = ∂v∂u

∝u ′∝v ′ = ∝v ′∝u ′

for all u, v : I �� A and u ′, v ′ : A �� I.
For comparison with the work of Blute, Cockett, and Seely on deriving trans-

formations, note that the laws of (15) are the linearity and the chaining con-
ditions of [4, Definition 2.5] and that the law of (16) is the multiplication rule
of [4, Definition 4.10]. The law of (14) is novel, and in its presence the constant
maps and the copying conditions of [4, Definition 2.5] are derivable (see Proposi-
tion 4.2 below). Thus, creation operators are deriving transformations satisfying
the multiplication rule.

Proposition 4.2. Every creation operator ∂ in an L!
⊗,+×-model is such that

1. e ∂ = 0 : A ⊗ !A �� I, and

2. d ∂ = (∂1+∂2) (1⊗d) : A⊗!A �� !A⊗!A where ∂1 = A⊗!A⊗!A
∂⊗1 �� !A⊗!A

and ∂2 = A ⊗ !A ⊗ !A
γ⊗1 �� !A ⊗ A ⊗ !A

1⊗∂ �� !A ⊗ !A.

Propositions 4.1 and 4.2 are better established using the representation of cre-
ation operators given in Theorem 4.1 below. The proofs of Propositions 4.1(1)
and 4.2(2) use the biproduct structure, the strictness and bilinearity of the
tensor product, the coherence of the Seely isomorphisms, and the bialgebraic-
exponential structure; the proofs of Propositions 4.1(2&3) use the commutative
of the bialgebraic-exponential structure; the proof of Proposition 4.2(1) uses the
strictness of the tensor product.

Creation Maps. Creation operators have a simpler axiomatisation in terms of
creation maps.

Definition 4.3. A creation map in an L!
⊗,+×-model is a natural transformation

η : A �� !A satisfying the following laws.

1. Strength.

A ⊗ !B

1⊗ε ������������
η⊗1 �� !A ⊗ !B

ϕ �� !(A ⊗ B)

A ⊗ B

ηA⊗B

������������

2. Comonad.

!A
ε

���
��

��
��

A

η
���������

1
�� A

A
η ��

∼=

��

!A
δ �� !!A

A ⊗ I
η⊗ı

�� !A ⊗ !A
η!⊗δ

�� !!A ⊗ !!A

m!

��
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As a direct consequence of the strength and first comonad law, creation maps
are coherent with respect to the monoidal strength.

Proposition 4.3. Every creation map η in an L!
⊗,+×-model satisfies the follow-

ing coherence law:

A ⊗ B

η⊗η

  ����������
ηA⊗B

������
���

���

!A ⊗ !B ϕ
�� !(A ⊗ B)

Theorem 4.1. The mappings

∂ : A ⊗ !A �� !A � �� η = A ∼= �� A ⊗ I
1⊗ı �� A ⊗ !A

∂ �� !A

η : A �� !A � �� ∂ = A ⊗ !A
η⊗1 �� !A ⊗ !A

m �� !A

yield a bijection between creation operators and creation maps in L!
⊗,+×-models.

To show that the map η induced by a creation operator ∂ satisfies the strength
law one uses the strength law for ∂ and the coherence law (12); to show that η

satisfies the first comonad law one uses the first comonad law for ∂; to show that
η satisfies the second comonad law one uses the second comonad law and the
multiplication law for ∂. Conversely, to show that the operator ∂ induced by a
creation map η satisfies the strength law one uses the strength law for η and the
coherence law (13); to show that ∂ satisfies the first comonad law one uses the
biproduct structure, the strictness of the tensor product, and the first comonad
law for η; to show that ∂ satisfies the second comonad law one uses the strength
law and second comonad law for η, the coherence condition (5), the coherence
laws (11) and (13), and the comonad laws for (!, ε, δ); to show that ∂ satisfies
the multiplication law one uses the associativity of m.

Differentiation. In the presence of the above differential structure, one obtains
a natural differential operator

D[−] = [∂, −] : [!A, B] �� [A ⊗ !A, B]

such that the following rules hold.

1. Identity rule.
D[1] = ∂

2. Composition rule.

D[� f] = �D[f] (f : !A �� B, � : B �� C)

3. Constant rule.
D[eA] = 0

4. Sum rule.
D[f + g] = D[f] + D[g] (f, g : !A �� B)
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5. Tensor rule.

D[(f⊗g)d] =
(
D[f]⊗g+ (f⊗D[g])(γ⊗1)

)
(1⊗d) (f : !A �� B, g : !A �� C)

6. Linearity rule.

D[� εA] = � (1 ⊗ eA) (� : A �� B)

7. Chain rule.
D[g f†] = D[g] (D[f] ⊗ f†) (1 ⊗ d) (f : !A �� B, g : !B �� C)

where f† = (!f) δ : !A �� !B

Further, for L!,�
⊗,+×-models, i.e. in the presence of closed structure (�), one

may internalise the differential operator as a partial derivative operator

D = λu : A. λf : !A � B. λx : !A. f
(
∂(u ⊗ x)

)
: A � (!A � B) � !A � B

for which, moreover, the following rules hold.
1. Symmetry rule.

u : A, v : A 	 Du ◦ Dv = Dv ◦ Du : !A � B

2. Strength rule.
f : !(A ⊗ B) � C, u : A, x : !A, y : !B

� Du

[
λx : !A. f

(
ϕ(x ⊗ y)

)]
x = let v ⊗ z = ∝(y) : B ⊗ !B in Du⊗v

[
f
](

ϕ(x ⊗ z)
)

: C

5 Concluding Remarks

The general theme of this paper has been the investigation of categorical models
of multiplicative biadditive intuitionistic linear logic, and of differential structure
therein. Within each of these two strands, various possibilities for research still
remain. I mention a few here.

From the abstract theoretical viewpoint, the consideration of L!,�
⊗,+×-models

equipped with differential structure as categorical models of the differential
λ-calculus of Ehrhard and Regnier [9] will be considered in the full version of
the paper. A more important next step, however, is to work out the type and
proof theory of L!,�

⊗,+×-models, both as a term assignment system and a graph-
ical calculus, and thereafter extend them to incorporate differential structure.
In another direction, the relationship of our axiomatics with the earlier cate-
gorical axiomatic investigation of differential structure provided by Synthetic
Differential Geometry (see e.g. [16, Part I]) should be addressed.

From the model-theoretic viewpoint, the discussion of concrete L!,�
⊗,+×-models

equipped with differential structure will be considered in the full version of the
paper, where the diligent, but otherwise evident, verification that the models
mentioned at the beginning of the Introduction are examples will be covered.
More interestingly, I conjecture that the category of convenient vector spaces
and linear maps of Frölicher and Kriegl [13] provides yet another example; as so
may be the case, indicated to me by Anders Kock in correspondence, with the
category of modules for the ring object of line type in some models of Synthetic
Differential Geometry (see e.g. [16, Part III]).
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The Omega Rule is Π1
1-Complete in the

λβ-Calculus
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Abstract. We give a many-one reduction of the set of true Π1
1 sentences

to the set of consequences of the λ-calculus with the ω-rule. This solves
in the affirmative a long-standing problem of H. Barendregt (1975).

1 Introduction

The present paper completes our analysis of the logical status of the so-called
ω-rule in λ-theories.

We have first considered constructive forms of such rule in [9], obtaining r.e. λ-
theories which are closed under the ω-rule. This gives the counterintuitive result
that closure under the ω-rule does not necessarily give rise to non constructive
λ-theories, thus solving a problem of A. Cantini.

Then we have considered the ω-rule with respect to the highly non construc-
tive λ-theory H. H is obtained extending β-conversion by identifying all closed
unsolvables. Hω is the closure of this theory under the ω-rule (and β-conversion).
A long-standing conjecture of H. Barendregt ([4], Conjecture 17.4.15) stated that
the provable equations of Hω form a Π1

1-Complete set. In [10], we solved in the
affirmative the problem.

Of course the most important problem is to determine the logical power of
the ω-rule when added to the pure λβ-calculus.

This is also relevant for theorem provers such as Coq or Isabelle/HOL (see e.g.
[1], [2], [3]), where it seems very hard to automatically set up inductive arguments
to get universal conclusions. In this sense, the use of some (constructive) kind
of ω-rule is very appealing since one could get a universal conclusion from, say,
a finite number of cases. Typically, this happens when for every property P
of interest, there exists a computable upper bound k such that if every ground
term of complexity less than k satisfies P then ∀x.P (x) holds, so that a universal
conclusion can be obtained e.g. by a systematic search on a finite set of cases.

In [8], we showed that the resulting theory λω is not recursively enumerable,
by giving a many-one reduction of the set of true Π0

2 sentences to the set of
consequences of the λ-calculus with the omega rule, thus solving a problem
originated with H. Barendregt and re-raised in [6].

The problem of the logical upper bound to λω remained open. That this bound
is Π1

1 has been conjectured again by H. Barendregt in the well known Open
Problems List, which ends the 1975 Conference on ”λ-Calculus and Computer

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 178–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Science Theory”, edited by C. Böhm [5]. Here we solve in the affirmative this
conjecture. The celebrated Plotkin terms (introduced in [11]) furnish the main
technical tool.

2 The ω-Rule

The present paper requires acquaintance with [8], although we shall adopt a
somewhat different approach.

Notation will be standard and we refer to [4], for terminology and results on
λ-calculus. In particular:

≡ denotes syntactical identity;
−→β , −→η and −→βη denote β-, η- and, respectively, βη-reduction;
−→∗

β , −→∗
η and −→∗

βη their respective reflexive and transitive closures;
=β and =βη denote β- and, respectively, βη-conversion;
combinators (i.e. closed λ-terms) such e.g. I have the usual meaning;
k denotes the kth Church numeral.

We denote λ-terms by capital letters: in particular we adopt the convention
that H, J, M, N, P, Q, . . . are closed terms and U, V, X, Y, W, Z are possibly open
terms. For a λ-term the notions of having order 0 and having positive order
have the usual meaning ([4] 17.3.2). In the sequel, we shall need the following
notions. We define the notions of trace and extended trace (shortly etrace) as
follows. Given the reduction F −→∗

βη G and the closed subterm M of F the
traces of M in the terms of the reduction are simply the copies of M until
each is either deleted by a contraction of a redex with a dummy λ or altered
by a reduction internal to M or by a reduction with M at the head (when M
begins with λ). The notion of etrace is the same except that we allow internal
reductions, so that a copy of M altered by an internal reduction continues to be
an etrace.

By λβ we denote the theory of β-convertibility (see [4]). The theory λω is
obtained by adding the so called ω-rule to λβ, see [4] 4.1.10.

We formulate λω slightly differently. In particular, we want a formulation of
the theory such that only equalities between closed terms can be proven.

Definition 1. Equality in λω (denoted by =ω) is defined by the following rules:

– βη-conversion:
if M =βη N then M =ω N

– the rule of substituting equals for equals in the form:
if M =ω N then PM =ω PN

– transitivity and symmetry of equality,
– the ω-rule itself:

∀M, M closed, PM =ω QM

P =ω Q
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We are working here with βη-conversion for convenience. The so called η-rule
(that is (λx.Mx) =η M) obviously holds in λω. Nevertheless it will be useful to
have this rule at disposal to put proofs in some specified forms. We leave to the
reader to check that the formulation above is equivalent to the standard one.

As usual proofs in λω can be thought of as (possibly infinite) well-founded
trees. In particular the end piece of such a proof consists of a finite tree of equality
inferences all of whose leaves are either βη conversions or direct conclusions of
the ω-rule. It is easy to see that each such end piece can be put in the form:

F =βη G1M1 =ω G1N1 =βη G2M2 =ω G2N2 =βη . . .GtMt =ω GtNt =βη H

where Mi =ω Ni, for 1 ≤ i ≤ t are direct conclusions of the ω-rule. See [10],
Section 5, for more details (in a slightly different context). This is a particular
case of a general result due to the second author of the present paper, see [13].
Moreover, by the Church-Rosser Theorem this configuration of inferences can
be put in the form

F −→∗
βη J1

∗
βη ←− G1M1 =ω G1N1 −→∗

βη J2
∗
βη ←− (1)

∗
βη ←− G2M2 =ω G2N2 =βη−→∗

βη . . .

. . . ∗
βη ←− GtMt =ω GtNt −→∗

βη Jt+1
∗
βη ←− H

where Mi =ω Ni, for 1 ≤ i ≤ t, are as above. We shall call the sequence (1) the
standard form for the end piece of a proof.

Since proofs are infinite trees T they can be described by countable ordinals.
We shall need a few facts about countable ordinals, that we briefly mention in
the following. All we need here is exposed in [10], Section 6. For more details on
constructive ordinals, see e.g. [12].

(a) Cantor Normal Form to the Base Omega. (ω) Every countable
ordinal α can be written uniquely in the form ωα1 ∗ n1 + · · · + ωαk ∗ nk where
n1, . . . , nk are positive integers and α1 > . . . > αk are ordinals.

(b) Hessenberg Sum. Write α = ωα1 ∗n1+· · ·+ωαk ∗nk and γ = ωα1 ∗m1+
· · ·+ωαk ∗mk where some of the ni and mj may be 0. Then the Hessenberg Sum
is defined as follows: α⊕γ =def ωα1 ∗(n1+m1)+· · ·+ωαk ∗(nk+mk). Hessenberg
sum is strictly increasing on both arguments. That is, for α, γ different from 0,
we have: α, γ < α ⊕ γ.

(c) Hessenberg Product. We only need this for product with an integer.
We put: α 	 n =def α ⊕ · · · ⊕ α n-times.

Coming back to proofs, observe first that we can assume that if a proof has
an endpiece, then this endpiece is in standard form (see above). The ordinal that
we want to assign to a proof T (considered as a tree) is defined as follows:

Definition 2. The transfinite ordinal ord(T ), the order of T , is defined recur-
sively by:
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– If T ends in an endpiece computation of the form (1) with no instances
of the ω-rule (t = 0), that is consisting of a unique βη-conversion, then
ord(T ) =def 1;

– If T ends in an instance of the ω-rule whose premisses have trees resp.
T1, . . . Ti, . . . then ord(T ) =def ωθ, with θ = Sup{ord(T1) ⊕ · · · ⊕ ord(Ti) :
i = 1, 2, . . .};

– If T ends in an endpiece computation of the form (1), with t > 0 instances
of the ω-rule, and the t premisses M1 =ω N1, . . . , Mt =ω Nt have resp. trees
T1, . . . , Tt then ord(T ) =def 1 ⊕ ord(T1) ⊕ ord(T2) · · · ⊕ ord(Tt).

where ⊕ is the Hessenberg sum of ordinals defined above.

A proof of the following facts can be found in [10], Section 6.

1. Fact.
If T ends in an endpiece computation of the form (1), with t > 0, and
the equations M1 =ω N1, . . . , Mt =ω Nt, have resp. trees T1, . . . , Tt then
ord(T ) > ord(Ti), for each i = 1, . . . , t.

2. Fact.
Assume that T ends in an instance of the ω-rule whose premisses have,
respectively, trees T1, . . . , Tt, . . . Then for any integers t, n1, . . . , nt, ord(T ) >
ord(T1) 	 n1 ⊕ · · · ⊕ ord(Tt) 	 nt.

3 Canonical Proofs

We want to show that proofs in λω can be set in a suitable form.

Definition 3. We say that M has the same form as N iff:

– if N ≡ λy1 . . . yn.Y L1 . . . Lm, with Y beginning with λ,
then M ≡ λy1 . . . yn.ZP1 . . . Pm, with Z beginning with λ and
λy1 . . . yn.Y =ω λy1 . . . yn.Z,
and for every i, with 1 ≤ i ≤ m,
λy1 . . . yn.Li =ω λy1 . . . yn.Pi;

– if N ≡ λy1 . . . yn.yjL1 . . . Lm, then M ≡ λy1 . . . yn.yjP1 . . . Pm,
and for every i, with 1 ≤ i ≤ m,
λy1 . . . yn.Li =ω λy1 . . . yn.Pi.

Where possibly n = 0.

Assume now that a set X of closed terms, cofinal for βη-reductions, has been
specified.

Definition 4. An endpiece in standard form:

F −→∗
βη H1

∗
βη ←− G1M1 =ω G1N1 −→∗

βη H2
∗
βη ←− (2)

∗
βη ←− G2M2 =ω G2N2 =βη−→∗

βη · · ·
. . . ∗

βη ←− GtMt =ω GtNt −→∗
βη Ht+1

∗
βη ←− F ′
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is called an X -canonical endpiece (or, when X is clear from the context, simply
a canonical endpiece) iff

1. for every i, i = 1, . . . , t + 1, the confluence terms Hi belong to X ;
2. (Conditions on the Left Facing Arrows)

for every i, i = 1, . . . , t, the sequence of reductions:
Hi

∗
βη ←− GiMi

has the following structure:
- a one step β-reduction of the form [Mi/x]X β ←− (λx.X)Mi, for some

X, where we moreover require that λx.X has not the form: λxz1 . . . zn.
xU1 . . . Us,

- followed by a sequence of non-head β-reductions,
- followed by a sequence of η-reductions.

3. (Condition on the Right Facing Arrows)
for i = 1, . . . , t, assume that in the βη-reduction component:
GiMi =ω GiNi −→∗

βη Hi+1
Gi has the form:
λx.λy1 . . . yn.((λy.Y )L1 . . . Lm)Z1 . . . Zn

and [Ni/x]Zj −→∗
βη yj, for every j, with 1 ≤ j ≤ n,

moreover let Pk, with k = 0, . . . , m, range over the sequence:
[Ni/x]λy.Y , [Ni/x]L1, . . . [Ni/x]Lm;
if Pk has a βη-normal form Rk let Jk ≡def Rk and otherwise set:
Jk ≡def Pk;
finally let the term H+

i+1 be defined as follows:

H+
i+1 ≡ J0J1 . . . Jm (3)

we require that
GiNi −→∗

βη H+
i+1 −→∗

βη Hi+1.

Remark. Observe that, in a canonical endpiece of the form (2) above, each Gi

is of the form λx.X , for some X , and [Mi/x]X reduces, by a (possibly empty)
sequence of η-reductions, to a term of the same form as Hi.

Definition 5. Given the cofinal set X , the notion of X -canonical proof is de-
fined inductively as follows.

– A βη-conversion is X -canonical if the confluence term belongs to X .
– An instance of the ω-rule is X -canonical if the proofs of the premisses of the

instances are X -canonical.
– Otherwise a proof is canonical if its endpiece is a X -canonical endpiece and

all the proofs of the leaves which are direct conclusions of the ω-rule are
X -canonical.

Proposition 1. For every cofinal set X , every provable equality M =ω N has
a X -canonical proof.
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Proof. Let X fixed. We prove this proposition by induction on the ordinal ord(T )
of a proof T of M =ω N . For the basis case just suppose that M =βη N and
use the Church-Rosser theorem.

For the induction step we distinguish two cases.
Case 1: M =ω N is the direct conclusion of the ω-rule. This follows directly

from the induction hypothesis.
Case 2: T has an endpiece of the form:

M −→∗
βη H1

∗
βη ←− G1M1 =ω G1N1 −→∗

βη H2
∗
βη ←− (4)

∗
βη ←− G2M2 =ω G2N2 =βη−→∗

βη · · ·
· · · ∗

βη ←− GtMt =ω GtNt −→∗
βη Ht+1

∗
βη ←− N

where, for each i = 1 . . . t, Mi =ω Ni is the conclusion of an instance of the
ω-rule.

Consider the first component of (4): M −→∗
βη H1

∗
βη ←− G1M1 =ω G1N1.

Let σ be a standard βη-reduction G1M1 −→∗
βη H1, with all the η-reductions

postponed. We have now different subcases.

First Subcase. No etrace of M1 appears in functional position in a head redex
neither in the head part of σ, nor in H1 itself (that is H1 has not a head redex
of the form (λx.U)V , with λx.U an etrace of M1).

In this case, the same head reductions can be performed (up to a substitution
of M1 by N1) in the G1N1 side. Thus simply replacing G1, we may freely assume
that this head part is missing at all and thus σ is composed only of non-head
β-reductions followed by η-reductions. Moreover, by our hypothesis, we can also
assume that G1 has not the form:

λxy1 . . . yp. xY1 · · · Yq.

On the G1N1 side, the Conditions on the Right Facing Arrows may require a
reduction of G1N1 to a suitable term H+.

By the Church-Rosser Theorem and the cofinality of X , let H be a term in
X , which is a common reduct of H+ and H2. Now, there exists a proof T ′ of
H =ω N , with ord(T ′) < ord(T ). Thus by induction hypothesis there exists a
canonical proof T1 of H =ω N . Now, the required canonical proof is obtained by
concatenating the component:

M −→∗
βη H1

∗
βη ←− G1M1 =ω G1N1 −→∗

βη H ;

with T1.
That this concatenation results in a canonical proof can be easily checked in

case T1 ends in an instance of the ω-rule as well as in case T1 ends in an endpiece.

Second Subcase. An etrace of M1 appears in functional position in a head redex
of the head part of σ, or in H1 itself.

Assume moreover that in the head part of σ, a λ appears at the beginning of
some term in this head reduction.
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Thus we have, for some U , G1M1 −→∗
βη λu.U −→∗

βη H1. For any closed term
R, consider the reduction:

G1M1R −→∗
βη (λu.U)R −→βη [R/u]U −→∗

βη H ′.

Where H ′ is [R/u]H1. This can be done for every λ appearing in the head part
of σ. Thus for each choice of closed R1 . . . Rn we have a standard β-reduction σ′

of G1M1R1 . . . Rn to a term H”, which is H1 with each abstracted variable uj

substituted by the corresponding closed term Rj .
Now in the head reduction part of σ′, we come to a term V with a head redex

of the form: (λu.W )U , where M1 −→∗
βη λu.W ; let V ≡ (λu.W )UU1 · · ·Uv, we

write V in the form: (λu.W )[V1/x1, . . . , Vr1/xr1 ]
−→
X 1, showing all the etraces of

M1 in V . Then:

(∗) M1[N1/x1, . . . , N1/xr1 ]
−→
X 1 =ω N1[N1/x1, . . . , N1/xr1 ]

−→
X 1

has a proof with ordinal (much) less than ord(T ). Now, consider the component:

MR1 · · · Rn −→∗
βη H” ∗

βη ←− M1[M1/x1, . . . , M1/xr1 ]
−→
X 1 =ω

=ω M1[N1/x1, . . . , N1/xr1 ]
−→
X 1

The reduction M1[M1/x1, . . . , M1/xr1 ]
−→
X 1 −→∗

βη H” has a head part shorter
than σ′. Thus, iterating the previous transformation for each occurrence M1 in
functional position in the head reduction part of σ′, we arrive to a final sequence
of terms −→

X s such that M1[M1/x1, . . . , M1/xrs ]
−→
X s is the last such occurrence of

M1. Therefore, for what concerns the component:

MR1 . . . Rn −→∗
βη H” ∗

βη ←− M1[M1/x1, . . . , M1/xrs ]
−→
X s =ω

=ω M1[N1/x1, . . . , N1/xrs ]
−→
X s

we can argue as in the First Subcase above.
On the right hand side, observe that the iteration of the previous argument

gives rise to a chain of equalities (where for simplicity, we do not consider re-
duction internal to M1; this does not affect the argument):

N1[N1/x1, . . . , N1/xr1 ]
−→
X 1 =ω NR1 . . . Rn

N1[N1/x1, . . . , N1/xr1 ]
−→
X 1 =ω M1[N1/x1, . . . , N1/xr1 ]

−→
X 1

M1[N1/x1, . . . , N1/xr1 ]
−→
X 1 =ω M1[M1/x1, . . . , M1/xr1 ]

−→
X 1

M1[M1/x1, . . . , M1/xr1 ]
−→
X 1 −→∗

βη M1[M1/x1, . . . , M1/xr2 ]
−→
X 2

M1[N1/x1, . . . , N1/xr1 ]
−→
X 1 −→∗

βη N1[N1/x1, . . . , N1/xr2 ]
−→
X 2

M1[M1/x1, . . . , M1/xr2 ]
−→
X 2 =ω M1[N1/x1, . . . , N1/xr2 ]

−→
X 2

M1[N1/x1, . . . , N1/xr2 ]
−→
X 2 =ω N1[N1/x1, . . . , N1/xr2 ]

−→
X 2

. . .

M1[N1/x1, . . . , N1/xrs ]
−→
X s =ω N1[N1/x1, . . . , N1/xr1 ]

−→
X s
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from this chain, by Fact 2 of Section 2, one obtains a proof of M1[N1/x1, . . . ,

N1/xrs ]
−→
X s =ω NR1 . . . Rn, with an ordinal less than ord(T ). We can also sub-

stitute M1[N1/x1, . . . , N1/xrs ]
−→
X s with a suitable reduct H , meeting the Con-

ditions on the Right Facing Arrows w.r.t. M1[N1/x1, . . . , N1/xrs ]
−→
X s and the

cofinality condition w.r.t. X . Still, H =ω NR1 . . . Rn has a proof with ordinal
less than ord(T ). Thus by induction hypothesis there exists a canonical proof
T1 of H =ω NR1 . . . Rn. Now, we can concatenate the component:

MR1 . . . Rn −→∗
βη H” ∗

βη ←− (λx.M1[x/x1, . . . , x/xrs ]
−→
X s)M1 =ω

=ω (λx.M1[x/x1, . . . , x/xrs ]
−→
X s)N1 −→∗

βη H ;

with T1.
That this concatenation results in a canonical proof can be easily checked in

case T1 ends in an instance of the ω-rule as well as in case T1 ends in an endpiece.
Thus we have proved the following: for every R1 . . . Rn, there exists a canonical

proof of MR1 . . . Rn =ω NR1 . . . Rn.
Now, n applications of the ω-rule gives the required canonical proof of

M =ω N .

Third Subcase. An etrace of M1 appears in functional position in a head redex
of the head part of σ. Assume moreover that in the head part of σ, no λ appears
at the beginning of any term in this head reduction. This case can be treated as
the previous one, with the difference that the resulting canonical proof ends in
a canonical endpiece, rather than in an instance of the ω-rule. QED

4 Plotkin Terms

Recall that H, M, N, P, Q always denote closed terms. Let 
M� denote the
Church numeral corresponding to the Gödel number of the term M . By Kleene’s
enumerator construction ([4] 8.1.6) there exists a combinator J such that J
M�
β-converts to M , for every M . The combinator J can be used to enumerate vari-
ous r.e. sets of closed terms. In particular, let X be a r.e. set of terms, and let TX
be a term representing the r.e. function that enumerates X . Set E ≡ λx.J(TXx).
It is well known that we can assume that E is in βη-normal form. We call E a
generator of X . As usual we shorten En with En. We also suppress the depen-
dency of E from J and X , when it is clear from the context.

Now, by the methods of proof used in [8], which make use of modified forms
of the celebrated Plotkin terms ([4] 17.3.26), one can prove the following:

Lemma 1. Given a r.e. set of terms X and a generator E of X , there exists a
term H such that for every M the following holds:
HE0 =ω HM iff for some k, M =ω Ek.

An extension of this technique can be used to determine whether two sets X and
Y, with generators EX and, respectively, EY , have non empty intersection (up
to equality in λω):
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Lemma 2. Given two sets of terms X and Y, with generators EX and, respec-
tively, EY , there exist two terms P and Q such that :
PEXEY =ω QEXEY iff for some k and j, EX

k =ω EY
j .

Now, consider r.e. sets of terms X [x], all containing a specified variable x as
unique free variable. Let the generator E[x] be constructed accordingly. Of course
E[x] contains the variable x. By again exploiting the above mentioned methods
of [8], we can prove:

Lemma 3. There exists a term H ≡ λx.U , for some term U containing the
free variable x as unique free variable, such that for every M and for every N :
[N/x]U([N/x]E0[x]) =ω [N/x]U M iff for some k, M =ω [N/x]Ek[x]

Proof (Sketch). The lemma follows applying Lemma 1 to the set X [N/x]. QED

Lemma 4. There exist terms P ′ and Q′ such that for every M : P ′M =ω Q′M
iff for all k, M �=ω k.

Proof. In [8], we constructed Plotkin terms P and Q such that for every n:
Pn =ω Qn iff n is the Gödel number of a closed term which does not βη-convert
to a Church numeral. Consider now the following two sets of terms:

X [x] ≡ {< n, x, Pn > |n ∈ N} and Y ≡ {< n, Jn, Qn > |n ∈ N}.

Let EX [x][x] and, respectively, EY be the corresponding generators.
By Lemma 2, for every M there exist terms PM and QM such that: PM ([M/x]

EX [x][x])EY =ω QM ([M/x]EX [x][x])EY iff for some k and j:

[M/x]EX [x]
k [x] =ω EY

j

that is iff M does not βη-convert to a Church numeral (recall that J
M� β-
converts to M).

Now the construction can be made uniform on the parameter M , giving two
terms, P ′ and Q′ such that for every M :

P ′M =ω Q′M iff M does not βη-convert to a Church numeral, and, by Propo-
sition 4 in [8], iff M is not ω-equal to a Church numeral. QED

Lemma 5. Let P and Q be closed terms. Then we can construct terms F and
G such that for every M , PM =ω QM iff FM =ω G.

Proof. This is done by intersecting the ω-closure of the two sets: X the set of
all pairs < N, N >, N a closed term; Y the set of all pairs < PM, QM >, M a
closed term. QED

Summing up the result of all the previous lemmas, we have the following propo-
sition:

Proposition 2. There exist two terms H1 and H2 such that for every M :

H1M =ω H2 iff for all k,
M �=ω k.

We shall make extensive use of terms H1 and H2 in the following Section.
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5 Barendregt Construction

We make the following definitions, which will hold in all the present and the
next Section:

Definition 6

1. Θ ≡ (λab.b(aab))(λab.b(aab)) (Turing’s fixed point).
2. W ≡ λxy.xyy
3. J ≡ (λxyz.λabc.xy(z(yc))bac)
4. F ≡ ΘJH1 ≡ (λab.b(aab))(λab.b(aab))(λxyz.λabc.xy(z(yc))bac)H1

5. G ≡ ΘWH2 ≡ (λab.b(aab))(λab.b(aab))(λxy.xyy)H2

Observe:
(i) G −→βη λb.b(Θb)WH2 −→βη W(ΘW)H2 −→βη ΘWH2H2 ≡ GH2

(ii) FZABC −→∗
βη (in 8 steps) ΘJH1(Z(H1C))BAC ≡ FZ∗BAC.

Let gk be the cofinal Gross-Knuth strategy defined in [4] 13.2.7. By writing
gk(M), we mean the term obtained by starting with the term M and applying
(once) the gk strategy.

Then the reduction sequences:

(i) G −→∗
βη G(gk(H2)) −→∗

βη GH2(gk(H2)) −→∗
βη

−→∗
βη G(gk(H2))(gk((gk(H2)))) −→∗

βη · · ·
(ii) FZABC −→∗

βη F (gk(Z∗))(gk(B))(gk(A))(gk(C)) −→∗
βη

F (gk((gk(Z∗))∗))(gk(gk(A)))(gk(gk(B)))(gk(gk(C))) −→∗
βη · · ·

are cofinal for βη-reductions starting with G and, respectively, with FZABC.
For the cofinal set of confluence terms we require only that in the reduction:

P −→∗
βη H ∗

βη ←− LQ =ω LR

if P βη-reduces to a term with F at the head then H begins with F and if P
has positive order then H begins with λ.

Lemma 6. If GM1 . . .Mm =ω GN1 . . .Nm then, for each i, 1 ≤ i ≤ m,
Mi =ω Ni.

Proof. By induction on the ordinal of a canonical proof T of GM1 . . .Mm =ω

GN1 . . . Nm.

Basis. ord(T ) is 1. This case is clear since G is of order 0.

Induction step. Case 1. T ends in an application of the ω-rule. Apply the induc-
tion hypothesis to the subproof of GM1 . . .MmI =ω GN1 . . . NmI.

Induction step.Case 2. T has the endpiece GM1 . . . Mm −→∗
βη R1

∗
βη ←− L1P1

=ω L1Q1 −→∗
βη R2

∗
βη ←− L2P2 =ω L2Q2 −→∗

βη . . . −→∗
βη Rt+1

∗
βη ←−

GN1 . . . Nm.
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Since T is canonical every term Ri has the form ΘWH∗
1 . . . H∗

nM∗
1 . . . M∗

m

where H∗
j =ω H2 and M∗

i =ω Mi for j = 1, . . . , n and i = 1, . . . , m. This
completes the proof. QED

Lemma 7. Suppose that:

– FL1P1Q1R1M1 . . . Mm =ω FL2P2Q2R2N1 . . . Nm;
– R1 =ω R2 =ω n, for some n;
– L1 =ω G(H1n) . . . (H1n), k times;
– L2 =ω G(H1n) . . .H1n), l times.

Then either P1 =ω P2, Q1 =ω Q2 and k = l mod 2 or P1 =ω Q2, Q1 =ω P2 and
k = l+1 mod 2. (Where, possibly, k = 0 or l = 0.)

Proof. By induction on the ordinal of a canonical proof of:
FL1P1Q1R1M1 . . . Mm =ω FL2P2Q2R2N1 . . . Nm.

Basis. The ordinal is 1 and we have a βη-conversion. Use a standard argument,
taking into account that by Proposition 2 the copies of H2 are distinct, w.r.t.
ω-equality, from the copies of H1n. Therefore the β-reduction of G cannot affect
the count of the copies of H1n.

Induction step.
Case 1. The proof ends in an application of the ω-rule. Just apply the induction
hypothesis to any of the premisses.
Case 2. The proof has a canonical endpiece beginning with a component:

FL1P1Q1R1M1 . . .Mm −→∗
βη H ∗

βη ←− LQ =ω LR −→∗
βη H+.

Now H has the same form as FL1P1Q1R1M1 . . . Mm by the choice of the cofi-
nal set. W.l.o.g. we can assume that the reduction from FL1P1Q1R1M1 . . . Mm

to H is a standard β-reduction followed by a sequence of η-reductions. The 8
term head reduction cycle of F with 4 arguments must be completed an integral
number of times to result in a term which η-reduces to one with F at the head.
Suppose that this cycle is completed s times and let r = k + s.

On the other hand, since the endpiece is canonical L, after a sequence (possibly
empty) of η-reductions, reduces to a term of the form:

λz.X0X2X3X4X5X6X7X8Y1 . . . Ym

where X0 = λx.X1.
This follows from the fact that we have to obtain H by internal reductions

and Q is not substituted for a variable in functional position in a head redex.
It follows, using for some items Proposition 4 of [8], that:

– [Q/z]X0 −→∗
βη λab.b(aab) and [Q/z]X2 −→∗

βη λab.b(aab);
– [Q/z]X3 −→∗

βη J ;
– [Q/z]X4 =ω H1

– [Q/z]X5 =ω GH2 . . .H2(H1n) . . . (H1n),
with t occurrences of H2, due to the possible β-reduction of G, and r oc-
currences of H1n, since we have started with k copies of H1n, and each
reduction cycle of F adds a copy;
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– [Q/z]X6 =ω P1 if s ≡ 0 mod 2 or [Q/z]X6 =ω Q1 if s ≡ 1 mod 2,
this item, and the following one, results from the fact the each reduction
cycle of F interchanges P1 and Q1;

– [Q/z]X7 =ω Q1 if s ≡ 0 mod 2 or [Q/z]X7 =ω P1 if s ≡ 1 mod 2;
– [Q/z]X8 −→∗

βη n;
– [Q/z]Yi =ω Mi, for every 1 ≤ i ≤ m.

From the fact that P =ω R, and using again Proposition 4 of [8], we have:

– [R/z]X0 −→∗
βη λab.b(aab) and [R/z]X2 −→∗

βη λab.b(aab);
– [R/z]X3 −→∗

βη J ;
– [R/z]X4 =ω H1;
– [R/z]X5 =ω GH2 . . .H2(H1n) . . . (H1n) with t occurrences of H2 and r

occurrences of H1n;
– [R/z]X6 =ω P1 if s ≡ 0 mod 2 or [R/z]X6 =ω Q1 if s ≡ 1 mod 2;
– [R/z]X7 =ω Q1 if s ≡ 0 mod 2 or [R/z]X7 =ω P1 if s ≡ 1 mod 2;
– [R/z]X8 −→∗

βη n;
– [R/z]Yi =ω Mi , for every 1 ≤ i ≤ m.

Observe moreover that H+, because of its construction, has the same form as
H (up to some η-reductions). Say H+ ≡ FL+

1 P+
1 Q+

1 nM+
1 . . . M+

m. Moreover, we
can freely assume that L+

1 is G(H1n) . . . (H1n) with no occurrence of H2 and
r occurrences of H1n. This amounts to start with a different term and then
perform t β-reductions of G. By Proposition 2 the copies of H2 are distinct,
w.r.t. ω-equality, from the copies of H1n. Therefore the β-reduction of G cannot
affect the count of the copies of H1n.

The part of the proof beginning with H+ is a canonical proof that H+ =ω

FL2P2Q2R2N1 . . . Nm because the cofinality restriction met for LR also works
for H+ . Thus the induction hypothesis applies to this proof.

Now the idea is that r and l have “to be in accordance” by induction hypoth-
esis. On the other hand k differs from r only for s cycles of F , and therefore they
behave in the right way. So the required property is obtained by transitivity.
Formally:

Subcase 2.1. P+
1 =ω P2, Q+

1 =ω Q2 and r ≡ l mod 2.
In case s is even we have P1 =ω P2 and Q1 =ω Q2 and k ≡ l mod 2. In
case s is odd we have k and l with opposite parity and Q1 =ω P+

1 =ω P2,
P1 =ω Q+

2 =ω Q2.

Subcase 2.2. P+
1 =ω Q2, Q+

1 =ω P2 and r ≡ l + 1 mod 2.
In case s is even we have P1 =ω Q2 and Q1 =ω P2 and k ≡ l+1 mod 2. In case s is
odd we have k and l with same parity and P1 =ω Q+

1 =ω P2, Q1 =ω P+
2 =ω Q2.

This completes the proof. QED

5.1 Well Founded Trees

We assume that we have encoded sequences of numbers as numbers, with 0
encoding the empty sequence. < n > is the sequence consisting of n alone (sin-
gleton) and ∗ is the concatenation function. For simplicity, we shall use these
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notations ambiguously for the corresponding λ-terms. We require only that the
term y ∗ < z > is in βη-normal form with zII at its head (this construction can
be obtained “making normal” a term representing ∗, see [14]).

Our proof of Π1
1-completeness of λω is inspired by the argument in Section

17.4 of [4] (however, we will substantially modify Barendregt’s construction).
The starting point is the following well known theorem (see [7] Ch.16 Th.20):

Theorem 1. The set of (indices of) well founded recursive trees is Π1
1-complete.

and the idea is to reduce the well-foundness of a recursive tree to the equality
of two suitable terms in λω.

Suppose that we have a primitive recursive tree t with a representing term T
such that

Tn −→∗
βη

{
K if n is the number of a sequence in t;
K∗ otherwise.

Define:

A ≡def Θ(λx.λa.a(λy.Ty(λz.FG(xK(y ∗ < z >))
(xK∗(y ∗ < z >))z))(λy.Ty(λz.FG(xK∗(y ∗ < z >))
(xK(y ∗ < z >))z)))K

B ≡def Θ(λx.λa.a(λy.Ty(λz.FG(xK(y ∗ < z >))
(xK∗(y ∗ < z >))z))(λy.Ty(λz.FG(xK∗(y ∗ < z >))
(xK(y ∗ < z >))z)))K∗

Clearly:

A −→∗
βη λy.Ty(λz.FG(A(y ∗ < z >))(B(y ∗ < z >))z)

B −→∗
βη λy.Ty(λz.FG(B(y ∗ < z >))(A(y ∗ < z >))z)

Now we state a corollary to Lemma 7.

Corollary 1. If FG(An)(Bn)nM1 . . . Mm =ω FG(Bn)(An)nN1 . . .Nm then
An =ω Bn.

Lemma 8. If the subtree t(n) of the tree t rooted at n is well-founded then
An =ω Bn.

Proof. By induction on the ordinal of the subtree t(n), which is defined in the
natural way. Note that if n is not the number of a sequence in the tree then
Tn −→∗

βη K∗ so An −→∗
βη I ∗

βη ←− Bn.

Basis. The ordinal is 0 so the tree t(n) contains only the empty sequence. Sup-
pose that 0 is the number of the empty sequence. Then:

A0 −→∗
βη λzFG(A(0 ∗ < z >))(B(0 ∗ < z >))zB0 −→∗

βη

−→∗
βη λzFG(B(0 ∗ < z >))(A(0 ∗ < z >))z
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and if N βη-converts to a Church numeral then:

A0N −→∗
βη FGIIN ∗

βη ←− B0N

and if N does not beta eta convert to a Church numeral then

A0N −→∗
βη FG(A(0 ∗ < N >))(B(0 ∗ < N >))N −→∗

βη

−→∗
βη F (G(H1N))(B(0 ∗ < N >))(A(0 ∗ < N >))N =ω

=ω F (GH2)(B(0 ∗ < N >))(A(0 ∗ < N >))N ∗
βη ←− B0N.

Induction Step. The ordinal of the subtree rooted at n is larger than 0. We have:

An −→∗
βη λz.FG(A(n ∗ < z >))(B(n ∗ < z >))z

Bn −→∗
βη λz.FG(B(n ∗ < z >))(A(n ∗ < z >))z

now, if N βη-converts to a Church numeral, then:

AnN −→∗
βη FG(A(n ∗ < N >))(B(n ∗ < N >))N =ω

(by induction hypothesis)

=ω FG(B(n ∗ < N >))(A(n ∗ < N >))N ∗
βη ←− BnN

and if N does not βη-convert to a Church numeral, then:

AnN −→∗
βη FG(A(n ∗ < N >))(B(n ∗ < N >))N −→∗

βη

−→∗
βη F (G(H1N)(B(n ∗ < N >))(A(n ∗ < N >))N =ω

F (GH2)(B(n ∗ < N >))(A(n ∗ < N >))N ∗
βη ←− BnN.

So by the ω-rule An =ω Bn. This completes the proof. QED

Proposition 3. An =ω Bn iff the subtree t(n) rooted at n is well-founded or n
is not in the tree t.

Proof. Consider all canonical proofs of smallest ordinal of An = Bn for n in the
tree t, and assume the subtree t(n) rooted at n is not well-founded. Let T be
such a proof.

Case 1. T is a βη-conversion. It is easily seen that this is impossible.

Case 2. T ends in the ω-rule. Then for each m, Anm =ω Bnm has a canonical
proof of smaller ordinal. Now:

Anm −→∗
βη λy.Ty(λz.FG(A(y ∗ < z >))(B(y ∗ < z >))z)nm −→βη

Tn(λz.FG(A(n ∗ < z >))(B(n ∗ < z >))z)m −→∗
βη

(λz.FG(A(n ∗ < z >))(B(n ∗ < z >))z)m −→βη

FG(A(n ∗ < m >))(B(n ∗ < m >))m

and reducing in a similar way Bnm, we see that

FG(A(n ∗ < m >))(B(n ∗ < m >))m =ω

=ω FG(B(n ∗ < m >))(A(n ∗ < m >))m
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has a proof of the same (smaller) ordinal. Thus by Lemma 7, either

A(n ∗ < m >) =ω B(n ∗ < m >)

has a proof with the same or smaller ordinal or, by Lemma 6, H1n =ω H2.
Now the second alternative is impossible by Proposition 2, thus by induction

hypothesis, the extension of n∗ < m > in the tree is well-founded.
So, every extension of n in the tree is well-founded. Thus the subtree rooted

at n is well-founded. This contradicts the choice of n.
Case 3. T has an endpiece.

Now, a canonical proof with endpiece would have to begin:
An −→∗

βη (λz.FG(A(n ∗ < z >))(B(n ∗ < z >))z) . . ., by choice of confluence
terms.

Now for each m we have a proof with the same ordinal as:

Anm −→∗
βη (λz.FG(A(n ∗ < z >))(B(n ∗ < z >))z)m −→∗

βη

. . . ∗
βη ←− Bnm.

Now consider that the endpiece is separated so that each Hi has the same form
as

[Mi/x]Gi, for each i.

So, to equalize FG(A(n ∗ < m >))(B(n ∗ < m >))m with FG(B(n ∗ <
m >))(A(n ∗ < m >))m, it is necessary that some of instances of the ω-rule,
occurring in the endpiece, supplies a proof of A(n ∗ < m >) =ω B(n ∗ < m >).

So by the previous case, the extension of n∗ < m > in the tree is well-founded.
Thus every extension of n in the tree is well-founded and again we contradict
the choice of n. This completes the proof. QED

Proposition 4. The set {(M, N)|M =ω N} is Π1
1-complete.

Proof. It easy to see that equality in λω is Π1
1. On the other hand, given any

recursive tree t construct the terms A and B (observe that the construction is
effective and uniform on (the term T representing) t). Then use Proposition 3
to determine (via equality in λω) if t is well founded. QED
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5. Böhm, C. (ed.): Lambda-Calculus and Computer Science Theory. LNCS, vol. 37.
Springer, Heidelberg (1975)

6. Flagg, R.C., Myhill, J.: Implication and Analysis in Classical Frege Structure.
Annals of Pure. and Applied Logic 34, 33–85 (1987)

7. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. Mac-
Graw Hill, New York (1967)

8. Intrigila, B., Statman, R.: The Omega Rule is Π0
2 -Hard in the λβ-Calculus. LICS

2004, pp. 202–210. IEEE Computer Society, Los Alamitos (2004)
9. Intrigila, B., Statman, R.: Some Results on Extensionality in Lambda Calculus.

Annals of Pure. and Applied Logic 132(2-3), 109–125 (2005)
10. Intrigila, B., Statman, R.: Solution of a Problem of Barendregt on Sensible λ-

Theories. Logical Methods in Computer Science, vol. 2(4) (2006)
11. Plotkin, G.: The λ-Calculus is ω-incomplete. J. Symbolic Logic, vol. 39, pp. 313–317
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Abstract. In our previous work [17] we have shown that for any �-algebraic
meet-cpo D, if all higher-order stable function spaces built from D are
�-algebraic, then D is finitary. This accomplishes the first of a possible, two-
step process in solving the problem raised in [1,2]: whether the category of stable
bifinite domains of Amadio-Droste-Göbel [1,6] is the largest cartesian closed full
sub-category within the category of �-algebraic meet-cpos with stable functions.
This paper presents results on the second step, which is to show that for any
�-algebraic meet-cpo D satisfying axioms M and I to be contained in a carte-
sian closed full sub-category using �-algebraic meet-cpos with stable functions,
it must not violate MI� . We introduce a new class of domains called weakly dis-
tributive domains and show that for these domains to be in a cartesian closed cate-
gory using �-algebraic meet-cpos, property MI� must not be violated. We further
demonstrate that principally distributive domains (those for which each principle
ideal is distributive) form a proper subclass of weakly distributive domains, and
Birkho�’s M3 and N5 [5] are weakly distributive (but non-distributive). We intro-
duce also the notion of meet-generators in constructing stable functions and show
that if an �-algebraic meet-cpo D contains an infinite number of meet-generators,
then [D � D] fails I. However, the original problem of Amadio and Curien re-
mains open.

1 Introduction

Domains are order-theoretic structures initiated by Dana Scott in the late 1960s for suit-
able mathematical spaces to accommodate denotations of programs. Their rich struc-
tural properties are often manifested collectively as categorical properties such as carte-
sian closedness, with important computational consequences. The interplay between
domain theory and denotational semantics of programming languages is much inspired
by the pursue of “full abstraction” [9]. Full completeness addresses the related problem
of ensuring that mathematical spaces naturally generated by a certain set of base do-
mains (the interpretation of base types) using computationally meaningful categorical
constructs do not contain computationally irrelevant elements.
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Stable domain theory was initiated by Berry [3] in the late 1970s as an attempt to
cut down computationally irrelevant elements typically found in function spaces based
on Scott continuity alone. The hallmark of stable domain theory is that an element
realizing finite computation never involves an approximation sequence beyond finitely
many steps.

As with many scientific developments, although stable domain theory itself turned
out not to be the solution to the full abstraction problem that motivated it, it has since
played significant roles in linear logic (Girard [8]), concurrency (Winskel [13]), poly-
morphism in PCF (Coquand [4]), and object-oriented programming (Reddy [11]).

The existence of a variety of cartesian closed categories of domains motivated a
systematic investigation of the question of “largest cartesian closed categories of do-
mains”, starting with the work of Smyth [12]. Similar development on stable domains
has occurred only more recently. The second author showed [15] that Berry’s category
of dI-domains is the largest cartesian closed category inside the category of Scott do-
mains (which are bounded complete) with stable functions. In [1,6], appropriate notions
of stable domains beyond the bounded complete ones were investigated, in an e�ort to
provide an understanding of how the stable order may be extended to SFP-like do-
mains [10]. An interesting new category called stable bifinite domains was introduced
in [1,6]. An important conceptual question (see Amadio and Curien [2], pages 287–291)
is: whether the category of stable bifinite domains of Amadio-Droste-Göbel [1,6] is the
largest cartesian closed full sub-category of the category of �-algebraic meet-cpos with
stable functions.

The paper by Amadio [1] presents a first explicit formulation and serious attack on
this open problem. The main result of [1] is that the finite ascending chain condition
and finite descending chain condition must be maintained in any stable cartesian closed
category composed of �-algebraic meet-cpos. These conditions account for two of the
three cases for which a principal ideal determined by a compact element may violate
axiom I (i.e., a compact element dominates only finitely many elements). The third case
is the finite antichain condition: any principal ideal determined by a compact element
must not contain an infinite antichain. In recent work [17] we solved the finite antichain
case which leads to the immediate conclusion that axiom I must be maintained in any
cartesian closed full sub-category composed of �-algebraic meet-cpos with stable func-
tions. This accomplishes the first of a two step process in solving the problem raised by
Amadio and Curien. This paper presents results on the second step, which is to show
that for any �-algebraic meet-cpo D satisfying axioms M and I to be contained in a
cartesian closed full sub-category using �-algebraic meet-cpos with stable functions, it
must not violate MI� .

In this paper we introduce a new class of domains called weakly distributive do-
mains and show that for these domains to be in a cartesian closed full sub-category
using �-algebraic meet-cpos with stable functions, it must not violate MI� . We further
demonstrate that principally distributive domains (those for which each principle ideal
is distributive) form a proper subclass of weakly distributive domains, and Birkho�’s
M3 and N5 [5] are weakly distributive (but non-distributive). We introduce also the no-
tion of meet-generators in constructing stable functions and show that if an �-algebraic
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meet-cpo D contains an infinite number of generators, then [D � D] fails I. However,
the original problem of Amadio and Curien remains open.

2 Preliminaries

We briefly summarize the relevant results in [17] in this section to fix notations and set
the background for this paper.

By convention, we use � x for the lower set �y � y � x� and � x for the upper set
�y � y � x�. Also, by a � b we mean that a and b are compatible, that is, there exists an
element z such that a � z and b � z, and a 	�b denotes a and b are incompatible.

The basic property of a conditional multiplicative (cm) function is that it preserves
the meet of any pair of compatible elements. Thus bounded meets should exist for
stability to make sense (item (a) below). Meet should also interact smoothly with the
join of any directed set (item (b) below). The stable order then arises naturally from the
minimal requirement that the evaluation map (for cartesian closure) is stable [3].

Definition 1. Let D be a dcpo (with bottom). It is called a meet-cpo if

(a) for any x� y 
 D, x � y exists when �x� y� is bounded above (or compatible),

(b) if R � D is a directed set and x is compatible with the join of R, then

x � (
�

R) �
�

�x � r � r 
 R��

Beyond Scott domains and inside �-algebraic domains there are the stable bifinite do-
mains [1] which also form a cartesian closed category [6,7]. Stable bifinite domains
are �-algebraic meet-cpos for which the identity function can be expressed as the join
(under the stable order) of a directed set of stable projections with finite images.

Some notational preparation is needed for the concept of stable bifinite domain. Let
mub(X) be the set of minimal upper bounds (mubs) of X. Let � (X) :�

�
�mub(Y) �

Y �fin X�, where �fin denotes the “finite subset” relation. A set is called mub-closed if
�(X) � X. An SFP domain, according to Plotkin, is an �-algebraic cpo with property
M, such that every finite set X of compact elements has a finite mub-closure. Stable
bifinite domains are similar to SFP domains, but a stronger condition holds: for any
finite set of compact elements, there is a finite superset, closed under the combination
of down-closure and mub-closure. More precisely, let (mub� down)(X) :� �(�(X)). A
set X is called mub-down-closed if (mub� down)(X) � X.

Definition 2 (Stable Bifinite Domain). An �- algebraic meet-cpo is said to have prop-
erty I and called finitary if every compact element dominates a finite number of elements.
It is said to have property M if for every finite set X of compact elements, mub(X) is
finite and complete – complete in the sense that each upper bound of X dominates some
member of mub(X). It is called a stable bifnite domain if every finite set of compact
elements is contained in a finite (mub� down)-closed set. This last property is denoted
as MI� .
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Fig. 1. Examples from left to right: a domain (not a meet-cpo) satisfying M but is not SFP; a SFP
meet-cpo which is not stable bifinite; a stable bifinite domain

Definition 3. Let D, E be meet-cpos. A Scott continuous function f from D to E is
called stable if it preserves meets of compatible pairs, i.e., for all x� y in D (where �
stands for compatibility or bounded-above),

x � y 
 f (x � y) � f (x) � f (y)�

The stable function space [D � E] consists of all stable functions from D to E under
the Berry order: f is stably less than g, written f �s g, if for all x� y in D,

x � y 
 f (x) � f (y) � g(x)�

In the rest of the paper, we drop the subscript s when stable functions are compared, so
f � g always means f �s g unless stated otherwise.

Let SB be the category of stable bifinite domains with stable functions (under the Berry
order for function space). We have the following [1,6].

Theorem 1. The category SB is a cartesian closed category.

We now recall the technical tool of (mub�meet)-closed sets which will be helpful to the
understanding of the development in the rest of the paper.

Definition 4. [17] Let D be an �-algebraic meet-cpo. A set Y of compact elements in
D is said to be a (mub�meet)-closed set if both of the following are true:

(a) it is closed under minimal upper bounds of finite sets,
(b) it is closed under bounded meets of pairs of elements.

Clearly, every (mub� down)-closed set is (mub�meet)-closed. Moreover, for every X,
(mub�meet)(X) � (mub� down)(X). However, (mub�meet)-closed sets provide a more
flexible and general way for constructing stable functions.

Lemma 1. [17] Suppose D is an �-algebraic meet-cpo with property M. Then every
(mub�meet)-closed set A determines a stable function �A : D � D, given by

�A :� �x�
�

( �x � A)�
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An immediate consequence of this lemma is that (mub� down)-closed sets determine
stable functions. These are projections, dominated by the identity function under the
stable order.

Lemma 2. [17] Let �A be the stable function determined by a (mub�meet)-closed set
A as given in the previous lemma. Then

(a) A is the set of compact fixed-points of �A, and

(b) if f � �A and f (x) � x for each x 
 A, then f � �A, where � denotes the
extensional order.

The next lemma shows how stable functions determined by (mub�meet)-closed sets
can be compared.

Lemma 3. [17] Suppose A� B are (mub�meet)-closed sets. The following are
equivalent:

(a) �B � �A;

(b) �B � A � B;

(c) B � A and for each bounded �x� y�, if x 
 B and y 
 A, then x � y 
 B.

When a set X of compact elements is not already (mub�meet)-closed, we can work
with the (mub�meet)-closed set generated by X, which is the smallest set of compact
elements containing X and closed under minimal upper bounds of finite subsets and
bounded meets. Such a generated set always exists in an �-algebraic meet-cpo with
both property M and the property that the meet of two compact elements is compact. In
such case the closure exists and can be defined inductively:

(mub�meet)0(X) :� X
(mub�meet)(i�1)(X)

:� (mub�meet)((mub�meet)i(X))
(mub�meet)�(X) :�

�
i�0 (mub�meet)i(X)

Clearly, (mub�meet)�(X) is the least (mub�meet)-closed set containing X.

Lemma 4. [17] Let Y be a (mub�meet)-closed set generated by a finite set Y0. Then
the stable function �Y is compact.

With respect to an �-algebraic meet-cpo D, property I amounts to three more primitive
ones. The most diÆcult case among the three is when D satisfies the finite descending
chain condition and the finite ascending chain condition, but fails the finite antichain
condition. This was resolved in [17].

Theorem 2. [17] Suppose D is an �-algebraic meet-cpo which satisfies the finite de-
scending chain and finite ascending chain conditions, but fails the finite antichain con-
dition. Then in the stable function space [D � D] there exists a finite set of compact
stable functions with an infinite number of minimal upper bounds.
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3 Weak Distributivity

Theorem 2 shows that property I is maintained in any cartesian closed category within
the space of �-algebraic meet-cpos. A key technique used in [17] is (mub�meet)-closed
set, which gives a rich class of stable functions to work with. The remaining question
is whether property MI� is similarly maintained in any cartesian closed category within
the space of �-algebraic meet-cpos.

Property MI� states that a finite set of compact elements has a finite (mub� down)-
closure. A reasonable strategy is to show that for any �-algebraic meet-cpo D satisfying
axioms M and I (assumed for the rest of the paper), if D violates MI� , then [D � D] (or
some even higher-order function space) violates either M or I. For this, we explore stable
functions determined by the down-closure of a compact element. Of course, not every
down-closure of a compact element in D determines a stable function in [D � D]. For
a compact element c 
 D to give rise to a stable function

�x�
x�

( �x � �c)�

conditional multiplicity requires that for any x � y,

x�
( �x � �c) �

y�
( �y � �c) �

x�y�
( �(x � y) � �c)�

and this leads to weak distributivity. To put this in context, recall that distributivity
property states that

x � (y � z) � (x � y) � (x � z)

holds for all compatible triples x� y� z. Configurations violating distributivity include
Birkho�’s famous M3 and N5 posets. We consider a weaker version of distributivity, in
the next definition.

Definition 5 (Weakly distributive domains). An �-algebraic meet-cpo D with prop-
erties M and I is said to be weakly distributive if for any z 
 D0,

x �
y�
�d � d � y & d � z� �

y�
�d � x � d � y & d � z�

for all compatible x� y 
 D, where D0 is the set of compact elements of D.

Lemma 5. An �-algebraic meet-cpo D with properties M and I is weakly distributive
if and only if for any x� y 
 D and z 
 D0 with x compatible with y, we have

x �
y�

�y � �z �
y�

�(x � y) � �z�

Lemma 6. In reference to Def. 5, weak distributivity law holds for all of the following
configurations: (1) x � z; (2) z � x; (3) y � z; (4) z � y; (5) y � x.

This lemma reduces the non-trivial configurations to check for weak distributivity to the
cases when x and z are incomparable, y and z are incomparable, and y is not dominated
by x.
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Lemma 7. An �-algebraic meet-cpo D with properties M and I is weakly distributive
if and only if for any x � y and z 
 D0, we have

x �
y�

�y � �z �
y�

�x � �z�

Proof. It suÆces to show that if the condition in the lemma holds, then for any compat-
ible x�� y� 
 D and any z 
 D0, we have

x� �
y��

�y� � �z �
y��

�(x� � y�) � �z�

This is because

x� �
y��

�y� � �z � x� � y� �
y��

�y� � �z�

x� � y� � y�, and one can take x � x� � y�, y � y� and invoke the given assumption. �

With these in mind, one readily checks that Birkho�’s M3 and N5 are both weakly
distributive. Therefore, weakly distributive domains need not be distributive. On the
other hand, it is easy to see that all distributive domains (i.e., �-algebraic meet-cpos
satisfying M and I and distributivity) are weakly distributive.

It is important to note that there are domains that are not weakly distributive. Here
are some examples.

Example 1. The meet-cpos below are not weakly distributive. Notice that they are all
stable bifinite.

Fig. 2. Examples of stable bifinite domains that are not weakly distributive

To check the example on the left of Fig.2, note that we have

y�
�(x � y) � �z � a�

but

x �
y�

�y � �z � x � y � x�

Similarly one can check that the other two domains are not weakly distributive.

It is interesting to compare weak distributivity with principal distributivity, meet-cpos
for which each principal ideal is distributive. We have the following result.
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Lemma 8. Any principally distributive domain is weakly distributive, but not vice
versa.

Proof. The second part has been demonstrated by Birkho�’s M3 and N5 earlier. For the
first, we have

x �
y�

�y � �z � (x � y) �
y�

�y � �z

( �y distributive) �
y�
�(x � y) � d � d 
 �y � �z�

�

y�
�(x � y) � �z� �

The next definition allows us to consider weak distributivity locally, as needed for con-
structing stable functions.

Definition 6 (Weakly distributive element, generator). A compact element c 
 D0 is
said to be weakly distributive or called a generator, if for all compatible pairs x� y 
 D,
we have

x �
y�

�y � �c �
y�

�(x � y) � �c�

Weakly distributive elements will be used to generate stable functions. In the actual
applications of the weak distributivity property, we use the following equivalent version:

x �
y�

�(x � y) � �z � x �
y�

�y � �z�

Definition 7. Let D be an �-algebraic meet-cpo with properties M and I and c 
 D a
generator. Define �c : D � D as

�c :� �x�
x�

( �x � �c)�

Note that even though � x � �c need not be a directed set, the least upper bound in
the principle ideal �x always exists due to the compactness of c and properties M and
I of D.

Lemma 9. �c is a well-defined function. For a mub-down closed set A with c 
 A, we
have �A Æ �c � �c.

Proof. For the second conclusion, let x 
 D. Note that �t 
 D � t � c & t � x� � A,
since t � c 
 A and A is down closed. Therefore, �c(x) 
 A, since A is moreover finite
mub closed. By Lemma 2, we have �A(�c(x)) � �c(x). �

Lemma 10. For any generator c 
 D, �c is a compact stable function.

Proof. The monotonicity of �c is straightforward. For continuity, suppose Y is a directed
subset of D. We have

�c(
�

Y) �

�
Y�
( �(
�

Y) � �c)

�

�
y�Y

y�
( �y � �c)

�

�
y�Y

�c(y)�
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To check the stability of �c, let x� y 
 D be such that x � y. Since D is a meet-cpo,
x � y exists. We need to show �c(x) � �c(y) � �c(x� y), which follows from the weakly
distributive property of c:

�c(x � y) �
x�y�

( �(x � y) � �c)

� x � y �
x�

( �(x � y) � �c) �

y�
( �(x � y) � �c)

� x �
y�

( �(x � y) � �c) � y �
x�

( �(x � y) � �c)

� x �
y�

( �y � �c) � y �
x�

( �x � �c)
� �c(x) � �c(y)�

To show that �c is compact, note that �c is a finite set of compact elements. The
mub-down closure A of �c, though not necessarily finite, determines a compact stable
function �A. We show that �c is stably below �A, forcing �c to be a compact element in
the stable function space [D � D]. For this purpose, let x � y in D. Then

�c(y) � �A(x) � �A(�c(y)) � �A(x)

� �A(x �
y�

( �y � �c))

� �A(x �
y�

( �(x � y) � �c))

� �A(x �
y�

( �x � �c))

� �A(
x�

( �x � �c))
� �A(�c(x))
� �c(x)� �

Theorem 3. Let D be an �-algebraic meet-cpo with properties M and I, but not MI� .
Let A be the infinite (mub� down)-closure of a finite subset of compact elements of D. If
A contains an infinite number of generators, then [D � D] fails I.

Proof. Suppose C :� �ci � i � 1� is an infinite subset of A consisting of generators only.
Note first that, for any c 
 C, the range of �c, written as r(�c), is a finite set. Suppose
without loss of generality ci�1 � r(�ci) for any i � 1. For any 1 � i � j, we have
�ci (c j) � c j � �c j (c j). So �ci � �c j . By Lemma 10, all �c are compact elements below
�A, and so [D � D] fails property I. �

If D is a weakly distributive, �-algebraic meet-cpo with properties M and I, but not
MI� , then an infinite A as mentioned in Theorem 3 exists. Moreover, since D is a
weakly distributive, every element of A is a generator. Therefore, we have the following
corollary.

Theorem 4. Let D be a weakly distributive, �-algebraic meet-cpo with properties M
and I, but not MI� . Then [D � D] fails I.

Thus we have shown that a larger class of domains than principally distributive ones
must not violate MI� in the category SB of bifinite domains.
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The next lemmas will be useful to work with examples below.

Lemma 11. Let D and E be �-algebraic meet-cpos. Let f � g : D � E be such that g is
stable, f is continuous, and f (x) � f (y)�g(x) for any x � y in D. Then f is also stable.

Lemma 12. [17] Let D, E be meet-cpos and f � g be compatible stable functions in
[D � E]. We have

(a) if f (x) � g(x), then f (y) � g(y) for any y 
 �x,
(b) if a � b then f (a) � g(b) � f (b) � g(a).

Remark. The stable function space construction does not preserve the weakly distribu-
tive law. Here is an example. Let D and E be weakly distributive domains as given on
the left of Fig. 3. The stable function space [D � E] contains the structure on the right
of Fig. 3 (among other things), which is not weakly distributive.

The functions labeled on the right of Fig. 3 are defined as follows:

f (x) �

�
u� if x � c
�� otherwise

g(x) �

�
v� if x � c
�� otherwise

h(x) �

���������
z� if x � c
w� if x � a
�� otherwise

j(x) �

���������
z� if x � c
w� if x � b
�� otherwise

k(x) �

���������
z�� if x � c
w� if x � a
�� otherwise

Fig. 3. Two weakly distributive domains whose stable function space is not weakly distributive

We have

1. f � g� h� j� k are compact stable functions.
2. h� j are minimal upper bounds of f � g.
3. f � k � h and k � g.

Therefore, f � g� h� j� k form a substructure as on the right of Fig. 3.
Checking all of these is a tedious task, but it should be helpful to note the following

when doing so:

– Any upper bound of f � g must map c to z.
– Lemma 12 tells us that h� j are incompatible, since h(c) � j(c), but h(a) � j(a).
– To check the order relation holds as in Fig. 3, such as f � k, note that f (x)�t(y) � �

for t 
 �h� j� k� only when x � c and y � c.

Also note that the right side of Fig. 3 does not include all functions in the stable
function space. For example, here are two more stable functions:
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�(x) �

�
z� if x � c
�� otherwise

	(x) �

���������
z�� if x � c
w� if x � b
�� otherwise

In fact, � is another minimal upper bound of f � g, and f � 	 � j.

4 Meet Generators

In this section we introduce another technique for generating stable functions.

Definition 8. Let D be an �-algebraic meet-cpo satisfying properties M and I. A com-
pact element a 
 D is said to be a meet-generator, if for any d 
 D, the meet a � d
exists.

Theorem 5. Let D be an �-algebraic meet-cpo with properties M and I, but not MI� .
Let A be the infinite (mub� down)-closure of a finite subset of compact elements of D. If
A contains an infinite number of meet-generators, then [D � D] fails property I.

Proof. Let B :� �ai 
 A � i � 1� be an infinite subset of A consisting of meet-generators
only. For each i � 1, define 
i : D � D as


i :� �x� ai � x�

Then

(1) 
i is a well-defined compact stable function;
(2) 
i � 
A;
(3) 
i � 
 j for any distinct i� j � 1.

Item (3) is obvious. For (1), we need to show the continuity of 
i. Let Y be a directed
subset of D. Then 
i(

�
Y) � ai �

�
Y �

�
y�Y ai � y �

�
y�Y 
i(y)� because binary meet

is continuous in both arguments in a meet-cpo. For stability of 
i, let x� y be compatible
elements in D. Then 
i(x � y) � ai � x � y � (ai � x) � (ai � y) � 
i(x) � 
i(y).
To show compactness of 
i, let 
i �

�
j�J f j, where � f j � j 
 J� is a directed family of

stable functions. Here, we use equality by the meet-cpo property. We have, in particular,
ai � 
i(ai) �

�
j�J f j(ai)� and so 
i(ai) � fk(ai) � ai for some k 
 J, by the compactness

of ai. By Lemma 2, item (a) of part I, 
i(x) � fk(x) for all x � ai. Therefore 
i(x) �

i(
i(x)) � fk(
i(x)) � fk(x) for any x 
 D. Since 
i and fk are stably compatible,
extensionally equal, we have 
i � fk, as needed.

For item (2), let x � y in D. Since A is down-closed and ai 
 A, z � 
i(z) � 
A(z) for
all z � ai. We have,


i(x) � 
i(y) � 
i(
i(x))
� 
i(y) � 
A(
i(x))
� 
i(y) � 
A(ai � x)
� 
i(y) � 
A(ai) � 
A(x) (since 
A is stable)
� 
i(y) � ai � 
A(x)
� 
i(y) � 
A(x) �



Weakly Distributive Domains 205

Theorem 6. Let D be an �-algebraic meet-cpo with properties M and I, but not MI� .
Let A be the infinite (mub� down)-closure of a finite set of compact elements of D. If A
satisfies the condition that the principal ideals are distributive, then [D � D] fails I.

Proof. For any a 
 A, define �a : D � D as

�a :� �x�
x�
�t � t � a & t � x�

Then

(1) �a is a well-defined compact stable function;
(2) �a � 
A;
(3) there is an infinite subset B of A such that for any distinct a� b 
 B, �a � �b.

Item (3) is obvious, since for any a 
 A the range of �a is finite. For item (1), we
need only to show the stability of �a, let x� y be compatible elements in D. Then

�a(x) � �a(y) �
�x�t � t � a & t � x� �

�y�u � u � a & u � y�
�
�x�y�t � u � t � x & t � a & u � y & u � a� (by distributivity)

�
�x�y�v � v � a & v � x � y�

� �a(x � y)

For item (2), let x � y in D. We have,

�a(y) � �A(x) �
�y�t � t � a & t � y� �

�
�u � u 
 A & u � x�

�
�x�v � v � a & v � x�

� �a(x) �

5 Conclusion

We introduced a new class of domains called weakly distributive domains within the
category of �-algebraic meet-cpos. The weak distributivity law allows us to construct
stable functions based on the principal ideal generated by a single compact element
– a generator. For weakly distributive domains to be included in any full stable carte-
sian closed category composed of �-algebraic meet-cpos, they must satisfy axiom MI�

(Thm. 4). �-algebraic meet-cpos satisfying M and I, which do not satisfy MI� and are
not weakly distributive, are abundant. The domain in the middle of Fig. 1 is one such
example. Interestingly, all non-weakly distributive domains we have seen so far con-
tain examples in Fig. 2 as substructures. Non-weak distributivity itself does not violate
MI� ; it is many of the non-weakly distributive configurations put together that creates
a configuration violating MI� . Thus, looking deeper into non-weakly distributive sub-
structures in the context of configurations violating MI� might lead to additional insight
into the open problem of Amadio-Curien. The available ways to deal with a rich variety
of configurations violating MI� so far have helped keeping our bet on an aÆrmative
solution alive.
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Abstract. Initial algebra semantics is a cornerstone of the theory of
modern functional programming languages. For each inductive data type,
it provides a fold combinator encapsulating structured recursion over
data of that type, a Church encoding, a build combinator which con-
structs data of that type, and a fold/build rule which optimises modu-
lar programs by eliminating intermediate data of that type. It has long
been thought that initial algebra semantics is not expressive enough to
provide a similar foundation for programming with nested types. Specif-
ically, the folds have been considered too weak to capture commonly
occurring patterns of recursion, and no Church encodings, build combi-
nators, or fold/build rules have been given for nested types. This paper
overturns this conventional wisdom by solving all of these problems.

1 Introduction

Initial algebra semantics is one of the cornerstones of the theory of modern func-
tional programming languages. It provides support for fold combinators encap-
sulating structured recursion over data structures, thereby making it possible
to write, reason about, and transform programs in principled ways. Recently,
(13) extended the usual initial algebra semantics for inductive types to support
not only standard fold combinators, but Church encodings and build combi-
nators for them as well. In addition to being theoretically useful in ensuring that
build is seen as a fundamental part of the basic infrastructure for programming
with inductive types, this development has practical merit: the fold and build
combinators can be used to define fold/build rules which optimise modular
programs by eliminating intermediate inductive data structures. When applied
to lists, this optimisation is known as short cut fusion.

Nested data types have become increasingly popular in recent years (1; 3; 5; 6;
7; 14; 15; 16; 17; 20). They have been used to implement a number of advanced
data types in languages, such as Haskell, which support higher-kinded types.
Among these data types are those with constraints, such as perfect trees (16);
types with variable binding, such as untyped λ-terms (2; 5; 8); cyclic data struc-
tures (11); and certain dependent types (21). The expressiveness of nested types
lies in their generalisation of the traditional treatment of types as free-standing
individual entities to entire families of types. To illustrate this point, consider
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the type of lists of elements of type a. This type can be realised in Haskell via
the declaration data List a = Nil | Cons a (List a). As this declaration
makes clear, the type List a can be defined independently of any type List b
for b distinct from a. Moreover, since each type List a is, in isolation, an in-
ductive type, the type constructor List is seen to define a family of inductive
types. Compare the declaration for List a with the declaration

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

defining the type Lam a of untyped λ-terms over variables of type a up to α-
equivalence. By contrast with List a, the type Lam a cannot be defined in terms
of only those elements of Lam a that have already been constructed. Indeed,
elements of the type Lam (Maybe a) are needed to build elements of Lam a so
that, in effect, the entire family of types determined by Lam has to be constructed
simultaneously. Thus, rather than defining a family of inductive types as List
does, Lam defines an inductive family of types.

Given the increased expressivity of nested types over inductive types, and the
ensuing growth in their use, it is natural to ask whether initial algebra semantics
can give a principled foundation for structured programming with nested types.
Until now this has not been considered possible. In particular, fold combinators
derived from initial algebra semantics for nested types have not been considered
expressive enough to capture certain commonly occurring patterns of structured
recursion over data of those types. This has led to a theory of generalised folds
for nested types (1; 3; 6). Moreover, no Church encodings, build combinators,
or fold/build fusion rules have been proposed or defined for nested types.

This paper overturns this conventional wisdom and provides the ideal result,
namely that initial algebra semantics is enough to provide a principled founda-
tion for programming with nested types. Our major contributions are as follows:

• We define a generalised fold combinator gfold for every nested type and
show it to be uniformly interdefinable with the corresponding hfold combi-
nator derived from initial algebra semantics. Our gfold combinators coincide
with the generalised folds in the literature whenever the latter are defined.
The hfold combinators provided by initial algebra semantics thus capture
exactly the same kinds of recursion as the generalised folds in the literature.

• We give the first-ever Church encodings for nested types. In addition to
being interesting in their own right, these encodings are the key to defining
the first-ever build combinators for nested types. Coupling each hbuild
combinator with its corresponding hfold combinator in turn gives the first-
ever hfold/hbuild rules for nested types, and thus extends short cut fusion
to these types. A similar story holds for the gfold and gbuild combinators.

We make several other important contributions. First, we execute the above
program in a generic style by providing a single generic hfold combinator, a
single generic hbuild operator, and a single generic hfold/hbuild rule, each of
which can be specialised to any particular nested type of interest — and similarly
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for the generalised combinators. Secondly, while the theory of nested types has
previously been developed only for limited classes of nested types arising from
certain syntactically defined classes of rank-2 functors, our development handles
all rank-2 functors. Finally, we give a complete implementation of our ideas in
Haskell, available at http://www.cs.nott.ac.uk/~nxg. This demonstrates the
practical applicability of our ideas, makes them more accessible, and provides a
partial guarantee of their correctness via the Haskell type-checker. This paper
can therefore be read both as abstract mathematics, and as providing the basis
for experiments and practical applications. Past work on nested types did not
come with full implementations, in part because essential features such as explicit
and nested forall-types have only recently been added to Haskell.

Our result that initial algebra semantics is expressive enough to provide a
foundation for programming with nested types allows us to capitalise on the
increased expressiveness of nested types over inductive types without requiring
the development of any fundamentally new theory. Moreover, this foundation is
simple, clean, and accessible to anyone with an understanding of the basics of
initial algebra semantics. This is important, since it guarantees that our results
are immediately usable by functional programmers. Further, by closing the gap
between initial algebra semantics and Haskell’s data types, this paper clearly
contributes to the foundations of functional programming. This paper also serves
as a compelling demonstration of the practical applicability of left and right Kan
extensions — which are the main technical tools used to define our gfolds and
prove them interdefinable with the hfolds — and thus has the potential to
render them mainstays of functional programming.

The paper is structured as follows. Section 2 recalls the initial algebra seman-
tics of inductive types. Section 3 recalls the derivation of fold combinators from
initial algebra semantics for nested types, and derives the first Church encodings,
build combinators, and fold/build rules for them. Section 4 defines our gfold
combinators for nested types and shows that they are interdefinable with their
corresponding hfold combinators. It also derives our gbuild combinators and
gfold/gbuild rules for nested types. Section 5 mentions the coalgebraic duals
of our combinators and draws some conclusions.

2 Initial Algebra Semantics for Inductive Types

Inductive data types are fixed points of functors. Functors can be implemented
in Haskell as type constructors supporting fmap functions as follows:

class Functor f where fmap :: (a -> b) -> f a -> f b

The function fmap is expected to satisfy the two semantic functor laws stating
that fmap preserves identities and composition. As is well known (12; 13; 23),
every inductive type has an associated fold and build combinator which can
be implemented generically in Haskell as
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newtype M f = Inn {unInn :: f (M f)}

ffold :: Functor f => (f a -> a) -> M f -> a
ffold h (Inn k) = h (fmap (ffold h) k)

fbuild :: Functor f => (forall b. (f b -> b) -> b) -> M f
fbuild g = g Inn

These fbuild and ffold combinators can be used to construct and eliminate
inductive data structures of type M f from computations. Indeed, if f is any
functor, h is any function of any type f a -> a, and g is any function of closed
type forall b. (f b -> b) -> b, we have the fold/build rule:

ffold h (fbuild g) = g h (1)

When specialised to lists, this gives the familiar combinators

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n [] = n
foldr c n (x:xs) = c x (foldr c n xs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

Intuitively, foldr c n xs produces a value by replacing all occurrences of (:) in
xs by c and the occurrence of [] in xs by n. Thus, sum xs = foldr (+) 0 xs
sums the (numeric) elements of the list xs. On the other hand, build takes as
input a type-independent template for constructing “abstract” lists and produces
a corresponding “concrete” list. Thus, build (\c n -> c 4 (c 7 n)) produces
the list [4,7]. List transformers can be written in terms of both foldr and
build. For example, the standard map function for lists can be implemented as

map :: (a -> b) -> [a] -> [b]
map f xs = build (\c n -> foldr (c . f) n xs)

The function build is not just of theoretical interest as the producer counter-
part to the list consumer foldr. In fact, build is an important ingredient in short
cut fusion (9; 10), a widely-used program optimisation which capitalises on the
uniform production and consumption of lists to improve the performance of list-
manipulating programs. For example, if sqr x = x * x, then the specialisation
of (1) to lists — i.e., the rule fold c n (build g) = g c n — can transform
the modular function sum (map sqr xs) :: [Int] -> Int which produces an
intermediate list into an optimised form which produces no such lists:

sum (map sqr xs) = foldr (+) 0
(build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0
= foldr ((+) . sqr) 0 xs
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If we are to generalise the treatment of inductive types given above to more
advanced data types, we must ask ourselves why fold and build combinators
exist for inductive types and why the associated fold/build rules are correct.
One elegant answer is provided by initial algebra semantics. Within the paradigm
of initial algebra semantics, every data type is the carrier of the initial algebra
μF of a functor F : C → C. If C has both an initial object and ω-colimits, and F
preserves ω-colimits, then F does indeed have an initial algebra. Lambek’s lemma
ensures that the structure map in of an initial algebra is an isomorphism, and
thus that the carrier of the initial algebra of a functor is a fixed point of that
functor. The interpretation of a given data type as an initial algebra of a functor
F ensures that there is a unique F -algebra homomorphism from this initial F -
algebra to any other F -algebra. If (A, h) is an F -algebra, then fold h : μF → A
is the map underlying this homomorphism and makes the following diagram
commute:

F (μF )
F (foldh) ��

in

��

FA

h

��
μF

foldh �� A

From this diagram, we see that the type of fold is (FA → A) → μF → A and
that fold h satisfies fold h (in t) = h (F (fold h) t). This justifies the defini-
tion of the ffold combinator given above. Also, the uniqueness of the mediating
map ensures that, for every algebra h, the map fold h is defined uniquely. This
provides the basis for the correctness of fold fusion for inductive types, which
states that if h and h′ are F -algebras and ψ is an F -algebra homomorphism from
h to h′, then ψ . fold h = fold h′. But note that fold fusion (3; 5; 6; 7; 20), is
completely different from, and inherently simpler than, the fold/build fusion
which is central in this paper, and which we discuss next.

Although fold combinators for inductive types can be derived entirely from,
and understood entirely in terms of, initial algebra semantics, regrettably the
standard initial algebra semantics does not provide a similar principled deriva-
tion of the build combinators or the correctness of the fold/build rules. This
situation was rectified in (13), which considered the initial F -algebra for a func-
tor F to be not only the initial object of the category of F -algebras, but also the
limit of the forgetful functor from the category of F -algebras to the underlying
category C as well. When F has an initial algebra, no extra structure is required
of either F or C for this limit to exist. This characterisation of initial algebras as
both limits and colimits is what we call the extended initial algebra semantics. As
shown in (13), an initial F -algebra has a different universal property as a limit
from the one it inherits as a colimit. This alternate universal property ensures:

• The projection from the limit (the initial F -algebra) to the carrier of each
algebra defines the fold combinator with type (Fx → x) → μF → x.

• The mediating morphism maps a cone with arbitrary vertex c to a map
from c to μF . Since a cone with vertex c has type ∀x.(Fx → x) → c → x,
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the mediating morphism defines the build combinator, which will thus have
type (∀x. (Fx → x) → c → x) → c → μF .

• The correctness of the fold/build fusion rule fold h . build g = g h then
follows from the fact that fold after build is a projection after a mediating
morphism, and thus is equal to the cone applied to a specific algebra.

The extended initial algebra semantics thus shows that, given a parametric in-
terpretation of the quantifier forall, there is an isomorphism between the type
c -> M f and the “generalised Church encoding” forall x. (f x -> x) ->
c -> x. The term “generalised” reflects the presence of the parameter c, which
is absent in other Church encodings (23), but is essential to the derivation of
build combinators for nested types. Choosing c to be the unit type gives the
usual isomorphism between an inductive type and its usual Church encoding.

3 Initial Algebra Semantics for Nested Types

Although many types of interest can be expressed as inductive types, these
types are not expressive enough to capture all data structures of interest. Such
structures can, however, often be expressed in terms of nested types.

Example 1. The type of perfect trees over type a is given by

data PTree a = PLeaf a | PNode (PTree (a,a))

The recursive constructor PNode stores not pairs of trees, but rather trees with
data of pair types. Thus, PTree a is a nested type for each a. Perfect trees are
easily seen to be in one-to-one correspondence with lists whose length is a power
of two, and hence illustrate how nested types can be used to capture structural
constraints on data types. Another example of nested types is given by

Example 2. The type of (α-equivalence classes of) untyped λ-terms over vari-
ables of type a is given by

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

Elements of type Lam a include Abs (Var Nothing) and Abs (Var (Just x)),
which represent λx.x and λy.x, respectively. We observed above that each nested
type constructor defines an inductive family of types. It is thus natural to model
nested types as least fixed points of functors on the category of endofunctors on C,
written [C, C]. In this category, objects are functors and morphisms are natural
transformations. We call such functors higher-order functors, and denote the
fixed point of a higher-order functor f by Mu f. Our implementation cannot use
the constructor M introduced above because Haskell lacks polymorphic kinding.

class HFunctor f where
ffmap :: Functor g => (a -> b) -> f g a -> f g b
hfmap :: Nat g h -> Nat (f g) (f h)

newtype Mu f a = In {unIn :: f (Mu f) a}
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A higher-order functor thus maps functors to functors via the ffmap operation
and natural transformations to natural transformations via the hfmap operation.
While not explicit in the class definition above, the programmer is expected to
verify that if g is a functor, then f g satisfies the functor laws. The type of
natural transformations can be given in Haskell by type Nat g h = forall a.
g a -> h a, since a parametric interpretation of the forall quantifier ensures
that the naturality squares commute. Putting this all together, we have

Example 3. The nested types of perfect trees and untyped λ-terms from Exam-
ples 1 and 2 arise as fixed points of the higher-order functors

data HPTree f a = HPLeaf a | HPNode (f (a,a))

data HLam f a = HVar a | HApp (f a) (f a) | HAbs (f (Maybe a))

respectively. Indeed, the types PTree a and Lam a are isomorphic to the types
Mu HPTree a and Mu HLam a.

Pleasingly, fold combinators for nested types can be derived by simply instan-
tiating the ideas from Section 2 in a category of endofunctors. Of course, now
the structure map of an algebra is a natural transformation, and the result of a
fold is a natural transformation from a nested type to the carrier of the algebra.
Using the synonym type Alg f g = Nat (f g) g for such algebras, we have

hfold :: HFunctor f => Alg f g -> Nat (Mu f) g
hfold m (In u) = m (hfmap (hfold m) u)

Example 4. The fold combinator for perfect trees is1

foldPTree :: (forall a. a -> f a) ->
(forall a. f (a,a) -> f a) -> PTree a -> f a

foldPTree f g (PLeaf x) = f x
foldPTree f g (PNode xs) = g (foldPTree f g xs)

The uniqueness of hfold, guaranteed by its derivation from initial algebra se-
mantics, provides the basis for the correctness of fold fusion for nested types (7).
As mentioned above, fold fusion is not the same as fold/build fusion. In par-
ticular, the latter has not previously been considered for nested types.

Recall from Section 2 that Church encodings and build combinators for induc-
tive types can be derived from the characterisation of the initial F -algebra as the
limit of the forgetful functor from the category of F -algebras to the underlying
category, and that this gives an isomorphism between types of the form c -> M f
and generalised Church encodings forall x. (f x -> x) -> c -> x. Since
this isomorphism holds for all functors, including higher-order ones, we should
be able to instantiate it for higher-order functors to derive Church encodings and
build combinators for nested types. And indeed we can. This gives the following
Haskell code:
1 Here we have used standard type isomorphisms to “unbundle” the input type Alg
HPTree f for foldPTree. Such unbundling will be done without comment henceforth.
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hbuild :: (HFunctor f, Functor c) =>
(forall x. Alg f x -> Nat c x) -> Nat c (Mu f)

hbuild g = g In

It is worth noticing that each hbuild combinator follows the definitional for-
mat of the build combinators for inductive types: it applies its argument to the
structure map In of the initial algebra of the higher-order functor f with which
it is associated. For our running example of perfect trees, we have the following:

Example 5. The hbuild combinator for perfect trees is given concretely by

buildPTree :: (forall x. (forall a. a -> x a) ->
(forall a. x (a,a) -> x a) ->
(forall a. c a -> x a)) -> Nat c PTree

buildPTree g = g PLeaf PNode

The extended initial algebra semantics ensures that hbuild and (an argument-
permuted version of) hfold are mutually inverse, and thus that the following
fold/build rule holds for nested types:

Theorem 1. If f is a higher-order functor, c and a are functors, h is the struc-
ture map of an algebra Alg f a, and g is any function of closed type forall x.
Alg f x -> Nat c x, then

hfold h . hbuild g = g h (2)

Note that the application of ffold h to fbuild g in (1) has been generalised
by the composition of hfold h and hbuild g in (2). This is because c remains
uninstantiated in the nested setting, whereas it is specialised to the unit type in
the inductive one. For our running example, we have the following:

Example 6. The instantiation of (2) for perfect trees is

foldPTree l n . buildPTree g = g l n

From Section 2, to ensure that a higher-order functor F on C has an initial al-
gebra we need that the category [C, C] has an initial object and ω-colimits, and
that F preserves ω-colimits. But only the latter actually needs to be verified
since the initial object and ω-colimits in [C, C] are inherited from those in C.

4 Generalised Folds, Builds, and Short Cut Fusion

In this section we recall the generalised fold combinators — here called gfolds
— from the literature (1; 3; 6). We also introduce a corresponding generalised
build combinator gbuild and a gfold/gbuild fusion rule for each nested type.
We show that, just as the gfold combinators are instances of the hfold com-
binators, so the gbuild combinators are instances of the hbuild combinators,
and the gfold/gbuild rules can be derived from the hfold/hbuild rules. These
results are important because, until now, it has been unclear which general prin-
ciples should underpin the definition of gfold combinators, and because gbuild
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combinators and gfold/gbuild rules have not existed. Our rendering of the
generalised combinators and fusion rules as instances of their counterparts from
Section 3 shows that the same principles of initial algebra semantics that gov-
ern the behaviour of hfold, hbuild, and hfold/hbuild fusion also govern the
behaviour of gfold, gbuild, and gfold/gbuild fusion. In particular, whereas
gfolds have previously been defined only for certain syntactically defined classes
of higher-order functors, initial algebra semantics allows us to define gfolds for
all higher-order functors, and to do so in such a way that our gfolds coincide
with the gfolds in the literature whenever the latter are defined. Our reduction
of gfolds to hfolds can thus be seen as an extension of the results of (1).

Generalised folds arise when we want to consume a structure of type Mu f a
for a single type a. The canonical example is the function psum :: PTree Int
-> Int which sums the (integer) data in a perfect tree (16). It seems psum
cannot be expressed in terms of hfold since hfold consumes expressions of
polymorphic type, and PTree Int is not such a type. Naive attempts to define
psum will fail because the recursive call to psum must consume a structure of type
PTree (Int,Int) rather than PTree Int. These considerations have led to the
development of generalised fold combinators for nested types (1; 3; 6). Like
the hfold combinator for a nested type, the generalised fold takes as input an
algebra of type Alg f g for a higher-order functor f whose fixed point the nested
type constructor is. But while the hfold returns a result of type Nat (Mu f) g,
the corresponding generalised fold returns a result of the more general type
Nat (Mu f ‘Comp‘ g) h, where Comp represents the composition of functors:

newtype Comp g h a = Comp {icomp :: g (h a)}

instance (Functor g, Functor h) => Functor (g ‘Comp‘ h) where
fmap k (Comp t) = Comp (fmap (fmap k) t)

However, Mu f ‘Comp‘ g is not necessarily an inductive type constructor, so
there is no clear theory upon which the definition of gfolds can be based. Al-
ternatively, psum can be defined using an accumulating parameter as follows:

psum :: PTree Int -> Int
psum xs = psumAux xs id

psumAux :: PTree a -> (a -> Int) -> Int
psumAux (PLeaf x) e = e x
psumAux (PNode xs) e = psumAux xs (\(x,y) -> e x + e y)

Here, psumAux generalises psum to take as input an environment of type a -> Int
which is updated to reflect the extra structure in the recursive calls. Thus,
psumAux is a polymorphic function which returns a continuation of type (a ->
Int) -> Int. To construct our generalised folds, we will actually use a gener-
alised form of continuation whose environment stores values parameterised by a
functor g, and whose results are parameterised by a functor h. We have

newtype Ran g h a = Ran {iran :: forall b. (a -> g b) -> h b}
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Categorically, these continuations are just right Kan extensions, which are
defined as follows. Given a functor G : A → B and a category C, precomposition
with G defines a functor ◦ G : [B, C] → [A, C]. A right Kan extension is a right
adjoint to ◦ G. More concretely, given a functor H : A → C, the right Kan
extension of H along G, written RanGH , is defined via the natural isomorphism
[A, C](F ◦G, H) ∼= [B, C](F, RanGH). The classic end formula (see (19) for details)
underlies the implementation of a right Kan extension in Haskell as a universally
quantified type, with relational parametricity guaranteeing that we do get a
proper end as opposed to simply a universally quantified formula.

We stress that no categorical knowledge of Kan extensions is needed to un-
derstand the remainder of this paper; indeed, the few concepts we use which
involve them will be implemented in Haskell. However, we retain the terminol-
ogy to highlight the mathematical underpinnings of generalised continuations,
and to bring to a wider audience the computational usefulness of Kan extensions.

The bijection characterising right Kan extensions can be implemented as

toRan :: Functor k => Nat (k ‘Comp‘ g) h -> Nat k (Ran g h)
toRan s t = Ran (\env -> s (Comp (fmap env t)))

fromRan :: Nat k (Ran g h) -> Nat (k ‘Comp‘ g) h
fromRan s (Comp t) = iran (s t) id

The polymorphic function psumAux is a natural transformation from PTree to
Ran (Con Int) (Con Int), where Con k is the constantly k-valued functor de-
fined by newtype Con k a = Con {icon :: k}.2 This suggests that an alter-
native to inventing a generalised fold combinator to define psumAux is to first
endow the functor Ran (Con Int) (Con Int) with an appropriate algebra struc-
ture and then define psumAux as the application of hfold to that algebra.

Giving a direct definition of an algebra structure for Ran g h turns out to
be rather cumbersome. Instead, we circumvent this difficulty by drawing on the
intuition inherent in the continuations metaphor for Ran g h. If y is a functor,
then an interpreter for y with a polymorphic environment which stores values
parameterised by g and whose results are parameterised by h is a function of type
type Interp y g h = Nat y (Ran g h). Such an interpreter takes as input a
value of type y a and an environment of type a -> g b, and returns a result of
type h b. Associated with the type synonym Interp is the function

runInterp :: Interp y g h -> y a -> (a -> g b) -> h b
runInterp k y e = iran (k y) e

An interpreter transformer can now be defined as a function which takes as input
a higher-order functor f and functors g and h, and returns a map which takes
as input an interpreter for any functor y and produces an interpreter for the
functor f y. We can define a type of interpreter transformers in Haskell by
2 The use of constructors such as Con and Comp is required by Haskell. Although the

price of lengthier code and constructor pollution is unfortunate, we believe it is
outweighed by the benefits of having an implementation.
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type InterpT f g h = forall y. Functor y =>
Interp y g h -> Interp (f y) g h

We argue informally that interpreter transformers are relevant to the study
of nested types. Recall that the hfold combinator for a higher-order functor f
must compute a value for each value of type Mu f a, and the functor Mu f can be
considered the colimit of the sequence of approximations f^n 0, where 0 is the
functor whose value is constantly the empty type. We can define an interpreter
for 0 since there is nothing to interpret. An interpreter transformer allows us to
produce an interpreter for f 0, then for f^2 0, and so on, and thus contains all
the information necessary to produce an interpreter for Mu f. This intuition can
be formalised by showing that interpreter transformers are algebras. We have:

toAlg :: InterpT f g h -> Alg f (Ran g h)
toAlg interpT = interpT idNat

fromAlg :: HFunctor f => Alg f (Ran g h) -> InterpT f g h
fromAlg h interp = h . hfmap interp

where idNat :: Nat f f is the identity natural transformation defined by
idNat = id. Parametricity and naturality guarantee that toAlg and fromAlg
are mutually inverse. Thus, interpreter transformers are simply algebras over
right Kan extensions presented in a more computationally intuitive manner. We
now define

gfold :: HFunctor f => InterpT f g h -> Nat (Mu f) (Ran g h)
gfold interpT = hfold (toAlg interpT)

The function

rungfold :: HFunctor f =>
InterpT f g h -> Mu f a -> (a -> g b) -> h b

rungfold interpT = iran . gfold interpT

removes the Ran constructor from the output of gfold to expose the underlying
function. An alternative definition of gfoldwould have Nat (Mu f ‘Comp‘ g) h
as its return type and use toRan to compute functions whose natural return types
are of the form Nat (Mu f) (Ran g h). But, contrary to expectation, gfold
combinators defined in this way are not expressive enough to represent all uni-
form consumptions with return types of this form. For example, the function
fmap :: (a -> b) -> Mu f a -> Mu f b in the Functor instance declaration
for Mu f given at the end of this section is written using the gfold combinator
defined above. However, defining fmap as the composition of toRan and a call
to a gfold combinator with return type of the form Nat (Mu f ‘Comp‘ g) h is
not possible. This is because the use of toRan assumes the functoriality of Mu f
— which is precisely what defining fmap establishes.

We have thus defined the first-ever generalised fold combinators for all higher-
order functors and done so uniformly in terms of their corresponding hfold
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combinators. Our definition is different from, but, as noted above, provably equal
to, the definition given in (1) for the class of functors treated there. It also differs
from all definitions of generalised folds appearing in the literature, since none of
these establishes that the gfold combinator for any nested type can be defined
in terms of its corresponding hfold combinator.

We come full circle by using the specialisation of the gfold combinator to
the higher-order functor HPTree to define a function sumPTree which is equiv-
alent to psum. We first define an auxiliary function sumAuxPTree, in terms of
which sumPTree itself will be defined. To define sumAuxPTree we must define an
interpreter transformer; we do this by giving its two unbundled components:

type PLeafT g h = forall y. forall a.
Nat y (Ran g h) -> a -> Ran g h a

type PNodeT g h = forall y. forall a.
Nat y (Ran g h) -> y (a,a) -> Ran g h a

gfoldPTree :: PLeafT g h -> PNodeT g h -> PTree a -> Ran g h a
gfoldPTree l n = foldPTree (l idNat) (n idNat)

psumL :: PLeafT (Con Int) (Con Int)
psumL pinterp x = Ran (\e -> e x)

psumN :: PNodeT (Con Int) (Con Int)
psumN pinterp x = Ran (\e -> runInterp pinterp x (update e))

update e (x,y) = e x ‘cplus‘ e y
where cplus (Con a) (Con b) = Con (a+b)

sumAuxPTree :: PTree a -> Ran (Con Int) (Cont Int) a
sumAuxPTree = gfoldPTree psumL psumN

sumPTree :: PTree Int -> Int
sumPTree = icon . fromRan sumAuxPTree . Comp . fmap Con

Thus, sumPTree is essentially fromRan sumAuxPTree— ignoring the constructor
pollution introduced by Haskell, that is.

Our next example uses generalised folds to show that untyped λ-terms are
an instance of the monad class. Here, gfold is used to define the bind operation
>>=, which captures substitution.

subAlg :: InterpT HLam (Mu HLam) (Mu HLam)
subAlg k (HVar x) = Ran (\e -> e x)
subAlg k (HApp t u) = Ran (\e -> In (HApp (runInterp k t e)

(runInterp k u e)))
subAlg k (HAbs t) = Ran (\e -> In (HAbs (runInterp k t (lift e))))
lift e (Just x) = fmap Just (e x)
lift e Nothing = In (HVar Nothing)



Initial Algebra Semantics Is Enough! 219

instance Monad (Mu HLam) where
return = In . HVar
t >>= f = rungfold subAlg t f

Finally, note that we can also put the generic form of generalised folds to
good use. We illustrate this by using gfold to establish that all nested types are
functors as follows. Let Id a = Id {unid :: a}. Then

mapAlg :: HFunctor f => InterpT f Id (Mu f)
mapAlg k t = let k1 t = runInterp k t Id

in Ran (\e -> In (hfmap k1 (ffmap (unid . e) t)))

instance HFunctor f => Functor (Mu f) where
fmap k t = rungfold mapAlg t (Id . k)

It is natural to ask whether or not there exist generalised build combinators
corresponding to our generalised folds. Since the gfold combinators return
results of type Nat (Mu f) (Ran g h), their corresponding generalised builds
should produce results with types of the form Nat c (Mu f). But the fact that
generalised folds are representable as certain hfolds suggests that we should
be able to define such generalised builds in terms of our hbuild combinators,
rather then defining entirely new build combinators. Taking c to be the left
Kan extension Lan g h dual to Ran g h (see (19) for details) and implemented
in Haskell as

data Lan g h a = forall b. Lan (g b -> a, h b)

we have

gbuild :: HFunctor f => (forall x. Alg f x -> Nat (Lan g h) x)
-> Nat (Lan g h) (Mu f)

gbuild = hbuild

The Haskell functions

toLan :: Functor f => Nat h (f ‘Comp‘ g) -> Nat (Lan g h) f
toLan s (Lan (val, v)) = fmap val (icomp (s v))

fromLan :: Nat (Lan g h) f -> Nat h (f ‘Comp‘ g)
fromLan s t = Comp (s (Lan (id, t)))

code the bijection between types of the form Nat h (f ‘Comp‘ g) and Nat
(Lan g h) f characterising left Kan extensions. The simplicity of the definition
of gbuild highlights the importance of choosing an appropriate formalism, here
Kan extensions, to reflect inherent structure. While it appears that defining the
gbuild combinators requires no effort at all once we have the hbuild combi-
nators, the key insight lies in introducing the abstraction Lan and using the
bijection between Nat h (f ‘Comp‘ g) and Nat (Lan g h) f.
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As an immediate consequence of Theorem 1 we have

Theorem 2. If f is a higher-order functor, g, h and h’ are functors, k is an
algebra presented as an interpreter transformer of type InterpT f g h’, and l
is a function of closed type forall x. Alg f x -> Nat (Lan g h) x, then

gfold k . (gbuild l) = l (toAlg k) (3)

Examples of generalised short cut fusion in action will be given in a journal
version of this paper.

5 Conclusion and Future Work

We have extended the standard initial algebra semantics for nested types to aug-
ment the standard hfold combinators for such types with the first-ever Church
encodings, hbuild combinators, and hfold/hbuild rules for them. In fact, we
have capitalised on the uniformity of the isomorphism between nested types
and their Church encodings to derive a single generic standard hfold combina-
tor, a single generic standard hbuild operator, and a single generic standard
hfold/hbuild rule, each of which can be specialised to any particular nested
type of interest. We have also defined a generic generalised fold combinator,
a generic generalised build combinator, and a generic generalised fold/build
rule, each of which is uniformly interdefinable with the corresponding standard
construct for nested types. The uniformity of both the standard and generalised
constructs derives from a technical approach based on initial algebras of func-
tors. Our generalised fold combinators coincide with the generalised folds in
the literature when the latter are defined. Moreover, our approach is the first to
apply to all nested types, and thus provides a principled and elegant foundation
for programming with them. We also give the first (Haskell) implementation of
these combinators, and illustrate their use in several examples. We believe this
paper contributes to a settled foundation for programming with nested types.

In fact, our approach also straightforwardly dualises to the coinductive setting.
Shortage of space prevents us from giving the corresponding constructs and
results in detail in this paper, so we simply present their implementation:

type CoAlg f g = Nat g (f g)

hunfold :: HFunctor f => CoAlg f g -> Nat g (Mu f)
hunfold k x = In (hfmap (hunfold k) (k x))

hdestroy :: (HFunctor f, Functor c) =>
(forall g. CoAlg f g -> Nat g c) -> Nat (Mu f) c

hdestroy g = g out
out :: Nat (Mu f) (f (Mu f))
out (In t) = t

-- fusion rule: hdestroy g . hunfold k = g k
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The categorical semantics of (13) reduces correctness of fold/build rules to
the problem of constructing a parametric model which respects that semantics.
An alternative approach is taken in (18), where the operational semantics-based
parametric model of (22) is used to validate the fusion rules for algebraic data
types introduced in that paper. Extending these techniques to tie the correctness
of fold/build rules into an operational semantics of the underlying functional
language is one direction for future work. Finally, the techniques of this paper
may provide insights into theories of folds, builds, and fusion rules for advanced
data types, such as mixed variance data types, GADTs, and dependent types.

References

[1] Abel, A., Matthes, R., Uustalu, T.: Iteration schemes for higher-order and nested
datatypes. Theoretical Computer Science 333(1-2), 3–66 (2005)

[2] Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. Proc. Computer Science Logic, pp. 453–468 (1999)

[3] Bayley, I.: Generic Operations on Nested Datatypes. Ph.D. Dissertation, Univer-
sity of Oxford (2001)

[4] Bird, R., Meertens, L.: Nested datatypes. Proc. Mathematics of Program Con-
struction, pp. 52–67 (1998)

[5] Bird, R., Paterson, R.: de Bruijn notation as a nested datatype. Journal of Func-
tional Programming 9(1), 77–91 (1998)

[6] Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2), 200–222 (1999)

[7] Blampied, P.: Structured Recursion for Non-uniform Data-types. Ph.D. Disserta-
tion, University of Nottingham (2000)

[8] Fiore, M., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. Proc.
Logic in Computer Science, pp. 193–202 (1999)

[9] Gill, A.: Cheap Deforestation for Non-strict Functional Languages. Ph.D. Disser-
tation, Glasgow University (1996)

[10] Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. Proc.
Functional Programming Languages and Computer Architecture, pp. 223–232
(1993)

[11] Ghani, N., Haman, M., Uustalu, T., Vene, V.: Representing cyclic structures as
nested types. Presented at Trends in Functional Programming (2006)

[12] Ghani, N., Johann, P., Uustalu, T., Vene, V.: Monadic augment and generalised
short cut fusion. Proc. International Conference on Functional Programming, pp.
294–305 (2005)

[13] Ghani, N., Uustalu, T., Vene, V.: Build, augment and destroy. Universally. Proc.
Asian Symposium on Programming Languages, pp. 327–347 (2003)

[14] Hinze, R.: Polytypic functions over nested datatypes. Discrete Mathematics and
Theoretical Computer Science 3(4), 193–214 (1999)

[15] Hinze, R.: Efficient generalized folds. Proc. Workshop on Generic Programming
(2000)

[16] Hinze, R.: Functional Pearl: Perfect trees and bit-reversal permutations. Journal
of Functional Programming 10(3), 305–317 (2000)

[17] Hinze, R.: Manufacturing datatypes. Journal of Functional Programming 11(5),
493–524 (2001)



222 P. Johann and N. Ghani

[18] Johann, P.: A generalization of short-cut fusion and its correctness proof. Higher-
order and Symbolic Computation 15, 273–300 (2002)

[19] MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

[20] Martin, C., Gibbons, J., Bayley, I.: Disciplined efficient generalised folds for nested
datatypes. Formal Aspects of Computing 16(1), 19–35 (2004)

[21] McBride, C., McKinna, J.: View from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

[22] Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10, 1–39 (2000)

[23] Takano, A., Meijer, E.: Shortcut deforestation in calculational form. Proc. Func-
tional Programming Languages and Computer Architecture, pp. 306–313 (1995)

This research was supported in part by NSF award CCF-0429072.



A Substructural Type System
for Delimited Continuations�

Oleg Kiselyov1 and Chung-chieh Shan2

1 FNMOC
oleg@pobox.com

2 Rutgers University
ccshan@rutgers.edu

Abstract. We propose type systems that abstractly interpret small-step
rather than big-step operational semantics. We treat an expression or
evaluation context as a structure in a linear logic with hypothetical rea-
soning. Evaluation order is not only regulated by familiar focusing rules
in the operational semantics, but also expressed by structural rules in
the type system, so the types track control flow more closely. Binding
and evaluation contexts are related, but the latter are linear.

We use these ideas to build a type system for delimited continuations.
It lets control operators change the answer type or act beyond the nearest
dynamically-enclosing delimiter, yet needs no extra fields in judgments
and arrow types to record answer types. The typing derivation of a direct-
style program desugars it into continuation-passing style.

1 Introduction

Cousot and Cousot [14] originally presented abstract interpretation by starting
with a small-step operational semantics. Nevertheless, the typical type system
abstractly interprets [13] a denotational or big-step operational semantics, in
that each typing rule is the abstract interpretation of a denotational equation or
a big-step evaluation judgment. Besides simplicity, one reason to start with such
a semantics coarser than a transition system is to make the type system syntax-
directed : the type of each expression, like its denotation or its big-step evaluation
result, is determined by structural induction over the expression. However, when
the language involves effects (especially control effects), it can be easier to specify
and reason with a small-step semantics (especially evaluation contexts) [68].

A canonical effect that makes semantics and types harder to determine in-
ductively is delimited control [25, 26]. With this effect, an expression may access
its delimited continuation [17, 18, 19] or delimited evaluation context as a first-
class value. This ability is useful in backtracking search [12, 18, 44, 59], direct-
style representations of monads [30, 31, 32], the continuation-passing-style (CPS)
� Thanks to Olivier Danvy, Andrzej Filinski, Michael Stone, Philip Wadler, and the
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transformation [17, 18, 19], partial evaluation [6, 7, 10, 16, 23, 33, 37, 47, 64],
Web interactions [35, 53], mobile code [50, 56, 60], and linguistics [9, 58].

This paper presents a new type system for delimited control as an
example of typing by small-step abstract interpretation. Sect. 2 introduces delim-
ited control, explains why answer types are crucial, and points out shortcomings
in how the existing type systems track answer types. We then address the short-
comings in the rest of the paper. As a stepping stone, Sect. 3 introduces small-
step typing using the familiar simply-typed λ-calculus. Sect. 4 then presents
the λξ0-calculus, a language with delimited control and small-step typing, and
a type-checking algorithm for it. Our Twelf code online at http://pobox.
com/∼oleg/ftp/packages/small-step-typechecking.tar.gz implements ty-
pe checking and contains numerous tests and sample derivations.

2 Answer Types

The intuition behind delimited control may be conveyed by the two programs
below. They are written in the language with delimited control formally defined
in Fig. 3, enriched with string “literals” and concatenation �. The first program
shows that a control delimiter alone does not affect the evaluation result.

# $ “Goldilocks said: ” � (# $ “This porridge is ” � “too hot” � “. ”) (1)

This program contains two control delimiters, notated # $ . . . where the subex-
pression . . . extends as far to the right as possible. (We pronounce # “reset” and
$ “plug”.) The delimiter to the left surrounds the whole program, whereas the de-
limiter to the right surrounds the subexpression that computes what Goldilocks
said. The program computes the string “Goldilocks said: This porridge is too hot. ”.
The delimiters affect the result only in the presence of a control operator that
captures a delimited continuation, as in the following program.

# $ “Goldilocks said: ” � (
# $ “This porridge is ” �

(
ξ0k.(k $ “too hot”) � (k $ “too cold”) � (k $ “just right”)

) � “. ”
)

(2)

The control operator ξ0k (pronounced “shift-zero k”) removes, and binds k to,
the current continuation up to the nearest dynamically-enclosing delimiter. Once
this continuation is captured, an expression such as “too hot” can be plugged into
it, notated k $ “too hot” in the scope of k. In (2), k prepends “This porridge is ”
and appends “. ” to any string plugged in, so the program computes “Goldilocks
said: This porridge is too hot. This porridge is too cold. This porridge is just right. ”.
The prefix “Goldilocks said: ” is not tripled because it is not captured in k.

These examples illustrate the distinction between delimited and undelimited
control: a delimited continuation represents only a prefix of the default future of
the computation. This prefix maps a subexpression’s value (such as “too hot”)
to an intermediate result at the delimiter (such as “This porridge is too hot. ”).
A type system for delimited control must thus track these intermediate results’
types as part of the effects of expressions. These types are called answer types.

http://pobox.
com/~oleg/ftp/packages/small-step-typechecking.tar.gz
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The only answer type in (1) and (2) is that of strings, but real programs need
different answer types at multiple delimiters. On one hand, it is useful for an
expression to access its delimited continuation beyond the nearest dynamically-
enclosing delimiter: to combine multiple monadic effects [18, 31, 32], to normalize
λ-terms with sums [7], and to simulate exceptions and mutable references [39]
and dynamic binding [45]. These uses motivate type systems [38, 39, 51] that
maintain a stack or heap of answer types. On the other hand, it is also useful
for an expression to change the answer type, that is, to capture one delimited
continuation then install another with a different answer type: to create functions
[18], to find list prefixes [10], to represent parameterized monads [5], and to
analyze questions and polarity in natural language [58]. These uses motivate a
type system [17] that is sensitive to evaluation order.

Unfortunately, no existing type system for delimited control subsumes all
others, so no clear choice emerges for practical use. Moreover, the existing type
systems attach answer types to judgments and arrows as effect annotations [32,
34, 48, 61, 62, 63, 65]. These annotations obscure any logical interpretation of
the types via the Curry-Howard correspondence [4, 36, 42].

For example, Danvy and Filinski [17] uses typing judgments of the form ρ, α �
E : τ, β, where ρ is a typing environment, α and β are answer types, E is a term,
and τ is its type. If E changes the answer type, then the answer types α and
β may differ. If α, τ, β are atomic, then this judgment indicates that the CPS
transformation of E has the type (τ → α) → β in the simply-typed λ-calculus.
The typing rule for λ-expressions reads

[x �→ σ]ρ, α � E : τ, β

ρ, δ � λx. E : (σ/α → τ/β), δ.
(3)

If σ, α, τ, β are atomic, then the type σ/α → τ/β above indicates that the CPS
transformation of λx. E has the simple type σ → (τ → α) → β.

The extra fields for answer types in these judgments and arrow types still leave
no room for delimiters beyond the nearest dynamically-enclosing one. Also, the
comma and slash are not logical connectives in their own right, so the logical
interpretation of the extra fields is unclear, unlike with undelimited control [36] or
the simply-typed λ-calculus, which do not have varying answer types. Kameyama
[42] logically interprets a static variant of Danvy ad Filinski’s system that does
not allow changing the answer type. Ariola et al. [4] embed Danvy ad Filinski’s
type system in subtractive logic, but the embedding is not full: the target includes
undelimited control but the source does not.

In sum, we want a type system for delimited control that accommodates an
arbitrary number of changing answer types. We achieve this goal by assigning
types not just to expressions but also to evaluation contexts, as guided by CPS.
For example, the delimited continuation k in (2) yields a string answer when a
string is plugged into it; we write this type as string↑string. The ξ0-term in (2) is
an expression that yields a string answer when it is plugged into such a delimited
continuation; we write this type as (string ↑ string) ↓ string. The return types to
the right of the function-like connectives ↑ and ↓ are answer types.
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Statements M ::= C $ E

Terms E, F ::= V
∣
∣ FE

Values V ::= x
∣
∣ λx. E

Coterms C ::= #
∣
∣ E,C

∣
∣ C; V

Types T, U ::= U → T
∣
∣ string

∣
∣ int

∣
∣ · · ·

Cotypes S ::= U ↑ T

Statement contexts M [ ] ::= C[ ] $ E
∣
∣ C $ E[ ]

Term contexts E[ ] ::= [ ]
∣
∣ E[ ]E

∣
∣ EE[ ]

Coterm contexts C[ ] ::= E[ ], C
∣
∣ E, C[ ]

∣
∣ C[ ]; V

Statement equality

C $ FE = E, C $ F C $ V E = C; V $ E

Transitions

C $ (λx. E)V � C $ E{x �→ V }
Typing

[x : U ]
···

# $ E : T
λ

λx. E : U → T

F : U

[x : U ]
···

M [x] : T
M [U ]

M [F ] : T

[x : U ]
···

V x : T →I
V : U → T

[x : U ]
···

C $ x : T ↑I
C : U ↑ T

V : U
#

# $ V : U

F : U → T E : U →E
FE : T

C : U ↑ T E : U ↑E
C $ E : T

Fig. 1. Warm-up: the simply typed λ-calculus with small-step typing. For uniformity
with Fig. 3 below, the notation is somewhat unconventional: we use the metavariable
E for terms and also E[ ] for a term with a term-hole. The only variable binder is
λx. Following the Barendregt variable convention, the variable x in the M [U ], →I,
and ↑I rules is to be chosen fresh, not to occur free in the conclusion. The assumption
x : U discharged in these rules always occurs exactly once, because the hole [ ] appears
linearly in a context and no rule duplicates subterms.

An evaluation context is not usually part of an expression. Thus, to assign
types to evaluation contexts, we need to revise our notion of a syntax-directed
type system. We do so first for the λ-calculus, then return to delimited control.

3 Warm-Up: Small-Step Typing

Fig. 1 shows a type system for the pure λ-calculus that includes small-step as well
as big-step abstract interpretation. The purpose of this system is to prepare for
the main development in Sect. 4. Many aspects of this system seem contrived and
redundant when taken alone, but they are necessary for delimited control. The
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accompanying Twelf code in lfix-calc.elf implements small-step abstract
interpretation for this language and contains numerous sample derivations.

Besides terms E, this language defines two other syntactic categories: co-
terms C and statements M . Whereas a term can contain subterms, a statement
is a complete program like a top-level term (a common notion in small-step se-
mantics). A statement is formed by, and decomposes into, plugging a term into
a coterm. This distinction between terms and statements is refined in Sect. 4.

A statement context M [ ] (respectively term context E[ ], coterm context C[ ])
is a statement (respectively term, coterm) with a hole that can be filled by any
term, such that the hole is not under a binder λx. We write M [E] for the context
M [ ] filled with the term E. Judgments of the form M : T , E : T , and C : S
assign types T and cotypes S to statements M , terms E, and coterms C.

A coterm is an evaluation context, that is, a defunctionalized continuation
of a substitution-based evaluation function [1, 2, 3, 21]: the coterm # is the
identity continuation; the coterm E, C means to apply to the argument term E
then continue with the coterm C; the coterm C; V means to apply the function
value V then continue with the coterm C. Formally, a simple bijection maps
coterms C to term contexts E[ ] in which only values appear to the left of the
hole.

Definition 1. Associate with each coterm C a term context C†[ ] by induction:

#†[ ] = [ ], (E, C)†[ ] = C†[[ ]E
]
, (C; V )†[ ] = C†[V [ ]

]
. (4)

Every coterm “comes with its own control delimiter”, in that it always ends in the
identity continuation #. Hence a coterm represents a complete (delimited) con-
tinuation, not a list of stack frames. It makes no sense to “concatenate” coterms,
for example to try to combine the coterms E1, # and E2, # into E1, (E2, #).

A statement, of the form C $ E (pronounced “plug”), represents the term E
plugged into the coterm C. It is a state of the CK machine [25, 27, 28]. A
statement can also be understood as a zipper [41] over a term.

Among the binary constructors, $ has the lowest precedence, and juxtaposition
(for function application) the highest. All binary constructors associate to the
right, except juxtaposition associates to the left.

3.1 A Substructural Logic for Expressions and Evaluation Contexts

Two statement equality rules enforce left-to-right, call-by-value evaluation, as
evaluation contexts [25] and focusing [20] do in other accounts. Formally, our
equality rules are equations in the multisorted algebra of statements, terms, and
coterms, as well as the following reversible typing rules.

C $ FE : T
========= =
E, C $ F : T

C $ V E : T
========= =
C; V $ E : T

(5)

These rules let us navigate around a term using a statement as a zipper.

lfix-calc.elf
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Proposition 1. The statement equality rules equate the statements C1 $E1 and
C2 $ E2 iff the terms C†

1 [E1] and C†
2 [E2] are equal.

Because C†[ ] is always an evaluation context for left-to-right, call-by-value eval-
uation, Prop. 1 ties evaluation order to transitions in the dynamic semantics as
well as types in the static semantics. The # typing rule makes # $ V effectively
equivalent to V , so as to type # as the identity continuation.

The separator : in judgments is the turnstile in a substructural logic. This
logic has four sorts (namely statements, terms, values, and coterms). It allows
no exchange, associativity, weakening, or contraction except by the structural
rules in (5). It builds structures from values using six multiplicative-conjunctive
punctuation marks [54], or modes : four binary (juxtaposition and $ , ;), one
nullary (#), and one unary (the implicit coercion from a value to a term). This
logic is thus a restricted multimodal type-logical grammar (TLG).

Multimodal TLG is a generalization of the Lambek calculus [46] whose proof
theory and Kripke semantics are well-studied and well-behaved: there are sound
and complete natural-deduction and sequent calculi with cut elimination [49,
52]. Our statements, terms, and coterms (to the left of the turnstile) are TLG
structures, restricted to be sort-correct. Our types and cotypes (to the right of the
turnstile) are TLG formulae, restricted to use only two implication connectives
→ and ↑ out of the four pairs available in TLG (one pair per binary mode).

Viewed as a substructural logic, this type system is mostly familiar. The →I,
→E, ↑I, and ↑E rules establish → as the right-implication of juxtaposition and
↑ as the right-implication of $. As in the Lambek calculus, x occurs linearly in
the premises of →I and ↑I; these premises could be just V U : T and C $ U : T
if, in the spirit of abstract interpretation, types were values. Of these rules, only
→I is needed for delimited control in Sect. 4, but we include introduction and
elimination rules for all binary connectives to relate them to TLG. Still, as in the
original Lambek calculus, no binary mode comes with any product connective,
such as any connective ∗ such that F : T and E : U justify FE : T ∗ U . This
distinction between modes and connectives is standard in substructural logic.

In contrast to the binary modes, the (implicit) unary mode for coercing values
into terms does correspond to an (implicit) product connective. The M [U ] rule
is the standard elimination rule for this connective in natural deduction. This
rule lets us use any expression with a pure type—which in the pure λ-calculus
is any type—as a value. This rule is more general than the ↑E rule in that
it allows substituting a nonvalue F into an operand position in M [ ] even if
the corresponding (preceding) operator position contains a nonvalue as well. In
particular, the equality rules can treat a term F of a pure type U as a value x.

Finally, the familiar λ rule creates a function value. Unlike in the →I and ↑I
rules, the bound variable x in the λ rule may appear multiple times, or not at
all, in the body E of the abstraction λx. E. In other words, a λ-bound variable
is intuitionistic rather than substructural: it admits weakening and contraction.

The transition rule in Fig. 1 is β-reduction, restricted to when the argument V
is a value. Transitions operate on statements, not terms: to run a term E as a
complete program, we run the statement # $ E.
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inc : int → int [x : int]2→E
inc x : int

[y : int]1
#

# $ y : int
M [U ]1

# $ inc x : int
=

#; inc $ x : int ↑I2
#; inc : int ↑ int

inc : int → int 2 : int →E
inc 2 : int ↑E

#; inc $ inc 2 : int
=

# $ inc (inc 2) : int

inc : int → int
inc : int → int 2 : int →E

inc 2 : int →E
inc (inc 2) : int

[y : int]1
#

# $ y : int
M [U ]1

# $ inc (inc 2) : int

Fig. 2. Two derivations of “# $ inc (inc 2) : int” from “inc : int → int” and “2 : int”

3.2 Normalizing Small-Step Derivations to Big-Step Derivations

Despite all these rules, the system is equivalent to the simply-typed λ-calculus.

Proposition 2. Write E :: T if the term E has the type T in the simply-typed
λ-calculus. Then, under any typing assumptions x1 : T1, x1 :: T1, . . . , xn : Tn,
xn :: Tn: (a) E : T iff E :: T . (b) C $ E : T iff C†[E] :: T . (c) C : U ↑ T iff
λx. C†[x] :: U → T .

Proof. [⇒] By induction on a derivation in our system.
[⇐] (a) By induction on a simple-type derivation, using our →E rule and

[x : U ]2
···

E : T

[y : T ]1
#

# $ y : T
M [U ]

# $ E : T
λ2.

λx. E : U → T
(b) Feed the conclusion of

··· Use (a)
C†[E] : T

[y : T ]1
#

# $ y : T
M [U ]1

# $ C†[E] : T
to Prop. 1. (c) Derive C $ x : U by (b), then use ↑I. 
�

Because the simply-typed λ-calculus enjoys preservation, progress, and decidable
type reconstruction, our system does as well.

Fig. 2 shows two typing derivations of the same statement #$inc (inc 2), where
the value inc is the integer increment function. At the bottom is the result of
converting the familiar derivation in the simply-typed λ-calculus to our system
using part (b) of Prop. 2. We call this derivation big-step because it follows the
applicative structure of the expression: it determines the type of inc (inc 2) from
the type of its parts inc and inc 2. At the top is a small-step derivation, which
separates the expression inc 2 from its evaluation context #; inc. This derivation
represents the term inc 2 by the variable x in #; inc $ x. Thus x in the typing
context is an abstract value, in the sense of abstract interpretation [13, 14].

Because all expressions in the λ-calculus are pure, they can be derived by both
big-step and small-step. (In Sect. 4, impure expressions—which incur delimited-
control effects—require small-step derivations.) These derivations are related by
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a normalization process (not cut elimination, because our type system is based
on natural deduction rather than sequents) detailed in Appendix A. There we
normalize the small-step derivation in Fig. 2 to the big-step derivation below.

4 Delimited Control

Fig. 3 defines the static and dynamic semantics of the λξ0-calculus, a new lan-
guage with delimited control. The most prominent difference between this system
and Fig. 1 is new non-value terms of the form ξ0k. E. These terms have impure
types of the form (U ↑ T1) ↓ T2. As we discussed for the example (2) above, such
a type means that, when the term is plugged into a coterm of cotype U ↑ T1 (in
other words, a coterm which yields an answer of type T1 when a value of type U
is plugged into it), the combination yields an answer of type T2. All other types
are pure. We distinguish pure types by using the metavariable U rather than T .

Terms E, F ::= V
∣
∣ FE

∣
∣ C $ E

∣
∣ ξ0k. E

Values V ::= x
∣
∣ λx. E

Coterms C ::= k
∣
∣ #

∣
∣ E, C

∣
∣ C; V

Types T ::= U
∣
∣ S ↓ T

Pure types U ::= U → T
∣
∣ string

∣
∣ int

∣
∣ · · ·

Cotypes S ::= U ↑ T

Term contexts E[ ] ::= [ ]
∣
∣ E[ ]E

∣
∣ EE[ ]

∣
∣ C[ ] $ E

∣
∣ C $ E[ ]

Coterm contexts C[ ] ::= E[ ], C
∣
∣ E, C[ ]

∣
∣ C[ ]; V

Term equality

C $ FE = E,C $ F C $ V E = C; V $ E # $ V = V

Transitions

C1 $ · · · $ Cn $ (λx. E)V � C1 $ · · · $ Cn $ E{x �→ V }
C1 $ · · · $ Cn $ C $ (ξ0k. E) � C1 $ · · · $ Cn $ E{k �→ C}

Typing

[x : U ]
···

E : T
λ

λx. E : U → T

[k : S]
···

E : T
ξ0

ξ0k. E : S ↓ T

F : U

[x : U ]
···

E[x] : T
E[U ]

E[F ] : T

[x : U ]
···

V x : T →I
V : U → T

[k : S]
···

k $ E : T ↓I
E : S ↓ T

[x : U ]
···

C $ x : T ↑I
C : U ↑ T

F : U → T E : U →E
FE : T

C : S E : S ↓ T ↓E
C $ E : T

C : U ↑ T E : U ↑E
C $ E : T

Fig. 3. The λξ0-calculus: syntax and semantics
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A term of the form ξ0k. E in the λξ0-calculus may capture not just its imme-
diately surrounding delimited continuation in the covariable k but also delimited
continuations beyond the nearest dynamically-enclosing delimiter, if the body E
invokes another control operator ξ0k. E′. Hence our primitive control operator is
dynamic [17, 18, 19]: the answer types T1 and T2 in the impure type (U ↑T1)↓T2
may themselves be impure. We also allow changing the answer type, so T1 and
T2 may differ. Thus our type system is the first to achieve both desiderata in
Sect. 2: to reach beyond the nearest delimiter and to change the answer type.

More precisely, our ξ0 is not Danvy and Filinski’s shift but the variation in
their Appendix C [17], which we pronounce “shift-zero”. In the untyped setting,
ξ0, shift, control [25, 26], and their variants [38, 39, 40] are all macro-expressible
in terms of each other [43, 57]. In the typed setting, ξ0 easily emulates shift [17]
(shift k. E translates to ξ0k. # $ E), but it remains to relate ξ0 to other type
systems of control. In particular, unlike Gunter et al.’s system [38, 39], we assure
that a program of a pure type never gets stuck due to a missing delimiter. We
are also able to type more terms, for example ξ0k. λx. k $ x, which changes the
answer type.

Existing languages with delimited control generally introduce a primitive ex-
pression form, called “reset” or “prompt”, to insert a control delimiter. In con-
trast, our language includes terms of the form C $ E, which means to plug the
term E into the coterm C. We call these terms statements. Unlike in Fig. 1, a
statement is a term. Because every coterm “comes with its own delimiter” in
that it always ends in either the identity continuation # or a covariable k, our
term # $ E serves the purpose of “reset E” or “prompt E” in previous work,
even though $ alone is not a delimiter. Now that # $ E is as much a term as E,
we replace the typing rule # in Fig. 1 by a new term equality rule # $ V = V .

To evaluate programs that use delimited control, Fig. 3 defines two transition
rules. The first rule substitutes an argument value V into the body E in λx. E,
whereas the second rule substitutes an argument coterm C into the body E in
ξ0k. E. Both rules operate inside a term context C1 $ · · · $ Cn $ [ ], where n ≥ 0.
This term context is the metacontinuation [67] that appears in CPS semantics
[17, 18, 19] and abstract machines [11, 24] for delimited control.

As in Sect. 3.1, the term equality rules in Fig. 3 are equations in the multi-
sorted algebra of terms and coterms as well as the reversible typing rules

E′[C $ FE] : T
============ =
E′[E, C $ F ] : T

E′[C $ V E] : T
============ =
E′[C; V $ E] : T

E′[V ] : T
========== =
E′[# $ V ] : T

(6)

and the corresponding rules replacing E′[ ] and T by C′[ ] and S.
As a substructural logic, the λξ0-calculus has the same binary modes as Fig. 1,

but allows not just the right-implication ↑ of the $ mode but also its dual, the left-
implication ↓. As before, this logic has neither negation nor multiple conclusions,
so we interpret delimited control as multimodal intuitionistic logic via the Curry-
Howard correspondence. The implication connectives each come with their own
introduction and elimination rules, but ↓E and ↑E both conclude with C $E : T .
This apparent ambiguity is standard in type systems descended from the Lambek
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[k : string ↑ int]1 x : string ↑E
k $ x : int ↓I1

x : (string ↑ int) ↓ int

[k′ : int ↑ T ]2
[k : string ↑ int]1 x : string

↑E
k $ x : int ↑E

k′ $ k $ x : T ↓I2
k $ x : (int ↑ T ) ↓ T ↓I1

x : (string ↑ int) ↓ (int ↑ T ) ↓ T

Fig. 4. Two type derivations for a string x

calculus [46]. Indeed, if the first of the two transition rules in Fig. 3 did not
restrict β-reductions to take place only when the argument is a value, then the
term # $ (λx. “call by name”)(ξ0k. “call by value”) would transition not only to
“call by value” but also to # $ “call by name”, which is equal to “call by name”.
Just as the dynamic semantics restricts argument terms to values, the static
semantics restricts argument types to pure types.

With both ↑ and ↓ present, each term has an infinite number of types. For
example, Fig. 4 shows that a string also has the types (string ↑ int) ↓ int and
(string↑int)↓(int↑T )↓T for any T . In fact, the entailment relation of the logic is a
partial order of subtyping, which we notate as T1 ≤ T2. This relation is generated
by U ≤ (U ↑ T ) ↓ T along with congruences, covariance, and contravariance.

We show two example terms before stating formal properties. Appendix B
gives the derivations. The term (ξ0k. 1)(ξ0k. “x”) has the type S ↓ int for any
cotype S. The derivation is CPS-like, even though the term is in direct style
like all our programs. Since the type is impure, the term may (and does) get
stuck if run alone, but can appear in safe programs such as λx.(ξ0k. 1)(ξ0k. “x”).
As with (only) Danvy and Filinski’s type system for shift [17], the answer type
varies between int (for the subterm ξ0k. 1) and string (for ξ0k. “x”), but the
overall answer type is int rather than string due to (left-to-right) evaluation
order.

The impure term inc(ξ0k. ξ0k
′. “x”) reaches beyond the nearest enclosing de-

limiter, which shift does not allow. It has the type (int ↑ T ) ↓ S ↓ string, where
int is the type of the result of inc.

Proposition 3 (Preservation). If E[E1] : T and E1 � E2 then E[E2] : T .

We sketch the proof by stating three lemmas. The first lemma is termed direct
compositionality on demand by Barker [8]: a subterm of a typed term is typed.

Lemma 1. If E[E1] : T , then there exists some type T1 such that E1 : T1 and
whenever E′

1 : T1 we have E[E′
1] : T .

The two remaining lemmas are less trivial than usual because the typing rules
→I, ↓I, and ↑I are not syntax-directed.

Lemma 2. If (λx.E)V : T then E{x �→ V } : T .

Lemma 3. If C $ (ξ0k. E) : T then E{k �→ C} : T .

Proposition 4 (Progress). If C $ E : U , then either C $ E is a value (that is,
C = # and E is a value) or C $ E � E′ for some E′.
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The small-step type-checking algorithm in Sect. 4.1 offers an appealing proof of
this proposition: on one hand, it is correct with respect to the static semantics
(Corollary 1 below); on the other hand, it is sound as an abstract interpretation
of the dynamic semantics.

Proposition 5 (Determinism). If E � E′
1 and E � E′

2, then E′
1 = E′

2.

Proposition 6 (Termination). If E : T , then there is no infinite transition
sequence E � E1 � E2 � · · · .

4.1 Type-Checking Algorithm

Fig. 5 shows a type-checking algorithm, expressed as moded inference rules, for a
variant of our language in which binders are annotated with types and cotypes.
The accompanying Twelf code in lxi0-calc.elf implements this algorithm. It
produces a CPS-like derivation from a direct-style program. For the term (ξ0k. 1)
(ξ0k. “x”) above, our algorithm returns its type and even the cotypes of k’s.

Our type checker performs abstract interpretation by traversing the term, just
as the focusing process of an evaluator would traverse the term in search of a
focus, and replacing nonvariable subterms by typed variables one by one.

Definition 2. A focus is a term of the form V1V2, C $ E, or ξ0k :S. E.

As explained in Sect. 3.2, each typed variable is an abstract value. In addition,
our covariables are cotyped and can be thought of as abstract covalues.

Whereas the focusing process of an evaluator need only traverse a known
term plugged into a known coterm, the type checker often needs to traverse a
term without knowing what coterm it may be plugged into. For example, to
check the function λx: int. inc(ξ0k : int↑string. 3), the checker needs to visit the
subterm ξ0k : int↑string. 3 without knowing the context where the function will
be applied and hence its body evaluated. In other words, the checker needs to use

an equality rule
〈〉; inc $ (ξ0k : int↑string. 3) : T

〈〉 $ inc(ξ0k : int↑string. 3) : T
where 〈〉 represents an unknown

coterm. To perform such traversals, we introduce the notion of an incomplete
coterm C〈〉, which is like a coterm but ends in 〈〉 rather than in # or k. Some
of the checker’s judgments use the notation C〈〉 ¢ E. Intuitively, C〈〉 ¢ E means
the term obtained by plugging E into the term context C〈〉†[ ] defined below.

Definition 3. Associate with each incomplete coterm C〈〉 a term context C〈〉†[ ]:

〈〉†[ ] = [ ], (E, C〈〉)†[ ] = C〈〉†
[
[ ]E

]
, (C〈〉; V )†[ ] = C〈〉†

[
V [ ]

]
. (7)

The pair C〈〉 and E is a zipper over the term C〈〉†[E], “unzipped” to display
the subterm E. We also use C ¢ E to mean the term C $ E, where C is a
(complete) coterm. Whereas C $ E is always a statement, the term C〈〉†[E] is
only a statement when C〈〉 is 〈〉 and E is a statement.

Unlike a ξ0-bound covariable like k, this unknown coterm is not annotated
with its cotype. Rather, the checker infers its (greatest) cotype, using a judgment

lxi0-calc.elf
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Terms (annotated) E, F ::= V
∣
∣ FE

∣
∣ C $ E

∣
∣ ξ0k :S. E

Values (annotated) V ::= x
∣
∣ λx :U. E

Incomplete coterms C〈〉 ::= 〈〉
∣
∣ E, C〈〉

∣
∣ C〈〉; V

Possibly incomplete coterms C〈?〉 ::= C
∣
∣ C〈〉

Judgments (hats indicate output as opposed to input parameters)

T1 ≤ T2 E ⇒ T̂ C〈?〉 ¢ E ⇒ T̂ Ŝ ⇐ C〈〉 ¢ E : T

V : Û k : Ŝ C〈?〉 ¢ U ⇒ T̂ Ŝ ⇐ C〈〉 ¢ U : T

Initial query for type inference 〈〉 ¢ E ⇒ T

Inference rules for T1 ≤ T2

U primitive
U ≤ U

U1 ≤ U2 T1 ≤ T2

U1 ≤ (U2 ↑ T1) ↓ T2

U2 ≤ U1 T1 ≤ T2

U1 → T1 ≤ U2 → T2

U1 ≤ U2 T2 ≤ T1 T ′
1 ≤ T ′

2

(U1 ↑ T1) ↓ T ′
1 ≤ (U2 ↑ T2) ↓ T ′

2

Inference rules for E ⇒ T̂

V1 : U1 → T V2 : U2 U2 ≤ U1

V1V2 ⇒ T

C ¢ E ⇒ T

C $ E ⇒ T

[k : S]
···

〈〉 ¢ E ⇒ T

ξ0k :S. E ⇒ S ↓ T

Inference rules for C〈?〉 ¢ E ⇒ T̂

V : U

〈〉 ¢ V ⇒ U

k : U1 ↑ T V : U2 U2 ≤ U1

k ¢ V ⇒ T

V : U

# ¢ V ⇒ U

C〈?〉; V ¢ E ⇒ T

E, C〈?〉 ¢ V ⇒ T

C〈?〉 ¢ V1V2 ⇒ T

C〈?〉; V1 ¢ V2 ⇒ T

F or E is not a value E, C〈?〉 ¢ F ⇒ T

C〈?〉 ¢ FE ⇒ T

E ⇒ U C〈?〉 ¢ U ⇒ T

C〈?〉 ¢ E ⇒ T

E ⇒ (U ↑ T1) ↓ T C ¢ U ⇒ T2 T2 ≤ T1

C ¢ E ⇒ T

E ⇒ (U ↑ T1) ↓ T S ⇐ C〈〉 ¢ U : T1

C〈〉 ¢ E ⇒ S ↓ T

Inference rules for Ŝ ⇐ C〈〉 ¢ E : T

V : U

U ↑ T ⇐ 〈〉 ¢ V : T

S ⇐ C〈〉; V ¢ E : T

S ⇐ E, C〈〉 ¢ V : T

S ⇐ C〈〉 ¢ V1V2 : T

S ⇐ C〈〉; V1 ¢ V2 : T

F or E is not a value S ⇐ E, C〈?〉 ¢ F : T

S ⇐ C〈〉 ¢ FE : T

E ⇒ U S ⇐ C〈〉 ¢ U : T

S ⇐ C〈〉 ¢ E : T

E ⇒ (U ↑ T1) ↓ T2 T2 ≤ T S ⇐ C〈〉 ¢ U : T1

S ⇐ C〈〉 ¢ E : T

Other inference rules

[x : U ]
···

〈〉 ¢ E ⇒ T

λx :U. E : U → T

[x : U ]
···

C〈?〉 ¢ x ⇒ T

C〈?〉 ¢ U ⇒ T

[x : U ]
···

S ⇐ C〈〉 ¢ x : T

S ⇐ C〈〉 ¢ U : T

Fig. 5. Type-checking algorithm for delimited control
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form S ⇐ C〈〉¢E : T whose modes are rather special: the only output parameter
is S. Any unknown coterm into which the term C〈〉†[E] is plugged for evaluation
needs to have the cotype S in order to yield an answer of type T .

Our approach to “visit subterms in evaluation position before the context in
which they occur” may be an instance of tridirectional type-checking [22]. The
4th–6th rules for C〈?〉 ¢ E ⇒ T̂ and the 2nd–4th rules for Ŝ ⇐ C〈〉 ¢ E : T
are focusing rules: they traverse the applicative structure of E to find the next
subterm to abstractly interpret according to the evaluation order.

Proposition 7 (Termination). Under any typing assumptions x1 : U1, . . . ,
k1 : S1, . . . , any query using the inference rules in Fig. 5 terminates.

Proposition 8. Under any typing assumptions x1 : U1, . . . , k1 : S1, . . . :

(a) U1 ≤ U2 iff E : U1 entails E : U2.
(b) E ⇒ T iff E is a focus and T is a least type such that E : T .
(c) C ¢ E ⇒ T iff T is a least type such that C $ E : T .
(d) C〈〉 ¢ E ⇒ T iff T is a least type such that C〈〉†[E] : T .
(e) S ⇐ C〈〉 ¢ E : T iff S is a greatest cotype such that C〈〉†[E] : S ↓ T .

For T to be a least type such that E : T means that E : T and, for all T ′, if
E : T ′ then T ≤ T ′. For U ↑ T1 to be a greatest cotype such that E : (U ↑ T1) ↓ T2
means that E : (U ↑ T1) ↓ T2 and, for all U ′ and T ′

1, if E : (U ′ ↑ T ′
1) ↓ T2 then

U ≤ U ′ and T ′
1 ≤ T1.

Corollary 1 (Correctness). 〈〉 ¢ E ⇒ T iff T is a least type such that E : T .

Given that we annotate binders with types, this corollary shows the least type
is unique because the type-checking algorithm is deterministic.

5 Conclusion

We model syntax using a substructural logic, such that terms in the language are
structures in the substructural logic. This approach is standard in logical anal-
yses of natural language but less common for programming languages. Types
as abstract interpretations fall out, because structures in logic naturally contain
formulas, and formulas are types—or abstract values—in the language. Hypo-
thetical reasoning and structural rules in the logic model small-step transitions.
Thus our type systems embody small-step abstract interpretation.

Beyond reconstructing the simply-typed λ-calculus, the fruit of our approach
is the λξ0-calculus. It is the first type system for delimited continuations in which
control effects may change the answer type as well as act beyond the nearest dy-
namically-enclosing delimiter. The types are built up from binary connectives,
which can clearly be interpreted as implication in intuitionistic logic. This feature
is enabled by small-step typing, which lets us assign cotypes to delimited evalu-
ation contexts. We also presented and implemented a type-checking algorithm,
which again operates by small-step abstract interpretation.
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Modeling syntax using a substructural logic lets us take advantage of estab-
lished results, such as proof rules and reductions. It further draws attention
to the similarity between hypothetical reasoning in the binding context and in
the evaluation context—for example, between the ξ0 and ↓I rules in Fig. 3. The
two kinds of contexts differ simply in that the binding context is intuitionistic
whereas the evaluation context is substructural: while the former is usually writ-
ten to the left of � and admits weakening and contraction, the latter is usually
written between � and : and only allows structural rules that model focusing.
Typing derivations thus follow evaluation order and control flow: the typing
derivation of a direct-style term is essentially its CPS transformation.

Our work exhibits a duality closely related to that for undelimited continua-
tions [15, 29, 55, 66], but investigating the delimited case remains future work.
Given our analogy between small-step type-checking and small-step evaluation,
we should relate our proof and term normalizations.

It remains to extend this work to other control operators, such as Felleisen’s
control [25, 26] and named prompts for delimiters, and to relate it to other
substructural logics, such as those with additives and exponentials. We also look
forward to mechanizing our proofs.
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EXPTIME-hard. The exponential time hardness is shown by reduction
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Introduction

Type inhabitation problem is usually defined as follows: “does there exist a closed
term T of a given type τ (in an empty environment)”.

In the simply typed system the inhabitation problem is PSPACE-complete
(see [7]). The intersection types system studied in the current paper involves
types of the form α∩β. Intuitively, a term can be assigned the type α∩β if and
only if it can be assigned the type α and also the type β.

Undecidability of the general inhabitation problem for intersection types was
shown by P. Urzyczyn in [8].

Several weakened systems were studied, and proved to be decidable. T. Kurata
and M. Takahashi in [2] proved the decidability of the problem in the system
λ(E∩, ≤) which does not use the rule (I∩).

D. Leivant in [3] defines the rank of an intersection type. The notion of rank
provides means for classification and a measure of complexity of the intersection
types.

One can notice, that the construction in [8] uses types of rank four. The decid-
ability of the inhabitation for rank three is still an open problem. The problem
for rank two was so far believed to be decidable in polynomial space (see [8]).

Our result contradicts this belief. We prove the inhabitation problem for rank
two to be EXPTIME-hard by a reduction from the halting problem for Alter-
nating Linear Bounded Automata (ALBA in short). The idea of the reduction is
as follows. For a given ALBA and a given word of length n we construct a type
of the form α1 ∩ . . . ∩αn ∩αn+1 ∩αn+2. For i = 1 . . . n, the component αi repre-
sents the behaviour of the i-th cell of the tape, αn+1 represents changes in the
position of the head of the machine, and the last part αn+2 simulates changes of
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the machine state. The ∩ operator is used here to hold and process information
about the whole configuration of the automaton.

The fact that the problem for rank two is EXPTIME-hard only demonstrates
how difficult the still open problem for rank three may be.

1 Basics

We consider a lambda calculus with types defined by the following induction:

– Type variables are types;
– If α and β are types, then α → β and α ∩ β are also types.

We assume that the operator ∩ is associative, commutative and idempotent. The
type inference rules for our system are as follows:

(VAR) Γ � x:σ if (x:σ) ∈ Γ

(E →)
Γ � M : α → β Γ � N : α

Γ � (MN): β
(I →)

Γ, (x: α) � M : β

Γ � λx.M : α → β

Γ � M : α ∩ β

Γ � M : α
(E∩)

Γ � M : α ∩ β

Γ � M : β
(I∩)

Γ � M : α Γ � M : β

Γ � M : α ∩ β

Definition 1. Following Leivant ([3]) we define the rank of a type τ :

rank(τ ) = 0, if τ is a simple type (without “∩”);
rank(τ ∩ σ) = max(1, rank(τ ), rank(σ));
rank(τ → σ) = max(1 + rank(τ ), rank(σ)), when rank(τ ) > 0 or rank(σ) > 0.

2 Decidability of the Inhabitation Problem

2.1 The Algorithm

Definition 2. An environment Γ is a set of declarations of the form (x: α),
where x is a variable and α is a type.

Definition 3. A variable x is k-ary in an environment Γ , if Γ includes a dec-
laration (x: α), such that

α = β1 → · · · → βk → βk+1
or

α = γ ∩ (β1 → · · · → βk → βk+1).

In other words, the variable is k-ary, if one can apply it to some k arguments.

Definition 4. A constraint is a pair (Γ, τ), denoted by Γ � X : τ , where Γ is an
environment and τ is a type.
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Definition 5. A task is a set of constraints

Z = [Γ1 � X : τ1, . . ., Γn � X : τn],

where all the environments Γ1 . . . Γn share the same domain of variables, and
where the types τ1 . . . τn are not intersections (meaning that τi �= αi ∩ βi).
A solution of the task Z is a term M such that for each i = 1 . . . n we have
Γi � M : τ1.

To ilustrate our algorithm, we first consider an example. Let us find an in-
habitant in a β-normal form for a type T = τ1 ∩ τ2, where

τ1 = ((((α → B) → A) ∩ ((β → C) → B) ∩ ((α → D) → C) ∩ ((β → E) → D))

→ (α → β → α → β → E) → A),

τ2 = ((((β → B) → A) ∩ ((α → C) → B) ∩ ((α → D) → C) ∩ ((β → E) → D))

→ (β → α → α → β → E) → A).

We have to find a term M which can be assigned both the type τ1 and τ2. The
following must hold: ∅ � M : τ1; ∅ � M : τ2. From the structure of τ1 and τ2 we
can see that M has to be an abstraction M = λXY.N . Now we will try to find
N such that: Γ1 � N : A; Γ2 � N : A, where

Γ1 = {X : (((α → B) → A)∩((β → C) → B)∩((α → D) → C)∩((β → E) → D),

Y : α → β → α → β → E},

Γ2 = {X : (((β → B) → A)∩((α → C) → B)∩((α → D) → C)∩((β → E) → D),

Y : β → α → α → β → E}.

We notice now, that N has to be X applied to some argument (of different types
in different environments). We have N = X(λx.P ). And we search now for P
such that: Γ1, x: α � P : B; Γ2, x: β � P : B. Then again P = X(λy.Q), where
Γ1, x: α, y: β � Q: C; Γ2, x: β, y: α � Q: C. We continue with Q = X(λv.R), and
Γ1, x: α, y: β, v: α � R: D; Γ2, x: β, y: α, v: α � R: D. Finally R = X(λz.S) and
Γ1, x: α, y: β, v: α, z: β � S: E; Γ2, x: β, y: α, v: α, z: β � S: E. Now we see that
S = Y S1S2S3S4, and we have to solve four tasks:

Γ1, x: α, y: β, v: α, z: β � S1: α; Γ2, x: β, y: α, v: α, z: β � S1: β,
Γ1, x: α, y: β, v: α, z: β � S2: β; Γ2, x: β, y: α, v: α, z: β � S2: α,
Γ1, x: α, y: β, v: α, z: β � S3: α; Γ2, x: β, y: α, v: α, z: β � S3: α,
Γ1, x: α, y: β, v: α, z: β � S4: β; Γ2, x: β, y: α, v: α, z: β � S4: β.

We see that the only possible assignment is S1 = x, S2 = y, S3 = v, S4 = z.
Hence we found our inhabitant M = λXY.X(λx.X(λy.X(λv.X(λz.Y xyvz)))).

Notice that, when searching for the inhabitants, we need always to consider
simulteanously both environments. For each Si we had always exactly two vari-
ables of the right type in each environment (because in every environment there
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are two variables of the type α and two of the type β). But only one variable
had the right type in both environments. While constructing an inhabitant for
a type τ1 ∩ τ2 we had to build a common solution for both parts.

We start the decidability proof by presenting the nondeterministic algorithm.
This algorithm can be easily converted into a deterministic one, but at a consid-
erable loss of clarity. Also we remind reader that the exact procedure described
below does not have the termination property. Hovewer we prove later on (see
Section 2.3), that for each input type of rank at most two, our algorithm (after
a few simple modifications) must find a solution in a bounded number of steps
or repeat a configuration.

Definition 6. The Algorithm.

Our algorithm uses the “intersection removal” operation Rem defined as follows:

Rem(Γ � X : τ) = {Γ � X : τ} if τ is either a type variable or τ = τ1 → τ2;
Rem(Γ � X : τ1 ∩ τ2) = Rem(Γ � X : τ1) ∪ Rem(Γ � X : τ2).

The purpose of the Rem operation is to eliminate “∩” and to convert a judgement
Γ � X : τ with τ being possibly an intersection type into a set of judgements
where the types on the right side are not intersections.

For a given type τ the first task is:

Z0 = Rem(∅ � X : τ)

Recall that the types on the right-hand sides of tasks are not intersections. Let
the current task be:

Z = [Γ1 � X : τ1, . . ., Γn � X : τn]

1. If each type τi is of the form αi → βi, then the next task processed recursively
by the algorithm will be:

Z ′ = Rem(Γ1 ∪ {x: α1} � X ′: β1) ∪ . . . ∪ Rem(Γn ∪ {x: αn} � X ′: βn),

where x is a fresh variable not used in any of the Γi.
If the recursive call for Z ′ returns M ′, then M = λx.M ′, if on the other
hand the recursive call gives an answer “empty type”, we shall give the same
answer.

2. If at least one of the τi is a type variable, then the solution cannot be an
abstraction, but must be an application or a variable. Note that all envi-
ronments Γ1, . . ., Γn have the same domain of variables. Suppose that there
exists a number k and a variable x which is k-ary in each of the environments,
and for all j = 1 . . . n we have that:

Γj � x: βj1 → · · · → βjk → τj

(if there is more than one such a pair, we pick nondeterministically one of
them). Then:
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– If k = 0, then M = x,
– If k > 0, then M = xM1 . . .Mk, where Mi are solutions of the k inde-

pendent tasks:

Z1 = Rem(Γ1 � X1: β11) ∪ . . . ∪ Rem(Γn � X1: βn1),
. . .

Zk = Rem(Γ1 � Xk: β1k) ∪ . . . ∪ Rem(Γn � Xk: βnk).

If any of the k recursive calls gives the answer “empty type”, we shall
give the same answer.

If there is no such a number and a variable we give the answer “empty type”.

2.2 Soundness and Completeness

Lemma 7. If the above algorithm finds a term M for an input type τ , then
� M : τ .

Proof. By induction on M .

The algorithm proposed in Definition 6 is not capable of finding all the terms
of a given type. Hence, to prove the correctness of the proposed procedure, we
first define the notion of a long solution, then we show that every task, which
has a solution, has also a long solution. Finally we complete the proof of the
soundness of the algorithm by proving that every long solution can be found by
the given procedure.

Definition 8. M is a long solution of the task Z = [Γ1 � X : τ1, . . . , Γn � X : τn],
when one of the following holds:

– All types τi are of the form αi → βi and M = λx.M ′, where M ′ is a long
solution of the task
Z ′ = Rem(Γ1 ∪ {x: α1} � X ′: β1) ∪ . . . ∪ Rem(Γn ∪ {x: αn} � X ′: βn), or

– Some τi is a type variable and M = xM1 . . . Mk (possibly with k = 0), where
for i = 1 . . . n we have Γi � x: αi1 → · · · → αik → τi and M1, . . . , Mk are long
solutions of tasks Z1, . . . , Zk, where Zj = [Γ1 � Xj : α1j , . . . , Γn � Xj : αnj ]
for j = 1 . . . k.

Lemma 9. If there exists a solution of a task Z, then there exists a long one.

Proof. Assume that M is a solution of Z = [Γ1 � X : τ1, . . . , Γn � X : τn] and that
M is in a normal form. We construct a long solution A(M, Z) in the following
way:

– If there is a τi which is a type variable, then M is not an abstraction and:
• If M = x, then A(M, Z) = M , because in this case M is a long solution,
• If M = xM1 . . . Mk, then it must hold that Γi � x: αi1 → · · · → αik → τi

for i = 1 . . . n, so A(M, Z) = xA(M1, Z1) . . . A(Mk, Zk), where
Zj = [Γ1 � Xj : α1j , . . . , Γn � Xj : αnj ] for j = 1 . . . k.
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– Otherwise (if all τi have the form of αi → βi):
• If M = xM1 . . . Mk (possibly for k = 0) then again it must hold that

Γi � x: αi1 → · · · → αik → τi for i = 1 . . . n, and also for i = 1 . . . n,
j = 1 . . . k it must hold that Γi � Mj: αij . Let r be the largest number,
such that all the types τi are of the form β1i → · · · → βri → γi. Then
A(M, Z) = λz1 . . . zr.xA(M1, Z1) . . . A(Mk, Zk)A(z1, Z

′
1) . . . A(zr, Z

′
r),

where

Zj = [Γ1, (z1: β1j), . . . , (zr: βrj) � Xj : α1j , . . . ,
Γn, (z1: βnj), . . . , (zr: βnj) � Xj : αnj ],

Z ′
j = [Γ1, (z1: β1j), . . . , (zr: βrj) � X ′

j : β1j , . . . ,
Γn, (z1: βnj), . . . , (zr: βnj) � X ′

j : βnj ].

• If M = λx.M ′, then A(M, Z) = λx.A(M ′, Z ′), where
Z ′ = Rem([Γ1, (x: α1) � X ′: β1, . . . , Γn, (x: αn) � X ′: βn]).

Lemma 10. Every long solution of the task Z = [Γ1 � X : τ1, . . . , Γn � X : τn]
can be found by the nondeterministic procedure described in Definition 6 in one
of its possible runs.

Proof. By induction on the structure of the long solution M .

– M = x. Since M is long, at least one of the τi must be a type variable. Hence
the algorithm working on the task Z will search in the environments Γi for
a variable of the right type (case 2 of the algorithm). One of these variables
is x.

– M = xM1 . . . Mk. Like before we can reason that the algorithm shall choose
the case 2, and in one of its possible runs the algorithm will choose the vari-
able x. After x is chosen, the procedure shall search for solutions of the tasks
Z1, . . . , Zk. By the definition of a long solution, we have that M1, . . . , Mk are
long solutions of the tasks Z1, . . . , Zk, and by the induction hypothesis, these
solutions can be found by the recursive runs of our procedure. It follows that
also M can be found.

– M = λx.M ′. Then of course all the types τi have to be of the form αi → βi.
Hence for the task Z the procedure will choose case 1, and will search for a solu-
tion of the task Z ′ = Rem([Γ1, (x: α1) � X ′: β1, . . . , Γn, (x: αn) � X ′ : βn ]).
By the induction hypothesis, the long solution M ′ for Z ′ can be found by the
algorithm. Hence also M can be found.

Corollary 11. Our algorithm finds an inhabitant for every non-empty type, for
which it terminates.

Proof. A direct conclusion of Lemmas 9 and 10.

2.3 The Termination of the Algorithm

Let us consider the work of the algorithm for a type τ of rank two.

Fact 12. Types of variables put in the environments during the work of the
algorithm are of rank at most one.
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Proof. The environments are modified only in case 1. Since the type τ is of
a rank at most two, the variables put in the environments have rank at most
one.

Fact 13. In every recursive run each task has at most |τ | constraints to solve.

Proof. The number of the constraints increases only when the Rem operation
is used. Let us denote the number of “∩” operators in the type τ by C(τ). It is
easy to notice that if Rem(Γ � X : τ) = {Γ � X : τ1, . . ., Γ � X : τk}, then the
following holds:

C(τ) = C(τ1) + . . . + C(τk) + k.

In other words creating new constraint always removes one “∩”. The recursive
calls in case 2 do not increase the number of constraints. In these problems the
procedure searches for terms which can serve as arguments for a variable taken
from the environment. As stated in Fact 12, in environments there are only vari-
ables with types of rank zero and one, and such variables can only be given
arguments with types of rank zero. And these types are simple (without inter-
sections), so the Rem operation applied to them will not increase the number of
constraints in a task.

The Decidability

Theorem 14 The inhabitation problem for the types of rank two is decidable.

Proof. The algorithm proposed in Definition 6 can be easily modified in a way
which will prevent the environments from growing bigger infinitely during the
work of the algorithm. Variables are added to the environments only when all
currently examined types τi are of the form αi → βi. Then every environment
Γi is expanded by a new variable of the type αi. Note that there are only O(|τ |)
types that can be assigned to a variable in one environment. Since we do not
need to keep several variables of the same type (meaning of the same type in
each of the environments) it follows that there is a bounded number of possible
distinct environments that may occur during the work of the algorithm. Also the
number of the types that may occur on the right hand side of each � is O(|τ |).
Hence each branch of the procedure must finish or repeat a configuration after
a bounded (although possibly exponential) number of steps.

3 The Lower Bound

3.1 Terms of Exponential Size

First we shall consider an instructive example. We propose a schema for creating
instances of the inhabitation problem for which the above algorithm has to
perform an exponential number of steps before finding the only inhabitant. The
size of the inhabitant will also be exponential in the size of the type. Our example
demonstrates a technique used in the construction to follow. Let T (n) = τ1 ∩
. . . ∩ τn, where
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τi = α → Ψ → · · · → Ψ︸ ︷︷ ︸
i−1

→ (α → β) → (β → α) · · · → (β → α)
︸ ︷︷ ︸

n−i

→ β, and

Ψ = (α → α) ∩ (β → β).

For instance T (3) =

(α → (α → β) → (β → α) → (β → α) → β) ∩
(α → Ψ → (α → β) → (β → α) → β) ∩
(α → Ψ → Ψ → (α → β) → β)

One can notice that a construction of an inhabitant for this type is similar to
the rewriting from the word βββ to the word ααα in the following way:

βββ → αββ → βαβ → ααβ → ββα → αβα → βαα → ααα.

For |T (n)| = O(n2), there is only one (modulo α-equivalence) term t of type
T (n), and |t| = O(2n). For instance, the only term of type T (3) is:

λx1x2x3x4.x2(x3(x2(x4(x2(x3(x2x1)))))),

while for T (4) it is:

λx1x2x3x4x5.x2(x3(x2(x4(x2(x3(x2(x5(x2(x3(x2(x4(x2(x3(x2x1)))))))))))))).

In what follows, while proving EXPTIME-hardness of the inhabitation problem,
we shall generate types of a similar form to T (n). For this reason it is convenient
to use T (n) for introducing notions and notations, which we shall use later on.
Because of the different role played by the “∩” and “→” it is convenient to
consider the type as an object composed of columns and rows. The rows are
connected with “∩”, and columns with “→”. According to this terminology T (3)
has three rows and five columns. We can think of α and β as of states of a certain
object (e.g. a tape cell). Each row represents operations available for a given
object and the initial and final state of the object. Each column represents
a certain operation (that is a step of a certain automaton) which can modify the
state of all objects. In type T (3) there are three available operations. The i-th
operation changes the i-th sign from β to α, and all earlier signs from α to β. More
precisely each (α → β) in the type T (n) represents the change from β to α, and
an occurence of Ψ represents no change of sign (changes α and β to themselves).

3.2 EXPTIME-Hardness

We shall show the lower bound for the complexity of the inhabitation problem
by a reduction from the EXPTIME-complete problem of the in-place acceptance
for alternating Turing machines.

We consider the Alternating Linear Bound Automata (ALBA) which are just
alternating Turing machines which never leave the input word.

Definition 15. An Alternating Linear Bound Automaton is a sixtuple:

M = (Q, Γ, δ, q0, qacc, g), where
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– Q is a non-empty, finite set of states;
– Γ is a non-empty, finite set of symbols. We shall assume that Γ = {0, 1};
– δ ⊆ (Q × Γ ) × (Q × Γ × {L, R}) - is a non-empty, finite transition relation;
– q0 ∈ Q is the initial state;
– qacc ∈ Q is the final state;
– g : Q → {∧, ∨} is a function which assigns a kind to every state.

Definition 16. A configuration of an ALBA is a triple:

C = (q, t, n), where

– q ∈ Q is a state;
– t ∈ Γ ∗ is a tape content;
– n ∈ N is a position of the head.

Definition 17. We shall say that a transition p = ((q1, s1), (q2, s2, k)) ∈ δ is
available in a configuration C1 = (q1, t, n), when the following conditions hold:

– t(n) = s1;
– (k = L and n > 1) or (k = R and n < |t|).

In this case, we shall say that p transforms the configuration C1 into the config-
uration C2 = (q2, t2, n2), such that

– t2(m) =
{

s2 if m = n,
t(m) otherwise.

– n2 =
{

n + 1 if k = R,
n − 1 otherwise.

It is worth noting that, in configurations in which the head scans the first
symbol of the tape, the only available transitions are these which move the head
to the right, and when the head reaches the end of the word, the only active
transitions will move it to the left.

Definition 18. An ALBA accepts a configuration C = (q, t, n), if

– q = qacc and |t| = n, or
– g(q) = ∨ and there exists a transition available in C, which transforms C

into a configuration which the automaton accepts, or
– g(q) = ∧ and every transition available in C, transforms C into a configura-

tion which the automaton accepts.

Definition 19. The problem of in-place acceptance is defined as follows: does
a given ALBA accept a given word t (meaning it accepts the configuration
C0 = (q0, t, 1)).

It is known that APSPACE = EXPTIME (see Corollary 2 to Theorem 16.5 and
Corollary 3 to Theorem 20.2 in [6]).

Lemma 20. The problem of in-place acceptance for ALBA is EXPTIME-com-
plete (APSPACE-complete).
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Proof. A simple modification of the proof of Theorem 19.9 in [6]. First we
note that the in-place acceptance is in APSPACE. Consider a machine M =
(Q, Γ, δ, q0, qacc, g). Keeping the counter of steps, we simulate the run of M on
the input word t. We reject if M rejects, or if the machine makes |t||Q||Γ ||t| + 1
steps, because after so many steps the machine has to repeat a configuration.

Let L be a language in APSPACE accepted in space nk by a machine M . It
means that M does not use in any of its parallel computations more than nk cells
of the tape (where n is the length of the input word). Let ⊥ denote the blank
symbol. Let us consider a modified machine M ′, which during its work performs
the same moves as M , but when M reaches a final state, the head of M ′ makes
nk − n steps to the right and also enters a final state. It is clear that M accepts
t if and only if the machine M ′ accepts t⊥nk−n without ever leaving this word
(note that according to the definition, the machine M accepts in the final state
only with the head at the rightmost symbol of the input word). Blank symbols
⊥ at the very end of the word do not change the behaviour of the machine, and
M does not use more than nk cells of the tape. So t belongs to L if and only if
M ′ accepts t⊥nk−n in-place.

Definition 21. The construction of the type.

Let us consider the input word t = t1t2 . . . tn−1tn. We construct a type with n+2
rows and some number of columns (according to the terminology introduced in
Section 3.1). The first n rows shall represent the contents of n tape cells. The
second last row shall represent the position of the head (values 1 . . . n). The last
row shall stand for the state of the machine.

Initial and Final State: We shall begin our construction with these two
columns:

( . . . → 0 ∩ 1 → t1 )∩
. . .

( . . . → 0 ∩ 1 → tn )∩
( . . . → n → 1 )∩
( . . . → qacc → q0 ).

The last column in the type represents the initial configuration: the variables
t1 . . . tn represent the symbols of the input word, the head is at first position,
and the machine is in state q0. The second last column represents the final
configuration: the head of the machine is on the last cell of the tape. The content
of the tape is irrelevant. Each column of the type (except the last one) will be
assigned to one variable in a term. The components of a column are different
types that are assigned to the same variable in n + 2 different environments.

In the further construction we shall add new columns on the left side.

States of Kind ∨: Let Id(p) = (

p+1
︷ ︸︸ ︷
0 → · · · → 0)∩(

p+1
︷ ︸︸ ︷
1 → · · · → 1). For each element

((q1, s1), (q2, s2, k)) of δ, such that g(q1) = ∨, we add n−1 columns — one column
for each position of the head.
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If k = L, then the i-th added column is of the form:

Id(1) →
. . .
Id(1) →

⎫
⎬

⎭
i

(s2 → s1) →
Id(1) →
. . .
Id(1) →

⎫
⎬

⎭
n − i − 1

(i − 1 → i) →
(q2 → q1) →

And if k = R, then the i-th added column is:

Id(1) →
. . .
Id(1) →

⎫
⎬

⎭
i − 1

(s2 → s1) →
Id(1) →
. . .
Id(1) →

⎫
⎬

⎭
n − i

(i + 1 → i) →
(q2 → q1) →

States of Kind ∧: For each state q, such that g(q) = ∧, and for each sign
s ∈ Γ we add n columns (one for each position of the head). The i-th column
is generated this way: let ((q, s), (q1, s1, k1)), . . . , ((q, s), (qp, sp, kp)) be all tran-
sitions available in q, when head is at i-th position, which holds sign s. In this
case, the i-th column has the form of:

Id(p) →
. . .
Id(p) →

⎫
⎬

⎭
i − 1

(s1 → · · · → sp → s) →
Id(p) →
. . .
Id(p) →

⎫
⎬

⎭
n − i

((i + r(k1)) → · · · → (i + r(kp)) → i) →
(q1 → · · · → qp → q) →

where

r(k) =
{

1 if k = R
−1 otherwise

The above construction corresponds to the definition of the acceptance in a state
of kind ∧, when the automaton needs to accept in all the reachable configura-
tions. The variable corresponding to the added column can be used in a term
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(inhabitant) only when it is possible to find inhabitants for each of the argu-
ments. Each such inhabitant represents a computation in one of the possible
next configurations.

Note that, if there is no reachable configuration from a state of the kind ∧,
then the added column will not be of a functional type (it will not have any
arrows except for the one on the right), and so it will not require any further
searching for inhabitants. The computation will terminate successfully, which
corresponds to the acceptation of a word in states of kind ∧, from which the
machine has nowhere to go.

3.3 Correctness of the Reduction

We shall consider the instances of the type inhabitation problem generated by
the above construction. Notice that, for such types, the construction of the in-
habitant according to the algorithm proposed in Definition 6 will go as follows:
first the task shall be split into n+2 constraints by use of the Rem operator, then
the algorithm will use case 1 several times, after which the current task will be

Z0 = [Γ1 � X : t1, . . . , Γn � X : tn, Γn+1 � X : 1, Γn+2 � X : q0]

From this moment the algorithm will use only the application case (case 2),
since the types under consideration will always be type variables. In the following
steps the only thing that will change will be s1, . . . , sn, k, q, but the environments
Γ1, . . . , Γn will stay the same.

Lemma 22. Let s1, . . . , sn ∈ Γ , 1 ≤ k ≤ n and q ∈ Q.
The task Z = [Γ1 � X : s1, . . . , Γn � X : sn, Γn+1 � X : k, Γn+2 � X : q] has a solu-
tion if and only if M accepts the configuration C = (q, s1 . . . sn, k).

Proof
(⇒) Induction with respect to the structure of the solution T of the task Z.

– T is a variable x. Then Γn+2 � x: q, and either q is the final state, and k = n
(see 3.2) or q is of the kind “∧”, and in the configuration C there are no
available transitions (because only in this case there was a variable of a type
q added to the environment Γn+2 (see 3.2)). In both cases M accepts the
configuration C.

– T is an abstraction. Impossible, because the types, for which we seek an
inhabitant in Z are type variables.

– T is an application. There are two possibilities.
• T = xT1 and g(q) = ∨. According to the type construction (see 3.2) it

holds that:
Γ1 � x: s1 → s1,

. . .
Γk � x: s′k → sk,

. . .
Γn � x: sn → sn,

Γn+1 � x: k + r(c) → k,
Γn+2 � x: q′ → q,
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and ((q, sk), (q′, s′k, c)) ∈ δ. Hence T1 is a solution of the task

[Γ1 � X1: s1, . . . , Γk � X1: s′k, . . . , Γn � X1: sn,
Γn+1 � X1: k + r(c), Γn+2 � X1: q′].

By the induction hypothesis (for T1) the machine M accepts
C1 = (q′, s1 . . . s′k . . . sn, k + r(c)). However, since q is of the kind ∨
and there exists a transition from C to C1, it follows that M accepts
also C.

• T = xT1 . . . Tm, for some m and g(q) = ∧. According to the type con-
struction (see 3.2) it must hold that:

Γ1 � x: s1 → · · · → s1 → s1,
. . .

Γk � x: sk1 → · · · → skm → sk,
. . .

Γn � x: sn → · · · → sn → sn,
Γn+1 � x: k + r(c1) → · · · → k + r(cm) → k,

Γn+2 � x: q1 → · · · → qm → q,
and the following transitions are all the transitions available
in C: ((q, sk), (q1, sk1, c1)), . . . , ((q, sk), (qm, skm, cm)). Then of course
each Ti is a solution of the task:
[Γ1 � Xi: s1, . . . , Γk � Xi: ski, . . . , Γn � Xi: sn,

Γn+1 � Xi: k + r(ci), Γn+2 � Xi: qi].

By the induction hypothesis for T1, . . . , Tm, the machine M accepts all
the configurations C1, . . . , Cm, where Ci = (qi, s1 . . . ski . . . sn, k + r(ci)).
It means that M accepts all configurations reachable from C in one step,
so it accepts C.

(⇐) Induction with respect to the definition of acceptance.

(Base) Let q = qacc. Then k = n, because the machine accepts only with the
head at the rightmost position. Then according to the construction for the final
state (see 3.2), there exists a variable x, such that:
Γ1 � x: s1, . . ., Γn � x: sn, Γn+1 � x: n, Γn+2 � x: qacc. So T = x is a solution of Z.

(Step) Assume that M accepts C = (q, s1 . . . sn, k), where q is not the final
state. There are two possibilities:

– Let g(q) = ∨. Since M accepts the configuration C it means that there
exists a transition ((q, sk), (q′, s′k, c)), such that M accepts configuration
C1 = (q′, s1 . . . s′k . . . sn, k + r(c)). According to the induction hypothesis
there exists a solution T1 of the task

[Γ1 � X1: s1, . . . , Γk � X1: s′k, . . . , Γn � X1: sn,

Γn+1 � X1: k + r(c), Γn+2 � X1: q′].
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Since q is of the kind ∨, then according to the construction (see 3.2) there
exists a variable x, such that

Γ1 � x: s1 → s1,
. . .

Γk � x: s′k → sk,
. . .

Γn � x: sn → sn,
Γn+1 � x: k + r(c) → k,

Γn+2 � x: q′ → q.

So T = xT1 is a solution of the task Z.
– g(q) = ∧. Then for each transition ((q, sk), (qi, ski, ci)) available from C,

machine M accepts configuration Ci = (qi, s1 . . . ski . . . sn, k + r(ci)). By the
induction hypothesis there exist solutions T1, . . . , Tm of tasks Z1, . . . , Zm,
where

Zi = [Γ1 � Xi: s1, . . . , Γk � Xi: ski, . . . , Γn � Xi: sn,

Γn+1 � Xi: k + r(ci), Γn+2 � Xi: qi].

Since q is of the kind ∧, there must (see 3.2) exist a variable x, such that

Γ1 � x: s1 → · · · → s1 → s1,
. . .

Γk � x: sk1 → · · · → skm → sk,
. . .

Γn � x: sn → · · · → sn → sn,
Γn+1 � x: k + r(c1) → · · · → k + r(cm) → k,

Γn+2 � x: q1 → · · · → qm → q.

Then T = xT1 . . . Tm is a solution of Z.

Corollary 23. The inhabitation problem for rank two intersection types is
EXPTIME-hard.
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Abstract. Inspired by recent work on normalisation by evaluation for
sums, we propose a normalising and confluent extensional rewriting the-
ory for the simply-typed λ-calculus extended with sum types. As a corol-
lary of confluence we obtain decidability for the extensional equational
theory of simply-typed λ-calculus extended with sum types. Unlike pre-
vious decidability results, which rely on advanced rewriting techniques
or advanced category theory, we only use standard techniques.

1 Introduction

It is easy to add sum types to the equational theory of the simply-typed λ-
calculus, in the presence of η-rules, or to add sum types to the rewriting theory
of simply-typed λ-calculus, in the absence of η-rules. However, adding sum types
to the rewriting theory is difficult in the presence of η-rules. Existing rewriting
theories, with the exception of Ghani’s [5], are either incomplete with respect
to the equational theory or non-confluent. Quoting Altenkirch et al [1], Ghani’s
work involves ‘intricate rewriting techniques whose details are daunting’. Our
aim is to introduce a straightforward rewriting theory using standard techniques.

The essential reason why the problem with confluence arises is that reorder-
ing independent nested cases does not change the semantics of a term. For in-
stance, let = be equivalence in the equational theory, writing δ(p, x1.n2, x2.n2)
for case p of in1(x1) ⇒ n2 | in2(x2) ⇒ n2, then

δ(p1, x1.δ(p2, y1.n1, y2.n2), x2.δ(p2, y1.m1, y2.m2))

= δ(p2, y1.δ(p1, x1.n1, x2.m1), y2.δ(p1, x1.n2, x2.m2))

where x1, x2, y1, y2, m1, m2, n1, n2, p1, p2 are distinct object variables. The
structure of the terms on each side of the equation is identical, so it is not
possible to capture the equivalence with a rewrite rule.

This article explores several solutions to the case ordering problem, all sug-
gested by the work of Altenkirch et al [1] and Balat et al [2] on normalisation
by evaluation for the simply-typed λ-calculus extended with sums. The goal of
normalisation by evaluation [4] is to find a unique normal form with respect to
the equational theory. In contrast, we shall be interested in normal forms with
respect to a rewriting theory.
� Supported by EPSRC grant number EP/D046769/1.
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In fact, the case ordering problem also manifests itself in the equational set-
ting. In the example above, either the left hand side or the right hand side of
the equivalence should be a normal form. But the terms are structurally identi-
cal so some non-structural property must be used to define normal forms. One
possibility is to define an ordering on terms via an ordering on variable names.
The ordering on terms can then be used to assign an ordering to nested cases.
Such an ordering is undesirable as it requires us to dispense with α-conversion.

Altenkirch et al solve the problem by adding a new construct to the object
language — a parallel case that simultaneously eliminates a set of sums. Using
the extended language both sides of the equivalence are represented by the same
parallel case. A big advantage of this approach is that it leads to a syntax which
much more closely captures the semantics of the calculus. The main disadvantage
is that it drastically increases the complexity of the machinery used by the syntax
of the language. In Altenkirch et al’s presentation functions appear in the syntax.
These functions can be represented more concretely using sets or lists, but the
resulting syntax is still significantly more complex than the standard one.

Balat et al [2] build on Altenkirch et al’s work. Instead of adding parallel
cases, they define a congruence over terms which contains the equivalence given
in the example above as a special case. They identify normal forms up to this
congruence, leading to a rather elegant presentation.

We adopt an extension ∼ of Balat et al’s congruence, and perform rewrit-
ing modulo ∼. Sect. 2 introduces the equational theory λ→×+ of simply-typed
lambda-calculus extended with products and sums, and decomposes the general
η axiom for sums into a number of simpler axioms. Sect. 3 describes a non-local
rewriting theory that generates the equational theory. Sect. 4 gives a reducibility
proof of strong normalisation for a fragment of the rewriting theory following
the approach of Lindley and Stark [8, Chaper 3][9]. Sect. 5 uses strong normali-
sation results for fragments of the rewriting theory to prove weak normalisation
and confluence modulo ∼ for the full rewriting theory, and hence decidability for
the equational theory. Sect. 6 describes three variations of the rewriting theory.
Sect. 7 concludes.

2 The Object Language

The simply typed lambda calculus extended with products and sums is stan-
dard [5]. We write λ→×+ for the equational theory.

(Types) A, B ::= O | A → B | A × B | A + B

Types are constructed from a base type O, functions A → B from type A to type
B, products A × B of types A and B, and sums of types A and B. We omit the
unit and empty types, but restoring them does not radically change our proofs
(though the empty type requires a little more care in the handling of typing
contexts).
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(Terms) m, n, p ::= x

| λx.m | m n | 〈m, n〉 | π1(m) | π2(m)

| ι1(m) | ι2(m) | δ(m, x1.n1, x2.n2)

Terms are constructed from variables x, lambda abstractions λx.m, applications
m n, pairs 〈m, n〉, projectionsπi(m), injections ιi(m)andcasesδ(m, x1.n1, x2.n2).
Terms are identified up to α-conversion.

The free fv (m) and bound variables bv (m) are defined in the usual way.
We write m[x := n] for the capture-avoiding substition of n for x in m, and
m[x1 := n1, . . . , xk := nk] for the simultaneous capture-avoiding substition of ni

for xi in m (1 � i � k). We write size(m) for the size of the term m. The
typing rules are standard. Each type constructor has an introduction rule and
an elimination rule.

Γ , x : A � x : A

Γ , x : A � m : B

Γ � λx.m : A → B

Γ � m : A → B Γ � n : A

Γ � m n : B

Γ � m : A Γ � n : B

Γ � 〈m, n〉 : A × B

Γ � m : A1 × A2

Γ � πi(m) : Ai
i ∈ {1, 2}

Γ � m : Ai

Γ � ιi(m) : A1 + A2
i ∈ {1, 2}

Γ � m : A1 + A2 Γ , xi : Ai � ni : B i ∈ {1, 2}
Γ � δ(m, x1.n1, x2.n2) : B

Axioms. The axioms for λ→×+ consist of a β-axiom and an η-axiom for each
type constructor.

(→.β) (λx.m)n = m[x := n]

(×.βi) πi(〈m1, m2〉) = mi, i ∈ {1, 2}
(+.βi) δ(ιi(m), x1.n1, x2.n2) = ni[xi := m], i ∈ {1, 2}

(→.η) m = λx.m x, x /∈ fv (m)

(×.η) m = 〈π1(m), π2(m)〉
(+.η†) n[x := p] = δ(p, x1.n[x := ι1(x1)], x2.n[x := ι2(x2)])

The equation m = n is shorthand for the equality judgement Γ � m = n : A

where Γ � m : A and Γ � n : A. The equational theory is given by the least
(typed) congruence satisfying the axioms.

Alternative Axioms. The generalised η-axiom for sums +.η† is non-local and it
is not at all obvious how it might give rise to a confluent rewriting system. In
particular, note that substitutions appear both on the left and the right hand
side of the axiom. We break +.η† down into a number of simpler axioms.
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(+.η) p = δ(p, x1.ι1(x1), x2.ι2(x2))

(move-case) F[δ(p, x1.n1, x2.n2)] = δ(p, x1.F[n1], x2.F[n2]),
x1, x2 /∈ fv(F[ ]) and bv(F[ ]) ∩ fv(p) = ∅

(repeated-guard)

δ(p, x1.δ(p, y1.n1, y2.n2), x2.δ(p, z1.p1, z2.p2))

= δ(p, x1.n1[y1 := x1], x2.p2[z2 := x2]), x1, x2 /∈ fv (p)

(redundant-guard) δ(p, x1.n, x2.n) = n, x1, x2 /∈ fv (n)

The local η axiom for sums +.η is a special case of +.η† in which n is just x.
The move-case axiom is a generalisation of the usual commuting conversions for
λ→×+ [6,11]. As well as allowing cases to move across elimination frames (F1[ ]),
move-case also allows them to be moved across neutral frames (F2[ ]), lambda
frames (F3[ ]) and continuation frames (F4[ ]).

(Frames) F[ ] ::= F1[ ] | F2[ ] | F3[ ] | F4[ ]

F1[ ] ::= [ ] n | π1([ ]) | π2([ ]) | δ([ ], x1.n1, x2.n2)

F2[ ] ::= m [ ] | 〈[ ], n〉 | 〈m, [ ]〉 | ι1([ ]) | ι2([ ])

F3[ ] ::= λx.[ ]

F4[ ] ::= δ(p, x1.[ ], x2.n2) | δ(p, x1.n1, x2.[ ])

We write move-casei for the restriction of move-case to frames of the form Fi.
Following Altenkirch et al, we use the word guard to refer to the first argument
of a case. The axiom repeated-guard allows guards to be copied or deleted. The
axiom redundant-guard is a special case of +.η† in which x does not occur free
in n.

Proposition 1. Replacing the axiom +.η† with the alternative axioms +.η,
move-case, repeated-guard, redundant-guard yields the same equational theory.

Proof. (sketch)
New axioms are sound:

– +.η and redundant-guard are instances of +.η†
– move-case, repeated-guard : apply +.η† from left to right using p as the

substituted term, eliminate resulting +.βi redexes, then α-convert

New axioms are complete:

– η expand all instances of p in n
– use move-case to hoist all instances of p to the top
– use repeated-guard and redundant-guard to get rid of the multiple copies of p
– use redundant-guard for the case where x /∈ fv (n)

The axioms move-case, repeated-guard and redundant-guard , are implicit in
previous work on normalisation by evaluation with sums [1,2]. To the author’s
knowledge, they have not previously been used as the basis for a rewriting
calculus.
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3 A Rewriting Theory

As a first attempt at a rewriting theory consider defining a rewrite rule for each
axiom by orienting from left to right (with the usual restrictions for η-expansion).
Unfortunately the resulting theory has infinite reduction sequences arising from
move-case4. For instance, the following reductions can be applied indefinitely as
m appears as a subterm of n.

m = δ(p, x.n, x.δ(p, x.n, x.n))

−→move-case4 δ(p, x.δ(p, x.n, x.n), x.δ(p, x.n, x.n))

−→move-case4 δ(p, x.m, x.m) = n

Ohta and Hasegawa [10] face a similar problem for a linear lambda calculus.
Their solution is to separate the axioms of their equational theory into a reduc-
tion relation and an equivalence relation, and use Huet’s technique for proving
confluence of the reduction relation modulo the equivalence relation [7]. Balat et
al use an equivalence for defining normal forms and implementing normalisation
by evaluation with sums. Their equivalence is the least congruence satisfying the
move-case4 and redundant-guard axioms. We introduce a congruence that also
includes the repeated-guard axiom.

Definition 2. The relation ∼ is the least congruence satisfying the axioms
move-case4, repeated-guard and redundant-guard.

Deciding equivalence modulo ∼ is straightforward. First we define some auxiliary
functions.

Definition 3

Guards(m) ={
p ∪ Guards(x1.n1) ∪ Guards(x2.n2), if m = δ(p, x1.n1, x2.n2)
∅, otherwise

Guards(x.n) = {m ∈ Guards(n) | x /∈ fv (m)}

Paths(gs) = {ρ | ρ ∈ {1, 2}gs
} ν(ps) = {px1

x2
| p ∈ ps/∼ and x1, x2 fresh}

Tailρ[p
x1
x2 �→i](δ(p ′, x ′

1.n
′
1, x

′
2.n

′
2)) = Tailρ[p

x1
x2 �→i](ni[x

′
i := xi]), if p ∼ p ′

Tailρ(m) = m

The function Guards(m) gives the set of independent guards at the top-level
of m. The definition of Guards is the same as that used by Balat et al. If
ps = Guards(m), then Paths(ν(ps)) represents the set of possible paths through
m dictated by ps. Given a path ρ through a term m, the subterm of m at the
end of that path, the tail of ρ, is given by Tailρ(m). We write ps/∼ for the
quotient set of ps by ∼.
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Proposition 4

m1 ∼ m2 ⇐⇒
∀ρ ∈ Paths(ν(Guards(m1) ∪ Guards(m2))).Tailρ(m1) ∼ Tailρ(m2)

To decide whether m1 ∼ m2: if one of m1, m2 is a case, then use Prop. 4; oth-
erwise compare the top-level constructors and if equal recurse on the immediate
subterms of m1, m2. Having defined the decidable equivalence ∼, we now present
the rewrite rules. The β- and η-rules are standard.

β-Rules

(→.β) λx.mn −→ m[x := n]

(×.β1) π1(〈m1, m2〉) −→ m1

(×.β2) π2(〈m1, m2〉) −→ m2

(+.β1) δ(ι1(m), x1.n1, x2.n2) −→ n1[x1 := m]

(+.β2) δ(ι2(m), x1.n1, x2.n2) −→ n2[x2 := m]

η-Rules. The η-rules are type-directed expansions.

(→.η) mA→B −→ λx.m x, if x /∈ fv (m)

(×.η) mA×B −→ 〈π1(m), π2(m)〉
(+.η) mA+B −→ δ(m, x1.ι1(x1), x2.ι2(x2))

The annotation mA means m has type A. The η-rules are applicable only
if expansion does not create a new redex. More precisely, only variables, appli-
cations and projections (pure neutral terms) can be η-expanded, and only in a
non-elimination frame.

In order to instantiate the move-case axiom as a rewrite rule we read it
from left to right. This corresponds to hoisting a case over a frame. Of course,
we do not generally need to allow hoisting over continuation frames, as this is
captured by ∼. However, for confluence it is necessary to allow hoisting over
several continuation frames followed by a non-continuation frame.

Frames and Contexts

(Hoisting frames) H[ ] ::= F1[ ] | F2[ ] | F3[ ]

(Discriminator contexts) D[ ] ::= [ ] | δ(p, x1.D[ ], x2.n2)

| δ(p, x1.n1, x2.D[ ])

(Hoisting contexts) HD[ ] ::= H[D[ ]]

γ-Rules. We refer to reduction rules that arise from the move-case-,
repeated-guard - and redundant-guard -axioms as γ-rules.

(hoist -case)

HD[δ(p, x1.n1, x2.n2)] −→ δ(p, x1.HD[n1], x2.HD[n2]),
x1, x2 /∈ fv(HD) and bv(HD) ∩ fv(p) = ∅
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The hoist -case-rule is obtained from the move-case axiom. It is a generali-
sation of the usual commuting conversions. Note that continuation frames are
not hoisting frames, as näıvely hoisting over continuation frames would lead to
non-termination. However, the equivalence ∼ includes the possibility of moving
cases over continuation frames, and the hoist-case-rule does allow a case to be
hoisted over a hoisting frame from inside a discrimination context.

The discrimination context is necessary in the hoist -case-rule because it is only
sound to hoist a case over a lambda abstraction if the lambda-bound variable
does not occur free in the guard. If hoisting from within a discrimination context
is disallowed, then some cases become blocked from being hoisted outside the
lambda by outer cases that depend on the bound variable. For instance, suppose
D is restricted to be the empty context [ ], then the terms

λx.δ(x, x1.δ(z, y1.y1, y2.y2), x2.x2)

and
δ(z, y1.λx.δ(x, x1.y1, x2.x2), y2.λx.δ(x, x1.y2, x2.x2))

become distinct normal forms, despite the fact that these terms are identified in
the equational theory.

Remark. For confluence it is not necessary to have a discrimination context
in the hoist-case1- and hoist -case2-rules, but here we gave the single general
hoist -case-rule for the sake of uniformity.

Definition 5 (Reduction relations)
−→β = the compatible closure of the β-rules
−→η = the restricted compatible closure of the η-rules
−→γ = the compatible closure of the γ-rules
−→γE

= the compatible closure of hoist -case with HD restricted to F1
(i.e. the standard commuting conversion reduction relation)

−→γ′ = −→γ \ −→γE

−→c = −→β ∪ −→η ∪ −→γE

−→ = −→β ∪ −→η ∪ −→γ

4 Strong Normalisation for βηγE-reduction

Strong normalisation is standard for βηγE-reduction [5,11]. In this section we
present an adaptation of the strong normalisation proof given in the author’s
thesis [8, Chapter 3]. Our use of frame stacks alleviates difficulties with γE-
reduction, and leads to a significantly simpler proof than Prawitz’s original
one [11].

Definition 6. A term m is strongly normalising with respect to a reduction
relation R, or R-SN, if all R-reduction sequences starting from m are finite. A
reduction relation R is strongly normalising, or SN, if all terms m are R-SN.
If m is R-SN, then we write maxR(m) for the maximum length of a reduction
sequence starting from m.
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Definition 7 (frame stacks)

(elimination frames) E ::= F1

(frame stacks) S ::= Id | S ◦ E

(stack length) |Id | = 0
|S ◦ E| = |S| + 1

(plugging) Id [m] = m

(S ◦ E)[m] = S[(E[m])]

Following Girard et al [6] we assume variables are annotated with types (it is
straightforward, albeit somewhat tedious, to adapt the proof to use local typing
contexts instead). We write A � B for the type of frame stack S, if S[m] : B for
all terms m : A.

Definition 8 (frame stack reduction)

S −→c S ′ def⇐⇒ ∀m.S[m] −→c S ′[m]

A frame stack S is c-strongly normalising if all c-reduction sequences starting
from S are finite.

Lemma 9

1. S −→c S ′ iff S �= Id and S[x] −→c S ′[x].
2. If S −→c S ′, for frame stacks S, S ′, then |S ′| � |S|.
3. If there exists m such that S[m] is c-SN, then S[x] is c-SN.

Proof Induction on the structure of S.

Definition 10 (reducibility)

– Id is reducible.
– S ◦ [ ] n : (A → B) � C is reducible if S and n are reducible.
– S ◦ πi([ ]) : (A × B) � C is reducible if S is reducible.
– S : (A + B) � C is reducible if S[ι1(m)] is c-SN for all reducible m : A, and

S[ι2(n)] is c-SN for all reducible n : B.
– m:A is reducible if S[m] is c-SN for all reducible S : A � C.

Lemma 11. If m : A is reducible then m is c-SN.

Proof. Follows immediately from reducibility of Id and the definition of re-
ducibility on terms.

Lemma 12. x : A is reducible.

Proof. By induction on A using Lemma 9 and Lemma 11.

Corollary 13. If S : A � C is reducible then S is c-SN.

Each type constructor has an associated β-rule. Each β-rule gives rise to an
SN-closure property.
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Lemma 14 (SN-closure)

→ If S[m[x := n]] and n are c-SN then S[(λx.m) n] is c-SN.
×.1 If S[m] and n are c-SN then S[π1(〈m, n〉)] is c-SN.
×.2 If S[n] and m are c-SN then S[π2(〈m, n〉)] is c-SN.
+.1 If S[n1[x1 := m]], S[n2] and m are c-SN then

S[δ(ι1(m), x1.n1, x2.n2)] is c-SN.
+.2 If S[n2[x2 := m]], S[n1] and m are c-SN then

S[δ(ι2(m), x1.n1, x2.n2)] is c-SN.

Proof

→, ×.1, ×.2: By induction on maxc(S) + maxc(m) + maxc(n).
+.1: By induction on |S| + maxc(S[n1[x1 := m]]) + max (S[n2]) + maxc(m).
+.2: By induction on |S| + maxc(S[n2[x2 := m]]) + maxc(S[n1]) + maxc(m).

Now we obtain reducibility-closure properties for each type constructor.

Lemma 15 (reducibility-closure)

→ If m[x := n] is reducible for all reducible n, then λx.m is reducible.
× If m, n are reducible, then 〈m, n〉 is reducible.
+ If m is reducible, n1[x1 := l] is reducible for all reducible l, and n2[x2 := p] is

reducible for all reducible p, then δ(m, x1.n1, x2.n2) is reducible.

Proof Each property follows from the corresponding part of Lemma 14 using
Lemma 11 and Corollary 13.

Theorem 16. Let m be any term. Suppose x1 : A1, . . . , xk : Ak includes all the
free variables of m. If p1 : A1, . . . , pk : An are reducible then m[x1:=p1, . . . , xk:=
pk] is reducible.

Proof. By induction on the structure of terms using Lemma 15.

Theorem 17 (strong normalisation). All terms are c-SN.

Proof. Let m be a term with free variables x1, . . . , xk. By Lemma 12, x1, . . . , xk

are reducible. Hence, by Thm. 16, m is c-SN.

5 Weak Normalisation and Confluence

It is straightforward to prove that γ-reduction is strongly normalising.

Lemma 18. If D[x], m are γ-SN, then D[m] is γ-SN.

Proof. By induction on maxγ(D[x]) + maxγ(m).

Lemma 19. If p, n1, n2 are γ-SN, then δ(p, x1.n1, x2.n2) is γ-SN.
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Proof. By induction on 〈maxγ(p), size(p),maxγ(n1)+maxγ(n2)〉. The only in-
teresting case is

δ(D[δ(p, x1.p1, x2.p2)], y1.n1, y2.n2)

−→γ δ(p, x1.D[δ(p1, y1.n1, y2.n2)], x2.D[δ(p2, y1.n1, y2.n2)])

By the induction hypothesis, δ(p1, y1.n1, y2.n2) and δ(p2, y1.n1, y2.n2) are both
γ-SN. Then by Lemma 18 and the induction hypothesis

δ(p, x1.D[δ(p1, y1.n1, y2.n2)], x2.D[δ(p2, y1.n1, y2.n2)])

is γ-SN.

Lemma 20

1. If m, n are γ-SN then m n is γ-SN.
2. If m, n are γ-SN then 〈m, n〉 is γ-SN.
3. If m is γ-SN then λx.m is γ-SN.
4. If m is γ-SN then πi(m) is γ-SN.
5. If m is γ-SN then ιi(m) is γ-SN.

Proof
1-2 By induction on 〈maxγ(m) + maxγ(n), size(m) + size(n))〉.
3-5 By induction on 〈maxγ(m), size(m)〉.
Theorem 21. γ is strongly normalising.

We now obtain weak normalisation for βηγ-reduction. The key observation
is that γ-reduction following βηγE-normalisation cannot introduce new βη-
redexes.

Lemma 22. If m is in βηγE-normal form and m −→∗
γ m ′, then m ′ is in βη-

normal form.

Lemma 22 is easily proved by a straightforward syntactic analysis of the structure
of the term m ′. The details are omitted due to lack of space.

Theorem 23. −→ is weakly normalising.

Proof. To normalise a term of m, first reduce to a βηγE-normal form m ′, then
reduce m ′ to γ-normal form m ′′. By Lemma 22, m ′′ must be a βηγ-normal
form.

We could obtain confluence by appealing to correctness of normalisation by
evaluation for sums [1]. Instead, we give a direct proof of confluence modulo ∼

using the strong normalisation results for −→c and −→γ.
We write R∗ for the transitive reflexive closure of the relation R.

Definition 24. A reduction relation R is:

– confluent modulo ∼ iff for all m, n, m ′, n ′ with m ∼ n, m −→∗
R m ′ and

n −→∗
R n ′, there exist m ′′, n ′′ with m ′ −→∗

R m ′′, n ′ −→∗
R n ′′ and m ′′

∼ n ′′.
– weakly confluent modulo ∼ iff for all m, n, p with m −→R n and m −→R p,

there exist n ′, p ′ with n −→∗
R n ′, p −→∗

R p ′ and n ′
∼ p ′.

– weakly coherent modulo ∼ iff for all m, n, n ′ with m ∼ n and n −→R n ′,
there exist m ′, n ′′ with m −→∗

R m ′, n ′ −→∗
R n ′′ and m ′

∼ n ′′.
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Confluence, Weak Confluence, and Weak Coherence, All Modulo ∼

m ∼ n

m′

R∗

�

n′

R∗�

m′′R∗

....�

∼ n′′ R∗�...
.

m

n

R

�
p

R�

n′R∗

....�

∼ p′ R∗�...
.

m ∼ n

n′

R�

m′

R∗

�

..........
∼ n′′ R∗�...

.

Theorem 25 (Huet’s Theorem [7]). If the reduction relation R is strongly
normalising, weakly confluent modulo ∼ and weakly coherent modulo ∼, then R

is also confluent modulo ∼.

Proposition 26
−→β, −→η, −→c, −→γ, −→ are all weakly confluent modulo ∼.

Proposition 27
−→β, −→η, −→c, −→γ, −→ are all weakly coherent modulo ∼.

Proposition 28
−→β, −→η, −→c, −→γ are all confluent modulo ∼.

Proof By Huet’s Theorem using Prop. 26, Prop. 27, Thm. 17 and Thm. 21.

We now show confluence of −→ modulo ∼ using some intermediate Lemmas. The
only non-trivial interaction is between β- and γ ′-reduction. Following Baren-
dregt [3, Chapter 11] we allow β-redexes to be marked. A redex is marked by
overlining it. Notice that γ ′-reduction can hide β-redexes inside a γE-redex. In
such cases, we allow the γE-redex to be marked. For instance

(λx.δ(p, x1.n1, x2.n2))m −→γ′ δ(p, x1.λx.n1, x2.λx.n2) m

Definition 29

ϕ((λx.m) n) = ϕ(m)[x := ϕ(n)]

ϕ(πi(〈m, n〉)) = ϕ(m)

ϕ(δ(ιi(m), x1.n1, x2.n2)) = ϕ(ni)[xi := ϕ(m)]

ϕ(E[δ(p, x1.n1, x2.n2)]) = δ(ϕ(p), x1.ϕ(E[n1]), x2.ϕ(E[n2]))

ϕ commutes with all the other syntax constructors.

The ϕ function contracts all of the marked β-redexes in a term.

Lemma 30. ϕ(m[x := n]) = ϕ(m)[x := n]

Proof. By induction on the structure of m.

Lemma 31. If m ∼ m ′ then ϕ(m) ∼ ϕ(m ′).

Proof. By induction on the derivation of m ∼ m ′.
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Lemma 32

(a)

m

n

γ

�
p

ϕ�

n′ϕ

....�

∼ p′ γ∗�...
. (b)

m

n

γ∗

�
p

ϕ�

n′ϕ

....�

∼ p′ γ∗�...
.

Proof

(a) By induction on the derivation of γ using Lemma 30 and Lemma 31.

(b)

m
ϕ

� p

(a)

.

γ
� ϕ � . ∼ .

γ∗

�
......

IH

n

γ∗
�

ϕ
� n′

∼ .

γ∗

�

......
∼ p′

γ∗
�
....

Lemma 33

m

p

β

�
n

γ∗

�

p ′γ∗

.....�

∼ n ′ (βγE)∗�...
..

Proof. Let m be m with the β-redex marked, and || be an operator that erases
marked redexes, but otherwise leaves a term unchanged.

m

m

||

�

n

γ∗

�

p

β

�

ϕ

�
γ∗

n

||

�

�

p′

γ∗......................�

n′

(βγE)∗

�..
....

....
....

....

ϕ�∼.......

The front triangle is proved by induction on the structure of n. The bottom
rectangle is proved by Lemma 32.

Proposition 34.

m ∼ n

m ′
γ∗

�

n ′
c∗�

m ′′c∗

..�

∼n ′′ γ∗

�..

Proof. Using Lemma 33.
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Theorem 35. −→ is confluent modulo ∼.

Proof. By a diagram chase using Prop. 28 and Prop. 34.

Theorem 36. λ→×+ is decidable.

Proof. By Thm. 35, and Thm. 23, every λ→×+-term has a unique normal form
obtained by reducing to βηγE-normal form and then to γ-normal form. To decide
whether terms m, n are equal simply reduce them to normal forms m ′, n ′ and
then compute whether m ′

∼ n ′.

6 Variations

Unblocking Cases. It would be nice if it was possible to remove discrimination
contexts from the move-case3-rule, and so allow all the rewrite rules to be local.
One way of doing so is to mark a case as blocked when it is adjacent to a
lambda abstraction on whose bound variable the guard depends. Then unblocked
cases can be lifted over blocked cases. The resulting calculus is somewhat fiddly,
though, as blocked cases can subsequently become unblocked by β-reductions
inside the guard. We omit the details, and instead consider some more well-
behaved alternatives.

Parallel Cases. Altenkirch et al [1] use parallel cases in order to define normal-
isation by evaluation for sums. We write

Δ([(x0, p0), . . . , (xl−1, pl−1)], [e0, . . . , e2l−1])

for the parallel case over the guards p0, . . . , pl−1 with binders x0, . . . , xl−1 and
tails e0, . . . , e2l−1.

An easy way to comprehend the syntax is via the erasure ser from parallel
cases to a tree of nested serial cases.

ser(Δ((x, p) :: gs, es1 ++ es2)) = δ(p, x.ser(Δ(gs, es1)), x.ser(Δ(gs, es2)))

ser(Δ([], [e])) = e

The ser function commutes with all other syntax constructors. The operator ::
appends an element to the front of a list. The operator ++ concatenates two lists
of equal length. The translation par from a λ→×+-term to a term with parallel
cases, simply converts each serial case into a parallel case with one guard.

par (δ(p, x.n1, x.n2)) = Δ((x, par (p)), [par (n1), par (n2)])

The par function commutes with all other syntax constructors.

Definition 37. The relation ≈ is the least congruence such that for all permu-
tations perm of the integers 1, . . . , n:

Δ([], [e]) ≈ e Δ(gs, [e0, . . . , e2l−1]) ≈ Δ(gs ′, [e′
0, . . . , e

′
2l−1])
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where

gs = (x0, p0) . . . (xl−1, pl−1) e′
i = eperm∗(i)

gs ′ = (x ′
0, p

′
0) . . . (x ′

l−1, p
′
l−1) with x ′

i = xperm(i) and p ′
i = pperm(i)

perm∗(i) =↑ (perm2 (↓ i)) perm2 (bl−1 . . . b0) = bperm(l−1) . . . bperm(0)

↓, ↑ convert natural numbers to and from binary

Given two terms m1 and m2, then m1 ≈ m2 iff m2 can be obtained from m1 by
permuting guards (and adjusting binders and tails accordingly).

β- and η-Rules. The β- and η-rules are as in the serial rewriting theory, except
for sums, where they are translated in the obvious way.

(+.β1) Δ((x, ι1(m)) :: gs, es1 ++ es2) −→ Δ(gs, es1[x := m])

(+.β2) Δ((x, ι2(m)) :: gs, es1 ++ es2) −→ Δ(gs, es2[x := m])

(+.η) mA+B −→ Δ((x, m), [ι1(x), ι2(x)])

For sum types, β-rules are only needed for the first guard of a parallel elimina-
tion. Other guards can just be eliminated by first applying ≈.

γ-Rules

(hoist -case)

HP[Δ((x, p) :: gs, es1 ++ es2)]

−→ Δ([x, p], [HP[Δ(gs, es1)], HP[Δ(gs, es2)]]),
x /∈ fv (HP[ ]) and bv (HP[ ]) ∩ fv(p) = ∅

(redundant-guard)

Δ((x, p) :: gs, es1 ++ es2) −→ Δ(gs, es1),
es1 ≈ es2 and x /∈ fv (es1 ++ es2)

(repeated-guard)

Δ((x1, p1) :: (x2, p2) :: gs, (es1 ++ es2) ++ (es3 ++ es4))

−→ Δ((x1, p1) :: gs, es1 ++ es4), p1 ≈ p2

(join-cases)
Δ(gs, [e1, . . . , ek, . . . e2l ]) −→

Δ((x, p) :: gs, [e′
1,j|1 � j � 2l] ++ [e′

2,j|1 � j � 2l])

where
ek = Δ((x, p) :: gs ′, es1 ++ es2)

{x} /∈ Binders(gs) and (Binders(gs) ∩ fv (p)) = ∅

e′
i,j =

{
ej, if j �= k

Δ(gs ′, esi), otherwise

Binders(Δ([(x0, p0), . . . , (xl−1, pl−1)], [e0, . . . , e2l−1])) = {x0, . . . , xl−1}
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HP[ ] ::= [ ]n | π1([ ]) | π2([ ]) | Δ((x, [ ]) :: gs, es)
| λx.[ ] | m [ ] | 〈[ ], n〉 | 〈m, [ ]〉 | ι1([ ]) | ι2([ ])

The redundant-guard - and repeated-guard -rules are both obtained by reading
the corresponding axioms from left to right. The move-case4 axiom is captured
by the combination of: parallel cases, the relation ≈ and the join-cases-rule;
which allows a guard of a tail to be merged with the guards of its parent parallel
case, providing the guard is independent of the guards of the parent.

Definition 38. −→P = the union of the compatible closure of the above β- and
γ- rules, and the restricted compatible closure of the above η-rules.

The proofs of Sections 4 and 5 are easily adapted to handle parallel cases.

Proposition 39. −→P/≈ is weakly normalising and confluent.

Simulating Parallel Cases. It is possible to simulate parallel cases using plain
λ→×+-syntax. The key to avoiding non-termination is to define a congruence
such that guards can only be duplicated if in normal form.

Definition 40. The relation ≈ ′ is the least congruence such that

δ(p1, x1.δ(p2, y1.n1, y2.n2), x2.δ(p2, y1.n3, y2.n4))

≈ ′ δ(p2, y1.δ(p1, x1.n1, x2.n3), y2.δ(p1, x1.n2, x2.n4)),
x1, x2, y1, y2 /∈ fv (p1) ∪ fv(p2)

δ(p1, x1.δ(p2, y1.n1, y2.n2), x2.n3)

≈ ′ δ(p1, x1.δ(p2, y1.n1, y2.n2), x2.δ(p2, y1.n3, y2.n3)),
x2 /∈ fv (p2) and y1, y2 /∈ fv (n3)

δ(p1, x1.n1, x2.δ(p2, y1.n2, y2.n3))

≈ ′ δ(p1, x1.δ(p2, y1.n1, y2.n1), x2.δ(p2, y1.n2, y2.n3))

x1 /∈ fv (p2) and y1, y2 /∈ fv (n1)

where in each case p1, p2 must be in normal form.

γ-Rules

(hoist -case)

H[δ(p, x1.n1, x2.n2)] −→ δ(p, x1.H[n1], x2.H[n2]),
x1, x2 /∈ fv(H) and bv(H) ∩ fv (p) = ∅

(duplicate-guard)

δ(p, x1.δ(p, y1.m1, y2.m2), x2.δ(p, y1.n1, y2.n2))

−→ δ(p, x1.m1[y1 := x1], x2.n2[y2 := x2]), x1, x2 /∈ fv(p)
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(redundant-guard)

C[δ(p, x1.n, x2.n)] −→ C[n], x1, x2 /∈ fv (n) and
C ≡ [ ]; or
C is a hoisting frame; or
C is a continuation frame with (bv (C) ∩ fv (p)) �= ∅

The constraints on the context in which redundant-guard can be applied are
necessary in order to prevent cycles with ≈ ′.

Definition 41. −→p = the union of −→β ∪ −→η and the compatible closure of
the above γ-rules.

Proposition 42. −→p/∼′ is weakly normalising and confluent.

Conjecture 43. −→, −→P/≈, −→p/∼′ are all strongly normalising.

Intuitively, it seems that −→ should be strongly normalising. Both c-reduction
and γ-reduction are strongly normalising, and γ ′-reduction only interacts with
c-reduction in such a way as to expose existing redexes, rather than actually
creating new ones. If we could prove strong normalisation for −→, then the
confluence proof could be simplified.

7 Conclusion

We have proposed a confluent extensional rewriting theory for simply-typed
lambda-calculus extended with sums. The key contribution is confluence and
decidability for a conventional rewriting theory. This contrasts with the two
previous approaches to decidability. Ghani [5] uses intricate rewriting techniques,
whereas Altenkirch et al [1] use normalisation by evaluation and category theory.

Acknowledgements. Thanks to Philip Wadler and the anonymous reviewers for
helpful feedback.
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Abstract. A Kripke Semantics is defined for a higher-order logic programming
language with constraints, based on Church’s Theory of Types and a generic con-
straint formalism.

Our syntactic formal system, hoHH(C) (higher-order hereditary Harrop for-
mulas with constraints), which extends λProlog’s logic, is shown sound and com-
plete.

A Kripke semantics for equational reasoning in the simply typed lambda-
calculus (Kripke Lambda Models) was introduced by Mitchell and Moggi in
1990. Our model theory extends this semantics to include full impredicative
higher-order intuitionistic logic, as well as the executable hoHH fragment with
typed lambda-abstraction, implication and universal quantification in goals and
constraints. This provides a Kripke semantics for the full higher-order hereditar-
ily Harrop logic of λProlog as a special case (with the constraint system chosen
to be β,η-conversion).

1 Introduction

Declarative programming languages have been developed with the aim of keeping code
as close as possible to some notion of a specification, while at the same time having a
reasonably efficient operational interpretation. This goal has usually been pursued by
taking the syntax from some underlying formalism, which gives programs and inputs
independent mathematical meaning, and then defining a mechanism that makes the code
executable in a way consistent with that meaning. Semantics provides a framework
in which the two readings can be understood and analyzed, and their compatibility
verified.

The original Horn clause-with-resolution formulation of logic programming that un-
derlies Prolog has been quite successful, but has required a significant control com-
ponent outside the logic for efficiency, and includes controversial metaprogramming
predicates.

Two basic lines of research have attempted to add to the expressive power of the
original Horn clause core without compromising declarative transparency. One has been
based on expanding the logic to include, for example, executable fragments of higher-
order logic with lambda-conversion, higher-order unification, type theory, linear logic,
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etc. [18], and the other on adding constraints [12,22,13] in a reasonably generic fashion.
The latter addition can be thought of, declaratively, as transferring the logic from a term
model to more complex data domains, giving enriched notions of computation, input,
output and unification.

This paper provides semantic tools for modelling logic programming with intuition-
istic higher-order logic, with implication and universal quantification in goals, types,
λ-terms and constraints. We have chosen to work with one particular logic program-
ming language, hoHH(C), that combines the logic underlying λProlog, higher-order
hereditarily Harrop formulas over an intuitionistic formulation of Church’s Theory of
Types [18], with Saraswat’s constraint formalism [22], because it incorporates so many
of logic programming extensions of interest and along with them, many of the problems
that must be overcome in modelling similar languages.

The combination of these features creates a multiple challenge for the semantics:
modelling higher-order intuitionistic formulas in an impredicative logic, giving mean-
ing to λ-terms and types and relativizing interpretations to a foreign black-box con-
straint system.

Several problems must be solved here. To begin with, there is the logical intensional-
ity problem: one must supply a denotation of λ-terms, including those of boolean type,
while simultaneously giving them truth values. Logic programming in type theory re-
quires a certain amount of noninterference between the two. In higher-order logic, and
in particular in λProlog, predicates may appear as arguments to predicates, yet logically
equivalent predicates must not give rise inevitably to identical denotations: if F1 and F2
are logically equivalent formulas, it need not follow that for any higher-order predicate
p of the right type p(F1) and p(F2) are equivalent. Otherwise a goal ? − p(F1) with a
program p(F2) (which fails in λProlog) could not be handled just by unification over
a constraint theory. It would call the entire proof search mechanism into play just to
determine first of F1 were equivalent to F2.

Also impredicativity must be dealt with a priori. If X is of boolean type, an instance
G[t/X ] of a higher-order formula such as ∃XG may have greater complexity than the
original formula (just consider t = (∃XG)). Thus the usual inductive definability of
truth must somehow be circumvented, either by inducting on something other than for-
mulas (types in Henkin’s completeness theorem [10], or other measures as in the second
class of models defined in this paper) or by a mixed approach, making the definition of
truth non-inductive as in our initial Kripke semantics, or as in [23,1,6].

In this paper we show hoHH(C) is sound and complete for our Kripke structures,
extending earlier partial results [17,7,26], and including Kripke semantics for the full
logic of λProlog as a special case, obtained by taking β,η-conversion for our constraint
system.

2 Higher-Order Intuitionistic Logic with Constraints

In this section we briefly recapitulate for the reader’s convenience the main syntactic
features of the hoHH(C) programming language, and its sequent calculus, treated in
much greater detail in [15,16].
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2.1 Syntactic Preliminaries

The formalization of higher-order logic used here is based on an intuitionistic reformu-
lation [18] of Church’s theory of types [4], a theory that builds higher-order logic on
top of the simply typed λ-calculus. The existence of types facilitates the incorporation
of a foreign constraint system. Logical formulas are terms of type o, and constraints are
terms of a new base type γ. We are thus able to define mixed theories using a single
formal mechanism.

We begin by defining what terms, types, formulas and constraints are in Church’s
Theory of Types. In the next section (2.2), on the syntax of hoHH(C), we will restrict
this class of formulas to a subset of legal clauses and goals.

The main components of Church’s Type Theory are types and terms. The set Ty
of types, with elements α, includes at least atomic types, called sorts, and functional
types, α → α. The set of sorts must contain at least the two special sorts o and γ. The
functional type → associates to the right. We will also freely make use of the more
compact Church’s type notation βα for α → β, which, since given in reverse order,
associates to the left.

Typed terms, denoted by t (or tα when displaying their type is of interest) are ob-
tained from a set V of typed variables, xα, and a signature Σ consisting of a set of typed
constant symbols, cα, by the abstraction and type-compatible application operations of
the λ-calculus: t := xα | cα |(λxα. t) | (tα→β tα). We omit parentheses when they are
not necessary, assuming that abstraction and application are right and left associative,
respectively, and that application has smaller scope than abstraction.

Terms of type o are called logic formulas. Terms of type γ are called constraint
formulas, and they are usually denoted by C.

We say that a term t is in λ-normal form Λ(t) when it is in both β, η-normal form. By
λ-equivalence we mean α, β, η-equivalence between terms, and we denote it ≡λ. Every
term in our type theory (the simply typed λ-calculus) is equivalent to one in normal
form [9,11].

We use the notation fv(t) or fv(S) to denote the set of free variables in a term t
or in a set S, respectively. We denote simultaneous substitution of terms ti for every
free occurrence of xi in a term t by t[t1/x1, . . . , tn/xn], or simply t[t/x], and we will
assume that t[t/x] is in fact Λ(t[t/x]).

The signature Σ is partitioned into logical and nonlogical constants. The logical
constants are the symbols: �, ⊥, ∧, ∨, ⇒, ∃, ∀, of certain specific types. Since con-
straints and pure logical formulas are terms of different types, Σ must contain log-
ical constants of different types to build constraints or logical formulas. For instance,
∃(α→γ)→γ , ∃(α→o)→o, or ∧o→o→o, ∧γ→o→o are always elements of Σ. The non-logical
constants are those defined by the user, including a symbol for equality: ≈α→α→γ , for
every type α.

We use infix notation for ≈, ∧, ∨, ⇒, and, following Church, we abbreviate ∃(λx.F ),
∀(λx.F ) by ∃xF and ∀xF , respectively. We call a logic formula in normal form whose
leftmost non-parenthesis symbol is either a nonlogical constant or a variable an atomic
formula, rigid in the former case, and flexible in the latter. This leading symbol is
called the predicate symbol or predicate variable, respectively, of the atomic formula in
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question. We denote atomic formulas by A. Ar represents rigid atomic formulas. For
predicate variables (variables of type o) we use capital letters X , Y .

For the rest of this paper we will take the signature Σ and the initial set of variables
V to be fixed, with one exception. The set of variables will be extended in the proof of
the completeness theorem.

2.2 The Programming Language hoHH(C)

In [18] Miller et. al. identified the so-called uniformity property as a fundamental re-
quirement for a logic programming language. This property guarantees completeness of
goal-oriented search for proofs with respect to the underlying logic of intuitionistic type
theory. Our language extends the class of higher-order Hereditary Harrop formulas of
λProlog to include constraints in such a way as to preserve uniformity, as it is shown in
detail in [15].

The Constraint System C. The constraints we will consider here belong to a generic
system C that is assumed to satisfy certain conditions. Following [22], we view a con-
straint system as a pair C = 〈LC , 
C〉, where LC is a set of λ-terms of type γ in normal
form built up from Σ and V , and 
C is a binary entailment relation between sets of
constraints, Γ , and single constraints, C. C is required to satisfy:

– Every λ-term in normal form of type γ, built up using constraint predicate symbols
(of type α → γ), the logical constants �γ , ⊥γ , ∃(α→γ)→γ and optionally, other
suitably typed logical constants (such as ∧γ→γ→γ , ⇒γ→γ→γ , ∀(α→γ)→γ) is in LC .

– All equations t1 ≈ t2 are in LC .
– All the inference rules for equality and for those connectives included in LC that

are valid in intuitionistic logic are valid inferences in 
C.
– Compactness: Γ 
C C holds iff Γ0 
C C for some finite Γ0 ⊆ Γ .
– Γ 
C C implies Γσ 
C Cσ for every substitution σ.
– If t1 ≡λ t2, then 
C t1 ≈ t2.
– The cut-rule is allowed in C : if Γ ′ 
C Γ and Γ 
C C, then Γ ′ 
C C.

An often used example is the constraint system R of Real-closed Fields: LR is a
language with all classical logical connectives including negation, and Γ 
R C holds
iff AxR ∪ Γ 
≈ C, where AxR is Tarski’s axiomatization of the real numbers [24],
and 
≈ is the entailment relation of classical logic with equality.

Now we spell out the syntax of our programming language. The atomic formulas of
hoHH(C), like those of λProlog’s hoHH are limited to those formed by application of
predicate symbols (symbols of type α → o) to positive terms, in accordance with the
following definition.

Definition 1. The set of positive terms consists of all the terms in λ-normal form built
up from Σ and V, not containing constraint predicate symbols, nor the logical constants
⊥ and ⇒.

A positive atomic formula is an atomic logical formula containing only positive
terms.
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We remind the reader that in higher-order logic, logical formulas can appear as subterms
of atomic formulas, so this restriction is significant.

Given a generic constraint system C satisfying the requirements listed above, the syn-
tax of the constraint-enriched formal system hoHH(C) consists of the following frag-
ment of higher-order logic.

Definition 2. The set of definite clauses, with elements denoted by D, and the set of
goals, with elements denoted by G, are sets of formulas, in λ-normal form, defined by
the following syntactic rules:

D := Ar | D1 ∧ D2 | G ⇒ Ar | ∀xD
G := A | C | G1 ∧ G2 | G1 ∨ G2 | D ⇒ G | C ⇒ G | ∃xG | ∀xG

where A is a positive atomic formula, Ar a rigid positive atomic formula. Notice that
� and ⊥ are constraints, so they are goals.

A program Δ is a finite set of definite clauses (just called “clauses” for the rest of
the paper).

Clauses are always terms of type o. Goals that are pure constraint formulas C (which
may themselves contain connectives of type e.g. γ → γ → γ) have type γ, but com-
pound goals built up from them using the definition just given, must be of type o. Thus,
for instance, depending on the nature of G1, G2, a goal of the form G1 ∧ G2 might be
built with ∧γ→o→o, ∧o→γ→o ∧γ→γ→o or ∧o→o→o. When type of the logical constants
can be deduced from the context, the typing is not shown.

Example 1. Consider the instance hoHH(R). The following program can be written.
Δ = {∀x∀y(x2 + y2 ≈ 2 ⇒ circle(x, y)), ∀x∀y(x2 + 6y2 ≈ 2 ⇒ ellipse(x, y)),

∀X(X ≈ circle ∨ X ≈ ellipse ⇒ figure(X))}.
And the goal

G ≡ ∃X1∃X2(figure(X1) ∧ figure(X2) ∧ ¬(X1 ≈ X2) ∧X1(x, y) ∧ X2(x, y)).
However, the formula ∀x(∃y((y2 ≈ x∨ellipse(x, y)) ⇒ circle(x, y))) is not a logical
formula of the language hoHH(C), because it is not a clause, due to the existential
quantifier, nor a goal, since the disjunction y2 ≈ x ∨ ellipse(x, y) is not allowed in the
antecedent of a goal.

The elaboration of a program Δ is a mapping from programs to sets of implicative
clauses. It is the set elab(Δ) =

⋃
D∈Δ elab(D), where elab(D) is defined by the fol-

lowing rules:
elab(Ar) = {� ⇒ Ar}, elab(D1 ∧ D2) = elab(D1) ∪ elab(D2),
elab(G ⇒ Ar) = {G ⇒ Ar}, elab(∀xD) = {∀xD′ | D′ ∈ elab(D)}.

We will assume that any goal, constraint or element of any elab(Δ) is in normal
form.

The Proof Rules. We now give the underlying sequent calculus, hoUC, that makes
the collection of program; constraint 
 goal triples in hoHH(C) a (nondeterministic)
logic programming language. Possible interpreter design along the lines, say of [21]
are not discussed here. This proof system combines traditional inference rules with the
entailment relation of a generic constraint system C .

Sequents have finite sets of programs and constraints on the left and single goals on
the right. Δ; Γ 
hoUC G means the sequent Δ; Γ 
 G is derivable in hoUC. When
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either or Δ or Γ is infinite, we mean the sequent Δ′; Γ ′ 
 G is derivable in hoUC for
some finite subsets Δ′ ⊆ Δ and Γ ′ ⊆ Γ .

C is called an answer constraint for G from Δ when Δ; C 
hoUC G. For instance,
in Example (1), x2 ≈ 2 ∧ y ≈ 0 is an answer constraint. As with many constraint for-
malisms, constraints built up progressively on the left during a bottom-up construction
of a proof of a given goal constitute the output of this programming language, consider-
ably extending the expressive power of conventional logic programming, where outputs
are restricted to equations of the form variable = term.

The set of rules of this proof system appears in Figure 1.

Γ �C C

Δ; Γ |— C
(CR)

Δ; Γ |— ∃x((A′
r ≈ Ar) ∧ G′)

Δ; Γ |— Ar
(Clause) (∗), where

∀x(G′ ⇒ A′
r) is α-equivalent to a formula of elab(Δ)

Δ; Γ |— F Γ �C X ≈ t

Δ; Γ |— Xt1 . . . tn
(F lex), F ≡ Λ((X t1 . . . tn)[t/X]), fv(t) ⊆ fv(t), t positive

Δ; Γ |— Gi

Δ; Γ |— G1 ∨ G2
(∨R) (i = 1, 2)

Δ; Γ |— G1 Δ; Γ |— G2

Δ; Γ |— G1 ∧ G2
(∧R)

Δ, D; Γ |— G

Δ; Γ |— D ⇒ G
(⇒R)

Δ; Γ, C |— G

Δ; Γ |— C ⇒ G
(⇒CR)

Δ; Γ, C |— G[y/x] Γ �C ∃yC

Δ; Γ |— ∃xG
(∃R)(∗), Δ; Γ |— G[y/x]

Δ; Γ |— ∀xG
(∀R)(∗)

(*) x, y do not appear free in the sequent of the conclusion.

Fig. 1. hoUC Sequent Rules

In all rules except (CR), the principal formula is not a constraint. This means that
any connective introduced by the rules must have target type o (and not γ).

This calculus is similar to those defined for higher-order formulas in the literature
(see e.g. [18]), but the presence of constraints induces some modifications. The (λ)
rule, that transforms formulas by λ-conversion, is not needed in hoUC because every
formula in a sequent of a proof is in λ-normal form. Note that, save for the (Flex ) rule
no substitution of a compound term for a variable is made during the application of
the rules, illustrating what might be viewed as a fundamental slogan for this calculus:
constraints are generalized terms. The burden is shifted from terms to potentially more
expressive predicates in the constraint system. This is perhaps best exemplified in the
(∃R) rule, discussed more at length in [15,16], by use of which substitutions can be
simulated by constraints C on the left which are inhabited, i.e. those for which a proof
of ∃yC can be found. This may just mean replacing a substitution [t/x] in conventional
logic programming by an equality constraint of the form x ≈ t. However, it is con-
siderably more powerful, because constraints allow for a more general description of a
potential witness for an existentially quantified formula where a specific term might not
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exist. For example, in R the constraint (x ∗ x ≈ 2) may represent
√

2, which is not a
legal term.

The use of constraints also broadens the scope of backchaining by means of the
combination of the (Clause) and (∃R) rules. Inspection of the (Clause) rule shows
we are not required, as in conventional logic programming, to unify the head of the
selected clause with the atomic goal to be solved, but rather to solve a new existentially
quantified goal that, by the use just discussed of the (∃R) rule, will result in a search for
a constraint that implies equality of the atomic goal and the clause head. The (Clause)
rule is not applied to flexible atoms, instead flexible atoms are managed with the (Flex )
rule, which permits non-atomic instantiation of the predicate variable.

Proposition 1. The following rules are admissible in hoUC (if the premises are deriv-
able, the conclusion is derivable).
Δ; Γ, C[y/x] � G

Δ; Γ, ∃xC � G
(∃CL

) (∗) Δ; Γ, C � G Γ �C C

Δ; Γ � G
(cutC)

Δ; Γ � G[t/x]

Δ; Γ, y ≈ t � G[y/x]
(Subst) (∗)

where the condition (∗) means y �∈ fv(Δ, Γ, G, ∃xC, t), t positive.

Proof. By the induction on the length of the derivation, analyzing cases according to
the last rule applied, and using the properties of the relation 
C . ��
In fact, as shown in [15], the proof system hoUC is equivalent, with antecedents and
consequents restricted to the executable hoHH(C) fragment, to the extended calculus
hoIC (higher-order Intuitionistic Calculus over C ) which includes the full intuitionistic
theory of types with constraints. hoIC therefore manipulates not necessarily positive
terms, has rules introducing connectives in the left, and a simple axiom for dealing with
atoms, instead of (Clause). That equivalence means that, for any program Δ, for any
set of constraints Γ , and for any goal G: Δ; Γ 
hoIC G ⇐⇒ Δ; Γ 
hoUC G.
Therefore hoHH(C) satisfies the so-called uniformity property and can be considered as
an abstract logic programming language in the sense defined in [18]. In practical terms
this means that a search for a proof restricted to an operational interpretation of the
connectives does not sacrifice any theorems.

Positive-atomic Generated Formulas. These formulas constitute a subset of formulas
in Church’s theory of types that plays an special role in the definition of the Kripke
semantics for our logic programming language. For these formulas (that include any
hoHH(C) formula) a well-ordering can be defined which allows an induction argument
in the proof of completeness of hoUC.

Definition 3. A formula in Church’s theory of types is called positive-atomic gener-
ated or just PA-generated, if it is built up using logical constants from positive atomic
formulas and constraints, and it is in normal form.

Definition 4. Let F be a PA-generated formula. We define the non-positive depth of F ,
δ(F ), to be the length of the longest path from the root node of the parse tree of F to
any occurrence of implication. Inductively:

If F is positive or a constraint then δ(F ) = 0, otherwise
δ(F1♦F2) = 1 + max(δ(F1), δ(F2)), where ♦ ∈ {∧, ∨, ⇒},
δ(QxF ) = 1 + δ(F ), where Q is ∀ or ∃.

This measure induces a well-founded order on the set of PA-generated logical formulas.
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Lemma 1. For any PA-generated formula F and any positive term t, δ(F [t/x]) =
δ(F ). If F1♦F2, QxF are non-positive PA-generated logical formulas, then:

i) δ(Fi) < δ(F1♦F2), for i = 1, 2.
ii) δ(F [t/x]) < δ(QxF ) for any positive term t.

We finish this section with an example that illustrates some of the expressive power of
hoHH(C), when it is used to formalize inductive inference. Critical use is made of the
availability of universal quantification in goals to specify induction conclusions and of
nested implication in Hereditarily Harrop clauses to capture induction hypotheses. In
addition, the presence of (arithmetic) constraints reduces the difficulty of many induc-
tion proofs, transferring some of the burden of proof to the constraint solver.

Example 2. Consider the instance hoHH(N ), i.e. using the equational theory of the
natural numbers as our constraint system.

The predicate even can be defined by the program clauses below, where the operator
+ is managed by the constraint system.

even(0), ∀ x((even(x + 2) ∨ (x ≥ 2 ∧ even(x − 2))) ⇒ even(x)).

In a proof of the property ∀x∀y(even(x) ∧ even(y) ⇒ even(x + y)), the induction
step corresponds to the resolution of the goal:

∀x(∀y(even(x)∧even(y)⇒even(x+y)) ⇒ ∀y(even(x+2)∧even(y) ⇒ even((x+2)+y))).

Applying the (⇒R) rule in reverse (i.e. the so-called augment rule of λProlog) the
clause D ≡ ∀y(even(x) ∧ even(y) ⇒ even(x + y)), corresponding to the induction
hypothesis, is added to the program as a local clause. Then it will be used during sub-
sequent deduction steps, in particular in the proof of the subgoal even((x + 2) + y).

An interesting feature of such a deduction using a mix of constraints and logic is
that since + is a constraint operator, the search tree will be considerably pruned. For
instance, during the proof, it is the constraint solver that checks the satisfiability of
certain constraints such as ∀x∀y∃x1(x + x1 ≈ (x + 2) + y). In addition, the usual
search problem of the choice of the variable on which induction is done is irrelevant
here. The proof is also successful if y is chosen instead of x, because in this case, the
constraint solver will deal with ∀y∀x∃x1(x1 + y ≈ x + (y + 2)), in the same way as
before.

3 Higher-Order Kripke Semantics

We first fix conventions and notation for the elementary model theory of the simply
typed λ-calculus and the notion of an applicative structure indexed over a partially or-
dered set. Next we will define Kripke models for the full underlying logic (Church’s
Intuitionistic Theory of Types) without constraints that requires indexing models of the
λ-calculus as well. Then our Kripke models are modified to deal with the the fragment
hoHH(C). Constraints and formulas including constraints must be interpreted and ad-
ditional conditions must be imposed. The need for Kripke semantics arises from the
existence of intuitionistic connectives in our logic.
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3.1 Semantic Preliminaries

We start by recalling the definition of a model of the typed λ-calculus.
When considering indexed families S = {Sk}, T = {Tk} of sets, we will say

f : S → T is an indexed function if in fact f itself is a family of functions, in-
dexed over the same set as S, T which respects the indexed structure, that is to say
f = {fk : Sk → Tk}.

Definition 5. A Typed Applicative Structure (TAS), D = 〈D, App, Const〉, is given by:

– a type-indexed family of sets D = {Dα|α ∈ Ty}, each member of which, Dα, is called the
carrier for the type α,

– a family of functions App = {Appαβ : Dβα×Dα → Dβ |α, β ∈ Ty}, and a type preserving
indexed family of assignment functions Const = {Constα : Σα → Dα|α ∈ Ty}, where
Σα ⊆ Σ is the set of constants of type α.

Definition 6. Let D be a TAS. A D-environment η is a function from the set of variables
into D which respects types.

Definition 7. Given a typed applicative structure D = 〈D, App, Const〉, a D-environmental
model [[ ]] consists of an indexed family { [[ ]]η |η a D-environment} of total functions from the
terms into D, respecting types, for which the following hold, for any D-environment η:

[[c ]]η = Const(c), for constants c,
[[x ]]η = η(x), for variables x,
[[(t1t2) ]]η = App( [[t1 ]]η , [[t2 ]]η),
[[λxα.tβ ]]η = d′, where d′ ∈ Dβα, d′ is the unique element such that for any d ∈ Dα,

App(d′, d) = [[tβ ]]η[x:=d], where η[x := d] is the D-environment
coinciding with η, save on x, where its value is d.

A model is a triple 〈D, [[ ]], η〉, where D is a TAS, [[ ]] is a D-environmental model and η is a
D-environment.

Note that existence and uniqueness of the d′ denoting λx.t in environment η is imposed
(following [19]) as part of the definition. The condition is quite strong: it ensures the
substitution lemma (below and in [19]). It also guarantees uniqueness of an interpre-
tation for a given environment, as is easily shown by induction on term structure. For
this reason, when the existence of such a [[ ]]η is clear from context we will refer to the
model together with its environment as the pair 〈D, η〉.

3.2 Kripke Models for Church’s Intuitionistic Higher Order Logic

One of the most widely used semantics for intuitionistic logic was introduced by Kripke
(1963). In Tarski models for classical logic, one must supply a domain and interpreta-
tions for function, relation and constant symbols. Kripke models, however consist of a
partially ordered collection of such domains, together with certain compatibility condi-
tions between them. Perhaps the best way to visualize such a semantics is to think of
a Kripke model as a function defined on a poset (W, ≤), associating with each world
w ∈ W a domain Dw together with interpretations of the language.

Definition 8. Let (W, ≤) be a partially ordered set. A (W, ≤)-indexed typed applica-
tive structure is a family D = {Dw|w ∈ W}, where for each w ∈ W , Dw =
〈Dw, Appw, Constw〉 is a typed applicative structure. For each w ≤ w′ ∈ W the
following conditions must be satisfied:
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– Monotonicity: Dw ⊆ Dw′ .
– Appw(f, d) = Appw′(f, d), for any pair (f, d) (of the corresponding type) in Dw.
– Constw(c) = Constw′(c), for any c ∈ Σ.

Now we define the so-called forcing relation, � between members w of W and cer-
tain members of Do

w. We may think of � as a partial function mapping such pairs,
when defined, to true or false . Note that, unlike conventional Kripke models, forcing
is defined entirely within the semantics, that is to say as a relation between worlds and
denotations of formulas, rather than syntactic formulas themselves. Since logical for-
mulas are terms in higher-order logic, we must supply both a denotation and a truth
value for formulas of type o. We are thus able to deal with a problem mentioned in the
introduction, namely to allow formulas with the same truth values in all models to have
different denotations.

Definition 9. A Kripke applicative structure for Church’s intuitionistic theory of types
is a quadruple K = 〈W, ≤, D,�〉, where:

(W, ≤) is a poset.
D = {Dw|w ∈ W} is a (W, ≤)-indexed typed applicative structure.
� is a binary forcing relation between worlds w ∈ W and logical elements d in Do

w

(written w � d), satisfying:

– The monotonicity requirement, if d ∈ Do
w and w � d then for any w′ ∈ W with

w′ ≥ w we have w′ � d.
– The logical conditions, where d1 ·d2 abbreviates Appw(d1, d2), and the underlined

symbols c denote the interpreted logical constants Constw(c), for the appropriate
world w:

1. w � � always, 2. w � ⊥ never,
3. w � ∧ · d1 · d2 iff w � d1 and w � d2,
4. w � ∨ · d1 · d2 iff w � d1 or w � d2,
5. w �⇒ · d1 · d2 iff for any w′ ≥ w if w′ � d1, then w′ � d2,
6. w � ∃ · foα iff for some d ∈ Dα

w, w � f · d,
7. w � ∀ · foα iff for every w′ ≥ w and d ∈ Dα

w′ , w′ � f · d.

Several features of this definition are different from its first order counterpart. Firstly,
the forcing relation (viewed as a truth-valued function) is partial: w � d need not
be defined for all members of Do

w. In particular, note that there is no atomic case,
since the individuals on the right of the forcing relation are not syntactic formulas, but
rather denotations in the carrier of type o. Because of the impredicativity of higher-
order logic, a Kripke applicative structure is not necessarily uniquely determined by an
atomic assignment of truth at each world (taking atoms to mean denotations in Do

w of
atomic formulas). Also monotonicity of forcing must be imposed by definition on all
formulas at once.

Definition 10. Let K be a Kripke applicative structure. A K -environment η is a family
{ηw|w ∈ W} of Dw-environments satisfying the following coherence property, for each
variable x and each pair w, w′ ∈ W with w ≤ w′: ηw(x) = ηw′(x).
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We can now extend the notion of environmental model to Kripke applicative structures
along the lines of Definition 7.

Definition 11. Given a Kripke applicative structure K = 〈W, ≤, D,�〉, a Kripke en-
vironmental model for K , or a K -interpretation is an indexed family { [[ ]]η| η a K -
environment} where for each world w ∈ W, [[ ]]ηw is a total function from the set of
terms into Dw, respecting types, and which, for each ηw, satisfies the conditions of
Definition 7. For instance, [[x ]]ηw = ηw(x), and [[(t1t2) ]]ηw = Appw( [[t1 ]]ηw , [[t2 ]]ηw ).

Given a Kripke environmental model for K we will define the K -interpretation of a
term t over a K -environment η at the world w to be [[t ]]ηw .

Putting the whole package together, we can define our Kripke semantics.

Definition 12. A Kripke model 〈K , [[ ]], η〉 for Church’s intuitionistic theory of types
is given by a Kripke applicative structure K , a Kripke environmental model [[ ]] for K
and a K -environment η. Furthermore, for each formula F and world w, w � [[F ]]ηw

is defined (true or false).

As before, the notation can be simplified to 〈K , η〉, as [[ ]]η is uniquely induced.
Now we are able to interpret the intuitionistic formulation of Church’s logic into our

semantics in a straightforward manner.

Definition 13. Let K = 〈W, ≤, D,�〉, 〈K , [[ ]], η〉 be a Kripke model, and let F be
a logical formula, i.e. a term of type o. Then we say F is forced at w (or true at w)
with environment η, and write w �η F , whenever w � [[F ]]ηw . If F is forced at every
w ∈ W in this environment, we write K |=η F . If either property holds in the presence
of all K -environments, then we write w � F or, respectively, K |= F and say that K
models or satisfies F (or that F is true in K ).

The previous definitions are extended to finite sets of formulas S, in the natural way.
For instance, w �η S, means w �η F for all F ∈ S. In addition we will say that 〈K , η〉
models or satisfies a sequent Δ; Γ 
 G when for any world w, if w �η Δ and w �η Γ
then w �η G.

The whole of intuitionistic type theory can be proved to be sound and complete
with respect to this Kripke semantics. Since our interest is to adapt our semantics to
the logic programming formalism hoHH(C) we will restrict attention to soundness and
completeness for that case. First we will need to extend these definitions to include
constraint systems, and modify the logical conditions.

3.3 Kripke Models for hoHH(C)

In our language, since we are thinking of the constraint system as a generic black box,
about which we want to say as little as possible, instead of additional structural prop-
erties we add a global requirement of soundness with respect to constraint deductions,
and preservation of congruence properties of ≈. Since the formalization of constraints
in Church’s type theory only requires the added presence of a reserved type γ of con-
straints, and for each type α an equality relation symbol ≈γαα in the language, there is
nothing to add to the basic framework save interpretations for any new constant sym-
bols and a new forcing relation between worlds w and the carriers Dγ

w of the constraints.
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We represent the new forcing relation with the same symbol as logical forcing, since,
as with the proof theory, we can always tell which one we are using by inspecting the
types of the terms present.

However, in the fragment hoHH(C), only positive terms are allowed in atomic for-
mulas. Thus it is sufficient to define the forcing relation w �η F , for PA-generated
formulas F , which include both goals and clauses. The relevance that positive terms
have in the syntax of hoHH(C) will be also reflected in the semantics by defining
a semantic counterpart to the set of positive terms. This means defining, for each
type α and world w, a subset Dα+

w ⊆ Dα
w, where positive terms of type α must be

interpreted.

Definition 14. A uniform C -Kripke model for hoHH(C) is a triple 〈K , [[ ]], η〉, where:

– K = 〈W, ≤, D,�〉 satisfies the requirements of Definition 9 with the following
changes:

• For each type α and world w, there is a distinguished subset Dα+
w of Dα

w

(written D+
w when the type is not relevant).

• The forcing relation � is extended to a relation between W and Do ∪ Dγ , and
it is defined for (at least) the members of Do ∪ Dγ corresponding to [[F ]], for
all PA-generated formulas F .
As for the logical conditions of this definition, Conditions 6 and 7 of the defini-
tion of models for the full theory of types are restricted to members of Dα+

w :
6’. w � ∃ · foα iff for some d ∈ Dα+

w , w � f · d,
7’. w � ∀ · foα iff for every w′ ≥ w and d ∈ Dα+

w′ , w′ � f · d.
– [[ ]] is a K -interpretation and η a K -environment, such that for any w ∈ W , if tα

is a positive term, then [[t ]]ηw ∈ Dα+
w . As a consequence ηw(x) ∈ Dα+

w , for every
variable x.

– In addition � must satisfy the following C -conditions for every w ∈ W :
• C -soundness: For every Γ, C, if Γ 
C C then, if w �η Γ then w �η C.
• Congruence:

(a) For every Ar, A
′
r, such that w �η Ar ≈ A′

r, if w �η Ar, then w �η A′
r.

(b) For every flexible atom Xt1 . . . tn and positive term t, such that
w �η X ≈ t, if w �η Λ((Xt1 . . . tn)[t/X ]), then w �η (Xt1 . . . tn).

• C -existential condition: For every w ∈ W , r ∈ Dγα
w ,

w � ∃γ(γα) · r ⇐⇒ for some d ∈ Dα+
w , w � r · d.

We will repeatedly make use of the following technical consequence of these defini-
tions, whose proof is by a straightforward induction on λ-term structure.

Lemma 2 (Substitution). Let 〈K , [[ ]], η〉 be a uniform C -Kripke model. For any pos-
itive term t, any PA-formula F , and any world w, [[F [t/x] ]]ηw = [[F ]]ηw [x:= [[t ]]ηw ].

4 Soundness and Completeness of hoHH(C)

Since the language hoHH(C) is based on the calculus hoUC, our aim is to prove the equiv-
alence between provability in hoUC and validity in every uniform C -Kripke model.
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4.1 Soundness of hoUC

We begin by showing that what is provable in hoUC is true.

Theorem 1 (Soundness). For every Δ, Γ, G, if Δ; Γ 
hoUC G holds, then the sequent
Δ; Γ 
 G is satisfied in every uniform C -Kripke model for hoHH(C).

Proof. Let 〈K , η〉 be a uniform C -Kripke model for hoHH(C). The proof proceeds by induction
on the length of the proof of the sequent Δ; Γ � G. The inductive hypothesis is that all sequents
with shorter proofs are satisfied at every world in every uniform C -Kripke model. We consider
the the most interesting case of the induction here, and leave the rest as an exercise for the reader.

Let w be any world such that w �η Δ and w �η Γ . If Δ; Γ �hoUC Ar is derived using the
(Clause) rule as a final step, then there is a variant ∀x(G′ ⇒ A′

r) of a clause of elab(Δ), such
that the sequent Δ; Γ � ∃x((A′

r ≈ Ar) ∧ G′) has a proof shorter than the proof of Δ; Γ � Ar.
By the induction hypothesis, w �η ∃x((A′

r ≈ Ar) ∧ G′). Then there are d ∈ D+
w such that

w �η[x:=d] A′
r ≈ Ar and w �η[x:=d] G′. It is easy to prove that w �η Δ implies w �η

∀x(G′ ⇒ A′
r), then w �η[x:=d] G′ ⇒ A′

r. We have w �η[x:=d] A′
r, because w �η[x:=d] G′. We

conclude w �η Ar , because x are not free in Ar, w �η[x:=d] A′
r ≈ Ar, and by the congruence

of 〈K , η〉. ��

4.2 Completeness

The proof of the completeness is based on the construction of a particular uniform
C -Kripke model, UC, in such a way that � coincides with 
hoUC when the latter is de-
fined. We are not able to completely define � this way because provability of a sequent
Δ; Γ 
 G in hoUC only makes sense when G is a goal, whereas the relation � must be
defined for more general (PA-generated) formulas.

To define the model, we will need to make use of a restricted version of the so-called
Lindenbaum Lemma for the constraint system C .

The Lindenbaum Construction for C. In its original form, in classical logic, the Lin-
denbaum lemma (see e.g. [25]) states that a consistent set of sentences can be extended
to a maximal consistent set. In our setting, to prove completeness, we only need to en-
sure that constraint theories satisfy a pure-variable form of the existential part of this
claim, namely that if a formula A is not derivable from a theory Γ then the theory can
be extended to one that still does not prove A and has the existence property: if it de-
rives an existential formula, it proves a pure-variable instance over a language enriched
only with new variables, but with no new constants.

In the following we will assume that X is a complete set of variables, by which we
mean that it contains countably many variables xα

1 , xα
2 . . . for each type expression α.

Definition 15. A set of constraints Γ is said to be ∃-saturated over a complete set of
variables X if for any constraint C, whenever Γ 
C ∃xC then for some y in X , we
have Γ 
C C[y/x].

Lemma 3. Let V be a complete set of variables (assumed to be the base set of variables
used to build terms in this paper), and let X be a disjoint complete set of variables. For
any Δ, Γ and G, with free variables in V , if Δ; Γ 
 G is not derivable in hoUC, then
there is an extension Γ̂ of Γ , with free variables in V ∪ X , which:
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– is ∃-saturated over V ∪ X , and
– maintains Δ; Γ̂ �
hoUC G.

Some adaptation is required to make the proof of Lindenbaum lemma [25] suitable for
hoHH(C). In particular, instead of adding Henkin constants as witnesses for existential
formulas, fresh variables are added. This is needed in the completeness theorem be-
cause of the special character of quantifier rules where variables and constraints, rather
than terms, act as witnesses. Otherwise, the proof is straightforward.

The Uniform C -Kripke Model UC . We begin now the construction of the model we
will use to establish completeness. We start with a countable sequence of countable
complete sets of fresh variables X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · where each Xi+1 \ Xi is
countably infinite.

Definition 16. Given a constraint system C we define UC = 〈W, ≤, D,�〉, as follows:

– (W, ≤), the ordered set of worlds is defined as:
W = {〈Δ, Γ, n〉 |Δ is a finite set of clauses over Σ and Xn; Γ is a set of con-
straints over Σ and Xn, ∃-saturated over Xn}.
〈Δ1, Γ1, n1〉 ≤ 〈Δ2, Γ2, n2〉⇐⇒def

Δ1 ⊆ Δ2, Γ1 ⊆ Γ2 and n1 ≤ n2.
– D = {Dw|w ∈ W}.

For each w = 〈Δ, Γ, n〉, Dw is defined as follows:
Dα

w is the set of open λ-terms in normal form of type α over Σ and the set of
variables Xn.
Dα+

w is the subset consisting of the positive terms of Dα
w.

Constw(c) = c, c ∈ Σ. Appw(t1, t2) = Λ(t1t2).
– The relation � is defined for the elements of Do

w ∪ Dγ
w that are PA-generated for-

mulas. In order to define 〈Δ, Γ, n〉 � F , we use induction on the non-positive depth
δ(F ):

(1) If F is a constraint or a positive logical formula (δ(F ) = 0), then
〈Δ, Γ, n〉 � F ⇐⇒def

Δ; Γ 
hoUC F.
This case includes pure constraints, and rigid and flexible atoms.

(2) For PA-formulas F that do not satisfy the preceding condition (δ(F ) > 0),
〈Δ, Γ, n〉 � F is defined according to the definition of � for uniform C -Kripke
models. For instance,
〈Δ, Γ, n〉 � ∀xαF ⇐⇒def

for every 〈Δ′, Γ ′, n′〉 ∈ W , 〈Δ, Γ, n〉 ≤ 〈Δ′, Γ ′, n′〉,
and every t ∈ Dα+

〈Δ′,Γ ′,n′〉, 〈Δ′, Γ ′, n′〉 � App〈Δ′,Γ ′,n′〉(λx.F, t), i.e.,
〈Δ′, Γ ′, n′〉 � F [t/x].

Note that the relation � in this model is defined by induction on the non-positive depth
of formulas, with positive and constraints formulas as the base case. In this way, we
avoid problems with impredicativity, by working with a well-founded order. When a
quantified non-positive formula is instantiated with positive terms, the instance is sim-
pler with respect to that order, in accordance with Lemma 1.

We will show that when UC is supplied with a particular environment, it gives rise to
a uniform C -Kripke model for hoHH(C).
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For UC , given any environment η there is a unique induced environmental model [[ ]],
satisfying, for all worlds w, the condition [[t ]]ηw = tθηw , where θηw is the substitution
mapping each x free in t to ηw(x). Let id be the identity environment: for every w =
〈Δ, Γ, n〉 ∈ W , idw maps each variable x ∈ Xn to itself, and let [[ ]] be the induced
environmental model. We will prove that 〈UC , id〉 is a uniform C -Kripke model for
hoHH(C).

We first establish some technical properties of the relation �, that defines UC .

Lemma 4. For every world 〈Δ, Γ, n〉, and every clause D over Σ and Xn, if for all
D′ ∈ elab(D), 〈Δ, Γ, n〉 � D′, then 〈Δ, Γ, n〉 � D.

The proof is by induction on the sum of the non-positive depths of the formulas of
elab(D).

Lemma 5. For every world 〈Δ, Γ, n〉, and every F ∈ Δ ∪ Γ , we have 〈Δ, Γ, n〉 � F .

Proof. Sketch. The proof of 〈Δ, Γ, n〉 � C, C ∈ Γ , is immediate, because, for all C ∈ Γ ,
Γ �C C. In order to prove 〈Δ, Γ, n〉 � D, D ∈ Δ, we proceed by induction on the non-positive
depth of D. The base case implies that D is positive. It is then easy to show that Δ; Γ �hoUC D,
so 〈Δ, Γ, n〉 � D, by definition. For the inductive case, in order to prove 〈Δ, Γ, n〉 � D, we first
show that 〈Δ, Γ, n〉 � D′ for every D′ ∈ elab(D), then conclude 〈Δ, Γ, n〉 � D, using Lemma
4. If D′ ∈ elab(D), then D′ ≡ ∀x(G ⇒ Ar). In order to establish 〈Δ, Γ, n〉 � ∀x(G ⇒ Ar)
we need to make use of the following claim:

If ∀x(G ⇒ Ar) ∈ elab(Δ), then for all 〈Δ′, Γ ′, n′〉 ∈ W , 〈Δ, Γ, n〉 ≤ 〈Δ′, Γ ′, n′〉 and
t ∈ D+

〈Δ′,Γ ′,n′〉, if 〈Δ′, Γ ′, n′〉 � G[t/x] then, Δ′; Γ ′ �hoUC G[t/x].

From this fact, proving 〈Δ, Γ, n〉 � ∀x(G ⇒ Ar) can be reduced to proving that Δ; Γ �hoUC
Ar[t/x] (for any t), if Δ; Γ �hoUC G[t/x]. But this is easy to prove using (Subst ) and (Clause),
since ∀x(G ⇒ Ar) ∈ elab(Δ).

The proof of the claim is by induction on δ(G[t/x]). The base case is trivial. For the inductive
step, we must consider the possible structure of G[t/x]. We show here the most interesting case:

G[t/x] ≡ D′ ⇒ G′: If Δ′′ = Δ′ ∪ {D′}, 〈Δ′′, Γ ′, n′〉 � D′, applying the outer induction
on δ(D), since D′ ∈ Δ′′, and observe that in fact δ(D′) < δ(D), because if ∀x(G ⇒ Ar) ∈
elab(D) and D non-positive, then δ(D) > δ(G) = δ(G[t/x]), by Lemma 1, and δ(G[t/x]) >
δ(D′). So 〈Δ′′, Γ ′, n′〉 � G′, since 〈Δ′, Γ ′, n′〉 � D′ ⇒ G′ and 〈Δ′′, Γ ′, n′〉 ≥ 〈Δ′, Γ ′, n′〉.
Then, Δ′, D′; Γ ′ �hoUC G′, by the induction on δ(G[t/x]). Therefore Δ′; Γ ′ �hoUC D′ ⇒ G′,
according to (⇒R). ��

Proposition 2. For all worlds 〈Δ, Γ, n〉 and goal G, with free variables in Xn:

If 〈Δ, Γ, n〉 � G, then Δ; Γ 
hoUC G.

Proof. By induction on the non-positive depth of G. The argument is similar to that of
the claim established in the proof of Lemma 5. ��

Lemma 6.
〈
UC , [[ ]], id

〉
is a uniform C -Kripke model for hoHH(C).

Proof. The requirements of Definition 14 must be proved. It is easy to prove that (W, ≤)
is a poset, D a (W, ≤)-indexed TAS, [[ ]] a UC-interpretation and id a UC-environment.
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In addition [[t ]]idw = t, so if t is a positive term, [[t ]]idw ∈ D+
w . Let us show the

requirements for � are satisfied.
Monotonicity requirement. By induction on the non-positive depth of PA-formulas.

For the base case, the monotonicity of � is derived from the monotonicity of 
hoUC
with respect to Δ and Γ . The inductive step is straightforward.

Logical conditions. For PA-formulas that are not constraints neither positive logical
formulas, those conditions are satisfied by definition. For constraints and positive for-
mulas, the arguments are straightfoward1. Here we establish one of the more delicate
cases:

∃xG Suppose 〈Δ, Γ, n〉 � ∃xG, then by definition of � and (∃R) rule, there is C such
that Δ; Γ, C 
hoUC G[y/x] and Γ 
C ∃yC, where y is not free in Δ, Γ, ∃xG. Since Γ is
∃-saturated over Xn, then Γ 
C C[z/y] for some z ∈ Xn. By the properties of hoUC,
Δ; Γ, C[z/y] 
hoUC G[z/x], because y was fresh. But this implies that Δ; Γ 
hoUC
G[z/x], from the fact Γ 
C C[z/y] and (cutC). Therefore there is z ∈ D+

〈Δ,Γ,n〉, such
that 〈Δ, Γ, n〉 � G[z/x].

Conversely if there is t ∈ D+
〈Δ,Γ,n〉 such that 〈Δ, Γ, n〉 � G[t/x], then Δ; Γ 
hoUC

G[t/x] by definition, and Δ; Γ, y ≈ t 
hoUC G[y/x], with y fresh, applying (subst). So
Δ; Γ 
hoUC ∃xG in accordance with (∃R). Hence we can conclude 〈Δ, Γ, n〉 � ∃xG,
because ∃xG is positive and the definition of �.

The proof for the C -conditions are routine, and left to the reader. ��

We will refer to our uniform C -Kripke model simply as UC . By the definitions of [[ ]]
and id, the notation 〈Δ, Γ, n〉 �id G is equivalent to 〈Δ, Γ, n〉 � G.

Finally, we prove that the formal system hoUC, is complete for C -Kripke semantics.
That means that any hoUC sequent true in all of our models is derivable.

Theorem 2 (Completeness of hoUC). For every Δ, Γ , G over Σ, and V , if every
uniform C -Kripke model for hoHH(C) satisfies the sequent Δ; Γ 
 G, then
Δ; Γ 
hoUC G.

Proof. Suppose, for a contradiction, that there are Δ, Γ, G, such that any uniform C -
Kripke model for hoHH(C) satisfies Δ; Γ 
 G, but there is no hoUC derivation of the
sequent Δ; Γ 
 G. By the Lindenbaum Lemma (3), there is a set of constraints, Γ ′,
that extends Γ , ∃-saturated over certain Xn, such that there is no hoUC derivation of
the sequent Δ; Γ ′ 
 G.

So in the model UC , by Lemma 5, 〈Δ, Γ ′, n〉 �id Δ, and 〈Δ, Γ ′, n〉 �id Γ . Hence,
〈Δ, Γ ′, n〉 �id G, because UC satisfies Δ; Γ 
 G, by the hypothesis of the theorem.
Then by Proposition 2, Δ; Γ ′ 
hoUC G, contradicting the hypothesis of Γ ′. ��

Logical Intensionality. As discussed in the first section, one of our aims was to pro-
duce a model theory in which logical equivalence of two logical formulas F1 and
F2 would not necessarily imply validity of p(F1) ⇒ p(F2) for every predicate sym-
bol p. Take p be a constant of type o → o, Ar a rigid atomic formula, and con-
sider C for which ≈ coincides with ≡λ. In the model UC , p(Ar) ⇒ p(Ar ∧ Ar)

1 Notice that those formulas are always goals.
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is not forced at the root node 〈∅, ∅, 0〉, since by Proposition 2, this would mean that
∅; ∅ 
hoUC p(Ar) ⇒ p(Ar ∧ Ar), and hence {p(Ar)}; ∅ 
hoUC p(Ar ∧ Ar). Since �
C
Ar ≈ Ar ∧ Ar, this is impossible.

5 Conclusion

We have introduced a semantic framework based on Kripke structures for Intuitionis-
tic Higher-Order Type Theory with constraints to model the declarative content of a
representative higher-order constraint logic programming language, with simply typed
λ-terms, implication and universal quantification in goals. The underlying logic of λ-
Prolog is covered as a special case. We have shown the program calculus sound and
complete.

We build on Mitchell-Moggi Kripke λ-models [20], but go well beyond equational
reasoning, to model predicates in an impredicative higher-order logic with constraints.

Our results extend earlier work on declarative semantics for some executable frag-
ments of the logic: First-order Hereditarily Harrop formulas [17], classical Higher-order
Horn formulas in [26,2] and semantics for hoHH in [5,14] and [8] for HH(C ).

A key direction for future work is to understand how to adapt the framework de-
fined here to deal with polymorphic types, linear logic or a linear constraint system, or
to exploit the constraint framework for specific abstract syntax and metaprogramming
applications. It would also be of interest to define Kripke models more sensitive opera-
tionally to a specific proof procedure, as well as to study observational equivalence and
abstract interpretation in this context, a matter for further research.
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Abstract. Predicative analysis of recursion schema is a method to char-
acterize complexity classes like the class of polynomial time functions.
This analysis comes from the works of Bellantoni and Cook, and Leivant.
Here, we refine predicative analysis by using a ramified Ackermann’s con-
struction of a non-primitive recursive function. We obtain a hierarchy of
functions which characterizes exactly functions, which are computed in
O(nk) over register machine model of computation. Then, we are able
to diagonalize using dependent types in order to obtain an exponential
function.

1 Introduction

Predicative analysis of recursion comes from the works of Bellantoni and Cook [2]
and Leivant [10]. This analysis is based on a ramification principle on data which
is appealing because its concept is simple and purely syntactic. Each element
of a computation has a tier, which determines its ability to run a recursion.
The ramification principle states that a definition by recursion is ramified only
if the tier of the recurrence parameter is strictly higher than the tier of the
output. This analysis takes it roots in the paper of Simmons [16] and Leivant [9].
We revisit the ramification principle. The results mentioned above characterize
the class of polynomial time computable functions using essentially two tiers of
data ramification: one for recursion arguments and one for recursion outputs.
In this work, we introduce a strict ramification principle which allows getting
a characterization of a polynomial time hierarchy of functions. Functions which
are defined with k tiers are exactly functions which are computable in O(nk)
steps. The hierarchy is not robust in the sense that it depends on the model
of computation which is a register machine model here. So, the result that we
suggest is really about intrinsic complexity of functions in the tradition of the
recursion Theory. We have tried to understand the mechanism that underpins
the suggested classification. Our analysis shows how functions are defined and
how we can jump from one class of functions to another one by strict ramified
iteration. This leads us to introduce a double iteration operator, which captures
each level of the polynomial time hierarchy DTIME(nk) and escapes them. For
this, we define an exponential function by a diagonaliszation method, which
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reveals some analogies with Ackermann [1] construction as it is explained in
Chapter 7 of Simmons book [17]. The construction that we propose is a kind of
double recursion whose main ideas can be explained by considering the following
example.
f : N(1), N(0) → N(0)

f(0, y) = y + 1
f(x + 1, y) = f(x, f(x, y))

The function f is defined by nested recursion and satisfies the ramification prin-
ciple. Indeed, the first argument may be of tier 1 and the second of tier 0. So, the
output of f is of tier 0 and f is well typed. However f computes the exponential
function : f(n, m) = 2n + m for all n and m. In f(x, f(x, y)), the leftmost oc-
currence of f calls itself which violates the essence of the ramification principle.
Now, we ramify f by assigning to each occurrence of f a tier, and so we obtain
the following function sequence.

f0(x, y) = y + 1
fk+1(0, y) = y

fk+1(x + 1, y) = fk(x, fk+1(x, y))

where f1 computes the addition, and f2 iterates the addition, and so on. We also
see that the domain, or the type, of each fk can be N(k), N(0) → N(0). If we
transform (fk)k∈N sequence of functions into a three place functions φ(k, x, y), we
are able to produce by a diagonalization argument a function which eventually
dominates each fk. The type of φ depends of its first argument and so would be
∀k : N(k), N(0) → N(0).

This example is just here to illustrate quickly the ideas that we develop in this
paper, which is organized as follows. Section 2 presents the computational mod-
els and defines DTIME(nk). Section 3 focuses on tiered recursion and Leivant’s
characterization of FPTIME. Section 4 gives the characterization of the polyno-
mial time hierarchy, and the last section show how this characterization may be
used to construct new classes of functions. We choose except for the last part
to present this work in term of tiered function algebra. It is not too difficult to
translate this formalism into an applied typed lambda-calculus, like in Simmons
survey [15]. (and we partially do it in Section 5.) Lastly, we make this choice
because it is more readable and so easier to understand.

2 Computations and a Polynomial Time Hierarchy

2.1 Register Machines

The set of binary words over the alphabet {a, b} is W. A register machine,
abbreviated RM, works over words of W. A RM consists in

1. an alphabet {a, b}.
2. a finite set S = {s0, s1, . . . , sk} of states, including a distinct state begin.
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3. a finite list R = {R1, . . . , Rm} of registers. Registers store words of W.
4. a finite function label mapping states to commands which are

R = a(R) add the letter a to R

R = b(R) add the letter b to R

R = R′ assign the value of R′ to R

R = pred(R) remove the first letter of R

branch(R, sε, sa, sb) switch to the label si following the value of R

A configuration of a RM M is given by a pair (s, σ) where s is a state and
σ : R → W is an environment which stores register values. We guess that the
above informal semantics should be enough to understand how register machines
work. Throughout, we deal with functions which have a co-arity, that is function
whose range is W

β for some β. A function φ : W
α → W

β is computed by a
register machine M if for all u1, . . . , uα, we have φ(u1, . . . , uα) = (v1, . . . , vβ)
then the execution of M starting from the initial configuration (begin, σ0) ends
to a configuration (s, σf ) such that: for i = 1, α, σ0(Ri) = ui, otherwise σ0(Ri) =
ε and for j = 1, β, σf (Rm+1−j) = vj .

2.2 A Polynomial Time Hierarchy

The size |u| of a word u is the number of letters of the word. In particular the
size of the empty word ε is 0. The size of pair of words is inductively defined as
follows: |〈u, v〉i| = |u| + |v| at any tier i.

The time measure corresponds to the number of steps to perform a computa-
tion on a register machine. We say that a function φ : W

α → W
β is computable

in O(nk) if the runtime is bounded by c.(nk
1 + . . . + nk

α) + d for some c and d
and where for each i, ni is the size of the ith argument. The class DTIME(nk)
is the set of all functions which are computable in O(nk). The class FPTIME of
polynomial time functions is ∪kDTIME(nk).

In this work, we study the classes DTIME(nk) which delineates a polynomial
hierarchy. It is well known that the class FPTIME is robust, which is not the case
for polynomial hierarchies. Indeed, the definition of DTIME(nk) is not invariant
with respect to a large class of the computational models. The reason lies on
the fact that the simulation of a computational model by another may have
a quadratic cost. For example, the runtime of simulations of two-tape Turing
machine by a one-tape Turing machine is quadratic. Such lower bound may be
nicely obtained using Kolmogorov complexity. The reader may consult Jones’
book [7] for further informations.

3 Ramified Primitive Iterations

3.1 Functions on Tiered Domains

We are interested in computational complexity, that is why we focus immediately
on words. The domain of computation is the set W of words over the alphabet
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{a, b}. It is generated from the empty word function 0 and two successors A and
B. As usual A(B(0)) is the word ab.

This domain is tiered by duplicating W into W(0), W(1), . . . , W(i), . . . where
each W(i) is an identical copy of W at tier i. Each domain W(i) is a set of words
over the alphabet {ai, bi}. As previously, there are an empty word function 0i

and two successors Ai and Bi. In practice, we define functions by specifying their
values with respect to tiered domain generators.

There are erasing bijections κk : W(k) → W for each k which just erase
the tier of words. For example, we may represent a function φ : W → W by
f : W(k) → W(0) for some tier k if for each u ∈ W(k), κ0(f(u)) = φ(κk(u)). In
this case, we shall just write f(u) = φ(u).

We also consider downcasting bijections coercek+1 : W(k + 1) → W(k) for
each k such that coercek+1(0k+1) = 0k, coercek+1(Ak+1(x)) = Ak(coercek+1(x))
and coercek+1(Bk+1(x)) = Bk(coercek+1(x)). Similarly, we shall write that f :
W(k+1) → W(0) is defined from h : W(k+1), W(k) → W(0) by f(x) = h(x, x) to
mean that f(x) = h(x, coercek+1(x)). Throughout, we shall reason with respect
to erasing bijections and downcasting bijections without explicitly mentioning
them.

We consider functions with co-arity. For this, we construct Cartesian product
of domains of same tier. We abbreviate W(i)α by W(i) × . . . × W(i). We have a
pairing function 〈 , 〉i and both projections π1

i and π2
i , for each tier i.

We often leave out some brackets using familiar conventions and hence we
abbreviate τ1, . . . , τn → τ by τ1 → (. . . (τn → τ)). It is also convenient to have
a normal presentation of functions. We shall write f : W(i1)α1 , . . . , W(in)αn →
W(r)β in such a way that i1 ≥ . . . ≥ in ≥ r. We say that the tier of the jth
argument of f is ij, and the output tier is r. We write y to mean y1, . . . , yn

where yj is an element of W(ij)αj .
Conventions that we have described here will be extended to the typed lambda

calculus that we suggest at the end in a natural manner.

3.2 Ramified Primitive Iteration

A function f : W(k +1), W(i1)α1 , . . . , W(in)αn → W(r)β is obtained by ramified
primitive iteration from the functions hε : W(i1)α1 , . . . , W(in)αn → W(r)β and
ha, hb : W(i1)α1 , . . . , W(in)αn , W(r)β → W(r)β if

f(0k+1, y) = hε(y) (1)
f(Ak+1(x), y) = ha(y, f(x, y)) (2)
f(Bk+1(x), y) = hb(y, f(x, y)) (3)

where conditions k + 1 ≥ ij for any j and k ≥ r hold. We call these last
conditions the ramification principle based on [10]. The first argument is named
the iteration argument and its tier is k + 1.
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3.3 Ramified Arithmetic

In order to compare function growth rate and to illustrate key notions, it is
convenient to have an encoding of natural numbers. This encoding will be used
in Sections 4.1 and 5.1.

We represent natural numbers by considering both successors Ai and Bi as
the same. Hence, we have a single successor that we write Si, for each tier i. It
should be clear that this encoding is non-injective, which is sufficient because we
are just interesting in the size of the handling values. So in this representation, a
word represents a natural number, which corresponds to its size. Hence, 0i will
refer to zero at tier i, and Si(x) intuitively increases the size of x by one, which
corresponds exactly to the successor operation in unary notation.

We represent in ramified arithmetic an arithmetical function φ : N
α → N by

a function f : W(i1), . . . , W(iα) → W(r) if

φ(n1, . . . , nα) = |f(u1, . . . , uα)| for each ui such that |ui| = ni and i = 1, α

Now, we can define below the addition addk and the multiplication mulk at
tier k.

addk : W(k + 1), W(k) → W(k) and |addk(u, v)| = |u| + |v|, for all u and v.

addk(0k+1, y) = y

addk(Sk+1(x), y) = Sk(addk(x, y)) where Si = Ai, Bi

mulk : W(k + 1), W(k + 1) → W(k) and |mulk(u, v)| = |u|.|v|, for all u and v

mulk(0k+1, y) = 0k

mulk(Sk+1(x), y) = addk(y,mulk(x, y))

We define polynomials by composition from tiered addition and multiplica-
tion, as it is illustrated below.

cubek : W(k + 2) → W(k)

cubek(x) = mulk(x,mulk+1(x, x))

We see that we compute the arithmetical function x3 by composing two multipli-
cations. However, two copies of the multiplication mulk and mulk+1 at different
tiers are necessary. Notice also that the tier of the first argument is lower, which
is possible because of the use of a downcasting bijection. Actually, we may define
coercek by a simple ramified iteration.
coercek : W(k + 1) → W(k)

coercek(0k+1) = 0k

coercek(Sk+1(x)) = Sk(coercek(x))

We may then use it instead of the implicit downcasting.
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3.4 Leivant’s Characterization of FPTIME

Here, we use ramified iteration to facilitate the explanation, but we could also
introduce ramified recursion. Nevertheless, it is quite elegant to follow [10] by
introducing a particular kind of recursion.

A function f : W(r), W(i1)α1 , . . . , W(in)αn → W(r) is obtained by flat re-
cursion from the functions hε : W(i1)α1 , . . . , W(in)αn → W(r) and ha, hb :
W(r), W(i1)α1 , . . . , W(in)α1 → W(r) if

f(0,y) = hε(y) (4)
f(Ar(x), y) = ha(x, y) (5)
f(Br(x), y) = hb(x, y) (6)

This kind of recursion should be viewed as a mere action on the pattern of
the recursive argument. Hence and unlike the ramified principle, the tier of a
recurrence argument is not strictly higher that the output tier. The use of flat
recursion is essential to define a predecessor over W and conditional functions.

Definition 1. A function f is in Lω(W) if it is obtained by a finite number
of applications of composition, flat recursion and ramified primitive iteration
beginning with basic functions 0k, Ak, Bk, 〈 , 〉k, π1

k and π2
k for each tier k.

Leivant demonstrated in [10] the following result:

Theorem 1. The class of functions Lω(W) is exactly the class FPTIME of the
functions which are polynomial time computable.

In this presentation we use functions with co-arity, unlike Leivant which intro-
duces simultaneous ramified iteration.

Actually, Leivant also showed that only two tiers are sufficient. More generally,

Corollary 1. Let Lk(W) be the class of functions restricted over W(0), . . . ,
W(k). For each k, the class of functions Lk+1(W) is exactly the class FPTIME
of the functions which are polynomial time computable.

In the same paper, Leivant shows how to capture DTIME(nk) by counting the
degree of nested iterations. So, he hasn’t a calculus to characterize DTIME(nk).

3.5 Other Approaches

The seminal work of Bellantoni and Cook [2] is similar to the one we have de-
scribed. They characterize FPTIME by defining a function algebra in which
functions have two kind of arguments: the normal ones which can be used as
iteration parameters and the safe ones which can not be used as iteration para-
meters.

As we have seen, only two tiers are necessary to characterize FPTIME. Ac-
tually, this is also the essence of the characterization by simply typed lambda
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calculus of [12]. The tier 1 arguments are represented by Church-numerals, and
the tier 0 are represented by constant terms of atomic type on which no recursion
can be made.

Lastly, we can not end this short paragraph by mentioning the pioneer work
of Cobham [5].

4 Strict Ramified Primitive Iterations

We present the notion strict ramified primitive iteration which is central in this
study. A function f : W(k), W(i1)α1 , . . . , W(in)αn → W(0)β is obtained by k-
ramified iteration from the functions
hε : W(i1)α1 , . . . , W(in)αn → W(0)β and
ha, hb : W(i1)α1 , . . . , W(in)αn , W(0)β → W(0)β if

f(0k, y) = hε(y) (7)
f(Ak(x), y) = ha(y, f(x, y)) (8)
f(Bk(x), y) = hb(y, f(x, y)) (9)

where the inequalities between tiers k > ij for each j and k > 0 hold. We call
this last condition the strict ramification principle.

Definition 2. A function f is in Ik(W) if it is obtained by a finite number
of applications of composition, flat recursion and i-ramified iteration, beginning
with basic functions 0i, Ai, Bi, 〈 , 〉i, π1

i and π2
i for each tier i ≤ k.

In particular, a function I0(W) is not defined by iteration. The notion of 1-
ramified iteration was underlying in [13].

4.1 Strict Ramified Arithmetic

We use the same encoding of natural numbers that the one we present in Sec-
tion 3.3 on ramified arithmetic. However, we slightly modify the way that we
represent arithmetical functions to take into account the fact that outputs are
of tier 0.

An arithmetical function φ : N
α → N is represented in strict ramified arith-

metic by a function f : W(i1), . . . , W(iα) → W(0) if

φ(n1, . . . , nα) = |f(u1, . . . , uα)| for each ui such that |ui| = ni, i = 1, α

The addition function defined in Section 3.3 is defined by 1-ramified iteration,
setting k = 0. On the other hand, the definition of the multiplication proposed
in 3.3 does not satisfy the strict ramification principle because both arguments
are of the same tier.

Nevertheless, we can define any polynomial. For this, we present first a se-
quence (Fk)k∈N of 3-placed monotonic functions, which shall play a crucial role.
For this, let g : W(0)α → W(0)α.
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F0 : W(0), W(0), W(0)α → W(0)α

F0(t, x, y) = g(y)

Fk+1 : W(k + 1), W(k), W(0)α → W(0)α

Fk+1(0k+1, x, y) = y

Fk+1(Sk+1(t), x, y) = Fk(x, x, Fk+1(t, x, y))

It is worth noticing that (Fk)k∈N is parameterized by the function g.

Proposition 1. For any u,v and w, we have

Fk+1(u, v, w) = gm.nk

(w) where m = |u| and n = |v|

The sequence of functions (Fk)k allows us to define polynomial length iterators
over W(0).

Lemma 1. Let P [X ] be a polynomial of degree k. There is a function P̃ :
W(k), W(0)α → W(0)α in Ik(W) such that for each x and y,

P̃ (x, y) = gP (|x|)(y) (10)

Proof. The proof is done by induction on the degree of the polynomial. The base
case is trivial. Suppose that the degree of P is k+1. Hence, P (x) = c.xk+1+Q(x)
where the degree of Q is less or equal to k. Suppose that Q̃ satisfies the induction
hypothesis wrt Q. We define T c

k+1 by composition as follows

T 0
k+1(x, y) = Q̃(x, y)

T d+1
k+1 (x, y) = Fk+1(x, x, T d

k+1(x, y)) d < c

We set P̃ (x, y) = T c
k+1(x, y). We show by an induction on c that P̃ (x, y) satis-

fies 10.

P̃ (x, y) = T d+1
k+1 (x, y) = Fk(x, x, T d

k+1(x, y))

= Fk(x, x, gd.nk+1+Q(n)(y)) where n = |x|

= gn.nk

(gd.nk+1+Q(n)(y)) = g(d+1).nk+1+Q(n)(y)


�

Proposition 2. Any polynomial P is represented in strict ramified arithmetics.

Proof. We set f(x) = P̃ (x, 00) in which we replace g by the successor A0 or
B0. 
�

We say that a multivariate polynomial P [X1, . . . , Xn] with n distinct variables
is simple if each monomial of P is of the form c.Xd

i for some constants c and
d. For example 2x2 + 3.y2 + 4y is simple, but 2yx2 + y is not. The degree of a
simple polynomial is the greatest exponent of P ’s variables.
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Lemma 2. Let P [X1, . . . , Xn] be a simple polynomial of degree k. There is a
function P̃ : W(k)n, W(0)α → W(0)α in Ik(W) such that for each x1, . . . , xn,
and y,

P̃ (x1, . . . , xn, y) = gP (|x1|,...,|xn|)(y) (11)

Proof. The proof is done by induction on the number of variables. The base
case is a consequence of Lemma 1. Suppose that the simple polynomial P has
n + 1 variables X1, . . . , Xn, Xn+1. Since P is simple, we write it as the sum
P (X1, . . . , Xn, Xn+1) = P ′(X1, . . . , Xn)+P ′′(Xn+1). Suppose that P̃ ′ (P̃ ′′) sat-
isfies the induction hypothesis wrt P ′ (resp. P ′′). We define P̃ by

P̃ (x1, . . . , xn+1) = P̃ ′(x1, . . . , xn, P̃ ′′(xn+1, y))

Indeed, we have

P̃ (x1, . . . , xn+1) = P̃ ′(x1, . . . , xn, gP ′′(|xn+1|)(y)) = gP ′(|x1|,...,|xn|)(gP (|xn+1|)(y))

= gP ′(|x1|,...,|xn|)+P ′′(|xn+1|)(y) = gP (|x1|,...,|xn+1|)(y)


�

4.2 A Polynomial Time Hierarchy

Theorem 2. The set of functions Ik(W) is exactly DTIME(nk).

The demonstration of Theorem 2 is a consequence of Lemma 3 and 4 below.

Lemma 3. Let φ : W
α → W

β be a function which is computable by a register
machine M in time (c.

∑
i=1,α nk

i ) + d for some constants c,d and k, where ni

is the size of the ith argument. Then, there is a function f : W(k)α → W(0)β of
Ik(W) such that for each u, f(u) = φ(u).

Proof. A configuration of M is given by a m+1-uplet of W(0) which encodes the
state and the value of the m registers of M . Then, it is not difficult to design a
function next : W(0)m+1 → W(0)m+1, which given a configuration, produces the
next configuration wrt M . Definition details of next are tedious, so we skip them.

Now, we have to iterate next wrt the polynomial time bound. For this we use
Lemma2since it is a simplepolynomial.Therefore, there is a function loop : W(k)α,

W(0)m+1 → W(0)m+1 such that loop(x1, . . . , xα, y) = g(c.
�

i=1,α |xi|k)+d(y). We
conclude by taking g = next. 
�

Lemma 4. Assume that f : W(k1)α1 , . . . , W(kn)αn → W(r)β is in Ik(W). Then
there is a polynomial P of degree k, or less, such that for any u1, . . . , un, the
computation of f(u1, . . . , un), on register machines, is performed in time bounded
by P (max{|ui| |where the tier of ui is greater than 0, ki > 0}i=1,n)

Proof. The proof goes by induction on k. Suppose that f ∈ I0(W). In this case,
the definition of I0(W) claims that f is not defined by strict ramified iteration.
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Hence, it is not hard to compute f in constant time. In particular, this case
includes all the cases where the output tier r is strictly greater than 0.

Now, suppose that f ∈ Ik+1(W). There are two main cases that we are con-
sidering below.

First, f is obtained by k + 1-ramified iteration. We compute a loop whose
length is bounded by the length of the first argument u1. We begin by evalu-
ating v0 = hε(u2, . . . , un). Next we compute hα(u2, . . . , un, v0) where α is the
last letter of u. And, we repeat this process till we have consumed all letters
of the iteration argument u1. As usual with tiering system, the key point is
that the runtime of the auxiliary functions ha and hb does not depend on tier 0
values. Hence we associate three polynomials Pε, Pa and Pb satisfying the induc-
tion hypothesis. The runtime of f is bounded by Pε(max{|ui| | where ki > 0}))+
|u1|×maxα=a,b(Pα(max{|ui| | where ki > 0})). Since hε,ha, and hb have domains
which have strictly lower tiers than k +1, it follows that the degree of the corre-
sponding polynomials, Pε, Pa and Pb is at most k by induction hypothesis. As a
consequence, there is a polynomial which bounds Pε(X) + X. maxα=a,b(Pα(X))
of degree at most k + 1. This polynomial is an upper bound on f ’s runtime.

Second, f is defined by composition. Say that f(x) = h(x, g(x)). There are
two cases to consider. The first is when the output tier of g is 0. In this case,
the runtime of f is bounded by the sum of the runtime of g and h. The second
is when the output tier of g is strictly greater than 0. Then, the runtime of g is
constant because g can not be defined by iterations. It follows that the runtime
of f is bounded by the runtime of h plus an additive constant (due to g). 
�

5 Diagonalization with Dependent Tiers

5.1 Jumping Outside

We shall now take another point of view and focus on growth rate of functions. At
a given tier k, we can iterate the function Fk by composing with W(0) arguments.
For this, we introduce an operator Δ[Fk] : W(k + 1), W(k), W(0) → W(0) which
is defined by

Δ[Fk](0k+1, x, y) = y

Δ[Fk](Sk+1(r), x, y) = Fk(x, x, Δ[Fk ](r, x, y))

We say that the rth iterate of Fk is Δ[Fk](r).
Next, we define a 4-placed operator Δω based on a double iteration. It is a

nested iteration based on lexicographic ordering.

Δω : N, W(k + 1), W(k), W(0) → W(0)

Δω(0, 0k+1, x, y) = g(y) g : W(0) → W(0)
Δω(k + 1, 0k+1, x, y) = y

Δω(k + 1, Sk+1(r), x, y) = Δω(k, x, x, Δω(k + 1, r, x, y))

Here, Δω is parameterized implicitly by g.
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Fact 3. For all k,r,x and y, we have

Δω(k, r, x, y) = Fk(r, x, y)
Δω(k + 1, r, x, y) = Δ[Fk](r, x, y)

If we fix the first argument k, we iterate on tier 0 the function Fk. Now, if we
fix the second argument r, we jump from tier to tier which allows to get outside
each function set Ik(W), computing Δ[Fk](r).

Proposition 4. For any tier k, and for each function f : W(k), W(0) → W(0)
in Ik(W), f is dominated by Δω(k, r) for some r and some function g. That is,
for any x and y, we have |f(x, y)| ≤ |Δω(k, r, x, y)|.

So, Δω allows us to jump outside each Ik(W) for any k.

Proposition 5. The 4 placed function Δω is not in ∪k∈NIk(W).

Proof. We set φ(x) = Δω(|x|, x, x, x) for all x. We see that |φ(u)| ≥ |u||u|+1 +
|u| which is clearly not in ∪k∈NIk(W) in which each function is polynomially
bounded as it has been established in Theorem 2. 
�

The operator Δω is not in ∪k∈NIk(W). Therefore, Δω is not a ramified func-
tion. However, we may see that intuitively the “domain” depends on the first
argument, and so we should write Δω : ∀k ∈ N.W(k + 1), W(k), W(0), → W(0).
To formalize this idea, we now introduce a typed lambda-calculus with very
restricted dependent types.

5.2 A Typed Lambda-Calculus

The aim of this last section is to present a typed lambda-calculus in which each
function of Ik(W) for any k is representable from an iterator diag which mimics
Δω.

Types are built up from an atomic type ω and a unary predicate W using ∀,
→ and × formation. Terms are obtained by lambda-abstraction and application
from the following constants:

– Terms of type ω are built up from variables of type ω, 0 : ω and S : ω → ω.
A natural number k is represented by k:

0 = 0 x + 1 = S(x)

– At each tier k, the predicate W is inhabited by terms which are generated
by ε : ∀k.W(k) and A,B : ∀k.W(k) → W(k). A word u of W is represented
by uk:

εk = ε(k) a(x)
k

= A(k, xk) b(x)
k

= B(k, xk)

– The pairing construction is obtained by using 〈 , 〉 : ∀k.W(k),W(k) →
W(k) × W(k) and projections π1, π2 : ∀k.W(k) × W(k) → W(k).
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– We have a flat recursion operator flat : τ, (W(k) → τ)2,W(k) → τ
– Lastly, we have a double iteration operator

diag : (W(0)α → W(0)α) → ∀k.W(S(k)),W(k),W(0)α → W(0)α

The one step (contextual) reduction � is defined by
β-reduction

(λx.M)N � M [x ← N ]

projections

π1(〈M, N〉k) � M

π2(〈M, N〉k) � N

flat recursion

flat(hε, ha, hb, ε(k)) � hε

flat(hε, ha, hb,A(k, x)) � hax

flat(hε, ha, hb,B(k, x)) � hbx

double iteration where J = A,B

diag(g,0, ε, x, y) � gy

diag(g,S(k), ε, x, y) � y

diag(g,S(k),J(r), x, y) � diag(g, k, x, x,diag(g,S(k), r, x, y))

The transitive closure of � is �∗. Here M [x ← N ] means the usual substitution
of all free occurrences of x in M by N .

A term M is of type τ , that we write M : τ , if there is a derivation of

 M : τ following the typing rules of Figure 1. We also add weakening rules. In
a judgment of the form Γ 
 M : τ , Γ is a set of variables type assignment. This
system has the Church-Rosser and strong normalization properties, which can
be established by translating it in the system λP of [18], chapter 10.

Let φ : W
α → W

β . The function φ is represented at tier k if there is a term
M : W(k + 1)α → W(0)β such that for all u of W

α.

Muk+1 �∗ φ(u)
0

Notice, there is a shift of one between function tier and the first argument of
W, because of the uniform type of diag, for which the type of the base case is
different from the domain of F0. We define CIk(W) as the set of functions which
are represented at tier k.

Lemma 5. Each function g : W(0)α → W(0)β in I0(W) is represented at tier
0, and is in CI0(W).
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Axiom
Γ, x : τ � x : τ

where c is a constant of type τ
Γ � c : τ

Γ, x : τ � M : σ
→ intro, where x does not occur in M

Γ � λx.M : τ → σ

Γ � M : τ → σ Γ � N : τ
→ elim

Γ � MN : σ

Γ, x : ω � M : τ
∀ intro, and x not free in Γ

Γ � M : ∀x.τ

Γ � M : ∀x.τ Γ � k : ω
∀ elim

Γ � Mk : τ [x ← k]

Γ � M : W(S(x))
Downcasting

Γ � M : W(x)

Fig. 1. Typing rules

Proof. The proof is done by induction on the definition of g. 
�
Proposition 6. For each k, Fk is in a function in CIk(W).

Proof. Given a function g : W(0)α → W(0)α, it is represented by a term M at
tier 0 of type W(0)α → W(0)α. Fk is then represented by diag(M, k). 
�
As a direct consequence of the above Proposition, we have a result which is
analogous to Lemma 2:

Corollary 2. Let P [X1, . . . , Xn] be a simple polynomial of degree k.
There is a term P : W(k + 1)n,W(0)α → W(0)α such that for each x1, . . . , xn,
and y,

P(x1, . . . , xn, ) �∗ MP (|x1|,...,|xn|)(y)

where M : W(0)α → W(0)α is a term of CI0(W).

Proof. The construction of the term P follows closely the lines of the demon-
strations of Lemma 1 and 2. P is obtained by composition from Fk functions,
which are representable at tier k following the above proposition. 
�
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Theorem 3. The set of functions Ik(W) is exactly the set CIk(W), that is the
class DTIME(nk).

Proof (Sketch of proof). First, we establish that DTIME(nk) ⊆ CIk(W). For
this, observe that the transition function next, which is defined in the proof of
Lemma 3, is represented at tier 0, by a term of type W(0)m+1 → W(0)m+1.
We iterate next by defining a function loop, again as in the proof of Lemma 3,
thanks to Corollary 2.

Conversely, we show that CIk(W) ⊆ Ik(W). Consider a normal derivation
�

of 
 M : W(k)α → W(0)β . There is no application of the introduction rule for
the universal quantifier ∀. Consider a judgment Γ 
 N : τ of

�
. The typing

context Γ contains only declaration of the form x : W(k). So, we interpret
Γ 
 N : τ as a function. Then, we prove by induction on the normal derivation
that this function is in Ik(W).

The proof is complete by Theorem 2. 
�

Let φ : W
α → W

β. The function φ is represented at tier ω if there is a term
M : ∀k.W(k)α → W(0)β such that for all u,

M k uk �∗ φ(u)
0

where k = |u|

We define CIω(W) as the set of functions which are represented at tier ω.

Proposition 7. There is a function represented at tier ω which is not repre-
sentable at tier k. In other words, this functions is not Ik(W).

Proof. The function Δω is representable at tier ω. 
�

5.3 Other Ways to Jump and Conclusions

We have presented a manner of constructing an exponential function by diagonal-
izing functions defined by strict ramified iteration. There are other approaches.
In [11], Leivant ramifies the system T of Gödel [6] by introducing an atomic type
constructor Ω(τ) which allows to perform recursion over type τ terms. Thus, he
obtains a characterization of FPTIME and of the elementary functions. Bellan-
toni and Niggl [3] characterized the Grzegorczyk hierarchy starting from the
class FPTIME. For this, they define a rank function which, roughly speaking, is
a bound on the number of nested recursion. The work of Caporaso, Covino and
Pani seems also related to the research presented in this paper, see [4].

The construction that we suggest could be applied to characterize other com-
plexity classes, like NCk or classes in between Ptime and Pspace, and to define
and study operators which allow to jump from a complexity class to another one.
Lastly, it seems that the notion of strict ramified iteration is related to some log-
ical systems derived from linear logic and that some arguments, in particular
the diagonalization operator, resemble to arguments used in [14] and [8].
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Birkhäuser, pp. 320–343 (1994)

11. Leivant, D.: Ramified recurrence and computational complexity III: Higher type
recurrence and elementary complexity. Annals of Pure. and Applied Logic 96(1-3),
209–229 (1999)

12. Leivant, D., Marion, J.-Y.: Lambda calculus characterizations of poly-time. Fun-
damenta Informaticae 19(1,2), 167,184 (1993)

13. Leivant, D., Marion, J.-Y.: A characterization of alternating log time by ramified
recurrence. Theoretical Computer Science 236(1-2), 192–208 (2000)

14. Neergaard, P.M., Mairson, H.: Lal is square: Representation and expressivness in
light affine and logic. In: Implicit Computational complexity (2002)

15. Simmon, H.: Tiering as a recursion technique. Bulletin of Symbolic Logic 11(3),
321–350 (2005)

16. Simmons, H.: The realm of primitive recursion. Archive for Mathematical Logic 27,
177–188 (1988)

17. Simmons, H.: Derivation and Computation. Tracts in theoretical computer science,
Cambridge, vol. 51 (2000)

18. Sorensen, M., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. DIKU-
rapport 98/14 (1998)



Edifices and Full Abstraction for the Symmetric
Interaction Combinators

Damiano Mazza

Laboratoire d’Informatique de Paris Nord
damiano.mazza@lipn.univ-paris13.fr

http://www-lipn.univ-paris13.fr/~mazza

Abstract. The symmetric interaction combinators are a variant of La-
font’s interaction combinators. They are a graph-rewriting model of par-
allel deterministic computation. We define a notion analogous to that of
head normal form in the λ-calculus, and make a semantical study of the
corresponding observational equivalence. We associate with each net a
compact metric space, called edifice, and prove that two nets are observa-
tionally equivalent iff they have the same edifice. Edifices may therefore
be compared to Böhm trees in infinite η-normal form, or to Nakajima
trees, and give a precise topological account of phenomena like infinite
η-expansion.

1 Introduction

Lafont’s interaction nets [1] are a powerful and versatile model of parallel deter-
ministic computation, derived from the proof-nets of Girard’s linear logic [2,3].
Interaction nets are characterized by the atomicity and locality of their rewriting
rules. They can be seen as “parallel Turing machines”: computational steps are
elementary enough to be considered as executable in constant time, but several
steps can be done at the same time.

Several interesting applications of interaction nets exist. The most notable
ones are implementations of optimal evaluators for the λ-calculus [4,5], but ef-
ficient evaluation of other functional programming languages using richer data
structures is also possible with interaction nets [6].

However, so far the practical aspects of this computational model have ar-
guably received much more attention than the strictly theoretical ones. With
the exception of Lafont’s work on the interaction combinators [7] and Fernández
and Mackie’s work on operational equivalence [8], no foundational study of in-
teraction nets can be found in the existing literature. For example, until very
recently [9], no denotational semantics had been proposed for interaction nets.

This work aims precisely at studying and expanding the theory of interaction
nets, in particular of the symmetric interaction combinators. These latter are
particularly interesting because of their universality: any interaction net system
can be translated in the symmetric interaction combinators [7]. Therefore, a
semantical study of the symmetric combinators applies, modulo a translation,
to all interaction net systems.

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 305–320, 2007.
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We introduce observable nets, which are analogous to head normal forms in
the λ-calculus, and we define an observational equivalence based on them. This
equivalence is different from the one introduced by Fernández and Mackie: the
latter is in fact based on interface normal forms, which appear to be related to
λ-calculus weak head normal forms.

In the λ-calculus, head normal form equivalence (hnf-equivalence) was seman-
tically characterized in the early ’70s by the independent results of Wadsworth
and Hyland [10,11]: two λ-terms are hnf-equivalent iff their Böhm tree has the
same infinite η-normal form. Shortly after, Nakajima introduced a similar char-
acterization in terms of what are now known as Nakajima trees [12].

In the present work we introduce edifices, which play the same rôle as Böhm
or Nakajima trees, in that they provide a fully abstract model of the symmetric
combinators. Edifices are compact (hence complete) metric spaces, related to
Cantor spaces. When nets are interpreted as edifices, phenomena similar to infi-
nite η-expansion, which are also present in the symmetric combinators, receive
a precise topological explanation.

Apart from characterizing the interactive behavior of nets, edifices show other
interesting aspects, not developed in this paper. They have many common fea-
tures with the strategies of game semantics, and are related to the Geometry of
Interaction interpretation of nets [13,7]. They may be of help in improving the
theory of interaction nets, for example by serving as the base for a typed seman-
tics, or by suggesting additive (or non-deterministic) extensions of interaction
nets; they may also turn out to be useful in defining alternative models of other
systems, like proof-nets, or the λ-calculus itself, as these can all be encoded in
the symmetric combinators.

2 The Symmetric Interaction Combinators

2.1 Nets

The symmetric interaction combinators, or, more simply, the symmetric com-
binators, are an interaction net system [1,7]. An interaction net is the union of
two structures: a labelled, directed hypergraph, and an undirected multigraph:

Definition 1 (Net). A net μ is a triple (Ports(μ), Cells(μ), Wires(μ)), where:

– Ports(μ) is a finite set, the elements of which are called the ports of μ;
– Cells(μ) is a set of cells, which are tuples of the form (α, i0, i1, . . . , in), where

α ∈ {δ, ε, ζ}, and i0, i1, . . . , in are pairwise distinct ports, such that n = 2 if
α = δ or α = ζ, and n = 0 if α = ε;

– Wires(μ) is a multiset of wires, which are unordered pairs of distinct ports.

Cells(μ) and Wires(μ) must satisfy the following constraints:

– each port appears in at least one wire;
– each port appears at most twice in Cells(μ)+Wires(μ) (Cells(μ) is considered

as a multiset in this union).
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δ

δ ζ ζ

ζ

ζ

δ

ε

ε

ε ε

Fig. 1. A net (left) and its port graph (right, internal edges dotted)

The ports of μ appearing only once in Cells(μ)+Wires(μ) are called free; the set
of the free ports of μ is referred to as its interface. In a cell (α, i0, i1, . . . , in), the
port i0 is called principal, and the ports i1, . . . , in are called auxiliary.

Most of the time, it is convenient to present a net graphically, as in Fig. 1. In
these representations, only cells and wires are drawn, and ports are left implicit.
For a binary cell (i.e., of type δ or ζ), the principal port is represented by one of
the “tips” of the triangle representing it. A wire is represented as. . . a wire, and
the free ports appear as extremities of “pending” wires. For example, the net in
Fig. 1 has 7 free ports. In the rest of the paper, we shall always assume that if
a net has n free ports, then they are labelled by the integers in {1, . . . , n}. Note
also that graphical representations equate nets differing only modulo an injective
renaming of ports and a collapse/extension of wires (a sort of α-equivalence).

Each net μ determines an undirected multigraph PG(μ), which will be useful
to speak of paths in μ (see Fig. 1):

Definition 2 (Port graph). The port graph of a net μ, denoted PG(μ), is the
undirected multigraph whose vertices are the elements of Ports(μ) and such that
there is an edge between two ports i, j iff one of the following (non mutually
exclusive) conditions hold:

External edges: {i, j} ∈ Wires(μ) (multiplicities are counted here, i.e., if {i, j}
appears twice in Wires(μ), there will be two edges relating i and j in PG(μ));

Internal edges: i and j are principal and auxiliary ports of a cell of μ.

2.2 Interaction Rules

An active pair is a net consisting of two cells whose principal ports are connected
by a wire. Active pairs may be reduced according to the interaction rules (Fig. 2):
the annihilations, concerning the interaction of two cells of the same type, and
the commutations, concerning the interaction of two cells of different type.

Reducing an active pair inside a net means removing it and replacing it with
the net given by the corresponding rule. If a net μ is transformed into μ′ after
such an operation, we write μ → μ′. We define μ �β ν iff there exists o such
that μ →∗ o and ν →∗ o. It is easy to show that the relation →∗ is (strongly)
confluent, so �β is an equivalence relation (indeed a congruence).
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Fig. 2. The interaction rules: annihilation (left) and commutation (right). In the an-
nihilation, the right member is empty in case α = ε.

The interest of the symmetric combinators is given by the following result:

Theorem 1 (Lafont [7]). Any interaction net system can be translated in the
symmetric combinators.

The definitions of interaction net system and of the notion of translation are
out of the scope of this paper. We shall only say that, modulo an encoding,
Turing machines, cellular automata, and the SK combinators are all examples
of interaction net systems [7,9]. An example of encoding of linear logic and the
λ-calculus in the symmetric combinators1 is given by Mackie and Pinto [14].
We refer the reader to Lafont’s paper [7] for a proper formulation and proof of
Theorem 1.

2.3 Basic Nets

Wirings. A net containing no cell and no cyclic wire is called a wiring. Wirings
are permutations of free ports; they are ranged over by ω.

Trees. A single ε cell is a tree with no leaf, denoted by ε; a single wire is a tree
with one leaf (it is arbitrary which of the two extremities is the root and which
is the leaf), denoted by •; if τ1, τ2 are two trees with resp. n1, n2 leaves, and if
α ∈ {δ, ζ}, the net

τ

τ1 τ2

α

=

. . .

. . . . . .

is a tree with n1 + n2 leaves, denoted by α(τ1, τ2).
Trees annihilate in a way which generalizes the annihilation of binary cells:

Lemma 1. Let τ be a tree. Then, we have

..
.

..
.

..
.

..
.

τ τ →∗

Proof. By induction on τ . ��
1 Actually these encodings use the interaction combinators, but they can be adapted

with very minor changes to the symmetric combinators.
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Fig. 3. The equations defining η-equivalence (α ∈ {δ, ζ})

3 Observational Equivalence

3.1 Eta Equivalence and Internal Separation

As in the λ-calculus, if reduction is extended by adding other suitable rewriting
rules, a result similar to Böhm’s theorem can be proved [15].

Definition 3 (Context, test). Let μ be a net with n free ports. A context for
μ is a net C with at least n free ports. We denote by C[μ] the application of C
to μ, which is the net obtained by plugging the free port i of μ to the free port i
of C, with i ∈ {1, . . . , n}. A test for μ is a forest of n trees τ1, . . . , τn such that
the root of each τi is labelled by i. A test θ is therefore a particular context, and
we denote by θ[μ] its application to μ.

Definition 4 (η- and βη-equivalence). η-equivalence is the reflexive, transi-
tive, and contextual closure of the equations of Fig. 3. βη-equivalence is defined
as �βη= (�β ∪ �η)+.

In the following, W and E denote the nets with two free ports consisting resp.
of a single wire and of two ε cells.

Theorem 2 (Separation [15]). Let μ, ν be two total2 nets with the same in-
terface, such that μ ��βη ν. Then, there exists a test θ such that θ[μ] →∗ W and
θ[ν] →∗ E, or vice versa.

The following result is the analogous of Lemma 1 for η-equivalence, and will be
used in Sect. 5 (like Lemma 1, the proof is a straight-forward induction):

Lemma 2. Let τ be a tree without ε cells. Then, we have

...
...τ τ �η

2 Total means admitting a normal form without vicious circles. A vicious circle is
either a cyclic wire, or a configuration consisting of n binary cells c1, . . . , cn such
that, for all i ∈ {1, . . . , n − 1}, the principal port of ci is connected to an auxiliary
port of ci+1, and the principal port of cn is connected to an auxiliary port of c1. Such
configurations are stable under reduction, because cells can interact only through
their principal port. Totality will not be relevant to the main definitions and results
of this paper.
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i j

τ1 τ2

. . . . . . . . .

. . .. . .. . .

μ0

. . .

Fig. 4. An observable path

Corollary 1. For any net ν and for any trees without ε cells τ1, . . . , τn, there
exists a net ν′ such that

. . . . . .

. . .

τ1 τn

ν′

�ην

Proof. Simply “η-expand” the wires connected to the free ports of ν as in
Lemma 2. ��

3.2 Path-Based Observational Equivalence

The Separation Theorem distinguishes two nets by sending one to a net present-
ing a direct connection between its free ports, and the other to a net in which
no such direct connection will ever form. This inspires the following definitions.

Definition 5 (Straight path, Danos and Regnier [13]). Let μ be a net, and
i, j ∈ Ports(μ). We say that there is a straight path between i and j in μ iff there
is a path (not necessarily simple) connecting i and j in PG(μ) and alternating
between internal and external edges (see Definition 2). We say that a straight
path crosses an active pair iff it contains an edge connecting two principal ports.
A maximal path is a non-empty straight path connecting two free ports of μ.

Definition 6 (Observable path). Let μ be a net. An observable path of μ is a
maximal path crossing no active pair. We denote by op(μ) the set of observable
paths of μ, and we set

op∗(μ) =
⋃

μ→∗μ′

op(μ′).

It is perhaps useful to visualize observable paths. A net μ contains an observable
path between its free ports i and j iff it is of the shape given in Fig. 4. If i = j,
then τ1 = τ2, and the wire shown connects two leaves of the same tree. The
actual observable path, if seen from i to j, takes the branch of τ1 leading to the
leaf connected by the wire shown, follows this wire, and descends to the root of
τ2 through the only possible branch.

Proposition 1. Let μ →∗ μ′. Then, op(μ) ⊆ op(μ′), and op∗(μ) = op∗(μ′).

Proof. An immediate consequence of the locality of interaction rules. ��
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Note that, for any net μ, op(μ) is always finite; then, by Proposition 1, op∗(μ)
is finite whenever μ has a normal form. The stability of observable paths under
reduction is the main reason for considering them as the base of observational
equivalence.

Definition 7 (Observability predicates). We say that μ is immediately ob-
servable, and we write μ↓, iff op(μ) �= ∅. We say that μ is observable, and we
write μ⇓, iff op∗(μ) �= ∅, or, equivalently, μ →∗ μ′↓. If op∗(μ) = ∅, we say that
μ is blind, and we write μ⇑.

Definition 8 (Observational equivalence). Two nets μ, ν with the same in-
terface are observationally equivalent, and we write μ � ν, iff for all contexts
C, C[μ]⇓ iff C[ν]⇓.

It helps thinking of an immediately observable net as a head normal form in the
λ-calculus. As a matter of fact, it is possible to extend our definition of observ-
able path to any interaction net system, in particular to sharing graphs [4]. In
these latter, observable paths can be seen to be related to persistent paths [13].
Then, one can adapt the definition of observable net so as to obtain that a λ-term
is in head normal form iff its corresponding net is immediately observable. This
adaptation, which we do not detail here, takes into account only the observ-
able paths starting from the free port representing the “root” of the term, and
iteratively using the “root” of each subterm.

The existence of a “root” (i.e., a distinguished free port in sharing graphs)
is what allows one to define the notion of principal head normal form, of which
no meaningful equivalent exists for nets. This is because nets, like proof-nets,
are “classical”, as opposed to λ-terms, which are “intuitionistic”. This is also
the reason why the symmetric combinators equivalent of Böhm trees will not be
trees (cf. Sect. 4).

Following the analogy with the λ-calculus, blind nets correspond to unsolvable
terms. If we deem semi-sensible a congruence on nets including �β and not
equating a blind and an observable net, then it is not hard to show that � is
the greatest semi-sensible congruence, just like the corresponding theory H∗ in
the λ-calculus.

We also have that, if μ is a blind net with n free ports, then μ � En, where
En is the net consisting of n cells of type ε. Thus, each equivalence class of
blind nets (for any interface) has a representative which is normal, in sharp
contrast with the λ-calculus. In this respect, one may consider ε cells as the
“reification” of unsolvability. Additionally, it can be shown that �βη is a semi-
sensible congruence, so that �βη ⊆ �. Therefore, by Theorem 2, �βη and �
coincide on total nets; in particular, two normal nets without vicious circles
are observationally equivalent iff they are βη-equivalent.3 These results are all
consequences of Theorem 3 (Sect. 5), but can also be proved independently.

We conclude by stating an important Context Lemma, saying that tests suffice
to discriminate between nets (the proof is technical, and is omitted here):

Lemma 3 (Context). μ � ν iff, for every test θ, θ[μ]⇓ iff θ[ν]⇓.
3 See footnote 2 for the definition of vicious circle and total net.
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4 Edifices

We shall now introduce the main mathematical objects of our paper, namely ed-
ifices. These will be used to develop a denotational semantics for nets, borrowing
ideas from the path semantics of linear logic, i.e., Girard’s Geometry of Inter-
action as formulated by Danos and Regnier [13]. Although edifices and Böhm
trees are technically quite different, there are strong analogies between the two.
Also, the topology used to define edifices is the same used by Kennaway et al.
to define the infinitary λ-calculus [16].

In what follows, C = {p,q}N is the set of infinite binary words, ranged over by
x, y, equipped with the Cantor topology. We remind that C is metrizable, with
the distance defined for example by dC(x, y) = 2−k, where k is the length of the
longest common prefix of x, y. We denote by B◦

x,r the open ball of center x and
radius r. The elements of C × C, which is also a Cantor space, will be denoted
by x ⊗ y, and ranged over by u, v, w. Below, the set N of non-negative integers,
ranged over by i, j, will be considered equipped with the discrete topology.

Definition 9 (Pillar). Given I ⊆ N, set PI = C × C × I, equipped with the
product topology. A pillar is an element of P = PN. Pillars are denoted by u @ i,
and are ranged over by ξ, υ. The pillar u @ i is said to be based at i.

Observe that P is also metrizable; if ξ = x ⊗ y @ i and υ = x′ ⊗ y′ @ i′, we shall
consider the distance d(ξ, υ) = max{dC(x, y), dC(x′, y′), ddisc(i, i′)}, where ddisc
is the discrete metric, defined as ddisc(i, j) = 0 if i = j, and ddisc(i, j) = 2 if
i �= j. Therefore, to be “close”, two pillars must be based at the same integer.

Definition 10 (Arch). Given I ⊆ N, pose −→AI = PI × PI , equipped with the
product topology, and set (ξ, υ) ∼ (ξ′, υ′) iff ξ′ = υ and υ′ = ξ, or ξ′ = ξ and
υ′ = υ. We then define AI = −→AI/ ∼, equipped with the quotient topology. An
arch is an element of A = AN. Arches are denoted by ξ � υ (which is the same
as υ � ξ), and ranged over by a; sets of arches are ranged over by E. An arch
is said to be based at the unordered pair where its two pillars are based.

The following helps understanding the topology given to A:

Proposition 2. The space A is metrizable; if a = ξ � υ and a′ = ξ′ � υ′,
the function D(a, a′) = min{max{d(ξ, ξ′), d(υ, υ′)}, max{d(ξ, υ′), d(υ, ξ′)}} is a
distance inducing its topology.

In other words, to compare two arches, we overlap them in both possible ways,
and we take the way that “fits best”. The distance D is in fact the standard
quotient metric; in this case, it collapses to this simple form.

The space A is not compact. In fact, we can give a characterization of its
compact subsets:

Proposition 3. E is compact iff it is a closed subset of AI for some finite I.

Proof. If E is compact, then it must be closed; suppose however that E �⊆ AI for
any finite I. Then, let ai,j be a sequence of arches spanning all of the i, j where



Edifices and Full Abstraction for the Symmetric Interaction Combinators 313

the arches of E are based, and set Ui,j = E ∩ B◦
ai,j ,2. These are all open sets in

the relative topology, and since, for all i, j, D(ai,j , a) < 2 iff a is based at i, j,
they form an open cover of E. Now observe that, by the same remark on the
distance, if we remove any Um,n we loose all arches of E based at m, n. But we
have supposed the sequence ai,j to be infinite, so Ui,j is an infinite open cover
of E admitting no finite subcover, in contradiction with the compactness of E.

For the converse, I being finite, it is not hard to show that PI is homeomorphic
to C. Therefore, PI is a Cantor space, hence compact. So AI is compact, because
it is the quotient of a product of compact spaces. But a closed subset of a compact
space is compact, hence the result. ��

It can be shown that each AI is also perfect and totally disconnected, which
means that actually these are all Cantor spaces whenever I is finite. What really
matters to us though is compactness, which implies completeness (with respect
to the metric D of Proposition 2): when I is finite, there is identity between
closed, compact, and complete subsets of AI .

Definition 11 (Edifice). An edifice is a compact set of arches.

5 Nets as Edifices

The basic idea to assign an edifice to a net is that arches model observable
paths.4 These latter in fact can be seen as unordered pairs of addresses in trees;
now, in a pillar x ⊗ y @ i, any pair of finite prefixes of x, y may be seen as an
address, and the base i identifies the tree (a net may have several free ports,
and each may be the root of a tree). The need for infinite words arises from η-
expansion (the αα equation at left in Fig. 3), which can be applied indefinitely,
as in the pure λ-calculus.

In the following, we let a, b range over the set {p,q}∗ of finite binary words,
and we denote by 1 the empty word. Pairs of finite words are denoted by a ⊗ b,
and ranged over by s, t. The concatenation of two finite words a, b or of a finite
word a and an infinite word x are denoted by simple juxtaposition, i.e., as ab
and ax respectively. The concatenation of two pairs of finite words a ⊗ b, a′ ⊗ b′

or of a pair of finite words a ⊗ b and a pair of infinite words x ⊗ y are defined
resp. as aa′ ⊗ bb′ and ax ⊗ by, and are also denoted by juxtaposition. If u is a
pair of infinite words, when we say that s is a prefix of u we mean that u = su′

for some u′, and we always implicitly assume that s = a ⊗ b with a, b of equal
length, which is also said to be the length of s.

Definition 12 (Address of a leaf). Let τ be a tree, and l a leaf of τ . The
address of l in τ , denoted by addrτ (l), is a pair of finite binary words defined by
induction on τ :5

– τ = •: addrτ (l) = 1 ⊗ 1;
4 Graphically (Fig. 4), observable paths look like arches, hence the terminology.
5 For the acquainted reader, addrτ (l) is nothing but the GoI weight of the path going

down from l to the root of τ [7]. This justifies our notations for binary words.
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– τ = δ(τ1, τ2): addrτ (l) = (p ⊗ 1)addrτ1(l) if l is a leaf of τ1, addrτ (l) =
(q ⊗ 1)addrτ2(l) if l is a leaf of τ2;

– τ = ζ(τ1, τ2): addrτ (l) = (1 ⊗ p)addrτ1(l) if l is a leaf of τ1, addrτ (l) =
(1 ⊗ q)addrτ2(l) if l is a leaf of τ2.

Definition 13 (Edifice of an observable path). Let μ be a net, and let φ
be an observable path of μ connecting the free ports i and j. By definition, φ
is completely described by the free ports i, j and the leaves li, lj of the two trees
τi, τj rooted at i, j which are connected in φ (cf. Fig. 4). Therefore, if we put
s = addrτi(li) and t = addrτj(lj), we define

φ• = {sw @ i � tw @ j ; ∀w ∈ C × C}.

It is not hard to check that the set defined above is indeed an edifice:

Proposition 4. If μ is a net with n free ports and φ an observable path of μ,
φ• is a closed subset of A{1,...,n}.

Definition 14 (Edifice of a net). Let μ be a net. The pre-edifice of μ is the
set

E0(μ) =
⋃

φ∈op∗(μ)

φ•.

The edifice of μ is the closure of its pre-edifice: E(μ) = E0(μ).

The soundness of the above definition can be checked as follows: by Proposition 4,
all of the φ• are subsets of AI for some finite I; arches based outside I are “too
far” to be adherent to E0(μ), therefore its closure is still in AI . By Proposition 3,
this is enough to ensure the compactness of E(μ).

Observe that if μ is normalizable, then op∗(μ) is finite, hence by Proposition 4
E0(μ) is already closed. It is however possible to find non-normalizable nets
whose pre-edifice is not an edifice (e.g. the net of Fig. 5 discussed below).

The closure is in fact essential for yielding a fully-abstract denotational se-
mantics of nets. It is crucial in the proof of the following result:

Lemma 4. Let μ, ν be two nets with n free ports. Then, E(μ) �= E(ν) implies
that there exist i, j ∈ {1, . . . , n}, two pairs of finite words s, t, and two observable
paths φ ∈ op∗(μ) and ψ ∈ op∗(ν) such that, if we put aw = sw @ i � tw @ j,
either for all w, we have aw ∈ φ• \ E(ν), or for all w, we have aw ∈ ψ• \ E(μ).

Proof. Suppose, without loss of generality, that there exists a ∈ E(μ) \ E(ν),
based at i, j ∈ {1, . . . , n}. Remember that E(μ) and E(ν) are defined as the
closures of resp. E0(μ) and E0(ν), and that by Proposition 3 they are both
compact, hence complete. Then, if a ∈ E(μ)\E0(μ), a must be a “missing limit”
of a Cauchy sequence an ∈ E0(μ). Since a subsequence of a Cauchy sequence
is still a Cauchy sequence, there must exists an integer m such that, for all
n ≥ m, an ∈ E0(μ) \ E(ν), otherwise a would belong to E(ν) because of its
completeness. Therefore, modulo replacing it by one of these an, we can always
assume that a ∈ E0(μ). If it is so, then by definition there exists an observable
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path φ ∈ op∗(μ) such that a ∈ φ•, which means that a = sw0 @ i � tw0 @ j and,
for every w ∈ C × C, sw @ i � tw @ j ∈ φ•, where s and t are the addresses of
two leaves in the reduct(s) of μ in which φ appears. Now let s′1, . . . , s′n, . . . be a
sequence of prefixes of increasing length of w0, and set, for all n, sn = ss′n and
tn = ts′n. Suppose that, for all n, there exist two pairs of infinite words un, vn such
that an = snun @ i � tnvn @ j ∈ E(ν); it is not hard to verify that the arches
an would form a Cauchy sequence of limit a, and thus, by the completeness of
E(ν), we would obtain a ∈ E(ν), a contradiction. Therefore, there must exist an
integer n such that, for all w, snw @ i � tnw @ j ∈ φ• \ E(ν). ��

Lemma 5. μ �η ν and μ →∗ μ′ implies that there exist μ′′ �η ν′′ such that
μ′ →∗ μ′′ and ν →∗ ν′′.

Proof. Omitted (see [15]). ��

Definition 15 (η-equivalent observable paths). Let τ1, τ2, τ
′
1, τ

′
2 be trees,

with τ1 = τ2 iff τ ′
1 = τ ′

2, and let φ, φ′ be two observable paths, such that in φ
there is a connection between two leaves l1, l2 of τ1 and τ2, and in φ′ there is a
connection between two leaves l′1, l

′
2 of τ ′

1 and τ ′
2. We say that φ is η-equivalent

to φ′ iff

�η

. . . . . . . . . . . .
ε

τ1 τ2

ε ε ε
. . . . . . . . . . . .

ε

τ ′
1 τ ′

2

ε ε εl1 l2 l′1 l′2

Lemma 6. Let μ �η ν, and let φ ∈ op∗(μ). Then, there exists ψ ∈ op∗(ν) such
that φ and ψ are η-equivalent.

Proof (sketch). By definition, φ ∈ op∗(μ) means that φ is an observable path of
a reduct μ′ of μ. By Lemma 5, μ′ →∗ μ′′ and ν →∗ ν′′ such that μ′′ �η ν′′. But
observable paths are preserved under reduction, so φ is also present in μ′′. Now
if, in rewriting μ′′ to ν′′, no active pair is introduced to alter the observability of
φ, then clearly ν′′ contains an observable path η-equivalent to φ. Otherwise, it
is easy to check that an αα equation must have been used. In this case, one can
prove that the active pairs introduced can be reduced to obtain ν′′ →∗ o such
that o contains an observable path ψ η-equivalent to φ. But the reducts of ν′′

are also reducts of ν, so ψ ∈ op∗(ν). ��

Lemma 7. If μ �η ν, then E0(μ) = E0(ν) (hence E(μ) = E(ν)).

Proof (sketch). By Lemma 6, it is enough to check that, whenever φ and ψ are
η-equivalent observable paths, φ• = ψ•. The η-equations concerning ε cells need
not be considered; in the case of the δζ equation, the fact that in pillars δ and
ζ cells are treated by separate words makes their relative order irrelevant, and
thus accounts for the their commutation; the αα equations, which in this case
may only be applied to the wire connecting the two leaves of an observable path,
are modelled by the fact that all possible “uniform completions” of the addresses
of the leaves are taken in the edifice of an observable path. ��
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We now prove that E(·) induces a congruence with respect to tests:

Lemma 8. 1. Let τ be a tree, and let

μ0

τ

. . .

. . .

ν0

τ

. . .

. . .

=μ =ν

Then, E(μ) = E(ν) iff E(μ0) = E(ν0).
2. Let μ, ν be two nets with the same interface such that E(μ) = E(ν), and let

τ be a tree without ε cells. Then, if we pose

τ
. . . . . .

μ

=μ′

τ
. . . . . .

ν

=ν′

we have E(μ′) = E(ν′).
3. Let μ, ν be two nets with the same interface such that E(μ) = E(ν), and let

. . .

μ

=μ′

. . .

ν

=ν′

ε ε

Then, E(μ′) = E(ν′).

Proof

1. Easy.
2. Simply consider the nets μ′′, ν′′ obtained from μ′, ν′ by adding a copy of τ

to the one already existing in the two nets, so that each leaf l in one copy is
connected to the same leaf l in the other copy. By Lemma 2, we have that
μ′′ �η μ and ν′′ �η ν; by point 1, we have E(μ′) = E(ν′) iff E(μ′′) = E(ν′′);
but by Lemma 7, and by hypothesis, E(μ′′) = E(μ) = E(ν) = E(ν′′).

3. Call k the free port of μ to which the ε cell is connected in μ′. Observe that
such ε cell can either disappear, or be duplicated, and that, in any case, ε
cells cannot be used by observable paths. Hence, φ ∈ op∗(μ′) iff φ ∈ op∗(μ)
and φ connects two free ports of μ both different than k. Therefore, E(μ′) =
{u @ i � u @ j ∈ E(μ) ; j, k �= i}. The same holds for ν, so from E(μ) = E(ν)
it easily follows that E(μ′) = E(ν′). ��

Corollary 2. Let μ, ν be two nets with the same interface, and let θ be a test.
Then, E(μ) = E(ν) implies E(θ[μ]) = E(θ[ν]).



Edifices and Full Abstraction for the Symmetric Interaction Combinators 317

To prove full abstraction, we first need the following separation result:

Lemma 9. Let W be a net with two free ports connected by a wire, and let μ be
a net with two free ports, such that φ ∈ op∗(μ) implies that φ does not connect
the port 1 to the port 2. Then, there exists a test θ such that θ[W ]⇓ and θ[μ]⇑.

Proof. If μ⇑, the identity test suffices, so suppose μ⇓. By hypothesis, all observ-
able paths appearing in the reducts of μ connect one of the free ports to itself.
Therefore, there exists μ′ such that μ →∗ μ′, and

=μ′ . . .

μ′′

τ

In the above picture, we have supposed that the observable path connects the
free port 1 to itself, and that the leaves connected in the path are the two “left-
most” leaves of τ . These are just graphically convenient assumptions, causing
no loss of generality: the observable path may as well connect port 2 to itself,
and the leaves connected may be any two leaves of τ . Now, if we define

=θ

ε ε

. . .

ε ε

. . .

ε

τ τ

ε

we have that, thanks to Lemma 1, θ[W ] →∗ W , while θ[μ] reduces to a net whose
free port 1 is connected to an ε cell. If this net is blind, we are done; otherwise,
there is a reduct of θ[μ] containing an observable path between the free port 2
and itself. This observable path can be “eliminated” with the same technique,
while the ε cell on port 1 will “eat” any tree fed to it, so in the end we obtain a
test θ′ such that θ′[W ] →∗ W↓, while θ′[μ]⇑, as desired. ��

We are now ready to prove our main result:

Theorem 3 (Full abstraction). μ � ν iff E(μ) = E(ν).

Proof. Consider first the backward implication (also known as the adequacy
property). We start by observing that, for any net o, o ⇓ iff op∗(o) �= ∅ iff
E(o) �= ∅. Now, suppose E(μ) = E(ν), and let θ be a test. By Corollary 2, we
have E(θ[μ]) = E(θ[ν]), so following the above remark θ[μ]⇓ iff E(θ[μ]) �= ∅ iff
E(θ[ν]) �= ∅ iff θ[ν]⇓. Then μ � ν follows from the Context Lemma 3.

Now we turn to the actual full abstraction property. For this, we consider the
contrapositive statement, and assume E(μ) �= E(ν). Let I be the interface of μ
and ν. By Lemma 4, we know that there exist i, j ∈ I, φ ∈ op∗(μ), and two leaves
in a reduct of μ of addresses s, t such that, for all w, sw @ i � tw @ j ∈ φ• \E(ν)
(it could actually be that these arches belong to ψ• \ E(μ), where ψ ∈ op∗(ν),
but obviously our assumption causes no loss of generality). We shall suppose
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i �= j; the reader is invited to check that the argument can be adapted to the
case i = j. By Definition 13, and by the fact that φ ∈ op∗(μ), we have

. . . . . . . . . . . .
s t

τi τj

i j

→∗μ

. . .

μ′

where we have explicitly drawn the connection between the two leaves of resp.
addresses s and t. On the other hand, by Corollary 1, we have

. . . . . . . . . . . .
k l

τi τj

i j

�ην

. . .

ν′

where we have called k and l the two free ports of ν′ corresponding resp. to
the addresses t and s in τi and τj . Observe that, by Lemma 5, the edifice of
the net on the right is still E(ν). Now if, in any reduct of ν′, there appeared an
observable path between k and l, then we would contradict the fact that, for all
w, sw @ i � tw @ j �∈ E(ν). Therefore, no observable path ever appears between
k and l in any reduct of ν′.

Consider then the test

i j

. . .

. . . . . . . . . . . .

ε ε ε ε ε ε

s t

=θ τi τj

where we have left free only the leaves corresponding to the addresses s and t of
τi and τj . Now, by Lemma 1, θ[μ] →∗ W , where W is a wire plus a net with no
interface; on the other hand, we have

ε ε ε ε ε ε

lk

ν′

�βη
. . . . . . . . . . . . . . .θ[ν]

But ν′ never develops observable paths between k and l, so Lemma 9 applies,
and we obtain μ �� ν. ��

As an immediate application of Theorem 3, we give an example of a net which is
not normalizable, and yet is observationally equivalent to a wire; this is analogous
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ι

δ δ

ι →∗

Fig. 5. A non-normalizable net observationally equivalent to a wire

to Wadsworth’s “infinitely η-expanding” term J = RR, where R = λxzy.z(xxy),
which is well known to be hnf-equivalent to λz.z.

Consider a net ι containing no observable paths, and reducing as in Fig. 5.
Such a net exists, although its description is not as concise as that of J .
We see that φ ∈ op∗(ι) iff φ• = {qnpx ⊗ y @1 � qnpx ⊗ y @2 ; ∀x, y ∈ C}
for some non-negative integer n. On the other hand, if W denotes a wire,
E(W ) = E0(W ) = {u @1 � u @2 ; ∀u ∈ C × C}. Now, if q∞ denotes an infinite
sequence of q’s, all arches of the form ay = q∞ ⊗ y @ 1 � q∞ ⊗ y @ 2 are missing
from E0(ι), hence E0(ι) � E0(W ). But these arches are all adherent to E0(ι): in
fact, it is very easy to construct a Cauchy sequence in E0(ι) of limit ay, for any
y. Therefore, E(ι) = E(W ), and ι � W .

Notice that the reducts of ι are “almost” η-equivalent to a wire: there is just
one missing connection. We can say that this connection forms “in the limit”,
when the reduction is carried on forever. When one interprets nets as edifices,
this informal remark becomes a precise topological fact, i.e., we have a true limit.

Compactness is crucial for obtaining full abstraction. Notice in fact that E0(·)
already gives an adequate semantics of nets, which however fails to be fully
abstract, as the above example itself shows.
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Two Session Typing Systems for
Higher-Order Mobile Processes

Dimitris Mostrous and Nobuko Yoshida
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Abstract. This paper proposes two typing systems for session interactions in
higher-order mobile processes. Session types for the HOπ-calculus capture
high-level structures of communication protocols and code mobility as type ab-
straction, and can be used to statically check the safe and consistent process com-
position in communication-centric distributed software. Integration of arbitrary
higher-order code mobility and sessions leads to technical difficulties in type
soundness, because linear usage of session channels and completion of sessions
are required in executed code. By using techniques from the linear λ-calculus, we
develop a coherent and tractable session typing system for the HOπ-calculus. We
also present an alternative system based on fine-grained process types. The for-
mal comparison between the two systems offers insight on the interplay between
higher-order code mobility and session types.

1 Introduction

In global computing environments, applications are executed across multiple distributed
sites or devices. The use of mobile code is prominent in such environments, where sev-
eral participants are synthesised by communication of not only passive values but also
of runnable code: for example a service can be delegated to different participants, by
sending either a channel via which it is accessible, or code that accesses it; and incom-
ing code may transit through several devices that alter their computational behaviour or
their data through interaction with it.

The Higher-Order π-calculus (HOπ-calculus) [19] is a general formalism of interac-
tion in which two kinds of mobility, name passing and process passing, are integrated
in a simple and universal form: in this model, processes can be instantiated by names
and other processes, just like a piece of mobile code is instantiated with local capability
after migration. This additional expressiveness inherited from the λ-calculus provides a
powerful basis for describing and analysing dynamicity in global computing scenarios.

As a type-theoretic foundation for highly structured communication protocols of-
ten found in distributed applications, this paper focuses on the notion of sessions and
their types. A session is a series of communications between two parties which form
a meaningful logical unit, just like a web session between a browser and a server
when a human user interacts with an e-commerce site. Session types model such in-
teractions as an abstract structure of typed inputs and outputs. The study of session
typing systems is now wide-spread due to the need for structured communications
in various scenarios in distributed computing. Starting from 1994, it has been stud-
ied for the π-calculus [13,20,12,11,4,28,16], ambients [10], CORBA [21], Concurrent
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Haskell [18], multi-threaded functional languages [23] and distributed [8] and multi-
threaded Java [7]. At the industry level, languages with variants of session types are
implemented in an operating system [9] and W3C Choreography Web Description Lan-
guage [5,25].

While many advanced session types for the π-calculus and programming languages
have been studied, there existed no session typing systems for the HOπ-calculus. In-
corporation of sessions into the HOπ-calculus offers a general theoretical basis for
examining the interplay between two non-trivial features in communication-based pro-
gramming, higher-order mobility and session-based structured interaction. This paper
establishes the first session type theory for the HOπ-calculus which can statically vali-
date the type safety of complex distributed scenarios with code mobility. In spite of their
simple type syntax, the previous literature have shown that obtaining type soundness for
session types is an intricate task because of delegation of sessions [28]. In addition, in
the presence of higher-order process passing, with the instantiation of names within
executable code, preservation of typability becomes even more non-trivial. We provide
two different solutions: one by controlling the linear use of variables for higher-order
processes, which enjoys simplicity and tractability; and another by exporting channel
capabilities as types of processes, which needs more annotations but has wider, more
flexible typability. Both methods provide a potential type-theoretic basis of future pro-
gramming idioms for dynamic code mobility and structured communications [2,17].
Due to the space limitation, the detailed definitions and proofs are left to [1].

2 The Higher-Order π-Calculus with Sessions

2.1 Syntax and Reduction

The calculus is given in Fig. 1, based on the π-calculus augmented with session prim-
itives and the call-by-value λ-calculus. A session is a series of reciprocal interactions
between two parties, possibly with branching, serving as a unit of type abstraction. A
session is initiated over a shared channel and communications belonging to a session
are performed via two fresh end-point channels specific to that session, called session
channels. The indices 0 and 1 of session channels are used to distinguish the two end
points, taking a similar approach to [13,28]. We write Ṽ for a potentially empty vector
V1...Vn. Types, given later, are denoted by t and σ, but annotations are often omitted.

For terms, we have prefixes for declaring session connections, !u(x).P for servers
and u(x).P for clients. Here the identifier u represents the public interaction point over
which a session may commence. The bound variable x represents the actual channel
over which the session’s communications will take place. Session communications
are performed using the next four primitives: input k(x).P, output k 〈V 〉.P, branching
k �{l1 :P1; . . . ; ln :Pn} (often written as k �{li : Pi}i∈I with index set I) which offers al-
ternative interaction patterns, and selection k � l.P which chooses an available branch.
(νa : σ)P restricts (and binds) a channel a to the scope of P. Similarly, (νκ)P binds
κ0 and κ1, making them private to P. Other primitives are standard. We often omit 0.
The bindings are induced by (νa : σ)P, (νκ)P, !u(x).P, u(x).P and λx.P. The derived
notions of bound and free identifiers, alpha equivalence and substitution are standard.
We write fv(P)/fn(P) for the set of free variables/channels, respectively. The single-step
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(Identifiers) u,v,w ::= x,y,z variables
| a,b,c shared channels

k ::= x,y,z variables
| κi i ∈ {0,1} session channels

(Terms)
P,Q,R ::= V value

| !u(x).P server
| u(x).P client
| k(x).P input
| k 〈V 〉.P output
| k �{l1 :P1; . . . ; ln :Pn} branching
| k � l.P selection
| P |Q parallel
| (νa : σ)P restriction
| (νκ)P restriction
| PQ application
| 0 nil process

(Values)
V,V ′,W ::= u,v,w shared identifier

| k,k′,k′′ linear identifier
| () unit
| λ(x : t).P abstraction

(Abbreviations)

�P� def= λ(x :unit).P (x �∈ fv(P)) thunk

run def= λx.(x ()) run

Fig. 1. Syntax

(beta) (λ(x : t).P)V −→ P{V/x}
(conn) !a(x).P | a(z).Q −→ !a(x).P | (νκ)(P{κ0/x} | Q{κ1/z}) κ0,κ1 fresh

(comm) κi(x).P | κ j〈V 〉.Q −→ P{V/x} | Q i �= j

(label) κ j �{l1 :P1; . . . ; ln :Pn} | κi � lm.P −→ Pm | P i �= j, 1 ≤ m ≤ n

(app-l) P −→ P′

PQ −→ P′Q
(app-r) Q −→ Q′

V Q −→ V Q′

(par) P −→ P′

P |Q −→ P′ |Q (res) P −→ P′

(νã : σ̃)(νκ̃)P −→ (νã : σ̃)(νκ̃)P′ (str) P ≡ P′ −→ Q′ ≡ Q
P −→ Q

Fig. 2. Reduction

call-by-value reduction relation, denoted −→, is a binary relation from closed terms
to closed terms, defined by the rules in Fig. 2. Rule (conn) establishes a new session
between server and client via shared name u; fresh κ0 and κ1 are instantiated, and the
server stays as it is, waiting another interaction. Rule (comm) transmits values between
the private session channels. Note that a session channel can be sent and received (when
V = k), with which various protocols are expressed, allowing complex nested and pri-
vate structured communications. This interaction is called higher-order session passing
(delegation). Rule (label) selects Pm (a communication version of the case reduction in
the λ-calculus). We use the standard structure rules ≡ such as (νκ)P |Q ≡ (νκ)(P |Q)
if κi∈{0,1} �∈ fn(Q) (see [1]).

2.2 Example: Business Protocol with Code Mobility

We show a simple protocol which contains essential features by which we can demon-
strate the expressivity of the code mobility and session primitives for the HOπ-calculus;
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Fig. 3. Sequence Diagram for Hotel Booking

it consists of a combination of session establishing, code mobility, session delegation
and branching. This extends a typical collaboration pattern that appears in many web
service business protocols [25,5] to code mobility. In Fig. 3, we show the sequence dia-
gram for a protocol which models a hotel booking: first, Booking Agency and Client
initiate interaction at session x over channel a; then Client starts exchanging a series
of information with Agency; during this initial communication, Agency calculates its
Round Trip Time (RTT) between Client and Agency; Agency selects an appropriate
Hotel and creates a new session y over channel b with that Hotel. If the RTT is short
(Fig. 3 (a)), then Agency delegates to Client its part of the remaining activity with
Hotel, by sending session channel y; then Client and Hotel continue negotiations by
message passing. If the RTT is long (Fig. 3 (b)), since many remote interactions increase
the communication time as well as danger of communication failures, Agency asks back
Client to send mobile code which contains the communication of the Client’s room
plan and negotiation behaviour. Agency sends the code to Hotel, then Hotel runs it
locally, finishing a series of interactions in its location. Finally Agency receives a com-
mission fee (10 percent of the room rate) via session x, concluding the transaction.

The given scenario is straightforwardly encoded in our calculus, where session prim-
itives make the structure of interactions clearer; we omit the subject of the intermedi-
ate communications within the same session e.g. x � l.x〈v〉.x(y).P is written as x �

l;〈v〉;(y).P. Agency first initiates at a and starts the interactions with Client; then it
initiates at b and establishes session y; next it invokes either label cont or label move
in Client depending on the RTT and sends y (higher-order session passing) to it, and
waits for completion of the transaction between Client and Hotel at x (“if-then-else”
can be encoded using branching, and we use other base types and their operators).

!a(x).x(area); ...b(y).if rtt < 100 then x � cont;〈y〉;(z).P (1)

else x �move;〈y〉;(z).P (2)

Client requests a service at a and starts a series of interactions with Agency, and either
continues the remaining activity with Hotel or sends the code (a thunk in Line 4). Note
that Client can safely send back the commission fee to Agency because the return
message x〈z× 0.1〉 which uses session channel x is embedded in the thunk.
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a(x).x〈london〉; ..x �{ cont : (y).y � cont;〈roomtype〉;(z); ..x〈z× 0.1〉 ; (3)

move : (y).y �move;〈�y〈roomtype〉;(z); ..x〈z× 0.1〉� 〉} (4)

Hotel performs the interactions with Agency and Client via a single session at y (by
the facility of higher-order session). In Line 6, the code sent by Client is run locally.

!b(y).y �{ cont : (z);〈roomrate(z)〉; ...Q ; (5)

move : (code).(run code | y(z);〈roomrate(z)〉; ...Q)} (6)

This encoding shows a couple of subtle points whose slight modification breaks the ses-
sion structures. First, in Line 4, if we send code which does not complete the session,
then the protocol is broken: e.g. if we have interactions at y (say y〈w〉) after sending
a thunk in Line 4 in Client, the session at y will appear in the three threads (two in
Hotel, one in Client), so the session at y is interfered with and values may get mixed
up. Secondly, in Line 6, if we have two or more applications (say run code | run code)
instead of one run code, it again breaks the session structure (both at y and x). Fi-
nally, if the code is not ran in Line 6 (like (λx.0)code instead of run code), the receiver
y(z);〈roomrate(z)〉; ...Q cannot find a matching output. Hence the variable code must
appear exactly once and become instantiated into a process exactly once.

3 The First System: Higher-Order Linear Typing

3.1 Types

This section presents the first session system based on linear typing for higher-order
functions. The syntax of types is given below.

Term τ ::= t | � Chan σ ::= begin.α Val t ::= unit | t → τ | t 1→ τ | σ | α
Session α ::= ![t].α | ?[t].α | ⊕[l1 :α1; . . . ; ln :αn] | &[l1 :α1; . . . ; ln :αn] | end

It is an integration of the types from the simply typed λ-calculus with unit and the ses-
sion types from the π-calculus, with the exception of linear functional types, t 1→ τ,
which represent functions to be used exactly once. Term types, ranging over τ, include
all value types and the process type �. Channel types, ranging over σ, take the shape
begin.α. Session types range over α,β,γ... In begin.α, begin represents the start of
the session, while end represents its termination. Value types consist of the unit type,
the function types, the linear function types and the channel and session types. Note
that linear annotations are attached only to function types. In the session types, ![t].α
represents the output of a value typed by t followed by a session typed by α; ?[t] is
its dual. ⊕[l1 : α1; . . . ; ln : αn] is the selection type on which one of the labels li can be
sent, with the subsequent session typed by αi; &[l1 : α1; . . . ; ln : αn] is its dual called
the branching type. We often write &[li : αi]i∈I and ⊕[li : αi]i∈I for branching and se-

lection types, �τ� for unit → τ and �τ�1 for unit 1→ τ. end is often omitted. Each ses-
sion type α has a dual type, denoted by α, which describes complementary behaviour.
This is inductively defined as: ![t].α =?[t].α, ⊕[l1 : α1; . . . ln : αn] = &[l1 : α1; ...; ln : αn],
?[t].α =![t].α, &[l1 : α1; . . . ln : αn] = ⊕[l1 : α1; ...; ln : αn], and end = end.
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(Common)

(Shared)

t �= t ′ 1→ τ
Γ,u : t; /0; /0 
 u : t

(Session)

Γ;k :α; /0 
 k : α

(LVar)

Γ,x : t 1→ τ; /0;{x} 
 x : t 1→ τ
(Function)

(Base)

Γ; /0; /0 
 () : unit

(Abs)
Γ,x : t;Σ;S 
 P : τ (�)
Γ;Σ;S \x 
 λ(x :t).P : t → τ

(AbsS)
Γ;Σ,x : α;S 
 P : τ
Γ;Σ;S 
 λ(x :α).P : α → τ

(App)

Γ;Σ1;S1 
 P : t 1→ τ Γ;Σ2;S2 
 Q : t (†)
Γ;Σ1,Σ2;S1,S2 
 PQ : τ

(Sub)
Γ;Σ;S 
 P : t → τ
Γ;Σ;S 
 P : t 1→ τ

(Process)
(Nil)
Σ = {k̃ : ˜end}
Γ;Σ; /0 
 0 : �

(New)
Γ, a : σ;Σ;S 
 P : �
Γ;Σ;S 
 (νa : σ)P : �

(Newκ)
Γ;Σ,κi : α,κ j : α;S 
 P : �
Γ;Σ;S 
 (νκ)P : �

(Acc)
Γ; /0; /0 
 u : begin.α Γ;x : α; /0 
 P : �
Γ; /0; /0 
!u(x).P : �

(Req)
Γ; /0; /0 
 u : begin.α Γ;Σ,x : α;S 
 P : �
Γ;Σ;S 
 u(x).P : �

(Rec)
Γ,x : t;Σ,k : α;S 
 P : � (�)
Γ;Σ,k : ?[t].α;S \x 
 k(x).P : �

(RecS)
Γ;Σ,k : α′,x : α;S 
 P : �
Γ;Σ,k : ?[α].α′;S 
 k(x).P : �

(Send)
Γ;Σ1;S1 
 P : � Γ;Σ2;S2 
 V : t k : α ∈ Σi∈{1,2} (†)
Γ;(Σ1,Σ2)\{k : α} ,k : ![t].α;S1,S2 
 k〈V 〉.P : �

(Par)
Γ;Σ1,2;S1,2 
 P1,2 : �
Γ;Σ1,Σ2;S1,S2 
 P1 | P2 : �

(Bra)
Γ;Σ,k : αi;S 
 Pi : � (∀i ∈ I)
Γ;Σ,k : &[li : αi]i∈I ;S 
 k �{li : Pi}i∈I : �

(Sel)
Γ;Σ,k : α j;S 
 P : � j ∈ I
Γ;Σ,k : ⊕[li : αi]i∈I ;S 
 k � l j.P : �

(�) if t = t ′ 1→ τ′ then x ∈ S . (†) if t = t ′ → τ′ then Σ2 = S2 = /0.

Fig. 4. Session Typing based on Linear Types

3.2 Linear Higher-Order Typing System

We first define the two kinds of finite mappings for environments:

Γ ::= /0 | Γ,u : σ | Γ,x : unit | Γ,x : t → τ | Γ,x : t 1→ τ Σ ::= /0 | Σ,k : α

Γ is a mapping, associating value types (except session types) to identifiers. Σ is a map-
ping from session channels to session types that records precise usage information for
all free session channels in a term, so that the cumulative result can be compared with
the expected session type. In addition, we use a set of linear variables ranged over S ,
S ′, ... to ensure linear usage of function terms that may contain session channels. Σ,Σ′
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and S ,S ′ denote disjoint-domain unions. Γ,u : σ means u �∈ dom(Γ). Then the typing
judgement takes the shape:

Γ;Σ;S 
 P : τ

which is read: under a global environment Γ, a term P has a type τ with session usages
described by Σ and linear variables specified by S . We say the judgement is well-formed
if dom(Γ) ⊇ S and dom(Γ)∩dom(Σ) = /0. The typing system is given in Fig. 4. In each
rule, we assume the environments of the consequence are defined.

In the first group, (Common), (Shared) is an introduction rule for identifiers with
shared types, i.e. neither t ′ 1→ τ or α. (Session) is for session channels and (LVar) is for
linear variables, recording k in Σ and x in S , respectively.

The second group, (Function), comes from the simply typed linear λ-calculus. In
(Abs), the side condition (�) ensures that the formal parameter x, to be substituted with
the received function, appears in the linear variables’ premise. In the conclusion, we
remove x from the function environment. (AbsS) is an abstraction rule for session chan-
nels. (App) is the rule for application; the side condition (†) ensures that when the right
term is of shared function type, it is required not to have free session channels or linear
variables. The conclusion says that P and Q’s session environments and linear variable
sets are disjoint. (Sub) is a subsumption rule to lift from the shared t → τ to linear
function t 1→ τ. The converse is unsafe.

The final group, (Process), are for processes integrated with linear functional typing.
In (Nil), we start from the session environment only with end-usages and the empty lin-
ear variable set. (New) and (Newκ) hide a shared name and a pair of session channels,
respectively. The latter erases, in the session environment, complementary communica-
tion patterns for the two endpoints of κ, in order to ensure compatible dyadic interac-
tions. (Acc) and (Req) are for initiating sessions. (Acc) forbids the use of any free linear
identifier because of replication. The type expected for the session channel is dual (α) to
that portion of the declared session type for the shared identifier. In (Req), it is used as
it is (α). (Rec) handles the reception (input) of values. Just as (Abs), if received values
have a linear function type, x should be recorded to ensure its linear usage in P. The
relevant consumption is composed in the conclusion’s session environment, in a way
that agrees with the protocol. (RecS) is for the input of session channels.

(Send) is the most complex rule, integrating session typing and linear typing. Firstly,
(†), as in (App), enforces safety when sending linear functions. Secondly k : α ∈ Σi∈{1,2}
means either Σ1 or Σ2 contains the complete session k : α (since Σ1,Σ2 is defined in the
conclusion). When k : α ∈ Σ1 and V has a functional type, it ensures that all occurring
session channels within V being sent are complete (i.e. suffixed with end). Hence they
cannot occur in the continuation P, because, if they did, we would have a race condition
between the receiver of V and P, w.r.t. communications over these common channels,
as noted in the example in § 2.2. This condition forces V to be k itself when it has
the session type α, uniformly generalising the corresponding rule in the session types
[13,20,28,16]. This is important since, in the presence of higher-order mobility, the sent
code containing k can be executed locally and privately in the receiver side: Client in
the example in § 2.2 becomes typable with this general rule. In the conclusion, we delete
k in either Σ1 or Σ2, and the relevant consumption is recorded in the conclusion’s session
environment. Note the function environments are disjoint. In (Par), we parallel-compose
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two processes, assuming disjointness of session environments and linear variable sets
as in (App). (Bra) and (Sel) are the standard rules for branching and selection from [16].

3.3 Type Soundness and Type Safety

The typed processes enjoy type soundness and type safety. We have the standard weak-
ening and strengthening for Γ (but not for Σ and S ). Then the substitution lemmas
follow.

Lemma 3.1 (Substitution Lemma)

1. Suppose Γ,x : t;Σ1;S1 
 P : τ and Γ;Σ2;S2 
 V : t with t �= t ′ → τ′, x ∈ fv(P), and
Σ1,Σ2 and S1,S2 are defined. Then Γ;Σ1,Σ2;S1 \ x,S2 
 P{V/x} : τ.

2. Assume Γ,x : t ′ → τ′;Σ;S 
 P : τ and Γ; /0; /0 
 V : t ′ → τ′. Then Γ;Σ;S 
 P{V/x} : τ.
3. Suppose Γ;Σ,x : α;S 
 P : τ and k �∈ dom(Γ,Σ). Then Γ;Σ,k : α;S 
 P{k/x} : τ.

Before stating the main theorems, we introduce the important notion of balanced ses-
sion environments [13]. Clearly, typability over arbitrary session environments is not
closed under reduction. For example, the process κ0〈true〉 | κ1(x).κ′

i〈x+1〉 is typable,
but it reduces to κ′

i〈true+ 1〉, leading to a run-time error. Hence we allow only typ-
ings where the two ends of a channel are of dual types. Formally, we say that a session
environment Σ is balanced if whenever κi : α,κ j : β ∈ Σ, then α = β.

Theorem 3.2 (Type Soundness)

1. Suppose Γ;Σ;S 
 P : � with Σ balanced. Then P ≡ P′ implies Γ;Σ;S 
 P′ : �.
2. Suppose Γ;Σ; /0 
 P : τ with Σ balanced. Then P −→ P′ implies Γ;Σ′; /0 
 P′ : τ with

Σ′ balanced.

We now formalise type safety. First, a k-process is a prefixed process with subject k
(such as k(x) and k〈V 〉). Next, a κ-redex is a parallel composition of two dual processes,
of the form (κi〈V 〉.P | κ j(x).Q) or (κi � lm.P | κ j �{l1 : Q1; · · · ln : Qn}) with 1 ≤ m ≤
n. Then we say P is an error if P ≡ (νã)(νκ̃)(Q | R) where Q is, for some κ, the |-
composition of either two κ-processes that do not form a κ-redex, or three or more
κ-processes. We then have:

Theorem 3.3 (Type Safety). A typable process Γ;Σ;S 
 P : � with balanced Σ never
reduces into an error.

Typing Hotel Booking Example. Using the typing system, we can now type the hotel
booking example in § 2.2, guaranteeing its type safety. Agent has the following types
at a and b.

a : begin.![string]...⊕ [rtt < 100 : α ; rtt ≥ 100 : α ], b : begin.![β].end
with α = &[cont : ?[β].![int].end ; move : ?[β].![int].end]
and β = &[cont :![string].?[int]...end ; move :![���1].end]

Note that the type of a is dualised because a is used as the input in Agent (see (Acc)). α
consists of higher-order session passing, and the thunk has a linear arrow type. Client
and Hotel just have the dual of Agent’s type at a and the dual of Agent’s type at b,
respectively. Note that in Client, subject y is shared in the sent code V , which is typed
by (Send) with a general side condition k : α ∈ Σ2 explained in § 3.2.
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4 The Second System: Fine-Grained Process Typing

Linear variables in the previous system “might be instantiated by a function which
contains free session channels, hence it should occur exactly once”: if we have prior
knowledge as to channel capabilities with which each functional variable (hence any
code instantiated into it) is associated, then we might have more flexible control over
migrating code that holds session capabilities. This motivates the use of the fine grained
process typing introduced in [27,26,15]. Consider the following server which receives
thunked processes via shared channel a.

Serv(a) = !a(x).x(y : τ).run y (7)

Since accepting arbitrary processes for execution obviously breaks access control of
local resources, one might wish to restrict the behaviour of incoming code so that it
can only access some specified channels. In [27,26,15], we introduced a type discipline
which can control the effect of migrating code, by assigning a different type to each
process depending on its intended use, so that a process can use a typed inputting chan-
nel (τ at a in (7) above) to detect, for example, malicious behaviour of received code
via static type checking. A type for representing capability is given as a finite channel
environment Δ, prescribing channel usage of each process.

Γ 
 P : Δ

This judgement means “P accesses channels at most as specified by Δ under global en-
vironment Γ”. For example, under appropriate Γ ⊃ {b : σ,c : σ} with σ = begin.![nat].
end, a client may be assigned a different type depending on its destination.

Γ 
 b(x).x〈1〉 : {b : σ} and Γ 
 c(x).x〈2〉 : {c : σ}

Then the following indicates a server which only accepts a process which accesses at
most the specified resource, b.

Serv(a) = !a(x).x(y : �b : σ�).run y (8)

Using the type system in [27,26,15], one can check Serv(a) | a(x).x〈�b(x).x〈1〉�〉 is ty-
pable while Serv(a) | a(x).x〈�c(x).x〈1〉�〉 is not. Using process types with session capa-
bilities, we can type-check that the following process is illegal:

k(y : �k′ : ![nat]�).(run y | run y) (9)

since run y has a process type Δ = {k′ : ![nat]}, and Δ and Δ are not disjoint, so two
run y must not be composed. Now we no longer require linear annotation on functional
types. Moreover the additional type information leads to a larger typability than the
previous system. For example, k(y : �k′ : ![nat]�).(run y | (λz.0)y), (λx.0)κ0 | κ0(z).0 |
κ1〈1〉, and more interestingly (λx.k〈1〉.run x)(�k〈()〉.0�) which do not destroy session
communication but are untypable in the previous one become typable since the resulting
process types are balanced.
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4.1 Types

The second typing system introduced below is built on the fine-grained types of [27,26].
The syntax of environments and types is given below.

Env Γ ::= /0 | Γ,x : t | Γ,u : σ Δ ::= /0 | Δ,u : σ Term τ ::= t | Δ
Chan σ ::= begin.α | α Func t ::= unit | t → τ | Πx : σ.τ

Session α ::= ![Π(x̃ : σ̃)t̃];α | ?[Π(x̃ : σ̃)t̃];α | ⊕[li : αi]i∈I | &[li : αi]i∈I | end

These types are from the first system except for the introduction of fines-grained process
types Δ, functional dependent types Πx : σ.τ and channel dependent Π(x̃ : σ̃)t̃. Note
from this system, u,v,w, ... (resp. σ) include session names and variables (resp. session
types), but τ do not include channels.1 In Πx : σ.τ, we allow the type τ to contain oc-
currences of the channel variable x; then x in τ is bound. Note σ → τ is a special case
of Πx : σ.τ with x �∈ fv(σ). A process type Δ, assigned to a process, is a mapping from a
finite subset of identifiers to channel types.

A channel type incorporates dependent quantification, and has the form Π(x̃ : σ̃)t̃
indicating a vector of channels typed by σ1, ..,σn and a vector of higher-order values
typed by t1, ..,tm; free occurrences of xi in σi+1, . . . ,σn as well as t1, ...,tm are bound
occurrences. We write σ1, ...,σn,t1, ...,tm for Π(x1 : σ1, ...,xn : σn)t1, ...,tm if x1, ...,xn �∈
fv(σ1, ...,σn,t1, ...,tm). Under this abbreviation, ?[t].β is subsumed to the case n = 0, and
?[α].β to the case σ1 = α and m = 0. The set of free names and variables are defined in
the standard way [26,1]. The sets of free variables/channels incorporate those occurring
in annotating types. For example, we have fv(λ(x : t).P) = (fv(t) ∪ fv(P)) \ x. Substitu-
tion by channels P{u/x} affects not only terms but also types which annotate bound
variables: when the channel u is substituted for x in a process type Δ, then the types σ
of x and σ′ of u are joined as: {u1 : σ1, ...,un : σn}{V/x} = ∪i{ui{V/x} : σi{V/x}}.
Others are defined homomorphically. Duality is defined by adding ?[Π(x̃ : σ̃)t̃].α =
![Π(x̃ : σ̃)t̃].α and ![Π(x̃ : σ̃)t̃].α =?[Π(x̃ : σ̃)t̃].α; others remain unchanged.

4.2 Fine-Grained Process Typing System

The key typing rules are given in Fig. 5, and use two kinds of judgements: the main
is Γ 
 P � Δ, which reads “under the environment Γ, process P has an interface type
Δ”. Also we have Γ 
 u : σ, which reads as “a channel u has a type σ under Γ” and
the standard well-formedness Γ 
 Env and Γ 
 τ : tp for environments and types fol-
lowing [27,26] (which are left to [1]). For channel inference, we define the ordering
� on channel types as the smallest partial order such that: ![Π(x̃ : σ̃)t̃].α � α and
⊕[l1 : α1; . . . ln : αn] � αi; dually for input and branching types.

The inference rules are a combination of [26] and the session typing system of the π-
calculus. We use the notation Δ ·u : σ for Δ∪{u : σ} if σ = begin.α; Δ,u : σ otherwise.
We extend this to Δ ·Δ′; and ũ : σ̃ which means u1 : σ1 · · ·un : σn.

1 For simplicity of presentation, the tail type τ does not include the channel type σ. This inclusion
can be straightforwardly formalised by using the standard type equality approach [3].
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(Chan)
Γ,u : σ,Γ′ 
 Env σ � σ′

Γ,u : σ,Γ′ 
 u : σ′

(AbsN )
Γ,x : σ 
 P : τ
Γ 
 λ(x :σ).P : Πx : σ.τ

(AppN )
Γ 
 P : Πx : σ.τ Γ 
 u : σ
Γ 
 Pu : τ{u/x}

(Nil)
Γ 
 Env
Γ 
 0 : /0

(Par)
Γ 
 P1,2 : Δ1,2
Γ 
 P1 | P2 : Δ1 ·Δ2

(Weak)
Γ 
 P : Δ Γ 
 u : σ σ ∈ {begin.α,end} u �∈ dom (Δ)

Γ 
 P : Δ,u : σ

(Rec)
Γ 
 k :?[Π(x̃ : σ̃)t̃];α
Γ, x̃ : σ̃, ỹ : t̃ 
 P : Δ, x̃ : σ̃,k : α
Γ 
 k(x̃ : σ̃, ỹ : t̃).P : Δ,k : ?[Π(x̃ : σ̃)t̃];α

(Send)
Γ 
 k :![Π(x̃ : σ̃)t̃];α
Γ 
 P : Δ {k : α} ⊆ Δ · ṽ : σ̃
Γ 
 Vj : t j{ṽ/x̃} Γ 
 vi : σi{ṽ/x̃}
Γ 
 k〈ṽ,Ṽ 〉.P : Δ · ṽ : σ̃\k,k : ![Π(x̃ : σ̃)t̃];α

Fig. 5. Session Typing based on Fine-Grained Process Types

(Chan) uses � to infer shorter types for sessions than the type of u declared in the
environment Γ. The rules for channel abstractions, (AbsN ) and (AppN), are defined fol-
lowing [26]. In (Nil), we start from the empty interface, and in (Par), we merge two
interfaces together. The rule (Weak) corresponds to the process subsumption rule; since
Γ 
 P : Δ means “P would access channels specified at most by Δ”, we can increment
its interface. Note that we cannot weaken session channels except end.

(Rec) is a combination of the input rule for session types and that in [26]. This single
rule subsumes both the value input rule and the session channel input rule (recall the
abbreviation in the previous paragraph). The first assumption ensures u can input chan-
nels typed by σi and higher-order values typed by t j, and in the conclusion, the free
occurrences of x̃ in both P and t j are bound (hence t j is dependent on x̃), resulting in the
process type Δ with a new session type ?[Π(x̃ : σ̃)t̃].α at k (note k �∈ dom(Δ)). (Send) is
again a combination with the output rule in [26] (see also (Send) for the first system):
the first assumption ensures u outputs a pair of names typed by σi and higher-order val-
ues typed by t j. The third assumption says that k is either sent name vi or a free name
in P. The first part of the arguments is vi, then the second part of the arguments should
have type t j{ṽ/x̃} since xi binds free occurrences of xi in t j. Then the effect of channel k
and vi should be recorded as a type of k〈ṽ,Ṽ 〉 because they will be used by the opponent
input after interaction (note that we do not have to record the effect of V ). Other rules
(variable, unit, higher-order abstraction, application, hiding, accept, request, branching
and selection) are standard and left to [1].

By essentially the same routine as in the proofs in [26], we obtain the following
theorem. Note that Γ does not have to be balanced.

Theorem 4.1 (Type Soundness and Type Safety)

1. Suppose Γ 
 P : t and P −→ P′. Then Γ 
 P′ : t.
2. Suppose Γ 
 P : Δ with Δ balanced. Then P ≡ P′ implies Γ 
 P′ : Δ′ with Δ′ balanced.
3. Suppose Γ 
 P : Δ with Δ balanced. Then P −→ P′ implies Γ 
 P′ : Δ′ with Δ′

balanced. In addition, P never reduces into an error.
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Typing Hotel Booking Example. We revisit the example in § 2.2. The only change
from the previous types in § 3.2 is ![���1] in β. This is changed to ![Π(x : γx,y : γy)�Δ�]
with γx =![string].?[int]...end and γy =![int].end, and Δ = {x : γx,y : γy}. Note that
we also have to change the syntax in Line 4 from y�move;〈�R�〉 to y�move;〈x,y,�R�〉
since the type of the thunk is dependent on x and y. This suggests a trade-off between the
two approaches. In the channel-dependent typing, we gain more flexibility by having
more type information, but this in turn demands additional type annotation in programs.
The approach based on linear typing does not need heavy annotations, though it allows
the typability of a smaller, but probably pragmatically sufficient, class of programs. We
may also refine the dependently typed approach with the existential types of [26,15]
(this integration is straightforward, but requires more rules), in which case we do not
have to declare session names explicitly. The syntax of the example is unchanged, and
the type becomes ![∃(x : γx,y : γy)�Δ�]. The reader can also check the processes in the
beginning of the section are typable: in the first process, (λx.0)y has the empty process
type /0 so that we can compose with run y by (Par). Similarly for the second. In the
third, (λ(x : t).k〈1〉.run x)(�k〈()〉.0�) with t = �k : ![unit].end� has a process type Δ =
{k : ![nat].![unit].end} under environment Δ. These are untypable in the first system.

4.3 Comparison of the Two Systems

We conclude this section with a comparison of the two typing systems. The examples in
the beginning of this section show the existence of terms typable in the second system
but not in the first system introduced in § 3. A natural question is which subsystem of
the second system can precisely characterise the first, i.e. a sound and complete embed-
ding of the first system into a subset of the second system. Observing that it is linear
functions that can inhabit those types with free session capabilities (e.g. λ(x : α).x〈1〉
of type Πx : α.x : nat is not a linear function, while �x〈1〉� of type �x : nat� is linear),
we introduce the following three functions.

– Erase(P) erases the dependent binding from the input and output, and Erase(τ)
erases the dependent binding from the functional and channel dependent types; and
translates process types into �; and puts the linear annotation to a functional type
which has free session typings in its tail.

– Proc(τ) extracts the session environment Σ from τ.
– Lin(Γ) extracts the linear variable set S from Γ.

For example, Erase(k(x̃ : σ̃,y : τ).P) = k(y : Erase(τ)).Erase(P), Erase(k〈ṽ,V 〉.P) =
k〈Erase(V )〉.Erase(P), Erase(Δ)= �, and if Proc(t → τ) �= /0, Erase(t → τ)=Erase(t) 1→
Erase(τ) else Erase(t → τ) = Erase(t) → Erase(τ). Proc(Δ) = {k : Erase(α) | k : α ∈
Δ}, Proc(unit) = unit, Proc(t → τ) = Proc(τ)\Proc(t), Proc(Πx : σ.τ) = Proc(τ)\x,

and Lin(Γ) = {x | Erase(Γ(x)) = t 1→ τ}.
Next we re-formulate the rules for the arrow types to ensure that all session capabili-

ties are preserved during β-reductions (which is a property of the first system): t → τ is
well-formed if Proc(t) ⊆ Proc(τ); and Πx : α.τ is so if x : α ∈ Proc(τ). We also replace
Δ · k : α to mean k �∈ fn(Δ) ∪ fv(Δ) in the rules for processes. We can now describe the
corresponding side conditions directly using Proc(τ) and Lin(Γ) instead of recording
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Σ and S . Below we say P is initial if a sent function appearing in P does not contain
identifiers of shared channel types and variables of function types.

Theorem 4.2 (Embedding). Below Γ � S means {u : Γ(u) | u ∈ S}.

– Suppose Γ 
 P : τ is derived by the restricted system defined in this subsection. Then
we have: Erase(Γ);Proc(τ) \ Σ;S 
 Erase(P) : Erase(τ) where S = Lin(Γ � fv(P))
and Σ = {Proc(t) | x : t ∈ Γ � S}.

– Suppose Γ; /0; /0 
 P : � and P is initial. Then there exist Γ′, P′ and Δ such that
Γ′ 
 P′ : Δ with Erase(Γ′) = Γ, Erase(P′) = P and Δ ⊂ Γ′ in the restricted system.

The first statement means that the session capabilities of P except those that appear in
types of the linear variables in P are placed as Σ, and the linear variables in P are placed
as S in the first system. The second statement says that the second system can always
infer initial processes derived by the first one.2

5 Related and Future Work

This paper studies session types for higher-order processes using two different ap-
proaches and compares their typability. The robust formulations hinted by the linear and
dependent λ-type theories [24,3] lead to new process typing systems for protocol val-
idation. Straightforward extensions are recursive types [16,28], subtyping [13,26] and
polymorphism [23,11]. In particular, recursive session types are useful to type various
common “repetitive” protocols appearing in many practices [25,9]. For this extension,
an explicit recursion construct in the form of the recursive agent def X(x̃k̃) = P in M
is introduced in [16,28]. In our calculus, this agent can be replaced by a more familiar
syntax such as letrec x = P in M. The important constraint is that P cannot hold
linear variables nor free session channels (i.e. Σ = S = /0), which does not reduce the
expressivity by using parameterised processes as in [24]. By taking the approach in
[28], we can construct the typing rule for the recursive agent, and can type scenarios
with repetition, fully integrated with code mobility, see [1].

There is a large literature on linear and session types for both the λ-calculus and
the π-calculus. Below we give the most closely related work, focusing on the linear
typing system of the λ-calculus and on the session types for distributed and functional
programming languages. See also [7,1,5,25,6] for discussions on other type disciplines
of the π-calculus as well as on applications of session types.

Our first typing system is substructural [24] in the sense that for session environ-
ments Σ we do not allow weakening and contraction, ensuring that a session channel is
recorded as having been used only when it actually occurs in session communication
expressions. Similarly no structural transformations can apply to linear variable envi-
ronments, ensuring that the occurrence of a variable manifests that it has indeed been
used exactly once. The ways in which our typing system enforces linearity can be seen
as an amalgamation of the two approaches in [24], retaining the simplicity of declara-
tive systems, and the decidability of algorithmic ones. Contrary to the systems of [24],

2 We can delete the initial condition if the shared channel type σ includes a recursive type [16].
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there is no need of linear usage for other than functional types. Applying the techniques
in [7,22], constructing its type inference system would be a straightforward task.

Relating to distribution, [10] studies session types for boxed ambients, preventing
session interruption when an ambient crosses its boundary. One of the technical chal-
lenges of our work is to formalise sound typing systems for arbitrarily parameterised
processes (i.e. λ-abstractions in processes with the full type hierarchy), which is not
treated in ambient primitives. In [23] the authors define a concurrent multi-threaded
functional language with sessions. It has an explicit multi-threading primitive (fork)
and explicit stores. Their recent draft paper [14] further extends the language to a variant
of session types where message sending is non-blocking. This is handled by explicitly
storing an entry for the two endpoint channels in a buffer. Its functionality is the same
as our use of two session channels indexed by 0 and 1 for distinguishing two endpoints
(based on [13]). They simplify their previous type judgement which requires input and
output environments in [23] by using the linear typing with split operator, which is
more directly related to the original non-deterministic typing [24]. While a precise ty-
pability comparison is difficult due to our additional primitives and their operational
semantics with buffers (which is essential for type soundness in their language), their
work also shows a use of linear types for functional languages with sessions. Our com-
parison between the first and second systems via Theorem 4.2 makes the relationship
between controlling usage of functional variables and effects of channel accessibility
clear: the idea of “balanced” seems more suited to effect-like systems since our concern
is well-formedness of process types, not intermediate functional types, while the linear
typing approach is simpler and more tractable. This line of study is not explored in the
previous literature.

As on-going work, we have been investigating the incorporation of session types
and code mobility with Sockets in Java [17] and Web Service Description Languages
[25,5]. From these experiences, we find that not only type checking by session types
after writing a protocol, but also declaring its session types before compilation, greatly
helps programmers implement error-free interactions. For developing programming
language designs, the presented type theory needs further explorations, including its
incorporation with advanced concurrent programming primitives such as exceptions,
timeout and priority checking.
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Abstract. This paper introduces a cut-elimination procedure of the in-
tuitionistic sequent calculus and shows that it is isomorphic to the proof
reduction of the intuitionistic natural deduction with general elimina-
tion and explicit substitution. It also proves strong normalization and
Church-Rosser property of the cut-elimination procedure by projecting
the sequent calculus to the natural deduction with general elimination
without explicit substitution.

1 Introduction

The Curry-Howard isomorphism between proof reduction and program compu-
tation is a useful tool to study logical systems and calculus systems. The corre-
spondence has been investigated for the intuitionistic natural deduction and the
λ-calculus, but that for the sequent calculus has not been studied enough and
this research area is still developing.

To clarify the computational meaning of the sequent calculus, one of the most
favorable approach is to study the relationship between the sequent calculus
and the natural deduction, because the computational aspect of the natural de-
duction is relatively clear by the Curry-Howard isomorphism. Gentzen, who in-
troduced the sequent calculus and the natural deduction, gave translations from
proofs of each system to those of the other [5]. Prawitz gave a many-one mapping
from proofs of the sequent calculus to those of the natural deduction [11]. Zucker
studied on a correspondence between the cut-elimination in the sequent calcu-
lus and the proof reduction in the natural deduction [16]. Herbelin introduced a
term reduction system for a variant of sequent calculus, called LJT [6], and gave
a one-to-one correspondence between cut-free proofs in his sequent calculus and
normal proofs in the natural deduction. He also showed his cut-elimination steps
includes propagation steps of explicit substitution [1]. Herbelin style formulation
of the sequent calculus has been widely studied [4,9]. For the original style se-
quent calculus, Urban and Bierman proposed a cut-elimination procedure for the
classical sequent calculus [13,14], and proved its strong normalization. In partic-
ular, Urban [13] investigated a local-step cut-elimination procedure of Gentzen
style sequent calculus, where “local-step” means that each cut-elimination step
is a local transformation of proofs. He gave translations between sequent calculus
and natural deduction in intuitionistic and classical cases, but neither of them

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 336–350, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is an isomorphism. Kikuchi introduced a term assignment for the intuitionistic
sequent calculus and its local step cut-elimination procedure [10]. He defined a
subclass of proofs of the sequent calculus, called pure terms, which corresponds
to proofs of the natural deduction. He also showed the cut-elimination can sim-
ulates the proof reduction of pure terms. However, strong normalization of the
cut-elimination was not shown in [10]. Von Plato gave a correspondence between
the sequent calculus and the natural deduction with general elimination rules
[15]. However, the relationship between cut-elimination steps and proof reduc-
tion steps was not studied.

This paper gives a cut-elimination procedure for a Gentzen style intuitionistic
sequent calculus LJ and an isomorphism between it and a proof normalization
for the natural deduction with general elimination and explicit substitution.
The computational meaning of the natural deduction with general elimination
rules is relatively easy to understand. Indeed, we can find a reduction preserving
continuation passing style (CPS) translation which gives an interpretation of our
system in the well-known simply typed λ-calculus. This paper also proves strong
normalization (SN) and Church-Rosser property (CR) of the cut-elimination of
LJ. Though our system can be seen as a confluent subsystem of Urban’s classical
sequent calculus [13], SN of our system is proved by another method with a
modified CPS-translation. In the chapter 7 of [12], we can find Dragalin’s simple
proof of SN of a sequent calculus. We cannot apply his proof to our sequent
calculus due to the rule (π) corresponding to the permutative conversion.

First, we introduce a cut-elimination procedure of LJ and systems LJp and
Λg. LJp is a subsystem of LJ which includes only a particular type of cuts, called
principal cuts (p-cuts). LJp is not closed under the cut-elimination procedure of
LJ, so we define cut-elimination strategies for cut-elimination of p-cuts. Λg is a
simply typed λ-calculus with general elimination and permutative conversion. By
the Curry-Howard isomorphism, Λg corresponds to the natural deduction with
the general elimination rules. We show that LJp and Λg are isomorphic as re-
duction systems, where p-cuts and left-rules correspond to general eliminations.
In particular, this isomorphism also gives a one-to-one correspondence between
cut-free LJ-proofs and normal Λg-proofs. Secondly, we show SN and CR of LJ.
These are proved by reducing to those of Λg. Joachimski and Matthes [8] proved
SN of Λg by an inductive characterization of the set of SN terms. In this paper,
we give another proof by Ikeda and Nakazawa’s CGPS-translation method [7].
Then, SN of LJ is proved by Bloo’s method [2]. Finally, we define Λgx, which
is Λg with explicit substitution, and show that LJ is isomorphic to Λgx modulo
a term quotient and that Λgx enjoys SN and CR. The figure 1 summarizes the
relationship of systems in this paper, where Λ is the simply typed λ-calculus,
Λp

gx is the modified Λgx, and horizontal arrows represent projection maps.

2 Definitions of Systems

In this section, we define the intuitionistic sequent calculus with a cut-elimination
procedure and the simply typed λ-calculus with the general elimination rules.
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LJ −→ LJp

� �

Λgx −→ Λp
gx Λg −→ Λ

Fig. 1. Relationship of systems

2.1 LJ: Intuitionistic Sequent Calculus

Definition 1 (LJ). LJ consists of the following.

1. We suppose that there are countable atomic formulas. Formulas (denoted by
A, B. . . ) are defined as

A ::= p | A → A,

where p denotes an atomic formula.
2. Term variables are denoted by x, y, z . . . . Pseudo-terms (denoted by M, N,

P. . . ) are defined as

M ::= x | λx.M | x[[M, x.M]] | M �x M.

In terms λx.M, y[[N, x.M]] and N �x M, variable occurrences of x in M are
bound. Renaming bound variables is admitted as usual. We write x[[M, y.P]]
for x[[M, y.P]] if the variable x does not freely occur in [[M, y.P]] following [9].

3. Contexts (denoted by Γ , Δ. . . ) are sets of formulas labeled by term vari-
ables, such as Γ = {Ax1

1 , Ax2
2 · · · }. We also write Ax for the singleton {Ax}.

Judgments have the form of Γ � M : A. Proofs are defined by the inference
rules in the figure 2, where ∪ and \ are usual set-theoretical operators, union
and difference. Each context in derivation trees has to meet the following
condition: for any two distinct elements Ax, By in the context, x and y are
distinct variables. A pseudo-term M is an LJ-term iff Γ � M : A is derivable
for some Γ and A.

Ax � x : A
(Ax) Γ � M : A Δ � N : B

Γ ∪ (Δ \ Ax) � M �x N : B
(Cut)

Γ � M : B
Γ \ Ax � λx.M : A → B

(→ R) Γ � M : A Δ � P : C
Γ ∪ (Δ \ By) ∪ (A → B)x � x[[M, y.P]] : C

(→ L)

Fig. 2. Inference rules of LJ
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Note 1. In LJ, structural rules are admitted implicitly. In fact, neither Γ in
(→ R) nor Δ in (Cut) have to contain Ax, so the weakening is admissible. In
(→ L), Γ and Δ may contain common elements, and Γ or Δ may contain (A →
B)x, so the contraction is also admissible.

Definition 2 (Principal cuts). A cut M �x N is a principal cut (or p-cut) iff
N has the form of x[[N1, y.N2]] and M is not a variable. We write M[[N1, y.N2]]
for the p-cut M�x x[[N1, y.N2]]. If a cut is not principal, it is a non-principal cut
(or n-cut). We write M �x

n N if the cut is an n-cut. LJp denotes the set of terms
of LJ whose subterms of the form M �x N are all p-cuts.

Note 2. An expression M[[N, x.P]] denotes either a left-rule application or a p-cut
depending on M is a variable or not. This notation is not ambiguous because
M �x x[[N, y.P]] is a p-cut iff M is not a variable.

Definition 3 (Cut-elimination procedure). Rules of the cut-elimination
procedure of LJ are in the figure 3. We suppose that y is not free in P of (β),
and z is not free in x[[N′, z′.P′]] of (π) by renaming bound variables. Note that
the cut P �x x[[N′, z′.P′]] in the right-hand side of (π) is not a p-cut if P is a
variable. ⇒β denotes the one-step cut-elimination defined as the congruence re-
lation including the rule (β). ⇒+

β and ⇒∗
β denotes the transitive closure and the

(β) (λy.M)[[N, z.P]] ⇒β N �y (M �z P)
(π) M[[N, z.P]][[N′ , z′.P′]] ⇒π M[[N, z.P �x x[[N′, z′.P′]]]]
(x1) M �x

n y ⇒x y (x �≡ y)
(x2) M �x

n x ⇒x M
(x3) M �x

n λy.N ⇒x λy.(M �x N)
(x4) M �x

n y[[N, z.P]] ⇒x y[[M �x N, z.M �x P]] (x �≡ y)
(x5) M �x

n x[[N, z.P]] ⇒x M[[M �x N, z.M �x P]] (x ∈ FV ([[N, z.P]]))
(x6) M �x

n Q[[N, z.P]] ⇒x (M �x Q)[[M �x N, z.M �x P]] (Q is not a variable)
(x7) y �x

n x[[N, z.P]] ⇒x y[[N, z.P]]

Fig. 3. Cut-elimination rules of LJ

reflexive transitive closure of ⇒β respectively. For π- and x-rules, relations are
similarly defined. ⇒ denotes the union of ⇒β, ⇒π and ⇒x. ⇒+ and ⇒∗ are
similarly defined. An LJ-term M is ⇒-normal iff there is no term N such that
M ⇒ N.

Each p-cut is a redex of either (β) or (π), which corresponds to a redex of β-
reduction or permutative conversion in the natural deduction. On the other hand,
each n-cut is a redex of some x-rule, which corresponds to the propagation of
explicit substitutions, if we understand an n-cut M�xP as an explicit substitution
〈M/x〉P. Note that LJp is not closed under (β) and (π) because a result of them
may contain n-cuts.
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Note 3. This cut-elimination can be seen as a refinement of LJt [3,4]. The cut-
elimination corresponding to x-reductions of LJ is treated as a meta-operation of
substitution in LJt. On the other hand, the cut-elimination in this paper consists
of local transformations of proofs. For example, (β) and (π) are the following:

.... M

Ay � B

� A → B
(→ R)

.... N

� A

.... P

Bz � C

(A → B)x � C
(→ L)

� C
(Cut) ⇒β

.... N

� A

.... M

Ay � B

.... P

Bz � C

Ay � C
(Cut)

� C
(Cut)

,

.... M

� A1 → A2

.... N

� A1

.... P

Az
2 � B1 → B2

(A1 → A2)y � B1 → B2
(→ L)

� B1 → B2
(Cut)

.... x[[N′, z′.P′]]

(B1 → B2)x � C

� C
(Cut)

⇒π

.... M

� A1 → A2

.... N

� A1

.... P

Az
2 � B1 → B2

.... x[[N′, z′.P′]]

(B1 → B2)x � C

Az
2 � C

(Cut)

(A1 → A2)y � C
(→ L)

� C
(Cut)

.

We can divide the π-step into two steps such as

M[[N, z.P]][[N′ , z′.P′]]
(�)⇒ M �

y (y[[N, z.P]][[N′ , z.P′]])

⇒ M[[N, z.P �
x x[[N′, z′.P′]]]],

by a provisional cut-elimination step (�). But the middle term is reduced to the
left-hand side by the x-rules, so if we admit (�), the cut-elimination is not SN.

Note 4. Our set of rules is similar to rules introduced by Kikuchi [10]. The rules
(x1) through (x5), (x7) and (β) are the same as (1) through (6) and (Beta) of
[10] respectively. (Perm1) of [10] corresponds to (�). To avoid the loop noted
above, in the rule (Perm2) of [10], which is corresponding to (x6), Q is restricted
to λ-abstractions. SN is, however, not proved in [10]. If we choose the rules (π)
and (x6), SN can be proved as shown in the following. Moreover our system does
not contain the rule (7) of [10], since there is not its counterpart in the natural
deduction.

Proposition 1 (Subject reduction). If Γ � M : A and M ⇒ N hold, there
exists Γ ′ such that Γ ′ ⊆ Γ and Γ ′ � M : A hold.

Proof. By induction on M ⇒ N.

2.2 Λg: λ-Calculus with General Elimination Rules

In this subsection, we define the simply typed λ-calculus Λ and its variant Λg

with general elimination rules, and show that Λg is a generalization of Λ.
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Definition 4 (Λ). Formulas, term variables and contexts of Λ are the same as
LJ. Pseudo-terms (denoted by M , N , P . . . ) are defined as

M ::= x | λx.M | MM.

Bound variables and capture-avoiding substitution [M/x]N are defined as usual.
Inference rules and reduction rules are in the figure 4. Λ-terms and relations →
and →+ are defined similarly to LJ.

Ax � x : A
(Ax)

Γ � M : B
Γ \ Ax � λx.M : A → B

(→ I) Γ � M : A → B Δ � N : A
Γ ∪ Δ � MN : B

(→ E)

(β) (λx.M)N →β [N/x]M

Fig. 4. Inference rules and reduction rules of Λ

Definition 5 (Λg). Formulas, term variables and contexts of Λg are the same
as those of LJ. Pseudo-terms (denoted by M , N , P . . . ) are defined as

M ::= x | λx.M | M [M, x.M ].

In λx.P and M [N, x.P ], variable occurrences of x in P are bound. Capture-
avoiding substitution [M/x]N is defined as usual. Inference rules and reduction
rules are in the figure 5. We suppose that x is not free in P of (β) and that x is
not free in the subexpression [N ′, x′.P ′] of (π) by renaming bound variables. The
π-reduction is called permutative conversion. Λg-terms and relations →, →β,
→+ and so on are defined similarly to LJ.

Ax � x : A
(Ax)

Γ � M : B
Γ \ Ax � λx.M : A → B

(→ I)
Γ � M : A → B Δ1 � N : A Δ2 � P : C

Γ ∪ Δ1 ∪ (Δ2 \ Bx) � M [N, x.P ] : C
(→ E)

(β) (λx.M)[N, y.P ] →β [N/x][M/y]P
(π) M [N, x.P ][N ′, x′.P ′] →π M [N, x.P [N ′, x′.P ′]]

Fig. 5. Inference rules and reduction rules of Λg
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Definition 6. We define two maps ϕ from Λ to Λg and ψ from Λg to Λ as

ϕ(x) ≡ x, ψ(x) ≡ x,

ϕ(λx.M) ≡ λx.ϕ(M), ψ(λx.M) ≡ λx.ψ(M),
ϕ(MN) ≡ ϕ(M)[ϕ(N), x.x], ψ(M [N, x.P ]) ≡ [ψ(M)ψ(N)/x]ψ(P ).

Proposition 2. 1. For any Λ-term M , ψ(ϕ(M)) ≡ M .
2. For any Λ-terms M and N , if M → N , then we have ϕ(M) →β ϕ(N).
3. For any Λg-terms M and N , if M → N , then we have ψ(M) →∗ ψ(N). In

particular, if M →π N , then ψ(M) ≡ ψ(N).

Proof. Straightforward.

Note 5. The image of ϕ is characterized as

M ::= x | λx.M | M [M, x.x].

Their π-normal forms are

M ::= V | V ε, where V ::= x | λx.M and ε ::= [M, x.x] | [M, x.xε],

which correspond to pure terms in [10]. It is shown in [10] that normal pure
terms correspond to normal Λ-terms. The class of pure terms is not closed under
substitution, so the definition of β-reduction on pure terms needs some technical
meta operation in [10]. In our paper, instead, the image of ϕ is closed under β-
reduction of Λg, so the correspondence between it and Λ is much simpler.

2.3 Isomorphism Between LJp and Λg as Sets of Terms

Definition 7. We define two maps M∗ from LJp to Λg and M∗ from Λg to LJp

as follows.

x∗ ≡ x x∗ ≡ x

(λx.M)∗ ≡ λx.M∗ (λx.M)∗ ≡ λx.M∗
(M[[N, x.P]])∗ ≡ M∗[N∗, x.P∗] (M [N, x.P ])∗ ≡ M∗[[N∗, x.P∗]]

These maps are almost the same as identity maps except the LJp-term
M[[N, x.P]] is an abbreviation of the p-cut M �x x[[N, x.P]] if M is not a variable.
In particular, between cut-free LJ-terms and βπ-normal Λg-terms.

Proposition 3. 1. For any LJp-term M, we have (M∗)∗ ≡ M. For any Λg-term
M , we have (M∗)

∗ ≡ M .
2. If Γ � M : A is derivable in LJp, then Γ � M∗ : A is derivable in Λg. If

Γ � M : A is derivable in Λg, then Γ � M∗ : A is derivable in LJp.
3. For any cut-free LJp-term M, M∗ is normal. For any normal Λg-term M ,

M∗ is cut-free.

Proof. By induction on M and M . For 3, note that the βπ-normal terms in Λg

have the form of either x or x[M, y.P ].
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3 Correspondence Between Cut-Elimination and Proof
Reduction

As shown in the previous section, LJp and Λg are almost identical as sets of
terms. In fact, this correspondence can be extended to the cut-elimination and
the reduction of λ-calculus. LJp is not closed under the cut-elimination procedure,
so we introduce cut-elimination strategies for LJp.

3.1 Projection from LJ to LJp

First we define a projection from LJ to LJp. It is nothing but the normalization
function with respect to the x-reduction.

Definition 8 (Projection)

1. Pseudo-substitution �M/x�N for LJp-terms M and N is defined as follows.

�M/x�y ≡ y (x 
≡ y) �M/x�(λy.N) ≡ λy.�M/x�N

�M/x�x ≡ M �M/x�(Q[[N, y.P]]) ≡ (�M/x�Q)[[�M/x�N, y.�M/x�P]]

Note that the right hand side of the last equation is either a left-rule appli-
cation or a p-cut depending on whether �M/x�Q is a variable or not.

2. Projection Mx from LJ to LJp is defined as follows.

xx ≡ x (M[[N, x.P]])x ≡ Mx[[Nx, x.Px]]
(λx.M)x ≡ λx.Mx (M �x

n N)x ≡ �Mx/x�Nx

Lemma 1. 1. For any LJp-terms M and N, we have (�M/x�N)∗ ≡ [M∗/x]N∗.
2. For any Λg-terms M and N , we have ([M/x]N)∗ ≡ �M∗/x�N∗.

Proof. By induction on N and N respectively.

Lemma 2. For any LJ-term M, Mx is a LJp-term and we have M ⇒∗
x Mx.

Proof. For any LJp-terms M and N, M �x N ⇒∗
x �M/x�N is proved by induction

on N. And then, M ⇒∗
x Mx is proved by induction on M.

In the following, we show that each step of the cut-elimination is projected to
the reduction steps of Λg. To describe the claim more precisely, we prepare an
auxiliary notion, which was introduced in [2].

Definition 9. A subterm occurrence N in M is void iff there is a subterm P�x
nQ

of M such that N occurs in P and x 
∈ FV (Qx). A cut-elimination step M ⇒ N
is void iff the redex of M is void. We write M v⇒ N when the step is void.

Proposition 4. Let the symbol • be either β or π. For any LJ-terms M and N,
if M ⇒• N holds and it is not void, then we have (Mx)∗ →+• (Nx)∗ in Λg. In
particular, when M is an LJp-term, we have (Mx)∗ →• (Nx)∗. If either M ⇒x N
or M v⇒ N holds, then we have Mx ≡ Nx.
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Proof. By induction on M ⇒ N. We prove only the case where M ≡ M0 �x M1,
N ≡ N0 �x M1, M0 ⇒ N0 and x 
∈ FV (M1

x), that is, M v⇒ N. We have Mx ≡
�Mx

0/x�Mx
1 and Nx ≡ �Nx

0/x�Mx
1, which are identical since x 
∈ FV (Mx

1). Other
cases are easily proved by the Lemma 1.

Proposition 5. ⇒x is SN and CR, so any LJ-term M has the unique ⇒x-normal
form, which is Mx.

Proof. For SN, we define |M| and #M as

|x| = 1, #x = 1,

|λx.M| = |M|, #(λx.M) = #M + 1,

|x[[M, y.N]]| = |M| + |N|, #(x[[M, y.N]]) = #M + #N + 2,

|P[[M, y.N]]| = |P| + |M| + |N|, #(P[[M, y.N]]) = #P + #M + #N + 1,

|z �
x
n x[[M, y.N]]| = |M| + |N| + 1, #(M �

x
n N) = #M · #N,

|M �
x
n N| = |M| · #N + |N| (o.w.),

where P is not a variable. We can prove that M ⇒x N implies |M| > |N| and
#M ≥ #N. For CR, suppose that M ⇒∗

x M1 and M ⇒∗
x M2 holds. By the

Proposition 4, Mx ≡ Mx
1 ≡ Mx

2 holds, so we have M1 ⇒∗
x Mx

1 ≡ Mx and M2 ⇒∗
x

Mx
2 ≡ Mx by the Lemma 2.

3.2 Isomorphism Between LJp and Λg

We define cut-elimination strategies on LJpcorresponding the reductions in Λg.

Definition 10 (βπ-strategy). Relation M →β N on LJp is defined as M ⇒β M′

and M′x ≡ N for some M′. We call →β β-strategy. Similarly π-strategy M →π N
is defined as M ⇒π M′ and M′x ≡ N for some M′.

Lemma 3. Let the symbol • be either β or π. For any LJp-terms M and N,
M →• N implies M ⇒+

•n N in LJ.

Proof. By the definition of the βπ-strategy and the Lemma 2.

Theorem 1. Let the symbol • be either β or π.

1. For any LJp-terms M and N, if M →• N holds, then M∗ →• N∗ holds in Λg.
2. For any Λg-terms M and N , if M →• N holds, then M∗ →• N∗ holds in

LJp.

Proof. 1. Suppose M →• N. By the definition of the strategy, there exists an
LJ-term M′ such that M ⇒• M′ ⇒∗

x N. By the Proposition 4, we have
(Mx)∗ →• (Nx)∗, that is, M∗ →• N∗ since Mx ≡ M for any LJp-term M.

2. By induction on M → N .

Corollary 1. Let the symbol • be either β or π. For any LJ-terms M and N, if
M ⇒• N holds and it is not void, then we have Mx →+• Nx in LJp.

Corollary 2. 1. For any LJ-terms M and N, if M ⇒β N holds, then ψ((Mx)∗)
→∗ ψ((Nx)∗) holds in Λ. If M ⇒πx N holds, then ψ((Mx)∗) ≡ ψ((Nx)∗) holds.

2. For any Λ-terms M and N , if M → N holds, then (ϕ(M))∗ ⇒+
βx (ϕ(M))∗

holds in LJ.
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4 Strong Normalization and Church-Rosser Property

In this section, we prove SN and CR of the cut-elimination procedure for LJ by
those of the βπ-reduction in Λg.

4.1 SN and CR of Λg

First, we prove SN and CR of the βπ-reduction on Λg by a continuation and
garbage passing style (CGPS) translation, which is a variant of continuation
passing style translations and was introduced by Ikeda and Nakazawa [7].

The CGPS-translation maps Λg-terms to Λ-terms, preserving typability and
one-or-more step reduction relation. In the following definition, metavariables K
and G for Λ-terms denote continuation terms and garbage terms respectively.
We introduce garbage parts to map each π-reduction step in Λg into dummy
β-reduction steps in Λ. Note that, if we ignore the garbage parts denoted by g
and G, we can get a CPS-translation of Λg.

Definition 11 (CGPS-translation). Let ⊥ be a fixed atomic formula, ¬A ≡
A → ⊥ for a formula A, and 〈〈M ; N〉〉 ≡ (λx.M)N for Λ-terms M and N ,
where x is a fresh variable. Negative translation A of a formula A is defined as
¬⊥ → ¬¬A†, where A† is defined as p† ≡ p and (A → B)† ≡ A → B. CGPS-
translation M of a Λg-term M is defined as a Λ-term λgk.(M :g k), where g and
k are fresh and M :G K for a Λg-term M and Λ-terms G, K is defined as

x :G K ≡ xGK,

λx.M :G K ≡ 〈〈K(λx.M ); G〉〉,
M [N, x.P ] :G K ≡ M :〈〈G;K′〉〉 K ′ (K ′ ≡ λy.(λx.(P :G K))(yN)).

Lemma 4. 1. If Γ � M : A is derivable in Λg, we have Γ � M : A in Λ, where
Γ is defined as {A

x | Ax ∈ Γ}.
2. If M → N holds in Λg, we have M →+ N in Λ.

Proof. 1. By induction on M . We need to prove it simultaneously with another
claim: Γ � M : A in Λg implies Γ , (¬A†)k, (¬⊥)g � (M :g k) : ⊥ in Λ.

2. By induction on M → N . We use the fact that we have M :G N →+ M :G N ′

and M :N K →+ M :N ′ K for any N → N ′, and we have [M/x](P :G K) →∗

([M/x]P ) :[M/x]G [M/x]K.

Proposition 6 (SN of Λg). For any Λg-term M , there is no infinite βπ-
reduction sequence from M .

Proof. Suppose that M0 → M1 → · · · is an infinite reduction sequence from an
Λg-term M0. By the Lemma 4, M0 →+ M1 →+ · · · is an infinite sequence from
the Λ-term M0, which contradicts the SN of Λ.

Proposition 7 (CR of Λg). For any Λg-terms M , M1 and M2, if M →∗ M1
and M →∗ M2 hold, then there exists a Λg-term M3 such that M1 →∗ M3 and
M2 →∗ M1.
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Proof. It is sufficient to prove WCR: if we have M → M1 and M → M2, then
there exists M3 such that M1 →∗ M3 and M2 →∗ M3 hold. Then, CR is derived
from SN and WCR by Newman’s lemma. We prove WCR by induction on M . For
the case where M has the form of Q[N, x.P ], there are three types of forms of
Q[N, x.P ] → Mi: (1) β-redex (λy.Q0)[N, x.P ] → [N/y][Q0/x]P , (2) π-redex
Q′[N ′, x′.P ′][N, x.P ] → Q′[N ′, x′.P ′[N, x.P ]], (3) Q[N, x.P ] → Q′[N ′, x.P ′],
where either Q → Q′, N → N ′ or P → P ′. The case where both M → Mi

are the same type of either (1) or (2), we have M1 ≡ M2. Other cases are easily
proved by the induction hypothesis. Note that there is no case where one of
M → Mi is the type (1) and the other is the type (2).

Corollary 3. LJp enjoys SN and CR with respect to the βπ-strategy.

4.2 SN and CR of LJ

Theorem 2. The cut-elimination procedure of LJ enjoys CR.

Proof. Suppose M ⇒∗ M1 and M ⇒∗ M2 hold in LJ. By the Corollary 1, we have
Mx →∗ Mx

i for i = 1 and 2. By CR of LJp, there is an LJp-term M3 such that
Mx

i →∗ M3. And then we have Mi ⇒∗
x Mx

i ⇒∗ M3 by the Lemma 2 and 3.

SN of LJ is proved by the method which has been applied to SN proofs for calculi
with explicit substitution in [2,9] and so on.

Definition 12. An LJ-term M is decent iff for any subterm N �x
n P of M, N is

SN. Rank ρ(M) of an LJ-term M is defined as the maximum length of βπ-strategy
sequence from Mx.

Lemma 5. 1. In any infinite sequence of ⇒x and v⇒, all reduction steps except
for finitely many steps are void.

2. In any infinite sequence of ⇒, all reduction steps except for finitely many
steps are void.

3. Any decent term M is SN with respect to v⇒.

Proof. 1. We define the norm ‖M‖ and 
M for a LJ-term M as follows, where
P is a variable.

‖x‖ = 1 �x = 1

‖λx.M‖ = ‖M‖ �(λx.M) = �M + 1

‖x[[M, y.N]]‖ = ‖M‖ + ‖N‖ �(x[[M, y.N]]) = �M + �N + 2

‖P[[M, y.N]]‖ = ‖P‖ + ‖M‖ + ‖N‖ �(P[[M, y.N]]) = �P + �M + �N + 1

‖z �
x
n x[[M, y.N]]‖ = ‖M‖ + ‖N‖ + 1 �(M �

x
n N) = �M · �N (x ∈ FV (Nx))

‖M �
x
n N‖ = ‖M‖ · �N + ‖N‖ (x ∈ FV (Nx)) �(M �

x
n N) = �N (x �∈ FV (Nx))

‖M �
x
n N‖ = �N + ‖N‖ (x �∈ FV (Nx))

We can prove that if M ⇒x N holds and it is not void, then we have
‖M‖ > ‖N‖ and 
M ≥ 
N, and if M v⇒ N holds, then we have ‖M‖ = ‖N‖.
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2. Suppose that M0 ⇒ M1 ⇒ M2 ⇒ · · · is an infinite sequence. By the Corollary
1, we have Mx

0 →∗ Mx
1 →∗ Mx

2 →∗ · · · , where there is an index m such that
Mx

i ≡ Mx
i+1 for any i > m by SN of LJp. So Mi ⇒ Mi+1 is ⇒x or v⇒ for any

i > m. By 1, the sequence contains only finitely many non-void ⇒x-steps.
3. By induction on M.

Lemma 6. If M is a decent LJ-term, M is SN with respect to ⇒.

Proof. By induction on ρ(M). Suppose that, for any N such that ρ(M) > ρ(N),
if N is decent, then N is SN. First, we show that any N such that M ⇒ N is
decent by induction on M ⇒ N. For the case where M ≡ (λx.M1)[[M2, y.M3]]
and N ≡ M2 �x (M1 �y M3), since Mx

1 and Mx
2 are proper subterms of a β-redex

Mx ≡ (λx.Mx
1)[[M

x
2, y.Mx

3]], we have ρ(M) > ρ(M1) and ρ(M) > ρ(M2). Moreover,
M1 and M2 are decent since M is decent, so they are SN by the hypothesis
of the outer induction. Therefore, N is decent. The cases of π and x-redexes
are similarly proved. Other cases are proved by the hypothesis for the inner
induction. Secondly, suppose that there is an infinite sequence M ⇒ M1 ⇒
M2 ⇒ · · · . By the fact proved above, any Mi is decent. Furthermore, by 2 of the
Lemma 5, there is an index m such that Mi

v⇒ Mi+1 holds for any i > m, which
contradicts 3 of the Lemma 5.

Theorem 3. The cut-elimination procedure of LJ enjoys SN.

Proof. By induction on LJ-terms. For any M, any proper subterm of M is SN by
the induction hypothesis, so M is decent. Therefore, M is SN by the Lemma 6.

5 Sequent Calculus and Explicit Substitutions

In this section, we define another system Λgx, which is a λ-calculus with general
elimination rules and explicit substitutions. We show that LJ is isomorphic to
Λgx modulo a term quotient.

Definition 13 (Λgx). Λgx is defined as an extension of Λg. Pseudo-terms are
extended by explicit substitutions 〈M/x〉N . The only additional inference rule
(X) and reduction rules of Λgx are in the figure 6.

Λgx is almost the same as LJ under an identification of M�x
nN and 〈M/x〉N . The

only difference is that, if M is not a variable, 〈M/x〉(x[N, y.P ]) and M [N, y.P ]
are distinct Λgx-terms, while the corresponding LJ-terms are identical, since the
cut M �x x[[N, y.P]] is a p-cut.

Lemma 7. �p is CR and SN.

Proof. Each �p-step decreases size of terms, so SN holds. WCR is easily proved.

Definition 14. For Λgx-term M , Mp denotes its �p-normal form. Λp
gx consists

of the following. Terms are �p-normal Λgx-terms. For Λp
gx-terms M and N , β-

strategy M ⇒β N holds iff there exists an Λgx-term M ′ such that M �β M ′
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Γ � M : A Δ � N : B
Γ ∪ (Δ \ Ax) � 〈M/x〉N : B

(X)

(β) (λy.M)[N, z.P ] �β 〈N/y〉〈M/z〉P
(π) M [N, z.P ][N ′, z′.P ′] �π M [N, z.〈P/x〉(x[N ′, z′.P ′])]
(x1) 〈M/x〉y �x y (x �≡ y)
(x2) 〈M/x〉x �x M
(x3) 〈M/x〉(λy.N) �x λy.〈M/x〉N
(x4) 〈M/x〉(y[N, z.P ]) �x y[〈M/x〉N, z.〈M/x〉P ] (x �≡ y)
(x5) 〈M/x〉(x[N, z.P ]) �x M [〈M/x〉N, z.〈M/x〉P ] (x ∈ FV ([N, z.P ]))
(x6) 〈M/x〉(Q[N, z.P ]) �x (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] (Q is not a variable)
(x7) 〈y/x〉(x[N, z.P ]) �x y[N, z.P ]
(p) 〈M/x〉(x[N, z.P ]) �p M [N, z.P ] (M is not a variable)

Fig. 6. Additional inference rule and reduction rules of Λgx

and M ′p ≡ N hold. π- and x-strategies are similarly defined. Furthermore, We
extend M∗ and M∗ to maps between LJ and Λp

gx as follows:

(M �x
n N)∗ ≡ 〈M∗/x〉N∗, (〈M/x〉N)∗ ≡ M∗ �x N∗.

The following properties are proved in a straightforward way.

Proposition 8. 1. For any LJ-term M, we have (M∗)∗ ≡ M. For any Λp
gx-term

M , we have (M∗)
∗ ≡ M .

2. If Γ � M : A is derivable in LJ, then Γ � M∗ : A is derivable in Λp
gx. If

Γ � M : A is derivable in Λp
gx, then Γ � M∗ : A is derivable in LJ.

Lemma 8. 1. For any LJ-terms M and N, we have (M �x N)∗ ≡ (〈M∗/x〉N∗)p.
2. For any Λgx-terms M and N , we have ((〈M/x〉N)p)∗ ≡ (Mp)∗ �x (Np)∗.

Lemma 9. Let the symbol • be either β, π or x.

1. For any Λp
gx-terms M and N , M ⇒• N implies M �∗

•p N .
2. For any Λgx-terms M and N , M �• N implies Mp ⇒• Np, and M �p N

implies Mp ≡ Np.

Theorem 4. Let • be either β, π or x.

1. For any LJ-terms M and N, M ⇒• N in LJ implies M∗ ⇒• N∗ in Λp
gx.

2. For any Λp
gx-terms M and N , M ⇒• N in Λp

gx implies M∗ ⇒• N∗ in LJ.

Proof. 1. By induction on M ⇒ N. We prove only the case where M ≡
(λx.Q)[[N, z.P]] and N ≡ N �x (Q �z P). We have M∗ ≡ (λx.Q∗)[N∗, z.P∗] ⇒β

(〈N∗/x〉〈Q∗/z〉P∗)p, which is identical to (N �x (Q �z P))∗ by 1 of the Lemma
8.

2. It is similarly proved by induction on M ⇒ N , using 2 of the Lemma 8.
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CR and SN of Λp
gx immediately follows those of LJ. Furthermore, CR and SN of

Λgx can be easily proved by means of those of Λp
gx.

Theorem 5. Λgx enjoys CR and SN.

Proof. CR is proved in a similar way to the Theorem 2 by the Lemma 9. Fur-
thermore, by 2 of the Lemma 9, the map (·)p translates an infinite �-sequence
in Λgx to an infinite ⇒-sequence in Λp

gx, since �p is SN.

6 Concluding Remarks

This paper proposes an SN and CR cut-elimination procedure of the intuition-
istic sequent calculus which is isomorphic to the proof reduction of the natural
deduction with general elimination and explicit substitutions. The discussion in
this paper can be extended to other logical connectives. For example, general
elimination rules for conjunction and disjunction are

Γ � M : A ∧ B Δ � P : C

Γ ∪ (Δ \ {Ax, By}) � M [(x, y).P ] : C
(∧E)

,

Γ � M : A ∨ B Δ1 � P : C Δ2 � Q : C

Γ ∪ (Δ1 \ Ax) ∪ (Δ2 \ By) � M [x.P, y.Q] : C
(∨E)

and other definitions and proofs can be extended in a straightforward way.
The sequent calculus is well-suited to classical logic because of its beautiful

symmetry, so we hope that our result will be extended to classical logic. However,
even for the intuitionistic case, the cut-elimination contains much richer com-
putation than our proposal. In fact, our cut-elimination includes only t-protocol
cut-elimination of LKtq [3]. For example, we can consider the cut-elimination
steps following the q-protocol such as

....
� B1

....
B2 � A

B1 → B2 � A
(→ L)

....

A � C1 → C2
(→ R)

B1 → B2 � C1 → C2
(Cut) ⇒

....
� B1

....
B2 � A

....

A � C1 → C2
(→ R)

B2 � C1 → C2
(Cut)

B1 → B2 � C1 → C2
(→ L)

,

whose term representation is x[[M, y.P]]�z
n (λw.N) ⇒ x[[M, y.P �z

n (λw.N)]], which
is not contained in our system. Moreover, we can consider another orientation (in
[3]) of logical cut-elimination such as (λx.M)[[N, y.P]] ⇒ (N �x M) �y P. Adding
this rule makes no trouble with the isomorphism between the cut-elimination
and the proof reduction. However the SN proof of the cut-elimination in this
paper does not work for the new β-rule, since SN of N�x M in the contractum is
not guaranteed by decency of the redex. Urban gave a strongly normalizable cut-
elimination for the classical sequent calculus [13], which admits to permute cuts
in both direction by the notion of labelled cuts. He also gave a correspondence
between the sequent calculus and a classical natural deduction with multiple
conclusion, but it is not an isomorphism. It is a future work to extend the
isomorphism established in this paper to classical logic and clarify computational
meaning of cut-elimination in the classical sequent calculus.
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of Functional Programming 1, 375–416 (1991)

2. Bloo, R., Rose, K.H.: Preservation of strong normalization in named lambda cal-
culi with explicit substitution and garbage collection. In: Computer Science in the
Netherlands (CSN’95), pp. 62–72 (1995)

3. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: linear logic.
The. Journal of Symbolic Logic 62(2), 755–807 (1997)
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Abstract. We present a size-aware type system for first-order shapely
function definitions. Here, a function definition is called shapely when the
size of the result is determined exactly by a polynomial in the sizes of
the arguments. Examples of shapely function definitions may be matrix
multiplication and the Cartesian product of two lists.

The type checking problem for the type system is shown to be unde-
cidable in general. We define a natural syntactic restriction such that the
type checking becomes decidable, even though size polynomials are not
necessarily linear or monotonic. Furthermore, a method that infers poly-
nomial size dependencies for a non-trivial class of function definitions is
suggested.1

Keywords: Shapely Functions, Size Analysis, Type Checking, Diophan-
tine equations.

1 Introduction

We explore typing support for checking size dependencies for shapely first-order
function definitions (functions for short). The shapeliness of these functions lies
in the fact that the size of the result is a polynomial in terms of the arguments’
sizes.

Without loss of generality, we restrict our attention to a language with poly-
morphic lists as the only data-type. For such a language, this paper develops
a size-aware type system for which we define a fully automatic type checking
procedure.

A typical example of a shapely function in this language is the Cartesian
product, which is given below. It uses the auxiliary function pairs that creates
pairs of a single value and the elements of a list. To get a Cartesian product,
cprod does this for all elements from the first list separately and appends the
resulting intermediate lists. Furthermore, the function definition of append is
assumed:

cprod(x , y) = match x with | nil ⇒ nil
| cons(hd , tl) ⇒ append(pairs(hd , y), cprod(tl , y))

1 This research is sponsored by the Netherlands Organisation for Scientific Research
(NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.
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where

pairs(x , y) = match y with | nil ⇒ nil
| cons(hd , tl) ⇒ cons(cons(x , hd , nil), pairs(x , tl))

Given two lists, for instance [1, 2, 3] and [4, 5], it returns the list with all
pairs created by taking one element from the first list and one element from the
second list: [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]. Hence, given two lists of
length n and m, it always returns a list of length nm containing pairs. This can
be expressed in a type by Ln(α) × Lm(α) → Ln∗m(L2(α)).

Shapeliness is restrictive, but it is an important foundational step. It makes
type checking decidable in the non-linear case and it allows to infer types “out-
of-the-box”, since experimental points are positioned exactly on the graph of the
polynomial. Exact sizes will be used in future work to derive lower/upper bounds
on the output sizes because many non-shapely functions may be transformed
into shapely in such a way that the new functions output-size polynomial will
be an lower/upper bound for output sizes of the original function. We need such
bounds for our AHA project.

1.1 Related Work

Information about input-output size dependencies is applied in time and space
analysis and optimization, because run time and heap-space consumption obvi-
ously depend on the sizes of the data structures involved in the computations.
Knowledge of the exact size of data structures can be used to improve heap
space analysis for expressions with destructive pattern matching. Amortized
heap space analysis has been developed for linear bounds by Hofmann and Jost
[5]. Precise knowledge of sizes is required to extend this approach to non-linear
bounds. Another application of exact size information is load distribution for
parallel computation. For instance, size information helps to distribute a storage
effectively and to safely store vector fragments [3].

The analysis of (exact) input-output size dependencies of functions itself has
been explored in a series of work. Some interesting work on shape analysis has
been done by Jay and Sekanina [7]. In this work, a shapely program expression
is translated into a corresponding abstract program expression over sizes. Thus,
the dependency of the result size on the argument sizes has the form of a program
expression. However, deriving an arithmetic function from it is beyond the scope
of their work.

Functional dependencies of sizes in a recurrent form may be derived via pro-
gram analysis and transformation, as in the work of Herrmann and Lengauer [6],
or through a type inference procedure, as presented by Vasconcelos and Ham-
mond [12]. Both results can be applied to non-shapely functions, higher-order
functions and non-linear size expressions. However, solving the recurrence equa-
tions to obtain a closed-form solution is left as an open problem for external
solvers. In the second paper monotonic bounds are studied.

To our knowledge, the only work yielding closed-form solutions for size depen-
dencies is limited to monotonic dependencies. For instance, in the well-known
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work of Pareto [8], where non-strict sized types are used to prove termination,
monotonic linear upper bounds are inferred. There linearity is a sufficient con-
dition for the type checking procedure to be decidable.In the series of works
on polynomial quasi-interpretations [1] one studies polynomial upper bounds.
The checking and inference rely on real arithmetic. Our approach differs two-
fold. Firstly, quasi-interpretations give monotonic bounds. With non-monotonic
size dependencies polynomial quasi-interpretations may lead to significant over-
estimations. Secondly, to get exact bounds we use integer arithmetic instead of
the real one.

The approaches summarized in the previous paragraphs either leave the (pos-
sibly undecidable) solving of recurrences as a problem external to their approach,
or are limited to monotonic dependencies.

1.2 Contents of the Paper

In this work, we go beyond monotonicity and linearity and consider a type check-
ing procedure for a first-order functional programming language (section 2) with
polynomial size dependencies (section 3). We show that type checking is reduced
to the entailment checking over Diophantine equations. Type checking is shown
to be undecidable in general, but decidable under a natural syntactic condition
(“no-let-before-match”, section 4). We suggest a method for type inference in sec-
tion 5. It terminates on a nontrivial class of shapely functions. It non-terminates
when either the function under consideration non-terminates, or it is not shapely,
or its correct size dependency is rejected by the type-checker due type-checker’s
incompleteness. (Note that there is no complete shapeliness-checker.)

In section 6 we define a heap-aware semantics of types and expressions and
sketch the proof of the soundness statement with respect to this semantics.
Finally, in section 7 we overview the results and discuss further work.

2 Language

The typing system is designed for a first-order functional language over integers
and (polymorphic) lists.

The syntax of language expressions is defined by the following grammar, where
c ranges over integer constants, x and y denote zero-order program variables,
and f denotes a function name (the example in the introduction used a sugared
version of this syntax):

Basic b ::= c | nil | cons(x, y) | f(x1, . . . , xn)
Expr e ::= letfun f(x1, . . . , xn) = e1 in e2

| b | let x = b in e | if x then e1 else e2
| match x with � nil ⇒ e1

� cons(xhd, xtl) ⇒ e2

The syntax distinguishes between zero-order let-binding of variables and first-
order letfun-binding of functions. In a function body, the only free program
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variables that may occur are its parameters: FV (e1) ⊆ {x1, . . . , xn}. The op-
erational semantics is standard, therefore the definition is postponed until it is
used to prove soundness (section 6.1).

We prohibit head-nested let-expressions and restrict sub-expressions in func-
tion calls to variables to make type-checking straightforward. Program expres-
sions of a general form may be equivalently transformed to expressions of this
form. It is useful to think of the presented language as an intermediate language.

3 Type System

Sized types are derived using a type and effect system in which types are anno-
tated with size expressions. Size expressions are polynomials representing lengths
of finite lists and arithmetic operations over these lengths:

SizeExpr p ::= IN | n | p + p | p − p | p ∗ p,

where n, possibly decorated with sub- and superscripts, denotes a size variable,
which stands for any concrete size (natural number). For any natural number k,
nk denotes the k-fold product n ∗ . . . ∗ n.

Zero-order types are assigned to program values, which are integers and finite
lists. The list type is annotated by a size expression that represents the length
of the list:

Types τ ::= Int | α | Lp(τ),

where α is a type variable. Note that this structure entails that if the elements of
a list are lists themselves, all these element-lists have to be of the same size. Thus,
instead of lists it would be more precise to talk about matrix-like structures. For
instance, the type L6(L2(Int)) is given to a list which elements are all lists of
exactly two integers, such as [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]].

It is easy to see that sets L0(Lm(Int)) are equal and contain the single el-
ement [ ] for all m. The similar holds for L0(Lm(α)). This induces the natural
equivalence relation on types. For instance Lq(L0(Lp(α))) ≡ Lq(L0(Lp′(α))). The
canonical representative of this class is Lq(L0(L0(α))). Everywhere below τ (dec-
orated with sub- or superscripts) denote in fact the canonical representative
of τ≡. The equivalence expresses the fact that sizes of lists that do not exist,
because a containing list is empty, are not important.

The sets FV (τ) and FVS(τ) of the free type and size variables of a type τ are
defined inductively in the obvious way. Note, that FVS(L0(Lm(α))) = ∅, since
the type is equivalent to L0(L0(α)).

Zero-order types without size or type variables are ground types:

GTypes τ• ::= τ such that FVS(τ) = ∅ ∧ FV (τ) = ∅ ,

First-order types are assigned to shapely functions over values of a zero-order
type. Let τ◦ denote a zero order type of which the annotations are all size
variables. First-order types are then defined by:
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FTypes τf ::= τ◦
1 × . . . × τ◦

n → τn+1
such that FVS(∗τn+1) ⊆ FVS(∗τ◦

1 ) ∪ · · · ∪ FVS(∗τ◦
n)

for all instantiations * of type variables with size expressions.
Recalling the Cartesian product from the introduction, one expects append to

be of type Ln(α) × Lm(α) → Ln+m(α), pairs of type α × Lm(α) → Lm(L2(α)),
and cprod of type Ln(α) × Lm(α) → Ln∗m(L2(α)).

A context Γ is a mapping from zero-order variables to zero-order types. A
signature Σ is a mapping from function names to first-order types. The definition
of FVS (−) is straightforwardly extended to contexts.

3.1 Typing Rules

A typing judgment is a relation of the form D; Γ 
Σ e : τ , where D is a set
of Diophantine equations which is used to keep track of the size information. In
the current language, the only place where size information is available is in the
nil-branch of the match-rule. The signature Σ contains the type assumptions for
the functions that are going to be checked.

In the typing rules, D 
 p = p′ means that p = p′ is derivable from D from
equational reasoning in the ring of integers. D 
 τ = τ ′ is a shorthand that
means that τ and τ ′ have the same underlying type and equality of their size
annotations is derivable. The typing judgment relation is defined by the following
rules:

D; Γ 
Σ c :Int IConst
D 
 τ = τ ′

D; Γ, x : τ 
Σ x :τ ′ Var

FVS (Lp(τ)) ⊆ FVS (Γ ) D 
 p = 0
D; Γ 
Σ nil :Lp(τ) Nil

D 
 p = p′ + 1
D; Γ, hd : τ, tl : Lp′(τ) 
Σ cons(hd , tl) :Lp(τ)

Cons

Γ (x ) = Int D; Γ 
Σ et :τ D; Γ 
Σ ef :τ
D; Γ 
Σ if x then et else ef :τ If

x /∈ dom(Γ ) D; Γ 
Σ e1 :τx D; Γ, x : τx 
Σ e2 :τ
D; Γ 
Σ let x = e1 in e2 :τ Let

p = 0, D; Γ, x : Lp(τ ′) 
Σ enil :τ
hd , tl �∈ dom(Γ ) D; Γ, hd : τ ′, x : Lp(τ ′), tl : Lp−1(τ ′) 
Σ econs :τ

D; Γ, x : Lp(τ ′) 
Σ match x with | nil ⇒ enil

| cons(hd , tl) ⇒ econs

:τ
Match

The rule LetFun demands that all defined functions, including recursive ones,
must be in the domain of the signature, and the corresponding first-order type
must pass type-checking. We do not prohibit calls of not-defined functions in the
code. In practice, a type checker may allow calls of undefined within the given
code functions. This happens when a specification comes from a trusty source.
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Such relaxed treatment of LetFun does make sense for functions written in
another language. However, for the soundness proof one needs all called functions
to be defined within an expression under consideration.

Σ(f) = τ◦
1 × · · · × τ◦

n → τn+1
True; x1 : τ◦

1 , . . . , xn : τ◦
n 
Σ e1 : τn+1 D; Γ 
Σ e2 : τ ′

D; Γ 
Σ letfun f(x1, . . . , xn) = e1 in e2 :τ ′ LetFun

In the FunApp-rule, Θ computes the substitution ∗ from the first argument
(whose size expressions, by definition of first order types, are always variables)
to the second argument, and the set C of equations over size expressions from
τ1

′×· · ·×τ ′
k. The set C contains p = p′ if and only the expressions are substituted

to the same size variable, like, for instance, to m in Lm(Int) × Lm(Int) → Int.

〈∗, C〉 = Θ(τ◦
1 × · · · × τ◦

n, τ1
′ × · · · × τn

′)
Σ(f) = τ◦

1 × . . . × τ◦
n → τn+1 D 
 ∗(τn+1) = τ ′

n+1 D 
 C

D; Γ, x1 : τ1
′, . . . , xn : τn

′ 
Σ f(x1, . . . , xk) :τn+1
′ FunApp

The type system needs no conditions on non-negativity of size expressions.
Size expressions in types of meaningful data structures are always non-negative.
The soundness of the type system (section 6.2) ensures that this property is
preserved throughout (the evaluation of) a well-typed expression.

3.2 Example of Type Checking

Because for every syntactic construction there is only one typing rule that is
applicable, type checking is straightforward. In the introduction, the Cartesian
product was presented using a “sugared” syntax. Here, we present the cprod
function in the language defined in section 2.

letfun cprod(x , y) = match x with | nil ⇒ nil
| cons(hd , tl) ⇒ let z1 = pairs(hd , y)

in let z2 = cprod(tl , y)
in append(z1, z2)

Functions pairs and append are assumed to be defined in the core syntax of
the language as well. Hence, Σ contains the following types:

Σ(append) = Ln(α) × Lm(α) → Ln+m(α)
Σ(pairs) = α × Lm(α) → Lm(L2(α))
Σ(cprod) = Ln(α) × Lm(α) → Ln∗m(L2(α))

To type-check cprod : Ln(α) × Lm(α) → Ln∗m(L2(α)) means to check:
Prove: x : Ln(α), y : Lm(α) 
Σ ecprod :Ln∗m(L2(α)),

where ecprod is the function body. This is demanded by the first branch of the
LetFun-rule. Applying the Match-rule branches the proof:
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Nil: n = 0; y : Lm(α) 
Σ nil :Ln∗m(L2(α))
Cons: hd : α, x : Ln(α), tl : Ln−1(α), y : Lm(α) 
Σ

let z1 = pairs(hd , y)
in let z2 = cprod(tl , y)
in append(z1, z2)

:Ln∗m(L2(α))

Applying the Nil-rule to the Nil-branch gives n = 0 
 n ∗ m = 0, which is
trivially true. The Cons-branch is proved by applying the Let-rule twice. This
results in three proof obligations:

Bind-z1: hd : α, y : Lm(α) 
Σ pairs(hd , y) :τ1
Bind-z2: tl : Ln−1(α), y : Lm(α) 
Σ cprod(tl , y) :τ2
Body: z1 : τ1, z2 : τ2 
Σ append(z1, z2) :Ln∗m(α)

From the applications of the FunApp-rule to Bind-z1 and Bind-z2 it follows
that τ1 should be Lm(L2(α)) and τ2 should be L(n−1)∗m(L2(α)). Lastly, applying
the FunApp-rule to Body yields the proof obligation 
 (n−1)∗m+m = n∗m,
which is true in the axiomatics.

3.3 Example with Negative Coefficients

In contrast to the system presented by Vasconcelos and Hammond [12], where
only subtraction of constants are allowed, our system allows negative coefficients
in size expressions. Of course, this is only a valid size expression if the polynomial
is non-negative for all values of its variables. Here, we show an example where
this is the case. Given two lists, the function “subtracts” elements from lists
simultaneously, till one of the lists is empty. Then, the Cartesian product of the
rest list with itself is returned:

sqdiff (l1, l2) =
match l1 with | nil ⇒ cprod l2 l2

| cons(h, t) ⇒ match l2 with | nil ⇒ cprod l1 l1
| cons(h′, t′) ⇒ sqdiff (t, t′)

.

It can be checked that sqdiff has type Ln(α)×Lm(α) → L(n2+m2−2∗n∗m)(L2(α)).

4 Decidability Issues for Type Checking

In the examples above, type checking ends up with a set of entailments like
n = 0 
 0 = n ∗ m or 
 m + m ∗ (n − 1) = m ∗ n that have to hold. However,
we show that there is no procedure that can check all entailments that possibly
arise. To make type checking decidable, we formulate a syntactical condition on
the structure of a program expression that ensures the entailments have a trivial
form. The idea is to prohibit pattern-matchings in a let-body.

4.1 Type Checking in General Is Undecidable

We show that the existence of a procedure that may check all possible entail-
ments at the end of type checking is reduced to Hilbert’s tenth problem: whether
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there exists a general procedure that given a polynomial with integer coefficients
decides if this polynomial has natural roots or not.2 Matiyasevich [10] has shown
that such a procedure does not exist. This means that type checking, in the gen-
eral case, is undecidable as well.

We show that type checking is reducible to a procedure of checking if arbitrary
size polynomials of shapely functions have natural roots. It turns out that the
latter is the same as finding natural roots of integer polynomials.

Consider the following expression eH with free variables x1, . . . , xk:

let x = f0(x1, . . . , xk) in match x with | nil ⇒ f1(x1, . . . , xk)
| cons(hd , tl) ⇒ f2(x1, . . . , xk)

We check if it has the type Ln1(α1) × . . . × Lnk
(αk) −→ Lp(n1,..., nk)(α), given

that fi : Ln1(α1) × . . . × Lnk
(αk) −→ Lpi(n1,..., nk)(α), with i = 0, 1, 2. Then at

the end of the type checking procedure we obtain the entailment:

p0(n1, . . . , nk) = 0 
 p1(n1, . . . , nk) = p(n1, . . . , nk).

Even if p and p1 are not equal, say p1 = 0 and p = 1, it does not mean that
type checking fails; it might not be possible to enter the “bad” nil-branch. To
check if the nil-branch is entered means to check if p0 = 0 has a solution in
natural numbers. Thus, a type-checker for any size polynomial p0 must be able
to define if it has natural roots or not.

Checking if any size polynomial has roots in natural numbers, is the same
as checking whether an arbitrary polynomial has roots or not. For polynomials
q(n1, . . . , nk) = 0 if and only if q2(n1, . . . , nk) = 0 so it is sufficient to prove
that the square of any polynomial is a size polynomial for some shapely function.
First, note that any polynomial q may be presented as the difference q1 − q2 of
two polynomials with non-negative coefficients3. So, q2 = (q1 − q2)2 is a size
polynomial, obtained by superposition of sqdiff with q1 and q2. Here q1 and q2
are size polynomials with positive coefficients for corresponding compositions of
cprod and append functions.

So, existence of a general type-checker reduces to solving Hilbert’s tenth prob-
lem. Hence, type checking is undecidable.

We can show this in a more constructive way using the stronger form of the
undecidability of Hilbert’s tenth problem: for any type-checking procedure I
one can construct an expression, for which I fails to give the correct answer.
We will use the result of Matiyasevich who has proved the following: there is
a one-parameter Diophantine equation W (a, n1, . . . , nk) = 0 and an algorithm
which for given algorithm A produces a number aA such that A fails to give the
correct answer for the question whether equation W (aA, n1, . . . , nk) = 0 has
a solution in (n1, . . . , nk). So, if in the example above one takes the function

2 The original formulation is about integer roots. However, both versions are equivalent
and logicians consider natural roots.

3 If q = Σai1,...,ikxi1
1 . . . x

ik
k , then q1 = Σai1,...,ik

≥0ai1,...,ikxi1
1 . . . x

ik
k , and q2 =

Σai1,...,ik
<0|ai1,...,ik |xi1

1 . . . x
ik
k .
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f0 such that its size polynomial p0 is the square of the W (aI , n1, . . . , nk) and
p = 1, p1 = 0, then the type checker I fails to give the correct answer for eH .

For checking a particular expression it is sufficient to solve the correspond-
ing sets of Diophantine equations. Type checking depends on decidability of
Diophantine equations from D in any entailment D 
 p = p′, where p is not
equal to p′ in general (but might be if the equations from D hold). If we have
a solution for D we can substitute this solution in p and p′. A solution over
variables n1, . . . , nm, nm+1, . . . , nk is a set of equations ni = qi(nm+1, . . . , nk)
where 1 ≤ i ≤ m. The expressions for ni are substituted into p = p′ and one
trivially checks the equality of the two polynomials over nm+1, . . . , nk in the
axiomatics of the integers’ ring. Recall that two polynomials are equal if and
only if the coefficient at monomials with the same degrees of variables are equal.

4.2 Syntactical Condition for Decidability

The most simple way to ensure decidability is to require that all equations in D
have the form n = c, where c is a constant. This would in particular exclude the
example eH from above. As we will see below, this requirement can be fulfilled by
imposing a syntactical condition on program expressions: “no let before match”.

The refined grammar of the language is defined as the main grammar where
the let-construct in e is replaced by let x = b in enomatch with

enomatch := b | letfun f(x1, . . . , xn) = e in e′

| let x = b in enomatch | if x then e′nomatch else e′nomatch

Theorem 1. Let a program expression e satisfy the refined grammar, and let us
check the judgment True; x1 : τo

1 , . . . , xk : τo
k 
Σ e : τ . Then, at the end of the

type-checking procedure one has to check entailments of the form

D 
 p′ = p,

where D is a set of equations of the form n−c=0 for some n∈FVS (τo
1 × . . .×τo

k )
and constant c and p, p′ are polynomials in FVS(τo

1 × . . . × τo
k ).

Sketch of the proof. Consider a path in the type checking tree which ends up
with some D 
 p′ = p and let an equation q = 0 belong to D. It means that in
the path there is the nil-branch of the pattern matching for some x : Lq(τ).

By induction on the length of the path, one can show that q = n − c for
some size variable n ∈ FVS(τ1 × . . . × τk) and some constant c. This uses the
fact, that variables which are not free in an expression and pattern-matched
may be introduced only by another pattern-matching, but not a let-binding.
The technical report contains the full proof [11].

Note, that prohibiting pattern matching in let-bodies is very natural, since it
prohibits “risky” definitions of the form f(x) = g(f(f0(x))). Here x is a non-nil
list, and f0 is a function over lists, possibly with the property |f0(x)| ≥ |x|, with
| · | denoting length, so termination of f becomes questionable. In a “shapely
world” the condition |f0(x)| < |x| for all x starting from a certain x0, which
ensures termination, implies |f0(x)| = |x| − c or |f(x)| = c for some constant c.
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In principle, any program expression that does not do pattern matching on a
variable bound by a let-expression may be recoded so that it satisfies the refined
grammar and defines the same map. For instance, an expression

let x ′ = f0(y) in match x with | nil ⇒ f1(x, x′)
| cons(hd , tl) ⇒ f2(x, x′)

and the expression
match x with | nil ⇒ let x′ = f0(y) in f1(x, x′)

| cons(hd , tl) ⇒ let x′ = f0(y) in f2(x, x′)
define the same map of lists.

Of course, the syntactical condition of the theorem may be relaxed. One may
allow expressions with pattern-matching in a let-body, assuming that functions
that appear in let-bindings, like f0, give rise to solvable Diophantine equations.
For instance, when p0 is a linear function, one of the variables is expressed via
the others and the constant and substituted into p1 = p. Or, p0 is a 1-variable
quadratic, cubic or degree 4 equation. We leave relaxations of the condition for
future work.

5 Method for Type Inference

Here we discuss type inference under the syntactical condition defined in the
previous section. Since we consider shapely functions, there is a way to reduce
type inference to type-checking using the well-known fact that a finite polynomial
is defined by a finite number of points.

For each size polynomial in the output type of a given function, one assumes
a hypothesis about the degree and the variables. Then, to obtain the coefficients,
the function is run (preferably in a sand-box) as many times as the number of
coefficients the polynomial has. This finite number of input-output size pairs
defines a system of linear equations, where the unknowns are the coefficients of
the polynomial. When (the sizes of the data-structures in) the set of input data
satisfies some criteria known from the polynomial interpolation theory [4,9], the
system has a unique solution. Input sizes that satisfy these criteria, which are
nontrivial for multivariate polynomials, can be determined algorithmically.

The interpolation theory used in the previous paragraph finds the Lagrange
interpolation of a size function. If the hypothesis about the degree and the vari-
ables of the size expression was correct, the Lagrange interpolation coincides
with that desired size function. To check if this is the case, the interpolation is
given to the type checking procedure. If it passes, it is correct. Otherwise, one
may repeat the procedure for a higher degree of the polynomial.

The method, that is the sequence of such loops, non-terminates when

– the function under consideration does not terminate on test data,
– the function is non-shapely,
– the function is shapely but the type-checker rejects it due to the type system’s

incompleteness (see 6.3). Note that no complete algorithm for shapeliness-
checking exists, even for functions subject to the syntactical restriction.
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The method infers polynomial size dependencies for a nontrivial class of
shapely functions.

For instance, standard type inference for the underlying type system yields
that the function cprod has the following underlying type cprod : L(α)×L(α) −→
L(L(α)). Adding size annotations with unknown output polynomials gives cprod :
Ln(α)×Lm(α) −→ Lp1(Lp2(α)). We assume p1 is quadratic so we have to compute
the coefficients in its presentation:

p1(x, y) = a0,0 + a0,1x + a1,0y + a1,1xy + a0,2x
2 + a2,0y

2

Running the function cprod on six pairs of lists of length 0, 1, 2 yields:

n m x y cprod(x, y) p1(n, m) p2(n, m)
0 0 [] [] [] 0 ?
1 0 [0] [] [] 0 ?
0 1 [] [0] [] 0 ?
1 1 [0] [1] [[0, 1]] 1 2
2 1 [0, 1] [2] [[0, 2], [1, 2]] 2 2
1 2 [0] [1, 2] [[0, 1], [0, 2]] 2 2

This defines the following linear system for the external output list:

a0,0 = 0
a0,0 + a0,1 + a0,2 = 0
a0,0 + a1,0 + a2,0 = 0

a0,0 + a0,1 + a1,0 + a0,2 + a1,1 + a2,0 = 1
a0,0 + 2a0,1 + a1,0 + 4a0,2 + 2a1,1 + a2,0 = 2
a0,0 + a0,1 + 2a1,0 + a0,2 + 2a1,1 + 4a2,0 = 2

The unique solution is a1,1 = 1 and the rest of coefficients are zero. To verify
whether the interpolation is indeed the size polynomial, one checks if cprod :
Ln(α) × Lm(α) −→ Ln∗m(L2(α)). This is the case, as was shown in section 3.2.

As an alternative way of finding the coefficients, one could try to directly solve
the systems defined by entailments D 
 p = p′. When the degree is assumed, the
unknowns in these systems are the polynomial coefficients. However, the systems
are nonlinear in general [11]. By combining testing with type checking we do not
have to solve these nonlinear Diophantine equations anymore.

6 Semantics of the Type System

Informally, soundness of the type system ensures that “well-typed programs
will not go wrong”. This is achieved by demanding that, when a function is
given meaningful values of the types required as arguments, the result will be a
meaningful value of the output type.

In section 6.1, we formalize the notion of a meaningful value using a heap-
aware semantics of types and give an operational semantics of the language.
Section 6.2 formulates the soundness statement with respect to this semantics
and sketches the proof. The system is shown not to be complete in section 6.3.
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6.1 Semantics of Program Values and Expressions

In our semantic model, the purpose of the heap is to store lists. Therefore, it
essentially is a collection of locations l that can store list elements. A location is
the address of a cons-cell each consisting of a hd-field, which stores the value of
the list element, and a tl-field, which contains the location of the next cons-cell
of the list (or the NULL address). Formally, a program value is either an integer
constant, a location, or the null-address and a heap is a finite partial mapping
from locations and fields to such program values:

Val v ::= c | � | NULL � ∈ Loc c ∈ Int
Hp h : Loc ⇀ {hd, tl} ⇀ Val

We will write h[�.hd := vh, �.tl := vt] for the heap equal to h everywhere but
in �, which at the hd-field of � gets value vh and at the tl-field of � gets value vt.

The semantics w of a program value v is a set-theoretic interpretations with
respect to a specific heap h and a ground type τ , via the four-place relation
v |=h

τ w. Integer constants interprets themselves, and locations are interpreted
as non-cyclic lists:

i |=h
Int i

NULL |=h
L0(τ) []

� |=h
Ln(τ) whd :: wtl iff n ≥ 1, � ∈ dom(h),

h.�.hd |=h|dom(h)\{�}
τ whd,

h.�.tl |=h|dom(h)\{�}
Ln−1(τ) wtl

where h|dom(h)\{�} denotes the heap equal to h everywhere except for �, where
it is undefined.

When a function body is evaluated, a frame store maintains the mapping from
program variables to values. It only contains the actual function parameters, thus
preventing access beyond the caller’s frame. Formally, a frame store is a finite
partial map from variables to values:

Store s : ExpVar ⇀ Val

Using heaps and frame stores, and maintaining a mapping C from function
names to bodies for the functions definitions encountered, the operational se-
mantics of expressions is defined by the following rules:

c ∈ Int
s; h; C 
 c � c; h

OSICons
s; h; C 
 x � s(x ); h

OSVar

s; h; C 
 nil � NULL; h
OSNil

s(hd) = vhd s(tl) = vtl � /∈ dom(h)
s; h 
 cons(hd , tl) � �; h[�.hd := vhd, �.tl := vtl]

OSCons

s(x) �= 0 s; h; C 
 e1 � v; h′

s; h; C 
 if x then e1 else e2 � v; h′ OSIfTrue



Polynomial Size Analysis of First-Order Functions 363

s(x) = 0 s; h; C 
 e2 � v; h′

s; h; C 
 if x then e1 else e2 � v; h′ OSIfFalse

s(x) = NULL s; h; C 
 e1 � v; h′

s; h; C 
 match x with | nil ⇒ e1
| cons(hd , tl) ⇒ e2

� v; h′ OSMatch-Nil

h.s(x).hd = vhd h.s(x).tl = vtl
s[hd := vhd, tl := vtl]; h 
 e2 � v; h′

s; h; C 
 match x with | nil ⇒ e1
| cons(hd , tl) ⇒ e2

� v; h′ OSMatch-Cons

s; h; C[f := ((x1, . . . , xn) × e1)] 
 e2 � v; h′

s; h; C 
 letfun f(x1, . . . , xn) = e1 in e2 � v; h′ OSLetFun

s(x1) = v1 . . . s(xm) = vn C(f) = (y1, . . . , yn) × ef

[y1 := v1, . . . , yn := vn]; h; C 
 ef � v; h′

s; h; C 
 f(x1, . . . , xn) � v; h′ OSFunApp

s; h; C 
 e1 � v1; h1 s[x := v1]; h1; C 
 e2 � v; h′

s; h; C 
 let x = e1 in e2 � v; h′ OSLet

6.2 Soundness

In this subsection the soundness theorem is formulated and a proof is sketched.
The technical report [11] contains the full proof.

Let a valuation ε map size variables to concrete (natural) sizes and an instan-
tiation μ map type variables to ground types:

Valuation ε : SizeVar → IN
Instantiation η : TypeVar → τ•

Applied to a type, context, or size equation, valuations (and instantiations)
map all variables occurring in it to their valuation (or instantiation) images.

The soundness statement is defined by means of the following two predicates.
One indicates if a program value is meaningful with respect to a certain heap
and ground type. The other does the same for sets of values and types, taken
from a frame store and context respectively:

Validval(v, τ•, h) = ∃w[ v |=h
τ w ]

Valid store(vars , Γ, s, h) = ∀x∈vars [ Valid val(s(x), Γ (x), h) ]

Now the soundness statement is straightforward:

Theorem 2. Let s; h; [ ] 
 e � v; h′ and all called in e functions are defined
in it via the let-fun construct. Then for any context Γ , signature Σ and type τ ,
such that True; Γ 
Σ e :τ is derivable in the type system, and any size valuation
ε and type instantiation η, it holds that if the store is meaningful w.r.t. the context
η(ε(Γ )) then the output value is meaningful w.r.t the type η(ε(τ)):
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∀η,ε[ Valid store(FV (e), η(ε(Γ )), s, h) =⇒ Valid val(v, η(ε(τ)), h′) ]

Sketch of the proof. The proof is done by induction on the length of the oper-
ational semantics derivation tree and is presented in the technical report [11].
The proof for the let-rule relies on the benign sharing [5] of data structures. It
means that the heap data to be used further are not changed by the head expres-
sion in let. There are type systems approximating this semantic condition, e.g.
linear typing and uniqueness typing [2] We consider sharing aware type systems
separately and combine with the resource aware one afterwords.

6.3 Completeness

The system is not complete – there are shapely functions that are not well-
typed. For instance, the type checking fails for the function faildueif : Ln(Int) →
Ln(Int) defined by:

letfun faildueif(x) = let y = length(x) in if y then x else nil
where length(x) returns the length of list x. We believe that in some cases pro-
gram transformations might help to make such functions typable.

7 Conclusion and Further Work

We have presented a natural syntactic restriction such that type checking of a
size-aware type system for first-order shapely functions is decidable for polyno-
mial size expressions without any limitations on the degree of the polynomials.

A non-standard, practical method to infer types is introduced. It uses run-
time results to generate a set of equations. These equations are linear and hence
automatically solvable. The method terminates on a non-trivial class of shapely
functions.

7.1 Further Work

The system is defined for polymorphic lists. In principle, the system may be
extended so that more general data structures will be allowed. This extension
should not influence the approach itself, however it brings additional technical
overhead.

An obvious limitation of our approach is that we consider only shapely func-
tions. In practice, one is often interested to obtain upper bounds on space com-
plexity for non-shapely functions. A simple example where for a non-shapely
function an upper bound would be useful, is the function to insert an element
in a list, provided the list does not contain the element. In the future we plan to
consider code transformations which, given a non-shapely function f with upper
bound (worst-case) complexity c, translate it into a shapely function f’ with
complexity c. Effectively, this will make the analysis applicable to non-shapely
functions obtaining upper bounds on the space consumption complexity.

We plan to add non-trivial sizes to integers. At the same time leaving out
non-sized integers will result in lists with elements of different sizes. Hence, the
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decision how to add sizes to integers is connected to the problem of using sized
and non-sized types within the same system. We leave it for future work based
on [12] and [7].

Addition of other data structures and extension to non-shapely functions will
open the possibility to use the system for an actual programming language.
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Abstract. This paper gives simple saturated sets for disjunction and
second-order existential quantification by using the idea of segments in
Prawitz’s strong validity. Saturated sets for disjunction are defined by
Pi-0-1 comprehension and those for second-order existential quantifica-
tion are defined by Sigma-1-1 comprehension. Saturated-set semantics
and a simple strong normalization proof are given to the system with
disjunction, second-order existential quantification, and their permuta-
tive conversions. This paper also introduces the contraction property to
saturated sets, which gives us saturated sets closed under union. This
enables us to have saturated-set semantics for the system with union
types, second-order existential types, and their permutative conversions,
and prove its strong normalization.

1 Introduction

Recently permutative conversions have been studied actively [2,3,4,5,7,10,11].
Permutative conversions transform a proof with a disjunction or existential quan-
tification elimination rule followed by an elimination rule into a proof with the
second rule in the minor deduction of the first rule. Permutative conversions
are indispensable for normalizing a proof in a natural deduction system with
disjunction or existential quantification, since without permutative conversions,
a normal proof fails to have the subformula property. Permutative conversions
also give program transformation for if-then-else statements and abstract data
types [6].

Strong normalization of systems with permutative conversions has been inves-
tigated for a long time since Prawitz developed proof theory for natural deduction
[8,9]. Moreover, since [4] proposed a new idea which gave us perspective of strong
normalization with permutative conversions, many researchers have been inter-
ested in this subject and trying to give a simple proof of strong normalization.

So far two methods are known to prove strong normalization of a second-
order system with permutative conversions. One method is saturated sets or
reducibility [5,7,10] and another method is CPS-translation [3].

The technique of saturated sets gives us a proof of strong normalization
as well as set-theoretic interpretation of types. This enables us to investigate

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 366–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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other semantical properties of types, for example, characterization of persistently
strongly normalizing terms [12].

Saturated sets had two problems. One is that the definition of saturated sets
for disjunction and second-order existential quantification was complicated. In
both [5] and [7], the definition of the saturated sets for disjunction used Π1

1 -
comprehension, and similar ideas would require Π1

2 -comprehension to define
their saturated sets for second-order existential quantification. Another prob-
lem is that some ways of defining saturated sets were not closed under union,
that is, S1 ∪ S2 may not be a saturated set even if S1 and S2 are saturated sets.
Such saturated sets could not interpret union types by set-theoretic union.

This paper solves these two problems. First, we will give simple saturated sets
for disjunction and second-order existential quantification.Π0

1-comprehension and
Σ1

1 -comprehension are sufficient to define our saturated sets for disjunction and
second-order existential quantification, respectively. Moreover, the definition of
saturated sets for disjunction is predicative. So we can expect to apply this
saturated-set semantics to various systems. In order to get this solution, we use
the idea of segments, which were used by Prawitz in [9,11] to define strong validity.

Secondly, we will provide saturated sets closed under set-theoretic union. This
enables us to interpret systems with union types where union types are inter-
preted by set-theoretic union. This technique works for a system with impli-
cation, second-order existential quantification, conjunction, intersection, union,
and second-order universal quantification. This is achieved by requiring the con-
traction property stating that if a term is in a saturated set, then its contraction
is also in the set.

Section 2 defines the second-order natural deduction NJ2 in Curry-style. Sec-
tion 3 gives new saturated sets and proves strong normalization of NJ2. Section
4 provides the system λ→∃∧∩∪∀ with second-order existential types, intersection
types, and union types. Section 5 shows that the same saturated sets in Section
3 works also for this system and proves its strong normalization. Section 6 gives
concluding remarks.

2 The System NJ2 with Disjunction and Second-Order
Existential Quantification

We will give the definition of the system NJ2, the second order intuitionistic nat-
ural deduction with permutative conversions in Curry style. It has disjunction,
existential quantification, and their permutative conversions.

Definition 2.1 (Language)
Type variables X, Y, Z, . . ..
Types A, B, . . . ::= X |A → B|A ∨ B|∃XA|A ∧ B|∀XA.
Variables x, y, z, . . ..
Terms M, N, L, P, Q ::= x|λx.M |MN |〈0, M〉|〈1, M〉|M [x.N, y.L]|

〈∃, M〉|M [x, N ]|〈M, N〉|Mp0|Mp1
Λ is the set of terms.

Substitutions M [x := N ] and A[X := B] are defined in a familiar way.



368 M. Tatsuta

Definition 2.2 (Typing rules)
Assumptions

x : A

Inference rules
[x : A]....
M : B

λx.M : A → B
(→I) M : A → B N : A

MN : B
(→E)

M : A
〈0, M〉 : A ∨ B

(∨I1) M : B
〈1, M〉 : A ∨ B

(∨I2)

M : A ∨ B

[x : A]....
N : C

[y : B]....
L : C

M [x.N, y.L] : C
(∨E)

M : A[X := B]
〈∃, M〉 : ∃XA

(∃I) M : ∃XA

[x : A]....
N : C

M [x.N ] : C
(∃E)

M : A N : B
〈M, N〉 : A ∧ B

(∧I) M : A ∧ B
Mp0 : A

(∧E1) M : A ∧ B
Mp1 : B

(∧E2)

M : A
M : ∀XA

(∀I) M : ∀XA
M : A[X := B]

(∀E)

The rules (∀I) and (∃E) have standard variable conditions.

Definition 2.3 (Reduction rules)
β-reductions:

(β→) (λx.M)N → M [x := N ]
(β ∨ 1) 〈0, M〉[x.N, y.L] → N [x := M ]
(β ∨ 2) 〈1, M〉[x.N, y.L] → L[y := M ]
(β∃) 〈∃, M〉[x.N ] → N [x := M ]
(β ∧ 1) 〈M, N〉p0 → M
(β ∧ 2) 〈M, N〉p1 → N

Eliminators E ::= M |[x.M, y.N ]|[x.M ]|p0|p1
Permutative conversions:

(π∨) M [x.N, y.L]E → M [x.NE, y.LE]
(π∃) M [x.N ]E → M [x.NE]

A context Ξ[ ] is defined in a standard way.
Congruency:

(congr) Ξ[M ] → Ξ[N ] if M → N.
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The relation →∗ is the reflexive transitive closure of the relation →. We say
that M reduces to N if M →∗ N .
Remark. Subject reduction property and Church Rosser property hold.

A term M is strongly normalizing if there is no infinite reduction sequence M →
M1 → M2 → . . . beginning with M . SN is the set of strongly normalizing terms.

The next section will prove that every term typed in the system NJ2 is strongly
normalizing.

Remark. If we choose the following rules for second-order existential quantifica-
tion instead, the subject reduction property fails to hold for that system.

M : A[X := B]
M : ∃XA

(∃I) M : ∃XA

[x : A]....
N : C

N [x := M ] : C
(∃E)

A counterexample is: M1 = z((λx.x)xy)((λx.x)xy), M2 = z(xy)((λx.x)xy).
Then we have x : B → ∃X(X → X), y : B, z : ∀X((X → X) → (X → X) → C) 

M1 : C, but we do not have x : B →∃X(X →X), y : B, z : ∀X((X →X)→ (X →
X) → C) 
 M2 : C.

3 Strong Normalization for NJ2

We will provide saturated-set semantics for NJ2 with simple saturated sets and
give a simple proof of strong normalization for NJ2. To do this, we will introduce
new saturated sets for disjunction and second-order existential quantification by
using the idea of segments used in Prawitz’s strong validity. We will also intro-
duce the contraction property to saturated sets, which will play an important
role for union types in Section 5.

Notation. The symbol = is used for the syntactical identity modulo bound vari-
able renaming. We will use vector notation to denote a sequence. For exam-
ple, 	M denotes the sequence M1, M2, . . . , Mn and M 	N denotes MN1N2 . . . Nn.
Length( 	M) is the length of the sequence 	M .

When M is in SN, |M | is the maximum length of its reduction sequence. | 	M |
is Σn

i=1|Mi| where 	M = M1, M2, . . . , Mn. |E| is defined as follows: |[x.M, y.N ]| =
|M | + |N |, |[x.M ]| = |M |, and |p0| = |p1| = 0.

When we say induction on (n, m), this means induction on the lexicographical
order (n, m) such that (n, m) < (n′, m′) if n < n′ and (n, m) < (n, m′) if m < m′.

Our saturated sets are the same as those in [5] except the contraction property
(4) and the clauses (8) to (10) for second-order quantification, and the reduction
closure property (12). The contraction property is new and will really work for
union types in Section 5. Without (4), the clause (8) would require an additional
condition N 	E ∈ S, which will make saturated sets not closed under intersection.

Definition 3.1 (Saturated sets). The relation N � M is defined to hold if
N is obtained from M by replacing some (maybe zero) free occurrences of some
variable by some term.
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A set S of terms is saturated if the following hold, where R ::= M |p0|p1.

(1) S ⊆ SN
(2) x	R ∈ S if x	R ∈ SN
(3) (λx.M)N 	E ∈ S if M [x := N ] 	E ∈ S and N ∈ SN
(4) M ∈ S if N � M and N ∈ S

(5.1) 〈0, M〉[x0.N0, x1.N1] 	E ∈ S

if N0[x0 := M ] 	E ∈ S and N1 	E ∈ S and M ∈ SN
(5.2) 〈1, M〉[x0.N0, x1.N1] 	E ∈ S

if N0 	E ∈ S and N1[x1 := M ] 	E ∈ S and M ∈ SN
(6) x	R[x0.N0, x1, N1] ∈ S if x	R ∈ SN and N0, N1 ∈ S

(7) x	R[x0.N0, x1.N1]E 	E ∈ S if x	R[x0.N0E, x1.N1E] 	E ∈ S

(8) 〈∃, M〉[x.N ] 	E ∈ S if N [x := M ] 	E ∈ S and M ∈ SN
(9) x	R[y.N ] ∈ S if x	R ∈ SN and N ∈ S

(10) x	R[y.N ]E 	E ∈ S if x	R[y.NE] 	E ∈ S

(11.1) 〈M, N〉p0 	E ∈ S if M 	E ∈ S and N ∈ SN
(11.2) 〈M, N〉p1 	E ∈ S if N 	E ∈ S and M ∈ SN
(12) M ∈ S if N → M and N ∈ S

SAT is the set of saturated sets. We will use notation like sat (1) to denote
the clause in the above definition, for example, sat (1) denotes the clause (1).
We will use S to denote a saturated set.

We define several operations for saturated sets to interpret types by saturated
sets. We will show saturated sets are closed under these operations.

Definition 3.2. (1) S1 → S2 = {M ∈ Λ|MN ∈ S2 for all N ∈ S1}.
(2) S1 ∧ S2 = {M ∈ Λ|Mp0 ∈ S1 and Mp1 ∈ S2}.

To define simple saturated sets for disjunction and second-order existential quan-
tification, we have to use the following auxiliary notions. A segment is a context
that is nested minor deductions of the rules (∨E) and (∃E). Note that C[M ]E
reduces to C′[ME] by permutative conversions. A wrong-application term is an
application term that fails to have any type because of its wrong head construc-
tion. A wrong-disjunctive term is a term that fails to have any disjunctive type
because of its wrong head construction. A wrong-existential term is a term that
fails to have any existential type because of its wrong head construction.

W∨ and W ∃ are introduced to keep the same clauses (6),(7),(9), and (10) as
those in other papers such as [5]. Otherwise we should use more complicated
clauses because of soundness of (∨E) and (∃E).

Definition 3.3. (1) Segments C[·] ::= ·|M [x.C[·], y.L]|M [x.N, y.C[·]]|M [x.C[·]]
(2) Wrong-application terms ::=

(λx.M)[y.N, z.L] 	E|(λx.M)[y.N ] 	E|(λx.M)p0 	E|(λx.M)p1 	E|
〈0, M〉N 	E|〈0, M〉[x.N ] 	E|〈0, M〉p0 	E|〈0, M〉p1 	E|
〈1, M〉N 	E|〈1, M〉[x.N ] 	E|〈1, M〉p0 	E|〈1, M〉p1 	E|
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〈∃, M〉N 	E|〈∃, M〉[x.N, y.L] 	E|〈∃, M〉p0 	E|〈∃, M〉p1 	E|
〈M, N〉L	E|〈M, N〉[x0.L0, x1.L1] 	E|〈M, N〉[x.L] 	E

W is used to denote a wrong-application term.
(2) Wrong-disjunctive terms ::= λx.M |〈∃, M〉|〈M, N〉|W
W∨ is the set of wrong-disjunctive terms.
(3) Wrong-existential terms ::= λx.M |〈0, M〉|〈1, M〉|〈M, N〉|W
W ∃ is the set of wrong-existential terms.
(4) S1 ∨ S2 = {M ∈ SN|M →∗ C[〈0, P 〉] implies P ∈ S1 and

M →∗ C[〈1, P 〉] implies P ∈ S2 and M →∗ C[Q] implies Q �∈ W∨}.
(5) For a function F : SAT → SAT, we define
∃(F ) = {M ∈ SN|M →∗ C[〈∃, P 〉] implies P ∈ F (S) for some S ∈ SAT

and M →∗ C[Q] implies Q �∈ W ∃}.

Lemma 3.4. (1) SN ∈ SAT.
(2) S1 → S2 ∈ SAT if S1, S2 ∈ SAT.
(3) S1 ∧ S2 ∈ SAT if S1, S2 ∈ SAT.
(4) S1 ∨ S2 ∈ SAT if S1, S2 ∈ SAT.
(5) ∃(F ) ∈ SAT if F : SAT → SAT.
(6)

⋂
i∈I Si ∈ SAT if Si ∈ SAT for each i ∈ I.

Proof. (1) We will show SN satisfies sat (1) to (12). We will discuss only non-
trivial cases.

sat (3) is proved by induction on (Length(	E), |M | + |N | + | 	E|). Assume
(λx.M)N 	E → L and we will show L ∈ SN. We will consider cases accord-
ing to L. If L = (λx.M ′)N ′ 	E, then induction hypothesis can apply, since
|M ′| + |N ′| < |M | + |N |. If L = (λx.M)N 	E′, then induction hypothesis can
apply, since (Length( 	E), | 	E|) > (Length( 	E′), | 	E′|). If L = M [x := N ] 	E, then
the assumption implies L ∈ SN.

sat (5.1) and (5.2) are proved by induction on (Length(	E), |M |+ |N0|+ |N1|+
| 	E|) similarly to sat (3).

sat (7) is proved by induction on (Length(	E), |	R| + |N0| + |N1| + |E| + | 	E|).
Assume x	R[x0.N0, x1.N1]E 	E → L and we will show L ∈ SN. We will consider
cases according to L.

If L = x	R′[x0.N
′
0, x1.N

′
1]E

′ 	E′ and Length( 	E′) = Length( 	E), then induction
hypothesis can apply, since |	R′| + |N ′

0| + |N ′
1| + |E′| + | 	E′| < |	R| + |N0| + |N1| +

|E| + | 	E|.
If L = x	R[x0.N0, x1.N1]E′ 	E′ and Length( 	E′) < Length( 	E), then induc-

tion hypothesis can apply, since we have x	R[x0.N0E
′, x1.N1E

′] 	E′ ∈ SN from
the assumption x	R[x0.N0E, x1.N1E] 	E ∈ SN and x	R[x0.N0E, x1.N1E] 	E →∗

x	R[x0.N0E
′, x1.N1E

′] 	E′.
If L = x	R[x0.N0E, x1.N1E] 	E, then the assumption gives L ∈ SN.
sat (8) is proved by induction on (Length(	E), |M | + |N | + | 	E|) similarly to

sat (3).
sat (10) is proved by induction on (Length(	E), |	R|+ |N |+ |E|+ | 	E|) similarly

to sat (7).
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sat (11.1) and (11.2) are proved by induction on (Length(	E), |M |+ |N |+ | 	E|)
similarly to sat (3).

(2) We will show S1 → S2 satisfies sat (1) to (12). We will discuss only non-
trivial cases.

sat (1) is proved from S1 sat (2) and S2 sat (1).
sat (2) is proved from S1 sat (1) and S2 sat (2).
sat (6). Assume L ∈ S1 and we will show x	R[x0.N0, x1.N1]L ∈ S2. From the

assumption N0 ∈ S1 → S2, we have N0L ∈ S2. Similarly we have N1L ∈
S2. By S2 sat (6), x	R[x0.N0L, x1.N1L] ∈ S2 holds. By S2 sat (7), we get
x	R[x0.N0, x1.N1]L ∈ S2.

sat (9) is proved in a similar manner to sat (6).
(3) The claim is proved similarly to (2).
(4) We will show S1∨S2 satisfies sat (1) to (12). sat (1) trivially holds. To show

sat (2) to (12), we have to show the left-hand side M0 in each clause is in S1∨S2.
M0 ∈ SN follows from (1) for each case. So we discuss only (a) M0 →∗ C[〈0, P 〉]
implies P ∈ S1 and (b) M0 →∗ C[Q] implies Q �∈ W∨ for non-trivial cases.

sat (2). (a) We do not have such P . (b) The only such Q is M0, which is not
in W∨.

sat (3). (a) Case 1. C[〈0, P 〉] = (λx.M ′)N ′ 	E′. We have M [x := N ] 	E →∗

M [x := N ] 	E′ = C′[〈0, P 〉], so P ∈ S1.
Case 2. M0 →∗ (λx.M ′)N ′ 	E′ → M ′[x := N ′] 	E′ →∗ C[〈0, P 〉]. We have

M [x := N ] 	E →∗ C[〈0, P 〉] and hence P is in S1.
(b) is proved similarly to (a).
sat (4). (a) We have M ′ →∗ C′[〈0, P ′〉] where M0 ≺ M ′ and P ≺ P ′. Hence

P ′ ∈ S1. By S1 sat (4), we have P ∈ S1.
(b) We have M ′ →∗ C′[Q′] where M0 ≺ M ′ and Q ≺ Q′. Hence Q′ �∈ W∨. So

we have Q �∈ W∨.
sat (5.1). (a) Case 1. C[〈0, P 〉] = 〈0, M ′〉[x0.N

′
0, x1.N

′
1] 	E

′ and Length( 	E′) > 0.
We have N1 	E →∗ N ′

1
	E′ = C′[〈0, P 〉], so P is in S1.

Case 2. C[〈0, P 〉] = 〈0, M ′〉[x0.N
′
0, x1.N

′
1].

Case 2.1. N ′
0 = C′[〈0, P 〉]. By the assumption N0[x := M ] 	E ∈ S1 ∨ S2 and

S1 ∨ S2 sat (4), we have N0 	E ∈ S1 ∨ S2. Since N0 	E →∗ N ′
0, we get P ∈ S1.

Case 2.2. N ′
1 = C′[〈0, P 〉]. By the assumption N1 	E ∈ S1∨S2 and N1 	E →∗ N ′

1,
we get P ∈ S1.

Case 3. M0 →∗ 〈0, M ′〉[x0.N
′
0, x1.N

′
1] 	E

′ → N ′
0[x0 := M ′] 	E′ →∗ C[〈0, P 〉]. We

have N0[x0 := M ] 	E →∗ N ′
0[x0 := M ′] 	E′ →∗ C[〈0, P 〉], so P is in S1.

(b) is proved similarly to (a).
sat (6) is proved similarly to sat (5.1) Case 2.
sat (7). (a) C[〈0, P 〉] = x	R[x0.N

′
0, x1.N

′
1] 	E

′. In both cases Length( 	E) > 0
and Length( 	E) = 0 we have some C′ such that x	R[x0.N0E, x1.N1E] 	E →∗

x	R[x0.N
′′
0 , x1.N

′′
1 ] = C′[〈0, P 〉] holds, so P is in S1.

(b) is proved similarly to (a).
sat (8). (a) Case 1. C[〈0, P 〉] = 〈∃, M ′〉[x.N ′] 	E′ and Length( 	E′) > 0. We have

N [x := M ] 	E →∗ N ′[x := M ] 	E′ = C′[〈0, P 〉], so P is in S1.
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Case 2. C[〈0, P 〉] = 〈∃, M ′〉[x.N ′].
By the assumption N [x := M ] 	E ∈ S1 ∨ S2 and S1 ∨ S2 sat (4), we have

N 	E ∈ S1 ∨ S2. Since N 	E →∗ N ′ = C′[〈0, P 〉], we get P ∈ S1.
Case 3. M0 →∗ 〈∃, M ′〉[x.N ′] 	E′ → N ′[x := M ′] 	E′ →∗ C[〈0, P 〉]. We have

N [x := M ] 	E →∗ C[〈0, P 〉] and hence P is in S1.
(b) is proved similarly to (a).
sat (9) and (10) are proved similarly to sat (6) and (7) respectively.
sat (11.1) and (11.2) are proved in a similar way to sat (3).
(5) is proved similarly to (4).
(6) follows immediately from the definition of saturated sets. �

Definition 3.5 (Interpretation of types). A set valuation is a function from
type variables to SAT. A set valuation is denoted by σ. For a set valuation σ, a
type variable X , and a saturated set S, the set valuation σ[X := S] is defined
by (σ[X := S])(X) = S and (σ[X := S])(Y ) = σ(Y ) for X �= Y .

For a type A and a set valuation σ, the set [|A|]σ of terms is defined by induction
on A as follows.

[|X |]σ = σ(X).
[|A → B|]σ = [|A|]σ → [|B|]σ.
[|A ∨ B|]σ = [|A|]σ ∨ [|B|]σ.
[|∃XA|]σ = ∃(λS.[|A|]σ[X := S]).
[|A ∧ B|]σ = [|A|]σ ∧ [|B|]σ.
[|∀XA|]σ =

⋂
S∈SAT[|A|]σ[X := S].

Proposition 3.6. The set [|A|]σ is saturated for every type A and every set
valuation σ.

Proof. This claim is proved by induction on A from Lemma 3.4. �

Lemma 3.7. Suppose that S = S1 ∨ S2 for some saturated sets S1 and S2, or
S = ∃(F ) for some function F : SAT → SAT.

(1) If M [x.N, y.L] ∈ S, then N and L are in S.
(2) If M [x.N ] ∈ S, then N is in S.

Proof. These claims immediately follow from the definition of S1∨S2 and ∃(F ). �

Lemma 3.8. Suppose that S1, S2, and S are saturated, N0[x0 := L] ∈ S for
all L ∈ S1, and N1[x1 := L] ∈ S for all L ∈ S2. If M is in S1 ∨ S2, then
M [x0.N0, x1.N1] is in S.

Proof. This claim is proved by induction on (|M |, M). We consider cases accord-
ing to M . As M is not in W∨, M is in the set defined by

x	E|〈0, M〉|〈1, M〉|(λx.M)N 	E|〈0, M〉[x.N, y.L] 	E|〈1, M〉[x.N, y.L] 	E|
〈∃, M〉[x.N ] 	E|〈M, N〉p0 	E|〈M, N〉p1 	E

Case 1. x	R. We get the claim by the assumption N0, N1 ∈ S and S sat (6).
Case 2. x	R[y0.L0, y1.L1]. By Lemma 3.7 (1), we have L0 ∈ S1 ∨ S2. By in-

duction hypothesis for L0, we have L0[x0.N0, x1.N1] ∈ S. Similarly we have
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L1[x0.N0, x1.N1] ∈ S. By S sat (6), we get x	R[y0.L0[x0.N0, x1.N1],
y1.L1[x0.N0, x1.N1]] ∈ S. By S sat (7), we have the claim.

Case 3. x	R[y0.L0, y1.L1]E 	E. By S1 ∨S2 sat (12), we have M ′ ∈ S1 ∨S2 where
M ′ = x	R[y0.L0E, y1.L1E] 	E. By induction hypothesis for M ′ with |M ′| < |M |,
we have M ′[x0.N0, x1.N1] ∈ S. By S sat (7), we get the claim.

Case 4. x	R[y.L]. This case is proved in a similar way to Case 2 by using
Lemma 3.7 (2).

Case 5. x	R[y.L]E 	E. This case is proved similarly to Case 3.
Case 6. 〈0, M1〉. By the definition of S1 ∨ S2, we have M1 ∈ S1. By the

assumption, N0[x0 := M1] is in S. From S2 sat (2), we have x1 ∈ S2 and so the
assumption implies N1 ∈ S. By S sat (5.1), we have the claim.

The case 〈1, M1〉 is proved similarly.
Case 7. (λx.M1)N 	E. By S1 ∨ S2 sat (12), M ′ is in S1 ∨ S2 where M ′ =

M1[x := N ] 	E. By induction hypothesis for M ′ with |M ′| < |M |, we have
M ′[x0.N0, x1.N1]. By S sat (3), we have the claim.

Case 8. 〈0, M1〉[y0.L0, y1.L1] 	E. By S1 ∨ S2 sat (12), M ′ is in S1 ∨ S2 where
M ′ = L0[y0 := M1] 	E. By induction hypothesis for M ′ with |M ′| < |M |, we have
M ′[x0.N0, x1.N1] is in S.

By S1 ∨ S2 sat (12), 〈0, M1〉[y0.L0 	E, y1.L1 	E] is in S1 ∨ S2. By Lemma 3.7
(1), M3 is in S1 ∨ S2 where M3 = L1 	E. By induction hypothesis for M3 with
|M3| < |M |, M3[x0.N0, x1.N1] is in S. By S sat (5.1), we have the claim.

The case 〈1, M1〉[y0.L0, y1.L1] 	E is proved similarly.
Case 9. 〈∃, M1〉[x.N ] 	E. By S1 ∨ S2 sat (12), M ′ is in S1 ∨ S2 where M ′ =

N [x := M1] 	E. By induction hypothesis for M ′ with |M ′| < |M |, we have
M ′[x0.N0, x1.N1] ∈ S. By S sat (8), we have the claim.

Case 10. 〈M1, M2〉p0 	E or 〈M1, M2〉p1 	E. This case is proved similarly to
Case 7. �

Lemma 3.9. Suppose that F : SAT → SAT is saturated, and N [x := L] ∈ S
for all S1 ∈ SAT and all L ∈ F (S1). If M is in ∃(F ), then M [x.N ] is in S.

Proof. This claim is proved by induction on (|M |, M) in a similar way to
Lemma 3.8. �

A valuation is a function from variables to Λ. We will use ρ to denote a valuation.
For a valuation ρ and a term M , the valuation ρ[x := M ] is defined in the same
way as σ[X := S].

For a term M , the substitution Mρ is defined as M [x1 := ρ(x1), . . . , xn :=
ρ(xn)] where free variables of M are among {x1, . . . , xn}.

Theorem 3.10 (Soundness). Suppose ρ is a valuation and σ is a set valu-
ation. If −−−→

x : B 
 M : A and ρ(xi) ∈ [|Bi|]σ for 1 ≤ i ≤ Length(−−−→
x : B), then

Mρ ∈ [|A|]σ holds.

Proof. We will use induction on the proof of −−−→
x : B 
 M : A. We will consider

cases according to the last rule.
Case Assumptions. The claim is proved by the assumption.
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Case (→I). Suppose Γ 
 λx.M : A → B is inferred from Γ, x : A 
 M : B.
We will show (λx.M)ρ ∈ [|A → B|]σ. Assume N ∈ [|A|]σ. By induction hypothesis
with ρ[x := N ], we have (Mρ)[x := N ] ∈ [|B|]σ. By [|B|]σ sat (3), (λx.Mρ)N ∈
[|B|]σ holds. Hence we get the claim.

Case (→E). The claim is proved by induction hypothesis and the definition
of S1 → S2.

Case (∨I1). Suppose 〈0, M〉 →∗ C[〈0, P 〉]. Then M reduces to P . By induction
hypothesis M ∈ S1 and S1 sat (12), we have P ∈ S1. If 〈0, M〉 reduces to C[Q],
then Q is 〈0, M ′〉, so Q is not in W∨.

Case (∨I2) is similarly proved.
Case (∨E). By letting S1 := [|A|]σ,S2 := [|B|]σ, and S := [|C|]σ in Lemma 3.8,

we have the claim.
Case (∃I). The claim is proved by induction hypothesis and the definition of

[|∃XA|]σ in a similar way to Case (∨I1).
Case (∃E). By letting F (S) = [|A|]σ[X := S] and S := [|C|]σ in Lemma 3.9, we

have the claim.
Case (∧I). Suppose 〈M, N〉 : A ∧ B is inferred from M : A and N : B. By

induction hypothesis, we have Mρ ∈ [|A|]σ and Nρ ∈ [|B|]σ. By [|A|]σ sat (11.1),
〈M, N〉ρp0 is in [|A|]σ. By (11.2) we similarly have 〈M, N〉ρp1 ∈ [|B|]σ. By the
definition of S1 ∧ S2, we have the claim.

Cases (∧E1) and (∧E2). The claim is proved by induction hypothesis and the
definition of S1 ∧ S2.

Case (∀I). Suppose M : ∀XA is inferred from M : A. We will prove Mρ ∈
[|∀XA|]σ. Assume S ∈ SAT. By induction hypothesis with σ[X := S], we have
Mρ ∈ [|A|]σ[X := S]. Hence we have Mρ ∈

⋂
S∈SAT[|A|]σ[X := S] = [|∀XA|]σ.

Case (∀E). The claim is proved by induction hypothesis and the definition of
[|∀XA|]σ. �

Theorem 3.11 (Strong Normalization). If −−−→
x : B 
 M : A is proved in the

system NJ2, then M is strongly normalizing.

Proof. Let ρ = λx.x and σ(X) = SN. By [|Bi|]σ sat (2), xi is in [|Bi|]σ. By
Theorem 3.10, we get Mρ ∈ [|A|]σ. By [|A|]σ sat (1), we have the claim. �

4 The System λ→∃∧∩∪∀ with Second-Order Existential
Types, Intersection Types, and Union Types

We will define the system λ→∃∧∩∪∀, which has second-order existential types,
intersection types, and union types together with permutative conversions for
existential types.

The language is the same as that of NJ2 except it does not have disjunction
and instead it has intersection types and union types.

Definition 4.1 (Language)

Type variables X, Y, Z, . . ..
Types A, B, . . . ::= X |A → B|∃XA|A ∧ B|A ∩ B|A ∪ B|∀XA.
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Variables x, y, z, . . ..
Terms M, N, L, P, Q ::= x|λx.M |MN |〈∃, M〉|M [x, N ]|〈M, N〉|Mp0|Mp1
Λ is the set of terms.

Definition 4.2 (Typing rules). The typing rules are those of NJ2 except
(∨I1),(∨I2), and (∨E) with the following rules.

M : A M : B
M : A ∩ B

(∩I) M : A ∩ B
M : A

(∩E1) M : A ∩ B
M : B

(∩E2)

M : A
M : A ∪ B

(∪I1) M : B
M : A ∪ B

(∪I2) M : A ∪ B

[x : A]....
N : C

[x : B]....
N : C

N [x := M ] ∈ C
(∪E)

Remark. The discussion in the next section such as Theorems 5.6 and 5.7 will
hold, even if the system has any type preorder ≤ that is set-theoretically valid
and the subsumption rule M : A A ≤ B

M : B
(≤)

The reduction system is the same as that of NJ2 except disjunction.

Definition 4.3 (Reduction rules)

β-reductions:

(β→) (λx.M)N → M [x := N ]
(β∃) 〈∃, M〉[x.N ] → N [x := M ]
(β ∧ 1) 〈M, N〉p0 → M
(β ∧ 2) 〈M, N〉p1 → N

Eliminators E ::= M |[x.M ]|p0|p1
Permutative conversions:

(π∃) M [x.N ]E → M [x.NE]

The relation → is defined as the compatible closure of the relation → defined
above. The relation →∗ is the reflexive transitive closure of the relation →. We
say that M reduces to N if M →∗ N .

Remark. Church Rosser property holds. Subject reduction property does not
hold because of union types [1].

SN is the set of strongly normalizing terms.
The next section will prove that every term typed in the system λ→∃∧∩∪∀ is

strongly normalizing.

5 Strong Normalization for λ→∃∧∩∪∀

We will give saturated-set semantics to λ→∃∧∩∪∀, and prove its strong normal-
ization. To do this, we will use the saturated sets introduced in Section 3. We will
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interpret union types by set-theoretic union of these saturated sets, and show
its soundness.

Saturated sets are defined by removing the clauses (5.1) to (7) from Definition
3.1. We give their definition here to avoid ambiguity.

Definition 5.1 (Saturated sets)
A set S of terms is saturated if the following hold, where R ::= M |p0|p1

(1) S ⊆ SN
(2) x	R ∈ S if x	R ∈ SN
(3) (λx.M)N 	E ∈ S if M [x := N ] 	E ∈ S and N ∈ SN
(4) M ∈ S if N � M and N ∈ S

(5) 〈∃, M〉[x.N ] 	E ∈ S if N [x := M ] 	E ∈ S and M ∈ SN
(6) x	R[y.N ] ∈ S if x	R ∈ SN and N ∈ S

(7) x	R[y.N ]E 	E ∈ S if x	R[y.NE] 	E ∈ S

(8.1) 〈M, N〉p0 	E ∈ S if M 	E ∈ S and N ∈ SN
(8.2) 〈M, N〉p1 	E ∈ S if N 	E ∈ S and M ∈ SN
(9) M ∈ S if N → M and N ∈ S

S1 → S2, S1 ∧ S2, and ∃(F ) are defined in the same way as in Section 3.

Definition 5.2. (1) Segments C[·] ::= ·|M [x.C[·]]
(2) Wrong-application terms ::= (λx.M)[y.N ] 	E|(λx.M)p0 	E|(λx.M)p1 	E|

〈∃, M〉N 	E|〈∃, M〉p0 	E|〈∃, M〉p1 	E|
〈M, N〉L	E|〈M, N〉[x.L] 	E

W is used to denote a wrong-application term.
(3) Wrong-existential terms ::= λx.M |〈M, N〉|W
W ∃ is the set of wrong-existential terms.
(4) For a function F : SAT → SAT, we define
∃(F ) = {M ∈ SN|M →∗ C[〈∃, P 〉] implies P ∈ F (S) for some S ∈ SAT

and M →∗ C[Q] implies Q �∈ W ∃}.

The saturated sets satisfy similar properties to those in Section 3.

Lemma 5.3. (1) SN ∈ SAT.
(2) S1 → S2 ∈ SAT if S1, S2 ∈ SAT.
(3) S1 ∧ S2 ∈ SAT if S1, S2 ∈ SAT.
(4) ∃(F ) ∈ SAT if F : SAT → SAT.
(5)

⋂
i∈I Si ∈ SAT if Si ∈ SAT for each i ∈ I.

(6)
⋃

i∈I Si ∈ SAT if Si ∈ SAT for each i ∈ I.

Proof. The claims (1) to (5) are proved similarly to Lemma 3.4.
(6) We will show only non-trivial cases.
sat (4). N ∈

⋃
i∈I Si implies N ∈ Si for some i. By Si sat (4), M is in Si.

Hence we get the claim.
sat (5). N [x := M ] 	E ∈

⋃
i∈I Si implies N [x := M ] 	E ∈ Si for some i. By Si

sat (5), 〈∃, M〉[x.N ] 	E is in Si. Hence we get the claim. �
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Definition 5.4 (Interpretation of types)
A set valuation is defined in the same way as Section 3.

For a type A and a set valuation σ, the set [|A|]σ of terms is defined by induction
on A as follows.

[|X |]σ = σ(X).
[|A → B|]σ = [|A|]σ → [|B|]σ.
[|∃XA|]σ = ∃(λS.[|A|]σ[X := S]).
[|A ∧ B|]σ = [|A|]σ ∧ [|B|]σ.
[|A ∩ B|]σ = [|A|]σ ∩ [|B|]σ.
[|A ∪ B|]σ = [|A|]σ ∪ [|B|]σ.
[|∀XA|]σ =

⋂
S∈SAT[|A|]σ[X := S].

Proposition 5.5. The set [|A|]σ is saturated for every type A and every set
valuation σ.

Proof. This claim is proved by induction on A from Lemma 5.3. �

The same claims as Lemmas 3.7 and 3.9 hold.
A valuation ρ and the substitution Mρ are defined in the same way as in

Section 3.

Theorem 5.6 (Soundness). Suppose ρ is a valuation and σ is a set valuation.
If −−−→

x : B 
 M : A and ρ(xi) ∈ [|Bi|]σ for 1 ≤ i ≤ Length(−−−→
x : B), then Mρ ∈ [|A|]σ

holds.

Proof. We will use induction on the proof of −−−→
x : B 
 M : A. We will consider

cases according to the last rule. We will discuss only new non-trivial cases we
did not have in the proof of Theorem 3.10.

Case (∩I). Suppose M : A ∩ B is inferred from M : A and M : B. We have
to show Mρ ∈ [|A|]σ ∩ [|B|]σ. By induction hypothesis, we have Mρ ∈ [|A|]σ and
Mρ ∈ [|B|]σ. Hence we have the claim.

Cases (∩E1), (∩E2), (∪I1), and (∪I2) are similarly proved to Case (∩I).
Case (∪E). Suppose Γ 
 N [x := M ] : C is inferred from Γ 
 M : A ∪ B and

Γ, x : A 
 N : C and Γ, x : B 
 N : C. We have to show N [x := M ]ρ ∈ [|C|]σ.
By induction hypothesis, we have Mρ ∈ [|A ∪ B|]σ.

Case 1. Mρ ∈ [|A|]σ. By induction hypothesis for the second assumption of (∪E)
with ρ[x := Mρ], we have Nρ[x := Mρ] ∈ [|C|]σ. Therefore we have the claim.

Case 2. Mρ ∈ [|B|]σ. The claim is proved in a similar way to Case 1. �

The next theorem is derived from the previous theorem in the same way as in
Section 3.

Theorem 5.7 (Strong Normalization). If −−−→
x : B 
 M : A is proved in the

system λ→∃∧∩∪∀, then M is strongly normalizing.

Remark. The concluding remarks in [10] states that if their system does not
have disjunction, their saturated sets are closed under union. Therefore, if we
add second-order existential quantification, intersection types, and union types
to their system without disjunction, a similar strong normalization theorem im-
mediately follows.
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6 Concluding Remarks

[5] and [7] proposed different saturated sets for disjunction from our saturated
sets. In our notation, they are as follows:

S1 ∨intro S2 =
⋂

{S ∈ SAT|〈0, M〉 ∈ S for all M ∈ S1 and
〈1, M〉 ∈ S for all M ∈ S2}

S1 ∨elim S2 = {M ∈ SN|∀S ∈ SAT.∀N0N1((∀L ∈ S1.N0[x0 := L] ∈ S)→
(∀L ∈ S2.N1[x1 := L] ∈ S) → M [x0.N0, x1.N1] ∈ S)}

Roughly speaking, [5] and [7] gave S1∨introS2 and S1∨elimS2, respectively. Those
saturated sets work also in our setting. In general, in order to prove soundness
theorem of saturated-set semantics and strong normalization theorem, we could
choose any saturated set S that satisfies S1 ∨intro S2 ⊆ S ⊆ S1 ∨elim S2. For our
saturated sets, we have S1 ∨intro S2 = S1 ∨ S2 = S1 ∨elim S2.

However, our definition of S1 ∨ S2 is simpler, because it is defined by Π0
1 -

comprehension and on the other hand the definition of S1∨introS2 and S1∨elimS2
uses Π1

1 -comprehension. Moreover, the definition of S1∨S2 is predicative since it
does not mention the set of saturated sets, and on the other hand, the definitions
of S1 ∨intro S2 and S1 ∨elim S2 are impredicative because they refer to the set
SAT of saturated sets. This simplification comes from the idea of segments by
Prawitz, which catches the essence of permutative conversions.

For saturated sets for second-order existential quantification, our definition of
saturated sets is simpler, too. According to ideas in [5] and [7], we can define
the following, respectively:

[|∃XA|]intro
σ =

⋂
{S ∈ SAT|(∃S1 ∈ SAT.M ∈ [|A|]σ[X := S1]) → 〈∃, M〉 ∈ S}

[|∃XA|]elim
σ = {M ∈ SN|∀S ∈ SAT.∀N(

(∀S1 ∈ SAT.∀L ∈ [|A|]σ[X := S1].N [x := L] ∈ S) → M [x.N ] ∈ S)}.

In general, in order to prove soundness theorem of saturated-set semantics and
strong normalization theorem, we could choose any saturated set S that satisfies
[|∃XA|]intro

σ ⊆ S ⊆ [|∃XA|]elim
σ. For our saturated sets, we have [|∃XA|]intro

σ =
[|∃XA|]σ = [|∃XA|]elim

σ. Our definition of [|∃XA|]σ is simpler, since it can be
defined by Σ1

1 -comprehension. On the other hand the definitions of [|∃XA|]introσ

and [|∃XA|]elim
σ use Π1

2 -comprehension. This simplification also comes from the
idea of segments by Prawitz.

Standard saturated sets with these new ones for existential types were not
closed under union. Instead of the condition (5) in Definition 5.1, they would
have the following condition:

(5′) 〈∃, M〉[x.N ] 	E ∈ S if N [x := M ] 	E ∈ S and N 	E ∈ S and M ∈ SN

In order to show S1 ∪ S2 is saturated, we would have to show

〈∃, M〉[x.N ] 	E ∈ S1 ∪ S2 if N [x := M ] 	E ∈ S1 and N 	E∈S2 and M ∈ SN,

but it is not the case. This paper can simply the standard condition (5’) to (5)
by introducing the contraction property (4) in Definition 5.1.
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Remark that the sets of the shape X → SN used in [7] are not closed under
union.

Finding saturated sets with both disjunction and union types would be an
interesting question. Our saturated sets will not work with both disjunction and
union types because there are some saturated sets S1 and S2 such that

x	R[x0.N0, x1, N1] �∈ S1 ∪ S2 and x	R ∈ SN and N0 ∈ S1 and N1 ∈ S2

and S1 ∪ S2 does not satisfy sat (6) in Definition 3.1.
Future work will be applying this technique of saturated sets developed in

this paper to other systems to give them saturated-set semantics and prove
their strong normalization.
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Abstract. We define an extension of Herbelin’s λ̄μ-calculus, introduc-
ing a product operation on contexts (in the sense of lists of arguments, or
stacks in environment machines), similar to the convolution product of
distributions. This is the computational couterpart of some new seman-
tical constructions, extending models of Ehrhard-Regnier’s differential
interaction nets, along the lines of Laurent’s polarization of linear logic.
We demonstrate this correspondence by providing this calculus with a
denotational semantics inside a lambda-model in the category of sets and
relations.

1 Introduction

Herbelin’s λ̄μ-calculus [Her95] transposes the Curry-Howard correspondence be-
tween classical natural deduction and λμ-calculus to the setting of classical se-
quent calculus LK (in fact one of its deterministic versions: LKT [DJS95]). In
particular, the notion of application, corresponding to the modus ponens of nat-
ural deduction, is replaced with the notion of cut between a term and a context.
More precisely, λ̄μ-calculus involves three syntactic categories — terms, contexts
and commands — given by the following grammar:

s, t ::= x | λx s | μα c (terms)
e, f ::= α | s · e (contexts)

c ::= 〈s , e〉 (commands) .

Reduction is defined by the following two basic rules:

〈λx s , t · e〉 → 〈s [t/x] , e〉 and 〈μα c , e〉 → c [e/α] .

In the present paper, we introduce an extension of λ̄μ-calculus, featuring a
binary operation ∗ on contexts (and the corresponding context unit 1), which
bears similarities with the convolution product of distributions. For that purpose,
we further endow the set of terms with a structure of commutative monoid, with
addition + and neutral 0, and give the following three reduction rules:

〈λx s , (t · e) ∗ f〉 → 〈λxμα 〈s [t + x/x] , e ∗α〉 , f〉
〈λx s ,1〉 → 〈s [0/x] ,1〉
〈μα c , e〉 → c [e/α] .

The reader may check that the reduction rules of usual λ̄μ-calculus can be sim-
ulated in this new setting.

S. Ronchi Della Rocca (Ed.): TLCA 2007, LNCS 4583, pp. 381–395, 2007.
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Outline of the Paper. In the remaining of this introduction, we briefly review
notions and ideas that led to the definition of convolution λ̄μ-calculus: it is
the pure calculus associated with an extension of Ehrhard-Regnier’s differential
nets [ER05], along the lines of Laurent’s polarization of linear logic proof nets
[Lau02]. In section 2 we introduce the objects of convolution λ̄μ-calculus, and the
associated notion of reduction, for which we prove the Church-Rosser property.
In section 3 we define a reflexive object D in the category of sets and relations,
following [BE04]. Then we introduce a type-system, in which types are elements
of D, along the lines of Carvalho’s system R [dC06]. We conclude by proving
that terms identified by reduction have exactly the same types.

1.1 Classical Logic and Co-structural Rules

Denotational semantics of linear logic gives rise to models of simply typed λ-
calculus, through the Curry-Howard isomorphism and well known translations
from intuitionistic logic into linear logic. This relationship may be explicited in
the syntax by encodings of typed λ-calculus into linear logic proof nets, in which
β-reduction of λ-terms is accurately simulated by cut-elimination in proof nets.
In fact, one may also establish such a correspondence in an untyped setting: pure
λ-terms are succesfully encoded into the weakly typed nets of [Reg92].

An analoguous relationship may be observed in a setting related with classical
logic rather than intuitionistic logic. In [Lau02], Olivier Laurent introduced po-
larized linear logic and polarized proof nets. Polarized linear logic is linear logic
where all formulas are polarized, and weakening and contraction are allowed
on every negative formula; also, promotion is allowed on any sequent formed
only of negative formulas. In [Lau03], Laurent showed how to encode Parigot’s
λμ-calculus [Par92] into polarized proof nets. Since λμ-calculus lifts the Curry-
Howard correspondence from intuitionistic logic to classical logic, this encoding
is the counterpart of a translation from classical natural deduction into polarized
linear logic. A thorough semantical investigation on the nature of this translation
may be found in [LR03].

It also happens that original models of linear logic lead to novel extensions of
λ-calculus, using the Curry-Howard correspondence as a tool to draw semanti-
cal properties back into the syntax. In [Ehr01] and [Ehr05], Ehrhard introduced
models of linear logic in which formulas are interpreted by particular vector
spaces, and proofs by linear maps between these spaces. Moreover, morphisms
with type !A −◦ B correspond to analytic functions between A and B. This not
only provided a semantics of typed λ-calculus in which λ-terms are interpreted
by smooth functions between vector spaces in a very natural way, but also led
to the introduction of differential λ-calculus by Ehrhard and Regnier in [ER03].

Differential Nets. Here we briefly outline some features of the differential inter-
action nets from [ER05], which may be considered as a syntactic presentation of
the models from [Ehr01] and [Ehr05]. For the sake of simplicity, we use a weak
typing scheme: using usual linear logic connectors and modalities, introduce type
o such that o = !o −◦ o; we will use types o, i = o⊥, !o and ?i = (!o)⊥, to type



Convolution λ̄μ-Calculus 383

the wires of interaction nets. We do not consider criteria for well-formedness of
nets; we only focus on local, weakly typed reduction rules.

Differential interaction nets extend the interaction nets for multiplicative ex-
ponential linear logic from [Laf95] as follows: besides multiplicative cells

par: �
o

o

?i
and tensor: ⊗

i

!o

i

and structural cells

dereliction: d
?i i

, contraction: c?
?i

?i

?i
and weakening: w?

?i
,

come costructural cells

derivative: ∂
!oo , cocontraction: m!

!o!o

!o
and coweakening: u!

!o
.

Cells m! and u! have the same geometry as tensor and tensor unit respectively:
m! connects two nets together, and u! is a net by itself.

Recall that in the formalism of interaction nets, typing depends on the ori-
entation of wires: if a wire has type A in one orientation, it has type A⊥ in
the reverse orientation. Also, recall that each cell has exactly one principal port
(this we put on the point of our triangular cells) together with any number of
auxiliary ports. A redex consists of two cells connected by their respective prin-
cipal ports, in accordance with typing. Among new reduction rules introduced
in differential nets, interaction between cells c? and w? on the one hand, and m!
and u! on the other hand, endow exponential types with a structure of bialgebra,
mainly characterized by the following interaction rule:

m!
!o!o

!o
c?

?i

?i
→

c?
?i

c?
?i

m!
!o

m!
!o!o

!o !o

!o

.

Also, dereliction d interacts with m! as follows:

m!

!o

!o
d

?i i
→

d
?i i

w?
?i

d
?i i

w?
?i+ .

The idea is that d requires one copy of an argument from its principal port,
which it feeds to its auxiliary port; this argument is taken nondeterministically
from either auxiliary port of m!, hence the sum. The redex between d and w!
reduces to the 0 net (which is the neutral element of sum of nets) following
the same intuition. There are of course symmetric rules for interaction between
derivative ∂, and c? and w?, that we do not explicit here.

An extensive discussion of the intuitions behind differential reduction rules
may be found in [ER05] and the relationship between sum and nondeterminism
is developped in the introduction of [ER03]. Although this is not done in [ER05],
one may also introduce promotion boxes in differential interaction nets, along the
lines of [Laf95], and provide appropriate reduction rules: this allows to encode
differential λ-calculus.
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Polarized Nets. Polarized nets are another extension of linear logic nets. Again,
we only outline a weakly typed version of the polarized proof nets of [Lau03],
which we present in an interaction net flavor. The main feature of polarized nets
is that contraction and weakening are generalized to type o:

co o
o

o
and wo o .

This accounts for structural rules on output types, which is a characteristic of
classical logic. Generalized structural rules give rise to a new redex between
tensor and contraction co (or weakening wo) cells:

co

o

o
⊗

i

!o

i

→
⊗

i

⊗
i

c?
?i

co o
o

!o o

!o

and wo ⊗
i

!o

i

→
w?

?i

wo o

.

Polarized proofs nets are well suited to encode classical extensions of λ-calculus:
see [Lau03] for an encoding of λμ-calculus and [Lau02, Section 12.2] for an
encoding of both deterministic variants of λ̄μμ̃-calculus.

Differential Structures and Classical Logic. In [Vau07a], the author introduced
the differential λμ-calculus, as an attempt to uncover possible interactions be-
tween differential structures and classical logic, in a purely computational set-
ting. The result is a pure calculus which consistently extends both differential
λ-calculus and λμ-calculus.

Another possible path for studying how differential and classical constructs
interact with each other lies at the level of interaction nets. One may come up
with a notion of differential polarized nets, with cells those of differential nets
and polarized nets altogether. Then it is easily checked that the union of the
reduction rules for differential nets and for polarized nets address all possible
redexes.

We do not detail further this construction, but one may verify that differen-
tial λμ-calculus enjoys a natural encoding into these differential polarized nets.
Hence, although differential λμ-calculus introduces a new reduction rule, which
was not present in λμ-calculus nor in differential λ-calculus (namely that asso-
ciated with the derivative of a μ-abstraction), one may claim that it is only a
side-effect of the sequentiality of λ-calculus. Indeed, in the more parallel syntax
of interaction nets, differential cells on one hand, and generalized structural rules
on the other hand, do not interact with each other.

A Convolution Product on Contexts. The convolution λ̄μ-calculus defined in this
paper, is the pure calculus associated with the following other variant of polarized
nets: together with the cells of polarized nets, introduce the abovementioned
costructural cells m! and u!, and also generalized versions of these,

mi
i

i

i

and ui
i
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i.e. cocontraction and coweakening on input type i. New redexes arise and we
give the following reduction rules: mi and ui interact with co and wo the same
way as m! and u! interact with c? and w?,

in particular co o
o

o
mi

i

i

→
mi

i

mi
i co o

co o
o

o o

o

;

also, mi duplicates � and ui erases �, the same way as co and wo act on ⊗:

→�
o

?i
mi

i
i

i

�
o

�
o

mi
i

m!
!o !o

o!o

o

and �
o

?i
ui

i →
ui

i

u!
!o

.

Again, we do not detail this system further: this is still the subject of ongoing
work in [Vau07b]. Rather, we explicit how convolution λ̄μ-calculus stems from it.
In the translation of λμ-calculus into polarized nets, the type of dangling wires
(oriented outwards) is only o or ?i. Type i only occurs in the cuts involved in
the translation of application. This suggests that the computational counterpart
of costructural cells on type i may be more fruitfully studied in the setting of
Herbelin’s λ̄μ-calculus, where cuts appear explicitly.

One may derive a translation of λ̄μ-calculus into polarized nets from that of
λ̄μμ̃T -calculus given in [Lau02], in which i types the active wire of the translation
of contexts. The counterpart of mi and ui is then an associative and commutative
operation on contexts that we denote by ∗, and its unit 1. It is argued in [Ehr01,
Section 5.4], that m! acts as a convolution product on !o, with properties similar
to those of convolution of distributions; in that analogy, u! corresponds to the
Dirac mass at 0 (see also [Ehr05, Section 3], in paragraph Algebraic structure).
Since the behaviour of mi and ui on type i mimics that of m! and u! on type !o,
we may call ∗ convolution product on contexts. We will show later that, although
they live in different formalisms, ∗ actually shares a distinctive feature with the
convolution product of distributions, which further enforces this designation.

From the reduction rules of nets we have outlined, one derives that β-reduction
may be generalized so that:

〈λx s , (t · e) ∗ (t′ · e′)〉 → 〈s [t + t′/x] , e ∗ e′〉 .

Recall that nondeterministic choice provides a possible computational interpre-
tation of sum, as described in the introduction of [ER03]. Convolution product
of contexts may then be interpreted as a nondeterministic intertwining of lists
of arguments.

The reduction step given above, however, only amounts to usual reduction
in λ̄μ-calculus, together with the identity (t · e) ∗(t′ · e′) = (t + t′) ·(e ∗ e′) which
is semantically valid (see Remark 3). Moreover, it involves synchronisation be-
tween contexts: both must have a term at top-level, for a reduction to occur. In
this paper, we use a finer grained notion of reduction, the basic rules of which
were given in the beginning of this introduction: this matches cut elimination
between � and costructural cells more closely. Also, that notion will enable us
to demonstrate the link with convolution of distributions in Remark 2.
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Relational Semantics. In order to underline the correspondence between con-
volution λ̄μ-calculus and generalized costructural rules on i, we provide it with
a denotational semantics in the category of sets and relations. In the standard
relational model of linear logic, formulas are interpreted as sets and proofs as re-
lations between these sets: see, e.g., [Ehr05, Appendix A] for precise definitions.
In particular, structural rules on type A correspond to relations dA ⊆ !A −◦
A = Mfin (A) × A, cA ⊆ !A −◦ (!A ⊗ !A) = Mfin (A) × (Mfin (A) × Mfin (A))
and wA ⊆ !A −◦ 1 = Mfin (A) × 1, where Mfin (A) denotes the set of all fi-
nite multisets of elements of A and 1 is a singleton set. One interesting feature
of the relational model is that it identifies dual connectors in linear logic. In
particular, if ϕ ⊆ A −◦ B in the relational model, then ϕ⊥ ⊆ B −◦ A where
ϕ⊥ = {(b, a); (a, b) ∈ ϕ}. By setting ∂A = d⊥A, mA = c⊥A, and uA = w⊥

A , it turns
out that we obtain a model of differential interaction nets. This suggests that we
may derive a denotational semantics of convolution λ̄μ-calculus from a model of
λμ-calculus in the category of sets and relations.

The model we use was introduced by Bucciarelli and Ehrhard in [BE04], as an
extensional lambda-model in the category of sets and relations. It is naturally
endowed with a monoid structure, which is suitable to provide a denotational
semantics of λμ-calculus along the lines of [LR03]: monoid operation and unit
model structural rules on o. We also use those monoid laws to handle the de-
notational semantics of convolution product: the same as for costructural rules,
this amounts to reverse the direction of the corresponding relation.

1.2 Related Work

A system of intersection and union types for the λ̄μ-calculus is presented
[DGL05]. This system bears some similarity with the type system we present
in section 3: this is underlined by the fact that all weakly normalizing terms are
typable. It comes as no surprise, since our system is derived from Carvalho’s
system R, which is related to a system of intersection types for λ-calculus.

One important outcome of [dC06] and our paper is that they provide the afore-
mentioned type systems with a strong grounding into well known denotational
semantics of linear logic and its variants.

2 Syntax

In this section, we introduce the syntax of convolution λ̄μ-calculus. Like ordinary
λ̄μ-calculus, it involves three distinct syntactic categories: terms, contexts and
commands. We introduce convolution product ∗ as a commutative and associa-
tive binary operation on contexts, with unit 1.

Similarly to what is done in [ER03] and [Vau07a], each category of objects is
endowed with a structure of commutative monoid, and we denote by + and 0
the corresponding operation and neutral element. Moreover, all but one syntactic
construct are linear, i.e. they commute to sums: in particular, ∗ distributes over
+. In order to implement these high-level, metatheoretical requirements, we first
define a basic syntax with a simple equality, then provide extended notations.
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Remark 1. Since we only form sums (without coefficients) it is quite clear that
our constructions are well defined, and that nothing tricky is hiding behind
equality of terms. Recall from [Vau06, Section 4] that the introduction of linear
combinations of terms (rather than just sums) may break normalization proper-
ties, or even trivialize β-equality [Vau06, Section 2.6], depending on the structure
of the set of coefficients.

2.1 Morphology

Basic Syntax. Fix two denumerably infinite sets V (set of variables, denoted by
x, y, z) and N (set of names, denoted by α, β, γ).

Definition 1. Define sets T of simple terms and T + of terms, set S of stacks,
sets E of simple contexts and E+ of contexts, and sets C of simple commands
and C+ of commands, by the following grammar:

s ::= x | λx s | μα c (simple terms)
σ ::= α | S · e (stacks)
e ::= 1 | σ ∗ e (simple contexts)
c ::= 〈s , e〉 (simple commands)
S ::= 0 | s + S (terms)
E ::= 0 | e + E (contexts)
C ::= 0 | c + C (commands) .

We consider terms, commands and contexts up to permutativity of sum in the
sense that, e.g., s+(s′+S) = s′+(s+S). Also, we consider simple contexts up to
permutativity of convolution product: e.g., α ∗((S · e) ∗ e′) = (S · e) ∗(α ∗ e′). No-
tice that these identities preserve free and bound variables and names: hence they
are compatible with α-conversion. Equality of terms (resp. commands, contexts)
is then given by permutativity of sum and product, together with α-equivalence.

Notations. We call simple object any simple term, simple context or simple
command, and object any term, context or command. We may use greek letter θ
to denote a simple object and capital Θ to denote an object. In general, if simple
object θ and object Θ appear in the same sentence, it should be clear they are of
the same kind: Θ is a term, context or command, if θ is a simple term, a simple
context or a simple command respectively.

If θ1, . . . , θn are simple objects and Θ an object, all of the same kind, we write
θ1 + · · · + θn + Θ for θ1 + (· · · + (θn + Θ) · · ·). If θ is a simple object, we may
also denote by θ the corresponding object θ + 0. Hence, all object Θ may be
written Θ = θ1 + · · · + θn or even Θ =

∑n
i=1 θi. Assume Θ = θ1 + · · · + θn and

Θ′ = θ′1 + · · · + θ′p: we write Θ + Θ′ for θ1 + · · · + θn + θ′1 + · · · + θ′p. Up to these
conventions, sum + becomes an associative and commutative binary operation
on terms, contexts and commands respectively, and object 0 is neutral.

Similarly, we identify any stack σ with the simple context σ ∗1 ∈ E : then we
may write any simple context e as e = σ1 ∗ · · · ∗σn where the stacks σi are names
or of shape S · e′. With notations similar to those we used for sum, we consider
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∗ as an associative and commutative binary operation on simple contexts, with
unit 1.

Now we extend our syntactic constructs by linearity in order to be able to
write λxS, μα C, S · E, E ∗F and 〈S , E〉 for all S ∈ T +, E, F ∈ E+ and C ∈ C+.

Definition 2. Assume s1, . . . , sn ∈ T , e1, . . . , ep, f1, . . . , fq ∈ E, c1, . . . , cr ∈ C
and S ∈ T +. Then we write:

λx (
∑n

i=1si) =
∑n

i=1λx si (
∑p

j=1ej) ∗ (
∑q

k=1fk) =
∑p

j=1
∑q

k=1ej ∗ fk

μα (
∑r

l=1cl) =
∑r

l=1μα cl

〈∑n
i=1si ,

∑p
j=1ej

〉
=

∑n
i=1

∑p
j=1 〈si , ej〉

S · (
∑p

j=1ej) =
∑p

j=1S · ej .

Notice that the cons of a term and a context is not linear in the term: this
is the analogue of application not being linear in the argument, in usual λ-
calculus. This definition introduces some overlap of notations: e.g., λx s denotes
both a simple term in our basic syntax, and the value of λx (s + 0) in the above
definition. This is however harmless since both writings denote the same term.

Up to the notations we have just introduced, the set of terms (resp. contexts,
commands) is endowed with a structure of commutative monoid. The set of
contexts is moreover endowed with a structure of commutative rig (i.e. a com-
mutative ring, without the condition that every element admits an opposite),
with addition + and multiplication ∗. Also, λ- and μ-abstractions are linear,
cons is linear in the context, and cut is bilinear. Then substitution of a term for
a variable (resp. of a context for a name) in an object is defined as usual, by
induction on objects:

y [T/x] =
{

T if x = y
y otherwise y [E/α] = y

(λy s) [T/x] = λy (s [T/x]) (λy s) [E/α] = λy (s [E/α])
(μβ c) [T/x] = μβ (c [T/x]) (μβ c) [E/α] = μβ (c [E/α])

β [T/x] = β β [E/α] =
{

E if α = β
β otherwise

(S · e) [T/x] = (S [T/x]) ·(e [T/x]) (S · e) [E/α] = (S [E/α]) ·(e [E/α])
1 [T/x] = 1 1 [E/α] = 1

(σ ∗ e) [T/x] = (σ [T/x]) ∗(e [T/x]) (σ ∗ e) [E/α] = (σ [E/α]) ∗(e [E/α])
〈s , e〉 [T/x] = 〈s [T/x] , e [T/x]〉 〈s , e〉 [E/α] = 〈s [E/α] , e [E/α]〉

0 [T/x] = 0 0 [E/α] = 0
θ + Θ [T/x] = θ [T/x] + Θ [T/x] θ + Θ [E/α] = θ [E/α] + Θ [E/α]

assuming usual conditions to avoid variable and name capture.

2.2 Reduction

Convolution Reduction. We call simply contextual relation any triplet r of binary
relations respectively on terms, contexts and commands, all denoted r, and such
that:
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– if s r S′ then λx s r λxS′ and 〈s , e〉 r 〈S′ , e〉;
– if e r E′ then s · e r s · E′, 〈s , e〉 r 〈s , E′〉 and e ∗ f r E′ ∗ f ;
– if c r C′ then μα c r μα C′;
– if S r S′ then S · e r S′ · e;
– and if θ0 r Θ′

0 then θ0 + Θ1 r Θ′
0 + Θ1.

Definition 3. Reduction →β is the least simply contextual relation such that:

〈μα c , e〉 →β c [e/α] (1)
〈λx s , (S · e) ∗ f〉 →β 〈λy μα 〈s [y + S/x] , α ∗ e〉 , f〉 (2)

〈λx s ,1〉 →β 〈s [0/x] ,1〉 (3)

with y a fresh variable and α a fresh name in (2).

Notice that 〈λx s , S · e〉 →∗
β 〈s [S/x] , e〉 and, more interestingly,

〈λx s , (S · e) ∗(S′ · e′)〉 →∗
β 〈s [S + S′/x] , e ∗ e′〉

where →∗
β denotes the reflexive and transitive closure of →β . This enlightens

the fact that →β is a refined version of both usual reduction of λ̄μ-calculus and
the coarser notion of convolution reduction we first derived from cut elimination
in the introduction. Conversely, →β may be simulated by that coarse reduction,
up-to the following generalization of η-expansion on commands: recalling that
the analogue of η-expansion in λ̄μ-calculus is s ←η λxμα 〈s , x · α〉 we set

〈s , e ∗ e′〉 ←η′ 〈λxμα 〈s , e ∗ (x · α)〉 , e′〉 .

This can be thought of as η-expansion w.r.t. only one component of a product.
If e′ actually holds an argument at top-level, i.e. e′ = S · f , we can get back:

〈λxμα 〈s , e ∗ (x · α)〉 , S · f〉 →∗
β 〈s , e ∗ (S · f)〉 = 〈s , e ∗ e′〉

which validates ←η′ as a notion of η-expansion.

Remark 2. Recall (e.g., from [Sch66]) that the definition of the convolution prod-
uct of distributions is as follows: if e and f are distributions with compact do-
mains and ϕ is a test function, then e ∗ f is such that

〈λz ϕ(z) , e ∗ f〉 = 〈λy 〈λxϕ(x + y) , e〉 , f〉 .

Analoguously, one can check that the following two commands

〈λz s , (S · e) ∗(T · f)〉 and 〈λy μβ〈λxμα〈s [x + y/z] , α ∗β〉 , S · e〉 , T · f〉

are identified by reduction: both reduce to 〈s [S + T/z] , e ∗ f〉. The apparent
complexity of that last identity has two main causes.

First, in the formalism of distributions and test functions, ϕ is supposed to
be a function with scalar values. The type corresponding to scalars is that of
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commands, but in λ̄μ-calculus, as in λ-calculus, functions and values are repre-
sented by terms. Hence the μ-abstractions and the innermost cut: these handle
the possible remaining arguments. Second, functions are in general considered
extensionally. Expansion ←η′ may be used to introduce sufficient extensionality:

〈λz s , e ∗ f〉 ←η′ 〈λy μβ 〈λz s , e ∗ (y ·β)〉 , f〉
→β 〈λy μβ〈λxμα〈s [x + y/z] , α ∗β〉 , e〉 , f〉 .

Confluence. We prove confluence of reduction using usual Tait-Martin-Löf tech-
nique: introduce a parallel extension of one-step reduction, and prove this has
the diamond property.

A binary relation r on commutative monoid A is said to be linear if: for
all a1, . . ., an, b1, . . . , bn ∈ A, if ai r bi holds for all i, then

∑n
i=1 ai r

∑n
i=1 bi

also holds (in particular 0 r 0). Notice that →β is not linear: 0 �→β 0. We
call contextual relation any triplet r of binary relations respectively on terms,
contexts and commands, all denoted r, such that each of them is reflexive and
linear, and if S r S′, E r E′, F r F ′ and C r C′, then λxS r λxS′, μα C r μα C′,
S · E r S′ · E′, E ∗F r E′ ∗F ′ and 〈S , E〉 r 〈S′ , E′〉.
Definition 4. Parallel reduction →// is the least contextual relation →// such
that, if s →// S′, c →// C′, e →// E′, and for all i = 1, . . . , n, Si →// S′

i and
ei →// E′

i, then:

〈μα c , e〉 →// C′ [E′/α] (4)
〈λx s , e ∗

∏n
i=0 (Si · ei)〉 →// 〈λy μα 〈S′ [y +

∑n
i=0S

′
i/x] , α ∗

∏n
i=0E

′
i〉 , E′〉 (5)

〈λx s ,
∏n

i=1(Si · ei)〉 →// 〈s [
∑n

i=1S
′
i/x] ,

∏n
i=1E

′
i〉 . (6)

with y a fresh variable α a fresh name in (5).

It should be clear that →β ⊂ →//, in the sense that if Θ →β Θ′ then Θ →// Θ′. In
particular, (6) is reminiscent of the coarse version of reduction. Moreover, →// ⊂
→∗

β by simple contextuality of →β . The following lemma states the essential
property of parallel reduction.

Lemma 1. If Θ and Θ′ are objects, S and S′ ∈ T +, and E and E′ ∈ E+, such
that Θ →// Θ′, S →// S′ and E →// E′, then for every variable x and every name
α, the following reductions hold:

Θ [S/x] →// Θ′ [S′/x] and Θ [E/α] →// Θ′ [E′/α] .

Proof. This is a simple induction on Θ, using contextuality of →//.

We now prove that →// enjoys the diamond property. Assume S is a term and E

is a stack, and write E = (
∏n

i=1 Si · ei) ∗ (
∏k

j=1 αj); we then define

〈λxS , E〉0 =

{
〈s [

∑n
i=1 Si/x] ,

∏n
i=1 ei〉 if k = 0;〈

λy μα 〈S [y +
∑n

i=1 Si/x] , α ∗
∏n

i=1 ei〉 ,
∏k

j=1 αj

〉
otherwise.

Clearly, 〈λxS , E〉 →// 〈λxS , E〉0, as a particular case of (5) or (6).
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Definition 5. We define full reduction as follows:

x↓ = x α↓ = α 〈x , e〉 ↓ = 〈x , e↓〉
(λx s)↓ = λx s↓ (S · e)↓ = S↓ · e↓ 〈λx s , e〉 ↓ = 〈λx s↓ , e↓〉0
(μα c)↓ = μα c↓ 1↓ = 1 〈μα c , e〉 ↓ = c↓ [e↓/α]

(σ ∗ e)↓ = σ↓ ∗ e↓

and (
∑n

i=1 θi)↓ =
∑n

i=1 θi↓.

Full reduction fires all possible redexes in an object. Then one obtains the
diamond property for parallel reduction:

Lemma 2. If Θ and Θ′ are objects such that Θ →// Θ′, then Θ′ →// Θ↓.

Proof. This result is proved by inspecting all possible cases of reduction Θ →// Θ′,
using Lemma 1 in redex cases.

Theorem 1. Reduction is confluent.

Proof. This is a corollary of Lemma 2 and the inclusions →β ⊂ →// ⊂ →∗
β .

3 Relational Semantics

In this section, we adapt the system R of [dC06] to the setting of convolution
λμ-calculus: we introduce a type system, the types of which are elements of the
extensional λ-model described in [BE04].

A Reflexive Object in the Category of Sets and Relations. If X is a set, we denote
by Mfin (X) the set of all finite multisets [x1, . . . , xn] of elements x1, . . . , xn ∈ X

(possibly with repetitions). Also, we write (Mfin (X))(ω) for the set of all infinite
sequences a = (a(i))i∈ω of finite multisets of elements of X such that a(i) = []
holds for almost all i ∈ ω.

We define an increasing family (Dn)n∈N of sets by: D0 = ∅ and Dn+1 =
(Mfin (Dn))(ω). Then we write D =

⋃
n∈N Dn. If A ∈ Mfin (D) and a ∈ D, we

write A :: a for the sequence b such that b(0) = A and b(i + 1) = a(i) for all
i ∈ ω. This mapping is clearly a bijection between D and Mfin (D) × D. We
write ι for the sequence in which only the empty multiset occurs: ι(i) = [] for all
i ∈ ω, so that ι = [] :: ι. Observe that D1 = {ι}.

Type System. Call types the elements of D. We impose a commutative monoid
structure on types as follows. For all a, b ∈ D, we define a � b as the sequence
such that, for all i ∈ ω, (a � b)(i) = a(i) + b(i) where + denotes the union of
multisets. Clearly ι is neutral for that associative and commutative operation.

A variable environment is a function Γ : V −→ Mfin (D) such that Γ (x) = []
for almost all x ∈ V. If x ∈ V and A ∈ Mfin (D), we write x : A for the variable
environment Γ such that: Γ (x) = A and, for all y �= x, Γ (y) = []. If Γ and Γ ′

are variable environments, we write Γ + Γ ′ for the variable environment defined
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x : [a] � x : a | Var
Γ + x : A � s : a | Δ Γ (x) = []

Γ � λx s : A :: a | Δ
Abs

c : (Γ � Δ� α : a) Δ(α) = ι

Γ � μα c : a | Δ
Mu | α : a � α : a

Name

Γ0 | e : a0 � Δ0 Γ1 � S : a1 | Δ1 · · · Γn � S : an | Δn

Γ0 + · · · + Γn | S · e : [a1, . . . , an] :: a0 � Δ0 � · · · � Δn
Cons

| 1 : ι � Unit
Γ | σ : a � Δ Γ ′ | e : a′ � Δ′

Γ + Γ ′ | σ ∗ e : a � a′ � Δ � Δ′ Conv

Γ � s : a | Δ Γ ′ | e : a � Δ′

〈s , e〉 : (Γ + Γ ′ � Δ� Δ′)
Cut

Γ � θi : a | Δ

Γ �
�n

i=0 θi : a | Δ
Sumi

Fig. 1. Typing rules for system Rλ̄μ∗

by (Γ + Γ ′)(x) = Γ (x) + Γ ′(x). If Γ is a variable environment, we define its
support Supp (Γ ) = {x ∈ V; Γ (x) �= []}.

Similarly, a name environment is a function Δ : N −→ D such that Δ(α) = ι
for almost all α ∈ N. If α ∈ N and a ∈ D, we write α : a for the name
environment Δ such that: Δ(α) = a and, for all β �= α, Δ(β) = ι. If Δ and Δ′

are name environments, we write Δ �Δ′ for the name environment defined by
(Δ � Δ′)(α) = Δ(α) � Δ′(α) and we set Supp (Δ) = {α ∈ N; Δ(α) �= ι}.

Now we introduce type system Rλ̄μ∗ for the objects of convolution λ̄μ-calculus.
Typing judgements are of form Γ � S : a | Δ, Γ | E : a � Δ or C : (Γ � Δ),
where Γ is a variable environment and Δ is a name environment. We may omit
Γ (resp. Δ) if it is the constant function with value [] (resp. ι). The rules of
system Rλ̄μ∗ are given in Fig. 1.

The reader may refer to [DGL05] and check that the rules of system Rλ̄μ∗,
restricted to the objects of ordinary λ̄μ-calculus, are quite similar to those of sys-
tem M∩∪. This similarity actually extends to the fact that all weakly normalizing
objects are typable in system Rλ̄μ∗, as we will show later. This feature is a char-
acteristic of intersection type systems: this was already prominent in system R.

Example 1. The term λxμα 〈x , x · α〉 (the λ̄μ-calculus variant of δ = λx (x) x)
has the following typing derivation, recalling that ι = [] :: ι:

x : [ι] � x : ι |
| α : ι �

| x · α : ι �
〈x , x · α〉 : (x : [ι] �)

x : [ι] � μα 〈x , x · α〉 : ι |
� λxμα 〈x , x · α〉 : [ι] :: ι | .

Lemma 3. Every term, context or command which is in normal form is typable.

Proof. The result is proved by mutual induction on normal terms, contexts and
commands. Among the typing rules in figure 1, only Cut involves some compati-
bility condition on the types of subobjects. Hence the only interesting induction
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case is that of simple commands. Simple commands in normal form are those
c = 〈s , e〉 such that:

(i) either s is a variable and e is a simple context in normal form;
(ii) or s = λx t, where t is a simple term in normal form, and e = α0 ∗ · · · ∗αn

is a product of names, with n > 0.

In both cases, it is easy to build a typing derivation using the inductive hypoth-
esis and axiom rules (Var or Name).

Denote by FV (Θ) (resp. FN (Θ)) the set of all variables (resp. names) free in
Θ. To simplify some of our next statements, we write Rλ̄μ∗ (Γ, Δ, Θ, a) for:

Γ � S : a | Δ if Θ = S ∈ T + ;
Γ | E : a � Δ if Θ = E ∈ E+ ;
C : (Γ � Δ) if Θ = C ∈ C+ .

Lemma 4. If Rλ̄μ∗ (Γ, Δ, Θ, a), then Supp (Γ ) ⊆ FV (Θ) and Supp (Δ) ⊆
FN (Θ).

Proof. This is easily proved by induction on Θ.

Denotational Semantics. We define the relational semantics of an object, as the
set of all its typings in system Rλ̄μ∗. More precisely:

Definition 6. Assume S ∈ T +, E ∈ E+ and C ∈ C+ are such that FV (Θ) ⊆
{x1, . . . , xn} and FN (Θ) ⊆ {α1, . . . , αp}, for Θ = S, E, C. We define

�S�
α1,...,αp

x1,...,xn
= {(Γ (x1), . . . , Γ (xn), a, Δ(α1), . . . , Δ(αp)); Γ � S : a | Δ} ,

�E�
α1,...,αp

x1,...,xn
= {(Γ (x1), . . . , Γ (xn), a, Δ(α1), . . . , Δ(αp)); Γ | E : a � Δ} and

�C�α1,...,αp

x1,...,xn
= {(Γ (x1), . . . , Γ (xn), Δ(α1), . . . , Δ(αp)); C : (Γ � Δ)} .

Remark 3. The reader can easily check that

�(S · e) ∗(S′ · e′)�α1,...,αp

x1,...,xn
= �(S + T ) ·(e ∗ e′)�α1,...,αp

x1,...,xn
.

The following three lemmas are proved by induction on objects.

Lemma 5. We have Rλ̄μ∗ (Γ, Δ, Θ [0/x] , a) if and only if x �∈ Supp (Γ ) and
Rλ̄μ∗ (Γ, Δ, Θ, a).

Lemma 6. Assume x �∈ FV (T ). Then the following are equivalent:

– Rλ̄μ∗ (Γ, Δ, Θ [x + T/x] , a);
– there exist variable environments Γ ′, Γ1, . . . , Γn, and name environments Δ′,

Δ1, . . . , Δn and types a1, . . . , an ∈ D such that
• Γ = Γ ′ + Γ1 + · · · + Γn and Δ = Δ′ � Δ1 � · · · �Δn;
• for all i = 1, . . . , n, Γi � S : ai | Δi;
• and Rλ̄μ∗ (Γ ′ + x : [a1, . . . , an] , Δ′, Θ, a).
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Lemma 7. The following statements are equivalent:

– Rλ̄μ∗ (Γ, Δ, Θ [E/α] , a);
– there exist variable environments Γ ′ and Γ ′′, name environments Δ′ and

Δ′′, and type b ∈ D, such that
• α �∈ Supp (Δ′);
• Γ = Γ ′ + Γ ′′ and Δ = Δ′ �Δ′′;
• Γ ′′ | E : b � Δ′′;
• and Rλ̄μ∗ (Γ ′, Δ′ �α : b, Θ, a).

Theorem 2. If Θ →β Θ′, then we have: Rλ̄μ∗ (Γ, Δ, Θ, a) iff Rλ̄μ∗ (Γ, Δ, Θ′, a).
If moreover FV (Θ) ⊆ {x1, . . . , xn} and FN (Θ) ⊆ {α1, . . . , αp}, then

�Θ�
α1,...,αp

x1,...,xn
= �Θ′�α1,...,αp

x1,...,xn
.

Proof. The proof is by induction on Θ, inspecting all possible cases for reduction
Θ →β Θ′, and using the previous three lemmas in redex cases.

Hence the relational semantics is preserved by reduction. As a corollary, Lemma
3 implies that every object that has a normal form is typable.

4 Future Work

On Pure Calculi. Although grounded in ideas coming from models of differ-
ential λ-calculus, convolution λ̄μ-calculus provides no differentiation primitive.
Indeed, recall from our introduction that the nets associated with convolution
λ̄μ-calculus are polarized nets, extended with cocontraction and coweakening on
types !o and i. In particular, they do not involve derivative ∂.

One may augment these nets by including ∂ and the associated cut elimination
rules, but this needs caution. Uncontrolled use of ∂ breaks one essential property
of polarized nets: namely, the occurrence of at most one positive type (!o or i
in our setting) among all output wires. That matter is discussed in [Vau07b] in
more details.

This remark, however, does not hamper the fact that one may propose differ-
ential extensions of convolution λ̄μ-calculus. Some first attempts even suggest
that the introduction of convolution product of contexts actually simplifies the
presentation of a would-be differential λ̄μ-calculus.

On Denotational Semantics. In [dC06], Carvalho provides precise results relating
the relational semantics of λ-terms with their normalization properties (which
are very close to those we expect from an intersection type system); he also
provides bounds for the execution time of terms in variants of Krivine’s abstract
machine, according to the size of their typing derivations in system R. We do not
know yet, to which extent these results may accomodate themselves to the setting
of Bucciarelli-Ehrhard’s model and convolution λ̄μ-calculus (or even usual λμ-
or λ̄μ-calculus for that matter).

Another promising direction for further research is to study more precisely
how the categorical constructions of [LR03] may be extended to a setting with
costructural rules.
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