
Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks

Ansgar Fehnker1,�, Lodewijk van Hoesel2, and Angelika Mader2,��

1 National ICT Australia and University of New South Wales, Australia
ansgar.fehnker@nicta.com.au

2 Department of Computer Science, University of Twente, The Netherlands
l.f.w.vanhoesel@utwente.nl, mader@ewi.utwente.nl

Abstract. In this paper we report on modelling and verification of a
medium access control protocol for wireless sensor networks, the LMAC
protocol. Our approach is to systematically investigate all possible con-
nected topologies consisting of four and of five nodes. The analysis is
performed by timed automaton model checking using Uppaal. The prop-
erty of main interest is detecting and resolving collision. Evaluation of
this property for all connected topologies requires more than 8000 model
checking runs. Increasing the number of nodes would not only lead in-
crease the state space, but to a greater extent cause an instance explosion
problem. Despite the small number of nodes this approach gave valuable
insight in the protocol and the scenarios that lead to collisions not de-
tected by the protocol, and it increased the confidence in the adequacy
of the protocol.

1 Introduction

In this paper we report about modelling and verification of a medium access con-
trol protocol for wireless sensor networks, the LMAC protocol [10]. The LMAC
protocol is designed to function in a multi-hop, energy-constrained wireless sen-
sor network. It targets especially energy-efficiency, self-configuration and dis-
tributed operation. In order to avoid energy-wasting effects, like idle listening,
hidden terminal problem or collision of packets, the communication is scheduled.
Each node gets periodically a time interval (slot) in which it is allowed to con-
trol the wireless medium according its own requirements and needs. Here, we
concentrate on the part of the protocol that is responsible for the distributed
and localised strategy of choosing a time slot for nodes.

Although, the basic idea of the protocol is quite simple, the possible be-
haviours get quickly too complex to be overseen by pure insight. Therefore, we
chose a model checking technique for the formal analysis of the protocol. We
apply model checking in an experimental approach [4,6]: formal analysis can
only increase the confidence in the correctness of an implementation, but not
� National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.
�� supported by NWO project 632.001.202, Methods for modelling embedded systems.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 253–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 A. Fehnker, L. van Hoesel, and A. Mader

guarantee it. This has two reasons: first, a formal correctness proof is only about
a model, and not about the implementation. Second, we will (and can) not prove
correctness for the general case, but only for instances of topologies.

Model checking as a way to increase the confidence comes also into play, as
we do not aim to prove that the protocol is correct for all considered topologies.
This is in contrast to related work on verification of communication protocols,
such as [1]. It is known beforehand that there exist problematic topologies for
which the LMAC protocol cannot satisfy all relevant properties. The aim is to
iteratively improve the model, and to reduce the number of topologies for which
the protocol may fail. This is an important quantitative aspect of the model
checking experiments presented in this paper.

In order to get meaningful results from model checking we follow two lines:

Model checking experiments: We systematically investigate all possible con-
nected topologies of 4 and 5 nodes, which are in total 11, and 61 respectively. For
12 different models and 6 properties we performed about 8000 model checking
runs using the model checker Uppaal [2,3]. There are the following reasons for
the choice of the model checking approach considering all topologies:

(1) Relevant faults appear already in networks with a small number of nodes.
Of course, possible faults that involve more nodes are not detected here.

(2) It is not enough to investigate only representative topologies, because
it is difficult to decide what “representative” is. It turned out that topologies
that look very “similar” behave differently, in the sense that in one collision can
occur, which does not in the other. This suggests that the systematic way to
investigate all topologies gives more reliable results. This forms a contrast to
similar approaches such as [8] which considers only representative topologies,
and the work in [5], which considers only very regular topologies.

(3) By model checking all possible scenarios are traversed exhaustively. It
turned out that scenarios leading to collisions are complex, and are unlikely to
be found by a simulator. On the other hand, simulations can deal with much
higher numbers of nodes. We believe that both, verification and simulation, can
increase the confidence in a protocol, but in complementary ways.

Systematic model construction: The quality of results gained from model
checking cannot be higher than the quality of models that is used. We con-
structed the models systematically, which is presented in sufficient detail. We
regard it as relevant that the decisions that went into the model construction
are explicit, such that they can be questioned and discussed. It also makes it
easier to interpret the result of the model checking experiments, i.e. to identify
what was proven, and what not. The reader who is not interested in the details
of the model should skip therefore Section 4.

The goal of the protocol is to find a mapping of time slots to nodes that pre-
vents collisions. To this end it is necessary that not only direct neighbours have
different slots, but also that all neighbours of a node have pairwise different slots.
Neighbours of neighbours will be called second-order neighbours. The problem

Modelling and Verification of the LMAC Protocol 255

is at least NP-hard [7,9]: each solution to the slot-mapping problem is also a
solution to the graph colouring problem, but not vice versa.

When starting the protocol analysis using Uppaal, the protocol had been
developed [10], implemented and analysed by simulation. The specification con-
sisted of the publication mentioned, and personal explanations. Our analysis
here restricts to the fragment of the protocol concerned with the slot distribu-
tion mechanism trying to avoid collision. Other aspects, as time synchronisation
or sleeping modes of nodes, are covered by the protocol, but are not addressed
in the analysis here. During our modelling and verification efforts we found
that the implementation covered more aspects than the specification did. The
main results of our analysis were an improvement of the protocol, such that less
collisions remain undetected, and an analysis of possible undetected collisions
showing that undetected collisions do not prevent connection to the gateway.

The paper is structured as follows. In Section 2 we give a short description of
the LMAC protocol, and in Section 3 a brief introduction to timed automata. The
models and properties are described in detail in Section 4. The model checking
results are discussed in Section 5. We conclude with discussions in Section 6.

2 The LMAC Protocol

In schedule-based MAC protocols, time is organised in time slots, which are
grouped into frames. Each frame has a fixed length of a (integer) number of time
slots. The number of time slots in a frame should be adapted to the expected
network node density or system requirements.

The scheduling principle in the LMAC protocol [10] is very simple: every
node gets to control one time slot in every frame to carry out its transmission.
When a node has some data to transmit, it waits until its time slot comes up,
and transmits the packet without causing collision or interference with other
transmissions. In the LMAC protocols, nodes always transmit a short control
message in their time slot, which is used to maintain synchronisation.

The control message of the LMAC protocol plays an important role in obtain-
ing a local view of the network within a two-hop distance. With each transmission
a node broadcasts a bit vector of slots occupied by its (first-order) neighbours .
When a node receives a message from a neighbour, it marks the respective time
slots as occupied. To maintain synchronisation other nodes always listen at the
beginning of time slots to the control messages of other nodes.

In the remainder we will briefly describe the part of LMAC concerned with
the choice of a time slot. We define four operational phases (Fig. 1):

Initialisation phase (I) — The node samples the wireless medium to detect
other nodes. When a neighbouring node is detected, the node synchronizes (i.e.
the node knows the current slot number), and proceeds to the wait phase W, or
directly to the discover phase D.
Wait phase (W) — We observed that ,especially at network setup, many
nodes receive an impulse to synchronize at the same time. The protocol intro-
duces randomness in reaction time between synchronising with the network and

256 A. Fehnker, L. van Hoesel, and A. Mader

after waiting k frames lengths

synchronizable
transmission detected

I

select
slot

no free slot

no neighbors

no neighbors

after one frame length

reported collision

W

D

A

select
waiting
time k

Fig. 1. Control flow diagram of the protocol

actually choosing a free time slot, to reduce the likelihood that nodes select slots
at the same time. This is achieved by inserting a random wait time after the
initialisation phase I and before the discover phase D.
Discover phase (D) — The node collects first-order neighbourhood information
during one entire frame and records the occupied time slots. If all information
is collected, the node chooses a time slot and advances to the active phase A.

By performing an ’OR’-operation between all received bit vectors, a node in
the discover phase D can determine which time slots in its second-order neigh-
bourhood are unoccupied and can be freely used. At this moment the node can
choose any time slot that it marked as unoccupied. To reduce the probability of
collisions, the protocol is to randomly choose one of the available slots.
Active phase (A) — The node transmits a message in its own time slot. It
listens in all other time slots and accepts data from neighbouring nodes. The
node also keeps its view on the network up-to-date. When a neighbouring node
informs that there was a collision in the time slot of the node, it will return to the
wait phase W. Collisions can occur when two or more nodes choose the same time
slot for transmission simultaneously. This can happen with small probability at
network setup or when network topology changes due to mobility of nodes.

The nodes that cause a collision cannot detect the collision by themselves; they
need to be informed by their neighbouring nodes. These neighbouring nodes use
their own time slot to inform the network that they detected a collision. When
a node is informed that it is in a collision it will give up its time slot and return
to the discover phase D.

Modelling and Verification of the LMAC Protocol 257

3 Timed Automata

Systems are modelled in Uppaal as a parallel composition of timed automata [3].
Time is modelled using real-valued clocks and time only progresses in the loca-
tions of the automata: transitions are instantaneous. The guards on transitions
between locations in the automata and the invariants in the various locations
may contain both integer-valued variables and real-valued clocks. Clocks can be
reset to zero on transitions. Several automata can synchronize on transitions us-
ing handshake and broadcast synchronisation. Shared variables can be used to
model data transfer between automata. Locations can be declared urgent, which
means time is not allowed to progress, or committed, which means time is not
allowed to progress and interleaving is restricted. If only one automaton is in a
committed location at any one time, its transitions are guaranteed to be atomic.

Properties of systems are checked by the Uppaal model checker, which per-
forms an exhaustive search through the state space of the system for the validity
of these properties. It can check for invariant, reachability, and liveness proper-
ties of the system, specified in a fragment of TCTL.

4 Models and Properties

4.1 Model Decomposition

Uppaal models are, as mentioned in the previous section, parallel compositions of
timed automata, and allow for compositional modeling of complex systems. The
LMAC protocol is naturally distributed over the different nodes. The Uppaal
model reflects this by including exactly one timed automaton model for each
node. Each of these timed automata models is then organised along the lines of
the flow chart in Section 2.

The Uppaal model of the LMAC protocol will be used to analyse the behaviour,
correctness and performance of the protocol. Since the LMAC protocol builds on
an assumed time synchronisation, the Uppaal model will also assume an existing
synchronisation on time. Although it would be interesting to analyse the timing
model in detail, it falls outside of the scope of the protocol and this investigation.

The LMAC protocols divides time into frames, which are subdivided into
slots. Within a slot, each node communicates with its neighbours and updates
its local state accordingly. We model each slot to take two time units. Each
node has a local clock. Nodes communicate when their local clock equals 1, and
update information when their clocks equals 2. At this time the clock will be
reset to zero.

Based on this timing model, the protocol running on one node is modelled as
a single timed automaton. The complete model contains one of these automata
for each node in the network. The timed automata distinguish between 4 phases,
as shown in the control flow graph in Figure 1. The first phase is the initialisa-
tion phase, the second the optional wait phase. The next part models the discover

258 A. Fehnker, L. van Hoesel, and A. Mader

phase which gathers neighbourhood information. At the end of the discover phase
a node chooses a slot, and proceeds to the fourth and last phase, the active phase.
Figure 2 to 6 depict the models for each phase. Details of the different parts will
be discussed later in this section. Note, that the model presented here serves as
a baseline for an iterative improvement of model and protocol.

Channels and Variables

Global channels and variables. The wireless medium and the topology of the
network are modelled by a broadcast channel sendWM, and a connectivity matrix
can hear. A sending node i synchronises on transitions labeled sendWM!. The
receiving nodes j then synchronizes on label sendWM? if can hear[j][i] is true.
This model of sending is used in the active phase (Fig. 6), and the model of
receiving during initialisation (Fig. 2), discover (Fig. 4) and active phase (Fig. 6).

The model uses three global arrays to maintain a list of slot numbers and
neighbourhood information for each node. Array slot no records for each node
the current slot number. Array first and second record for each node infor-
mation on the first and second-order neighbours, respectively. Note, that the
entries of these arrays are bit vectors, and will be manipulated using bit-wise
operations. All nodes have read access to each of the elements in the arrays, but
only write access to its own. The arrays are declared globally to ease read access.

The model uses two additional global variables aux id and aux col. These
are one place buffers, used during communication to exchange information on
IDs and collisions.

Local variables. Each node has five local variables. Variable rec vec is a local copy
of received neighbourhood information, counter counts the number of slots a node
has been waiting, and current the current slot number, with respect to the be-
ginning to the frame. Variable col records the reported collisions, while detected
is used to record detected collisions. Finally, each node has a local clock t.

The node model. The remainder of this section will discuss each part of the
node model in detail.

Initialisation phase. The model for the initialisation phase is depicted in Figure
2. As long a node does not receive any message it remains in the initial node. If
a node receives a message, i.e. if it can hear (can hear[id][aux id]==1) and
synchronise with the sender (sendWM?), it sets its current slot number to the slot
number of the sender (current=slot no[aux id]), and resets its local clock
(t=0). The slot number of the sender is part of the message that is send. From
this time on the receiver will update the current slot number at the same rate as
the sender. They are equal whenever either of them sends. This synchronisation
is the subject of one of the properties that will be verified later.

If the receiver receives a second packet before the end of the slot a collision has
occurred. The node will discard the received information and return to the initial

Modelling and Verification of the LMAC Protocol 259

initial

t<=1t<=1

to wait

can_hear[id][aux_id]==1
sendWM?
current=slot_no[aux_id],
t=0

can_hear[id][aux_id]==1
sendWM?

t==1
t=0

t==1
current=(current+1)%frame,
t=0

Fig. 2. Model of the initialisation phase

from choice

from init

to listening

waiting
t<=2

counter=0

counter=0

t==2 &&
counter==2*frame-1
counter=0,
t=0

t==1
current=(current+1)%frame,
t=0

t==2 &&
counter==frame-1
counter=0,
t=0

t==2 &&
counter==3*frame-1
counter=0,
t=0

t==2 && counter<3*frame-1
counter++,
t=0

Fig. 3. Model of the wait phase

location. If no collision occurs, the node will proceed to the next slot, increment
the current slot counter modulo the length of the frame (current=current+1%
frame), and proceed to the wait phase (Figure 3).

Wait Phase. When a node enters the wait phase, it may decide (non-deter-
ministically) to skip this phase. A node waits for at most 3 frames in this lo-
cation waiting. Waiting is implemented as a self loop, which is guarded by
counter<3*frame-1. The loop increments the counter at the end of a slot (t==2).
A node can proceed to the discover phase when it waited for exactly one, two or
three frames.

Discover Phase. The model for the discover phase consists of four locations
(Figure 4). The entry location listening0 models when a node is sensing the
medium. Location rec one0 models that a node continues sensing after reception
of a first message. Location done0 is reached when a node detected a collision.
Finally, the model contains a committed location, in which the node checks if
it listened to the medium for a full frame. If it did, it proceeds to choose a free
slot, otherwise it continues listening.

Clocks and variables will be updated as follows. When a node enters location
listening0, the local clock will be zero. It will wait in this location for at

260 A. Fehnker, L. van Hoesel, and A. Mader

from collision

from wait

to choice

t<=2

rec_one0
t<=2

listening0
t<=2

done0

t<=2 counter>=frame-1
second[id]|=first[id]

can_hear[id][aux_id]==1
sendWM?
rec_vec=first[aux_id],
first[id]|=(1<<current)

can_hear[id][aux_id]==1
sendWM?
detected=(detected<0)?current:detected,
rec_vec=0

t==2
current=(current+1)%frame,
second[id]|=rec_vec,
rec_vec=0,
t=0

t==2
current=(current+1)%frame,
t=0

counter<frame-1
counter++

t==2
current=(current+1)%frame,
t=0

Fig. 4. Model of the discover phase

to wait

to normal

from listening

counter>=frame-1
second[id]|=first[id]

!((second[id]>>1)&1)

slot_no[id]=1,
second[id]=0

second[id]==max_vec

counter=-1,
second[id]=0,
first[id]=0,
second[id]=0,
detected=-1

!((second[id]>>0)&1)

slot_no[id]=0,
second[id]=0

!((second[id]>>2)&1)

slot_no[id]=2,
second[id]=0

!((second[id]>>3)&1)

slot_no[id]=3,
second[id]=0

!((second[id]>>4)&1)

slot_no[id]=4,
second[id]=0

Fig. 5. Model of the choice

most 2 time units, enforced by invariant t<=2. If it receives a message from a
neighbouring node, it will record the neighbour information of that neighbour
(rec vec=first[aux id]). The node sets the bit for the current slot in its own
neighbourhood vector to true (first[id]|=1<<current). If the node does not
receive any message by the end of the slot (t==2), it will increment the current
slot number, and move to a committed location.

When the node received one message, it waits in location rec one0 either
until it receives a second message (collision), or until the end of the slot (t==2).
The node uses the received neighbourhood information only in the latter case
to update the information on slots occupied by the second-order neighbours
(second[id]|=rec vec). In the first case the node records if a collision oc-
curred if it was the first collision since the beginning of the discover phase
(detected=(detected<0)?current:detected). Note, that detected has value
−1 if no collision has been detected yet. At the end of a slot(t==2) the node
enters the committed location. If it listened for less than a frame length, it will
return to listening0, otherwise it will choose a slot.

Modelling and Verification of the LMAC Protocol 261

collision

from choicefrom choicefrom choicefrom choicefrom choice

sending
sent
t<=2

ready
t<=1

listening
t<=2

rec_one
t<=2

done
t<=2

current!=slot_no[id]

sendWM!
detected=-1

current==slot_no[id]

t==1
aux_id=id,
aux_col=detected

t==2
current=(current+1)%frame,
t=0

can_hear[id][aux_id]==1

sendWM?
col=aux_col,
first[id]|=(1<<current)

can_hear[id][aux_id]==1

sendWM?
detected=(detected<0)?current:detected

t==2 &&
col!=slot_no[id]
current=(current+1)%frame,
t=0

t==2
current=(current+1)%frame,
t=0

t==2 && (col==slot_no[id])
counter=0,
current=(current+1)%frame,
col=-1,
detected=-1,
slot_no[id]=-1,
first[id]=0,
rec_vec=0,
t=0

t==2
current=(current+1)%frame,

t=0

Fig. 6. Model of the active phase

Choosing. Choosing is not a actual phase, but an important intermediate state.
Choosing a slot is modelled by a single committed location (Figure 5). Before
entering this location the node computes the slots that are neither occupied by
the (first-order) neighbours, nor by the second-order neighbours (second[id]
|= first[id]). If all slots are reported occupied, the node returns to the wait
phase (second[id]==max vec)1. If there are available slots, i.e the corresponding
bits in the bit-vector second[id] are equal to zero, the node will select non-
deterministically one of these slots.

Active Phase. The main phase of a node is the active phase. The model for this
phase is depicted in Figure 6. Locations ready, sending, and sent deal with the
transmission of a message, locations listening, rec one, and done deal with
receiving messages.

From the central committed location, which is entered at the beginning of a
slot, the node proceeds to send, if the chosen slot number is equal to current slot
number (current==slot no[id]), and proceeds to the discover phase otherwise
(current!=slot no[id]).

If a node wants to send it waits for one time unit in location ready. After one
time unit, the node first copies its ID and collision information into global buffers
aux id, aux col, and then triggers all nodes in it neighbourhood to update their
local information through broadcast channel sendWM!. The node then stays in
location sent until the end of the slot.

1 Constant max vec is a bit-vector where all elements are set to true.

262 A. Fehnker, L. van Hoesel, and A. Mader

If a node is ready to receive a message it waits in location listening. It
remains in that location either until the end of the slot, or until it receives a
message. In the former case it increments the slot number at the end of the
slot, and proceed with the next slot. In the latter case, if it receives a mes-
sage, it updates its local information and enter location rec one. If a second
message arrives while in rec one, it discards the received information, records
the collision (detected=(detected<0)?current:detected), and waits for the
remaining time of the slot in done. If no collision occurred while in rec one, the
node proceeds at the end of the slot (t==2) depending on the received collision
information col. If a collision has been reported and it is equal to its slot number
(col==slot no[id]), the node returns to the discover phase, and resets all local
information. Otherwise, it updates its neighbourhood information, and proceeds
with the next slot.

The next section briefly discusses some properties of the timed automaton
model of the LMAC protocol, in particular a property that ensures that after a
collision nodes involved will choose a new slot.

4.2 Properties

The timed automata model of the LMAC protocol should guarantee basic safety
properties. The most basic property is freedom from deadlocks, which can be
checked in Uppaal by verifying the following:

AG¬deadlock (1)

In addition, we require that the model successfully implements synchronisation
of nodes. First, nodes should be synchronised halfway the duration of a slot,
since at this time they will send and receive information. We prove for each pair
(i, j) of first-order neighbours

AG(nodei.t == 1 ⇒ nodej .t == 1) (2)

In addition neighbours should agree on the current slot number, to ensure that
received information is interpreted correctly.

AG(nodei.t == 1 ⇒ nodei.current == nodej .current) (3)

Since we only consider completely connected networks, pairwise synchronisation
implies synchronisation of the entire network. The nodes do not to be synchro-
nised when nodei.t �= 1. This can happen when one node increments its current
slot number before the other.

In addition to these safety properties the protocol should satisfy a very basic
reachability property: There should exist a path to a state, such that all nodes
are active, and such that they have a chosen a slot number that is distinct from
their first and second-order neighbour’s slot. Let N be the set of all pairs of first
and second-order neighbours. We then verify

EF
∧

(i,j)∈N
(slot no(i) �= slot no(j) ∧ active(i) ∧ active(j)) (4)

Modelling and Verification of the LMAC Protocol 263

where active(i) is true if a node is its active phase. If the model cannot satisfy
this property, it is not even possible to reach a configuration without collision,
i.e the related colouring problem has no solution.

The previous property guarantees that there exists a solution, but it does not
guarantee that the protocol find this solution. The LMAC protocol chooses slots
randomly from the available slots. This is implemented in the timed automaton
model as a non-deterministic choice. It is therefore possible that two nodes will
repeatedly choose the same slot. For a probabilistic model we could try to prove
that with probability one distinct slots will eventually be chosen. Unfortunately,
we cannot use the timed automaton model to prove this directly.

Alternatively, we verify two liveness properties to show that the protocol will
eventually resolve all conflicts, if satisfied. The first is to show that whenever
two first or second-order neighbours choose the same slot number, they will
eventually choose a new slot number. We show for each pair (i, j) in N

AG (slot no(i) == slot no(j) ∧ sending(i) ∧ sending(j)) (5)
⇒ AF (¬active(i) ∨ ¬active(j))

A node may leave the active phase eventually due to a third node reporting the
collision or a triggered timeout.

The second liveness property is, that if a node is about to choose a slot,
and if it can only choose from one available slot, its neighbours who are in
the discover phase are not forced to the make the same choice. The neighbour
should eventually be able to choose a different slot. The latter requirement can
be dropped, if the neighbour that was forced to a choice, left the active phase
and either waits or discovers. For all pairs (i, j) in N we show

AG (choosing(i) ∧ available slot(i) == 1 ∧ discover(j)) ⇒ (6)
AF (choosing(j) ∧ (slot no(i) �= slot no(j) ∨ wait(i) ∨ discover(i)))

This means that, even if a node is forced to a certain choice (choosing(i) ∧
available slot(i) == 1), neighbours can eventually choose a different slot.

4.3 Simplification

The model described in Section 4.1 was close to the informal description of the
protocol as presented in Section 2. As such each node was equipped with its own
clock, and its internal actions completely independent from other nodes.

Checking the reachability probability property (4) was easy, and checking the
safety properties (1) to (3) was possible, although demanding in terms of memory
and time constraints, while proving the liveness properties (5) and (6) turned
out to exceed the memory and time constraints for most topologies. To be able
to verify the protocol for all topologies with up to 5 nodes for all properties, we
had to simplify the model. The simplification reduced the number of clocks and
non-essential interleaving, while keeping the essential behavior.

The simplification builds on two observations. Firstly, that all clocks are syn-
chronised, and secondly that all updates are local. We introduce a scheduler,

264 A. Fehnker, L. van Hoesel, and A. Mader

with its own clock, that synchronizes the internal update of the nodes at the
end of a slot. Without loss of subsequent behavior this scheduler realises a local
partial order reduction.

Given that the local clocks of the nodes are only reset during the update of a
node, and given that we can safely synchronize all updates, as mentioned before,
we find that all clocks are now perfectly synchronised. This means that for clocks
t1 and t2 holds the invariant t1 == t2. We can therefore safely replace the local
clocks of the nodes by the single clock of the scheduler.

The simplification reduced number of clocks and manually introduced a partial
order reduction on internal transitions. It should be noted that the scheduler
added to the model to achieve this reduction has no equivalent in the actual
LMAC protocol. It was purely introduced to reduce the complexity of the model
checking problem. If anything it reflects that the LMAC protocol builds on an
existing time synchronisation.

5 Results

This section reports on the model checking results for the properties defined in
Section 4.2.

While the safety and reachability properties should be satisfied by all models,
it is known beforehand that the LMAC protocol is not able to resolve all col-
lisions. This is the subject of the first liveness property (5). Two neighbouring
nodes will remain in a collision perpetually, if no third node is able to report
this collision, either because there is no third node, or because the third node is
unable to send a message without collision. This is a fundamental shortcoming
of collision detection algorithms. The aim of the model checking experiments is
to iteratively improve the model, and thus the protocol, to reduce the number
of topologies that suffer from this problem. This means to reduce the number of
topologies and pairs of neighbours that do not satisfy property (5). The improve-
ments deal with modelling bugs, clarification of an ambiguous informal protocol
description, to improvements of the protocol.

The model checking experiments have been performed on a Mac Pro with 2
x 3 GHz Dual-Core processor, and a 4 GB 667 MHz memory. We used Uppaal
version 4.0. Checking property (5) for a five-node model, i.e. ca. 500 runs of the
model checker, took about an hour. This machine outperformed different other
PCs, the weakest ones taking a week for the same set of verifications without
solving them all, or the better ones, doing the job in a few hours, but still failing
due to memory limitations for some experiments, which had to be killed when
using too much memory.

5.1 Safety and Reachability Properties

For basic model we assume a network of 4 nodes, and a frame length of 5 slots.
For this basic model there are 11 topologies, with 64 pairs of first and second-
order neighbours. The experiments show that the basic model (and all models

Modelling and Verification of the LMAC Protocol 265

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

no
de

0 d d d d d 3 3 3 3 3 3 3

1 i d d d d d 1 1 1 1 1 d d d d d 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 i d d d d d 1 1 1 1 1 d d d d d 2 2 2 2 2 d d d d d 3 3 3 3 3 3 3 3 3

3 i i i i i i i w w w w w d d d d d 0 0 0 0 0 0 d d d d d 4 4 4 4 4 4 4

model 1, topology 4, pair (0,2)

Fig. 7. Scenario of an unresolved collision between node 0 and 2. The y-axis shows
the different nodes, the x-axis the time. Each slot contains whether the node is in
the initialisation (i), waiting (w), discover (d), or active phase. In the latter case the
current slot number is shown. White bold face indicates that the node is sending, black
bold face that a node is receiving. Bold italics on a dark (red) background indicate
collisions.

that will be derived in the process) satisfy the safety and reachability properties
(1) to (4). This means that the models are deadlock free, that the nodes are
synchronised, and that for each topology there exist a path that assigns the slots
without collision, i.e. that there exists a solution of the related graph colouring
problem.

5.2 Liveness Properties

The main liveness property (5) deals with unresolved collisions. In the basic
model unresolved collisions may occur for in 3 topologies, for a total of 6 pairs
of neighbours. From this basic model for 4 nodes we arrive in 12 iterations at a
model that satisfactory resolves collisions for topologies with 5 nodes.

Model 1. This is the basic model for 4 nodes, and a frame length of 5 slots. Among
the collisions that are not resolved are collisions that separate a node from
the other nodes. An example scenario of such behavior is depicted in Figure 7.
It belongs to topology 4, depicted in Figure 8.

3

0 1

2

Fig. 8. Topology 4

At time 0 the gateway, node 0, sends a first message.
This message is received by node 1 and 2 and they start
listening to the medium. One frame later node 1 and 2
both select slot 1, and send at time 6. This leads to
a collision at node 0. Node 0 reports the collision at
time 10, and node 1 and 2 return to the discover phase.
At the end of the scenario node 0 and node 2 collide,
perpetually, since there is no neighbour to witness the
collision. Node 2 does not receive any message from then
on, since it cannot listen while sending. Node 2 entered

this collision, because it chose a slot, while it had insufficient information. Node
2 listened from time 21 to time 26, but received not a single message. It had no
information about its neighbours, when it made its choice, and any choice had
the potential to lead to a collision.

266 A. Fehnker, L. van Hoesel, and A. Mader

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

no
de

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 i w w w w w d d d d d 2 2 2 2 2 2

2 i d d d d d 1 1 1 1 1 1 1 1 1 1 1
3 i i i i i i i d d d d d 2 2 2 2 2

model 4, topology 5, pair (1,3)

(a)

0 1

2 3

(b)

Fig. 9. (a) Scenario of an unresolved collision between node 1 and 3 in topology 5. (b)
Topology 5. Node 1 and 3 may fail to resolve a collision.

Model 2. The second model improves on the first model, by introducing the rule
that a node may not choose if it received no information in the discover phase.
This additional rule successfully deals with the collision depicted in Figure 7.

This model run into problems because it does not reset its first-order neigh-
bour information. After a few repeated choices some node assume that all slots
are occupied. They cannot enter the active phase, and consequently cannot re-
port collisions between other nodes. This bug was in the model because of an
incomplete informal specification.

Model 3. Model 3 improves on model 2, in that it resets all neighbourhood
information after it sends a message. It propagates in the active phase only
information collected during the last frame length of slots.

The additional rules in Model 2 and 3 do not eliminate the possibility that a
nodes may become disconnected from the network. It may still happen if a node
only receives messages while it sends, and no third node witnesses or reports the
collision.

Model 4. The fourth model improves on the third model in that a node chooses
anew if it does not receive any message in a frame length. This last additional
rule resolves all remaining collisions for topologies with 4 nodes which are not
ring topology bugs. There is one ring topology, and only two pairs of nodes in
it are affected. A scenario leading to this bug is depicted in Figure 9. This kind
of collision is however not problematic, since all nodes are able to communicate
with the gateway.

Model 5. The fifth model is identical to Model 4, except that it is instantiated
for topologies with 5 nodes. There are 61 different topologies, with 571 pairs of
neighbours. Although Model 4 was able to resolve all collisions except for the ring
topology bug, applied to topologies of 5 nodes many other unresolved collisions
suddenly occur. Model checking revealed 56 unresolved collisions, affecting 18
topologies. Also, the model checker was not able to complete for 26 topologies due
to memory and time constraints. Once the computer starts swapping memory,
progress typically stalls.

Model 6. The sixth model improves on the fifth model by an additional rule. If
a node has chosen a slot, and it is active, but has not sent its first message yet,

Modelling and Verification of the LMAC Protocol 267

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

no
de

0 0 0 0 0 0 0 0 0 d d d d d 0
1 3 d d d d d 2 2 2 2 2 2 2 2 2 2 2 w w w w w w w w w w w w w w w d d d d d w w w
2 3 d d d d d 1 1 1 1 1 1 1 d d d d d 4
3 d d d d d 0 0 0 d d d d d 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 d d d d d 4

model 10, topology 31, pair (2,4)

Fig. 10. Scenario of an unresolved collision between node 0 and 3

and if it then receives from a neighbour information that it slot is occupied by
a second-order neighbour, then the node proceeds to choose a new slot.

Model 7. The seventh model modifies a rule introduced in Model 2. If it receives
in the listing phase only collisions, it does not have sufficient information about
its second-order neighbours to make a choice that avoids collisions. The new rule
states that a node will not choose if it did not receive a single message, except
for collisions.

In the seventh model the following could occur. First, a node reported a
collision to all neighbours. Next, these neighbours proceeded to the discover
phase. As a consequence, the node which reported the collision would receive
no message for a frame length of slots, and incorrectly conclude that it is was
disconnected from the network.

Model 8. Model 8 modifies a rule, which was introduced earlier, to avoid the
scenario described for model 7. A node concludes that it is alone if it does not
hear a neighbour in two frame lengths. This prevents a node that reported a
collision to conclude that it is disconnected, just because its neighbours went to
the discover phase for one frame length.

Model 9. Model 9 further refines the rule about when nodes conclude that they
are alone and disconnected. If a node is active, but has not sent yet, it concludes
that it disconnected if it has received no message in the frame length of slots
right before its first transmission.

Model 10. Model 10 fixes a problem that occurs right after choosing a slot.
Model 3 introduced that neighbour information is reset once in a frame length
of slots during the active phase. When a mode transitions from the discover
phase to the active phase it does not reset the neighbourhood information. As
a consequence it may reflect the state of up to two frames length in the past by
the time a node is sending. Model 10 fixes this by resetting all information, even
if collected during the discover phase, after one frame length. In addition a node
concludes that is alone if it hears nothing but collisions for two frame lengths.

Model 11. The eleventh model also refines the rules about when a node has to
conclude that it is in a collision. It tackles the problem depicted in Figure 10.
Nodes 0 and 3 enter a perpetual collision, since node 1 wrongly concluded at time

268 A. Fehnker, L. van Hoesel, and A. Mader

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

no
de

0 0
1 i w w w w w d d d d d 2 2 2 2 d d d d d 3 3 3 3 3 d d d d d 2 2 2 2 2 d d d d d
2 i w w w w w d d d d d 4
3 i d d d d d 1
4 i i i i i i i d d d d d 2 2 2 d d d d d 3 3 3 3 3 d d d d d 2 2 2 2 2 d d d d d

model 11, topology 41, pair (1,4)

Fig. 11. Node 1 and 4 are perpetually forced to make the same choice

36 that it was disconnected. Node 1 assumed to be alone, since it only heard
collisions for two frame lengths. However, the collisions in the frame running
from time 27 to 31 differ from the collisions between 33 and 36. Node 1 is not
disconnected, and it actually successfully reported a collision at time 32.

Model 11 introduces a new rule about when to conclude that it is in a collision.
A node chooses anew if it either receives nothing for two frames or if it witnesses
the same collision for the second time. The rational for the latter case is, that
if a node observes a collision for the second time, it apparently unsuccessfully
reported the collision, likely because it is in a collision itself.

Model 11 resolves all remaining perpetual collisions that happen not in ring
topology. The remaining perpetual collisions happen in the ring of 5 nodes, or
topologies that contain a ring of 4 nodes. Overall, this are 35 pairs of nodes in 13
topologies that potentially end up in an perpetual collision. These are depicted
in Figure 12.

As it comes to the second liveness property – that if a node is forced to
choose a slot, all nodes in the discover phase will eventually be able to choose
a different slot – it turns out that Model 11 fails for 42 pairs in 14 topologies.
Figure 11 depicts an example scenario. First node 1 and 4 both choose the slot
2. This collision is reported at time 14 by node 2. At time 15 node 0 sends
its neighbourhood information to node 1. Based on information collected in the
frame from time 10 to 14, it reports that all slots but slot 3 are occupied. Node
1 hence has to choose slot 3 at time 19. Node 4 receives in its discover phase
messages in slot 1 and 4. In slot 1, it also learns from node 3 that slots 2 and 0
are occupied. Hence, node 4 has to choose node 3 as well, leading to a collision
at time 23. This collision gets reported at time 24.

During the next discover phase, both, node 1 and 4 learn that all but slot 2
are occupied. Node 1 and 4 have therefore to choose slot 2 at the end of their
discover phase. They end up in a collision again, which gets reported, and at the
end of the next discover phase they both have to choose slot 3 again. Etcetera.

Model 12. Model 12 is identical to model 11 except that it assumes a frame
length of 6 slots. Increasing the frame size does not influence the number of
potential collisions in ring topologies. However, since it increases the number of
available slots, all pairs in all topologies now satisfy the second liveness property.
If one node is forced to choose a certain slot, the second can eventually choose
a slot that differs from the first nodes slot.

Modelling and Verification of the LMAC Protocol 269

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

50 51 52 53 54 55 56

57 58 59 60 61

Fig. 12. Final results for all 61 topologies with 5 nodes. The gateway is the solid node.
Dashed lines depict pairs of neighbours that may end up in an perpetual collision.
Only in the ring topology 14 this may happen also between second-order neighbours.

6 Conclusion

In this paper we reported about the analysis of a medium access protocol for wire-
less networks, the LMAC protocol. The analysis technique we applied was model
checking, using the timed automaton model checker Uppaal [3]. Our approach
was a systematic analysis of all possible connected network topologies with 4
and with 5 nodes. The most relevant property we investigated was, whether

270 A. Fehnker, L. van Hoesel, and A. Mader

collisions are detected and a new choice of slots is initiated afterwards. We
checked 12 different models, four for all topologies of four nodes, eight for all
topologies consisting of five nodes. The sequence of models reflects the increments
in insight in the protocol, and in the improvements of the protocol. Figure 12
shows the results for the last of the models.

Checking the models against a number of properties summed up to more than
8000 model checking runs in total. For example, in each of the eight five node
models there are 571 pairs of nodes. For each pair it needs to be investigate
whether a possible collision is detected by the protocol or not. This results in
4568 instances of property 5 alone that need to be model checked.

Extending the systematic analysis to 6 node topologies would not only increase
the model checking time for each instance, but also the number of instances to
investigate. With 6 nodes we would have 486 different topologies and 6273 pairs
of nodes to analyse. This would lead not only to a state space explosion problem
within one model, but to a much higher extent to a instance explosion problem.
For the state space explosion fully symbolic model checking techniques could
be helpful, but not for the instance explosion problem. Furthermore, it seems
to be difficult to parameterise topologies, having parametric model checking
techniques in mind. An alternative approach for showing correctness for a class
of topologies, using a combination of model-checking and abstract interpretation,
was presented in [1]. Here however, we face the additional problem that essential
properties are not valid for a number of instances. Therefore, we argue that
with straightforward model checking techniques, not much more can be done.
A possible extension could be stochastic analysis with a probabilistic model
checker, which will be discussed below.

There are three main results: (1) the description of the protocol is improved,
(2) the protocol itself is improved, and (3), problematic topologies with possible
scenarios of unresolved collision have been identified.

Improvement of the protocol description. We had a quite usual experience
here: several “bugs” found in first rounds of analysis turned out to be present in
the documentation of the protocol, but not in the implementation. The respective
“patches” were added to the documentation.

Protocol improvements. Some scenarios leading to unresolved collisions helped
to improve the protocol, and were absent in the later protocol versions:

– There is an additional trigger for the choice of a new slot: if a node hears
nothing, it concludes that it is isolated or participating itself in an collision,
and starts a new choice.

– If a node hears the same collision twice, it concludes that its collision report
has not been heard. The only reason for this is that this node itself is in a
collision. Therefore it starts a new choice in this situation.

– Some situations of collision detected could be solved by a change in param-
eters in the protocol, e.g., the time that a node listens before it chooses a
new slot, was extended from one frame to two frames.

Modelling and Verification of the LMAC Protocol 271

– The frequency of information update was increased, e.g. slots where collisions
were heard are only stored for one frame. Timely resets seem to be crucial
for the protocol.

Protocol faults. It is the case that collisions are not detected if there is not a
third node which can observe the collision. This situation occurs in all topologies
containing a square. Fortunately, even when there is a collision, all nodes are still
connected to the gateway, which makes these collisions less dramatic. The only
exception to this pattern is the ring-topology of five nodes, where also unresolved
collision can occur.

As mentioned, the colouring problem that the LMACprotocol tries to solve is
NP-hard. It cannot be expected that a light-weight, distributed algorithm finds
a solution in all cases.

Further results are:

Justification of the verification approach.The real faults found in the proto-
col were detected in non-trivial scenarios, generated by Uppaal-counterexamples
and, for readability, transformed to a graphic by a Matlab procedure. Figure 10
contains an example of such a scenario. It is obvious that these scenarios, due to
complexity, are unlikely to be found during a simulation run.

Justification of the analysis of all possible topologies. We found that
small changes in the topology can lead to different results. Intuitively, one would
expect that “similar” topologies give similar results. Unfortunately, any intuition
of this kind was proved wrong. Also another intuition, that most collisions occur
when the connectivity is higher turned out to be wrong. It turns out the colli-
sions get resolved when the connectivity is high. This justifies our approach of
systematically investigating all topologies. Selecting “representative” topologies
is misleading, because there are no criteria for what “representative” could be.

Quantification of the success rate. For the 61 topologies we investigated
571 pairs of nodes for collision detection. 35 pairs of these showed a possible
unresolved collision. There are two aspects of probability present: first, for a
fixed topology we could determine the probability of an undetected collision.
This exceeds the possibilities of Uppaal, and would require a probabilistic model
checker (what we have not done). The second aspect is the probability of a
certain topology. This cannot be answered in general, because it depends on the
application domain, and the level of mobility in the network investigated.

Future work. We have not considered the probabilistic aspects of the protocol.
There are two sources of probabilities in the protocol: the choice of a new slot
out of all free slots, and the waiting time before choosing a new slot. We see two
different approaches to treat these aspects: one is by simple meta-argumentation,
based on combinatorics and elementary stochastics (e.g.,“What is the probability
that two nodes keep choosing the same waiting times?”). The other possibility
is by using a probabilistic model checker, like PRISM. However, probabilistic
models are typically even more complex than the ones we considered, which

272 A. Fehnker, L. van Hoesel, and A. Mader

decreases the limit of what can be analysed. In this case a number of effective
abstraction steps have to be applied to the model, to decrease its complexity.

We have not yet considered aspects of energy efficiency in the choice of new
slots. One source of energy consumption is the number of iterations are nec-
essary, to choose a slot without creating a collision. To answer this question
probabilistic analysis is necessary. Another source of energy consumption is in
the number of hops that a packet needs to reach the gateway. The choice of a
slot can influence latency. Here, it seems that the “more deterministic” choice
for a latency-minimizing slot increases the chance for collision during the slot
selection phase. In contrary, when we apply a uniformly distributed choice of
slots during the selection phase, the latency will not be optimal. What the right
balance is between these parameters is subject to further analysis.

References

1. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and verification of
dynamic communication systems. In: Application of Concurrency to System Design
(ACSD’06), pp. 189–200. IEEE Computer Society, Los Alamitos (2006)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems: SFM-
RT 2004. LNCS, vol. 3185, Springer, Heidelberg (2004)

3. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: Quantitative Evaluation of Systems - (QEST’06),
pp. 125–126. IEEE Computer Society Press, Los Alamitos (2006)

4. Brinksma, E.: Verification is experimentation! Int. J. on Software Tools for Tech-
nology Transfer 3(2), 107–111 (2001)

5. Cardell-Oliver, R.: Why Flooding is Unreliable (Extended Version). Technical Re-
port UWA-CSSE-04-001, CSSE, University of Western Australia (2004)

6. Mader, A., Wupper, H., Boon, M.: The construction of verification models for
embedded systems. Technical report TR-CTIT-07-02, Centre for Telematics and
Information Technology, Univ. of Twente, The Netherlands (January 2007)

7. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc.
of 17th Symposium on Parallelism in Algorithms and Architectures (2005)

8. Olveczky, P., Thorvaldsen, S.: Formal modeling and analysis of wireless sensor
network algorithms in real-time maude. In: Proceedings of the 14th International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 2006), IEEE
Computer Society Press, Los Alamitos (2006)

9. Sridharan, A., Krishnamachari, B.: Max-min fair collision-free scheduling for wire-
less sensor networks. In: Workshop on multi-hop wireless networks (2004)

10. van Hoesel, L.F.W., Havinga, P.J.M.: A lightweight medium access protocol (lmac)
for wireless sensor networks: Reducing preamble transmissions and transceiver state
switches. In: In 1st International Workshop on Networked Sensing Systems (INSS
2004), pp. 205–208 (June 2004)

	Modelling and Verification of the LMAC Protocol for Wireless Sensor Networks
	Introduction
	The LMAC Protocol
	Timed Automata
	Models and Properties
	Model Decomposition
	Properties
	Simplification

	Results
	Safety and Reachability Properties
	Liveness Properties

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

