
J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 579–598, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Common Semantics for Use Cases and Task Models

Daniel Sinnig1, Patrice Chalin1, and Ferhat Khendek2

1 Department of Computer Science and Software Engineering,
Concordia University, Montreal, Quebec, Canada
{d_sinnig,chalin}@encs.concordia.ca

2 Department of Electrical and Computer Engineering,
Concordia University, Montreal, Quebec, Canada

khendek@ece.concordia.ca

Abstract. In this paper, we introduce a common semantic framework for
developing and formally modeling use cases and task models. Use cases are the
notation of choice for functional requirements specification and documentation,
whereas task models are used as a starting point for user interface design. Based
on their intrinsic characteristics we devise an intermediate semantic domain for
use cases and for task models, respectively. We describe how the intermediate
semantic domain for each model is formally mapped into a common semantic
domain which is based on sets of partial order sets. We argue that a two-step
mapping results in a semantic framework that can be more easily validated,
reused and extended. As a partial validation of our framework we provide a
semantics for ConcurTaskTrees (CTT) one of the most popular task model
notations as well as our own DSRG use case formalism. Furthermore we use
the common semantic model to formally define a satisfiability relation between
task model and use case specifications.

Keywords: Use cases, task models, requirements, formal semantics, partial
order sets, labeled transition systems.

1 Introduction

User Interface (UI) design and the engineering of functional requirements are
generally carried out by different teams using different methodologies, processes and
lifecycles [1]. Since both disciplines have their own models and theories, often the
respective artifacts are created independently of each other; as a result there arises:

• Duplication in effort during development and maintenance due to redundancies /
overlaps in the (independently) developed UI and software engineering models.

• Possible conflicts during implementation as both processes do not have the same
reference specification and thus may result in inconsistent designs.

A process allowing for UI design to follow as a logical progression from functional
requirements specification does not exist.

Use cases are the artifacts of choice for functional requirements specification and
documentation [2] while UI design typically starts with the identification of user tasks,
and context requirements [3]. Our primary research goal is to define an integrated

580 D. Sinnig, P. Chalin, and F. Khendek

methodology for the development of use cases and task models within an overall
software process. A prerequisite of this initiative is the definition of a formal framework
for handling use case models and task models. The cornerstone for such a formal
framework is a common semantic domain for both notations.

Figure 1 illustrates how our framework promotes a two-step mapping from a
particular use case or task model notation to the common semantic domain which is
based on sets of partial order sets. The common semantic model will serve as a
reference for tool support and will be the basis for the definition of a satisfiability
relation between a use case specification and a task model specification. A definition
of the latter is given in this paper.

Fig. 1. Two-Step Semantic Mapping

The main reason behind a two-step mapping, rather than a direct mapping, is to
provide a semantic framework that can be more easily validated, reused and extended.
The intermediate semantic domains have been carefully chosen by taking into
consideration the intrinsic characteristics of task models and use cases, respectively,
so that the mappings to the intermediate semantic domains are straightforward and
intuitive: task models are mapped into what we call Generic Task Expressions (GTE);
use cases are mapped to Use Case Labeled Transition Systems (UC-LTS). Since the
second level mappings to sets of posets are more involved, the intermediate semantic
domains have been chosen so as to be as simple as possible, containing only the
necessary core constructs. As a consequence of this two-step semantic definition, we
believe that our framework can be easily extended to incorporate new task model or
use case notations by simply defining a new mapping to the intermediate semantic
domain.

In this paper, we focus on providing concise definitions of both the intermediate
semantic domains for use cases and task models and the common semantic model. As
concrete examples of mappings, we illustrate how ConcurTaskTree (CTT) [4]
specifications and DSRG-style use cases (defined in the next section) are mapped to
the intermediate semantic domains. This is followed by a formalization of the second
level mappings of GTEs and UC-LTSs into the sets of posets.

 Common Semantics for Use Cases and Task Models 581

The remainder of this paper is organized as follows. In Section 2 we provide
necessary background information by reviewing and contrasting use cases and task
models. Section 3 discusses related work with respect to the definition of semantics of
scenario-based notations. Section 4, formally defines our semantic framework.
Finally, in Section 5 we conclude and provide an outlook of future work.

2 Background

In this section we remind the reader of the key characteristics of use cases and task
models. For each model we present a particular notation, and an illustrative example.
Finally, both models are compared and main commonalities and differences are
contrasted.

2.1 Use Case Models

A use case captures the interaction between actors and the system under development.
It is organized as a collection of related success and failure scenarios that are all
bound to the same goal of the primary actor [5]. Use cases are typically employed as a
specification technique for capturing functional requirements. They document the
majority of software and system requirements and as such, serve as a contract (of the
envisioned system behavior) between stakeholders [2].

Every use case starts with a header section containing various properties of the use
case. The core part of a use case is its main success scenario, which follows
immediately after the header. It indicates the most common ways in which the
primary actor can reach his/her goal by using the system. A use case is completed by
specifying the use case extensions. These extensions constitute alternative scenarios
which may or may not lead to the fulfillment of the use case goal. They represent
exceptional and alternative behavior (relative to the main success scenario) and are
indispensable to capturing full system behavior. Each extension starts with a
condition (relative to one or more steps of the main success scenario), which makes
the extension relevant and causes the main scenario to “branch” to the alternative
scenario. The condition is followed by a sequence of action steps, which may lead to
the fulfillment or the abandonment of the use case goal and/or further extensions.
From a requirements point of view, exhaustive modeling of use case extensions is an
effective requirements elicitation device.

Different notations at different degrees of formality have been suggested as a
medium to capture use cases. The extremes range from purely textual constructs
written in prose language [2] to entirely formal specification written in Z [6], or as
Abstract State Machines (ASM) [7, 8]. While the use of narrative languages makes
use case modeling an attractive tool to facilitate communication among stakeholders,
prose language is well known to be prone to ambiguities and leaves little room for
advanced tool support.

Therefore, in this paper we take up a compromise solution, which enforces a
formal structure (needed for the definition of formal semantics) but preserves the
intuitive nature of use case. In particular, we have developed an XML Schema

582 D. Sinnig, P. Chalin, and F. Khendek

Fig. 2. DSRG Use Case Meta Model

(depicted in Figure 2), which acts as a meta model for use cases. As such, it identifies
the most important use case elements, defines associated mark-up and specifies
existing containment relationships among elements. We refer to use cases that
correspond to the schema presented in Figure 2 as “DSRG-style use cases”.

Most relevant for this paper is the definition of the stepGroup element as it
captures the behavioral information of the use case. As depicted, the stepGroup
element consists of a sequence of one of the following sub elements:

• The step element denotes an atomic use case step capturing the primary actor’s
interactions or system activities.

• The stepChoice element denotes the alternative composition of two stepGroup
elements.

• The stepConcurrent element entails a set of (atomic) step elements, whose
execution order is not defined.

• The stepGoto element denotes an arbitrary branching to another step.

We note that the stepGroup element is part of the mainSuccessScenario as well as
the extension element. The latter additionally contains a condition and a reference to
one or many steps stating why and when the extension may occur.

In order to generate a readable representation of the use case XML document we
use XSLT style sheets [9]. Figure 3 depicts the generated HTML presentation of a
sub-function level use case for a “Login” function. Note that we will be using the
same “Login” example throughout this paper, and for the sake of simplicity, have kept
the complexity of the use case to a minimum.

2.2 Task Models

User task modeling is by now a well understood technique supporting user-centered
UI design [4]. In most UI development approaches, the task set is the primary input to
the UI design stage. Task models describe the tasks that users perform using the
application, as well as how the tasks are related to each other. The origin of most task
modeling approaches can be traced back to activity theory [10], where a human

 Common Semantics for Use Cases and Task Models 583

Fig. 3. Generated HTML Presentation of the “Login” Use Case

operator carries out activities to change part of the environment (artifacts) in order to
achieve a certain goal [11]. Like use cases, task models describe the user’s interaction
with the system. The primary purpose of task models is to systematically capture the
way users achieve a goal when interacting with the system [12]. More precisely, the
task model specifies how the user makes use of the system to achieve his/her goal but
also indicates how the system supports the user tasks.

Various notations for task models exits. Among the most popular ones are
ConcurTaskTrees (CTT) [4], GOMS [13], TaO Spec [14], and TKS [15]. Even
though all notations differ in terms of presentation, level of formality, and
expressiveness they share the following common tenet: Tasks are hierarchically
decomposed into sub-tasks until an atomic level has been reached. Atomic tasks are
also called actions, since they are the tasks that are actually carried out by the user or
the system. The execution order of tasks is determined by operators that are defined
between peer tasks.

Figure 4 shows a CTT visualization of the “Login” task model. The figure
illustrates the hierarchical break down and the temporal relationships between tasks
involved in the “Login” functionality (depicted in the use case of Section 2.1). An
indication of task types is given by the symbol used to represent tasks. In CTT the
execution order between tasks is defined by temporal operators. Various temporal
operators exist; examples include: enabling (>>), choice ([]), iteration (*), and
disabling ([>].A complete list of the CTT operators together with an informal
definition of their interpretation can be found in [4]. In Section 4.2 we will assign

584 D. Sinnig, P. Chalin, and F. Khendek

t1

t2 t3 t4 t5 t6

Fig. 4. “Login” Task Model

formal semantics to CTT task models by defining a mapping to the intermediate
semantic domain of generic task expressions.

2.3 Use Cases vs. Task Models: A Comparison

In the previous two sections, the main characteristics of use cases and task models
were discussed. In this section, we compare both models and outline noteworthy
differences and commonalities.

Both, use cases and task models, belong to the family of scenario-based notations
and as such capture sets of usage scenarios of the system. On the one hand, a use case
specifies system behavior by means of a main success scenario and any corresponding
extensions. On the other hand, a task model specifies system interaction within a
single “monolithic” task tree. In theory, both notations can be used to describe the
same information. In practice however, use cases are mainly employed to document
functional requirements whereas task models are used to describe UI
requirements/design details. Based on this assumption we identify three main
differences which are pertinent to their purpose of application:

1. Use cases capture requirements at a higher level of abstraction whereas task
models are more detailed. Hence, the atomic actions of the task model are often
lower level UI details that are irrelevant (actually contraindicated [2]) in the
context of a use case. We note that due to its simplicity, within our example, this
difference in the level of abstraction is not explicitly visible.

2. Task models concentrate on aspects that are relevant for UI design and as such,
their usage scenarios are strictly depicted as input-output relations between the user
and the system. Internal system interactions (i.e. involvement of secondary actors
or internal computations) as specified in use cases are not captured.

3. If given the choice, a task model may only implement a subset of the scenarios
specified in the use case. Task models are geared to a particular user interface and

 Common Semantics for Use Cases and Task Models 585

as such must obey its limitations. E.g. a voice user interface will most likely
support less functionality than a fully-fledged graphical user interface.

3 Related Work

For scenario-based notations, the behavioral aspects of a system (capturing the
ordering and relations between the events) represent the important features to
describe. While several different formalisms have been proposed for scenario-based
notations, in what follows we briefly discuss three prominent approaches, namely:
process algebras, partial orders and graph structures.

Process Algebra has been widely used to define interleaving semantics of
scenario-based notations [17-19]. The International Telecommunication Union
(ITU) has published a recommendation for the formal semantics of basic Message
Sequence Charts (MSCs) based on the Algebra of Communicating Processes (ACP)
[20, 18]. This work is a continuation of preliminary research work by Mauw and
Reniers [17]. In more recent work, Xu et. al. also suggest a process algebraic
semantics for use case models, with the overall goal of formalizing use case
refactoring [19]. In their approach, scenarios are represented as basic MSCs. The
authors assign meaning to a particular use case scenario (episode) by partially
adapting the ITU MSC semantics.

Formalisms suitable for the definition of non-interleaving semantics are based on
partial orders. For example, Zheng et. al. propose a non-interleaving semantics for
timed MSC 2000 [21, 22] based on timed labeled partial order sets (lposets). Partial
order semantics for (regular, un-timed) MSCs has been proposed by Alur [23], and
Katoen and Lambert [24]. Alur et. al. propose a semantics for a subset of MSCs that
restricts MSC event types to message events only.

Mizouni et. al. propose use case graphs as an intermediate notation for use cases
[25]. Use case graphs are directed, potentially cyclic graphs whose edges represent
use case steps and nodes represent system states. This allows for a natural
representation of the order in which actions are to be performed. Structural
operational semantics for CTT task models are defined in [26]. In particular Paternò
defines a set of inference rules to map CTT terms into labeled transition systems.

The semantic framework proposed in this paper is inspired by the lposet approach
proposed in [22]. Similar to the approach in [22], our semantic framework is based on
sets of partial order sets. The main motivation for this choice was the quest for a true,
non-interleaving, model of concurrency. System behavior is represented as causally
inter-related events based on a partial order relation. Events, that are not causally
related, are seen as concurrent. In addition, similar to the work in [25], we employ
labeled graph structures (Use Case LTS) as an intermediate notation for use cases.
Preliminary results towards the definition of a common semantic model for use cases
and task models were reported in [27]. In this paper we complete and define our
framework as a two-step mapping process, provide a formal semantics for all CTT
expressions, and formalize the mapping from DSRG-style use cases to partial order
sets using the intermediary notation of Use Case LTS.

586 D. Sinnig, P. Chalin, and F. Khendek

4 Semantics for Use Cases and Task Models

In the previous section we have studied key characteristic of use cases and task
models and reviewed relevant related work. In this section we re-employ this
information to define a common formal semantics for use cases and task models. We
start with the definition of the intermediate semantic domains. Then we define the
common semantic model based on sets of partial order sets and specify the
corresponding mappings from the intermediate domains. We conclude the section by
providing a formal definition of a satisfiability relation based on the common
semantic model.

4.1 Intermediate Semantic Domain for Use Cases

In this section we define an intermediate semantic domain, UC-LTS, for use cases and
specify how DSRG-style use cases are transformed into UC-LTS.

Definition 1: (UC-LTS). A use case labeled transition system (UC-LTS) is defined
by the tuple (S, Q, q0, F, T), where:

S is the set of labels of atomic use case steps.
Q is a set of states.
q0 œ Q is the initial state.
F Œ S is the set of final states.
T = Q x 2S x Q is the set of transitions.

We have defined UC-LTS in order to capture easily and intuitively the nature of
use cases. A use case primarily describes the execution order of user and system
actions in the form of use case steps. From a given state, the execution of a step
leads into another state. Sometimes, the execution order of two or more steps is not
important or just abstracted away for the purpose of the description. In UC-LTS
the execution of a step is denoted by a labeled transition, from a source state to a
target state. The transition labels serve as references to the corresponding steps in
the original use case. The execution order of use case steps is modeled using
transition sequences, where the target state of a transition serves as a source state
of the following transition.

Contrary to LTSs, the labels in the UC-LTS are sets. For a given transition, if this
set contains more than one label, then no specific execution order exists between the
corresponding use case steps. This partial order semantics reflects better the nature of
use cases.

In what follows we illustrate how use cases in DSRG style are transformed to the
intermediate UC-LTS form. As the mapping turns out to be quite straightforward we
will only sketch out the main translation principles. Given a UC-LTS consisting of a
single state q0 and a DSRG-style use case specification, iterate through the steps of
stepGroup of the Main Success Scenario. For each found element, perform the
following (depending on the type), using q0 as a starting state:

• Step: Create a new state qnew and define the following transition: (qlast, {label},
qnew) where qlast is the last state that has been created and ‘label’ is a (unique)

 Common Semantics for Use Cases and Task Models 587

identifier of the currently visited use case step. If there exists an extension for the
currently visited step then, using qnew as a starting state, recursively repeat the
same procedure for each step defined in the stepGroup of the extension.

• stepChoice: For each of the two entailed stepGroup elements recursively re-
perform this procedure with qlast as a starting state.

• stepConcurrent: Create a new state qnew and define the following transition: (qlast,
L, qnew) where qlast is the last state that has been created and L is the set of labels
of all the step elements entailed in the stepConcurrent element. If there exist an
extension for the stepConcurrent element then, using qnew as a starting state,
recursively repeat the same procedure for each step defined in the stepGroup of
the extension.

• stepGoto: Continue with the target step referenced in stepGoto element. If the
target step has been already visited then replace qlast with the target step and
update all transition definitions that included qlast, accordingly.

S1{S1}

q0 q1 q2 q3 q4 q5

q8

q7

q6

{S3} {S4} {S5} {S6}{S21, S22}

{S4a2}

{S4a1}

Fig. 5. Intermediate UC-LTS corresponding to the “Login” Use Case

Figure 5 illustrates the UC-LTS generated from the use case of Figure 3. Note that
the transition between state q1 and state q2 has been annotated with labels of two use
case steps, denoting the concurrent execution of use case step 2.1 and step 2.2. It is
also to be noted that starting from state q4 two transitions are defined, denoting the
execution of step 5 in the main success scenario and alternatively the execution of
step 4a1 defined in extension 4.

4.2 Intermediate Semantic Domain for Task Models

In this section we define an intermediate semantic domain for task models called
Generic Task Expressions (GTE) and specify how a CTT specification (possibly
including “Disabling” and “Suspend / Resume”) is mapped into a corresponding GTE
specification. In Section 2.2 we noted that tasks are commonly decomposed into
subtasks and sub-subtasks until an atomic level is reached. For the definition of GTE
we adopted the same paradigm and define a task expression as either an atomic action
or a composition of (sub) task expression.

588 D. Sinnig, P. Chalin, and F. Khendek

Definition 2: (Generic Task Expression). A generic task expression T is recursively
defined as follows:

(1) An atomic action a is a generic task expression (a ∈ T)
(2) If ψ and ρ are generic task expressions (ψ , ρ ∈ T) then

 ψ Opt,
 ψ Rep,
 ψ _|| ρ,
 ψ _[] ρ,
 ψ _>> ρ,
are also generic task expressions.

Please note that the operator precedence is reflected by the order of their enumeration
in Definition 2. Operators listed at a higher position have a higher precedence than
operators listed at a lower position. Intuitively the meaning of the operators is as
follows: The binary operators _>>, _||, and _[] denote the sequential, concurrent or
alternative composition of two generic task expressions. The unary operators ‘Opt’
and ‘Rep’ denote the optional or the iterative (zero to infinitely many times) execution
of a generic task expression.

In what follows we demonstrate how CTT task models are mapped to GTE. More
precisely, we assign for each CTT task expression a corresponding denotation
expressed in GTE. At the atomic level, we define that CTT leaf tasks correspond to
atomic GTE expressions (a). At the composite level, CTT expressions entailing basic
operators are mapped in a one-to-one manner to the corresponding GTE expressions.
As depicted in Table 1, the only exception is the “Order_Independency” operator
which is translated into the shallow interleaving of its operands. In order to illustrate
the basic mapping, let us use again the “Login” task model from Section 2.2.
According to the definitions of Table 1 the CTT specification is mapped into the
following GTE specification: t1 _>> t2 _>> t3 _>> t4 _>> (t5 _[] t6).

Unfortunately, the mappings of the complex binary operators disabling and
suspend/resume are not straightforward and require a pre-processing of their
operands.

Table 1. Mappings of Basic CTT Operators into GTE

CTT Expression GTE Expression
tl >> tr (Enabling) = tl _>> tr
tl ||| tr (Concurrency) = tl _|| tr
tl [] tr (Choice) = tl _[] tr
t* (Iteration) = t Rep
(t) (Optional) = t Opt
tl |+| tr (Order Indepen.) = (tl _>> tr) _[] (tr _>> tl)

Intuitively the meaning of the disabling operator is defined as follows: Both tasks
specified by its operands are enabled concurrently. As soon as the first (sub) task
specified by the second operand is executed, the task specified by the first operand

 Common Semantics for Use Cases and Task Models 589

becomes disabled. If the execution of the task(s) specified by the first operand is
completed (without interruption) the task(s) specified by the second operand are
subsequently executed. In other words, none of the (sub) tasks of the first operand
must necessarily be executed, whereas the execution of the tasks of the second
operand is mandatory. Hence, a term including the disabling operator can be rewritten
as the “optionalization” of all tasks involved in the first operand, followed by the
execution of the second operand.

For the purpose of “optionalizing” the first operand we have defined the unary
auxiliary operator Deep Optionalization ({}). As inductively defined in Table 2, the
application of the operator defines every subtask of its target task expression as
optional. However if the subtasks are executed, they have to be executed in their pre-
defined order. The final mapping of the disabling operator to an AGT expression,
using the Deep Optionalization operator can be found in Table 3. We note that the
definition of the CTT disabling operator has been inspired by the disabling operator
of the LOTOS process algebra [28]. Yet, the interpretation of both operators is not
identical. In particular, in LOTOS the subsequent execution of the second operand,
after completion of the first one is not allowed.

Table 2. Inductive Definitions of “Deep Optionalization” and “Interleaved Insertion”

(Unary) Deep Optionalization {} (Binary) Interleaved Insertion ⊕
{a} = a1 a ⊕ ti = ti _>> a
{tl _>> tr} = ({tl} _>> ({tr}) Opt) Opt (tl _>> tr) ⊕ ti = (tl ⊕ ti) _>> (tr ⊕ ti)
{tl _|| tr} = ({tl}) Opt || ({tr}) Opt (tl _|| tr) ⊕ ti = (tl ⊕ ti) _|| (tr ⊕ ti)
{tl _[] tr} = ({tl} + {tr}) Opt (tl _[] tr) ⊕ ti = (tl ⊕ ti) _[] (tr ⊕ ti)
{t Opt } = ({t}) Opt (t Opt ⊕ ti) = (t ⊕ ti)

 Opt
{t Rep } = t Rep _>> ({t}) Opt (t Rep ⊕ ti) = (t ⊕ ti)

 Rep

The interpretation of the suspend/resume operator is similar to the one of the
disabling operator. Both tasks specified by its operands are enabled concurrently. At
any time the execution of the first operand can be interrupted by the execution of the
first (sub) task of the second operand. In contrast to disabling, however, the execution
of the task specified by the first operand is only suspended and will (once the
execution of the second operand is complete) be reactivated from the state reached
before the interruption [4]. At this point, the task specified by the first operand may
continue its execution or may be interrupted again by the execution of the second
operand.

Table 3. Mappings of Disabling and Suspend/Resume into GTE

CTT Expression GTE Expression
tl [> tr (Disabling) = ({tl}) Opt _>> tr
tl |> tr (Suspend/Resume) = tl ⊕ (tr

 Rep)

1 a denotes an atomic action.

590 D. Sinnig, P. Chalin, and F. Khendek

In order to model this behavior, we have defined the auxiliary binary operator
Interleaved Insertion (⊕). As defined in Table 2 it “injects” the task specified by its
second operand at any possible position in between the (sub) tasks of the first
operand. Using the auxiliary operator it is now possible to define a mapping from a
suspend/resume CTT expression to a corresponding GTE expression (Table 3).

4.3 Common Semantic Domain Based on Sets of Posets

This section defines the second-level mapping of our semantic framework. We start
by providing necessary definitions. Next we present a semantic function that maps
GTE specifications into the common semantic domain. Finally we specify an
algorithm that generates a set of posets from a UC-LTS.

4.3.1 Notations and Definitions
The common semantic domain of our framework is based on sets of partial order sets
(posets). In what follows we provide definitions of the involved formalisms and
specify a set of operations needed for the semantic mapping. It is also in this section,
where we propose a notion of refinement between two sets of posets specifications.

Definition 3: (Poset). A partially ordered set (poset) is a tuple (E,≤), where

E is a set of events, and
≤ ⊆ E × E is a partial order relation (reflexive, anti-symmetric, transitive) defined
on E. This relation specifies the causal order of events.
We will use the symbol ∅poset to denote the empty poset with ∅poset = (∅,∅).
Further we will use the symbol eposet to denote a poset containing a single event e
(eposet = ({e}, {(e,e)}).

In order to be able to compose posets we define the following operations:

Definition 4: (Binary Operations on Posets). The binary operations: sequential
composition (.) and parallel composition (||) of two posets p and q are defined as2:

Let p = (Ep, ≤p) and q = (Eq, ≤q) with Ep ∩ Eq = ∅ then:
p.q = (Ep ∪ Eq, (≤p ∪ ≤q ∪ {(ep, eq) | ep ∈ Ep and eq ∈ Eq})*)
p||q = (Ep ∪ Eq, ≤p ∪ ≤q)

We define semantics for GTE and UC-LTS using the following operations over sets
of posets.

Definition 5.1: (Binary Operators on Sets of Posets). For two sets of posets P and
Q, sequential composition (.), parallel composition (||), and alternative composition
(#) are defined as follows:

P . Q = { pi . qj | pi ∈ P and qj ∈ Q }
P || Q = { pi || qj | pi ∈ P and qj ∈ Q }
P # Q = P ∪ Q

2 Note that R* denotes the reflexive, transitive closure of R.

 Common Semantics for Use Cases and Task Models 591

Definition 5.2: (Repeated Sequential Composition). The repeated sequential
composition of a set of posets P is defined as:

 =0P {∅poset}

 PPP nn .1−= for n > 0

"..* PPP =

Definition 5.3: (Iterated Alternative Sequential Composition). The iterated
alternative sequential composition of a set of posets P is defined as:

 =0

#P {∅poset}

 nn PPPP ### 10

…=

 …## 10*

PPP =

Also fundamental to our model is the notion of a trace. A trace corresponds to one
particular scenario defined in the original use case or task model specification. In the
following we define the set of traces for a given poset, and for a given set of posets.

Definition 6: (Trace). A trace t of a poset p = (E, ≤) is defined as a (possibly infinite)
sequence of events from E such that

∀ (i, j in the index set of t) • i < j ⇒ ¬(t(j) ≤ t(i)) and

∪ t(i) = E

where t(i) denotes the ith event of the trace.

Definition 7: (Set of All Traces of a Poset). The set of all traces of a poset p is
defined as:
 tr(p) = { t | t is a trace of p }.

Definition 8: (Set of All Traces of a Set of Posets). The set of all traces of a set of
posets P is defined as:

Tr(P) =)(∪
Pp

i

i

ptr
∈

Using the set of all traces as a basis, we can define refinement among two sets of
posets through trace inclusion.

Definition 9: (Refinement). A set of posets Q is a refinement of a set of posets P if,
and only if

 Tr (Q) ⊆ Tr (P)

The refining specification is more restricted (in terms of possible orderings of events)
than the refined specification. Or, in other words, the refining specification has less
partial orders than the refined specification. In Section 4.4 we will re-use the

592 D. Sinnig, P. Chalin, and F. Khendek

definition of refinement to specify a satisfiability relation between two task model or
use case specifications.

4.3.2 Mapping GTE Specifications to Sets of Posets
This section specifies how a generic task expression is mapped into a corresponding
set of posets. For this purpose we define a (compositional) semantic function in the
common denotational style. As given in Definition 10, an atomic generic task
expression (denoted by a) is mapped into a set containing a single poset, which in
turn consists of a single element only. Composite task expressions are represented by
sets of posets, which are composed using the composition operators, defined in the
previous section.

Definition 10: Let t, t1, t2 be abstract task expressions, then the mapping to sets of
partial order sets is defined as follows:

 M [[a]] = {aposet}

 M [[t1 _>> t2]] = M [[t1]] . M [[t2]]

 M [[t1 _|| t2]] = M [[t1]] || M [[t2]]

 M [[t1 _[] t2]] = M [[t1]] # M [[t2]]

 M [[tOpt]] = M [[t]] # {∅poset}

 M [[tRep]] = M [[t]] #
*

In what follows we illustrate the application of the semantic function by applying it to
the “Login” generic task expression of the previous section. The overall application of
M (t1 _>> t2 _>> t3 _>> t4 _>> (t5 _[] t6)

can be further decomposed, by successively applying the definition of _>> and _[]. As
a result, we obtain the following expression:
M (t1). M (t2). M (t3). M (t4).(M (t5) # M (t6)).
By mapping the atomic tasks into the corresponding sets of posets and by

performing the required set compositions we obtain the following:

 {({t1, t2, t3, t4, t5}, {(t1, t2), (t2, t3), (t3, t4), (t4, t5)}*),
 ({t1, t2, t3, t4, t6}, {(t1, t2), (t2, t3), (t3, t4), (t4, t6)}*)}

The first poset denotes the scenario of a successful login and the second poset
represents a scenario of login failure.

4.3.3 Transforming UC-LTS to Sets of Posets
In this section we demonstrate how UC-LTS specifications (as defined in
Section 4.1) are mapped into the common semantic model. For this purpose we
have devised an algorithm that generates a set of posets from a given UC-LTS
specification. Table 4 gives the corresponding pseudo code. We note that the main
idea for the algorithm stems from the well-known algorithm that transforms a
deterministic finite automaton into an equivalent regular expression [29].
However, as described in the following, instead of step-wise composition of
regular expressions, we compose sets of posets.

 Common Semantics for Use Cases and Task Models 593

Table 4. Algorithm Transforming a UC-LTS to a Set of Posets

 (1)

var tt:SPOSET[][] with all array elements initialized to {«sposet}
for each transition (qs, X, qe) in T do
 tt[qs, qe] := {(X, id X)} where id X = {(l, l) | l œ X)}
od

(2) for each state qi in Q – (F ∪ {q0}) do

(3)
 for each pair of states qn and qk with n ∫ i & k ∫ i and

 X, Y œ 2S such that (qn, X, qi) œ T and (qi, Y, qk) œ T do

(4) var tmp:SPOSET
tmp := tt[qn, qi] . tt[qi, qi] #

* . tt[qi, qk]

(5)
 if $ V œ 2S such that (qn, V, qk) œ T then

 tmp := tmp # tt[qn, qk]
endif

(6) T := T ∪ { (qn, «,qk) }
(7) tt[qn, qk] := tmp

 od
(8) Q = Q – {qi}

 od

(9)

var result:SPOSET := «

for each qf in F do
 if result = « then
 result := tt[q0, qf]
 else
 result := result # tt[q0, qf]
 endif
od

(10)
if $ W œ 2S such that (q0, W, q0) œ T then
 result := result # tt[q0, q0]
endif

 return result

The procedure starts (1) with the creation of the transition table (a two-dimensional
array (‘tt’)) populated with all transitions of the given UC-LTS specification. Indexed
by a source and a target state a table cell contains a set of posets constructed from the
label(s) associated to the representative transition. In most cases the set of posets will
contain a single poset, which in turn consists of a single element representing one use
case step. Only, if multiple labels were associated with the transition, indicating the
concurrent or unordered execution of use case steps, the set of posets will contain a
poset which consists of several elements. Those elements, however, are not causally
related.

The core part of the algorithm consists of two nested loops. The outer loop (2)
iterates through all states of the UC-LTS (except for the initial and the final states)
whereas the inner loop (3) iterates through all pairs of incoming and outgoing
transitions for a given state.

594 D. Sinnig, P. Chalin, and F. Khendek

For each found pair, we perform the following: Compute (and temporarily store)
the sequential composition of the following three sets of posets (4):

1. Set of posets associated to the incoming transition
2. Result of the iterated alternative sequential composition (Definition 5.2) of the

poset associated to a possible self-transition defined over the currently visited state.
If such a self transition does not exist then the iterative alternative composition
yields «sposet.

3. Set of posets associated to the outgoing transition.

Next we examine whether there exists a transition from the source state of the
incoming transition to the target state of the outgoing transition. If yes (5), the
temporary stored set of posets is overwritten by the choice composition of the set of
posets denoted by the found existing transition and the former “value” of the
temporary store. Then (6) we add a new transition from the source state of the
incoming transition to the target state of the outgoing transition. In addition (7) we
populate the corresponding cell in the transition table with the temporary stored set of
posets.

Back in the outer loop, we eliminate (8) the currently visited state from the UC-
LTS and proceed with the next state. Once the UC-LTS consists of only the initial
state and the final states we exit the outer loop and perform the following two
computations, in order to obtain the final result. First (9) we perform a choice
composition of the sets of posets indexed by all the transitions from the initial state to
a final state. Second, if the initial state additionally contains a self loop (10) then we
add the set of posets denoted by that self loop to the before-mentioned choice
composition.

If we apply our algorithm to the example “Login” UC-LTS of section 4.1 we
obtain the following set of posets:

{
({s1, s21, s22, s3, s4, s5, s6}, {(s1, s21), (s1, s22), (s21, s3), (s22, s3), (s3, s4), (s4, s5), (s5, s6)}*),
({s1, s21, s22, s3, s4, s4a1, s4a2}, {(s1, s21), (s1, s22), (s21, s3), (s22, s3), (s3, s4), (s4, s4a1), (s4a1, s4a2)}*)
}

The first poset represents the main success scenario in the original “Login” use case
whereas the second poset represents the scenario where extension 4a (“The provided
username or/and password is/are invalid”) is taken. We note that the events e21 and e22
are not related by the partial order relation. Hence, a valid trace (see Definition 6) can
contain e21 and e22 in any order. This correlates to the original use case specification
where the primary actor may perform step 2.1 and step 2.2 in arbitrary order.

4.4 Satisfiability Between Use Cases and Task Models

The common semantic domain defined in the previous sections is the essential basis
for the formal definition of a satisfiability relation between two specifications. Such a
notion of satisfiability applies equally well between artifacts of a similar nature (e.g.
two use cases) as it does between use cases and task models. Our definition of
satisfiability is as follows: A specification ‘X’ satisfies another specification ‘Y’ if
every scenario of ‘X’ is also a valid scenario of ‘Y’.

 Common Semantics for Use Cases and Task Models 595

Within our semantic framework, a scenario of a use case or task model corresponds
to a trace (Definition 6) in the corresponding set of posets. Hence a task model or use
case specification satisfies another specification if the set of all traces (Definition 8)
of the former is a subset of the set of all traces of the latter. One precondition for the
application of the definition is that both sets of posets are based on the same event
‘alphabet’. This can be achieved by renaming the events of the refined specification to
their corresponding counterparts in the refining specification. Moreover, if a task
model specification is compared with a use case specification, all events representing
internal use case steps need to be removed. As pointed out in Section 2.3 task models
focus on aspects that are relevant for UI design and as such abstract from internal
system interactions.

For illustration purposes, we will formally determine whether the specification of
the “Login” task model satisfies the specification of the “Login” use case. As a first
step we need to unify the event alphabets. In the case of the “Login” use case steps 4,
4a1 and 6 represent internal (UI irrelevant) system interactions and hence are to be
deleted. Moreover, the events representing use case steps must be renamed after the
events representing the corresponding tasks in the task model.

Table 5. Mappings of Disabling and Suspend/Resume into GTE

Set of Posets representing “Login” UC (after Event Mapping)
{({t1, t2, t3, t4, t5}, {(t1, t2), (t1, t3), (t2, t4), (t3, t4), (t4, t5)}*),
({t1, t2, t3, t4, t6}, {(t1, t2), (t1, t3), (t2, t4), (t3, t4), (t4, t6)}*)}
Set of Posets representing the “Login” Task Model
{({t1, t2, t3, t4, t5}, {(t1, t2), (t2, t3), (t3, t4), (t4, t5)}*),
 ({t1, t2, t3, t4, t6}, {(t1, t2), (t2, t3), (t3, t4), (t4, t6)}*)}

As depicted by Table 5, it can be easily seen that every trace of the set of posets
representing the task model is also a trace of the set of posets (after the event
mapping) of the use case. Hence, according to the definition above, we can conclude
that the “Login” task model satisfies the “Login” use case.

5 Conclusion and Future Work

In this paper we have presented a common semantic framework for use cases and task
models. The main motivation behind our research is the need for an integrated
development methodology where task models are developed as logical progressions
from use case specifications. Our semantic framework is based on a two-step mapping
from a particular use case or task model notation to the common semantic domain of
sets of partial order sets. We argue that a two-step mapping results in a semantic
framework that can be more easily validated, reused and extended.

The intermediate semantic domains have been carefully chosen by taking into
consideration the intrinsic characteristics of task models and use cases, respectively.
In particular we defined a Use Case Labeled Transition System as an intermediate
semantic domain for use cases. It was demonstrated that UC-LTS allow for a natural
representation of the order in which actions are to be performed. In the case of task

596 D. Sinnig, P. Chalin, and F. Khendek

models we defined generic task expressions (GTE) as an intermediate semantic
domain. Similar to tasks, a generic task expression is hierarchically composed of sub-
task expressions using a set of standard operators. Hence the mapping from a concrete
task model to GTE remains straightforward and intuitive. In order to (partially)
validate our approach we used the framework to define a semantics for CTT task
models, including complex operators such as “disabling” and “suspend/resume”. We
also demonstrated how DSRG-style use cases are mapped into a set of partially order
sets. Finally we used our semantic framework to provide a formal definition of
satisfiability between use case and task model specifications. According to the
definition, a use case or task model specification satisfies another specification if
every scenario of the former is also a valid scenario of the latter.

Thus far, we concentrated on capturing sets of usage scenarios. As future work, we
are aiming at further extending our semantic framework. One such extension is the
introduction of different event types. The main motivation for such an extension is
that in task modeling (e.g. CTT), one often distinguishes between different task types.
Examples are: “data input”, “data output”, “editing”, “modification”, or “submit”. As
a consequence, rules to further restrict the definition of a valid trace may need to be
defined. An example of such a rule may be the condition that an event of type “data
input” must always be followed by a corresponding event of type “submit”. Another
extension of the semantic model deals with the capturing of state information. State
information is often employed in a use case to express and evaluate conditions. For
example the pre-condition of a use case denotes the set of states in which the use case
is to be executed. In addition, every use case extension is triggered by a condition that
must hold before the steps defined in the extension are executed. In order to be able to
evaluate conditions, the semantic model must provide means to capture the notion of
the state and should be able to map state conditions to the appearance of events.

Further avenues deal with the extension of the proposed definition of a
satisfiability relation for use case and task model specifications. Such an extended
definition may take into account different event types and the refinement of state
conditions. Moreover, we envision that refinements, and proofs of satisfiability, can
ideally be aided by tools, supporting the verification. We are currently investigating
how our approach can be translated into the specification languages of existing model
checkers and theorem provers.

Acknowledgments. This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) in the form of a Postgraduate
Scholarship for D. Sinnig and Discovery Grants for P. Chalin and F. Khendek.

References

1. Seffah, A., Desmarais, M.C., Metzger, M.: Software and Usability Engineering: Prevalent
Myths, Obstacles and Integration Avenues. In: Human-Centered Software Engineering—
Integrating Usability in the Software Development Lifecycle, Springer, Heidelberg

2. Cockburn, A.: Writing effective use cases. Addison-Wesley, Boston (2001)
3. Pressman, R.S.: Software engineering: a practitioner’s approach. McGraw-Hill, Boston,

MA (2005)

 Common Semantics for Use Cases and Task Models 597

4. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (2000)

5. Larman, C.: Applying UML and patterns: an introduction to object-oriented analysis and
design and the unified process. Prentice Hall PTR, Upper Saddle River, NJ (2002)

6. Butler, G., Grogono, P., Khendek, F.: A Z Specification of Use Cases. In: Proceedings of
APSEC 1998, pp. 94–101 (1998)

7. Grieskamp, W., Lepper, M., Schulte, W., Tillman, N.: Testable use cases in the abstract
state machine language. In: Proc. APAQS’01, Asia-Pacific Conference on Quality
Software (2001)

8. Barnett, M., Grieskamp, W., Schulte, W., Tillmann, N., Veanes, M.: Validating Use Cases
with the AsmL Test Tool in Proceedings of QSIC 2003 (Third International Conference on
Quality Software) (November 2003)

9. XSLT, XSL Transformations Version 2.0 [Internet], Available from Accessed: December
2006. Last Update: November 2006 http://www.w3.org/TR/xslt20/

10. Kuutti, K.: Activity theory as a potential framework for human-computer interaction
research (chapter) In: Context and consciousness: activity theory and human-computer
interaction, Massachusetts Institute of Technology, pp. 17–44

11. Dittmar, A., Forbrig, P.: Higher-Order Task Models. In: Proceedings of Design,
Specification and Verification of Interactive Systems 2003, Funchal, Madeira Island,
Portugal, pp. 187–202 (2003)

12. Souchon, N., Limbourg, Q., Vanderdonckt, J.: Task Modelling in Multiple contexts of
Use. In: Proceedings of Design, Specification and Verification of Interactive Systems,
Rostock, Germany, pp. 59–73 (2002)

13. Card, S., Moran, T.P., Newell, A.: The Psychology of Human Computer Interaction (1983)
14. Dittmar, A., Forbrig, P., Stoiber, S., Stary, C.: Tool Support for Task Modelling - A

Constructive Exploration. In: Proceedings of Design, Specification and Verification of
Interactive Systems 2004 (July 2004)

15. Johnson, P., Johnson, H., Waddington, R., Shouls, A.: Task Related Knowledge
Structures: Analysis, Modelling and Application. In: Jones, D.M., Winder, R. (eds.)
People and Computers IV, Manchester, pp. 35–62. Cambridge University Press,
Cambridge (1988)

16. Sinnig, D., Chalin, P., Khendek, F.: Consistency between Task Models and Use Cases. To
Appear in Proceedings of Design, Specification and Verification of Interactive Systems,
Salamanca, Spain (March 2007)

17. Mauw, S., Reniers, M.A.: An Algebraic Semantic of Basic Message Sequence Charts. In
Computer Journal, 37 (1994)

18. ITU-T, Recommendation Z.120- Message Sequence Charts, Geneva (1996)
19. Xu, J., Yu, W., Rui, K., Butler, G.: Use Case Refactoring: A Tool and a Case Study. In:

Proceedings of APSEC 2004, Busan, Korea, pp. 484–491 (2004)
20. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press, Cambridge

(1990)
21. ITU-T, Recommendation Z.120- Message Sequence Charts, Geneva (1999)
22. Zheng, T., Khendek, F.: Time consistency of MSC-2000 specifications, in Computer

Networks, June 2003, vol. 42(3). Elsevier, Amsterdam (2003)
23. Alur, R., Holzmann, G.J., Peled, D.: An Analyzer for Message Sequence Charts. In:

Software - Concepts and Tools, vol. 17, pp. 70–77 (1996)
24. Katoen, J.P., Lambert, L.: Pomsets for Message Sequence Charts, in Proceedings of FBT-

VS 1998, Cottbus, Germany, Shaker Verlag, pp. 197–207 (1998)

598 D. Sinnig, P. Chalin, and F. Khendek

25. Mizouni, R., Salah, A., Dssouli, R., Parreaux, B.: Integrating Scenarios with Explicit
Loops. In: Proceedings of NOTERE, 2004, Essaidia Morocco (2004)

26. Paternò, F., Santoro, C.: The ConcurTaskTrees Notation for Task Modelling, Technical
Report at CNUCE-C.N.R. (May 2001)

27. Sinnig, D., Chalin, P., Khendek, F.: Towards a Common Semantic Foundation for Use
Cases and Task Models, to appear in Electronic Notes in Theoretical Computer Science
(ENTCS) (2007)

28. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implementations,
and their tests. In: Proceedings of IFIP Workshop Protocol Specification, Testing, and
Verification VI, pp. 349–360 (1987)

29. Linz, P.: An introduction to formal languages and automata. Jones and Bartlett Publishers,
Sudbury, MA (1997)

	Common Semantics for Use Cases and Task Models
	Introduction
	Background
	Use Case Models
	Task Models
	Use Cases vs. Task Models: A Comparison

	Related Work
	Semantics for Use Cases and Task Models
	Intermediate Semantic Domain for Use Cases
	Intermediate Semantic Domain for Task Models
	Common Semantic Domain Based on Sets of Posets
	Satisfiability Between Use Cases and Task Models

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

