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Preface

The 11th International Conference on Developments in Language Theory (DLT
2007) was held at the University of Turku, Finland, July 3–6, 2007. This was
the second time DLT took place in Turku. Indeed, the very first meeting was or-
ganized in Turku in 1993. Consequent meetings were held in Magdeburg (1995),
Thessaloniki (1997), Aachen (1999), Vienna (2001), Kyoto (2002), Szeged (2003),
Auckland (2004), Palermo (2005), and Santa Barbara (2006). The conference
series is held under the auspices of the European Association for Theoretical
Computer Science.

The DLT meeting can be viewed as the main conference on automata and
formal language theory. The current topics of the conference include the follow-
ing: grammars, acceptors and transducers for strings, trees, graphs and arrays,
efficient text algorithms, algebraic theories for automata and languages, combi-
natorial and algebraic properties of words and languages, variable-length codes,
symbolic dynamics, decision problems, relations to complexity theory and logic,
picture description and analysis, polyominoes and bidimensional patterns, cryp-
tography, concurrency, bio-inspired computing, quantum computing. This vol-
ume of Lecture Notes in Computer Science contains the papers that were pre-
sented at DLT 2007, including the abstracts or full papers of the six invited
speakers Volker Diekert (Stuttgart), Thomas Henzinger (Lausanne), Michal Kunc
(Brno), Ming Li (Waterloo), Jacques Sakarovitch (Paris), and Kai Salomaa
(Kingston)

For the conference, 32 contributed papers were selected from a record-breaking
74 submissions. We warmly thank the authors of the papers, the members of the
Program Committee, who faced many hard decisions, and the reviewers of the
submitted papers for their valuable work. All these efforts were the basis of
the success of the conference, In particular, we are very thankful to the invited
speakers of the conference. Finally, we thank the Organizing Committee for its
splendid work and also the members of the Steering Committee.

Finally, we wish to thank the support of the conference sponsors: The Academy
of Finland, The Finnish Cultural Foundation, the Finnish Academy of Science
and Letters / Vilho, Yrjö and Kalle Väisälä Foundation, the City of Turku, the
University of Turku, the Turku Centre for Computer Science, and Centro Hotel.

April 2007 Tero Harju
Juhani Karhumäki

Arto Lepistö
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On First-Order Fragments for Words and

Mazurkiewicz Traces

A Survey

Volker Diekert1 and Manfred Kufleitner2

1 Universität Stuttgart, FMI, Germany
diekert@fmi.uni-stuttgart.de

2 Université Bordeaux 1, LaBRI, France
manfred.kufleitner@labri.fr

Abstract. We summarize several characterizations, inclusions, and sep-
arations on fragments of first-order logic over words and Mazurkiewicz
traces. The results concerning Mazurkiewicz traces can be seen as gen-
eralizations of those for words. It turns out that over traces it is crucial,
how easy concurrency can be expressed. Since there is no concurrency in
words, this distinction does not occur there. In general, the possibility of
expressing concurrency also increases the complexity of the satisfiability
problem.

In the last section we prove an algebraic and a language theoretic char-
acterization of the fragment Σ2[E] over traces. Over words the relation
E is simply the order of the positions. The algebraic characterization
yields decidability of the membership problem for this fragment. For
words this result is well-known, but although our proof works in a more
general setting it is quite simple and direct. An essential step in the proof
consists of showing that every homomorphism from a free monoid to a
finite aperiodic monoid M admits a factorization forest of finite height.
We include a simple proof that the height is bounded by 3 |M |.

1 Introduction

The concept of partially commutative free monoids has first been considered by
Cartier and Foata [1]. Later Keller and Mazurkiewicz used them as a model for
concurrent systems and Mazurkiewicz established the notion of trace monoids
for these structures [16,19,20]. Since then the elements of partially commuta-
tive monoids are called Mazurkiewicz traces. Many aspects of traces and trace
languages have been researched, see The Book of Traces [7] for an overview.

Over words it has turned out that finite monoids are a powerful technique to
refine the class of recognizable languages [9]. For fragments of first-order logic, in
many cases it is a characterization in terms of algebra which leads to decidability
of the membership problem. For example, on the algebraic side first-order logics
as well as temporal logics corresponds to aperiodic monoids, see e.g. [12]. The
probably most interesting fragment of them is given by the variety DA. It admits
many different characterizations, which led to the title Diamonds are Forever in

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 1–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 V. Diekert and M. Kufleitner

[30]. One of the purposes of this paper is to survey the situation over words and
Mazurkiewicz traces.

Words can be seen as a special case of Mazurkiewicz traces and the cor-
responding results for words have been known before their generalizations to
traces. Since over words we do not have any concurrency the situation is more
complex for traces, and therefore not all word results remain valid for traces.
It turns out that for traces the distinction between so-called dependence graphs
and partial orders is rather crucial. Over words, both notions coincide.

The paper is organized as follows. In Section 2 we introduce Mazurkiewicz
traces using a graph theoretic approach since this directly translates into the
logic setting. After that we present further notions used in this paper which
include the definition of fragments of first-order logic and temporal logic, some
language operations, and the connections to finite monoids. In Section 3 we give
several characterizations of languages whose syntactic monoid is aperiodic or
in the variety DA. In a second part of this section we describe the alternation
hierarchy of first-order logic using language operations. Section 4 contains some
ideas and approaches revealing how concurrency increases the expressive power
of logical fragments and in Section 5 we present some results showing that in
general, concurrency also increases the complexity of the satisfiability problem.

Finally, in Section 6 we give a self-contained proof of a language theoretic and
an algebraic characterization of the fragment Σ2 over traces. The algebraic char-
acterization yields decidability of the membership problem for this fragment. For
words this result is well-known, but although our proof works in a more general
setting it is quite simple and direct. A main tool in this proof are factorization
forests. We give a simple and essentially self-contained proof for Simon’s theorem
on factorization forests in the special case of finite aperiodic monoids M . Our
proof can be generalized to arbitrary monoids and still yields that the height of
the factorization forests is bounded by 3 |M |. The previously published bound
was 7 |M |, see [2]. After having completed our paper we learned that the bound
3 |M | has been stated in the Technical Report [3], too.

2 Preliminaries

Words and Mazurkiewicz Traces

A dependence alphabet is a pair (Γ, D) where the alphabet Γ is a finite set (of
actions) and the dependence relation D ⊆ Γ ×Γ is reflexive and symmetric. The
independence relation I is the complement of D. A Mazurkiewicz trace is an
isomorphism class of a node-labeled directed acyclic graph t = [V, E, λ], where
V is a finite set of vertices labeled by λ : V → Γ and E ⊆ (V × V ) \ idV is the
edge relation such that for any two different vertices x, y ∈ V we have either
(x, y) ∈ E or (y, x) ∈ E.

We call [V, E, λ] a dependence graph. By < we mean the transitive closure of
E. We write x ‖ y if x �= y and the vertices x and y are incomparable with
respect to <. In this case we say that x and y are independent or concurrent.
Node labeled graphs (V, E, λ) and (V ′, E′, λ′) are isomorphic if and only if the
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corresponding labeled partial orders (V, <, λ) and (V ′, <′, λ′) are isomorphic.
The transitive reduction of a trace is called the Hasse diagram.

For D = Γ×Γ we obtain words. The vertices in words are linearly ordered and
the relations E and < are identical. Let t1 = [V1, E1, λ1] and t2 = [V2, E2, λ2]
be traces. Then we define the concatenation of t1 and t2 to be t1 · t2 = [V,≤, λ]
where V = V1 ∪ V2 is a disjoint union, λ = λ1 ∪ λ2, and E = E1 ∪ E2 ∪
{ (x, y) ∈ V1 × V2 | (λ(x), λ(y)) ∈ D }. The set M of traces becomes a monoid
with the empty trace 1 = (∅, ∅, ∅) as unit. It is generated by Γ , where a letter a
is viewed as a graph with a single vertex labeled by a. Thus, we obtain a canonical
surjective homomorphism π : Γ ∗ →M. The effect of the mapping π can be made
explicit as follows. We start with a word w = a1 · · ·an where all ax are letters in
Γ . Each x is viewed as an element in { 1, . . . , n } with label λ(x) = ax. We draw
an arc from x to y if and only if both, x < y and (ax, ay) ∈ D. This dependence
graph is π(w). Note that M is also canonically isomorphic to the quotient monoid
Γ ∗/{ ab = ba | (a, b) ∈ I }. By abuse of notation we often identify a trace t and
its word representatives w ∈ π−1(t).

Example 1. Let (Γ, D) = a — b — c — d where self-loops are omitted. Consider
the trace t = acdbca. We have acdbca = cabadc in M. The trace t has the
following graphical presentations:

Hasse diagram: Dependence graph E: Partial order <:

a

c

b

d

a

c

a

c

b

d

a

c

a

c

b

d

a

c

In t, the node labeled with d is concurrent to all nodes labeled with a or b. 
�

There is a basic observation which holds for all t ∈M and all vertices x, y of t:

(x, y) ∈ E ⇔ (x, y) ∈ E+ ∧ (λ(x), λ(y)) ∈ D (1)

(x, y) ∈ E+ ⇔ ∃x1 · · · ∃x|Γ | :

⎧
⎪⎨

⎪⎩

x|Γ | = y ∧ (x, x1) ∈ E ∧
∧

1≤i<|Γ |
(xi, xi+1) ∈ E ∪ idV

⎫
⎪⎬

⎪⎭
(2)

This shows that traces can be either represented by their dependence graphs
or as a partial order without losing any information. There are some standard
notations we adopt here. By alph(t) we denote the alphabet of a trace t, i.e., the
set of letters occurring as labels of some position. By |t| we denote the length of
a trace, i.e., the number of vertices of t. A trace language L is a subset of M.

First-Order Logic and Temporal Logic

The syntax of first-order logic formulas FO[E] is built upon atomic formulas of
type

�, λ(x) = a, and (x, y) ∈ E,
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where �means true, x, y are variables and a ∈ Γ is a letter. If ϕ, ψ are first-order
formulas, then ¬ϕ, ϕ ∨ ψ, ∃x ϕ are first-order formulas, too. We use the usual
shortcuts as ⊥ = ¬� meaning false, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), and ∀x ϕ = ¬∃x¬ϕ.
Note that x = y can be expressed by

∨

a∈Γ

(
λ(x) = a ∧ λ(y) = a

)
∧ (x, y) �∈ E ∧ (y, x) �∈ E

We let FOm[E] be the set of all formulas with at most m different names for
variables. There are completely analogous definitions for the first-order logic
FO[<]. The only difference is that instead of (x, y) ∈ E we have an atomic
predicate x < y.

Given ϕ ∈ FO[E]∪FO[<] the semantics is defined as usual [32]. In particular,
if all free variables in ϕ belong to a set { x1, . . . , xm }, then for all t ∈ M and all
x1, . . . , xm ∈ t we write t, x1, . . . , xm |= ϕ if t satisfies ϕ(x1, . . . , xm). We identify
formulas by semantic equivalence (over finite traces). Hence, if ϕ and ψ are
formulas with m free variables, then we write ϕ = ψ as soon as t, x1, . . . , xm |=
(ϕ ↔ ψ) for all t ∈ M and all x1, . . . , xm ∈ t. Due to (1) we have that FOm[E]
is a fragment of FOm[<]. A first-order sentence is a formula in FO[E] or FO[<]
without free variables. For a first-order sentence ϕ we define L(ϕ) = { t ∈ M |
t |= ϕ }. A trace language L ⊆ M is called first-order definable if L = L(ϕ) for
some first-order sentence ϕ and we let FO(M) = {L(ϕ) | ϕ ∈ FO[E] }. We do
not write FO[E](M), because FO(M) = {L(ϕ) | ϕ ∈ FO[<] } as well, due to (2).
So, in first-order it is not necessary to distinguish between E and <. However,
for subclasses of FO we need this distinction. We define the following classes for
E′ = E and E′ = <, respectively.

The fragment Σn[E′] contains all formulas in prenex normal form with n
blocks of alternating quantifiers starting with a block of existential quantifiers
whereas in Πn[E′] formulas start with a block of universal quantifiers. According
to our convention to identify equivalent formulas, it makes sense to write e.g.
ϕ ∈ Σn[E′]⇔ ¬ϕ ∈ Πn[E′]. Although in general the transitive closure of binary
relations is not expressible in first-order logic, we have

⋃
0≤n Σn[E] = FO[<] due

to the following observation obtained from (1) and (2):

Σn[E] ⊆ Σn[<] ⊆ Σn+1[E]

For E′ = E and E′ = < we define the following language classes:

– FOm[E′](M) = {L(ϕ) | ϕ ∈ FOm[E′] }.
– Σn[E′](M) = {L(ϕ) | ϕ ∈ Σn[E′] }.
– Πn[E′](M) = {L(ϕ) | ϕ ∈ Πn[E′] }.
– Δn[E′](M) = Σn[E′](M) ∩Πn[E′](M).

Now, FOm[E′](M) and Δn[E′](M) are Boolean algebras and Σn[E′](M) and
Πn[E′](M) are closed under union and intersection.

Local temporal logic formulas are defined by first-order formulas having at
most one free variable. In this paper we focus on unary operators and local
semantics. In temporal logic we write a(x) for the atomic formula λ(x)=a.
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Inductively, we define SFϕ(x) (Strict Future), SPϕ(x) (Strict Past), Mϕ(x)
(soMewhere), Ecoϕ(x) (Exists concurrently) as follows.

SFϕ(x) = ∃y : x < y ∧ ϕ(y)
SPϕ(x) = ∃y : y < x ∧ ϕ(y)
Mϕ(x) = ∃y : ϕ(y)

Ecoϕ(x) = ∃y : x ‖ y ∧ ϕ(y)

It is common to write ϕ instead of ϕ(x). Let C be a subset of temporal operators
from the set above, then TL[C] means the formulas where all operators are from
C. In order to pass to languages we would like to define L(ϕ) ⊆M, even if ϕ has
a free variable. There is however no canonical choice, so we use an existential
variant; and we define here:

L∃(ϕ) = { t ∈M | ∃x ∈ t : t, x |= ϕ } = L(Mϕ).

Define TL[C](M) as the Boolean closure of languages defined by L∃(ϕ) with
ϕ ∈ TL[C].

Languages and Language Operations

We now define some operations on classes of languages that are used to describe
the expressive power of logical fragments. Let V be a class of trace languages.
By B(V) we denote the Boolean closure of V . A language L is a monomial over
V of degree m if there exist n ≤ m, ai ∈ Γ and Li ∈ V with

L = L0a1L1 · · · anLn

Note that the degree of a monomial is not unique. A finite union of monomials
over V is called a polynomial over V . A polynomial has degree m if it can be
written as a union of monomials of degree m. The class of all polynomials over
V is denoted by Pol(V). The class Pol(V) is often called the polynomial closure
or the closure under product and union of the class V . By co-Pol(V) we denote
the class of languages L such that M \ L ∈ Pol(V). If we speak of monomials
and polynomials without referring to some class V then we mean monomials and
polynomials over A = {A∗ | A ⊆ Γ }, respectively. In particular, Pol = Pol(A)
and co-Pol = co-Pol(A). For example, if A, B ⊆ Γ then A∗B∗ ∈ Pol since

A∗B∗ = A∗ ∪
⋃

b∈B

A∗bB∗

The class of star-free languages SF is the closure of the empty set under Boolean
operations and polynomials. If V is a class of word languages then UPol(V) con-
sists of the word languages that are disjoint finite unions of unambiguous monomi-
als. A monomial L0a1L1 · · · anLn is unambiguous if every w ∈ L0a1L1 · · · anLn

has a unique factorization w = w0a0w1 · · · anwn with wi ∈ Li. A similar lan-
guage operation is B-UPol.By B-UPol(V)we denote the closure ofV underBoolean
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operations and unambiguous products. An unambiguous product is an unambigu-
ous monomial of the form L0a1L1. We set UPol = UPol(A) and B-UPol =
B-UPol(A). For example, the word language {a, b}∗ ab {a, b}∗ is in UPol since

{a, b}∗ ab {a, b}∗ = {b}∗ a {a}∗ b {a, b}∗

whereas the polynomials {a, b}∗ aa {a, b}∗ and {a, b, c}∗ ab {a, b, c}∗ are not in
UPol. See [23] for more information on the language operations UPol(V) and
B-UPol(V). The operation B-UPol(V) has been extended to classes of trace lan-
guages [18].

Algebraic Descriptions

Finite monoids are an elementary tool in the description and classification of
recognizable languages. Remember that a monoid M is a set equipped with
an associative binary operation and a neutral element 1. An ordered monoid is
a monoid M equipped with a partial order relation ≤ such that a ≤ b implies
ca ≤ cb and ac ≤ bc for all a, b, c ∈M . Every monoid M forms an ordered monoid
(M, =). For homomorphisms h : (M,≤)→ (N,�) between ordered monoids we
additionally require that a ≤ b implies h(a) � h(b) for all a, b ∈ M . If a is an
element of an ordered monoid (M,≤) then we define �a� = { b ∈M | b ≤ a }.
More details on ordered monoids can be found in [22]. An element e of a monoid
is called idempotent if e2 = e. For every finite monoid M there exists a number
ω ∈ N such that aω is idempotent for every a ∈M . The element aω is the unique
idempotent generated by a. Therefore we use the ω-notation also if the finite
monoid M is not fixed to denote the idempotent generated by some element.
A language L is called recognizable if L = h−1h(L) for some homomorphism
h : M→M , where M is a finite monoid. In this case we say that M recognizes
L. The minimal monoid recognizing L is its syntactic monoid. For a language
L ⊆M we define its syntactic pre-order ≤L by

s ≤L t ⇔ (∀p, q ∈ M : ptq ∈ L ⇒ psq ∈ L)

and its syntactic congruence ∼L by s ∼L t if and only if s ≤L t and t ≤L

s. The natural homomorphism μL : M → M/∼L : t �→ [t]∼L is called the
syntactic homomorphism of L and the monoid M(L) = M/∼L is called the
syntactic monoid of L. A language L is recognizable if and only if M(L) is
finite. The syntactic pre-order ≤L of L induces a partial order on M(L) such
that (M(L),≤L) forms an ordered monoid. It is called the syntactic ordered
monoid of L. For μL : (M, =)→ (M(L),≤L) we have

L =
⋃

a∈μL(L)

μ−1
L (�a�)

A class of recognizable languages V is a language variety if it is closed under
Boolean operations, left and right quotients, and inverse homomorphic images.
A class of finite monoids V is called a variety if it is closed under taking finite
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products, submonoids and homomorphic images [21]. Eilenberg has shown that
language varieties of word languages and varieties of finite monoids are in a
one-to-one correspondence [9]. Ordered monoids are designed to serve as a sim-
ilar tool for classes of languages which are not closed under complementation.
Syntactic (ordered) monoids play a crucial role in these correspondences. This
yields to the observation that properties of classes of languages can be expressed
in terms of properties of syntactic monoids. In a lot of cases, a description of the
variety generated by the syntactic monoids M(L) for L ∈ V yields decidability
of the membership problem for this language variety V . An important tool to
describe the structure of monoids are Green’s relations. For a, b ∈M we define

a J b ⇔ MaM = MbM a ≤J b ⇔ MaM ⊆MbM

aR b ⇔ aM = bM a ≤R b ⇔ aM ⊆ bM

a L b ⇔ Ma = Mb a ≤L b ⇔ Ma ⊆Mb

aH b ⇔ aR b and a L b

Note that J ,R, L, andH are equivalence relations, whereas≤J ,≤R, and≤L are
pre-orders. Equations are another tool to describe properties of finite monoids.
Let Ω be a finite set and let v, w ∈ Ω∗. A monoid M satisfies the equation
v = w, if for all homomorphisms h : Ω∗ → M we have h(v) = h(w). For
example, commutative monoids satisfy xy = yx. We also allow the ω-operator
in equations and define h(vω) = h(v)ω. By � v = w � we denote the class of finite
monoids satisfying v = w. The class of all monoids satisfying an equation forms
a variety. We define the variety of aperiodic monoids A by A =

�
xω = xω+1

�
.

Another important variety is DA = � (xy)ωx(xy)ω = (xy)ω �. By mapping y to
1 we see that DA ⊆ A. In the following we summarize some basic properties of
these varieties.

Proposition 1 ([21]). For every finite monoid M the following are equivalent:

1. M ∈ A.
2. M is H-trivial, i.e., every H-class contains exactly one element.
3. All groups in M are trivial, i.e., if a subsemigroup of M is a group then it

contains only one element.

Proposition 2 ([17]). For every finite monoid M the following are equivalent:

1. M ∈ DA.
2. M ∈ � (xy)ωy(xy)ω = (xy)ω �.
3. M ∈ � (xyz)ωy(xyz)ω = (xyz)ω �.
4. M ∈ A and ∀a, b, e ∈M : e = e2 and a J b J e implies ab J e.
5. ∀e, f ∈M : e = e2 and e J f implies f = f2.

3 Expressivity Results

In the following two theorems we summarize characterizations of trace languages
whose syntactic monoid is aperiodic or in DA. Note that this includes the special
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case of word languages. The results are using some temporal operators which we
did not introduce yet. The operator X is an existential next-operator, i.e., X ϕ is
true at a position x if at some minimal position in the future of x the formula
ϕ holds. Over words, this position is unique. The until-operator U is a binary
operator. The formula ϕ U ψ is true at a position x if there exists a position
y ≥ x at which ψ holds and all positions between x and y (i.e., all positions from
the current position x “until” y) satisfy ϕ. The formula Xa ϕ for a ∈ Γ is true
at a position x if there exists a position y > x labeled by a and if at the first of
these a-labeled positions in the future of x the formula ϕ holds. The operator
Ya is left-right symmetric to Xa. With TL[Xa, Ya] we mean that we have Xa

and Ya operators for every a ∈ Γ . The definition of the languages generated by
formulas in TL[X, U] and TL[Xa, Ya] is slightly different from the one that we
propose above for unary temporal logic.

Theorem 1 ([5,8,14,15]). Let L ⊆M. Then the following are equivalent:

1. M(L) ∈ A.
2. L ∈ SF.
3. L is expressible in FO3[<].
4. L is expressible in FO[<].
5. L is expressible in FO[E].
6. L is expressible in TL[X, U].

Theorem 2 ([6,18]). Let L ⊆M. Then the following are equivalent:

1. M(L) ∈ DA.
2. L ∈ Pol ∩ co-Pol.
3. L ∈ B-UPol.
4. L is expressible in FO2[E].
5. L is expressible in Δ2[E].
6. L is expressible in TL[Xa, Ya].
7. L is expressible in TL[SF, SP].
8. L is expressible in TL[SF, SP, M].

For word languages L ⊆ Γ ∗ we additionally have M(L) ∈ DA if and only
if L ∈ UPol, see [25]. In particular, UPol is closed under complementation.
Since membership in both varieties A and DA is decidable, membership for all
characterizations in Theorem 1 and Theorem 2 is decidable.

Theorem 3 ([6,11]). Let L ⊆M. Then the following are equivalent:

1. L is expressible in FO2[<].
2. L is expressible in TL[SF, SP, Eco].

The following theorem gives a language theoretic characterization of the al-
ternation hierarchy for first-order logic over words. It is the connection to the
Straubing-Thérien hierarchy in which one describes classes of word languages by
alternating Boolean closure and polynomial closure starting with the empty set.
By definition, the limit of this process is the class of star-free languages. In the
following we use BΣn as a shortcut for B

(
Σn[<](Γ ∗)

)
. Note that BΣn = BΠn.
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Theorem 4 ([24]). Over words we have the following

1. Σ0[<](Γ ∗) = B(Σ0) = {∅, Γ ∗}.
2. Σn+1[<](Γ ∗) = Pol(BΣn).
3. Πn+1[<](Γ ∗) = co-Pol(BΣn).
4. Δn+1[<](Γ ∗) = UPol(BΣn).

A basis for the last part of this theorem is the more general fact that UPol(V) =
Pol(V) ∩ co-Pol(V) if V is a variety of word languages. This follows from an
algebraic description in terms of Mal’cev products [24]. Another language theo-
retic characterization of Σ2 is Σ2[<](Γ ∗) = Pol. We give a detailed proof of this
characterization in the more general setting of traces over dependence graphs in
Section 6. It is well-known that the alternation hierarchy for first-order logic is
strict [29], i.e.:

– For n ≥ 1 the classes Σn[<](Γ ∗) and Πn[<](Γ ∗) are incomparable.
– For n ≥ 1 the class Σn[<](Γ ∗) is strictly contained in Δn+1[<](Γ ∗).
– For n ≥ 1 the class Δn[<](Γ ∗) is strictly contained in the class Σn[<](Γ ∗).

Recently, Weis and Immerman have shown that the alternation hierarchy for FO2

on words is strict [33]. In the next section we consider the alternation hierarchy
for first-order logic over traces. The distinction between partial orders < and
dependence graphs E turns out to be crucial. Using (2) we can express < in
terms of E, but this requires variables and it requires quantifiers, but in FO2

the number of variables is restricted whereas in Σn the number of quantifier
alternations is bounded.

4 Separation Results

We start this section with a simple observation. Let (Γ, D) = a — b — c and
consider the traces x = abc and y = b. Then for all n ∈ N the trace (xy)n

is a sequence in which all positions are totally ordered whereas in the trace
(xy)nx(xy)n we have a factor xx whose Hasse diagram is

a b c

a b c

In particular, in xx there exist two concurrent actions. Consider the formula
ϕ = ∃z1∃z2 : z1‖z2 ∈ FO2[<] ∩ Σ1[<] where z1‖z2 is a macro for ¬(z1 = z2 ∨
z1 < z2 ∨ z2 < z1). Then for all n ≥ 1 we have

(xy)nx(xy)n |= ϕ and (xy)n �|= ϕ

This shows that the syntactic monoid of the trace language L(ϕ) is not in
DA = � (xy)ωx(xy)ω = (xy)ω �. Now, whenever the dependence relation is not
transitive we find some letters a, b and c with the dependencies a — b — c. On
the other hand, if the dependence relation is transitive then the partial order <
and the edge relation E of the dependence graph are identical. Together with
Σ1[<](M) ⊆ Δ2[<](M) we obtain the following theorem.
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Theorem 5. Let M be the trace monoid generated by the dependence alphabet
(Γ, D). The following are equivalent:

1. The dependence relation D is transitive.
2. For every trace, the relations < and E are identical.
3. FO2[E](M) = FO2[<](M).
4. Δ2[E](M) = Δ2[<](M).

The main technique in the proofs of the following theorems are Ehrenfeucht-
Fräıssé games, see e.g. [29,32]. Let M be a trace monoid over the following
dependence alphabet:

#

a

b

c

d

e

f
(Γ, D) =

Theorem 6 ([6]). For the above trace monoid M the trace language

L = { t ∈M | ∃x, y, z ∈ t : (x ‖ y ∧ y ‖ z ∧ z ‖ x) }

consisting of all traces with three pairwise concurrent actions is expressible in
Σ1[<] but not in FO2[<].

The main idea in the proof of this theorem is to consider the traces #q# and
p = #rn# in which every action has the same set of concurrent actions, but
in p there are at most two pairwise independent actions. The Hasse diagram of
#q# is:

#

a b

c d

e f

#

and the Hasse diagram of the trace p = #rn# is sketched below:

· · · e f a b c d e f a b · · ·

· · · a b c d e f a b c d · · ·
r

For every formula ϕ ∈ FO2[<] we can find a sufficiently large number n such
that the two traces pnqpn ∈ L and p2n �∈ L either both are models of ϕ or
none of them is a model. Therefore, L �∈ FO2[<](M). The previous two results
can be summarized as follows: “two concurrent actions” is in FO2[<] and Δ2[<]
but not in FO2[E] = Δ2[E] and “three concurrent actions” is in Δ2[<] but
not in FO2[<]. The next theorem implies that in general FO2[<] and Δ2[<]
are incomparable. It is open whether membership is decidable for FO2[<](M)
or Δ2[<](M). Also note that the following result is rather unexpected since
FO2[<] ⊆ FO[<] =

⋃
n Σn[<].
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Theorem 7 ([6]). For every n ≥ 0 there exists a trace monoid M and a trace
language L ⊆M such that L ∈ FO2[<](M) but L �∈ Σn [<] (M).

DA = TL[SF, SP]
= TL[SF, SP, M]
= TL[Xa, Ya]
= FO2[E]
= Δ2[E]
= Pol ∩ co-Pol
= B-UPol

Σ1[<]

Σ1[E]

Σ2[E]
= Pol

Σ2[<]

Σ3[<]

...
A = TL[X, U]

= FO3[<]
= FO[<]
= FO[E]
= SF

TL[SF, SP, Eco ]
= FO2[<]

Remember Σn[<] ⊆ Σn+1[E] ⊆ Σn+1[<]. We already know from the word case
that the inclusion Σn[<] ⊆ Σn+1[E] is strict. The following theorem says that in
general the second inclusion is also strict and that the fragments Πn−1[<] and
Σn[E] are incomparable.

Theorem 8 ([6]). Let M be the trace monoid generated by the dependence al-
phabet (Γ, D). The following are equivalent:

1. The dependence relation D is transitive.
2. ∃n ≥ 1 : Σn[E](M) = Σn[<](M).
3. ∃n ≥ 2 : Πn−1[<](M) ⊆ Σn[E](M).

Δn[<]

Δn+1[E]

Σn[<] Πn[<]

Σn+1[E]

Σn+1[<]
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5 Complexity of Satisfiability

The possibility of being able to speak about concurrency increases the expressiv-
ity of most first-order fragments. In this section we will see how it also increases
the complexity of the satisfiability problem. The (uniform) satisfiability problem
(SAT) for some class of logical formulas C is the following:

Input: A dependence alphabet (Γ, D) and a formula ϕ ∈ C.
Question: Does there exists t ∈ M = M(Γ, D) such that t ∈ L(ϕ)?

and the non-uniform satisfiability problem for C over a dependence alphabet
(Γ, D) is the satisfiability problem where the dependence alphabet (Γ, D) is
fixed and not part of the input:

Input: A formula ϕ ∈ C.
Question: Does there exists t ∈ M such that t ∈ L(ϕ)?

We summarize some complexity results in the following theorem.

Theorem 9 ([6,10,11,13,27,28])

1. SAT for temporal logics is PSPACE-complete.
2. SAT for FO[<] is not elementary.
3. The non-uniform satisfiability problem for TL[X, F] over {a, a}∗ is PSPACE-

hard.
4. SAT for TL[SF, SP, M] is NP-complete.
5. The non-uniform satisfiability problem for TL[SF, SP, Eco ] over some depen-

dence alphabet is PSPACE-hard. In fact, non-uniform satisfiability for the
stutter-invariant fragment TL[F, Eco] is already PSPACE-hard.

6. SAT for FO2[E] is in NEXPTIME.
7. The satisfiability problem for FO2[<] is in EXPSPACE and NEXPTIME-

hard. In fact, satisfiability for FO2[‖] in which ‖ is the only binary relation
is already NEXPTIME-hard.

The parts “4.” and “5.” in Theorem 9 show that allowing the Eco operator
increases the complexity of the satisfiability problem (unless NP = PSPACE).
Part “4.” is proved by giving a small model property for TL[SF, SP, M], i.e., if
there exists a model then there also exists a model whose size is polynomially
bounded. For part “5.” a reduction of “3.” is used. In the following we sketch the
idea of how to simulate the X-operator using the Eco-operator over the following
independence alphabet:

a

a
b

cd

e(Γ, I) =

For a word w = a1 · · · an ∈ {a, a}+ we define a trace w̃ = a1(bcde) · · ·an(bcde) ∈
M = M(Γ, I).
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w̃ =

a1 c e

b d a2 c e

b d a3 c e

b d

· · ·

· · ·

For the trace w̃ we can use Eco to simulate X on the positions with label a, a.
The transformation of X ψ is given by

X̃ ψ = Eco(b∧Eco(c∧Eco(d∧Eco(e∧Eco((a∨ a)∧ ψ̃)))))

It is easy to verify that X̃ ψ indeed reaches the next a or a position.

6 The Fragment Σ2[E]

In this section we give a self-contained proof of the following theorem. An im-
portant tool in the proof are factorization forests.

Theorem 10. Let L ⊆ M = M(Γ, I) be a recognizable trace language and let
μ : M → (M(L),≤) : t �→ [t] be the syntactic homomorphism onto its syntactic
ordered monoid. The following are equivalent:

1. For all e, s ∈ M: [e] = [e2] and alph(s) ⊆ alph(e) implies [ese] ≤ [e].
2. L is a polynomial.
3. L is expressible in Σ2[E].

The syntactic ordered monoid of a recognizable trace language (given in any rea-
sonable presentation) is effectively computable. Since property “1.” in Theorem
10 can be effectively verified we obtain the following corollary.

Corollary 1. It is decidable if L ⊆M is definable in Σ2[E].

6.1 Factorization Forests

Let M be a finite monoid. A factorization forest of a homomorphism ϕ : Γ ∗ →M
is a function d which maps every word w with length |w| ≥ 2 to a factorization
d(w) = (w1, . . . , wn) of w = w1 · · ·wn such that n ≥ 2 and wi is not empty for
all i ∈ { 1, . . . , n } and such that n ≥ 3 implies that ϕ(w1) = . . . = ϕ(wn) is
idempotent in M . The height h of a word w is defined as

h(w) =

{
0 if |w| ≤ 1
1 + max{ h(w1), . . . , h(wn) } if d(w) = (w1, . . . , wn)

We call the tree defined by the “branching” d for the word w the factorization
tree of w. The height h(w) is the height of this tree. The height of d is defined
as sup{ h(w) | w ∈ Γ ∗ }. A famous theorem of Simon says that every homomor-
phism ϕ : Γ ∗ → M has a factorization forest of height ≤ 9 |M |, see [26]. By
generalizing techniques of [2] we can improve this bound to 3 |M |. Using another
approach, this bound has been shown independently in [3]. Below we present
a simple proof of this fact in the special case of aperiodic monoids. The proof
requires only basic facts from the theory of finite semigroups such as:
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– The intersection of an R-class and an L-class within the same J -class yields
a unique H-class within that J -class.

– x ≤L y and x J y implies x L y; x ≤R y and x J y implies xR y.
– In aperiodic monoids every H-class consists of only one element.

Theorem 11. Let M be a finite aperiodic monoid. Every homomorphism ϕ :
Γ ∗ →M : w �→ [w] has a factorization forest of height < 3 |M |.

Proof. We show that for every w ∈ Γ ∗ there exists a factorization tree of height
h(w) < 3 |{ x ∈M | [w] ≤J x }|. The J -class of 1 in aperiodic monoids is trivial.
Let w ∈ Γ ∗ with |w| ≥ 2. If [w] = 1 then for all b ∈ alph(w) we have [b] = 1.
Hence d(w) = (b1, . . . , bn) yields a factorization tree of height 1 for w = b1 . . . bn.
Now let [w] <J 1. Then w has a unique factorization

w = w0a1w1 · · · amwm

with ai ∈ Γ and wi ∈ Γ ∗ satisfying the following two conditions:

∀ 1 ≤ i ≤ m : [aiwi] J [w] and ∀ 0 ≤ i ≤ m : [w] <J [wi]

Let w′i = aiwi for 1 ≤ i ≤ m. For each 1 ≤ i < m define a pair (Li, Ri) where Li

is the L-class of [w′i] and Ri is the R-class of [w′i+1]. Every such pair represents an
H-class within the J -class of [w]. Therefore, the number of different such pairs
does not exceed |{ x | [w] J x }|. For the above factorization of w we perform an
induction on the cardinality of the set { (Li, Ri) | 1 ≤ i < m } to show that w
has a factorization tree of height

h(w) < 3 |{ (Li, Ri) | 1 ≤ i < m }| + 3 |{ x | [w] <J x }|

Note that the number on the right-hand side of this inequality does not exceed
3 |{ x ∈M | [w] ≤J x }|. If every pair (L, R) occurs at most twice then we have
m−1 ≤ 2 |{ (Li, Ri) | 1 ≤ i < m }|. We define a factorization tree for w by d(w) =
(w0w′1, w′2 · · ·w′m), d(w0w′1) = (w0, w′1), d(w′i · · ·w′m) = (w′i, w′i+1 · · ·w′m) for
2 ≤ i < m and d(w′i) = (ai, wi) for 1 ≤ i ≤ m. Since [w] <J [wi], by induction
every wi has a factorization tree of height h(wi) < 3 |{ x | [wi] ≤J x }| ≤
3 |{ x | [w] <J x }|. This yields:

h(w) < m + 3 |{ x | [w] <J x }|
≤ 3 |{ (Li, Ri) | 1 ≤ i < m }| + 3 |{ x | [w] <J x }|

Note that the height might decrease if some of the wi are empty. Now suppose
that there exists a pair (L, R) ∈ { (Li, Ri) | 1 ≤ i < m } occurring (at least) three
times. Let i0 < · · · < ik be the sequence of all positions with (L, R) = (Lij , Rij ).
Let ŵj = w′ij−1+1 · · ·w′ij

for 1 ≤ j ≤ k. For all 1 ≤ j ≤ � ≤ k we have

– [ŵj · · · ŵ�] ≤L [w′i�
] L [w′i0 ].

– [ŵj · · · ŵ�] ≤R [w′ij−1+1] R [w′i0+1].
– [w′i�

] ≤J [ŵj · · · ŵ�] ≤J [w] J [w′i�
] J [w′i0 ] J [w′i0+1] by assumption on

the factorization.
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Thus for all 1 ≤ j ≤ � ≤ k and 1 ≤ j′ ≤ �′ ≤ k we get

– [ŵj · · · ŵ�] L [w′i1 ] L [ŵj′ · · · ŵ�′ ] and
– [ŵj · · · ŵ�] R [w′i1+1] R [ŵj′ · · · ŵ�′ ] and therefore
– [ŵj · · · ŵ�] H [ŵj′ · · · ŵ�′ ] and since M is aperiodic we find
– [ŵj · · · ŵ�] = [ŵj′ · · · ŵ�′ ].

Therefore, all [ŵj · · · ŵ�] denote the same element in M and since k ≥ 2 this
element is idempotent. In particular, we have [ŵj ]2 = [ŵj ] = [ŵ�] for all 1 ≤
j, � ≤ k. We construct a factorization tree of w by

d(w) = (w0w′1 · · ·w′i0 , w′i0+1 · · ·w′m)
d(w′i0+1 · · ·w′m) = (ŵ1 · · · ŵk, w′ik+1w′m)

d(ŵ1 · · · ŵk) = (ŵ1, . . . , ŵk)

Now, the pair (L, R) does not occur in any of the words w0w′1 · · ·w′i0 , w′ik+1w′m
and ŵj . By induction on the number of pairs (Li, Ri) there exist factorization
trees for them whose height is bounded by

3 |{ (Li, Ri) | 1 ≤ i < m } \ {(L, R)}| + 3 |{ x | [w] <J x }|

Hence the height of the factorization tree of w satisfies the desired bound. 
�

6.2 Proof of Theorem 10

Lemma 1. Let μ : M → (M,≤) : t �→ [t] be a homomorphism into an ordered
monoid. If M is finite and satisfies the following property for all e, s ∈M:

[e] = [e2] and alph(s) ⊆ alph(e) implies [ese] ≤ [e] (3)

then for every p ∈M the language μ−1(�p�) is a polynomial.

Proof. By considering the case sω = e the property (3) implies [sωssω] = [sωs] ≤
[sω] and furthermore

[sω] = [sωsω] ≤ [sωsω−1] ≤ [sωsω−2] ≤ · · · ≤ [sωs]

Hence [sωs] = [sω] for all s ∈ M and therefore M is aperiodic. By Theorem 11
there exists a factorization forest d of height < 3 |M | for the homomorphism
Γ ∗ → M : w �→ [π(w)] where π : Γ ∗ → M is the natural projection. We
define the height h(t) of a trace t with respect to this factorization forest as the
minimal height of one of its word representatives w ∈ π−1(t) and set d(t) =(
π(w1), . . . , π(wn)

)
where d(w) = (w1, . . . , wn). We show that for every t ∈ M

there exists a monomial Lt of the form

a1A∗1a2 · · ·A∗nan+1

whose (minimal) degree is bounded by (a sufficiently large function in) the height
h(t) of the factorization tree of t and that has the property t ∈ Lt ⊆ μ−1(�[t]�).
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Since h(t) < 3 |M | there exist only finitely many such languages and therefore
the following union ⋃

t∈μ−1(	p
)
Lt

is finite and gives a polynomial representation for μ−1(�p�).
If |t| ≤ 1 then Lt = { t } is a monomial with constant degree. Now let |t| > 1.

The first case is d(t) = (t1, t2). Then by induction on the height there exist
monomials for t1 and t2 with ti ∈ Lti ⊆ μ−1(�[ti]�) for i = 1, 2 whose degree
is bounded by a function in h(t) − 1. We define the monomial Lt = Lt1∅∗Lt2 .
Clearly, we have t ∈ Lt. It remains to verify Lt ⊆ μ−1(�[t]�). Let t′1t′2 ∈ Lt with
t′1 ∈ Lt1 and t′2 ∈ Lt2 . Then

[t′1t′2] = [t′1][t
′
2] ≤ [t1][t2] = [t1t2] = [t]

The second case is d(t) = (t1, . . . , tn) with [t1]2 = [t1] = [t2] = . . . = [tn] = [t].
By induction there exist languages Li with ti ∈ Lti ⊆ μ−1(�[ti]�) for i = 1, n
whose degree is bounded by a function in h(t)−1. We define the monomial Lt =
Lt1

(
alph(t)

)∗
Ltn . Again, t ∈ Lt is clear. It remains to verify Lt ⊆ μ−1(�[t]�).

Let t′1st′n ∈ Lt with t′1 ∈ Lt1 , t′n ∈ Ltn and alph(s) ⊆ alph(t). Then

[t′1st′n] = [t′1][s][t
′
n] ≤ [t1][s][tn] = [t][s][t] ≤ [t]

where the last inequality follows by (3). 
�

Lemma 2. Every monomial A∗0a1A∗1 · · · amA∗m is expressible in Σ2[E].

Proof. We show that for every trace t = t0a1t1 · · · amtm with alph(ti) ⊆ Ai there
exists a Σ2[E]-sentence ϕt whose size is bounded by a function in m and the size
of the alphabet Γ (and not by |t|) such that

t ∈ L(ϕt) ⊆ A∗0a1A∗1 · · ·amA∗m

Since there are only finitely many such sentences the following disjunction is
finite ∨

t∈A∗
0a1A∗

1 ···amA∗
m

ϕt

and it describes exactly the monomial A∗0a1A∗1 · · · amA∗m. The lemma then follows
since Σ2[E] is closed under finite disjunctions.

Using the convention that a0 is the empty trace we define Bi = alph(aiti)
for 0 ≤ i ≤ m. For each i and each letter b ∈ Bi fix a first position xf,i,b with
label b in the factor aiti and a last position x�,i,b with label b in the factor aiti.
There is a Σ2[E]-formula ψt(x) with free variables x = (xf,i,b, x�,i,b)0≤i≤m, b∈Bi

which reflects exactly the labeling and the partial ordering (i.e., not only the
edge relation in the dependence graph) of the chosen positions in t. Furthermore
the size of ψt(x) does only depend on m and Γ . The formula ϕt we are looking
for can be specified as follows:

ϕt = ∃x : ψt(x) ∧ ∀y :
∨

b∈Bi, 0≤i≤m

λ(y) = b ∧ xf,i,b ≤ y ≤ x�,i,b
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Note that it is allowed to write xf,i,b ≤ y ≤ x�,i,b also over dependence graphs
because ψt(x) specifies the labels such that λ(xf,i,b) = λ(x�,i,b) = b. 
�
Lemma 3. Let L ⊆ M be a trace language and let μ : M → (M(L),≤) be its
syntactic ordered homomorphism. If L is definable in Σ2[E] then M(L) has the
property that [e] = [e2] and alph(s) ⊆ alph(e) implies [ese] ≤ [e] for all e, s ∈ M.

Proof. Let ϕ = ∃x∀y : ψ(x, y) ∈ Σ2[E] where x = (x1, . . . , xn), y = (y1, . . . , yn),
and ψ is a propositional formula. Let p, q, s, t ∈M and assume alph(s) ⊆ alph(t).
We show that for all k ≥ (n + 1)2 we have

ptkq |= ϕ ⇒ ptkstkq |= ϕ (4)

If u = ptkq models ϕ then there exist positions X1, . . . , Xn in the trace u such
that

u, X |= ∀y : ψ(X, y) (5)

where X = (X1, . . . , Xn). We refer to the k copies of the factor t in u as blocks
numbered by 1 to k from left to right. By choice of k there exist n consecutive
blocks such that no Xi is a position within these blocks, i.e.,

u = ptk1 · tn · tk2q

and all Xi are positions either in the prefix ptk1 or in the suffix tk2q of u. Consider
the following factorization of v = ptkstkq:

v = ptk1 · tk′
1stk′

2 · tk2q

Since the prefix and suffix in this factorization are equal to that in the factor-
ization of u and since all Xi correspond to positions in these parts of u we can
choose the corresponding positions X ′

1, . . . , X ′
n in the identical parts of v. We

claim that for X ′ = (X ′
1, . . . , X ′

n) we have

v, X ′ |= ∀y : ψ(X ′, y)

By contradiction, suppose there exist positions Y ′1 , . . . , Y ′n in v such that for
Y ′ = (Y ′1 , . . . , Y ′n) we have

v, X ′, Y ′ |= ¬ψ(X ′, Y ′)

We show that this contradicts (5). If Y ′i is a position in the prefix ptk1 or in the
suffix tk2q of v we can choose an analogous position Yi in u. W.l.o.g. we assume
that all Yi are positions in the middle factor tk′

1stk′
2 and that i < j implies

(Y ′j , Y ′i ) �∈ E, i.e., Y ′1 , . . . , Y ′n is a linearization of the positions in Y ′. We now
let Yi be any position in the block k1 + i of u with the same label as Y ′i . This is
possible since alph(s) ⊆ alph(t). Now, all Yi are positions in the middle factor
tn of u. By construction, we have

(Xi, Xj) ∈ E ⇔ (X ′
i, X ′

j) ∈ E

(Yi, Yj) ∈ E ⇔ (Y ′i , Y ′j ) ∈ E

(Xi, Yj) ∈ E ⇔ (X ′
i, Y ′j ) ∈ E

(Yi, Xj) ∈ E ⇔ (Y ′i , X ′
j) ∈ E
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Note that this would not be true for partial orders instead of dependence graphs.
From v, X ′, Y ′ |= ¬ψ(X ′, Y ′) it now follows

u, X, Y |= ¬ψ(X, Y )

in contradiction to (5). This proves (4). For L = L(ϕ) it follows that [tkstk] ≤ [tk]
holds in the syntactic ordered monoid (M(L),≤) of L. The lemma now follows
since [tk] = [t] if [t] = [e] is idempotent. 
�

Proof (Theorem 10). The implication “1. ⇒ 2.” follows by Lemma 1 since L
is the union of languages of the form μ−1(�p�) with p ∈ M(L). “2. ⇒ 3.”
follows from Lemma 2 since Σ2[E] is closed under finite disjunctions. Finally,
the implication “3. ⇒ 1.” is Lemma 3. 
�
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Quantitative Generalizations of Languages�
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In the traditional view, a language is a set of words, i.e., a function from words to
boolean values. We call this view “qualitative,” because each word either belongs
to or does not belong to a language. Let Σ be an alphabet, and let us consider
infinite words over Σ. Formally, a qualitative language over Σ is a function A:
Σω → B. There are many applications of qualitative languages. For example,
qualitative languages are used to specify the legal behaviors of systems, and zero-
sum objectives of games played on graphs. In the former case, each behavior of
a system is either legal or illegal; in the latter case, each outcome of a game
is either winning or losing. For defining languages, it is convenient to use finite
acceptors (or generators). In particular, qualitative languages are often defined
using finite-state machines (so-called ω-automata) whose transitions are labeled
by letters from Σ. For example, the states of an ω-automaton may represent
states of a system, and the transition labels may represent atomic observables
of a behavior. There is a rich and well-studied theory of finite-state acceptors of
qualitative languages, namely, the theory of the ω-regular languages.

There are two common, orthogonal quantitative generalizations of languages.
In the first quantitative view, a language is a set of probability distributions
on words, i.e., a set of functions from words to the real interval [0, 1]. We call
this view “probabilistic.” A probabilistic word over the alphabet Σ is a prob-
ability distribution on Σω. We write D(Σω) for the set of probabilistic words.
A probabilistic language over Σ is a function B: D(Σω)→ B. Probabilistic lan-
guages can be defined by Markov decision processes (MDPs) whose transitions
are labeled by letters from Σ. MDPs generalize ω-automata by distinguishing
between controllable states, where an outgoing transition is chosen according to
a policy1 (or strategy), and probabilistic states, where an outgoing transition is
chosen according to a given probability distribution. Given an MDP, and a pol-
icy for resolving all controllable decisions, the outcome is a probabilistic word.
By collecting the outcomes of all policies in a set, we obtain a probabilistic lan-
guage. Many basic questions about such finite-state generators of probabilistic
languages are unsolved. For example, the language-inclusion problem for MDPs
is central to the algorithmic verification of probabilistic systems: it asks, given
two finite-state MDPs M1 and M2, if the probabilistic language defined by M1 is
� This research was supported in part by the Swiss National Science Foundation and
by the NSF grant CCR-0225610.

1 Policies may in general be probabilistic. A policy is a function mapping each finite
state sequence (representing the history of a behavior) to a probability distribution
on the possible next states.
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a subset of the probabilistic language defined by M2; in other words, if for every
policy p1 of M1, there is a policy p2 of M2 such that the outcome of applying p1

in M1 is equal to the outcome of applying p2 in M2. To our knowledge, it is an
open problem if this question can be decided.

In the second quantitative view, a language is a function from words to real
values. These values may represent rewards or costs. We call this view “nu-
merical.” Formally, a numerical language over the alphabet Σ is a function C:
Σω → R. We refer to C(w) as the value of a word w in the language C. There are
several ways of generating numerical languages. One mechanism for obtaining
finite numerical values for infinite words is discounting, which gives geometri-
cally less weight to letters that occur later in a word. Let M be a state machine
whose transitions are labeled by letters from Σ. Given a real-valued discount
factor λ ∈ (0, 1), the value M(w) of each word w ∈ Σω can be defined as 1−λn,
where n is the number of letters in the longest prefix of w that is accepted by M
(if all prefixes of w are accepted by M , then M(w) = 1). Numerical languages
are also generated by weighted state machines, whose transitions are labeled
both with letters from Σ and with real values. The numerical label (or weight)
of a transition may represent a reward obtained or a cost incurred by traversing
the transition. Let M be a weighted state machine, and let r be a run of M over
a word w ∈ Σω. The run r can be defined to assign to w either the supremal
transition value occurring in r, or the limsup of all transition values in r, or their
limit average, or their discounted sum (for some discount factor λ). The weighted
state machine M , then, assigns to each word w as value the supremum of all
values assigned to w by accepting runs of M over w. In game theory, objectives
that try to maximize a numerical value are common and well-studied; in system
modeling, the numerical value of a run may represent a resource requirement of
a behavior, such as power consumption.

The probabilistic and numerical views can be combined, resulting in quantita-
tive languages of the type [D(Σω)→ R]. In this talk, we survey some theoretical
results about such quantitative generalizations of languages, and review some of
their applications in system design and verification [1–6].
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In the talk we give an overview of recent developments in the area of language
equations, with an emphasis on methods for dealing with non-classical types
of equations whose theory has not been successfully developed already in the
previous decades, and on results forming the current borderline of our knowl-
edge. This abstract is in particular meant to provide the interested listener with
references to the material discussed in the talk.

Motivations for studying equations over languages come from several sources
(e.g. formal grammars, automata constructions, word equations, set constraints,
games or natural computing) and most of the results on these equations are
related to one of these topics.

Language equations were first applied in [14] to elegantly define semantics
for context-free grammars by means of explicit systems of equations with the
operations of union and concatenation. Some interesting examples of using these
systems can be found in [52]. By allowing in these systems also intersection, one
obtains the notion of conjunctive languages [36,37], which are more general than
context-free ones even over a unary alphabet [17]. The special case of linear
conjunctive languages was studied in [39].

The theory of explicit systems of language equations with concatenation and
all Boolean operations was developed in [46], and even one-variable systems were
proved computationally universal [43]. The appropriate restriction of these sys-
tems to define Boolean grammars was described in [38]. Several basic open prob-
lems about conjunctive and Boolean languages are proposed in [45]. The classes
of languages obtained by allowing in explicit systems additionally to concatena-
tion all possible clones of Boolean operations were also determined [47,44]. Ex-
plicit systems were further shown to naturally define arithmetical hierarchy [40].
Solutions of explicit systems with some language operations other than concate-
nation were also described, e.g. equations employing homomorphisms are related
to ET0L languages [53].

Implicit language equations where concatenation is the only operation natu-
rally appear as a generalization of equations over words to sets of words. Ex-
istence of solutions of word equations with constants was proved decidable by
Makanin [34]. Currently best algorithms for solving word equations can be found
in [49]. It is also well known that solvability of word equations is decidable even
for infinite rational systems of equations [10,2,15].
� Supported by the Grant no. 201/06/0936 of the Grant Agency of the Czech Republic.
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For equations over languages, the situation is completely different. In [48] ex-
istence of arbitrary solutions was proved undecidable for equations with finite
constants employing union and concatenation. When regular constant languages
are allowed, the problem is undecidable already for one-variable systems using
only the operation of concatenation [29]. But there is no such result about equa-
tions with only finite constants, and we also have virtually no knowledge about
solvability of finite systems over finite or regular languages. On the other hand,
it is known that already for a very simple rational system of equations with only
concatenation we cannot algorithmically decide whether given finite languages
form its solution [32,20,30].

Most of the results about implicit language equations and inequalities con-
cern inequalities of particular forms, often related to important classes of formal
grammars or basic automata constructions like those of minimal and universal
automata (see [54]). Results of this kind were surveyed in [26]. General treatment
of systems of implicit equations was initiated by Okhotin [41], who considered
also strict inequalities [42].

General systems of equations and inequalities with constant right-hand sides
were studied by Conway [9], and the exact complexity of determining their solv-
ability was established in [6]. The study of such equations was also extended to
the simplest equations with more general operations than concatenation based
on shuffle and deletion along trajectories [22,23,12].

Some generalizations of standard systems of right-linear equations were con-
sidered by Leiss [31]. For general systems of right-linear inequalities, basic prob-
lems can be solved using Rabin’s results on MSO logic on infinite trees [50]; the
complexity of these problems has been determined in [1,8,4,3,5]. Regularity of
largest solutions in the case of inequalities with non-regular left-hand sides was
established in [28].

The method of proving regularity by means of well quasi-orders was developed
by Ehrenfeucht et al. [13]; a number of results on regularity of languages based
on well quasi-orders can be found in [11]. Well quasi-orders were used to show
regularity of largest solutions of systems of inequalities with certain restrictions
on constant languages [25].

The borderline between equations with algorithmically constructible regu-
lar largest solutions and those having universal expressive power appears to
be formed by semi-commutation inequalities XK ⊆ LX . For any regular lan-
guage L, the largest solution of such an inequality is always regular [25], but the
only known proof of this fact is non-constructive, based on Kruskal’s tree theo-
rem [24], and we know how to algorithmically find the largest solution only in
a very special case [33]. However, systems of two semi-commutation inequalities
possess universal expressive power [27]. A prominent role among these systems is
played by commutation equations, which were first considered by Conway [9] and
later studied in many papers (see [21] for a survey). Basic results were achieved
and conjectures formulated in [51]; regularity of the largest solutions was proved
for three-element languages [19] (a more general result based on lexicographic
ordering can be found in [35]) and regular codes [18]. The expressive universality
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of commutation equations over finite languages was established in [29] (a more
intuitive incremental construction for this result is described in [16]). Some par-
tial results were proved also for equations expressing conjugacy of languages [7];
an undecidability result for these equations can be found in [29].
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19. Karhumäki, J., Latteux, M., Petre, I.: Commutation with ternary sets of words.
Theory Comput. Syst. 38(2), 161–169 (2005)
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We know how to measure distance from Turku to Toronto. However, do you
know how to measure the distance between two information carrying entities?
For example: two genomes, two music scores, two programs, two articles, two
emails, two concepts, or from a question to an answer? Furthermore, such a
distance measure must be application-independent, must be universal in the
sense it is provably better than all other distances, and must be applicable.

From a simple and accepted assumption in thermodynamics, we have devel-
oped such a theory. I will present this theory and will talk about some new
applications of this theory, including a question answering system.
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Abstract. Numbers do exist, independently of the way we represent
them, of the way we write them. And there are many ways to write them:
integers as finite sequence of digits once a base is fixed, rational numbers
as a pair of integer or as an ultimately periodic infinite sequence of digits,
or reals as an infinite sequence of digits but also as a continued fraction,
just to quote a few. Operations on numbers are defined, independently of
the way they are computed. But when they are computed they amounts
to be algorithms that work on the representations of numbers.

Here, numbers will be represented by their development in a base,
hence by words over an alphabet of digits and the algorithms we shall
consider are those that can be performed by finite state machines, that is,
by the simplest machines one can think of. Which operations can be thus
defined? which set of numbers can be thus described? how this is related
to the chosen base? how the choice of the alphabet of digits may influence
the way the operations may be computed? These are the questions that
will be asked and, hopefully and to a certain extent, answered in this
conference.

We shall begin with the example of divisibility by a given integer in a
given base p, the generalization — due to Blaise Pascal — of the casting
out nines and, more seriously, with the beautiful Cobham’s Theorem
[1,2,3]. This result leads to the distinction between recognizable and p-
recognizable sets of integers that generalizes to set of tuples of integers
and sets the problem of the decidability of the former among the latter,
answered positively by Honkala, Muchnik and Leroux [4,5,6].

Another obvious appearance of finite automata, of finite transducers
indeed, in the processing of written numbers occurs when signed digits
are used, as has been popularized in the field of computer arithmetics
by Avizienis for instance [7]. In this framework arises the interesting
problem of the trade-off between the redundancy of a number system
and the “compexity” of the operations performed on numbers written in
that system.

The next case that will retain our attention is the one of non standard
number systems; here, a non integer real β is taken as a base and the
(real) numbers are written in this base. We put into correspondance the
so-called arithmetic properties of β — that is, which kind of algebraic
integer β is — the rationality of the set of expansions in such a base and
the possibility of defining a linear recurrence that yields a system for
representing the integers (cf. [8, Ch. VII]). A striking result is the fact
that the addition is realized by a finite transducer if, and only if, β is a
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Pisot number [9,10]. In all these systems, the algorithm for computing
the expansions is the greedy algorithm and produces the most significant
digit first.

In a last part we shall touch on a more recent topic: rational base
number systems (cf. [11]). In these systems, every integer has a unique
finite expansion, which is not computed by a greedy algorithm but by
a right to left algorithm, that is, by an algorithm which computes the
least significant digit first. The set of all expansions is not a rational lan-
guage, a very intriguing set of words indeed, but a finite transducer exists
which converts a representation written on any alphabet of digits into a
representation of the same number written on the canonical alphabet.
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Abstract. In this talk, I will survey recent results and discuss open
problems on the state and transition complexity of nondeterministic fi-
nite automata.

Finite-state automata are one of the simplest models of computation and a basis
for the study of fundamental questions in complexity of computing. During the
last ten years, motivated by new applications of regular languages that require
automata of very large size, descriptional complexity of finite automata has re-
ceived increased attention [4,14,22]. The majority of the work centers on the state
complexity of deterministic finite automata (DFAs). An interesting aspect of the
work is that it often combines experiments with purely theoretical work. When
dealing with the state complexity of more involved combined operations [18,19],
the worst-case examples are, typically, found experimentally using software tools
such as Grail+ [21].

While DFAs can be efficiently minimized, the minimization of nondeterminis-
tic finite automata (NFAs) is known to be PSPACE-complete [15], and moreover
the minimal NFA cannot be efficiently approximated [6,11]. Further results in
this direction can be found in [8,10,17].

The number of transitions gives for NFAs a more realistic descriptional com-
plexity measure than the number of states because the number of transitions
determines the size of a complete description of an NFA. There has been much
work on the transition complexity of converting regular expressions to NFAs
and [20] has established a tight lower bound for the transformation. More refer-
ences can be found in [6,20].

Here our focus is on questions relating the nondeterministic transition com-
plexity and state complexity, and on questions on operational transition com-
plexity [2], that is, how does the (minimal) number of transitions change when
applying various regularity preserving operations to NFAs. Also, we can study
trade-offs between the number of states and the number of transitions. There
are examples where the number of transitions in state minimal NFAs may be
significantly reduced already by allowing one additional state.
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Grant OGP0147224.

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 31–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



32 K. Salomaa

1 Definitions

A nondeterministic finite automaton is a tuple A = (Σ, Q, q0, QF , δ) where Σ is
the input alphabet, Q is the finite set of states, q0 ∈ Q is the start state, QF ⊆ Q
is the set of accepting states and δ ⊆ Q×Σ ×Q gives the set of transitions.

Let L be a regular language. The nondeterministic state complexity of L is
the smallest number of states of any NFA recognizing L and it is denoted as
nsc(L). The (nondeterministic) transition complexity of L, tc(L), is the smallest
number of transitions of any NFA that recognizes L.

For k ≥ 0, the k-strict transition complexity of L, stck(L), is the smallest
number of transitions of any NFA A for L such that A has at most nsc(L) + k
states. For any regular language L and k ≥ 0, the following relations follow
directly from the definitions

nsc(L)− 1 ≤ tc(L) ≤ stck+1(L) ≤ stck(L).

To describe the transition complexity of operations on regular languages, we
need the following notions dealing with numbers of transitions originating from
the start state or entering the accepting states in transition minimal NFAs for
the language. For a regular language L we denote by M(L) the family of all
NFAs for L where the number of transitions is exactly tc(L). Now we define

s(L) = minA∈M(L){|δ ∩ ({q0} ×Σ ×Q)| : A = (Σ, Q, q0, QF , δ)},

f(L) = minA∈M(L){(|δ ∩Q×Σ ×QF )| : A = (Σ, Q, q0, QF , δ)},
fs(L) = minA∈M(L){|δ∩(({q0}×Σ×Q)∪(Q×Σ×QF))| : A = (Σ, Q, q0, QF , δ)}.

2 Transition Complexity and State Complexity

Recently nondeterministic state complexity has been used to provide estimations
for the deterministic state complexity of combined operations [19]. In many cases
the composition of nondeterministic state complexities of basic operations turns
out to be fairly close to the nondeterministic state complexity of the combined
operation, while the same is not true for the deterministic state complexity of
combined operations [18].

Table 1 summarizes the results for nondeterministic state complexity [12]
and transition complexity [2] of basic operations. The lower bound for state
complexity of complementation is from [1].

In the table Li, i = 1, 2, are regular languages where nsc(Li) = ni and tc(Li) =
mi. The cardinality of the alphabet is denoted by k.

When the upper and lower bounds do not coincide, in the table the row
element for that operation is divided into two parts. The entry (†) refers to the
case where the alphabet has two letters and a transition minimal NFA for Li

has the same number of transitions for both symbols, i = 1, 2. In the general
case, the upper bound for transition complexity of intersection depends on the
numbers of transitions for each symbol. The entries (‡) refer to the case where L1
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Table 1. Nondeterministic state and transition complexity

State complexity Transition complexity

Union n1 + n2 + 1 m1 + m2 + s(L1) + s(L2)

Intersection n1n2
1
2m1m

(†)
2

Complement (u.b.) 2n1 k2m1+1

(l.b.) 2m1/2−2 − 1

Catenation n1 + n2 m1 + m2 + f(L1)

Kleene star (u.b.) n1 + 1 m1 + k + fs(L1)
(‡)

(l.b.) m1 + fs(L1)
(‡)

Reversal n1 + 1 m1 + f(L1)

does not contain the empty word, in the other case the upper and lower bound
are both m1 + f(L1).

In the results for transition complexity, further work is needed to determine
how the measures s(Li), f(Li) and fs(Li) interact with tc(Li). For example, in
the worst-case examples for catenation one could try to determine what values
(≤ tc(L1)) the term f(L1) may have.

Problem 2.1. Which range of values the measures s(·), f(·), fs(·) may have in
worst-case examples for the transition complexity of basic operations given in
Table 1?

The state complexity of morphisms and inverse morphisms is usually not exam-
ined because the constructions yield easily tight bounds, in particular, the stan-
dard construction for inverse morphism does not increase the number of states
of an NFA. On the other hand, only a quadratic upper bound, and no matching
lower bound, is known for transition complexity of inverse morphisms [2].

Problem 2.2. What is the transition complexity of inverse morphism?

In a worst-case comparison of nondeterministic state complexity and transition
complexity, it has been established using counting arguments that there exist
finite languages Ln, n ≥ 1, with tc(Ln) ∈ Ω( nsc(Ln)2

log(nsc(Ln)) ) [9,16]. However, the
counting arguments do not yield efficiently constructible languages having a
corresponding transition complexity lower bound. An explicit construction of
finite languages Ln, n ≥ 1, with tc(Ln) ∈ Ω(nsc(Ln) ·

√
nsc(Ln)) is given in [3].

It seems difficult to obtain useful general purpose tools for proving lower
bounds for the transition complexity of particular regular languages, similar as
the fooling set methods used to prove lower bounds for the number of states of
an NFA [5,13]. The lack of such tools makes it hard to obtain tight lower bounds
when considering operational transition complexity.

Problem 2.3. Develop general purpose tools for proving transition complexity
lower bounds (in the spirit of the techniques [5,13] used for nondeterministic
state complexity).
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If the number of states is fixed, it is much easier to prove lower bounds for the
number of transitions. For suitably constructed NFAs it is relatively straight-
forward to establish lower bounds for the k-strict transition complexity and, for
any k ≥ 0, one can find families of regular languages Ln,k (n ≥ 1) for which
stck(Ln,k) is of a different order than tc(Ln,k).

Proposition 2.1. [3] There exist regular languages Ln, n ≥ 1, such that
stc1(Ln) ∈ O(nsc(Ln)) and stc0(Ln) ∈ Ω((nsc(Ln))2).

The result of Proposition 2.1 represents a maximal trade-off between the number
of states and the number of transitions in any NFAs recogonizing the languages
Ln. If the NFAs are restricted to be state minimal, the number of transitions has
to be quadratic in nsc(Ln) but by allowing one additional state in the NFA it is
possible to have a number of transitions that is linear in nsc(Ln). Proposition 2.1
can be generalized to establish an analogous maximal gap in transition complex-
ity when comparing NFAs that, for an arbitrary k ≥ 1, allow respectively, k− 1
and k additional states compared to the size of a state-minimal NFA [3]. Earlier
it was shown in [7] that by allowing a non-constant number of additional states,
the number of transitions can be decreased from quadratic to linear.

When considering the reverse trade-off, one can construct a family of regular
languages Ln, n ≥ 1, such that for a constant c > 1,

any transition minimal NFA for Ln needs at least c · nsc(Ln) states. (1)

Above the constant c depends on the alphabet, but it is not clear how large
the gap between the number of states of a transition minimal NFA and the
nondeterministic state complexity of the corresponding language can become.
We conjecture that the number of states in transition minimal NFAs for any
regular languages Ln, n ≥ 1, is O(nsc(Ln)).

Problem 2.4. Determine an upper bound, depending on the alphabet, for the
constant c in (1).

References

1. Birget, J.-C.: Partial orders on words, minimal elements of regular languages and
state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

2. Domaratzki, M., Salomaa, K.: Transition complexity of language operations. In:
Leung, H., Pighizzini, G. (eds.): Proc. of Descriptional Complexity of Formal Sys-
tems, DCFS 2006, Las Cruces, NM, pp. 141–152 (2006)

3. Domaratzki, M., Salomaa, K.: Lower bounds for the transition complexity of NFAs.
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Abstract. Tiling systems that recognize two-dimensional languages are
intrinsically non-deterministic models. We introduce the notion of deter-
ministic tiling system that generalizes deterministic automata for strings.
The corresponding family of languages matches all the requirements of
a robust deterministic class. Furthermore we show that, differently from
the one-dimensional case, there exist many classes between deterministic
and non-deterministic families that we separate by means of examples
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1 Introduction

Two-dimensional languages are sets of pictures or two-dimensional arrays of sym-
bols chosen in a finite alphabet. The increasing interest for pattern recognition
and image processing has motivated the research on two-dimensional (2D for
short) languages, and nowadays this is a research field of great interest. Since
the sixties, many approaches have been presented in the literature in order to
find in 2D a counterpart of what regular languages are in one dimension (1D):
finite automata, grammars, logics and regular expressions. In 1991, an unifying
point of view was presented by A. Restivo and D. Giammarresi who defined
the family REC of recognizable picture languages (see [6] and [7]). This defini-
tion takes as starting point a characterization of recognizable string languages
in terms of local languages and projections (cf. [5]): the pair of a local picture
language and a projection is called tiling system.

� This work was partially supported by PRIN project Linguaggi Formali e Automi:
aspetti matematici e applicativi.
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REC family inherits several properties from the class of regular string lan-
guages. A crucial difference lies in the fact that the definition of recognizability
by tiling systems is intrinsically non-deterministic. Deterministic machine mod-
els to recognize two-dimensional languages have been considered in the liter-
ature: they always accept classes of languages smaller than the corresponding
non-deterministic ones (see for example, [3,8,13]). This seems to be unavoidable
when jumping from one to two dimensions. Further REC family is not closed
under complement and therefore the definition of any constraint to force deter-
minism in tiling systems should necessary result in a class smaller than REC.

In this paper we provide a definition of deterministic recognizable picture
languages based on the formalism of tiling system, that generalizes 1D case. We
first observe that a tiling system is not an effective computation device: given a
tiling system and a picture, if we want to decide whether the picture belongs to
the language recognized by the tiling system, we have to try to cover the picture
with the given tiles, in a way that they match each others and the local symbols
project to underlying symbols of the picture. All the attempts can be done
following any scanning strategy: we could either start in the top-left corner and
going row by row (from top to bottom) or by columns or in a spiral-like way or in
many other more or less natural or strange ways of proceeding. Then in a sense, a
set of tiles is the set of undirected transitions for a sort of automaton that reads
the given picture along a fixed scanning strategy. Moreover, in general, such
recognition process is non-deterministic: at each step of a recognition process
for a picture of size (m, n), one can have a backtracking on all already scanned
positions, i.e. a backtracking of O(m × n) steps. Further recall that parsing for
2D languages is a NP-complete problem [11]. The complexity of unary tiling-
recognizable picture languages was recently considered in [2].

The definition of determinism we introduce consists of a property on the tiling
system (i.e. the undirected transitions of the automata in the 1D case) that leads
to no backtracking in any reasonable associated ”computation”. Furthermore
determinism is a decidable property that implies unambiguity and polynomial
parsing. More in details we will define four types of determinism, one for each
corner-to-corner direction of reading of a picture. Observe that this is also the
case for string languages. The notion of determinism on strings is somehow an
”oriented” notion. When a set of undirected transitions is given for strings, there
are two notions of determinism according to the reading direction: determinism
(from left-to-right) and co-determinism (from right-to-left). Deterministic Rec-
ognizable Languages are defined as languages that admit a deterministic tiling
system along one of the four corner-to-corner directions: DREC denotes the class
of all deterministic recognizable languages. As one would expect DREC class re-
sults to be closed under complement. In [4,14] it is given a different definition of
determinism for tiling systems based on the way a tiling system is used to rec-
ognize pictures. Such definition is conceptually different and it does not reduce
to conventional determinism on strings when restricting to one-row pictures.

In formal language theory, an intermediate notion between determinism and
non-determinism is the notion of unambiguity. In an unambiguous model, we
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require that each accepted object admits only one successful computation. Both
determinism and unambiguity correspond to the existence of a unique process of
computation, but while determinism is a ”local” notion, unambiguity is a fully
”global” one. Unambiguous recognizable two-dimensional languages have been
introduced in [6], and their family is referred to as UREC. Informally, a picture
language belongs to UREC when it admits an unambiguous tiling system, that is
if every picture has a unique counter-image in its corresponding local language;
and this is an ”orientation-free” notion. In [1], the proper inclusion of UREC in
REC is proved. We show here that also DREC is properly included in UREC.

Hence DREC ⊂ UREC ⊂ REC, differently from the 1D case where all the
corresponding classes collapse. Then we further strengthen this result and show
that there is a very rich hierarchy of classes between determinism and non
-determinism in 2D. We exhibit some classes, denoted Col-UREC and Row-
UREC, that strictly separate DREC from UREC. Recall that DREC is the class
of languages that can be accepted with backtracking zero at each step of the com-
putation while UREC languages may require backtracking linear in the size of
the pictures during computation. As intermediate classes, Col-UREC and Row-
UREC are defined in such a way to have backtracking at most linear in one di-
mension of the picture at each step of its computation: they are defined by means
of column-unambiguous and row-unambiguous tiling systems, respectively.

We conclude the paper by considering a decidability issue: it is easy to prove
that it is decidable whether a given tiling system is deterministic while in [1] it
is shown that it is undecidable whether it is unambiguous. Here we prove that
for those intermediate notions of row-/ column-unambiguous tiling system such
problem is still decidable.

2 Preliminaries

We introduce some definitions about two-dimensional languages. The notations
used and more details can be mainly found in [7].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-
dimensional rectangular array of elements of Σ. The set of all pictures over Σ is
denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, let p(i,j) denote the symbol in p with coordinates
(i, j), �1(p) = m, the number of rows and �2(p) = n the number of columns;
the pair (m, n) is the size of p. The set of all pictures over Σ of size (m, n) is
denoted by Σm,n. It will be needed to identify the symbols on the boundary of a
given picture: for any picture p of size (m, n), we consider the bordered picture p̂
of size (m + 2, n + 2) obtained by surrounding p with a special boundary symbol
# �∈ Σ: positions of p̂ will be indexed in {0, 1, · · · , m + 1} × {0, 1, · · · , n + 1}.

A tile is a picture of dimension (2, 2) and B2,2(p) is the set of all sub-blocks
of size (2, 2) of a picture p. Given an alphabet Γ , a two-dimensional language
L ⊆ Γ ∗∗ is local if there exists a finite set Θ of tiles over Γ ∪ {#} such that
L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆ Θ} and we will write L = L(Θ).
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A tiling system is a quadruple (Σ, Γ, Θ, π) where Σ and Γ are finite alphabets,
Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection. A two-
dimensional language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system
(Σ, Γ, Θ, π) such that L = π(L(Θ)) (extending π in the usual way). We denote
by REC the family of all tiling recognizable picture languages.

The family REC is closed with respect to different types of operations (see
[7] for all the proofs). The column concatenation of p and q (denoted by p �q)
and the row concatenation of p and q (denoted by p �q) are partial operations,
defined only if �1(p) = �1(q) and if �2(p) = �2(q), respectively and are given by:

p �q = p q p �q =
p
q

.

REC family is closed under row and column concatenation and their closures,
under union, intersection and under rotation. All those closure properties confirm
the close analogy with the one-dimensional case. The big difference regards the
complement operation. In [7] and, in a different set-up, in [9], it is shown that
the family REC is not closed under complement.

Let us give some examples to which we will refer later.

Example 1. Let Lfc=lc be the language of pictures over Σ = {a, b} whose the
first column is equal to the last one. Language Lfc=lc ∈ REC. Informally we
can define a local language where information about first column symbols of a
picture p is brought along horizontal direction, by means of subscripts, to match
the last column of p. Tiles are defined to have always same subscripts within a
row while, in the right-border tiles, subscripts and main symbols should match.
Below it is an example of a picture p ∈ Lfc=lc together with a corresponding
local picture p′.

p =

b b a b b
a a b a a
b a a a b
a b b b a

p′ =

bb bb ab bb bb

aa aa ba aa aa

bb ab ab ab bb

aa ba ba ba aa

.

Let Lfc=c′ be the language of pictures such that the first column is equal to
some i-th column, i �= 1. Note that Lfc=c′ = Lfc=lc

�Σ∗∗ and thus Lfc=c′ ∈
REC. Similarly we can show that the languages Lc′=lc = Σ∗∗ �Lfc=lc, and
Lc=c′ = Σ∗∗ �Lfc=lc

�Σ∗∗ are in REC. 
�

An interesting model of 2D automaton to recognize picture languages is the two-
dimensional on-line tessellation acceptor (OTA) introduced in [8]. In a sense the
OTA is an infinite array of identical finite-state automata in a two dimensional
space. The computation goes by counter-diagonals starting from top-left towards
bottom-right corner of the picture. A run of a OTA on a picture consists in
associating a state to each position of the picture. The state for some position
(i, j) is given by the transition function and depends on the symbol in that
position and on the states already associated to positions (i, j− 1), (i− 1, j− 1)
and (i − 1, j) (note that an equivalent definition is possible with the state not
depending on the state in the top-left corner, (i − 1, j − 1)). A deterministic
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version of this model is referred to as DOTA. The family of languages recognized
by the two versions of the model (L(OT A), L(DOT A)) are different. Although
this kind of automaton is quite difficult to manage, this is actually the machine
counterpart of a tiling system: in [10], it is proved that REC = L(OTA).

3 Deterministic Tiling Systems

In this section we focus on the well accepted model of tiling system to discuss on
the question of defining a corresponding deterministic model and to establish a
”robust” definition for the class of Deterministic Recognizable Two-dimensional
Languages. The main property for a deterministic model should be that a recog-
nition process does not have any backtracking at each step of the computation.
Moreover, as tiling systems generalize finite automata for strings to two dimen-
sions (and in fact they coincide with finite automata in the special case of one-row
pictures), we require the same for deterministic tiling systems.

To better fix these ideas we jump for a while to the one dimensional case.
Recall that a string language L is accepted by a finite automaton if and only
if it is the projection of a local language (given by a finite set of length-two
strings on a local alphabet). In fact, using the given set of length-two strings,
one can easily define a transition function of a conventional automaton for L.
By conventional automaton here we mean an automaton that reads any input
string starting from the leftmost position and going from left to right (the con-
ventional reading direction, at least for occidental people!). It is easy to verify
that the same set of length-two strings can be also used to define an automaton
that recognizes strings in L by starting from the rightmost position and then
proceeding from right to left (probably more natural for Arabian people!). The
two automata can be obtained one from the other by exchanging initial and
final states and reversing arrow directions. In the string case we have two no-
tions of determinism: (conventional) determinism and co-determinism. In fact,
if the right-to-left automaton is deterministic we say that conventional automa-
ton is co-deterministic. This implies that a ”deterministic property” on the set
of length-two strings needs to be given according to a fixed direction. More-
over recall that not all regular string languages admit automata that are both
deterministic and co-deterministic.

We now extend such considerations to the two dimensional case. In 2D there
are 4 possible starting positions (the four corners) and therefore 4 possible main
scanning directions (one from each corner). For a while let us focus on the
direction from the top-left corner towards the bottom-right one, denoted by
tl2br-direction: any reading of a picture along this direction has the property
that we can read position (x, y) only if we have already read all the positions
that are above and to the left of (x, y) that is all the positions (i, j) with i ≤ x
and j ≤ y. Similarly we can define all the others corner-to-corner directions in
the set C2C = {tl2br, tr2bl, bl2tr, br2tl}.

Remark that, unlike the 1D case, once fixed a scanning direction there can be
several reading paths on the picture p that are ”compatible with” that direction.
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For example, if we take the tl2br-direction, we can have the path that visits p
column by column from left to right and each column from top to bottom, or
another path that goes row by row from top to bottom and each row from left
to right or another path that starts from top-left corner and then explores p by
counter-diagonals, each one from top to bottom and so on... Observe that, we
could also consider scanning processes that do not follow a fixed direction but
this would not reduce to the conventional reading of a string when we restrict
to one-row pictures: therefore they are not interesting for our purposes.

We are now ready to introduce deterministic tiling systems. As in 1D case,
determinism will be defined as a property of the tiling system referred to a
direction (one of the 4 main directions from the corners). Then any computation
that follows a scanning path compatible with that scanning direction will be a
deterministic computation (next step is determined with backtracking 0).

Definition 1. A tiling system (Σ, Γ, Θ, π) is tl2br-deterministic if for any γ1,

γ2, γ3 ∈ Γ ∪ {#} and σ ∈ Σ there exists at most one tile
γ1 γ2

γ3 γ4
∈ Θ, with

π(γ4) = σ.
Similarly we define d-deterministic tiling systems for any corner-to-corner

direction d ∈ C2C.

Example 2. Let Lfr=fc be the language of squares over a two-letters alphabet
Σ = {a, b} with the first row equal to the first column. Lfr=fc ∈ REC: indeed
we will exhibit a tiling system T = (Σ, Γ, Θ, π) recognizing L. The tiling system
T is such that, for any picture p, the information on each letter of the first row
is brought down till the diagonal and then left towards the first column. More
precisely, we use a local alphabet Γ = {xz

y with x, y ∈ {a, b}, z ∈ {0, 1, 2}}
and define π(xz

y) = x. The superscript symbol 0 occurs only in positions below
the diagonal, the symbol 1 occurs only on the diagonal and symbol 2 occurs
only above the diagonal, while the subscript symbols correspond to information
we are bringing from the first row to the first column (making a turn at the
diagonal). Here below it is given an example of a picture p ∈ Lfr=fc together
with the corresponding local picture p′ (i.e. π(p′) = p ).

p =

a a b b a
a b b a a
b b a a b
b b a a a
a a a a b

p′ =

a1
a a2

a b2
b b2

b a2
a

a0
a b1

a b2
b a2

b a2
a

b0
b b0

b a1
b a2

b b2
a

b0
b b0

b a0
b a1

b a2
a

a0
a a0

a a0
a a0

a b1
a

It is easy to see that the tiling system T is tl2br-deterministic. Remark that

it is not br2tl-deterministic: tiles
a1

a a2
a

a0
a b1

a
,

a1
b a2

a

a0
a b1

a
∈ Θ with π(a1

a) = π(a1
b) = a.

Another important property of determinism should be the decidability. We show
that it is decidable whether a given tiling system is deterministic.
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Proposition 1. It is decidable whether a given tiling system is d-deterministic
for a given corner-to-corner direction d ∈ C2C.

Proof. Given a tiling system T = (Σ, Γ, Θ, π), in order to test, for example,
whether it is tl2br-deterministic it suffices to verify whether there exist in Θ two

tiles
γ1 γ2

γ3 γ4
,

γ1 γ2

γ3 γ′4
∈ Θ, with γ4 �= γ′4 and π(γ4) = π(γ′4). 
�

A recognizable two-dimensional language L is deterministic, if it admits a
d-deterministic tiling system for some corner-to-corner direction d. Moreover,
we denote by DREC, the class of Deterministic Recognizable Two-dimensional
Languages.

We first observe that, as one would expect, deterministic recognizable lan-
guages are unambiguous (i.e. DREC⊆UREC). In fact, if at each step of recogni-
tion of a given picture we have only one possible local symbol to choose, then we
have only one possible local counter-image for the input picture. We will prove
that there are unambiguous recognizable languages that are not deterministic.
Moreover, in the next section we will stress this result by exhibiting some other
classes between DREC and UREC.

Remark that DREC is closed under rotation. Indeed if L is recognized by a
d-deterministic tiling system, say a tl2br-deterministic one, then its (clockwise)
90◦-rotation is accepted by a tr2bl-deterministic tiling system obtained by rota-
tion of tiles. We now show that DREC family has a natural counterpart in the
formalism of 2OTA.

Proposition 2. The class DREC is equal to the closure by rotation of
L(DOTA).

Proof. Let L ∈ DREC and let T be a d-deterministic tiling system for L.
If T is tl2br-deterministic, then the OTA simulating the tiling system T and
accepting the language L, as in the proof of [10], results to be deterministic.
Then L ∈ L(DOT A). If T is d-deterministic, for some d ∈ C2C, then a proper
rotation of T will be tl2br-deterministic and the proof follows.

Now, let L ∈ L(DOT A). The tiling system for L, obtained as in [10], is tl2br-
deterministic. The proof is completed by the closure by rotation of DREC. 
�

Proposition 3. DREC is properly included in UREC

Proof. We will exhibit a language Lframes ∈UREC \ DREC using the character-
ization in Proposition 2. Consider language Lfr=fc as defined in Example 2. One
can easily show that Lfr=fc ∈ L(DOT A); while its 180◦ rotation, say Llr=lc, the
language of all square pictures with the last row equal to the last column is not
in L(DOT A) (cf. [8]). Hence define Lframes as the intersection of four languages
over Σ = {a, b}: Lfr=fc, Llr=lc, L′, the language of all square pictures with the
second row equal to the reverse of the second-last column, and L′′, the language
of all square pictures with the second-last row equal to the reverse of the second
column. Formally, let Lframes = {p ∈ Σ∗∗|l1(p) = l2(p) = n, p(n,i) = p(i,n),
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p(2,i) = p(n−i+1,n−1), p(i,1) = p(1,i) and p(n−1,i) = p(n−i+1,2)∀i = 1, . . . , n}. The
proof that Lframes /∈ DREC is rather involved and we omit it for lack of space.

Moreover, it can be shown that each one of the four languages defining Lframes

is in UREC (for example the tiling system for Lfr=fc given in Example 2 is tl2br-
deterministic and then unambiguous) and, since UREC is closed with respect to
intersection (cf. [1]), we have Lframes ∈UREC. 
�

We conclude this section by stating that the class of deterministic recognizable
languages is closed under complement and therefore it shares such important
property with any other ’deterministic’ model. (Remember that the whole REC
family is not closed under complement.) The proof follows from Proposition 2
and the closure of L(DOT A) under complement [8].

Proposition 4. DREC is closed under complement.

4 Between DREC and UREC Classes

In this section we show that differently from one dimensional case, there is a very
rich hierarchy of classes between determinism and non determinism by exhibit-
ing some classes, we denote Col-UREC and Row-UREC, that strictly separate
DREC from UREC. DREC is the class of languages that can be accepted with
backtracking 0 in their computations; while UREC languages may require back-
tracking linear in the size of the pictures during computation. Col-UREC and
Row-UREC are defined in such a way to have backtracking at most linear in one
dimension of the picture. They correspond to an intermediate notion between
determinism and unambiguity, and hence they lie between DREC and UREC.
Note that the situation is extremely more complex than in 1D where all the cor-
responding classes collapse. Finally we prove some decidability results regarding
those new definitions (Proposition 6).

We now define column- and row-unambiguous languages. For this, we use a
different point of view for two-dimensional scanning directions: we somehow con-
sider one dimension at each time and therefore move only along that direction.
More precisely, we consider four side-to-side scanning directions namely left-to-
right and vice versa, top-to-bottom and vice versa. In particular any reading
of a picture p along the side-to-side direction for left-to-right, denoted by l2r-
direction, has the property that we can read position (x, y) only if we have
already read all the positions in the columns to the left, that is all the posi-
tions (i, j) with j < y. In other words the scanning of p proceeds column by
column (despite we do not pay attention to the order of reading inside a given
column). Similarly we can define all the others side-to-side directions in the set
S2S = {l2r, r2l, t2b, b2t}.

We are now ready to give the definition of l2r-unambiguous tiling systems.
Informally, a tiling system is l2r-unambiguous if, when used to recognize a picture
by reading it along a l2r direction, there is only one possible next local column.

Definition 2. A tiling system (Σ, Γ, Θ, π) is l2r-unambiguous if for any col-
umn col′ ∈ Γ m,1 ∪ {#}m,1, and picture p ∈ Σm,1, there exists at most one
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local column col′′ ∈ Γ m,1, such that π(col′′) = p and B2,2(p′) ⊆ Θ where
p′ = {#}1,2 �(col′ �col′′) �{#}1,2.

Similar properties define d-unambiguous tiling systems, for any side-to-side
direction d ∈ S2S.

We say that a language is column-unambiguous if it is recognized by a
d-unambiguous tiling system for some d ∈ {l2r, r2l} and it is row-unambiguous
if it is recognized by a d-unambiguous tiling system for some d ∈ {t2b, b2t}. Fi-
nally, we denote by Col-UREC the class of column-unambiguous languages and
by Row-UREC the class of row-unambiguous languages.

Remark 1. A column-unambiguous tiling system is such that, during the com-
putation of a picture of size (m, n), the backtracking at each step is at most m.
This is because the next local column is uniquely determined without ambiguity
after backtracking of m steps at most. Same remarks hold for row-unambiguity.

Remark 2. It is interesting to note that we could similarly define diagonal unam-
biguity, requiring that the next diagonal of local symbols is uniquely determined
from the previous one (for example, the counter-diagonals like OTA’s transitions
waves). In this case, such a diagonal unambiguity would coincide with determin-
ism, since the local symbol in a position on the diagonal does not depend on the
other local symbols on the diagonal.

Example 3. Let Lfr=fc be the language of squares over Σ = {a, b} with first
row equal to the first column and T = (Σ, Γ, Θ, π), as introduced in Example 2.
We show that T is l2r-unambiguous and hence Lfr=fc ∈ Col-UREC.

Informally, for any local column col′ ∈ Γ m,1, and picture p ∈ Σm,1, the local
column (if any) col′′ ∈ Γ m,1 (in Definition 2), is univocally determined as follows.
The position of col′′ on the diagonal is determined from the position of a symbol
with superscript 1 in col′; we have x1

y when x is the underlying symbol of p and y
is the matching symbol from the first row and first column. Above this position,
we have col′′(i,1) = x2

y iff p(i,1) = x and p(1,1) = y; below diagonal position, we
have col′′(i,1) = x0

y iff p(i,1) = x and col′(i,1) = x′0y .
Moreover, by similar argument one can show that T is also r2l-, t2b-, and b2t-

unambiguous. Then Lfr=fc ∈ Row-UREC.

The following proposition compares all the classes DREC, Col-UREC, Row-
UREC, UREC and REC. The proof is almost trivial and it is omitted. In the
sequel we will be able to show that all these inclusions are strict.

Proposition 5. DREC ⊆ (Col-UREC ∩ Row-UREC) ⊆ (Col-UREC ∪ Row-
UREC) ⊆ UREC ⊆ REC.

Now we state some necessary condition for Col-UREC (and Row-UREC) family.
We will associate the string language over the alphabet of the columns (or rows)
with a two-dimensional language, in a way similar to [1,12]. More precisely,
let L ⊆ Σ∗∗ be a picture language. For any m ≥ 1, we consider the subset
Lh(m) ⊆ L containing all pictures with exactly m rows. Such language Lh(m)
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can be viewed as a string language over the alphabet Σm,1 of the columns, i.e.
words in Lh(m) have a ”fixed height m”. In an analogous way one can define
the language Lw(n) of pictures with fixed width n.

Furthermore if L is in REC and T is a tiling system that recognizes it, we can
construct an automaton

→
Am (T ) that recognizes Lh(m), as follows. The states

of
→
Am (T ) are the local columns of Γ m,1 plus the initial state that is the column

{#}m,1; for each pair of states col′, col′′, we add a transition labelled π(col′′),
from col′ to col′′, iff B2,2({#}1,2 �(col′ �col′′) �{#}1,2) ⊆ Θ. The final states are
columns col′ ∈ Γ m,1 such that B2,2({#}1,2 �(col′ �{#}m,1) �{#}1,2) ⊆ Θ. Note

that the number of states of
→
Am (T ) is |Γ |m +1, at most, and thus upper limited

by km for some k. In an analogous way, we can construct the automata
←
Am (T ),

A↓n(T ) and A↑n(T ) for Lh(m)Rev, Lw(n) and Lw(n)Rev , respectively, where Rev
denotes the reverse of a (string) language.

Finally for any L ⊆ Σ∗ denote by ML the infinite boolean matrix ML =
‖aαβ‖α∈Σ∗,β∈Σ∗ where aαβ = 1 iff αβ ∈ L.

Theorem 1. Let L ⊆ Σ∗∗.
If L ∈Col-UREC, then there is a k such that, for all m ≥ 1, the number of
different rows of either MLh(m) or MLh(m)Rev is less than or equal to km.
If L ∈Row-UREC, then there is a k such that, for all n ≥ 1, the number of
different rows of either MLw(n) or MLw(n)Rev is less than or equal to kn.

Proof. Let T = (Σ, Γ, Θ, π) be a tiling system recognizing L. The main observa-
tion is now that if T is d-unambiguous with d = l2r (r2l, t2b, or b2t, resp.) then
the automaton

→
Am (T ) (

←
Am (T ), A↓n(T ), or A↑n(T ), resp.) will result determi-

nistic. Consider the automaton
→
Am (T ). For any state col′ ∈ Γ m,1 ∪ {#}m,1,

and symbol σ ∈ Σm,1, the arriving state (if any) is col′′ uniquely determined by
the Definition 2. So

→
Am (T ) is deterministic. Therefore there exists k such that,

for all m ≥ 1 the string language Lh(m) is accepted by a deterministic (string)
automaton with km states at most.

From Myhill-Nerode Theorem, we also know that the number of states of the
minimal deterministic automaton accepting Lh(m) is equal to the number of
different rows of MLh(m). Therefore the number of different rows of MLh(m) is
less than or equal to km. The proof is analogous in the other cases. 
�
As an application of Theorem 1, let us show a language not in Col-UREC.

Example 4. Consider the language L = Lfc=c′ ∩ Lc′=lc and, for any m > 1,
consider language Lh(m) of pictures of fixed height m in L. This is the string
language over the alphabet A = Σm,1 with at least two occurrences of the first
and of the last symbol. If Σ has σ symbols, then A = Σm,1 has σm elements.
One can show that MLh(m) has at least 2σm

different rows. Indeed the rows
corresponding to two pictures with different sets of columns are distinct. Since
the different subsets of columns in Σm,1 are 2σm

, then MLh(m) has at least
2σm

different rows. The same holds for MLh(m)Rev since LRev = L and then,
L �∈Col-UREC.
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Next theorem shows that the inclusions in Proposition 5 are all strict, by ex-
hibiting languages that separate the classes. First we state the following lemma.
Its proof easily follows by observing that the tiling system for the intersection
of two languages, as constructed in [7], preserves side-to-side unambiguity.

Lemma 1. If L1, L2 ⊆ Σ∗∗ are recognized by a d-unambiguous tiling system for
some d ∈ S2S, then so is L1 ∩ L2.

Theorem 2. DREC⊂ (Col-UREC∩Row-UREC)⊂ (Col-UREC∪Row-UREC)
⊂ UREC ⊂ REC, with all strict inclusions.

Proof. We exhibit three languages L1, L2, L3 showing the three first strict inclu-
sions. A language in REC\ UREC is shown in [1] (namely Lc=c′).

Language L1 is Lframes as introduced in the proof of Proposition 3. We have
L1 ∈ (Col-UREC ∩ Row-UREC)\DREC. Indeed L1 is defined as the inter-
section of four languages; each one can be recognized by a tiling system that
is d-unambiguous for any d ∈ S2S (see Example 3 for part of the proof) and
Lemma 1 holds. The proof that Lframes �∈ DREC is rather involved and we omit
it for lack of space.

Language L2 is L2 = Lfc=c′ ∩ Lc′=lc ∩ S, where S is the language of squares
pictures. L2 ∈ Row-UREC\ Col-UREC. A t2b-unambiguous tiling system can
be constructed as here sketched. The idea is, starting from the first row of a
picture, to mark both all the columns candidates to be equal to the first one
and all the columns candidates to be equal to the last one and to propagate
this information downwards. In the last row, we can check whether two entire
columns were found, one equal to the first one and another equal to the last one.
The condition that the picture is a square is needed to detect when the last row
is reached. Hence L2 ∈ Row-UREC. On the contrary L2 �∈ Col-UREC, using
Theorem 1. In fact MLh(m) has at least (σm/m)m different rows, by calculations
similar to the ones done in Example 4.

Language L3, is obtained by intersection of Lfc=c′ (see Example 1) with its
three 90◦-rotations. L3 ∈UREC since Lfc=c′ ∈ UREC and UREC is closed by
rotations and intersection. On the other hand L3 /∈ (Col-UREC ∪ Row-UREC).
One can show that MLh(m) has at least 2σm−2

different rows, similarly as in
Example 4. So applying Theorem 1, L3 /∈Col-UREC; L3 /∈Row-UREC since it
coincides with its rotations. 
�

We conclude with some decidability issues. Proposition 1 shows that it is de-
cidable whether a given tiling system is corner-to-corner deterministic. On the
contrary in [1] it was shown that it is undecidable whether a given tiling system
is unambiguous. Here we show that it is still decidable whether a tiling system
is column-/ row-unambiguous.

Proposition 6. It is decidable whether a tiling system is d-unambiguous for a
given side-to-side direction d ∈ S2S.

Proof. Consider a tiling system T = (Σ, Γ, Θ, π) and direction l2r. Denote P
the cardinality of the set {(α, β)| α, β ∈ Γ}. Trivially, P is the upper bound on
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the length of shortest (i.e. with the minimal number of rows) pictures col′ and p
for which there is no col′′ as in the Definition 2. Then, it suffices to verify whether,
for any n ≤ P , there are no pictures col1 ∈ Γ n,1 ∪ {#}n,1,col2, col3 ∈ Γ n,1,
such that col2 �= col3, π(col2) = π(col3), B2,2(p1) ⊆ Θ, B2,2(p2) ⊆ Θ where
p1 = {#}1,2 �(col1 �col2) �{#}1,2 and p2 = {#}1,2 �(col1 �col3) �{#}1,2. The
proof is similar for d ∈ {r2l, t2b, b2t}. 
�
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Università degli studi di Palermo,

Via Archirafi 34, 90123 Palermo, Italy
{Burderi,Restivo}@math.unipa.it

Abstract. The canonical coding partition of a set of words is the finest
partition such that the words contained in at least two factorizations
of a same sequence belong to a same class. In the case the set is not
uniquely decipherable, it partitions the set into one unambiguous class
and other parts that localize the ambiguities in the factorizations of finite
sequences.

We firstly prove that the canonical coding partition of a regular set
contains a finite number of regular classes. We give an algorithm for
computing this partition. We then investigate maximality conditions in
a coding partition and we prove, in the regular case, the equivalence
between two different notions of maximality. As an application, we finally
derive some new properties of maximal uniquely decipherable codes.

1 Introduction

In this paper, we call code a set of finite words. An important class of codes is the
class of Uniquely Decipherable (UD) codes. This property allows the decoding
of a sequence of concatenated codewords. Nevertheless, some classes of codes
are used in information theory although they are not uniquely decipherable (see
for instance [7], [9] and [10]). The condition of unique decipherability can also
be weakened by considering that it applies only to codes with constraints (see
[1]) or to codes with a constraint source (see [4], [6]). In [6], the classification
of ambiguities of codes is investigated in the study of natural languages. From
a combinatorial point of view, the study of ambiguities helps to understand the
structure of a code.

To this purpose, the notions of coding partition and canonical coding partition
of a code were introduced in [3] to study some decipherability conditions for codes
that are weaker than the unique decipherability. The notion of coding partition
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generalizes that of UD code: indeed UD codes correspond to the extremal case
in which each class contains exactly one element. In general, for codes that are
not UD, the notion of coding partition allows to recover “unique decipherability”
at the level of classes of the partition. In other words, such a notion gives a tool
to localize the ambiguities for a code that is not UD: indeed the ambiguities are
localized inside each class of the partition and a kind of mutual unambiguity
holds between the different classes.

By taking into account the natural ordering between the partitions of a set X ,
where finer is higher, we have that the coding partitions form a complete lattice.
As a consequence, given a code X , we can define the finest coding partition P
of X . It is called the characteristic partition of X and it is denoted by P (X).

The structure of P (X) gives useful information about coding properties of X .
In particular, an extremal case (each class of P (X) is a singleton) corresponds
to UD codes. The opposite extremal case (P (X) contains only one class) gives
rise to the definition of Globally Ambiguous (GA) codes. Such considerations
lead to define a canonical decomposition of a code in at most one unambiguous
component and in a set (possibly empty) of GA components.

Remark that the notion of coding partition is related to some special cases of
the notion of F-factorization, introduced in [8].

In [3] it is given a Sardinas-Patterson like algorithm for computing the canon-
ical coding partition of a finite code.
In this paper, we firstly prove that the canonical coding partition of a regular
code has a finite number of classes, each one being regular. This result was
conjectured in [3]. We give an exponential time algorithm for computing all
classes of the partition which is based on automata constructions.
We then introduce the notion of maximality of coding partition with respect
to a component and, in the regular case, we prove that if a coding partition is
maximal with respect to one component, then it is maximal with respect to all
the components. As an application, we prove in the last section that, if a regular
UD code X is maximal, then any code containing strictly X is GA.

2 Partitions of a Code

Let A be a finite alphabet. We denote by A∗ the set of finite words over the
alphabet A, and by A+ the set of nonempty finite words. A code X is here a
subset of A+. Its elements are called code words, the elements of X∗ messages .

Let X be a code and let

P = {X1, X2, . . . },

be a partition of X i.e. :
⋃

i≥1 Xi = X and Xi ∩Xj = ∅, for i �= j.

A P -factorization of an element w ∈ X+ is a factorization w = z1z2 · · · zt,
where

– ∀i zi ∈ X+
k , for some k ≥ 1

– if t > 1, zi ∈ X+
k ⇒ zi+1 /∈ X+

k , for all 1 ≤ i ≤ t− 1.
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The partition P is called a coding partition if any element w ∈ X+ has a unique
P -factorization, i.e. if

w = z1z2 · · · zs = u1u2 · · ·ut,

where z1z2 · · · zs, u1u2 · · ·ut are P -factorizations of w, then s = t and zi = ui

for i = 1, . . . , s.
We say that a partition P is concatenatively independent if, for i �= j,

X+
i ∩X+

j = ∅.

Then a necessary condition for a partition P to be a coding partition, is that P
is concatenatively independent.

Let X be a code and let x1x2 · · ·xs = y1y2 · · · yt be two factorizations into code
words of a message w ∈ X+. We say that the relation x1x2 · · ·xs = y1y2 · · · yt is
prime if for all i < s and for all j < t one has x1x2 · · ·xi �= y1y2 · · · yj .

In [3] it is proved that P is a coding partition of a code X iff for every prime
relation x1x2 · · ·xs = y1y2 · · · yt these code words belong to the same component
of the partition.

Recall that there is a natural order between the partitions of a set X : if P1

and P2 are two partitions of X , P1 ≤ P2 if the elements of P1 are unions of
elements of P2. In [3] is proved the next theorem.

Theorem 1. The set of the coding partitions of a code X is a complete lattice.

As a consequence of previous theorem we can give the next definition.
Given a code X , the finest coding partition P of X is called the characteristic

partition of X and it is denoted by P (X).
A code X is called ambiguous if it is not UD. It is called globally ambiguous

(GA) if |X | > 1 and P (X) is the trivial partition.
So UD codes and GA codes correspond to the two extremal cases: a code is

UD if |P (X)| = |X | and a code is GA if |P (X)| = 1.
Let X be a code and let P (X) be the characteristic partition of X . Let X0

be the union of all classes of P (X) having only one element, i.e. of all classes
Z ∈ P (X) such that |Z| = 1. The code X0 is a UD code and is called the unam-
biguous component of X . From P (X) one then derives another partition of X

PC(X) = {X0, X1, . . . },

where |Xi| > 1, for i ≥ 1. The sets Xi, with i ≥ 1, are (see[3]) GA. They are
called the GA components of X . The partition PC(X) is called the canonical
partition of X : it defines a canonical decomposition of a code X in at most one
unambiguous component and a (possibly empty) set of GA components. Roughly
speaking, if a code X is not UD, then its canonical decomposition, on one hand
separates the unambiguous component of the code (if any), and, on the other, lo-
calizes the ambiguities inside the GA components of the code. On the contrary, if
X is UD, then its canonical decomposition contains only the unambiguous com-
ponent X0. Moreover if X is UD then every partition of X is a coding partition.

In [3] is given a Sardinas-Patterson like algorithm for computing the canonical
coding partition of a finite code X and is also proved the next result.
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Theorem 2. Given a partition P = {X1, X2, . . . , Xn} such that Xi, for i =
1, 2, . . . , n, is a regular set, then it is decidable whether P is a coding partition.

In the same paper it was conjectured that if X is regular, the number of classes
of PC(X) is finite and each class of PC(X) is a regular set.

The conjecture will be proved in the next section so the restrictive conditions
considered in the Theorem 2 are not actually a restriction for regular codes.

3 Coding Partition of a Regular Code

In this section, we consider a regular code X .
We say that a coding partition of a code is finite if is has a finite number

of components. We say that a coding partition of a code is regular if all the
components of the partitions are regular. The following theorem gives a positive
answer to previous conjecture.

Theorem 3. The canonical partition of a regular code is finite and regular.

Remark 1. Given a coding partition P = {X1, X2, . . . } of a code X ⊆ A+, the
condition that every word w ∈ X+ admits a unique P -factorization has the
following algebraic interpretation: the submonoid X∗ is isomorphic to the free
product of the submonoids X∗

i . We say that a submonoid M ⊆ A∗ is indecom-
posable if M is not factorizable in the free product of others submonoids. Then
the previous theorem can be restated in the following algebraic setting.

Theorem 4. Any regular monoid admits a canonical decomposition into a free
product of at most one regular free monoid and a finite number (possibly zero)
of regular indecomposable monoids.

In order to prove Theorem 3, we give an algorithm for computing the finite
automata accepting the components of the partition from a finite automaton
accepting the code X .

A finite automaton A = (Q, I, E, T ) is made of a finite set of states Q, a set
of edges E labelled on an alphabet A, a set of initial states I and a set of final
states T . We shall also consider automata labelled in A∗. A successful path is a
path going from a state of I to a state of T . The set of labels of successful paths
is the language accepted by the automaton.

An automaton is unambiguous if for any word z, any states p, q, there is at
most one path going from p to q and labelled by z.

Let A = (Q, I, E, T ) be a finite automaton. We define the automaton A×A =
(Q′, I ′, E′, T ′) called the square of A, where Q′ = Q×Q, E′ = {(p, q) a−→ (p′, q′) |
p

a−→ p′ and q
a−→ q′ ∈ E}. The set of initial states I ′ and the set of final states

T ′ will be specified later. A state (p, q) will be also denoted by
[
p
q

]
.

Proof (Proof of Theorem 3). Let A = (Q, I, E, T ) be a finite unambiguous au-
tomaton accepting the code X such that I = {i}, T = {t}, and which has no



52 M.-P. Béal, F. Burderi and A. Restivo

edge coming in i and no edge going out of t. Such an automaton, called a nor-
malized automaton, can be obtained by standard constructions (see for instance
[2]). By merging i and t into a single state denoted by 0, we get an automaton
B = (Q, 0, E, 0) accepting the set X∗. Note that B is no more unambiguous
unless X is UD.

We build the square automaton B×B and replace the state
[
0
0

]
by two states

[
0
0

]

s
and

[
0
0

]

t
such that the edges going out of

[
0
0

]
go out of

[
0
0

]

s
and the edges

coming in
[
0
0

]
come in

[
0
0

]

t
. Note that

[
0
0

]

s
has no incoming edges and

[
0
0

]

t
has

no outgoing edges. We only keep in B × B the states belonging to paths from[
0
0

]

s
to

[
0
0

]

t
and going at least one time through a state

[
p
q

]
with p = 0, q �= 0

or p �= 0, q = 0. By using the state-elimination technique (see for instance [?]),
we remove the states

[
p
q

]
with p and q distinct from 0 and get an automaton

C labelled in regular subsets of A∗ whose states are
[
0
0

]

s
,
[
0
0

]

t
, and

[
p
q

]
with

p = 0, q �= 0 or p �= 0, q = 0. There is at most one edge between two states and
each label is a regular non-empty subset of A∗.

States
[
p
q

]
with p = 0 are called upper-zero states while states

[
p
q

]
with q = 0

are called lower-zero states. Hence
[
0
0

]

s
and

[
0
0

]

t
are both upper and lower-zero

states.
We denote by E

[
p
q

][
p′

q′

]
the regular set related to the edge

[
p
q

]
−→

[
p′

q′

]
. With a

slight abuse of language, we sometimes say that there is an edge labelled by a
word w from a state

[
p
q

]
to state

[
p′

q′

]
whenever w ∈ E

[
p
q

][
p′

q′

]
.

Let pi, qi, pj , qj be states in Q with qi and qj distinct from 0. Let e, f be the
edges

e =
[

0
pi

]
−→

[
qi

0

]
and f =

[
qj

0

]
→

[
0
pj

]

(i.e. respectively an edge from an upper-zero state to a lower-zero state and an
edge from lower-zero state to an upper-zero state).

We denote by

– L
[
qi

0

][
qj

0

]
the regular set of labels of paths from

[
qi

0

]
to
[
qj

0

]
with all its states

being lower-zero states.
– S

[
qi

0

][
qj

0

]
the union of the labels of all edges contained in a path from

[
qi

0

]
to

[
qj

0

]
with all its states being lower-zero states.

Note that we may have qi = qj . In this case, L
[
qi

0

][
qj

0

]
contains the empty word

and S
[
qi

0

][
qj

0

]
may be the empty set.

We define the regular sets

Y = E
[

0
pi

][
qi

0

]
· L
[
qi

0

][
qj

0

]
·E

[
qj

0

][
0
pj

]
+ S

[
qi

0

][
qj

0

]
,

Sef =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y if pi �= 0, pj �= 0,

Y + E
[
0
0

]

s

[
qi

0

]
if pi = 0, pj �= 0,

Y + E
[
qj

0

][
0
0

]

t
if pi �= 0, pj = 0,

Y + E
[
0
0

]

s

[
qi

0

]
+ E

[
qj

0

][
0
0

]

t
if pi = pj = 0,

where the symbol + is the union symbol and the dot symbol is the concatenation
symbol.
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Let pi, qi, pj , qj , pk, qk be states in Q with qi, qj , pj , pk distinct from 0. Let
e, f, g be the edges

e =
[

0
pi

]
−→

[
qi

0

]
, f =

[
qj

0

]
→

[
0
pj

]
and g =

[
0
pk

]
−→

[
qk

0

]
.

We define the regular set

Sefg = E
[

0
pi

][
qi

0

]
· L
[
qi

0

][
qj

0

]
· E

[
qj

0

][
0
pj

]
+ E

[
qj

0

][
0
pj

]
· L
[

0
pj

][
0
pk

]
·E

[
0
pk

][
qk

0

]
.

We define similar sets Sef and Sefg when e, g are edges from a lower-zero state
to an upper-zero state and f is an edge from an upper-zero state to a lower-zero
state, by exchanging the roles played by the upper and lower states.

We get a finite number of regular subsets of X . Some of these states may have
a nonempty intersection. We replace two parts having a non-empty intersection
by their union. After a finite number of steps we get a finite number of regular
subsets of X whose two by two intersections are empty. We denote these sets by
X1, X2, . . . , Xr. We define the set X0 = X −

⋃r
i=1 Xi. We claim that (Xi)0≤i≤r

is the canonical coding partition of X , which proves the proposition.
To prove our claim, we show that any two code words which belong to a

same prime relation belong to a same component Xi. Let z = x1x2 . . . xn =
y1y2 . . . ym be a prime relation where xi, yj are codewords. The existence of such
a factorization is equivalent to the existence of a path in C:
[
0
0

]

s

(e1)−−→
[
q01
0

]
. . .

[q0j0
0

] (e2)−−→
[

0
p11

]
. . .

[
0

p1i1

] (e3)−−→
[
q11
0

]
. . .

[q1j1
0

] (e4)−−→
[

0
p21

]
. . .

(ek−2)−−−−→
[

0
pr1

]
. . .

[
0

prir

] (ek−1)−−−−→
[
qr1
0

]
. . .

[
qrjr

0

] (ek)−−→
[
0
0

]

t
.

In this path, we denote by ei the edges going from an upper-zero state to a
lower-zero one or the converse. Note that this path encodes two paths in the
automaton A. One is read on the upper track, the other one on the lower track.
The label of any path read on the upper (or lower track) going from 0 to 0
without going through 0 in between belongs to X . Hence

i1 + · · ·+ ir + 1 = n

j0 + j1 + · · ·+ jr + 1 = m.

By renumbering the lower coefficients pij of the upper-zero states of this path
p1 to pn, and the upper coefficients qij of the lower-zero states of this path q1 to
qm, the label of each part of this path going from a state

[
0

pi−1

]
to a state

[
0
pi

]
is

labelled by xi. The label of each part of this path going from a state
[
qj−1

0

]
to a

state
[
qj

0

]
is labelled by yj .

By the definition of the sets Seiei+1 and the sets Seiei+1ei+2 , we get that all xi

and all yj belong to a same part of the canonical coding partition.
Conversely, we prove that if two words x and y belong to a same component

of the partition, then there is a finite chain of words x = w0, w1, . . . , wn = y
such that wi and wi+1 belong to a same prime relation for 0 ≤ i < n.
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Let q1, q2 be two non null states in Q. We first show that if two words y, y′ ∈
S
[
q1
0

][
q2
0

]
, then there is a finite chain of words y = w0, w1, . . . , wn = y′ such that

wi and wi+1 belong to a same prime relation for 0 ≤ i < n.
Since y, y′ ∈ S

[
q1
0

][
q2
0

]
, there are in C two paths labelled xyz and x′y′z′, with

x, x′, z,′ ∈ A∗, containing respectively an edge labelled by y and an edge labelled
by y′, with the following form:

[
q1
0

] x−→
[
q11
0

] y−→
[
q12
0

] z−→
[
q2
0

]
,

[
q1
0

] x′
−→

[
q′
11
0

] y′

−→
[
q′
12
0

] z′
−→

[
q2
0

]
.

Since
[
q1
0

]
is accessible from

[
0
0

]

s
and

[
q2
0

]
is co-accessible from

[
0
0

]

t
, these paths

can be extended in C by a shortest path from
[
0
0

]

s
to

[
q1
0

]
labelled by a word

u, and by a shortest path from
[
q2
0

]
to

[
0
0

]

t
labelled by a word w. The resulting

paths are
[
0
0

]

s

u−→
[
q1
0

] x−→
[
q11
0

] y−→
[
q12
0

] z−→
[
q2
0

] v−→
[
0
0

]

t
,

[
0
0

]

s

u−→
[
q1
0

] x′
−→

[
q′
11
0

] y′

−→
[
q′
12
0

] z′
−→

[
q2
0

] v−→
[
0
0

]

t
.

Let for instance
[
0
0

]

s

u1−→
[
q
0

]
be the first edge of the path

[
0
0

]

s

u−→
[
q1
0

]
. Hence u1

and y belong to a same prime relation, and u1 and y′ belong to a same prime
relation.

Let now x and y be two words in Sef , where

e =
[

0
pi

]
−→

[
qi

0

]
and f =

[
qj

0

]
→

[
0
pj

]
.

Let us consider the first case in the definition of Sef . For instance, one can
assume that

x ∈ E
[

0
p1

][
q1
0

]
· L
[
q1
0

][
q2
0

]
· E

[
q2
0

][
0
p2

]
,

y ∈ S
[
q1
0

][
q2
0

]
.

It follows that there is in C a path labelled by x containing an edge labelled by
y′ ∈ S

[
q1
0

][
q2
0

]
which has the following form:

[
0
p1

]
→

[
q1
0

]
→ . . .→

[
q1i

0

] y′

−→
[q1(i+1)

0

]
→ . . .→

[
q2
0

]
→

[
0
p2

]
.

Since
[

0
p1

]
is accessible from

[
0
0

]

s
and

[
0
p2

]
is co-accessible from

[
0
0

]

t
, this path

can be extended in C by a shortest path from
[
0
0

]

s
to

[
0
p1

]
labelled by a word u

and, by a path from
[

0
p2

]
to

[
0
0

]

t
labelled by a word w. The resulting path is

[
0
0

]

s

u−→
[

0
p1

]
→

[
q1
0

]
→ . . .→

[
q1i

0

] y′

−→
[q1(i+1)

0

]
→ . . .→

[
q2
0

]
→

[
0
p2

] v−→
[
0
0

]

t
.

This defines a prime relation containing the words x and y′. Furthermore, we
know that there is a word w such that y and w belong to a same prime relation,
and y′ and w belong to a same prime relation.
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We consider similarly all cases in the definitions of Sef and Sefg to conclude
that for any two words x and y in a such a set, there is a finite chain of words
w0 = x, w1, . . . , wn = y such that wi and wi+1 belong to a same prime relation
for 0 ≤ i < n. 
�

Note that, since the definition of the part X0 is X0 = X−
⋃r

i=1 Xi, the computa-
tion of the canonical coding partition cannot be achieved in a polynomial time.
The computation of the sets Sef and Sefg can be performed in polynomial time.
Since it is necessary to compute some intersections to get the automata accepting
Xi, the computation of the components Xi for i �= 0 also is exponential.

When the code X is not regular, even when context-free, the canonical coding
partition may have an infinite number of classes, as shows the following example.

Example 1. Let
X = ∪n≥1 (anb + anbcn + cnanb).

The code X is context free and its canonical coding partition is (Xi)i≥1 with
Xi = aib + aibci + ciaib for i ≥ 1 and X0 = ∅.

It is also possible to get a finite canonical coding partition with non regular
classes.

Example 2. Let X be a code, for instance a uniquely decipherable code. Let Y
be the code

Y = {ax, xb | x ∈ X}+ {a, b},

where a, b are two symbols which do not appear in the words of X . The canonical
coding partition of Y is made of a unique class since axb = ax · b = a · xb. Such
a code is GA.

4 Maximality

In this section we introduce the notion of maximality of a coding partition.
Actually two different notions of maximality can be introduced: maximality with
respect to one component (Definition1) and maximality with respect to all the
components (Definition2). The main result of this section states that the two
notions coincide for regular codes.

Definition 1. Let P = {X1, X2, . . . } be a non-trivial coding partition of a code
X ∈ A+. We say that P is maximal with respect to the component Xi if ∀ w ∈
A+, the partition P ′ = {X1, . . . , Xi ∪ {w}, . . . } is a coding partition of X ∪ {w}
iff w ∈ X+

i .

Definition 2. A non-trivial coding partition P is said to be maximal if it is
maximal with respect to every component of P .

Remark 2. It is straightforward that if P is a maximal coding partition of a code
X and P ′ > P then also P ′ is a maximal coding partition of X .
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Theorem 5. Let X be a code and let P = {X1, X2, . . . } be a non-trivial coding
partition of X. If P is maximal with respect to at least one component, then X
is complete.

Proof. Let X be a code over the alphabet A, with card(A) ≥ 2 (the case
card(A) < 2 is trivial). We will first prove that, if X is not complete, then
there exists a word w ∈ A∗ \X such that the partition P1 = {{w}, X1, X2, . . . }
is a coding partition of X ∪ {w}. Indeed, if X is not complete, there exists a
word v ∈ A∗ such that v does not belong to F (X∗). Let a be the first letter of
v and let b ∈ A � {a}. Consider the word w = vb|v|−1. By construction, w is
unbordered, i.e. no proper prefix of w is a suffix of w. Since v does not belong to
F (X∗), we have that also w does not belong to F (X∗).

Let us first remark that X+ ∩ {w}+ = ∅. We now prove that every word t ∈
(X ∪ {w})∗ admits a unique P1-factorization. Indeed, since w is unbordered, we
can uniquely distinguish all occurrences of w in t, i.e. t has a unique factorization
of the form

t = u1wu2w · · ·wun,

with n ≥ 1 and ui ∈ X∗, for i = 1, . . . , n. From this factorization, since P
is a coding partition, we obtain a unique P1-factorization of t and therefore, by
definition, P1 is a coding partition. From this is trivial that ∀ i P ′ = {X1, . . . , Xi∪
{w}, . . . } is still a coding partition and so Xi is not maximal. This concludes
the proof. 
�
The next lemma and its proof is just a little variation of a lemma due to Schutzen-
berger (see Theorem 7.4 in [5]).

Lemma 1. Let X ⊆ A+ be a regular and complete code and let x1, x2 ∈ X∗.
There exist a word v1 ∈ X+ and a positive integer m such that for any word
w ∈ A∗, (vwv)m ∈ X+ where v = x1v1x2.

Proof. Since X is a regular set, X+ is a regular set too. Let

A = (A, Q, δ, i, F )

be a finite state automaton recognizing X+. For any set of states S ⊆ Q and
for any word u ∈ A+, denote by Su the set {δ(q, u); q ∈ S} of states reached
by paths having label u and starting at any state of S. Let n = min{card(Qu)}
with u ranging over A+, and choose u such that n = card(Qu). Since X is
complete, we have xuy ∈ X+ for some x, y,∈ A∗ and so v′ := x1xuyx2 ∈
X+. Since card(Qx1xuyx2) ≤ card(Qx1xu) and Qx1xu ⊆ Qu, it follows that
card(Qv′) ≤ card(Qu). Thus, by minimality, card(Qv′) = n. Let P = Qv′. Since
P v′ = Qv′v′ ⊆ Qv′ = P , it follows from the minimality of n that Qv′v′ = Qv′

and P v′ = P ; thus v′ defines a permutation of P . Thus, put v a suitable power
of v′ and wrote v = x1v1x2 for a certain v1 ∈ X+, we may assume that pv = p
for all p ∈ P and Qv = Qv′ = P . Consider now a word w ∈ A∗ and let z = vwv.
Again we have P z = Qvvwv ⊆ Qv = P and thus P z = P . Then for m = n! we
have pzm = p for all p ∈ P . To prove that

zm = (vwv)m ∈ X+,
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it suffices to show that qzm = qv for all q ∈ Q. Since Qv = P and pv = p for all
p ∈ P , then qvv = qv. It follows that qz = qvwv = qvvwv = qvz and therefore
that qzm = qvzm. Since pzm = p for all p ∈ P , we have that qvzm = qv. Thus
qzm = qv as required. This completes the proof. 
�

Theorem 6. Let X be a regular code and let P = {X1, X2, . . . } be a non-trivial
coding partition of X. If X is complete then P is maximal.

Proof. Let w ∈ A+ and i ≥ 1 such that P ′ = {X1, . . . , Xi ∪ {w}, . . . } is a
coding partition of X ′ = X ∪ {w}. Since P is non-trivial, ∃ x ∈ Xj �= Xi.
By previous lemma there exist v1 ∈ X+ and a positive integer m such that
z = (xv1xwxv1x)m ∈ X+. Since x /∈ Xi the P ′ factorization of z is of the form:

z = z1 · · · zs1wzs1+1 · · · zsmwzsm+1 · · · zt

where zh, 1 ≤ h ≤ t are the blocks of the factorization. But z ∈ X+ so there
exists a factorization without w that is again a P ′ factorization. By the unique-
ness of the P ′ factorization the block corresponding to w must be the same and
so ∃ y1, y2, . . . , yk ∈ Xi s.t. w = y1y2 · · · yk. This shows that P is maximal. 
�

From Theorem 5 and Theorem 6 we get the following corollary.

Corollary 1. Let P = {X1, X2, . . . } be a non-trivial coding partition of a regu-
lar code X. If P is maximal with respect to a component Xi, then P is maximal.

5 UD Codes Versus GA Codes

In this section we consider an application of previous results to maximal UD
codes. By definition, a UD code X is maximal if any code Y containing strictly
X is ambiguous. We here prove that, if a regular UD code X is maximal, then
any code Y containing strictly X is globally ambiguous. Moreover, if X is a finite
maximal UD code, we prove that for a given word v ∈ A+, there exists a prime
relation involving all the elements of X ∪ {v}.

A generalization of this result to the case of non-UD codes, is given at the
end of the paper.

Theorem 7. Let X ⊆ A+ be a maximal UD code. If X is regular then, for all
v ∈ A+ such that v /∈ X+, X ∪ {v} is GA.

The proof is an immediate consequence of the next proposition that has an
independent interest and that follows from Theorems 5 and 6.

Proposition 1. Let X ⊆ A+ be a regular code and let P = {X1, X2, . . . } be a
non-trivial coding partition of X. If P is maximal then, for all v ∈ A+ such that
v /∈ X+, X ∪ {v} is GA.

In the case the code X is finite we can derive stronger results.
Recall that a code X is called a base if X is a minimal set of generators of X∗.



58 M.-P. Béal, F. Burderi and A. Restivo

Theorem 8. Let C ⊆ A+ be a finite maximal UD code. If C �= A then there
exists a word v ∈ A+ such that C′ := C ∪ {v} has the following properties:

– C′ is a base
– C′ is GA
– there exists a prime relation involving all the elements of C′, i.e. a relation

x1x2 · · ·xs = xs+1xs+2 · · ·xt such that {x1, x2, . . . , xt} = C′.

Proof. Let us first consider the case that C is a prefix code.
Let C = {c1, c2, . . . , cn} and let u := c1c2 · · · cn. By hypothesis there is ci0 ∈ C

with |ci0 | > 1, and let w be a prefix of ci0 s.t. |w| = |ci0 |− 1. Let us put v := uw
and C′ := C ∪{v}. We claim that C′ is a base. Indeed since |v| > |ci|, 1 ≤ i ≤ n,
it is sufficient to show that v /∈ C+. If, by contradiction, v ∈ C+, being C+ right
unitary (see [2]), we have w ∈ C+ with w prefix of ci0 , and this is a contradiction
because C is a prefix code. Finally since C is maximal C′ is not UD so there is
a prime relation involving v. This relation by definition of v, being C a prefix
code, must have the form vx1 · · ·xs = c1 · · · cny1 · · · yt for some xi, yj ∈ C′.

We now consider the case that C is not a prefix set.
We recall that a code Y ⊆ A+ is right complete if for all w ∈ A∗ there exists a

word w′ ∈ A∗ such that ww′ ∈ Y ∗. Since C is not a prefix set then C is not right
complete (see [2]) and let w ∈ A+ s.t. w is not right completable. Of course also
wm is not right completable and we can choose m ≥ 2 in such a way that |wm| >
|ci|+ |w| ∀ci ∈ C. Now we put w1 := wmw′ with w′ ∈ A∗ s.t. w1 is unbordered.
Since C is maximal then put C′ := C ∪ {w1} there exists a prime relation
x1x2 · · ·xsw1xs+1 · · ·xl = y1 · · · yk, xi, yi ∈ C′, s ≥ 1, l ≥ s, k ≥ 2. Let p ≥ 1
the first index s.t. |y1 · · · yp| > |x1 · · ·xsw|: by choice of m and w1, |y1 · · · yp| <
|x1 · · ·xswm| so y1 · · · yp = x1 · · ·xswqu, with 1 ≤ q < m and, since w is not right
completable, u ∈ A+. Now we put v := wquc1 · · · cnzwm−q−1w′ with z = u−1w.
We have the relation x1x2 · · ·xsvxs+1 · · ·xl = y1 · · · ypc1 · · · cnyp+1 · · · yk that is
clearly prime. Finally, by definition, v /∈ C+ and, by a length argument, one has
that C ∪ {v} is a base and the proof is complete. 
�

Remark 3. We observe as consequence of Theorem 7 that, if X is a base and it
is not GA, then any regular set Y � X is not a maximal UD code.

Theorem 9. Let X ⊆ A+ be a non-GA finite code that is a base. If X is
complete then there exists a word v ∈ A+ such that X ′ := X ∪ {v} has the
following properties:

– X ′ is a base
– X ′ is GA
– there exists a prime relation involving all the elements of X ′, i.e. a relation

x1x2 · · ·xs = xs+1xs+2 · · ·xt such that {x1, x2, . . . , xt} = X ′.

Proof. We recall that a code Y ⊆ A+ is right complete iff Y �Y A+ is a maximal
prefix UD code (see [2]). Let P be a non-trivial coding partition of X then, by
Theorem 6, P is maximal. Because of Theorem 8 we can suppose that X is not
a prefix UD code and then ∅ �= X � XA+ � X . Moreover, because of previous
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remark, X � XA+ is not a maximal prefix UD code and so X is not right
complete. Then there exists w ∈ A+ s.t. w is not right completable and we can
proceed like in the previous theorem. 
�
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Abstract. The regular language (a+ b)∗a (the words in alphabet {a, b}
having a as the last letter) is at the moment a classical example of
a language not recognizable by a one-way quantum finite automaton
(QFA). Up to now, there have been introduced many different models of
QFAs, with increasing capabilities, but none of them can cope with this
language.

We introduce a new, quite simple modification of the QFA model (ac-
tually even a deterministic reversible FA model) which is able to recognize
this language. We also completely characterise the set of languages rec-
ognizable by the new model FAs, by finding a “forbidden construction”
whose presence or absence in the minimal deterministic (not necessarily
reversible) finite automaton of the language decides the recognizability.

Thus, the new model still cannot recognize the whole set of regular
languages, however it enhances the understanding of what can be done
in a finite-state real-time quantum process.

1 Introduction

Finite automata (FA) models constitute an important theoretical paradigm for
exploring what can be done algorithmically in praxis. After all, no computer has,
or — at least in foreseeable future — will have any really infinite resource.

The classical FA models — e.g. deterministic (DFA) or probabilistic (PFA)
finite automata — essentially rely on classical physics, particularly on Newtonian
mechanics. With the advance of quantum mechanics as the theory describing best
the laws governing our physical world on the very basic level, it became natural to
investigate what capabilities would have the counterparts of the classical models
governed by quantum rules.

First studies on quantum finite automata (QFA) appeared in 1997. From the
very start the research did not concentrate on one model, instead new QFA
models were introduced regularly. The main reason for such diversity was that
the simplest, most “natural” model by Moore and Crutchfield [9], the so-called
measure-once one-way read-only QFA (MO-QFA) turned out to have very lim-
ited capabilities. These automata work quantumly all the time while reading
input, and only at the end of input a measurement of the quantum state is
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performed to determine the outcome (word accepted or rejected). They can rec-
ognize only the so-called group languages [4] which is a rather restricted subset
of the set of regular languages recognizable by DFAs.

There are QFA models that can recognize all regular languages: Kondacs and
Watrous model of two-way QFA [8], Ciamarra’s model of one-way read-write
QFA [5], Bertoni, Mereghetti and Palano’s model of QFA with control language
[3], and other. However, these models have been granted such capabilities (two-
wayness, ability to modify tape, a regular language controlling the acceptance)
which usually are not attributed to the basic finite automata models (e.g. DFA,
PFA).

Thus researchers tried to invent different ways to enhance the capabilities of
one-way read-only QFAs, mostly by enabling the automaton to perform different
kinds of classical actions in addition to the quantum state transition. Kondacs
and Watrous [8] introduced the measure-many QFA (MM-QFA) which performs
a restricted measurement at each step determining whether to accept or reject
the input, or to continue reading input. A. Nayak [10] proposed a further gener-
alisation by allowing the QFA to perform several arbitrary measurements with
intermediate unitary transformations at each step. Some other QFA models can
be found in [6], [1].

However, all these one-way QFA models can recognize only a proper subset
of regular languages, and there is a certain class of languages, best characterised
by the presence of a certain forbidden construction in its minimal DFA, which
cannot be recognized by any of these QFAs. The regular language (a + b)∗a is a
typically mentioned example of this class.

In this paper we shrink this class by introducing a new QFA model which can
deal with the characteristic forbidden construction on some occasions, particu-
larly, in the case of language (a + b)∗a.

In our model, the automaton is not limited to seeing only one, the just-
incoming input letter, but can see several earlier received letters as well. That
is, the quantum state transition which the automaton performs at each step
depends on the last k letters received, where k is fixed for any automaton.

In fact, as we show, we do not need any of the advantages given by quantum
mechanics: already a group FA (which is a DFA having only the restrictions of
the quantum mechanics — the reversibility) with the ability to see several letters
can recognize as much as its quantum counterpart.

This new model is by far not the most powerful in itself. It cannot recognize
extensive language classes which other QFA models can. However, any other QFA
model enhanced with this ability to see several input letters should enhance its
power by enabling to deal with languages from the class represented by (a+b)∗a.

2 Preliminaries

2.1 Notation

An alphabet is a finite set of letters. The set of all finite sequences of letters from
an alphabet Σ is denoted as Σ∗, and elements of Σ∗ are called words. We denote
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the length of a word w by |w|, the empty word having no letters by ε, and the
set of all words of length l by Σl. Σ+ is an abbreviation for the set of non-empty
words Σ∗ \Σ0. The concatenation of words u and v is denoted by uv and a word
w repeated m times by wm.

A subset of Σ∗ is called a language. A language L ⊆ Σ∗ is recognized by an
automaton iff the automaton accepts those and only those words which are in L.
The meaning of ‘accept’ depends on automata model and is discussed later.

2.2 Deterministic Finite Automata

A deterministic finite automaton DFA is a quintuple (Q, Qacc, q0, Σ, γ) where Q
is a finite set of states, Qacc ⊆ Q is the set of accepting states, q0 ∈ Q is the
initial state, Σ is a finite input alphabet, and γ is a transition function that maps
Q×Σ to Q.

The computation of a DFA for an input word w = σ1σ2...σl starts in the initial
state and involves |w| steps. At the i-th step the automaton receives a letter σi

and changes its state from its current state q to γ(q, σi). The DFA accepts w iff
the final state after all |w| steps is in Qacc.

We use LDFA to denote the class of languages recognized by at least one DFA.
It is well known that it is the set of regular languages (see e.g. [12]).

We define an extended transition function γ∗ : Q×Σ∗ → Q as follows:
{

γ∗(q, ε) = q,
γ∗(q, wσ) = γ(γ∗(q, w), σ), where w ∈ Σ∗, σ ∈ Σ.

(1)

If the DFA is in a state q and receives a word w, it changes its state to γ∗(q, w).
Clearly, γ∗(q, uv) = γ∗(γ∗(q, u), v) for all q ∈ Q and all u, v ∈ Σ∗.

We will use a standard state transition diagram notation. ‘+’ or ‘–’ within a
circle denotes accordingly an accepting or non-accepting state. ‘⇒’ points to the
initial state and ‘�=’ expresses that two states are distinct.

The DFA having the minimal number of states among all DFA recognizing a
language L, is called the minimal DFA of L. It is well known that in the minimal
DFA all states are reachable and distinguishable (in the sense that, for any two
states q, q′ there is a word w such that one of the states γ∗(q, w) and γ∗(q′, w)
is accepting, while the other is non-accepting).

2.3 Quantum Finite Automata

We will use essentially the Moore and Crutchfield’s definition of a quantum finite
automaton (QFA) [9].

A QFA is a quintuple (Q, Qacc, |ψ0〉, Σ, μ) where Q = {q1, q2, . . . , qn} is a finite
set of states which form a basis in the Hilbert space Cn, Qacc ⊆ Q is the set of
accepting states, |ψ0〉 = (α1, α2, . . . , αn)† ∈ Cn is the initial state superposition
of basis states with the normalization condition 〈ψ0 | ψ0〉 =

∑
i |αi|2 = 1, Σ is a

finite input alphabet, and μ is a function that maps Σ to the set of n-dimensional
unitary transition matrices. We denote μ(σ) by Uσ.
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At any moment, the state of a QFA can be described by a normalized column
vector |ψ〉 = (β1, β2, . . . , βn)† ∈ Cn called superposition of basis states, βi being
the component corresponding to qi. After reading a letter σ, the QFA changes
its state to Uσ|ψ〉.

After receiving the whole input word w = σ1σ2 . . . σl, the QFA is in a final
superposition |ψf 〉 = Uσl

. . . Uσ2Uσ1 |ψ0〉. Let us denote |ψf 〉 = (βf
1 , βf

2 , . . . , βf
n)†.

The acceptance of a word is decided by a measurement according to basis states:
for each i, the basis state qi is obtained as the result of the measurement with
probability pi = |βf

i |2. The word is accepted with probability p =
∑

i: qi∈Qacc
pi.

A language L is said to be recognized by a QFA with bounded error (p1; p2) iff
p1 < p2 and the QFA accepts any word from L with probability at least p2, and
accepts any word not from L with probability at most p1.

We denote by LQFA the class of languages recognized by QFA.

2.4 Group Finite Automata

A group finite automaton (GFA) is a DFA for which all functions γσ(q) = γ(q, σ)
are bijections from Q to Q (see e.g. [4]). LGFA denotes the corresponding lan-
guage class (of group languages).

For each σ ∈ Σ let us consider the matrix Uσ containing 1 in i-th position of
j-th column iff γ(qj , σ) = qi; the rest being filled with 0. If we represent each
state qi by a column vector |qi〉 = (0, . . . , 0, 1, 0, . . . , 0)T where the unique 1 is in
the i-th position, we get that |q′〉 = Uσ|q〉 iff γ(q, σ) = q′. Since γσ is a bijection,
Uσ has exactly one 1 in each column and exactly one 1 in each row, therefore
Uσ is a permutation matrix, thus also a unitary matrix. Hence it is easy to see
that GFA are essentially the intersection of DFA and QFA.

γσ being a bijection implies also each transition of GFA being reversible: from
the resulting state q′ and the input letter σ one can determine the state before
receiving the letter.

Group languages can be described by means of forbidden constructions in
their minimal DFA (see [2] for similar results for a slightly different reversible
FA model). Let us say that a DFA contains an A-construction iff it has two
distinct states q1 and q2 leading by some word x to the same state q3 (the
latter can coincide with either q1, or q2), and a B-construction iff it has two
such distinct states q4 and q5 and there exists such word y that γ∗(q4, y) = q5

and γ∗(q5, y) = q5 (see Fig. 1). It can be proved that both constructions are
equivalent, and the minimal DFA contains an A-construction iff it contains a
B-construction iff the regular language is not in LQFA = LGFA.

q
xx

1 q2

3
q

q
yy

4 q5

Fig. 1. Forbidden constructions (A and B) for group languages
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3 Multi-letter Automata

For the automata models defined above state changes depend only on the present
state and the input letter. We now consider a model of deterministic, quantum
and group finite automata which sees several earlier received letters as well. It
is essentially a special case of one-way multi-head DFA [7].

3.1 Multi-letter DFA and GFA

Definition 1. A k-letter deterministic finite automaton (DFAk) is defined by a
quintuple (Q, Qacc, q0, Σ, γ′), where Q is a finite set of states, Qacc ⊆ Q is the
set of accepting states, q0 ∈ Q is the initial state, Σ is a finite input alphabet,
and γ′ is a transition function that maps Q× T k to Q, where T = {Λ} ∪Σ and
letter Λ /∈ Σ denotes an empty input letter.

The computation of a DFAk starts in the initial state q0. After receiving a letter,
a state transition corresponding to the current state and the last k received
letters is applied. If so far only m < k letters are received, the missing letters
are replaced with Λ and a corresponding transition applied. When the last letter
of the input word is received, the last transition is applied and the computation
stops. The input word is accepted by the DFAk iff the computation stops in a
state that belongs to Qacc.

We might say that the DFAk has a tape which contains the letter Λ in its first
k− 1 positions followed by the input word. The automaton has k reading heads
which initially are on the first k positions of the tape. During one computation
step each head reads one letter from the tape, the automaton makes the tran-
sition corresponding to the word they have read and then all heads move one
position forward.

Definition 2. A DFAk is called a k-letter group finite automaton (GFAk) iff
for any word w ∈ T k the function γ′w(q) = γ′(q, w) is a bijection from Q to Q.

We use LDFAk
as a notation for the class of languages recognized by at least one

k-letter deterministic finite automaton, and LDFA∗ =
⋃∞

k=1 LDFAk
. Similarly we

use the notation LGFAk
and LGFA∗ .

Since for DFA1 and GFA1 state transitions depend only on the last received
letter, they are equal accordingly to DFA and GFA. Thus, LDFA ⊆ LDFA∗ and
LGFA ⊆ LGFA∗ .

It is easy to show that one can simulate DFAk with a DFA encoding the
k − 1 earlier received letters in its states. However, this transformation does
not preserve reversibility, hence is not applicable to the group FA case. Thus
LGFA∗ ⊆ LDFA∗ = LDFA. We will show later that LGFA ⊂ LGFA∗ ⊂ LDFA.

3.2 Multi-letter QFA

The same principles of state transitions corresponding to last k received letters
can be applied for quantum finite automata.
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Definition 3. A k-letter quantum finite automaton (QFAk) is defined by a
quintuple (Q, Qacc, |ψ0〉, Σ, μ′) where Q is a set of states, Qacc ⊆ Q is the set of
accepting states, |ψ0〉 is the initial state superposition obeying normalization con-
dition, Σ is a finite input alphabet, and μ′ is a function that assigns an unitary
transition matrix Uw on Cn for each word w ∈ ({Λ} ∪Σ)k.

The computation of a QFAk works in the same way as the computation of a
QFA, except that it applies unitary transformations corresponding not only to
the last letter received, but the last k letters received (like a DFAk).

We will use LQFAk
as notation for the class of languages recognized by at

least one k-letter quantum finite automaton with bounded error, and LQFA∗ =⋃∞
k=1 LQFAk

. With a slight modification of the proof for Proposition 6 in [8] we
obtain that all languages in LQFA∗ are regular.

GFAk can be considered as a special case of QFAk because, since the func-
tion γ′w(q) = γ′(q, w) is bijection, a state transition corresponding to any word
is a unitary transformation. Therefore any language recognized by a GFAk is
recognized by a QFAk as well.

4 Capabilities

Our multi-letter QFA and GFA can recognize the language (a + b)∗a not recog-
nized by any standard QFA. E.g., consider the following QFA2 / GFA2 (Fig. 2):

Q =
{(

1
0

)

,

(
0
1

)}

, Qacc =
{(

0
1

)}

, |ψ0〉 =
(

1
0

)

, Σ = {a, b}, UΛb = Ubb =

Uaa =
(

1 0
0 1

)

and UΛa = Uba = Uab =
(

0 1
1 0

)

.

_
+

b,bb,

a,ba,

ab,
aa,
b,bb

aa

ab

a,ba

Fig. 2. The GFA2 recognizing the language (a + b)∗a

Still there are languages not recognized by any QFAk. We will describe these
languages by forbidden constructions in their minimal DFA.

Definition 4. A DFA contains a Ck-construction iff there are states q1, q2, q3,
q4, q5 and a word w = σ1σ2 . . . σk of length k such that q2 �= q5, γ(q2, σk) =
γ(q5, σk) = q3, γ∗(q1, σ1 . . . σk−1) = q2 and γ∗(q4, σ1 . . . σk−1) = q5 (see Fig. 3).

Definition 5. A Ck-construction where exists an m > 0 such that γ∗(q3, wm−1)
= q4, where q3, q4 and w have the same meaning as in Def. 4, we call a Dk-
construction.
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q1 q2

q4 q5

q3

1
k

k
1 2 k-1

2 k-1

Fig. 3. Ck-construction

Lemma 1. A Ck-construction implies a Dk-construction.

Proof. Suppose we have a Ck-construction. If there is an m′ > 0 such that
γ∗(q3, wm′

) = q3, then for q′4 = γ∗(q3, wm′−1) and q′5 = γ∗(q′4, σ1 . . . σk−1) we
have γ(q′5, σk) = q3, and the lemma holds since q′5 �= q2 or q′5 �= q5 (or both).

If there is no such an m′, since Q is finite, there is an i ≥ 2 and an m′′ > 0 such
that γ∗(q1, wi) = γ∗(q1, wi+m′′

) and γ∗(q1, wi−1) �= γ∗(q1, wi+m′′−1). Hence,
there is a j ∈ [1; k] such that states q′′2 = γ∗(q1, wi−1σ1 . . . σj−1) and q′′5 =
γ∗(q1, wi+m′′−1σ1 . . . σj−1) are distinct, but γ(q′′2 , σj) = γ(q′′5 , σj) = q′′3 . Let q′′1 =
γ∗(q1, wi−2σ1 . . . σj), q′′4 = γ∗(q1, wi+m′′−2σ1 . . . σj), w′′ = σj+1 . . . σkσ1 . . . σj .
m′′, the word w′′ and the states q′′1 , q′′2 , q′′3 , q′′4 , q′′5 form a Dk-construction. 
�

4.1 Simulation of DFA by QFAk

At first we will show that, if the minimal DFA of a language L contains at least
one Ck-construction, there is no QFAk with bounded error that recognizes L.
Because of Lemma 1 we will use Dk-constructions instead of Ck-construction.
We use the following lemma, which is slightly modified Theorem 6 in [9]:

Lemma 2. Let us consider quantum system with basis states |q1〉, |q2〉, . . . , |qn〉,
arbitrary subset of these states Qacc and function p : Cn → [0; 1] that for any
superposition of the basis states gives the probability that after the measurement
according to the basis states, any state from Qacc is obtained. For any superposi-
tion of basis states |ψ〉, any three unitary transformation X, Y, Z on the system
and any δ > 0 there is an h > 0 such that |p(ZX |ψ〉)− p(ZY hX |ψ〉)| < δ.

Theorem 1. If the minimal DFA of a language L contains a Dk-construction,
then there is no QFAk recognizing L with bounded error.

Proof. Suppose we have a Dk-construction: since q2 �= q5, there is a word v ∈ Σ∗

such that γ∗(q2, v) ∈ Qacc iff γ∗(q5, v) /∈ Qacc. Due to the symmetry we assume
γ∗(q2, v) ∈ Qacc. Since we consider minimal DFA, where each state is reachable,
there is a word u′ ∈ Σ∗ such that γ∗(q0, u′) = q1 (see Fig. 4). Let us denote
u′σ1 . . . σk−1 by u and (σkσ1 . . . σk−1)m by s = σ′1σ′2 . . . σ′l, where l = k ·m. The
last k − 1 letters of both u and s are σ′l−k+2, σ′l−k+3, . . . , σ′l.

Among the input words ti = usiv for all i ≥ 0 only t0 is in the language L
recognized by the DFA. Suppose the contrary: there is a QFAk which recognizes
L with bounded error (p1; p2).
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+

_

q0 q1 q2

q4 q5

q3

u’
v

v
m-1

1 2... k( )

k
1 2... k-1

1 2... k-1
k

Fig. 4. Dk construction

For all i after receiving the initial fragment u of the word ti, the QFAk has
applied |u| unitary transformations X1, X2, . . . , X|u| and it is in the superposi-
tion X |ψ0〉, where X = X|u| . . . X2X1, and the last k − 1 letters received are
σ′l−k+2, . . . , σ′l.

If the last k − 1 letters received by the QFAk are σ′l−k+2, . . . , σ′l and it is in
some superposition |ψ〉, then after receiving the word s = σ′1...σ′l always the same
l unitary transformations Y1, Y2, . . . , Yl are applied. After these transformations
the QFAk is in the superposition Y |ψ〉, where Y = Yl . . . Y2Y1, and the last k−1
letters received still are σ′l−k+2, . . . , σ′l.

For all i, when the QFAk has received the whole input word ti except its
last fragment v, the last k− 1 letters received are σ′l−k+2, . . . , σ′l and it is in the
superposition Y iX |ψ0〉. When the QFAk receives the last fragment, it applies |v|
unitary transformations Z1, Z2, . . . , Z|v| and the final superposition is ZY iX |ψ0〉,
where Z = Z|v| . . . Z2Z1.

By Lemma 2 we get that ∃h > 0
(
|p(ZX |ψ0〉)− p(ZY hX |ψ0〉)| < p2 − p1

)
.

Thus, t0 ∈ L iff th ∈ L. Contradiction. 
�

4.2 Prefix Extension Method

We provide a method we will call prefix extension method which for any DFA
and any k creates a DFAk which recognizes the same language as the DFA.

For the created DFAk we use the same set of states (Q), the same accepting
states (Qacc), the same initial state (q0) and the same alphabet (Σ) as the DFA.
A creation of the function γ′ consists of three steps:

1. If there is a transition γ(q2, σ) = q3 in the DFA, then in the created DFAk

we add transition γ′(q2, wσ) = q3 for all words w ∈ T k−1 which satisfies
∃v ∈ Σ∗(w = Λ∗v ∧ γ∗(q0, v) = q2),

2. If there is a transition γ(q2, σ) = q3 in the DFA, then in the created DFAk

we add transition γ′(q2, wσ) = q3 for all words w ∈ T k−1 which satisfies
∃q1 ∈ Q(γ∗(q1, w) = q2),

3. Clearly, there is no pair (q′, w′) ∈ Q × T k such that the function γ′ maps
(q′, w′) to more than one state, but still there may be a pair (or pairs)
(q′′, w′′) ∈ Q× T k such that γ′(q′′, w′′) is yet undefined. We can choose any
state as the value of γ′(q′′, w′′) because after receiving a letter there cannot
be a situation when the DFAk is in the state q′′ and the last k letters received
form the word w′′.
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In other words: if there is a transition in the DFA from a state q2 to a state
q3 by a letter σ, then what we do is adding in front of σ all words of length k−1
which could occur as the earlier k − 1 letters before this transition in this DFA.

An example how a DFAk is created from a minimal DFA which recognizes
the language a(a + b)∗a is given in Fig. 5 (unimportant transitions made during
the step 3 are not displayed).

_
+

_
_

_ +
b

a_
_ a

b

b

b

a

a ab,abb,bbb

aa,aba,bba

bab,aab aaa,baa

ba,baa,bba,aaa,aba

bb,bab,bbb,aab,abb

a

b

Fig. 5. The DFAk created from a DFA recognizing a(a + b)∗a

Proposition 1. A DFAk created from a DFA by the prefix extension method
recognizes the same language as the DFA.

Proof. Let u = σ1σ2...σl be an input word and let q1, q2, . . . , ql be a sequence of
states such that γ(qi, σi+1) = qi+1. Thus, u is accepted by the DFA iff ql ∈ Qacc.
For all i ∈ [0, k − 1], since γ∗(q0, σ1 . . . σi) = qi, by the step 1 of the method
we get γ′(qi, Λk−i−1σ1 . . . σiσi+1) = qi+1. But for all i ∈ [k − 1, l − 1], since
γ∗(qi−k+1, σi−k+2 . . . σi) = qi, by the step 2 we get γ′(qi, σi−k+2 . . . σiσi+1) =
qi+1. Thus, both the DFAk and the DFA accepts the same words. 
�

During a creation of a DFAk, if after the first two steps there is no such distinct
states q2, q5 ∈ Q and a word w = σ1σ2 . . . σk ∈ T k that γ′(q2, w) = γ′(q5, w)
(i.e., so far the function γ′v(q) is injection for all words v), then during the step
3 we can choose such values of the function γ′ for arguments where it is still
undefined that the created DFAk is a GFAk (the function γ′v(q) is bijection for
all words v). For example, we can consider the DFA3 in Fig. 5 as a GFA3.

But if there is such w and q2, q5, then due to the determinism the values
of γ′(q2, w) and γ′(q5, w) cannot be defined during the step 1. So they are de-
fined exactly during the step 2. Thus, there are states q1, q3, q4 ∈ Q such that
γ(q2, σk) = γ(q5, σk) = q3, γ∗(q1, σ1 . . . σk−1) = q2 and γ∗(q4, σ1 . . . σk−1) = q5.
Hence there is a Ck-construction and:

Theorem 2. For any k, if a DFA does not contain any Ck-construction, then
by the prefix extension method from the DFA we can create a GFAk, which
recognizes the same language as the DFA.

Since any GFAk is a QFAk as well, from Theorems 1 and 2 we get that the
Ck-construction is indeed forbidden construction:

Corollary 1. A language L is in LQFAk
iff the minimal DFA of L contains no

Ck-construction.
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4.3 Forbidden Constructions for LQF A∗

For any k the Ck-construction decides whether the language recognized by a
DFA is in LQFAk

. In order to show that a language L is not recognized by any
multi-letter quantum finite automata we have to show that for any k there is a
Ck-construction in the minimal DFA of L. In this section we provide two simple
constructions that decides whether the language is in LQFA∗ .

Let us denote the number of states in a DFA by n.

Definition 6. A DFA contains an E-construction iff there are non-empty words
x, y ∈ Σ+ and states q6, q7, q8 ∈ Q such that q6 �= q7, γ∗(q6, y) = γ∗(q7, y) = q8,
γ∗(q6, x) = q6 and γ∗(q7, x) = q7.

q
xyy

x

6 q7

q8

q
t
z

zt

9 q10

Fig. 6. E-construction and F-construction

Definition 7. A DFA contains an F-construction iff there are non-empty words
t, z ∈ Σ+ and two distinct states q9, q10 ∈ Q such that γ∗(q9, z) = γ∗(q10, z) =
q10, γ∗(q9, t) = q9 and γ∗(q10, t) = q10.

Theorem 3. A DFA contains a Ck-construction for any k iff it contains an
E-construction.

Proof. Suppose for k = n2 − n + 1 we have a Ck-construction. q2 �= q5 gives
us γ∗(q1, σ1 . . . σl) �= γ∗(q4, σ1 . . . σl) for all l ≤ k − 1. At least two pairs in the
set {(γ∗(q1, σ1 . . . σi), γ∗(q4, σ1 . . . σi)) | i ∈ [0; k − 1]} are equal since there are
only n2 − n pairs of distinct states. Thus, exists an i and a j > i such that
q6 = γ∗(q1, σ1 . . . σi) = γ∗(q1, σ1 . . . σj) �= γ∗(q4, σ1 . . . σi) = γ∗(q4, σ1 . . . σj) =
q7. For x = σi+1 . . . σj and y = σj+1 . . . σk we have γ∗(q6, y) = γ∗(q7, y) = q8,
γ∗(q6, x) = q6 and γ∗(q7, x) = q7.

Suppose we have an E-construction. For any k let us write xky as σ′1σ′2 . . . σ′l ∈
Σl. Since q6 �= q7 and γ∗(q6, xky) = γ∗(q7, xky), exists an i ∈ [k|x| + 1; l] such
that states q2 = γ∗(q6, σ′1 . . . σ′i−1) and q5 = γ∗(q7, σ′1 . . . σ′i−1) are distinct, but
γ(q2, σ′i) = γ(q5, σ′i) = q3. For q1 = γ∗(q6, σ′1 . . . σ′i−k), q4 = γ∗(q7, σ′1 . . . σ′i−k)
we get γ∗(q1, σ′i−k+1 . . . σ′i−1) = q2 and γ∗(q4, σ′i−k+1 . . . σ′i−1) = q5. 
�

Corollary 2. A language L can be recognized by multi-letter QFA iff the mini-
mal DFA of L does not contain any E-construction.

Lemma 3. For each state q ∈ Q in a DFA we have γ∗(q, uvm) = γ∗(q, uvmvn!)
for all words u, v ∈ Σ∗ and m ≥ n.
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Proof. At least two states among γ∗(q, uv0), γ∗(q, uv1), . . . , γ∗(q, uvn) are equal,
so exists an i and a j such that 0 ≤ i < j ≤ n and γ∗(q, uvi) = γ∗(q, uvj). Hence
γ∗(q, uvm) = γ∗(q, uvmvj−i). Since j − i divides n!, the lemma holds. 
�

Theorem 4. An E-construction implies an F-construction.

Proof. Suppose we have an E-construction. Let us denote xn! by t, (yxn)n! by z,
and z without its last fragment xn by z′. By Lemma 3 for u1 = ε, v1 = yxn and
m1 = n! we get that γ∗(q6, (yxn)n!) = γ∗(q6, (yxn)n!(yxn)n!), and for u2 = z′,
v2 = x and m2 = n we get that γ∗(q6, (yxn)n!) = γ∗(q6, (yxn)n!xn!). So for the
state q10 = γ∗(q6, (yxn)n!) we have γ∗(q6, z) = q10 = γ∗(q10, z), γ∗(q6, t) = q6

and γ∗(q10, t) = q10. Actually, γ∗(q7, z) = q10 and γ∗(q7, t) = q7 as well. One of
q6 �= q10 and q7 �= q10 is definitely true, thus, there is an F-construction. 
�

Substituting q6 = q9, q7 = q10, q8 = q10, x = t and y = z shows that an
F-construction implies an E-construction. Hence:

Corollary 3. A language L can be recognized by multi-letter QFA iff the mini-
mal DFA of L does not contain any F-construction.

5 Closure Properties

Theorem 5. The class LQFA∗ is closed against language intersection, language
union and language complement.

Proof. SupposeA and B are two minimal DFA recognizing accordingly languages
LA and LB and neither contains an F-construction, but the minimal DFA C of
the language LA ∩ LB contains an F-construction. Easy to prove that any DFA
recognizing LA∩LB contains an F-construction as well. Let us consider a DFA C′
such that QC

′
= QA ×QB, QC

′

acc = QAacc ×QBacc, the initial state is (qA0 , qB0 ), and
γC

′
((qA, qB), σ) = (γA(qA, σ), γB(qB, σ)). Easy to see that C′ and C recognize the

same language LA ∩ LB. Thus, there are two words x, y ∈ Σ+ and two distinct
states (qA1 , qB1 ), (qA2 , qB2 ) ∈ QC′ that form an F-construction for C′. At least of
one of qA1 �= qA2 and qB1 �= qB2 is true, therefore A or B (or both) contains an F-
construction. Contradiction, which means LQFA∗ is closed against intersection.

Since for any QFA recognizing a language L substituting Qacc by Q \ Qacc

gives us a QFA recognizing the complement of L, LQFA∗ is also closed against
union. 
�

Theorem 6. The class LQFA∗ is not closed against Kleene star.

Proof. In the alphabet {a, b} the minimal DFA of the language a does not contain
any F-construction, but the minimal DFA of the language a∗ does. 
�

Theorem 7. The class LQFA∗ is not closed against concatenation.

Proof. The regular languages (a + b)∗a and (a + b)∗ are in LQFA∗ , but the
minimal DFA of the language (a + b)∗a(a + b)∗ contains an F-construction. 
�
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6 Conclusion

We have shown that for GFA and QFA, contrary to DFA, seeing multiple input
letters cannot be simulated by the one-input-letter model (e.g. by encoding into
states). Thus, seeing several letters really enhance capabilities of GFA and QFA.
Since these enhanced models can deal with the language (a+b)∗a not recognized
by any of the up-to-now introduced one-way read-only QFA models, a similar
enhancement for those models should improve also their capabilities.

These results also indicate that our notion of what can be done by a finite-state
real-time read-only quantum automaton is not yet completely clear, and there
could be other enhancements or perhaps modifications of the word acceptance
or language recognition notions leading to further improvements.
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Abstract. The “mean speedup” of a trace monoid can be interpreted
as an index of the “intrinsic parallelism”. We study the problem of com-
puting the mean speedup under two conditions: (1) uniform distribution
on the words of given length and (2) uniform distribution on the traces
of given height. In the first case, we give an approximability result show-
ing a probabilistic fully polynomial time approximation scheme, while,
in the second case, we prove that the problem is NP-hard to approximate
within n1−ε for every ε > 0, unless NP = coR.

Introduction

Partial commutation and trace monoids have been initially introduced in a com-
binatorial context [4] and then as an abstract description of concurrent processes
[9]. In a concurrent system, traces codify a process as a sequence of events cho-
sen in a finite set Σ, some of which can occur simultaneously in according to a
commutation relation C on Σ. In this interpretation, the length and the height
of a trace are respectively intended as the sequential and the parallel execution
time of a process, so that their ratio is the speedup, i.e. a parameter representing
how much faster is parallel execution with respect to sequential one.

The asymptotic behaviour of the mean speedup has been analyzed considering
the uniform distribution over the words of a given length [10,2,11] and over the
traces of a given length or height [8], for every concurrent alphabet (Σ, C).

In all these cases, for all trace monoids the asymptotic behaviour converges to
a real number (with an abuse of language we call it mean speedup) representing
an index of the “intrinsic parallelism” of the trace monoid. While in the cases
of uniform distribution on traces of given length or height the mean speedup is
an algebraic number [8], in the case of uniform distribution on words of given
length the mean speedup generally is transcendental [8].

In this paper, we study the problem of computing the mean speedup consider-
ing the uniform distribution over the words of a given length (MSWL problem)
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and the uniform distribution over the traces of a given height (MSTH problem).
The MSWL problem is a restriction of the mean spectral radius problem for sets
of max-algebra matrices, which has been proved to be NP-hard to approximate
[1]. Nevertheless, in this work we show a probabilistic fully polynomial time ap-
proximation scheme for the MSWL problem. The algorithm takes as input a par-
allel alphabet (Σ, C) and error ε > 0 and works in time Θ((|Σ|5 /ε3) log(|Σ| /ε)).
It exploits of some subwords in the words of Σ∗, that we called pivot words.

On the contrary, in the case of uniform distribution over the traces of given
height, we prove that the mean speedup is NP-hard to approximate within a
factor n1−ε, unless NP = coR. The proof is based on a particular relation
between the the size of the maximal clique in (Σ, C) and the mean speedup of
(Σ(3), C(3)), that is, the disjoint union of three isomorphic copies of (Σ, C).

The paper is organized as follows. In Section 1, preliminary notions on trace
monoids and approximation algorithms are recalled. In Section 2, we introduce
a general notion of the mean speedup of a trace monoid and formally define
the problems MSWL and MSTH. Then, in Section 3 and Section 4, we present
the two main results of this work: a fully polynomial approximation scheme for
MSWL and a strong non approximability result for MSTH.

1 Preliminaries

Given an alphabet Σ and a word w ∈ Σ∗, we denote its length by l(w) and the
number of occurrences of a symbol σ in w by lσ(w). Moreover, given a function
f : A −→ B, we denote the preimage of f for b ∈ B by f−1(b). For example,
l−1(n) = Σn.

A commutation relation is a symmetric, irreflexive relation C ⊆ Σ ×Σ over
Σ. If (a, b) ∈ C then we say that the symbols a and b commute (aCb). We call
dependence relation the complementary relation D = (Σ × Σ) \ C. The graph
(Σ, C) is usually called a independence graph or a parallel alphabet, as well. Con-
versely, we call (Σ, D) the conflict graph of (Σ, C). The partially commutative
monoid (or trace monoid) generated by a parallel alphabet (Σ, C) is the monoid
M = Σ∗/ ≡, where ≡ is congruence induced by the equalities

{ab = ba | (a, b) ∈ C}.

A trace is an element of M. The notions of length and number of occurrences
are directly extended to the traces. Hence, from this point on, l−1(n) = {t ∈
M | l(t) = n}. Moreover, we denote by Alph(t) the set {σ ∈ Σ | lσ(t) > 0}. The
natural congruence defined by C induces a morphism ψ : Σ∗ −→ M mapping
every word Σ∗ in a trace in M.

A univocal representation of a trace can be obtained in terms of cliques in
the graph (Σ, C). In this view, a clique is a trace whose letters are all mutu-
ally independent. A pair of cliques (c1, c2) is said CF -admissible if for each σ2

in Alph(c2) there exists a σ1 in Alph(c1) such that (σ1, σ2) �∈ C. Every trace
t ∈M univocally identifies a sequence (c1, . . . , cm) of cliques in (Σ, C) such that
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(ci, ci+1) is a CF-admissible pair, for 1 ≤ i < m, and t = c1 · · · cm. This repre-
sentation has been introduced in [4] and is called Cartier-Foata decomposition.
The integer m is the height of t and is denoted by h(t).

In this context, the Cartier-Foata graph (or graph of cliques) of (Σ, C) is
a directed graph Γ = (Ψ, Adm) where Ψ is the set of cliques of (Σ, C) and
(c1, c2) ∈ Adm if and only if (c1, c2) is a CF-admissible pair. Therefore, each
trace t in M = Σ∗/ ≡ identifies a walk path of length h(t) in the graph of
cliques of (Σ, C).

An alternative definition of h(t) can be given inductively by considering the
height of every symbol σ through t. Let (c1, . . . , cm) be the CF -decomposition
of a trace t. We denote with hσ(t) the largest i such that ci contains σ. Then:

hσ(tσi) =

{
hσ(t) if σi �= σ,
max

(σ̂,σ) �∈C
{hσ̂(t)}+ 1 if σi = σ, (1)

where hσ(ε) = 0 for all σ ∈ Σ. Then, h(t) = maxσ∈Σ{hσ(t)}.
We finally recall some definitions concerning approximation algorithms. Given

a problem P , we denote by sol(I) the solution of P on the instance I and by
A(I) the output of an algorithm A on input I. We are interested in problems
whose solutions are nonnegative numbers. In this context, given a problem P and
a function r(n) : N −→ N, a probabilistic algorithm A working in polynomial
time is a r(n)-approximation algorithm for P if, for every n ≥ 0 and every
instance I of P of size n, with probability at least 1/2 it holds that

max
{

A(I)
sol(I)

,
sol(I)
A(I)

}

≤ r(n)

The value max{A(I)/sol(I), sol(I)/A(I)} is called the performance ratio of A on
input I. This parameter is clearly always greater than or equal to 1.

A problem P admits a probabilistic fully polynomial time approximation
scheme (pFPTAS) if there exists a probabilistic algorithm A that, having as
input an instance I of P and a real number ε > 0, works in polynomial time in
the size of I and 1/ε and returns a solution with performance ratio 1 + ε with
probability at least 1/2.

2 The Speedup

In parallel computing, the speedup is the ratio between the execution time of a
sequential algorithm and the execution time of its parallel version. The length
l(t) of a trace t can be viewed as its sequential execution time, while the height
h(t) represents the parallel execution time. Hence, the ratio l(t)/h(l) can be
interpreted as the speedup of an algorithm codified by a trace t.

Given a trace monoidM and a probability measure on its traces, we study the
mean speedup ofM. Formally, a weight function onM is a function ξ :M−→ N
such that

∣
∣ξ−1(n)

∣
∣ <∞ for every n > 0. For example, the length and the height

of a trace are weight functions.
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Definition 1. Consider a trace monoid M, a weight function ξ over M and,
for every n > 0, a probability distribution Pn over the set ξ−1(n). Let ρ(ξ,P )(n)
be the mean value of the speedup of the traces in ξ−1(n)

ρ(M,ξ,P )(n) =
∑

t∈ξ−1(n)

Pn(t)
l(t)
h(t)

.

If the limit ρ(M,ξ,P ) = limn→∞ ρ(M,ξ,P )(n) exists, we call ρ(M,ξ,P ) the mean
speedup of the triple (M, ξ, P ).

The three most studied cases consider the mean speedup computed over the
uniform distribution over the words of a given length [10,2,3,11], over the traces
of a given length [5,6,8] and over the traces of a given height [8]. In this work,
we analyze the first and the third case.

Uniform Distribution over the Words of a Given Length. By setting
ξ(t) = l(t) and Pn(t) =

∣
∣ψ−1(t)

∣
∣ / |Σ|n, the probability of t is proportional to

the number of words of Σ∗ mapped in t by ψ. Denoting the mean speedup by
λ∗, we have

λ∗(Σ, C) = lim
n→∞

∑

t∈l−1(n)

∣
∣ψ−1(t)

∣
∣

|Σ|n
n

h(t)
= lim

n→∞

n

|Σ|n
∑

w∈Σn

1
h(ψ(w))

.

The existence of this limit has been proved in [10]. Formally, the problem of
computing λ∗ is defined as

Problem: Mean Speedup on Word Length (MSWL)
Input: a graph (Σ, C);
Output: λ∗(Σ, C).

Our aim is to develop an efficient approximation algorithm for MSWL.

Uniform Distribution over the Traces of a Given Height. By setting
ξ(t) = h(t) and Pn(t) = 1/

∣
∣h−1(n)

∣
∣, the probability of a trace t is uniform over

all the traces of height n. Denoting the mean speedup by ηM, we have

ηM(Σ, C) = lim
n→∞

∑

t∈h−1(n)

1
|h−1(n)|

l(t)
n

= lim
n→∞

1
n |h−1(n)|

∑

t∈h−1(n)

l(t).

This limit has been proved to exist and to be an algebraic number in [8]. Formally,
the problem of computing ηM can be defined as

Problem: Mean Speedup on Trace Height (MSTH)
Input: a graph (Σ, C);
Output: ηM(Σ, C).

Our aim is to classify MSTH from a computational complexity point of view.
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3 MSWL Is Approximable

The mean speedup λ∗(Σ, C) has been widely studied [10,2,3,11]. In particular,
in [10] it has been proved the existence of λ∗(Σ, C) for any parallel alphabet
(Σ, C) by means of Klingman’s Ergodic Theorem; exact computation for simple
monoids are proposed in [11,2], while it is known that generally λ∗(Σ, C) is
not algebraic [8]. As observed in [8], MSWL is a restriction of the max-algebra
spectral radius estimation problem, whose approximation is NP-hard [1]. On
the contrary, the main result of this section is the approximability of MSWL

by means of a pFPTAS.
Let (xn)n∈N+ be a sequence of independent uniform random variables with

values in Σ, so that the sequence (x1, . . . , xn) is generated with uniform distri-
bution over Σn. In [10] has been proved that,

Prob
{

lim
n→∞

n

h(ψ(x1 · · ·xn))
= λ∗(Σ, C)

}

= 1. (2)

A first consequence is the following

Lemma 1. Let (Σ, C) be a parallel alphabet. Then

lim
n→∞

1
n |Σ|n

∑

w∈Σn

h(ψ(w)) = λ∗(Σ, C)−1.

Proof. Equation (2) implies that h(ψ(x1 · · ·xn))/n −→ λ∗(Σ, C)−1 with proba-
bility 1, as n goes to the infinity. The thesis immediately follows (see also [11,
Theorem 3.1]).

As a second consequence, let (Σ, D) be the conflict graph of (Σ, C) and let
(Σs, Ds)s∈S be the set of the connected components of (Σ, D). For all s ∈ S,
denote by Cs = (Σs ×Σs) \Ds the commutation relation restricted to Σs.

Lemma 2. The mean speedup of (Σ, C) can be expressed as a function of the
mean speedups of the subgraphs (Σs, Cs)s∈S:

λ∗(Σ, C) = min
s∈S

{
|Σ|
|Σs|

λ∗(Σs, Cs)
}

.

Proof. The lemma is proved in [10, Theorem 5.7] by using Strong Law of Large
Numbers and Equation (2).

Lemma 2 allows to extend a pFPTAS Â for MSWL restricted to the case of
parallel alphabets with connected conflicts graph to a pFPTAS A for MSWL.

Lemma 3. Let Â be a pFPTAS for MSWL restricted to the case of (Σ, C) is
a parallel alphabet with connected conflict graph, then

A(Σ, C, ε) = min
s∈S

{
|Σ|
|Σs|

Â(Σs, Cs, ε)
}

is a pFPTAS for MSWL.
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Proof. Let Â(s) = Â(Σs, Cs, ε). By hypothesis, for every s ∈ S, we have that
(1 + ε)−1Â(s) ≤ λ∗(Σs, Cs) ≤ (1 + ε)Â(s), which implies

1
1 + ε

min
s∈S

{
|Σ|
|Σs|

Â(s)
}

≤ min
s∈S

{
|Σ|
|Σs|

λ∗(Σs, Cs)
}

≤ (1 + ε)min
s∈S

{
|Σ|
|Σs|

Â(s)
}

.

Then, by Lemma 2, (1+ ε)−1A(Σ, C, ε) ≤ λ∗(Σ, C) ≤ (1+ ε)A(Σ, C, ε). Since A
works in polynomial time, the thesis follows.

In light of these results, we prove the following

Theorem 1. The MSWL problem admits a pFPTAS.

Proof. From Lemma 1 and Lemma 3, it is sufficient to prove the existence of
a pFPTAS for approximating λ∗(Σ, C)−1, having as input a parallel alphabet
(Σ, C) whose conflict graph is connected. The algorithm

Input: (Σ, C, ε)
1: j ←

⌈
12(6n2/ε) log (6n/ε)

⌉
;

2: t← "(4 log 2)(n/ε)2#;
3: generate uniformly at random t words x1, x2, . . . , xt ∈ Σj.
4: compute the sample mean Sj = 1

t

∑t
i=1 h(xi)/j.

Output: Sj

approximates λ∗(Σ, C)−1 with performance ratio at most 1+ ε, for every (Σ, C)
having a connected conflict graph (Σ, D). It clearly works in polynomial time
with respect of |Σ| and 1/ε. Indeed, the computation of the height of a word
w ∈ Σk can be made in time O(|Σ| · k) by exploiting Equation (1). Hence, the
complexity of the algorithm is O(n5ε−3 log(n/ε)).

Its correctness is proved in the next subsection.

3.1 Correctness of the Algorithm

Let X be the random variable X(w) = h(w)/l(w), where w ∈ Σj . We denote
by λj = E[X(w) | w ∈ Σj] the expected value of X over the whole set Σj ,
and write λ = limj→∞ λj . It is straightforward to observe that, if j < j′, then
λj ≥ λj′ . Henceforward, we assume that the conflict graph (Σ, D) is connected,
and let n = |Σ|. Let T be a spanning tree for (Σ, D) and fix a root σn, then
give an order σ1, . . . , σn to the vertices in Σ, such that the sons of a vertex σk

precede σk in the word σ1σ2 · · ·σn. The word p = σ1 · · ·σn−1σnσn−1 · · ·σ1 is
called a pivot word for (Σ, D) and satisfies the following property:

Lemma 4. h(w1pw2) > h(w1) + h(w2).

Proof. Let cπ be the clique containing the symbol σn of p in the CF-decomposi-
tion of w1pw2 and let xi be a symbol in w1σ1 · · ·σn−1. If xi = σn, then xiDσn

and it does not belong to cπ. Otherwise, by the particular form of the pivot
word, there exists a path of dependences xiDα1, α1Dα2, . . . , αsDσn in T such
that xiα1α2, . . . , αsσn is a subword of w1σ1 · · ·σn. Then, xi does not belong to
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cπ. It can be proved symmetrically that none of the symbols in σn−1 · · ·σ1w2

are in cπ and, then, the clique cπ is exactly {σn}.
Now, let (d1, . . . , dk) and (e1, . . . , eh) be the CF-decompositions of the words

w1σ1 · · ·σn−1 and σn−1 · · ·σ1w2, respectively. The CF-decomposition of w1pw2

is then (d1, . . . , dk, {σn}, e1, . . . , eh) and its height is

h(w1pw2) = h(w1σ1 · · ·σn−1) + 1 + h(σn−1 · · ·σ1w2) > h(w1) + h(w2),

which proves the lemma.

Corollary 1. If p is a subword of y, then h(w1yw2) > h(w1) + h(w2).

The probability that a word of length H contains p as a subword goes rapidly
to 1 as H goes to infinity. Indeed:

Lemma 5. Let P be the probability that x ∈ ΣH contains p as a subword. Then,

P ≥ 1− 2ne−
H

2n2 .

Proof. Split x in 2n − 1 factors x1, . . . , x2n−1 of length
⌈

H
2n

⌉
and a remaining

factor x2n of smaller or equal length. P is at least the probability that x1 contains
σ1, . . ., xn contains σn, xn+1 contains σn−1, . . ., x2n−1 contains σ1. In formula:

P ≥ 1− Prob{σ1 �∈ Alph(x1) ∨ σ2 �∈ Alph(x2) ∨ · · · ∨ σ1 �∈ Alph(x2n−1)}

≥ 1− (2n− 1)
(

n− 1
n

)" H
2n#
≥ 1− 2ne−

H
2n2 .

Lemma 5 guarantees that the property of Corollary 1 holds for a fraction of
strings which tends rapidly to 1 and provides a further property for λj :

Lemma 6. For every n, H, j ∈ N such that 0 < 2n− 1 ≤ H ≤ 2j, it holds

λj ≥ λ2j ≥ λj

(

1− H

2j
− 2ne−

H
2n2

)

. (3)

Proof. Let w1yw2 ∈ Σ2j+H , where l(w1) = l(w2) = j and l(y) = H . From
Corollary 1 and Lemma 5 we have that h(w1yw2) ≥ h(w1) + h(w2) with
probability 1− 2ne−

H
2n2 or, equivalently,

h(w1yw2)
2j + H

≥ h(w1) + h(w2)
2j + H

≥
(

1− H

2j

)
h(w1) + h(w2)

2j
.

That is, with probability 1− 2ne−
H

2n2 ,

X(w1yw2) ≥
(

1− H

2j

)
1
2
(X(w1) + X(w2)). (4)
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Let us denote by A the set of all the words in ΣH having the pivot word as a
subword. Then, by (4),

λ2j+H =
∑

w1,w2∈Σj

y∈ΣH

X(w1yw2)n−(2j+H) ≥
∑

w1,w2∈Σj

y∈A

X(w1yw2)n−(2j+H)

=
(

1− H

2j

)

· λj ·
∑

y∈A

n−H .

Recalling Lemma 5, we have

λ2j ≥ λ2j+H ≥ λj

(

1− H

2j

)(
1− 2ne−

H
2n2

)
≥ λj

(

1− H

2j
− 2ne−

H
2n2

)

.

Lemma 6 allows to prove the following

Lemma 7. Let λ = limn→∞ λj . Then, for every j > n,

1 ≤ λj

λ
≤ exp

(

6n2 log j

j

)

.

Proof. Consider Lemma 6 and write H as a function of j such that, for j going
to the infinity, the quantity at the last member of Equation (3) tends to λj .
Hence, let H = H(j) = 2n2 log j. Then, for j > n, we have

λ2j ≥ λj

(

1− n2 log j

j
− 2n

j

)

≥ λj

(

1− 2n2 log j

j

)

.

Extending such inequality to 2kj, we can write it as

λ2kj ≥ λj

k−1∏

s=0

(

1− 2n2 log(2sj)
2sj

)

≥ λj exp

[ ∞∑

s=0

log
(

1− 2n2 log(2sj)
2sj

)]

.

Since log(1− 2x) > −3x for 0 < x < x̄, a lower bound for the sum is

∞∑

s=0

log
(

1− 2n2 log(2sj)
2sj

)

≥
∞∑

s=0

(

−3n2 log j + s log 2
2sj

)

≥ −6n2 log j

j

and we obtain, for every k > 0, the following inequality

λj ≥ λ2kj ≥ λj exp
(

−6n2 log j

j

)

.

Hence, for k going to the infinity, we have 1 ≤ λj

λ ≤ exp
(
6n2 log j

j

)
.

Now, we are ready to prove the correctness of the algorithm. First of all, by
Lemma 7 we have (λj − λ) ≤ λ(exp(6n2 log j/j)− 1).
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Observe that exp(6n2 log j̄/j̄)− 1 ≤ ε/2 whereas

j̄ =
⌈

12 · 6n2

ε
log

(
6n

ε

)⌉

(Line 1 of the algorithm).

Therefore, λj̄ − λ ≤ λ · ε/2.
Since λ ≥ 1/n, applying Hoeffding’s Inequality, we obtain

Prob
{
|Sj̄ − λj̄| ≥ λ

ε

2

}
≤ Prob

{∣
∣
∣
∣
∣

1
t

t∑

i=1

Xi − λj̄

∣
∣
∣
∣
∣
≥ 1

n

ε

2

}

≤ 2e−
tε2

2n2 .

Then, by setting t̄ = "(4 log 2)(n/ε)2# (Line 2 of the algorithm):

Prob
{
|Sj̄ − λj̄| ≥ λ

ε

2

}
≤ 1

2
.

Hence, with probability at least 1/2, we have |Sj̄ − λ| ≤ |Sj̄ − λj̄|+|λj̄ − λ| < λ·ε
or, equivalently, max

{
Sj̄

λ , λ
Sj̄

}
< 1 + ε.

4 MSTH Is Not Approximable (Unless NP = coR)

The mean speedup over traces of the same height has been studied by Krob
et al. in [8]. They proved that, given a parallel alphabet (Σ, C), the bivariate
generating function counting the traces having a given length and height is
rational and that ηM(Σ, C) is an algebraic number. In this section we prove
that, unless NP = coR, any approximation algorithm for MSTH must have
performance ratio Ω(n1−ε), for any ε > 0.

The idea is that of reducing to MSTH the Max-Clique problem, which is
difficult to approximate [7]. The reduction is based on the following construction.
Let G = (Σ, C) be a parallel alphabet. We denote by G(k) = (Σ(k), C(k)) the
disjoint union of k graphs Gi = (Σi, Ci), 1 ≤ i ≤ k, isomorphic to G, where

Σ(n) =
k⊔

1

Σi and C(k) =
k⊔

1

Ci.

Notice that, for every clique c of G(k), there exists a unique l ∈ {1, 2, . . . , k}
such that c is a clique in Gl. We denote this situation by T (c) = l. Let Γ (k) be
the graph of cliques of G(k) and let c′ and c′′ be two cliques in G(k) such that
T (c′) �= T (c′′). Then, (c′, c′′) is an arc in Γ (k).

Given a path t = x1 · · ·xn in Γ (k), we set the weight function ξ(t) = |c1| +
· · ·+ |cn| (if t is intended as a trace, ξ(t) = l(t)). Then, considering the uniform
distribution over the paths of length n in Γ (k), we define the expected value

ξn(k) = E[ξ(x1 · · ·xn) | x1 · · ·xn is a path in Γ (k)].

Let G(k) = (Σ(k), C(k)). By definition, we have

ηM(Σ(k), C(k)) = lim
n→∞

ξk(n)
n

.
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From this point on, we write ηM(G(k)) for ηM(Σ(k), C(k)) for simplicity of
notation. Moreover, we denote by MG the maximal size of a clique of G, and by
mG the mean size of a clique in G, under uniform distribution over the cliques.

The following result states that, for large k, mG can be considered a lower
bound for ηM(G(k)).

Lemma 8. For every k > 0, MG ≥ ηM(G(k)) ≥ mG(1 − 2/k).

Proof. The first inequality is trivial, since ξ(t) ≤ n·MG for every path t of length
n in Γ (k) by definition. Hence, we focus our attention on the second inequality.

We say that a path x1 · · ·xl · · ·xn in Γ (k) has a “hit” in position l if and only
if T (xl−1) �= T (xl) �= T (xl+1). If x1 · · ·xl · · ·xn has a hit in position l, then every
sequence x1 · · ·xl−1 c xl+1 · · ·xn with T (c) = T (xl) is a path in Γ (k). Therefore,

E[ξ(xl) | x1 · · ·xl · · ·xn has a hit in position l] = mG. (5)

The probability Pl that a path x1 · · ·xl · · ·xn has a hit in position l is

Pl ≥
k − 2

k
. (6)

Indeed, fixed a path x1 · · ·xl−1xlxl+1 · · ·xn, the probability that T (xl−1) �=
T (xl) �= T (xl+1) is at least 1 − 1/k if T (xl−1) = T (xl+1) and at least 1 − 2/k
otherwise. Then, it follows that

ξn(k) = E[ξ(x1 · · ·xn) | x1 · · ·xn is a path in Γ (k)] =
= E[ξ(x1) + · · ·+ ξ(xn) | x1 · · ·xn is a path in Γ (k)] =

=
n∑

l=1

E[ξ(xl) | x1 · · ·xn is a path in Γ (k)] ≥

≥
n∑

l=1

E[ξ(xl) | x1 · · ·xn is a path in Γ (k) with a hit in pos. l] · Pl.

From Equations (5) and (6), we have ξn(k) ≥ n ·mG · (1− 2/k). Hence,

lim
n→∞

ξn(k)
n

≥ mG

(

1− 2
k

)

The next lemma states that mG is close to MG.

Lemma 9. Let G(Σ, C) be a graph and let |Σ| = n. Then mG ≥MG/(4 log2 n).

Proof. Let Prob{|c| ≤ s} be the probability that the size of a random clique,
selected with uniform probability over the cliques of G, is smaller than s. If
MG < 5, then the thesis is immediately proved, since MG/(4 log2 n) ≤ 1.

Now, suppose that MG ≥ 5. Recalling that G contains at least 2MG cliques
and at most

(
n
l

)
cliques of size l, we have

Prob{|c| ≤ s} ≤
∑s

l=1

(
n
l

)

2MG
≤ e · ns

2MG
.
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Observe that e ·ns/2MG ≤ 1/2 if and only if s ≤ (MG− 1− log2 e)/ log2 n. Since

MG

2 log2 n
≤ MG − 1− log2 e

log2 n

for every MG ≥ 5, for s = MG/(2 log2 n) it holds that Prob{|c| ≥ s} ≤ 1/2.
By applying Markov’s Inequality, we finally obtain

1
2
≤ Prob{|c| ≥ s} ≤ mG

s
= mG

2 log2 n

MG
,

which proves the lemma.

The reduction of Max-Clique to MSTH is given in the following

Lemma 10. Let A be an approximation algorithm with performance ratio r(n)
for MSTH. Then, the algorithm B(Σ, C) = A(Σ(3), C(3)) is an approximation
algorithm with performance ratio 12 · r(3n) log(n) for Max-Clique.

Proof. Given the oracle A, the algorithm clearly works in polynomial time with
respect to n = |Σ|.

For the sake of simplicity, we denote ηM(Σ, C) by η(G). From Lemma 8, we
know that MG ≥ η(G(3)) ≥ mG/3. By Lemma 9, mG ≥MG/(4 log2 n). Hence,

MG ≥ η(G(3)) ≥ MG

12 log2 n
.

Since A has performance ratio r(n) and works with an input of size 3n, then we
have

r(3n) ≥ max
{

A(G(3))
η(G(3))

,
η(G(3))
A(G(3))

}

≥ max
{

A(G(3))
MG

,
MG

12 log2 nA(G(3))

}

≥ 1
12 log2 n

max
{

A(G(3))
MG

,
MG

A(G(3))

}

,

that proves the lemma.

Now, the main result of this section is immediately proved:

Theorem 2. If NP �= CoR, then any approximation algorithm for MSTH has
performance ratio r(n) = Ω(n1−ε), for every ε > 0.

Proof. By H̊astad [7], given ε > 0, any approximation algorithm for Max-

Clique has performance ratio Ω(n1−ε), unless NP = coR. Hence, by Lemma 10,
12r(3n) log2 n > Ω(n1−ε) for every ε > 0, which is equivalent to the thesis.
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5 Conclusions and Open Problems

In this paper we proved that the MSWL problem admits a probabilistic FPTAS,
obtained by exploiting concentration results [10] and the properties of some
words that we called pivot words. In this direction, it seems to be possible to
improve the performance of the randomized algorithm by exploiting the ergodic
theorem, as in [11]. The existence of a deterministic FPTAS for MSWL is a still
open problem.

In addition, we proved that the MSTH problem is NP-hard to approximate
within |Σ|1−ε, unless NP = coR. The approximability of the mean speedup
considering the uniform distribution over the traces of a given length remains
an open problem.
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2 ENS Lyon, Unité de Mathématiques Pures et Appliquées, Lyon, France

msablik@umpa.ens-lyon.fr

Abstract. We study the dynamics of cellular automata, and more
specifically their transitivity and expansivity, when the set of configu-
rations is endowed with a shift-invariant (pseudo-)distance. We first give
an original proof of the non-transitivity of cellular automata when the
set of configurations is endowed with the Besicovitch pseudo-distance.
We then show that the Besicovitch pseudo-distance induces a distance
on the set of shift-invariant measures and on the whole space of mea-
sures, and we prove that in these spaces also, cellular automata cannot
be expansive nor transitive.

1 Introduction

Cellular automata were introduced by J. von Neumann as a simple formal model
for cellular growth and replication. They consist in a discrete lattice of finite-state
machines, called cells which evolve sequentially and synchronously according to
a local rule. This local rule is the same for all cells and determines how a cell will
evolve given the states of a finite number of neighboring cells. A snapshot of the
states of the cells is called a configuration, and a cellular automaton can be seen
as a map from the set of configurations to itself. Despite the apparent simplicity
of their definition, cellular automata, seen as discrete dynamical systems, can
have very complex behaviors, some of which not even being fully understood yet.
This behavior is typically studied by endowing the set of configurations with the
Cantor distance. For this distance the so-called shift maps, which spacially shift
the states of cells according to a fixed vector, can have highly chaotic behaviors.

Other distances can also be defined on the space of configurations for which
the shift maps are non-chaotic. An example of such a distance is the Besicovitch
distance (in fact, pseudo-distance), introduced by Cattaneo et al. [CFMM97].
It was proven by Blanchard et al. [BCF03] that no cellular automaton can be
transitive for this pseudo-distance. Their proof uses Kolmogorov complexity,
which is an algorithmic measure of information content. We first provide new
simple proof of this fact, also based on Kolmogorov complexity, and we show
that our proof can be turned into a purely analytic one, based on Hausdorff
dimension.

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 84–95, 2007.
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Suppose now that a measure μ is defined on the set of configurations. A cel-
lular automaton acts on the set of configurations and canonically transforms μ
into another measure. Hence, instead of its action on the set of configurations,
a cellular automaton can be studied via its action on the set of measures. If μ is
shift-invariant, then its image by any cellular automaton is also shift-invariant.
Hence, cellular automata also have a natural action on the set of shift-invariant
measures. In [Sab07], it is shown that any pseudo-distance on the set of configura-
tions induces a pseudo-distance on the set of shift-invariant measures. Thus, both
the Cantor and the Besicovitch distances induce a distance on the set of shift-
invariant measures. We show that in this framework also, no cellular automaton
is transitive nor expansive on the set of shift-invariant measures endowed with
the distance induced by the Besicovitch distance.

The last section of the paper unifies the two proofs of non-transitivity, in the
space of configurations and in the space of shift-invariant measures respectively,
by embedding these two spaces in the (much) bigger one containing all mea-
sures (non-necessarily shift-invariant). Here again, Kolmogorov complexity and
effective Hausdorff dimension turn out to be the cornerstone of the proof.

Before moving on to our discussion, we recall the formal definition of the
main concepts of the paper, namely transitivity and expansivity. Let (X, d) be
a metric space, and f : X → X . The map f is said to be transitive if for any
x, y ∈ X and any ε > 0, there exists x′, y′ ∈ X and n ∈ N such that d(x, x′) < ε,
d(y, y′) < ε and fn(x′) = y′. It is said to be expansive if there exists ε > 0 such
that for all x, y with x �= y, there exists an n ∈ N such that d(fn(x), fn(y)) > ε.

Informally, transitivity is a mixing property, while expansivity is a sign of
sensitivity to initial conditions. Hence, both these conditions are often seen as
symptomatic of chaotic dynamical systems.

2 Action of Cellular Automata on AM

Formally speaking, a cellular automaton is a tuple 〈A, M, U, δ〉 where A is a finite
alphabet (the set of states), M is a semi-group (the set of indices of cells), U is
a finite subset of M (the neighborhood), and δ is a function from AU into A (the
local rule). In this setting, the set of configurations is the set AM. The cellular
automaton acts on it via its global rule, defined as follows: for all x ∈ AM, and all
i ∈M, the i-th coordinate of F (x) is given by the rule F (x)i = δ((xi+k : k ∈ U)).
In the sequel, when this create no confusion, we will make no distinction between
a CA and its global rule.

In this paper, the semi-group M will be of the form M = Zd′ ×Nd′′
, but most

of the results we will present can be generalized to a larger class of semi-groups.
Let M = Zd′ × Nd′′

. For all m ∈ M, we denote by |m| the distance of m to
the origin point. This allows us to define the radius of the cellular automaton:
r(F ) = max{|m| : m ∈ U} where U is the neighborhood of F .

Cantor Topology. One can define a topology on AM by endowing A with the
discrete topology, and considering the product topology (or Cantor topology)
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on AM. For this topology, AM is compact, perfect and totally disconnected.
Moreover one can define a metric (which we call the Cantor distance) on AM

which is compatible with the Cantor topology:

∀x, y ∈ AM, dC(x, y) = 2−min{|i|:xi �=yi i∈M}.

Let U ⊂M. For x ∈ AM, we denote by xU ∈ AU the restriction of x to U. For
a pattern w ∈ AU, one defines the cylinder centered on w by [w]U = {x ∈ AZ :
xU = w}.

The action of M on itself allows to define an action on AM by shift. For all
m ∈M this action is defined by:

σm : AM −→ AM

(xi)i∈M �−→ (xi+m)i∈M

Cellular automata commute with the shift maps: for every cellular automaton
F : AM → AM and all m ∈ M, F ◦ σm = σm ◦ F . In fact, this a fundamental
characteristic of CA. Indeed, Hedlund’s theorem [Hed69] states that the cellular
automata on (AM, dC) are exactly the continuous functions which commute with
the shift maps. It is easy to remark that any cellular automaton F is Lipschitz
for the distance dC . More precisely, for all x, y ∈ AM, one has:

dC(F (x), F (y)) ≤ 2−r(F )dC(x, y).

It is well-known and easy to see that the action of any shift σm on (AM, dC)
is transitive. More generally, for all surjective cellular automaton F : AM → AM

of neighborhood U one can easily check that the action of F ◦ σm on (AM, dC)
is transitive for all m ∈ M \ U. The reason for this is that the distance dC is
non-homogeneous, hence a simple transport of information is enough to obtain
transitivity. This can seem counter-intuitive, and a natural way to overcome
this problem is to look at the action of cellular automata on spaces where the
distance is shift-invariant or even where the points of the space are themselves
shift-invariant. In such spaces, transitivity will not come from transport of in-
formation, but rather from creation of information.

Besicovitch Topology. Thus, it seems that a shift-invariant distance on AM

would be very appropriate to study the dynamics of cellular automata. Following
this idea, Cattaneo et al. introduced the Besicovitch pseudo-distance:

Definition 1 ([CFMM97]). The Besicovitch pseudo-distance dB is defined on
AM by

dB(x, y) = lim sup
n→+∞

Card
(
{i ∈ Un : xi �= yi}

)

Card(Un)
.

Informally speaking, it measures the asymptotic density of the cells on which
x and y differ. It is clearly a pseudo-distance, i.e. it satisfies both the symetry
property and triangular inequality. However, dB(x, y) does not imply x = y: if x
and y coincide everywhere except on a very sparse set of cells, their Besicovitch
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pseudo-distance is zero, and yet they are different configurations. Hence, the
topology induced on AM by dB is not separated. Notice also that dB is shift-
invariant.

It was proven by Blanchard et al. that CA cannot be expansive with respect
to dB :

Theorem 1 ([BFK97]). There is no expansive CA on (AM, dB).

Cattaneo et al. asked whether there exist transitive CA for the Besicovitch
pseudo-distance. It remained a recurrent open question (see [BFK97], [Man98],
[DFM00]) until it was negatively answered by Blanchard et al. [BCF03]. The
original proof of this theorem uses the notion of Kolmogorov complexity, but
is quite involved. We present here a simpler proof also based on Kolmogorov
complexity, which we will extend later to a much more general framework. We
assume that the reader is familiar with Kolmogorov complexity (see [LV97] for
an extensive survey, see also [Cal02] for Kolmogorov complexity of strings over
a non-binary alphabet).

Theorem 2. There is no transitive CA on (AM, dB).

Proof. For all x ∈ AM, we set

dim1(x) = lim inf
n→+∞

K(xUn)
Card(Un)

where K denotes Kolmogorov complexity (what version of Kolmogorov com-
plexity we use does not matter, since all versions coincide up to a logarithmic
term). Notice that the quantity dim1(x) lies in [0, log |A|] (here and in the rest
of the paper, log is the logartihm of base 2). The notation dim1 is justified by
a result of Mayordomo [May00] who (elaborating on the work of Staiger and
others) showed that this quantity is an effectivization of Hausdorff dimension.
We start with two easy lemmas, which we will need again later on:

Lemma 1. For every x ∈ AM and every CA F , one has dim1(F (x)) ≤ dim1(x)

Indeed, to compute F (x)Un , one only needs to know xUn+r(F ) , by definition of a
CA. Hence K(F (x)Un) ≤ K(xUn+r(F )). But as M = Nd′ ×Zd′′

, there are at most
O(nd′+d′′−1) cells in Un+r(F ) \ Un. Hence,

K(F (x)Un) ≤ K(xUn+r(F )) ≤ K(xUn) + O(nd′+d′′−1).

Since the quantity O(nd′+d′′−1) is a o(Card(Un)) (because Card(Un) =
O(nd′+d′′

)), the lemma is proved.

Lemma 2. For all x, y ∈ AM:

| dim1(x) − dim1(y)| ≤ �(dB(x, y))

with �(x) = −(1−x) log(1−x)−x log(x)+x log |A| (notice that �(x) is concave,
and tends towards 0 as x tends towards 0, which proves that dim1 is uniformly
continuous w.r.t dB).
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Let k = |A|. We identify A with (Z/kZ) = {0...k − 1}, and hence AM with
(Z/kZ)M, which is a group (and we denote its addition by ⊕). If dB(x, y) ≤ ε
then by definition of dB, one can write x = y⊕z, where z is a configuration such

that for all n,
Card

(
{i∈Un:zi �=0}

)

Card(Un) ≤ ε+o(1). For a given n, setting N = Card(Un),
the number of patterns consisting of N cells, with at least (1− ε)N cells labeled
by 0 is bounded by

εN

(
N

εN

)

|A|εN

Hence, the Kolmogorov complexity of zUn is not greater than the logarithm of
this quantity, which, by Stirling’s formula, is equal to �(ε)N + o(N). Since xUn

can be computed from yUn and zUn , it follows that for all n,

K(xUn) ≤ K(yUn) + K(zUn) + o(Card(Un))
≤ K(yUn) + �(ε)Card(Un) + o(Card(Un))

By definition of dim1, the lemma follows. We are now ready to prove Theorem 2.
Let F be a CA on AM. Let x be a configuration such that dim1(x) = 0 and y
such that dim1(y) = log |A| (such sequences exist, see for example [Lut00]). Let
ε > 0. If F were transitive, then there would exist x′, y′ ∈ AM and n ∈ N
such that dB(x, x′) ≤ ε, dB(y, y′) ≤ ε and F n(x′) = y′. By Lemma 2, we
would then have dim1(x′) ≤ �(ε), and dim1(y′) ≥ 1 − �(ε). But also, applying
inductively Lemma 1 on x′, we would have dim1(F n(x′)) ≤ dim1(x′) ≤ �(ε), i.e,
dim1(y′) ≤ �(ε). For ε small enough, this contradicts dim1(y′) ≥ 1− �(ε). 
�

3 Action of Cellular Automata on Mσ(AM)

Measures on AM. Let B be the Borel sigma-algebra of AM. We denote by
M(AM) the set of probability measures on AM defined on the sigma-algebra B.
UsuallyM(AM) is endowed with weak∗ topology: a sequence (μn)n∈N ofM(AM)
converges to μ ∈ M(AM) if and only if for all finite subset U ⊂ M and for all
pattern u ∈ AU, one has limn→∞ μn([u]U) = μ([u]U).

In the weak∗ topology, the setM(AM) is compact and metrizable. One defines
a distance compatible with the weak∗ topology by for all μ, ν ∈M(AM):

dM∗ (μ, ν) =
∑

n∈N

1
Card(Un)

∑

u∈AUn

∣
∣μ([u]Un)− ν([u]Un)

∣
∣,

where Un = {m ∈ M : |m| ≤ n}.
Let F : X → Y be a mesurable function between the measurable spaces X

and Y and let μ ∈ M(X). It is possible to consider the mesure F∗μ on Y defined
by F∗μ(B) = μ(F−1(B)) for all measurable set B ⊂ Y . Thus, the M-action σ
acts naturally onM(AM) by:

σm
∗ (μ(B)) = μ(σ−m(B)), for all m ∈M, μ ∈ M(AM) and B ∈ B.

A measure μ ∈ M(AM) is said σ-invariant if σm
∗ μ = μ for all m ∈ M; denote

Mσ(AM) the set of σ-invariant probability measure.
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The Distance dM
B . In [Sab07], a general framework to define a distance

on Mσ(AM) is given: let d be a pseudo-distance on AM, we want to intro-
duce a pseudo-distance on Mσ(AM) induced by the pseudo-distance d. Let
μ, ν ∈ Mσ(AM), the intuitive idea is to calculate the mean of d(x, y) when
x is chosen according to the probability measure μ and y according to the prob-
ability measure ν. If we just take (x, y) according to the probability μ× ν, when
ν = μ, one obtains

∫
d(x, y)d(μ × μ) which is in general positive. Hence it is

important to allow some kind of correlation in the choice of x and y. This is why
we introduce the notion of joint measure.

Let μ and ν be two σ-invariant probability measures on AM. A probability
measure λ on AM × AM is a joint measure according to μ and ν if λ is σ × σ-
invariant and π1

∗λ = μ and π2
∗λ = ν, where π1 and π2 are respectively the

projections according the first and second coordinate. Denote J (μ, ν) the set of
joint measures according μ and ν. Of course, one has J (μ, ν) ⊂ Mσ×σ(AM ×
AM). Moreover J (μ, ν) is convex and compact for the weak topology.

Definition 2. Let d be a pseudo-distance on AM such that (x, y) �→ d(x, y) is
Borel-measurable (this is the case for dC and dB). One defines a function dM

from Mσ(AM)×Mσ(AM) on R+ by:

dM(μ, ν) = inf
λ∈J (μ,ν)

∫

d(x, y)dλ(x, y) for all μ, ν ∈Mσ(AM).

In [Sab07], we prove that dMC is equivalent to dM∗ and that dMB defines a distance
onMσ(AM), which is not equivalent to dM∗ . Moreover we give general properties
about this type of measure. In particular we have the following lemma:

Lemma 3. Let μ, ν ∈Mσ(AM) and let U ⊂M be a finite subset. One has:

dMB (μ, ν) ≥ 1
Card(U)

inf
λ∈J (μ,ν)

λ([u]U × [v]U : u, v ∈ AU, u �= v).

Proof. Let μ, ν ∈Mσ(AM) and let λ ∈ J (μ, ν). Let u, v ∈ AU, one has:

⋃

u,v∈AU,u�=v

[u]U × [v]U ⊂
⋃

m∈U

⎛

⎝
⋃

a,b∈A,a�=b

[a]m × [b]m

⎞

⎠ .

One deduces the following inequality:

λ([u]U × [v]U : u, v ∈ AU, u �= v) ≤
∑

m∈U

λ([a]m × [b]m : a, b ∈ A, a �= b)

=
(�)

Card(U) λ([a]0 × [b]0 : a, b ∈ A, a �= b),

where (�) follows from the σ × σ-invariance of λ.

This lemma allows in particular to prove that dMB is a distance.
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Action of a Cellular Automaton on Mσ(AM). Let (AM, F ) be a CA
and μ ∈ Mσ(AM). Since F commutes with the shift, if μ ∈ Mσ(AM) then
F∗μ ∈Mσ(AM). Let d be a pseudo-distance on AM. To study the N-action of F∗
on (Mσ(AM), dM) as a dynamical system, we are going to prove the continuity
of the function F∗ on (Mσ(AM), dM).

Proposition 1. Let d be a pseudo-distance on AM and let F : AM → AM be a
function d-Lipschitz of constant K on AM. For all μ, ν ∈Mσ(AM), one has:

dM(F∗μ, F∗ν) ≤ KdM(μ, ν).

In particular F∗ is continuous on (Mσ(AM), dM).

Proof. Let λ ∈ J (μ, ν), one has (F∗ × F∗)λ ∈ J (F∗μ, F∗ν), thus:
∫

d(x, y)d(F∗ × F∗)λ =
∫

d(F (x), F (y))dλ ≤
∫

Kd(x, y)dλ.

One deduces that d(F∗μ, F∗ν) ≤ Kd(μ, ν).

Since all CA are Lipschitz for dC and dB, this proposition holds for all CA. Thus
one can study the dynamical system F∗ : Mσ(AM) → Mσ(AM) according to
the distance dM∗ or dMB .

Non-expansivity of CA on (Mσ(AM), dM
B ). In the space of measures

(Mσ(AM), dMB ), we have the following counterpart to Theorem 1:

Proposition 2. Let (AM, F ) be a CA. F∗ does not act expansively on (Mσ(AM),
dMB ).

Proof. Let μ, ν ∈ (Mσ(AM) and ε > 0. Consider μ′ = (1 − ε)μ + εν. Let
λ′ ∈ J (μ, μ) and λ′′ ∈ J (μ, ν), such that λ = (1 − ε)λ′ + ελ′′ ∈ J (μ, μ′). One
then has:

(1− ε)
∫

d(x, y)dλ′ + ε

∫

d(x, y)dλ′′ =
∫

d(x, y)dλ ≥ dM(μ, μ′)

Thus,

εdM(μ, ν) = (1− ε)dM(μ, μ) + εdM(μ, ν) ≥ dM(μ, (1 − ε)μ + εν)

Since F∗ preserves convex combinations, one has F n
∗ μ′ = (1− ε)F n

∗ μ + εF n
∗ ν

for all n ∈ N, so dM(F n
∗ μ, F n

∗ μ′) ≤ εdM(F n
∗ μ, F n

∗ ν). Hence, F∗ is not enxpansive
in (Mσ(AM), dMB ).

Continuity of the Entropy of σ. The information contained in a a generic
configuration can be expressed by the entropy of the shift. A comparative study
of the entropy of the shift and Kolmogorov complexity was carried out by
Brudno [Bru82]. As we will see, the entropy of the shift is continuous with
respect to the underlying measure.

Definition 3. Let μ ∈ Mσ(AM), the entropy of the shift M-action can be de-
fined as:



The Dynamics of Cellular Automata in Shift-Invariant Topologies 91

hμ(σ) = lim
n→∞

Hμ(PUn)
Card(Un)

,

where PUn is the partition of cylinders centered on Un and Hμ(PUn) is the en-
tropy of the partition PUn according to the measure μ, defined by:

Hμ(PUn) = −
∑

u∈AUn

μ([u]Un) log(μ([u]Un)).

One recalls that Un = {m ∈M : |m| ≤ n}.
Let P1 and P2 be two partitions of AM. We define the refinement of P1 and

P2 by
P1 ∨ P2 = {A ∩B : A ∈ P1 and B ∈ P2}.

Moreover it is possible to define the conditional entropy of P1 given P2:

Hμ(P1|P2) = −
∑

B∈P2

μ(B)
∑

A∈P1

μ(A ∩B)
μ(B)

log(μ(A)).

Thanks conditional entropy, it is possible to decompose the entropy of a refine-
ment:

Hμ(P1 ∨ P2) = Hμ(P2) + Hμ(P1|P2).

It is well known that the function μ �→ hμ(σ) is upper semi-continuous in
(Mσ(AM), dM∗ ), see [DGS76] for more detail.

Theorem 3. The function μ �→ hμ(σ) is uniformly continuous in
(Mσ(AM), dMB ).

Proof. Let μ and ν in Mσ(AM). By definition of the entropy of σ, one has

hμ(σ) = lim
n→∞

Hμ(PUn)
Card(Un)

and hν(σ) = lim
n→∞

Hν(PUn)
Card(Un)

.

However, for all λ ∈ J (μ, ν) one has:

|Hμ(PUn)−Hν(PUn)| = |Hλ(PUn ×AM)−Hλ(AM × PUn)|
= |

(
Hλ(PUn ×AM)−Hλ(PUn ×AM ∨ AM × PUn)

)

−
(
Hλ(AM × PUn)−Hλ(PUn ×AM ∨ AM × PUn)

)
|

≤ Hλ(PUn ×AM|AM × PUn) + Hλ(AM × PUn |PUn ×AM).

Moreover, one has:

Hλ(PUn ×AM|AM × PUn) ≤
∑

i∈Un

Hλ(Pi ×AM|AM × PUn)

≤ Card(Un)Hλ(P0 ×AM|AM × PUn)
≤ Card(Un)Hλ(P0 ×AM|AM × P0),

where P0 = PU0 . Symmetrically one obtains

Hλ(AM × PUn |PUn ×AM) ≤ Card(Un)Hλ(AM × P0|P0 ×AM).
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Thus, by summation one has:

|hμ(σ) − hν(σ)| ≤ Hλ(P0 ×AM|AM × P0) + Hλ(AM × P0|P0 ×AM).

Consider α = (∪a,b∈A,a�=b[a]0× [b]0;∪a∈A[a]0× [a]0), the partition of AM×AM

formed of two elements. Set δ = λ(∪a,b∈A,a�=b[a]0 × [b]0). One has:

Hλ(P0 ×AM|AM × P0) ≤ Hλ(α) ≤ −(δ log(δ) + (1− δ) log(1− δ)).

Let ε > 0. The function δ → δ log(δ)+(1−δ) log(1−δ) tends towards 0 when δ
tends towards 0. Thus, there exists δ0 > 0 such that δ log(δ)+(1−δ) log(1−δ) ≤ ε

2
for all δ < δ0. Let μ, ν ∈ Mσ(AM) such that dMB (μ, ν) < δ0. According to
Lemma 3, there exists λ ∈ J (μ, ν) such that

λ([a]0 × [b]0 : a, b ∈ A, a �= b) ≤ dMB (μ, ν) < δ0.

In this case, one has Hλ(P0×AM|AM×P0) ≤ ε
2 , and symmetrically Hλ(AM×

P0,P0 × AM) ≤ ε
2 . We deduce that for all ε > 0, there exists δ0 such that if

dMB (μ, ν) ≤ δ0 then

|hμ(σ)− hν(σ)| ≤ Hλ(P0 ×AM|AM × P0) + Hλ(AM × P0|P0 ×AM) ≤ ε.

This proves the uniform continuity of μ→ hμ(σ) in (Mσ(AM), dMB ).

Application to Transitivity

Theorem 4. Let (AM, F ) be a CA. F∗ cannot be transitive in (Mσ(AM), dMB ).

Proof. Let

U = {μ ∈Mσ(AM) : hμ(σ) < 1/3} and V = {μ ∈Mσ(AM) : hμ(σ) > 2/3}.

By Theorem 3, U and V are open sets of (Mσ(AM), dMB ). Since F commutes
with σ, it can be view as a factor map from (AM, μ, σ) to (AM, F∗μ, σ), so one
has hμ(σ) ≥ hF∗μ(σ). Thus F∗(U) ⊂ U . One deduces that V ∩ F n

∗ (U) = ∅ for all
n ∈ N, thus F∗ can not be transitive in (Mσ(AM), dMB ).

In (Mσ(AM), dM∗ ), the function μ→ hμ(σ) is just upper semi-continuous, so V
is not open and the previous proof does not hold. In the space (Mσ(AM), dM∗ ),
the existence of transitive CA is open.

4 Action of Cellular Automata on M(AM)

In this section, we do not restrict ourselves to the space of shift-invariant mea-
sures: we instead consider the whole space M(AM). The distance dMB defined
in the previous section can be extended to arbitrary measures, hence endowing
M(AM) with a Besicovitch-like topology. On the space M(AM), dMB is only a
pseudo-distance, as for example two measures which are equal up to a shift are
at distance 0 from each other. Similarly to (AM, dB), the space (M(AM), dMB ) is
not separated.
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The space (Mσ(AM), dMB ) can clearly be viewed as a subspace of (M(AM),
dMB ). Moreover, (AM, dB) can also be viewed as a subspace of (M(AM), dMB ) via
the isometric embedding

AM −→M(AM)
x �−→ δx

where δx is the measure concentrated on x (i.e. δx(A) = 1 if x ∈ A, δx(A) = 0
otherwise).

The proof of non-expansivity of CA which was proven in the previous section
naturally extends to the whole space (M(AM), dMB ). On the other hand, the
proofs of non-transitivity we presented respectively for (AM, dB) and (Mσ(AM),
dMB ) cannot be extended in a completely straightforward way to (M(AM), dB).
It is true however that no CA is transitive in this space. In fact, non-transitivity
happens in the larger class of Lipschitz funtions:

Theorem 5. Let F : AM → AM be a function that is Lipschitz w.r.t. the dis-
tance dC . The action of F∗ on (M(AM), dMB ) is not transitive.

Proof. We adapt the proof of Theorem 2. First notice that for a function F that
is Lipschitz in dC with constant 2r one only needs to know F xUn+r to compute
F (x)Un , hence Lemma 1 remains true if one takes F to be a Lipschitz function
w.r.t. dC and one replaces Kolmogorov complexity K by K(F ), i.e. Kolmogorov
complexity relativized to oracle F (F being a Lipschitz function, it can be given
as an oracle), and dim1 by dim(F )

1 .
For a measure μ, we set

Edim1(μ) =
∫

dim1(x)dμ(x)

We will need the following analogue of Lemma 2 (which can be relativized to
any given oracle):

Lemma 4. There exists a constant c such that for all μ, ν:

dMB (μ, ν) < c⇒
∣
∣Edim1(μ)− Edim1(ν)

∣
∣ ≤ �(dMB (μ, ν))

and thus, Edim1 is uniformly continuous w.r.t. dMB .

Let c be the constant such that � is increasing on [0, c], and let μ, ν be such that
dMB (μ, ν) < c. Let ε ∈ (dMB (μ, ν), c). By definition of dMB , there exists a measure
λ ∈ J (μ, ν) such that ∫

dB(x, y)dλ ≤ ε

Since � is increasing on [0, c] and concave:
∫

�(dB(x, y)) ≤ �
( ∫

dB(x, y)dλ
)
≤ �(ε)

which by Lemma 1 implies:
∫

| dim1(x)− dim1(y)| dλ ≤ �(ε)
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and thus ∣
∣Edim1(μ)− Edim1(ν)

∣
∣ ≤ �(ε)

which implies the desired result, as ε can be chosen arbitrarily close to dMB (μ, ν).
We are now ready to prove Theorem 5. Let F be a Lipschitz function w.r.t.

dC . Let δ0 be the measure concentrated on the configuration where all cells have
state 0, and ν be Lebesgue measure. Let μ′ be a measure such that dMB (δ0, μ′) ≤
ε and μ′′ be a measure such that dMB (ν, μ′′) ≤ ε with ε small enough. Since
Edim1(δ0) = 0 and Edim1(ν) = log |A|, by Lemma 4, one has Edim1(μ′) ≤ �(ε)
and Edim1(μ′′) ≥ 1− �(ε).

By Lemma 1, for all x ∈ AM, one has dim(F )
1 (F (x)) ≤ dim(F )

1 (x), hence
for every μ ∈ M(AM), Edim(F )

1 (F∗(μ)) ≤ Edim(F )
1 (μ). Hence, by the above

discussion, if dMB (δ0, μ) ≤ ε, for all n ∈ N, Edim(F )
1 (F n

∗ (μ)) ≤ �(ε), which (still
by the above discussion) means that F n

∗ (μ) will never be dMB -close to Lebesgue
measure. This finishes the proof of the theorem.

The non-tranisitivity of CA in (Mσ(AM), dMB ) (as stated in Theorem 4) im-
mediately follows from the above proof, as δ0 and Lebesgue measure are shift-
invariant measures. On can also modifiy the above proof to get Theorem 2:
instead of Lebesgue measure, take ν equal to δz for some z ∈ AM such that
dim(F )

1 (z) = log |A|, the rest of the proof remaining the same.

5 Conclusion

It appears that in the shift-invariant topologies we considered, cellular automata
cannot be expansive nor transitive. This is mainly due to the unability of cellular
automata to create information. Indeed, for the non-transitivity of CA, the three
proofs we gave all have the same scheme. First, we define on a (pseudo-)metric
space (E, d) where d is a shift-invariant distance (in this paper, resp. (AM, dB),
(Mσ(AM), dMB ) and (M(AM), dMB )) a quantity which in some sense measures
the amount of information, I : E → R+, (resp. dim1, hμ(σ) and Edim1), which
we prove to be uniformly continuous w.r.t. the distance d. This amount of in-
formation is non-increasing under the action of a cellular automaton (or even
Lipschitz functions), i.e. I(F (x)) ≤ I(x) for all x ∈ E. Since in all cases there
are elements of the space which contain little information (i.e. I(x) = 0) and
some which contain a lot of information (i.e. in our case I(x) = log |A|). Hence,
the two open sets U = {x ∈ E : I(x) < ε} and V = {x ∈ E : I(x) > log |A| − ε}
witness, for ε small enough, the non-transitivity of cellular automata.
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Abstract. The notion of an unavoidable set of words appears frequently
in the fields of mathematics and theoretical computer science, in partic-
ular with its connection to the study of combinatorics on words. The
theory of unavoidable sets has seen extensive study over the past twenty
years. In this paper we extend the definition of unavoidable sets of words
to unavoidable sets of partial words. Partial words, or finite sequences
that may contain a number of “do not know” symbols or holes, appear
in natural ways in several areas of current interest such as molecular
biology, data communication, DNA computing, etc. We demonstrate the
utility of the notion of unavoidability on partial words by making use of
it to identify several new classes of unavoidable sets of full words. Along
the way we begin work on classifying the unavoidable sets of partial
words of small cardinality. We pose a conjecture, and show that affirma-
tive proof of this conjecture gives a sufficient condition for classifying all
the unavoidable sets of partial words of size two. Lastly we give a result
which makes the conjecture easy to verify for a significant number of
cases.

1 Introduction

An unavoidable set of words X over an alphabet A is a set for which any suffi-
ciently long word over A will have a factor in X . It is clear from the definition
that from each unavoidable set we can extract a finite unavoidable subset, so
the study can be reduced to finite unavoidable sets. This concept was explicitly
introduced in 1983 in connection with an attempt to characterize the rational
languages among the context-free ones [8]. Since then it has been consistently
studied by researchers in both mathematics and theoretical computer science.
Testing the unavoidability of X can be done in different ways [7]: Check whether
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there is a loop in the finite automaton of Aho and Corasick [1] recognizing
A∗ \ A∗XA∗, or simplify X as much as possible. There is a large literature on
unavoidable sets of words and we refer the reader to [6,14] for more information.

Another concept relevant to this paper is that of a partial word, or a finite
sequence of symbols from a finite alphabet that may contain a number of “do not
know” symbols or “holes”. Partial words appear in natural ways in several areas
of current interest such as molecular biology, data communication, and DNA
computing. In this paper, we introduce unavoidable sets of partial words. In
terms of unavoidability, sets of partial words serve as efficient representations of
sets of full words. This is strongly analogous to the study of unavoidable patterns,
in which sets of patterns are used to represent infinite sets of full words [13]. The
main goal here is to demonstrate that the study of unavoidable sets of partial
words leads to new insights both on the theory of unavoidable sets and on the
combinatorial structure of the set of words A∗ as a whole. In accomplishing this
we mainly focus on the problem of classifying the unavoidable sets of size two.

The contents of our paper are summarized as follows. In Section 2, we review
some basic definitions related to words and partial words. In Section 3, we recall
the definition of unavoidable sets of words and some useful elementary proper-
ties. There, we present our definition of unavoidable sets of partial words and we
introduce the problem of classifying such sets of small cardinality and in partic-
ular those with two elements, x1, x2, with respect to the regular constraints: x1

matches the pattern (a&∗)∗a and x2 the pattern (b&∗)∗b where & denotes the “do
not know” symbol and a, b denote distinct letters of the alphabet. In Section 4,
we give an elegant characterization of the particular case of this problem when
x1 matches a&∗a and x2 matches b&∗b, propose a conjecture characterizing the
case where x1 matches a&∗a and x2 matches b&∗b&∗b, and prove that verifying
this conjecture is sufficient for solving the problem in general. There, we also
prove one direction of our conjecture. In Section 5, we give partial results to-
wards the other direction of our conjecture and in particular prove that it is easy
to verify in a large number of cases. Finally in Section 6, we pose several natural
and interesting questions related to unavoidable sets of partial words.

2 Preliminaries

We begin this section with the following basic terms and definitions.
Throughout this paper A is a fixed finite set called the alphabet whose elements

we call letters. We use A∗ to denote the set of words over A, that is the set of
finite sequences of letters in the alphabet. For u ∈ A∗ we write |u| for the length
of u. Under the concatenation operation of words, A∗ forms a free monoid whose
identity is the empty word which we denote by ε. If there exist x, y ∈ A∗ such
that u = xvy then we say that v is a factor of u.

A two-sided infinite word w is a function w : Z→ A. A finite word u is a factor
of the two-sided infinite word w if u is a finite subsequence of w, that is if there
exists some i ∈ Z so that u = w(i + 1) . . . w(i + |u|). For a positive integer p, we
say that w has period p if w(i) = w(j) for all i, j ∈ Z satisfying i ≡ j mod p. If
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w has period p for some p then we call w periodic. We can now define infinite
powers of a word: if v is a nonempty finite word, then we denote by vZ the unique
two-sided infinite word w such that w has period |v| and w(0) . . . w(|v| − 1) = v.

A word of finite length n over an alphabet A can be defined as a total function
w : {0, . . . , n− 1} → A. Analogously a partial word (or, pword) of length n over
A is a partial function u : {0, . . . , n− 1} → A. For 0 ≤ i < n, if u(i) is defined,
then we say that i belongs to the domain of u (denoted by i ∈ D(u)). Otherwise
we say that i belongs to the set of holes of u (denoted by i ∈ H(u)). In cases
where H(u) is empty we say that u is a full word.

Let A� = A∪{&}. If u is a partial word of length n over A, then the companion
of u is the total function u� : {0, . . . , n− 1} → A� defined by

u� =

{
u(i) if i ∈ D(u)
& otherwise

Throughout this paper we identify a partial word with its companion. We reserve
the term letter for members of A. We will refer to an occurrence of the symbol
& in a partial word as a hole.

Two partial words u and v of equal length are said to be compatible, denoted
by u ↑ v, if u(i) = v(i) for every i ∈ D(u) ∩D(v). If X is a set of partial words,
we use X̂ to denote the set of all full words compatible with a member of X .

3 Unavoidable Sets

We first recall the definition of an unavoidable set of full words and some relevant
properties. Let X ⊆ A∗. A two-sided infinite word w avoids X if no factor of w
is a member of X . We say that X is unavoidable if no two-sided infinite word
avoids X . In other words X is unavoidable if every two-sided infinite word has
a factor in X .

Following are two useful facts giving alternative characterizations of unavoid-
able sets: (1) The set X ⊆ A∗ is unavoidable if and only if there are only finitely
many words in A∗ with no member of X as a factor; and (2) If the set X ⊆ A∗

is finite, then X is unavoidable if and only if no periodic two-sided infinite word
avoids it. Proofs can be found in [13].

We now give our extension of the definition of unavoidable sets of words to
unavoidable sets of partial words.

Definition 1. Let X ⊆ A∗�. A two-sided infinite word w avoids X if no factor
of w is a member of X̂. We say that X is unavoidable if no two-sided infinite
word avoids X. In other words X is unavoidable if every two-sided infinite word
has a factor compatible with a member of X.

There is a simple connection between sets of partial words and sets of full words
that is worth noting. By the definition of X̂, w has a factor in X̂ if and only if
that same factor is compatible with a member of X . Thus the two-sided infinite
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words which avoid X are exactly those which avoid X̂, and X is unavoidable if
and only if X̂ is unavoidable.

With regards to unavoidability X is then essentially a representation of a set
of full words. This representation makes possible new approaches to unavoidable
sets of full words. It is easier to consider the two-sided infinite words avoiding
X = {aa, b&3b} as those without an occurrence of aa and no two occurrences of
b separated by three letters rather as the words avoiding

X̂ = {aa, baaab, baabb, babab, babbb, bbaab, bbabb, bbbab, bbbbb}.

It is most natural to look first for the unavoidable sets of partial words that
have small cardinality. Insight into the structure of A∗ can be gained by identi-
fying an unavoidable set, especially if that set contains few elements.

Any set of partial words containing the empty word or &n for some n ∈ N will
be called a trivial unavoidable set. To find nontrivial unavoidable sets of size 2
we may assume that A = {a, b}. Classifying the unavoidable sets of size 2 is a
daunting task and is the focus of this paper.

Say X = {x1, x2} is unavoidable. As mentioned before if X is nontrivial it
must be that one member of X is compatible with a power of a and the other is
compatible with a power of b, as that is the only way to guarantee that both aZ

and bZ will not avoid X . So in order to classify the unavoidable sets of size 2, it
is sufficient to determine for which m1, m2, . . . , mk and n1, n2, . . . , nl the set

Xm1,...,mk|n1,...,nl
= {a&m1a . . . a&mka, b&n1b . . . b&nlb}

is unavoidable. We can in fact simplify the situation a little further. The following
lemma tells us that it is enough to solve the problem for cases where m1+1, m2+
1, . . . , mk + 1 and n1 + 1, n2 + 1, . . . , nl + 1 are relatively prime.

Lemma 1. Let p ∈ N. The set Xm1,...,mk|n1,...,nl
is unavoidable if and only if

the set

Y = {a&p(m1+1)−1a . . . a&p(mk+1)−1a, b&p(n1+1)−1b . . . b&p(nl+1)−1b}

is unavoidable.

Proof. In terms of notation it will be helpful to define

Mj =
j∑

i=1

mi + 1

Now suppose the two-sided infinite word w avoids Xm1,...,mk|n1,...,nl
, and let

v = . . . w(−1)pw(0)pw(1)p . . .

We claim that v avoids Y . Suppose otherwise. Then v has a factor compatible
with some x ∈ Y . Without loss of generality say that

x = a&p(m1+1)−1a . . . &p(mk+1)−1a
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Then to say that v has a factor compatible with x is equivalent to saying that
there exists i ∈ Z for which

v(i) = v(i + pM1) = · · · = v(i + pMk) = a

But if we set h = � i
p� then this implies that

w(h) = w(h + M1) = · · · = w(h + Mk) = a

contradicting the fact that w avoids Xm1,...,mk|n1,...,nl
.

We prove the other direction analogously. Suppose now that the two-sided
infinite word w avoids Y , and set v = . . . w(−p)w(0)w(p) . . .. We claim that v
avoids Xm1,...,mk|n1,...,nl

. Otherwise v has a factor compatible with some x ∈ p
which we may suppose without loss of generality is a&m1a . . . &mka. Then there
exists i ∈ Z for which

v(i) = v(i + M1) = · · · = v(i + Mk)

but this implies that

w(pi) = w(pi + pM1) = · · · = w(pi + pMk)

which contradicts the fact that w avoids Y .

In order to solve the problem of identifying when Xm1,...,mk|n1,...,nl
is unavoidable

we start with small values of k and l. The set {a, b&n1b . . . b&nlb} is unavoidable
for if w is a two-sided infinite word which lacks a factor compatible with a it
must be bZ. This handles the case where k = 0 (and symmetrically l = 0).

4 Special Cases

We first consider the case where k = 1 and l = 1, that is, we consider the set
Xm|n = {a&ma, b&nb}. In this case, we can give a nice characterization of which
integers m, n make this set avoidable.

Theorem 1. Write m + 1 = 2sr0, n + 1 = 2tr1 where r0, r1 are odd. Then
Xm|n = {a&ma, b&nb} is avoidable if and only if s = t.

Proof. Let w be a two-sided infinite word avoiding Xm|n. Then w also avoids
b&mb. Otherwise for some i ∈ Z, w(i) = b and w(i + m + 1) = b. Since w avoids
b&nb we must have that w(i + n + 1) = a and w(i + m + 1 + n + 1) = a, which
contradicts the fact that w avoids a&ma. A symmetrical argument shows that w
avoids a&na.

For ease of notation, write a = b and b = a. Let p ∈ N. We will say that
a two-sided infinite word is p-alternating if for all i ∈ Z, w(i) = w(i + p). By
our previous observation it is easy to see that w avoids Xm|n if and only if w
is m + 1-alternating and n + 1-alternating. Thus to prove the theorem it is suf-
ficient to show that a two-sided infinite word exists which is p-alternating and
q-alternating if and only if s = t where p = 2sr0 and q = 2tr1 with r0 and r1 odd.
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Notice that if w is p-alternating then it has period 2p: for i ∈ Z,

w(i) = w(i + p) = w(i + 2p) = w(i + 2p)

Now suppose s �= t. Without loss of generality say s < t. Then s+1 ≤ t. Let l
be the least common multiple of p and q. The prime factorization of l must have
no greater power of 2 than the prime factorization of q. Thus there exists an odd
number k such that kq ≡ 0 mod 2p. If there were a two-sided infinite word w
which was p-alternating and q-alternating we would have w(0) = w(2p) = w(kq)
since w has period 2p. But since k is odd and w is q-alternating we also have
w(0) = w(kq). This is a contradiction. We have half of the necessary implica-
tion.

Now suppose s = t. Then p = 2sr0, q = 2sr1. We only need to prove that
there exists some w which is p-alternating and q-alternating and we do this by
induction on s. If s = 0, then p and q are odd. Then the word . . . ababab . . . is
p-alternating and q-alternating. This handles our base case. Now say w is 2sr0

and 2sr1-alternating. Then v = . . . w(−1)w(−1)w(0)w(0)w(1)w(1) . . . is 2s+1r0

and 2s+1r1-alternating. This finishes the induction and our proof.

We next consider the case where k = 1 and l = 2, that is, sets of the form
Xm|n1,n2 = {a&ma, b&n1b&n2b}. We believe, based on extensive experimental
evidence, that we have identified the cases for which Xm|n1,n2 is unavoidable
which we state in this section (Conjecture 1). As a result of this conjecture,
Xm1,...,mk|n1,...,nl

is avoidable for all larger k, l. Here we prove one direction of
our conjecture, and in Section 5, we give partial results towards the other direc-
tion which turns out to be easy for even values of m.

There is a delicate tension in the change of difficulty of the problem as we
increase k and l. On the one hand, we have identified a large number of avoidable
sets of the form {a&ma, b&nb}. For Xm|n1,n2 to be avoidable it is sufficient that
{a&ma, b&n1b}, {a&ma, b&n2b} or {a&ma, b&n1+n2+1b} be avoidable. Thus by first
identifying the avoidable sets for smaller values of k and l our job has gotten a lit-
tle easier. On the other hand the structure of words avoiding {a&ma, b&n1b&n2b}
is not nearly as nice as those avoiding {a&ma, b&nb}. There is no simple charac-
terization akin to p-alternation.

In proving that a set of the form Xm|n1,n2 is unavoidable our strategy is to
derive a contradiction using structural properties that any potential two-sided
infinite word w avoiding X would have. These properties take the form of certain
rules involving the occurrences of letters in w. For example, whenever w(i) =
w(i+n1+1) = b in w, we must have that w(i+n1+n2+2) = a. The presence of an
a also has implications: if w(i) = a then w(i−m− 1) = b and w(i + m + 1) = b.
Often particular values of m, n1 and n2 have a relationship that cause these
patterns to reoccur and perpetuate themselves, making a contradiction easy to
find. In order for this to happen we also need a starting point for the perpetuation
the ground. For this Theorem 1 is a very handy tool.

We give an example of this in action. The set {a&7a, b&b&3b} is unavoidable.
Suppose instead that there exists a two-sided infinite word w which avoids it.
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We know from Theorem 1 that {a&7a, b&b} is unavoidable, thus w must have a
factor compatible with b&b. Say without loss of generality that w(0) = w(2) = b.
This implies that w(6) = a, which in turn implies that w(−2) = b. Then we
have that w(−2) = w(0) = b, forcing w(4) = a. This propagation continues:
w(−4) = w(−2) = b and so w(2) = a, which makes w(−6) = b giving w(0) = a,
a contradiction. This example is part of a more general phenomenon. Notice how
in this example as the patterns reoccur, we have a sequence of a’s traveling to
the left toward the b at w(0). There is a symmetric situation in which the b’s
travel to the right towards the a at w(n1 +1). Both scenarios are covered by the
following proposition.

Proposition 1. Suppose either m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and
n1 +1 divides n2 +1. Then Xm|n1,n2 is unavoidable if and only if {a&ma, b&n1b}
is unavoidable.

One notable consequence of Proposition 1 is that if m is odd, then both
{a&ma, bb&m+1b} and {a&ma, bb&m−2b} are unavoidable.

The next theorem takes advantage of the perpetuating pattern phenomenon
in a more complicated context. Proposition 1 held because each a forced a b
into the next position of an occurence of w(i) = w(i + n1 + 1) = b, which in
turn forced a new a in w. This created a single traveling sequence of a’s and
b’s, causing an a to overlap with the b at w(0), yielding a contradiction. In the
next argument, we take notice of the fact that each a occurring in w may con-
tribute to two occurrences of w(i) = w(i + n1 + 1) = b simultaneously so that
a contradiction will occur after many traveling sequences of letters appear and
overlap.

Theorem 2. Say that m = n2−n1−1 or m = 2n1+n2+2, and that the highest
power of 2 dividing n1 + 1 is less than the highest power of 2 dividing m + 1.
Then Xm|n1,n2 is unavoidable.

Proof. Since the highest power of 2 dividing n1 + 1 is different than the highest
power of 2 dividing m+1, we have that the set Y = {a&ma, b&n1b} is unavoidable.
Consider first the case where m = n2−n1−1 and suppose for contradiction that
there exists a two-sided infinite word w that avoids X . Then w has no factor
compatible with {a&ma}, and so since Y is unavoidable it must have a factor
compatible with {b&n1b}. Assume without loss of generality that w(0) = b and
w(n1 + 1) = b.

We now generate an infinite table of facts about w. Two horizontally adjacent
entries in the table will represent positions in w which are n1 + 1 letters apart.
Two vertically adjacent entries in the table will represent positions in w which
are m + 1 = n2 − n1 letters apart. The two upper left entries of our table
are w(0) = b and w(n1 + 1) = b, two facts we have already assumed. Since w
avoids Xm|n1,n2 we have more information relevant to the table: two horizontally
adjacent b entries force an a entry diagonally down and to the right from them,
and an a entry forces a b entry in the vertically adjacent positions. From these
rules we can build the following table, labeling the columns C0, C1, . . .:
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C0 C1 C2 C3 . . .
w(0) = b w(n1 + 1) = b w(2n1 + 2) = b w(3n1 + 3) = b

w(n1 + n2 + 2) = a w(2n1 + n2 + 3) = a
w(2n2 + 2) = b w(n1 + 2n2 + 3) = b

For i ∈ N, we shall define vi to be the factor of w represented by Ci. If i is odd
then Ci has i entries, and if i is even then Ci has i + 1 entries. Thus we define

vi =
{

w(in1 + i)w(in1 + i + 1) . . . w(in2 + i) if i even
w((in1 + i)w(in1 + i + 1) . . . w(n1 + (i− 1)n2 + i) if i odd

Two adjacent entries in Ci represent a distance of m+1 positions between letters
in vi. Thus for i even we have that |vi| = im + 1 and for i odd we have that
|vi| = (i − 1)m + 1. We can also use the table to get some partial information
about the positions of a’s and b’s in vi. For j ∈ N, vi(j) = b if j ≡ 0 mod 2m + 2,
and vi(j) = a if j ≡ m + 1 mod 2m + 2.

Because the highest power of 2 dividing n1 + 1 is no greater than the highest
power of 2 dividing m1 +1, there exists some k for which k(n1 +1) ≡ m + 1 mod
2m + 2. Take i sufficiently large so that |vi| > kn1 + k. Because of how k was
chosen, we have that vi(kn1 + k) = a. However examining the table we see that

w((i + k)n1 + i + k) = vi(kn1 + k) = vi+k(0) = b

a contradiction. This handles the situation where m = n2 − n1 − 1. The proof
for the case where m = 2n1 + n2 + 2 is similar, the only difference is that the
table will represent increasingly negative positions of w, rather than increasingly
positive ones.

As an application of Theorem 2, take m = 1. Let us see for which n1 ∈ N
the hypotheses of the theorem hold to make Xm|n1,n2 unavoidable. The highest
power of 2 dividing n1 + 1 should be less than the highest power of 2 dividing
m + 1 = 2. Thus n1 + 1 must be odd, n1 is even. Since m = 1 we cannot have
m = 2n1+n2+2. Say we have m = n2−n1−1. Then n2 = n1+2. So we have that
for any even n1, the set {a&a, b&nb&n+2b} is unavoidable. We will prove in Section
5 that this is a complete characterization of unavoidability of Xm|n1,n2 for m = 1.

The next proposition identifies another large class of unavoidable sets using
a modification of the strategies discussed so far.

Proposition 2. Suppose n1 < n2, 2m = n1 + n2 and |m − n1| divides m + 1.
Then Xm|n1,n2 is unavoidable.

We believe that together Lemma 1, Proposition 1, Proposition 2, and Theo-
rem 2 nearly give a complete characterization of when Xm|n1,n2 is unavoidable.
Following is what we believe to be the only exception.

Proposition 3. The set X6|1,3 = {a&6a, b&b&3b} is unavoidable.

We now state our conjecture.

Conjecture 1. The set Xm|n1,n2 is unavoidable precisely when the hypotheses of
at least one of Lemma 1, Proposition 1, Proposition 2, Proposition 3 or Theorem
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2 hold. Restated, Xm|n1,n2 is unavoidable for relatively prime m + 1, n1 + 1 and
n2 + 1 with n1 ≤ n2 if and only if one of the following conditions (or their
symmetric equivalents) hold:

– Proposition 1: The case where the set {a&ma, b&n1b} is unavoidable, m =
2n1 + n2 + 2 or m = n2 − n1 − 1, and n1 + 1 divides n2 + 1.

– Theorem 2: The case where m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and the
highest power of 2 dividing n1 +1 is less than the highest power of 2 dividing
m + 1.

– Proposition 2: The case where n1 < n2, 2m = n1 + n2 and |m− n1| divides
m + 1.

– Proposition 3: The case where m = 6, n1 = 1 and n2 = 3.

The reader may verify that for any fixed m the only one of the above conditions
that contributes infinitely many unavoidable sets to Xm|n1,n2 is Theorem 2, and
that this theorem never applies to even m. Thus the conjecture states that there
are only finitely many values of m, n1, n2 with m fixed and even and Xm|n1,n2

unavoidable. We will prove in Section 5 that this is indeed the case.
Using Lemma 1 we may assume without loss of generality that m + 1, n1 +

1, n2+1 are relatively prime. An important consequence of the conjecture is that
in order for Xm|n1,n2 to be unavoidable it is necessary that either m = 6 and
n1, n2 = 1, 3, or that one of the following equations hold:

m = 2n1 + n2 + 2 (1)
m = 2n2 + n1 + 2 (2)
m = n1 − n2 − 1 (3)
m = n2 − n1 − 1 (4)
2m = n1 + n2 (5)

Using this fact we can show that an affirmative proof of the conjecture has a
powerful consequence.

We end this section with the following proposition which implies that if Con-
jecture 1 is true then we have completely classified the unavoidable sets of size
two.

Proposition 4. If Conjecture 1 holds, then Xm1,...,mk|n1,...,nl
is avoidable for

all k ≥ 2 and l ≥ 3.

Proof. Assuming Conjecture 1 holds, it is enough to prove that both
Xm1,m2|n1,n2 and Xm|n1,n2,n3 are avoidable for all m1, m2, n1, n2. We handle
the case of Xm1,m2|n1,n2 . Assume without loss of generality that m1, m2, n1, n2

are relatively prime. In order for this set to be unavoidable it is necessary that
the sets {a&m1a, b&n1b&n2b}, {a&m2a, b&n2b&n2b}, {a&m1a&m2a, b&n1b} and the set
{a&m1a&m2a, b&n2b} are unavoidable as well. For each of these sets, Conjecture 1
gives a necessary condition: either m = 6 and n1 = 1, n2 = 3 (or symmetrically
n1 = 3, n2 = 1) or one of Equations 1, 2, 3, 4 or 5 must hold. Consider the
following tables:
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m1 = 2n1 + n2 + 2 m2 = 2n1 + n2 + 2
m1 = 2n2 + n1 + 2 m2 = 2n2 + n1 + 2
m1 = n1 − n2 − 1 m2 = n1 − n2 − 1
m1 = n2 − n1 − 1 m2 = n2 − n1 − 1

m1 = 6, n1 = 1, n2 = 3 m2 = 6, n1 = 1, n2 = 3
m1 = 6, n2 = 1, n1 = 3 m2 = 6, n2 = 1, n1 = 3

2m1 = n1 + n2 2m2 = n1 + n2

n1 = 2m1 + m2 + 2 n2 = 2m1 + m2 + 2
n1 = 2m2 + m1 + 2 n2 = 2m2 + m1 + 2
n1 = m1 −m2 − 1 n2 = m1 −m2 − 1
n1 = m2 −m1 − 1 n2 = m2 −m1 − 1

n1 = 6, m1 = 1, m2 = 3 n2 = 6, m1 = 1, m2 = 3
n1 = 6, m2 = 1, m1 = 3 n2 = 6, m2 = 1, m1 = 3

2n1 = m1 + n2 2n2 = m1 + m2

In order for Xm1,m2|n1,n2 to be unavoidable it is necessary that at least one
equation from each column be satisfied. It is easy to verify using a computer
algebra system that this is impossible except in the case where the last equation
in each column is satisfied. However in this case m1 = m2 = n1 = n2 and so by
Theorem 1 the set is avoidable.

5 Avoidability Results for k = 1 and l = 2

In order to prove the conjecture, only one direction remains. We must show that
if none of the hypotheses of Lemma 1, Proposition 1, Proposition 2, Proposition
3 or Theorem 2 hold then Xm|n1,n2 is avoidable. In this section we give partial
results towards this goal.

We have found that in general identifying sets of the form Xm|n1,n2 as avoid-
able tends to be a more difficult task than identifying them as unavoidable. In
the case of unavoidability we needed only consider a single word then derive a
contradiction from its necessary structural properties. To find a class of avoidable
sets we must invent some general procedure for producing a two-sided infinite
word which avoids each such set. This is precisely what we move towards in the
following propositions in which we verify that the conjecture holds for certain
values of m and n1.

It is easy to see that none of Equations 1, 2, 3, 4 or 5 are satisfied when
n1, n2 < m ≤ n1 + n2 + 2. Thus the conjecture for such values is that Xm|n1,n2

is avoidable. The following fact verifies that this is indeed the case.

Proposition 5. If n1, n2 < m < n1 + n2 + 2 then Xm|n1,n2 is avoidable.

The next proposition makes the conjecture easy to verify for even values of m.

Proposition 6. Assume m is even and that 2m ≤ n1, n2. Then Xm|n1,n2 is
avoidable.
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For any fixed even m there are then only finitely many values of n1, n2 which
might be unavoidable. The reader may verify that this is consistent with the
conjecture. The reader may also verify that the conjecture for m = 0 is that
X0|n1,n2 is always avoidable, and indeed this is given by Proposition 6. Similarly
the conjecture for m = 2 is that X2|n1,n2 is avoidable except for n1 = 1, n2 = 3 or
n2 = 3, n1 = 1. It is easy to find avoiding two-sided infinite words for other values
of n1 and n2 less than 5 when m = 2. By Proposition 6 this is all that is necessary
to confirm the conjecture for m = 2. In this way we have been able to verify the
conjecture for all even m up to very large values. The odd values of m seem to be
much more difficult and will most likely require more sophisticated techniques.
The following proposition gives our confirmation of the conjecture for m = 1.

Proposition 7. The conjecture holds for m = 1; that is X1|n1,n2 is unavoidable
if and only if n1 and n2 are even numbers with |n1 − n2| = 2.

The following and final proposition says that if m and n1 are close enough in
value then Xm|n1,n2 is avoidable for large enough n2.

Proposition 8. Let s ∈ N with s < m − 2. Then for n > 2(m + 1)2 + m − 1,
Xm|m+s,n = {a&ma, b&m+sb&nb} is avoidable.

6 Open Questions

Conjecture 1, although tested in numerous cases via computer, and verified for
m = 1 and a large number of even values of m, still remains to be proven. As
was shown in Section 4, an affirmative answer to this question would imply that
Xm1,...,mk|n1,...,nl

is avoidable for all k, l ≥ 3. Given that avoidable sets of the
form Xm1,...,mk|n1,...,nl

for small k and l translate directly to avoidable sets for
larger k and l, it might seem intuitive that for some sufficiently large fixed k and l
there exists an easy proof that Xm1,...,mk|n1,...,nl

is always avoidable, and thus all
larger values are. This is a deceptively difficult question. There is an interesting
tension occurring between the increase in avoidability of Xm1,...,mk|n1,...,nl

and
the structural complication of Xm1,...,mk|n1,...,nl

as k and l increase.
We pose two open questions that propose direction for further research.

Open question 1. Can one find some sufficiently large values of k and l for
which it is easy to prove that Xm1,...,mk|n1,...,nl

is always avoidable?

Efficient algorithms to determine if a finite set of full words is unavoidable are
well known, see for example [6]. These same algorithms can be used to decide if
a finite set of partial words X is unavoidable by determining the unavoidability
of X̂. However this incurs a dramatic loss in efficiency, as each pword u in X
can contribute as many as ‖A‖‖H(u)‖ elements to X̂. There are algorithms for
finding repetitions with gaps that could be useful for answering Open question 2,
for instance [9,10,11,12,15].

Open question 2. Is there an efficient procedure to determine if a finite set of
partial words is unavoidable?
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Abstract. We introduce and investigate nondeterministic finite autom-
ata with the additional ability to apply the hairpin inversion operation
to the remaining part of the input. We consider three different modes of
hairpin operations, namely left-most hairpin, general hairpin, and right-
most hairpin. We show that these operations do not increase the compu-
tation power, when the number of operations is bounded by a constant.
An unbounded number of these operations leads to language families
that are properly contained in the family of context-sensitive languages
and are supersets of the family of regular languages. Moreover, we show
that in most cases we obtain incomparability results for the language
families under consideration. Finally, we summarize closure properties of
language families accepted by variants of hairpin finite automata.

1 Introduction

Since the origin of life it evolves by replication (and mutation) of DNA or RNA,
but it was not until one and a half decade ago that DNA computing, or more
generally computing with molecules, was discovered for solving problems in com-
puter science. For instance, in [1] it was shown how to solve the NP-complete
Hamiltonian Path Problem with tools from molecular biology. Also the gene as-
sembly performed during the replication of certain single-cell organisms, namely
ciliates, has inspired several computational models, e.g., see [9,11]. For further
information about the biological process underlying ciliate genetics we refer to,
e.g., [12,13]. Although the models proposed in [9] and [11] are different, both are
based on simple operations on the DNA molecule guided by pointers. In the latter
model the used operations are inspired by the way in which a DNA molecule can
fold, namely hi (hairpin loop with inverted pointers) which reverses a substring
between a pointer p and the reversal of p , ld (loop with direct repeat of pointers)
which deletes a substring between two occurrences of a pointer, and dlad (dou-
ble loop with alternating direct repeat of pointers) which swaps two substrings
marked by pointer-pairs. The hairpin inverse of a word w in Σ+ is defined as

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 108–119, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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hi(w) = { xpyRpRz | w = xpypRz and x, y, z ∈ Σ∗, p ∈ Σ+ }, where p is called
pointer. By using appropriate morphisms it is enough to consider pointers of
length 1 only, namely hi(w) = { xayRaz | w = xayaz and x, y, z ∈ Σ∗, a ∈ Σ }.

In order to understand the very nature of the generative power of the afore-
mentioned operations several authors studied them from a purely language the-
oretical perspective, see e.g., [4,5,6,7,8]. It is worth mentioning that the appli-
cation of the operations is only guided by the pointers in the word, and thus
no additional (other) control on the application of the operation is present. In
this paper we develop the novel approach to combine bio-inspired operations
with an additional control mechanism, namely a (finite) automaton. This leads
to the recently introduced extended finite state automata, which are finite state
machines equipped with an additional operation on the unread part of the in-
put. These machines have been investigated in several papers and led to the
devices of flip-pushdown automata [14], the “flip-pushdown input-reversal” the-
orem [10], input-reversal automata [2], and revolving-input automata [3]. Here
we restrict ourself to extended finite automata with the additional operation
of hairpin inversion and distinguish three different modes of hairpin inversion,
namely left-most hairpin (the involved pointers are as close as possible), general
hairpin (no restriction on the pointers), and right-most hairpin (the pointers are
as far away as possible).

Obviously, if the number of operations applied is zero, the family of regu-
lar languages is characterized. We show that this remains true as long as the
number of hairpin operations is arbitrarily constant, regardless of the interpre-
tation of the hairpin operation. In most cases the induced language families are
incomparable (or properly included) with each other. To this end, we develop
a pumping argument for languages accepted by right-most and general hairpin
finite automata. Moreover, we investigate the relation of the hairpin finite au-
tomata language families to the context-free languages and their most important
sub-families. There it turns out that whenever the letter structure of a left-most
hairpin, general hairpin, or right-most hairpin language is “simple” in a certain
sense, then the language is regular. Concerning the closure properties of the
language families under consideration, we show quite negative results. For all
investigated formal language operations, except the union, both the right-most
hairpin and general hairpin finite automata language families are not closed. This
is quite surprising, since we are dealing with language families defined by au-
tomata. Nevertheless, this nicely resembles some non-closure properties recently
obtained for revolving finite automata languages [3].

2 Preliminaries

We denote the powerset of a set S by 2S . The empty word is denoted by λ,
the reversal of a word w by wR, and for the length of w we write |w|. For the
number of occurrences of a symbol a in w we use the notation |w|a. Set inclusion
is denoted by ⊆, and strict set inclusion by ⊂.
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In the following we consider finite automata with the ability to apply the
hairpin operation to the unread part of the input. We may start with a uniform
definition.

Definition 1. A (nondeterministic) extended finite state automaton is a 6-tuple
A = (Q, Σ, δ, Δ, q0, F ), where Q is a finite set of states, Σ is the input alphabet, δ
and Δ are mappings from Q× (Σ ∪ {λ}) to 2Q, where δ is called the transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting states.
Furthermore, A is said to be λ-free, if both δ and Δ are restricted to Q×Σ.

The different modes are formally distinguished by different interpretations of
the mapping Δ. To this end, we consider configurations of extended finite state
automata to be tuples (q, w), where q ∈ Q is the current state, and w ∈ Σ∗

is the still unread part of the input. If a is in Σ ∪ {λ} and w in Σ∗, then we
write (q, aw) (A (p, w), if p is in δ(q, a). Those transitions will be referred to as
ordinary transitions.

A hairpin operation is performed by applying the mapping Δ. For a ∈ Σ and
v, w ∈ Σ∗,

1. a left-most hairpin transition is defined by (q, avaw) (A (p, avRaw), for p in
Δ(q, a) or Δ(q, λ), and v ∈ (Σ \ {a})∗,

2. a general hairpin transition is defined by (q, avaw) (A (p, avRaw), for p in
Δ(q, a) or Δ(q, λ), and

3. a right-most hairpin transition is defined by (q, avaw) (A (p, avRaw), for p
in Δ(q, a) or Δ(q, λ), and w ∈ (Σ \ {a})∗.

The corresponding transitions will be referred to as non-ordinary transitions.
An extended finite state automaton A = (Q, Σ, δ, Δ, q0, F ) with left-most

hairpin, general hairpin, or right-most hairpin transitions is called a left-most
hairpin finite automaton (lh-FA), general hairpin finite automaton (h-FA), or
right-most hairpin finite automaton (rh-FA), respectively.

For any type of hairpin automata, whenever there is a choice between an
ordinary transition or a hairpin operation, the automaton nondeterministically
chooses the next move. As usual, the reflexive transitive closure of (A is denoted
by (∗A. The subscript A will be dropped from (A and (∗A whenever the meaning
remains clear.

Let k be a non-negative integer. We define Tk(A), the language accepted
with at most k non-ordinary steps to be Tk(A) = {w ∈ Σ∗ | (q0, w) (∗A
(q, λ) with at most k non-ordinary steps and q ∈ F }. If the number of non-ord-
inary steps is not bounded, the language accepted is analogously defined as above
and denoted by T (A).

In order to clarify our notation we give an example. In the sequel we often
deal with languages where the symbols are embedded in marker symbols #. To
this end, we define an homomorphism that maps any symbol a to a#, and define
L# = #h(L), for any language L over some alphabet not containing #. That is,

a1a2 · · ·an ∈ L ⇐⇒ #a1#a2# · · ·#an# ∈ L# and λ ∈ L ⇐⇒ # ∈ L#.
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In what follows, when specifying an automaton we will list only those transitions
which do not map to the empty set.

Example 2. The non-regular context-free language

L#, where L = {w ∈ {a, b}∗ | |w|a = |w|b }
is accepted by the general hairpin automaton A = (Q, {a, b, #}, δ, Δ, q0, {qλ})
with state set Q = {q0, qλ, qa, qb, qa?, qb?, qa#, qb#, qa#b, qb#a} and

1. δ(q0, #) = {qλ}
2. δ(qλ, a) = {qa}
3. Δ(qa, #) = {qa?}
4. δ(qa?, #) = {qa#}

5. δ(qa#, b) = {qa#b}
6. δ(qa#b, #) = {qλ}
7. δ(qλ, b) = {qb}
8. Δ(qb, #) = {qb?}

9. δ(qb?, #) = {qb#}
10. δ(qb#, a) = {qb#a}
11. δ(qb#a, #) = {qλ}

Automaton A accepts L# as follows: When starting in state q0 the first tran-
sition reads the leading letter # and changes to state qλ. Next, the transi-
tions (2)–(6) read the letters a, #, b, and # in sequence while doing a hair-
pin transition on the first # letter. If this is possible the automaton will be in
state qλ again. More formally, for v ∈ {a#, b#}∗{a, b} and w ∈ {a#, b#}∗ we
find (qλ, a#v#b#w) (A (qa, #v#b#w) (A (qa?, #b#vR#w) (A (qa#, b#vR#w) (A

(qa#b, #vR#w) (A (qλ, vR#w), and (qλ, a#b#w) (A (qa, #b#w) (A (qa?, #b#w) (A

(qa#, b#w) (A (qa#b, #w) (A (qλ, w). A similar reasoning applies for the transi-
tions (7)–(11).

Example 3. By a straightforward modification of the automaton in Example 2,
we obtain (1) a general hairpin automaton that accepts the non-context-free
language L#, where L = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }, and (2) a right-
most hairpin automaton that accepts the non-regular context-free language L#,
where L = { anbn | n ≥ 0 }.

By standard techniques one can prove that λ-moves do not increase the com-
putational power of hairpin automata. So, in the sequel we may consider λ-free
automata for convenience.

Theorem 4. Let k be a non-negative integer. For a hairpin automaton A of any
type, one can construct a λ-free hairpin automaton B of the same type, such that
Tk(A) = Tk(B). The statements remain true if an unbounded number of hairpin
steps is allowed.

3 Hairpin Finite Automata

Now we turn to investigate the computational capacities of the devices in ques-
tion. Our first results concern the weakest automata. The following theorem
shows that providing finite automata with a bounded number of hairpin transi-
tions does not increase their computational capacity. To this end, we need the
following result shown in [5]. Recall that a language family is called a trio, if it
is closed under λ-free homomorphism, inverse homomorphism, and intersection
with regular languages.
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Lemma 5. Let L be a trio closed under hairpin inversion. Then for each L ∈
L over Σ, and for each a ∈ Σ, the a-projected hairpin inverse of L is in L . Here
the a-projected hairpin inverse of a language L ⊆ Σ∗ is defined to be hia(L) =
{ hia(w) | w ∈ L }, where hia(w) = { xayRaz | w = xayaz and x, y, z ∈ Σ∗ },
for w ∈ Σ∗ and a ∈ Σ.

Theorem 6. Let k be a non-negative integer. A language L is accepted by any
type of hairpin automaton A with at most k hairpin steps, i.e., Tk(A) = L, if
and only if L is regular.

Proof. Since any given nondeterministic finite automaton is a hairpin automaton
whose transition Δ is not defined, clearly, any regular language is accepted by
any type of hairpin automaton.

For the converse implication we argue as follows: Let L ⊆ Σ∗ be accepted by a
hairpin automaton A = (Q, Σ, δ, Δ, q0, F ) with at most k hairpin steps. Then L
can be written as L = ∪k

i=0T=i(A), where T=i(A) is the language accepted by A
with exactly i hairpin steps. It suffices to show that each T=i(A) is regular.
The proof is by induction on k. We start with the left- and right-most hairpin
operations.

If k = 0, the statement is obviously true. Now consider an accepting compu-
tation on input w such that A performs exactly k + 1 left-most (right-most, re-
spectively) hairpin operations. Let Ap,q = (Q, Σ, δ, Δ, p, {q}) be defined from A.
Moreover, let u, v, x ∈ Σ∗ and a ∈ Σ. We find a decomposition w = uavax
obeying the properties for left-most (right-most, respectively) hairpin such that
(q0, w) = (q0, uavax) (∗ (q, avax) ( (p, avRax) (∗ (qf , λ), where (q0, uavax) (∗
(q, avax) is a computation without any hairpin step, p ∈ Δ(q, a), (p, avRax) (∗
(qf , λ) is a computation with exactly k hairpin moves, and qf ∈ F . The decom-
position gives rise to the languages Llh and Lrh defined as

Llh =
⋃

q∈Q
a∈Σ,p∈Δ(q,a)

T=0(Aq0,q) · { avax ∈ Σ∗ | avRax ∈ T=k(Ap,qf
),

v ∈ (Σ \ {a})∗, and qf ∈ F }

and

Lrh =
⋃

q∈Q
a∈Σ,p∈Δ(q,a)

T=0(Aq0,q) · { avax ∈ Σ∗ | avRax ∈ T=k(Ap,qf
),

x ∈ (Σ \ {a})∗, and qf ∈ F }.

By induction hypothesis, the languages T=0 and T=k are regular. Thus, lan-
guage Llh can be rewritten as

⋃

q∈Q
a∈Σ,p∈Δ(q,a)

T=0(Aq0,q) · ga(hi#(g−1
a (T=k(Ap,qf

)) ∩Ra)),

where ga : (Σ∪{#})∗ → Σ∗ is the homomorphism defined as ga(b) = b, if b ∈ Σ,
and ga(#) = a, otherwise, and Ra = #(Σ \ {a})∗#Σ∗. A similar construction can
be given for Lrh. By Lemma 5 and since the family of regular languages is a
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concatenation closed trio, the languages Llh and Lrh are regular, too. Hence we
conclude that T=(k+1)(A) is regular and the stated claim follows for the hairpin
operations under consideration.

For the general hairpin the idea of the above given proof is not directly ap-
plicable, because the pointers for the general hairpin operation are not uniquely
determined as in the case of left- and right-most hairpin. Nevertheless, by an-
other construction we succeed showing that at most k general hairpin operations
remain regular. We sketch the construction for k = 2, but it is easy to see that
it generalizes to arbitrary k. Performing exactly two general hairpin operations
results in three different situation schemes, namely, the pointers are (i) non-
overlapping, (ii) nested overlapping, and (iii) cross dependent. In case (i) the
input to the automaton is of the form u1au2au3bu4bu5, and the two general
hairpins are done on the pointers a and b, which are not necessarily differ-
ent. Similarly, for (ii) and (iii) the input is of the form u1au2bu3bu4au5 and
u1au2bu3au4bu5, respectively. To construct a finite automaton for the hairpin
language under consideration, the machine guesses the situation scheme, e.g.,
cross dependent, and then the input is assumed to be of the form u1au2bu3au4bu5

and will be processed as follows: During the computation from left to right of
the simulating finite state automaton, 2 ·5 mappings of the form Q×2Q induced
by the transition function δ of the hairpin automaton for the words ui and uR

i ,
for 1 ≤ i ≤ 5, are computed online. Finally these mappings are appropriately
combined together with the transition function Δ of the hairpin automaton such
that a run on the word u1auR

3 buR
4 au2bu5 is simulated. Since the number of situ-

ation schemes is a constant depending on k we are done. The tedious details are
omitted due to the space limitation. 
�

In the sequel we consider automata whose number of hairpin transitions is not
restricted to be constant. We call a hairpin transition or a series of consecutive
hairpin transitions void, if they change the state of the automaton only, but do
not change the remaining input word. For example, if in between the pointers
there is a palindrome, or if two consecutive hairpin transitions on the same
pointer pair are performed, then the transitions are void. Observe that the latter
case is not useless. It can be used to test whether there is a matching symbol in
the remaining input. If not, the computation gets stuck, otherwise it continues.

We turn to compare the computational capacities of the devices under consid-
eration. To this end, next we present a tool for showing that certain languages
are not accepted by right-most hairpin automata.

Lemma 7. Let L ⊆ Σ∗ be a right-most hairpin automaton language. Then there
exist constants n > 0 and �, r, where � + r > 0, such that any word of L that
admits a factorization vxu(vR)yw, where x, y ≥ n, u, v ∈ Σ+, all symbols of v are
different, and w ∈ Σ∗ contains no symbols of v, implies vxvi·�u(vR)yvi·rw ∈ L,
for any i ≥ 0.

Proof. Let A be a λ-free, s-state right-most hairpin automaton accepting lan-
guage L. We set n = 2s + 1, let v = a1 · · ·ak ∈ Σ+, and consider an input
vxu(vR)yw, where x, y ≥ n, u ∈ Σ+.
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While A consumes subwords v, hairpin transitions have the following form:

(q, aiai+1 · · · akvx′
u(vR)y′

ak · · ·ai+1ai · · · a1w)

( (p, aiai+1 · · · akvy′
uR(vR)x′

ak · · · ai+1ai · · · a1w).

So, the state may change, the subword u is reversed, and the numbers x′ and y′

of still unread subwords v are interchanged.
Whenever automaton A reads the first symbol a1 of some subword v, it does

it in some state q having performed either an even or an odd number of hairpin
transitions. For this there are at most n− 1 = 2s possibilities. Since x and y are
at least n, there are at least two configurations which are identical except for
the number of consumed subwords v, say (q, vx1u(vR)y1w) and (q, vx2u(vR)y2w),
for an even number of hairpin transitions performed, and (q, vy1uR(vR)x1w) and
(q, vy2uR(vR)x2w), for an odd number of hairpin transitions performed, where
1 ≤ x2 ≤ x1 ≤ x, 1 ≤ y2 ≤ y1 ≤ y, and x2 + y2 ≤ x1 + y1.

Now let � = x1 − x2 and r = y1− y2 in the case of an even number of hairpin
operations, and � = y1 − y2 and r = x1 − x2 in the other case. We obtain
� + r = x1 − x2 + y1 − y2 > 1. Moreover, there are computations

(q, vx1vx1−x2u(vR)y1(vR)y1−y2w) (∗ (q, vx1u(vR)y1w) or
(q, vy1vy1−y2uR(vR)x1(vR)x1−x2w) (∗ (q, vy1uR(vR)x1w).

Repeating the computations completes the proof. 
�

Theorem 8. There is a general hairpin automaton language, which is neither
a left-most, nor a right-most hairpin automaton language.

Proof. By Example 2, the language L#, where L = {w ∈ {a, b}∗ | |w|a = |w|b }
is a general hairpin automaton language. In order to disprove that L# is a right-
most hairpin automaton language we apply Lemma 7. Contrarily we assume L#
is such a language, set v = #a, w = λ, and consider words vn#(b#)2n(vR)n,
where n is the constant of Lemma 7. Since these words belong to L#, there are
constants � + r > 0 such that vn+�#(b#)2n(vR)n+r belongs to L#, too, which is
a contradiction.

In order to disprove that L# is a left-most hairpin automaton language we
consider words (#a)m(#b)m#, m ≥ 1. While reading the first half of the input,
any left-most hairpin transition is a void one. Therefore, if m is large enough, a
corresponding acceptor would run into cycles, and words with more symbols a
than symbols b would be accepted. 
�

At first glance, one could expect that general hairpin automata are more powerful
than right-most hairpin automata. In fact, both automata classes are incompa-
rable with respect to their language acceptance capacities. In order to prove this
result, we present a tool for showing that certain languages are not accepted by
general hairpin automata.

Lemma 9. Let L ⊆ Σ∗ be a language accepted by some general hairpin automa-
ton A, and let uavawaz be a word in L, where a ∈ Σ, and u, v, w, z ∈ Σ∗.
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1. If there is an accepting computation such that (q, avawaz) ( (p, awRavRaz)
is the first non-void hairpin transition, then uawavRaz belongs to L, too.

2. If there is an accepting computation such that (q, avawaz) ( (p, avRawaz)
is the first non-void hairpin transition, then uawRavaz belongs to L, too.

Proof. We consider an accepting computation of general hairpin automaton A on
input uavawaz. We have (q0, uavawaz) (∗ (q, avawaz), since there are only void
hairpin transitions on the prefix u, (q, avawaz) ( (p, awRavRaz) (respectively
(q, avawaz) ( (p, avRawaz)) is the first non-void hairpin transition, and finally
(p, awRavRaz) (∗ (qf , λ) (respectively (p, avRawaz) (∗ (qf , λ)) is the rest of
the computation. Due to the nondeterministic choice of the matching pointer a,
we obtain (q0, uawavRaz) (∗ (q, awavRaz) ( (p, awRavRaz) (∗ (qf , λ) (respec-
tively (q0, uawRavaz) (∗ (q, awRavaz) ( (p, avRawaz) (∗ (qf , λ)), and the as-
sertion follows. 
�

Theorem 10. There is a right-most hairpin automaton language, which is nei-
ther a left-most nor a general hairpin automaton language.

Proof. By Example 3, language L#, where L = { anbn | n ≥ 0 } is a right-most
hairpin automaton language.

In order to disprove that L# is a general hairpin automaton language we ap-
ply Lemma 9. Contrarily, we assume L# is accepted by some general hairpin
automaton A. We observe that A has to perform a non-void hairpin transition
while reading the first half #a#a · · ·#a of the input. Otherwise it would run into
a loop, if n is large enough. Whenever A performs a hairpin transition on point-
ers a, it is a void transition since in between the pointers there is a palindrome.
Therefore, the non-void transition appears on pointers #. Moreover, in between
both pointers there are both symbols a and b. Otherwise it would be a void
transition. We conclude that the input can be factorized u#x#z, where the first
non-void transition appears on the pointers #, and x contains at least one sym-
bol a and at least one symbol b. So, we obtain u#v#w#z, where v contains no b
and w contains no a. By Lemma 9 (1), the input u#w#vR#z belongs to L#, too.
This is a contradiction since some symbol a in vR follows some symbol b in w.

In order to disprove that L# is a left-most hairpin automaton language, we
observe that L is bounded but non-regular, and apply Corollary 14. 
�

Now we turn to compare the devices under consideration with some standard
language families. Trivially, all types of hairpin finite state automata accept the
regular languages. Obviously, unary languages accepted by hairpin automata
are regular since a hairpin transition does not change the remaining part of the
input. Therefore, it can be omitted.

Theorem 11. A unary language L is accepted by a hairpin automaton of any
type if and only if L is regular.

Example 3 shows that general hairpin and right-most hairpin automata accept
non-regular languages. On the other hand, the context-sensitive languages form
a proper upper bound.
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Theorem 12. The families of languages accepted by hairpin finite state au-
tomata of any type are properly included in the family of context-sensitive lan-
guages. For left- and right-most hairpin automata, in addition, they are properly
included in NP.

Proof. The first statement follows by a straightforward simulation of a hairpin
automaton A by a nondeterministic linear space-bounded Turing machine. The
properness of the inclusion follows by unary languages and Theorem 12. For the
second statement, in case of left- and right-most hairpin automata the Turing
machine obeys a polynomial time bound. We consider an accepting computation
of a right- or left-most hairpin automaton A on an input of length n. Let s be
the number of states of A. Since A is a one-way device, the input head may stay
at most s ·n time steps on one input tape cell, otherwise the computation would
run into cycles. Therefore, the computation obeys a time-bound of O(n2). The
details are left to the reader. The properness follows by Theorem 8, since there
is a non-accepted context-free language, and the context-free languages belong
to NP. 
�

Observe that a straightforward simulation of a general hairpin automaton by a
Turing machine does not lead to a polynomial time bound in general, since for
instance on a word of the form (#01)n# the hairpin inverse operation may be
used to produce all possible words w with w ∈ (#{01, 10})n#. Since the number
of words of this form is exponential in n, the running time is not necessarily
bounded by a polynomial anymore.

Next we focus our interest on context-free languages and some of their most
important sub-families. In particular, we consider linear, deterministic, and
bounded context-free languages. We recall that a language over some alphabet
{a1, . . . , ak} is bounded, if it is a subset of a∗1a∗2 · · · a∗k.

Theorem 13. Let L be a bounded language. If L is accepted by a hairpin au-
tomaton of any type, then it is regular.

Proof. Let A be an automaton of a type under consideration, and let A accept
a bounded language L. We construct an equivalent nondeterministic finite au-
tomaton A′. Basically, the construction is based on the observation that any
hairpin transition, regardless of left-most hairpin, right-most hairpin, or general
hairpin, is a void one. Automaton A′ may simulate ordinary transitions of A
directly. Whenever A applies a hairpin transition, automaton A′ simulates the
state change directly and, in addition, remembers that it has to check whether
the next input symbol is a matching pointer, i.e., whether there is a matching
pointer at all. If the check fails, automaton A′ rejects. 
�

For left-most hairpin automata the following generalization follows immediately.

Corollary 14. Let L be a bounded language. If L# is accepted by a left-most
hairpin automaton, then L is regular.

Now we can collect the first parts of the comparisons.
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Theorem 15. There is a bounded, linear, deterministic context-free language,
which is neither a general hairpin, nor a left-most hairpin, nor a right-most
hairpin automaton language.

Proof. The language { anbn | n ≥ 0 } is bounded, linear, deterministic context
free, but not regular. Hence, the statement holds due to Theorem 13. 
�

For the converse comparison we derive the following corollary from Example 3.

Corollary 16. There is a non-context-free general hairpin automaton language.

The non-context-free language of Example 3 is not accepted by right-most hair-
pin automata. But nevertheless, the next theorem says that there is a suitable
language.

Theorem 17. There is a non-context-free right-most hairpin automaton lan-
guage.

Proof. The witness language is L = { (a#$)n(b#)n(c$)n | n ≥ 1 }. Clearly, lan-
guage L is not context free.

A (deterministic) right-most hairpin automaton A which accepts L works in
cycles. A cycle starts in the initial state q0. By reading a symbol a, state q1 is
reached. Next, a right-most hairpin transition on # leads to state q2. Reading #
and b consecutively leads to state q3. If automaton A finds an input symbol $
in state q3, it tries to read the sequence $#c$. If this sequence is the rest of
the input, automaton A accepts. If A finds an input symbol # in state q3, it
performs a right-most hairpin transition and changes to state q4. Subsequently,
it reads the #, which leads to state q5, and tries to perform a right-most hairpin
transition on $, which leads to state q6. The computation continues by reading $
and c consecutively. Now A is in state q7. Next a right-most hairpin transition
on $ leads to state q8. Finally, reading the symbol $ completes the cycle, and A
changes back to state q0. So, automaton A computes cycles as follows:

(q0, (a#$)n(b#)n(c$)n) ( (q1, #$(a#$)n−1(b#)n−1b#(c$)n)
( (q2, #b(#b)n−1($#a)n−1$#(c$)n) (2 (q3, (#b)n−1($#a)n−1$#(c$)n)
( (q4, #$(a#$)n−1(b#)n−2b#(c$)n) ( (q5, $(a#$)n−1(b#)n−1(c$)n−1c$)
( (q6, $c($c)n−1(#b)n−1($#a)n−1$) (2 (q7, $c($c)n−2(#b)n−1($#a)n−1$)
( (q8, $(a#$)n−1(b#)n−1(c$)n−2c$) ( (q0, (a#$)n−1(b#)n−1(c$)n−1).

The acceptance is completed by:

(q0, a#$b#c$) ( (q1, #$b#c$) ( (q2, #b$#c$) (2 (q3, $#c$) (4 (qf , λ).

It remains to be shown that every accepted word belongs to L. To this end, we
observe that for all states there is just one unique transition to get in. Therefore,
we can reconstruct accepted words simply by reversing the above computations.


�
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CSL

CFL

L (rh-FA) L (h-FA) LIN DCFL

L (lh-FA) BCFL

REG

Fig. 1. Inclusion structure, where a solid line with one arrow indicates a proper in-
clusion, a solid line with two arrows links incomparable families, a dotted line with
one arrow indicates either proper inclusion or equality, and a dotted line with two
arrows links families which are either incomparable or related by a proper inclusion.
In addition, language families that are not linked by a path are pairwise incompara-
ble. L (lh-FA), L (rh-FA), and L (h-FA) denote the families of languages which are
accepted by left-most hairpin, right-most hairpin, and general hairpin automata, re-
spectively. Moreover, BCFL refers to the family of bounded context-free languages.
The context-sensitive languages are a proper superset of all depicted families (indi-
cated by the arrows pointing to CSL). The regular languages are properly contained
in all families other than L (lh-FA) (indicated by the arrows starting at REG).

4 Conclusions

We have studied the power of hairpin finite automata, which are finite machines
equipped with the additional ability to apply a hairpin inversion operation on
the unread part of the input. The proven inclusion relations are summarized in
Figure 1. Moreover, we also considered closure and non-closure properties, as
well as basic computational complexity problems of these language families. The
closure properties are summarized in the following table.

∪ ∩ ∼ · ∗ h−1 hλ ·R
h-FA yes no no no no no no no
rh-FA yes no no no no no no ?

Nevertheless, several questions for hairpin finite automata remain unanswered.
We mention a few of them: (1) What is the computational power of left-most
hairpin automata? We were not even able to determine the relationship between
the automata and ordinary finite automata. So, is there a non-regular language
accepted by left-most hairpin automata? Or are these hairpin automata another
characterization of regular languages? In the latter case, the closure properties
would be trivial, but descriptional complexity issues would be of natural interest.
In the former case, negative closure properties would be of interest. (2) The fam-
ily of general hairpin automata languages is not even closed under intersection
with regular sets. This fact sheds some light on the relations between nondeter-
minism (with respect to the choice of matching pointers) and the structure of
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words. Is the family of right-most hairpin languages closed under intersection
with regular sets? (3) The hairpin inversion operation deals with the reversal of
subwords, but the family of general hairpin automata languages is not closed un-
der reversal. What about the family of right-most hairpin automata languages?
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Abstract. The biological process of gene assembly has been modeled
based on three types of string rewriting rules, called string pointer rules,
defined on so-called legal strings. It has been shown that reduction
graphs, graphs that are based on the notion of breakpoint graph in the
theory of sorting by reversal, for legal strings provide valuable insights
into the gene assembly process. We characterize which legal strings ob-
tain the same reduction graph (up to isomorphism), and moreover we
characterize which graphs are (isomorphic to) reduction graphs.

1 Introduction

Ciliates form a large group of one-cellular organisms that are able to transform
one nucleus, called the micronucleus, into an astonishing different one, called the
macronucleus. This intricate DNA transformation process is called gene assem-
bly. Each gene in the micronucleus, called micronuclear gene, is transformed to
a gene in the macronucleus, called macronuclear gene. The string pointer reduc-
tion system models gene assembly based on three types of string rewriting rules,
called string pointer rules, defined on so-called legal strings [1]. In this model,
a micronuclear gene is represented by a legal string u, while its macronuclear
gene (with its waste products) is represented by the reduction graph of u [2,3].
The reduction graph is based on the notion of breakpoint graph in the theory of
sorting by reversal [4,5,6].

In this paper we characterize which graphs are (isomorphic to) reduction
graphs (cf. Theorem 13). This characterization corresponds to an efficient al-
gorithm. In this way we obtain a restriction on the form of the macronuclear
structures that can possibly occur. We also provide a characterization that de-
termines, given two legal strings, whether or not they have the same reduction
graph (cf. Theorem 15). This may allow one to determine which micronuclear
genes obtain the same macronuclear structure. It turns out that two legal strings
obtain the same reduction graph (up to isomorphism) exactly when they can be
transformed into each other by two types of string rewriting rules, which sur-
prisingly are in a sense dual to the string positive rules and the string double
rules (two of the three types of string pointer rules).
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The latter characterization has other uses as well. In a sense, the reduction
graph allows for a complete characterization of applicability of string nega-
tive rules, the other type of string pointer rule, during the transformation pro-
cess [2,7,8,3]. Moreover, it has been shown that the reduction graph does not re-
tain much information about the applicability of the other two types of rules [7].
Therefore, the legal strings that obtain the same reduction graph are exactly
the legal strings that have similar characteristics concerning the string negative
rule. From a biological point of view, this may allow for a way to determine
whether or not the strategies regarding the string negative rule are different
among the different kinds of (genes in) ciliates. Due to space constraints, proofs
of the results are omitted, but can be found in an extended version [9].

2 String Pointer Reduction System

The string pointer reduction system is the model of gene assembly that is used in
this paper. In this section we give a concise description of this system, omitting
examples and motivation. We refer to [10] for an in-depth description of this
model including motivation and examples.

We fix κ ≥ 2, and define the alphabet Δ = {2, 3, . . . , κ}. For D ⊆ Δ, we define
D̄ = {ā | a ∈ D} and Π = Δ ∪ Δ̄. The elements of Π will be called pointers.
We use the “bar operator” to move from Δ to Δ̄ and back from Δ̄ to Δ. Hence,
for p ∈ Π , ¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π , the inverse of u is
the string ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π , we define p to be p if p ∈ Δ, and p̄
if p ∈ Δ̄, i.e., p is the “unbarred” variant of p. The domain of a string v ∈ Π∗

is dom(v) = {p | p occurs in v}. A legal string is a string u ∈ Π∗ such that for
each p ∈ Π that occurs in u, u contains exactly two occurrences from {p, p̄}. For
a pointer p and a legal string u, if both p and p̄ occur in u then we say that both
p and p̄ are positive in u; if on the other hand only p or only p̄ occurs in u, then
both p and p̄ are negative in u. We say that legal strings u and v are equivalent,
denoted by u ≈ v, if there is homomorphism ϕ : Π∗ → Π∗ with ϕ(p) ∈ {p, p̄}
and ϕ(p̄) = ϕ(p) for all p ∈ Π such that ϕ(u) = v. E.g., legal strings 22̄33 and
2̄233 are equivalent, while 22̄33 are 22̄3̄3 are not. Note that ≈ is an equivalence
relation. Equivalent legal strings are characterized by their “unbarred version”
and their set of positive pointers.

The string pointer reduction system consists of three types of reduction rules,
called string pointer rules, operating on legal strings. Here we will not consider
these rules directly, but rather study the reduction graph (which is recalled in
the next section) that captures essential properties of the rewriting system.

3 Reduction Graph

First we give some general notions w.r.t. graphs. A coloured base B is a 4-tuple
(V, f, s, t) such that V is a finite set of vertices, s, t ∈ V are the source and target
vertices respectively, and f : V \{s, t} → Γ for some set of vertex labels Γ . The
elements of {{x, y} | x, y ∈ V, x �= y} are called edges for B. A n-edge coloured
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graph, n ≥ 1, is a tuple G = (V, E1, E2, · · · , En, f, s, t) where B = (V, f, s, t)
is a coloured base and, for i ∈ {1, . . . , n}, Ei is a set of edges for B. We also
denote G by B(E1, E2, · · · , En). We define dom(G) = rng(f), where rng(f) is the
range f(V ) of f . As usual, graphs G and G′ are considered isomorphic, denoted
G ≈ G′, when they are equal modulo the identity of the vertices. However, the
source (target, resp.) vertex of G needs to correspond to the source (target, resp.)
vertex of G′.

We now recall the definition of reduction graph. This definition is equal to
the one in [7], and is in slightly less general form compared to the one in [2]. We
refer to [2], where it was introduced, for a motivation and for more examples
and results. The notion of reduction graph uses the intuition from the notion of
breakpoint graph (or reality-and-desire diagram) known from another branch of
DNA processing theory called sorting by reversal, see e.g. [6] and [11].

Definition 1. Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The re-
duction graph of u, denoted by Ru, is a 2-edge coloured graph (V, E1, E2, f, s, t),
where

V = {I1, I2, . . . , In} ∪ {I ′1, I ′2, . . . , I ′n} ∪ {s, t},

E1 ={e0, e1, . . . , en} with ei ={I ′i, Ii+1} for 1 < i < n, e0 ={s, I1}, en ={I ′n, t},

E2 = {{I ′i, Ij}, {Ii, I ′j} | i, j ∈ {1, 2, . . . , n} with i �= j and pi = pj} ∪
{{Ii, Ij}, {I ′i, I ′j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called the
desire edges. Notice that for each p ∈ dom(u), the reduction graph of u has
exactly two desire edges containing vertices labelled by p. It follows from the
definition that, given legal strings u and v, u ≈ v iff Ru = Rv. Reality edges
follow the linear order of the legal string, whereas desire edges connect positions
in the string that will be joined when performing reduction rules, see [2].

In depictions of reduction graphs, we will represent the vertices (except for s
and t) by their labels, because the exact identity of the vertices is not essential
for the problems considered in this paper. We will also depict reality edges as
“double edges” to distinguish them from the desire edges.

s 2 2 7 7 4 4 7 7 3 3 5 5 3 3 4 4 2 2 6 6 5 5 6 6 t

Fig. 1. The reduction graph Ru of u in Example 1
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s 2 2 6 6 t 6 6 5

2 7 7 7 7 3 5 5

2 4 4 4 4 3 5 3 3

Fig. 2. The reduction graph of Figure 1 obtained by rearranging the vertices

Example 1. The reduction graph of u = 27̄473534̄2656 is depicted in Figure 1.
Note how positive pointers (here 4 and 7) are connected by crossing desire edges,
while those for negative pointers are parallel. By rearranging the vertices we can
depict the graph as shown in Figure 2.

4 Abstract Reduction Graphs and Extensions

We now generalize the notion of reduction graph as a starting point to consider
which graphs are (isomorphic to) reduction graphs. Moreover, we extend the
reduction graphs by a set of edges, called merge edges, such that, along with the
reality edges, the linear structure of the legal string is preserved in the graph.
We will first define a set of edges for a given coloured base which has features in
common with desire edges of a reduction graph.

Definition 2. Let B = (V, f, s, t) be a coloured base. We say that a set of edges
E for B is desirable if (i) for all {v1, v2} ∈ E, f(v1) = f(v2), and (ii) for each
v ∈ V \{s, t} there is exactly one e ∈ E such that v ∈ e.

We now generalize the concept of reduction graph. We define for f : X → Y and
y ∈ Y , f−1(y) = {x ∈ X | f(x) = y}.

Definition 3. A 2-edge coloured graph B(E1, E2) with B = (V, f, s, t) is called
an abstract reduction graph if

1. rng(f) ⊆ Δ, and for each p ∈ rng(f), |f−1(p)| = 4,
2. for each v ∈ V there is exactly one e ∈ E1 such that v ∈ e,
3. E2 is desirable for B.

The set of all abstract reduction graphs is denoted by G. Clearly, if G ≈ Ru for
some u, then G ∈ G. Therefore, for abstract reduction graphs G = B(E1, E2),
the edges in E1 are called reality edges and the edges in E2 are called desire
edges. For graphical depictions of abstract reduction graphs we will use the same
conventions as we have for reduction graphs. Thus, edges in E1 will be depicted
as “double edges”, vertices are represented by their label, etc.

The definition of abstract reduction graph captures the “look and feel” of
reduction graphs (see the next example). Each vertex label occurs four times,
etc. The first goal of this paper is to set additional properties that characterize
reduction graphs. It will turn out that the next example will not pass the test.
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2 2 5 5 9 8 8 s

5 5 4 4 9 7 7 9

2 2 3 3 8 8 3 3 9

4 4 7 7 6 6 6 6 t

Fig. 3. An abstract reduction graph

Example 2. The 2-edge coloured graph in Figure 3 is an abstract reduction
graph.

Next we introduce an extension to reduction graphs such that the “generic”
linear order of the vertices s, I1, I ′1, . . . , In, I ′n, t is retained, even when we consider
the graphs up to isomorphism.

Definition 4. Let u be a legal string. The extended reduction graph of u, de-
noted by Eu, is a 3-edge coloured graph B(E1, E2, E3), where Ru = B(E1, E2)
and E3 = {{Ii, I ′i} | 1 ≤ i ≤ n} with n = |u|.

The edges in E3 are called the merge edges of u, denoted by Mu. In this way,
the reality edges and the merge edges form a unique path which passes through
the vertices in the generic linear order. This is illustrated in the next example.
In figures merge edges will be depicted by “dashed edges”.

s 2 �� 2 7 �� 7 4 �� 4 7 �� 7 3 �� 3 5 �� 5 3 �� 3 4 �� 4 2 �� 2 6 �� 6 5 �� 5 6 �� 6 t

Fig. 4. The extended reduction graph Eu of u given in Example 1

Example 3. The extended reduction graph Eu of u given in Example 1 is shown
in Figure 4, cf. Figure 1.

Merge edges can be generalized for abstract reduction graphs as follows.

Definition 5. Let G = B(E1, E2) ∈ G, and let E be a set of edges for B. We
say that E is merge-legal for G if E is desirable for B, and E2 ∩ E = ∅. We
denote the set {E | E merge-legal for G} by ωG. The set of all E ∈ ωG where
B(E1, E) is a connected graph is denoted by θG.

For legal string u, we also denote ωRu and θRu by ωu and θu, respectively.
Notice that Mu ∈ θu ⊆ ωu. Therefore, merge-legal edges will also be depicted
by “dashed edges”.
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Fig. 5. An abstract reduction graph with two different sets of merge-legal edges

Example 4. Figure 5 depicts an abstract reduction graph twice. On the left-
hand side it is augmented with a merge-legal set that is not in θG, and on the
right-hand side is augmented with a merge-legal set that is in θG.

We say that G = B(E1, E2, E) is an extended abstract reduction graph if G′ =
B(E1, E2) ∈ G and E ∈ θG′ . Since Mu ∈ θu for each legal string u, this notion
is a natural abstraction of the notion of extended reduction graph, and hence
the edges in E will be called merge edges (of G). Moreover, for each graph
G′ = B(E1, E2) ∈ G isomorphic to a reduction graph we must have θG′ �= ∅. In
the next section we show that this condition is sufficient.
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Fig. 6. An extended abstract reduction graph obtained by augmenting the reduction
graph of Figure 2 with merge edges

Example 5. If we consider the reduction graph Ru = B(E1, E2) of Example 1
shown in Figures 1 and 2, then, of course, B(E1, E2, Mu) = Eu shown in Figure 4
is a extended abstract reduction graph. In Figure 6 another extended reduction
graph is shown – it is Ru augmented with a set of merge edges E in θu. It is
easy to see that indeed E ∈ θu: simply notice that the path from s to t induced
by the reality and merge edges will go through every vertex of the graph.

5 Back to Legal Strings

We now show that for extended abstract reduction graphs G we can “go back”
in the sense that there are legal strings u such that G is isomorphic to Eu. Due to
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space constraints, we do this by example. The idea is that the reality and merge
edges together form the linear structure of the legal string, while the desire edges
determine whether the pointers are positive or negative.

s 2 �� 2 7 �� 7 4 �� 4 2 �� 2 6 �� 6 5 �� 5 3 �� 3 7 �� 7 4 �� 4 3 �� 3 5 �� 5 6 �� 6 t

Fig. 7. The extended abstract reduction graph G given in Example 6

Example 6. Let us consider the extended abstract reduction graph G of Fig-
ure 6. By rearranging the vertices we obtain Figure 7. From this figure and the
definition of extended reduction graph, it is clear that v = 274265̄374356 is a
legal string that corresponds to G. Moreover, every legal string equivalent to v
also corresponds to G.

Let LG be the set of all legal strings that corresponds to extended abstract
reduction graph G. It turns out that LG is an non-empty equivalence class w.r.t.
to the ≈ relation (for legal strings).

Theorem 6. (i) Let G and G′ be extended abstract reduction graphs. Then G ≈
G′ iff LG = LG′ . (ii) Let u and v be legal strings. Then u ≈ v iff Eu ≈ Ev.

Let G be an extended abstract reduction graph, and take u ∈ LG (such a u exists
since LG is nonempty). Since u ∈ LEu and the LG’s are equivalence classes, we
have LEu = LG and therefore G ≈ Eu. Thus every extended abstract reduction
graph G is isomorphic to an extended reduction graph. As a corollary we have
the following graph theoretical characterization of reduction graphs.

Theorem 7. Let G be a 2-edge coloured graph. Then G is isomorphic to a re-
duction graph iff G ∈ G and θG �= ∅.

It is easy to verify that θG = ∅ for graph G in Figure 8. Therefore this graph
is not isomorphic to a reduction graph. From an algorithmic point of view,
Theorem 7 is not very useful since it requires one to check for each E ∈ ωG,
whether or not E ∈ θG (this is e.g. not trivial for the graph in Figure 3).

s 2 2 2 2 t 3 3

3 3

Fig. 8. An abstract reduction graph G for which θG = ∅
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6 Flip Edges

In this section and the next two we provide a characterization of the statement
θG �= ∅. This allows, using Theorem 7, for an efficient algorithm that determines
whether or not a given G ∈ G is isomorphic to a reduction graph. Moreover,
it allows for an efficient algorithm that determines a legal string u for which
G ≈ Ru.

v1 ��� v3

v2 ��� v4

↔

v1

�
�

�
� v3

v2

�
�

�
�

v4

Fig. 9. Flip operation for p. All vertices are labelled by p.

Let G ∈ G. Then a merge-legal set for G is easily obtained as follows. Let
p ∈ dom(G) and let {v1, v2} and {v3, v4} be the two desire edges with vertices
labelled by p. A merge-legal set for G must have either the edges {v1, v3} and
{v2, v4} or the edges {v1, v4} and {v2, v3}, see both sides in Figure 9. By assigning
such edges for each p ∈ dom(G) we obtain a merge-legal set for G. Thus, ωG �= ∅
for each G ∈ G. Note that in particular, if dom(G) = ∅, then ωG = {∅}.

We now formally define a type of operation that in Figure 9 transforms the
situation on the left-hand side to the situation on the right-hand side, and the
other way around. Informally speaking it “flips” edges of merge-legal sets.

Definition 8. Let G = B(E1, E2) ∈ G, let f be the vertex labeling function of
G, and let p ∈ dom(G). The flip operation for p (w.r.t. G), denoted by flipG,p,
is the function ωG → ωG defined by:

flipG,p(E) = {{v1, v2} ∈ E | f(v1) �= p �= f(v2)} ∪ {e1, e2},

where e1 and e2 are the two edges with vertices labelled by p such that e1, e2 �∈
E2 ∪ E.

When G is clear from the context, we also denote flipG,p by flipp. By Figure 9,
the flip operations are self-inverse, i.e. flip2

G,p is the identity function on ωG.

Example 7. Consider Figure 5, and let G be the abstract reduction graph (ig-
noring the merge-legal edges) of this figure. If we apply flipG,2 to the set of
merge-legal edges depicted on the left-hand side of the figure, then we obtain
the set of merge-legal edges depicted in on the right-hand side of the figure.

Let G ∈ G, and let D = {p1, . . . , pl} ⊆ dom(G). Then we define flipD =
flippl

· · · flipp1
. Note that flipD is well defined. Also, if D1, D2 ⊆ dom(G)

and D1 �= D2, then flipD1
(E) �= flipD2

(E). Moreover, for each E ∈ ωG, ωG =
{flipD(E) | D ⊆ dom(G)}.
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7 Merging and Splitting Connected Components

We now recall the definition of pointer-component graph, introduced in [7]. We
generalize it here (trivially) for abstract reduction graphs in general. Surprisingly
however, this graph has different uses in this paper compared to its original uses
in [7], where it is used to characterize which string negative rules are used in
sequences of string pointer rules that transforms u into the empty string.

First, we recall the notion of multigraph. A multigraph is a (undirected) graph
G = (V, E, ε), where parallel edges are possible. Therefore, E is a finite set of
edges and ε : E → {{x, y} | x, y ∈ V } is the endpoint mapping. We allow x = y,
and therefore edges can be of the form {x, x} = {x} — an edge of this form
should be seen as a “loop” for x. The order |V | of G is denoted by o(G). Again,
multigraphs are considered isomorphic when they are equal modulo the identity
of the vertices: multigraphs G = (V, E, ε) and G′ = (V ′, E, ε′) are isomorphic,
denoted G ≈ G′, if there is a bijection α : V → V ′ such that αε = ε′, or more
precisely, for e ∈ E, ε(e) = {v1, v2} implies ε′(e) = {α(v1), α(v2)}.

Definition 9. Let G ∈ G. The pointer-component graph of G, denoted by PCG,
is a multigraph (ζ, E, ε), where ζ is the set of connected components of G, E =
dom(G), and ε is, for e ∈ E, defined by ε(e) = {C ∈ ζ | C contains vertices
labelled by e}.

If G = Ru for some legal string u, then we also write PCu = PCG and we say
that PCu is the pointer-component graph of u.
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Fig. 10. The pointer-component graphs of the (abstract) reduction graphs from Fig-
ure 2 (left-hand side) and from Figure 3 (right-hand side)

Example 8. The pointer-component graphs of the (abstract) reduction graphs
from Figure 2 and from Figure 3 are shown in Figure 10.

Let G = B(E1, E2) be an abstract reduction graph and let E ∈ ωG. We consider
the effect of the flip operation on the pointer-component graph defined on the
abstract reduction graph H = B(E1, E). Note that when G = B(E1, E2) ∈ G
and E ∈ ωG, then E is desirable for B, and thus H = B(E1, E) ∈ G. There-
fore, e.g., PCH is defined. We distinguish the pointers that form loops in the
pointer-component graph: for G ∈ G, bridge(G) = {e ∈ E | |ε(e)| = 2}
where PCG = (V, E, ε). E.g., by the right-hand side of Figure 10 we have
bridge(G) = dom(G)\{3, 6} for G depicted in Figure 3.
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Definition 10. For each edge p, the p-merge rule, denoted by mergep, is a rule
applicable to (defined on) multigraphs G = (V, E, ε) with p ∈ bridge(G). It is
defined by mergep(G) = (V ′, E, ε′), where V ′ = (V \ε(p))∪{v′} with v′ �∈ V , and
ε′(e) = {h(v1), h(v2)} iff ε(e) = {v1, v2} where h(v) = v′ if v ∈ ε(p), otherwise it
is the identity.

It is easy to see that merge rules commute. We are now ready to state the
following result. The (proof of the) result shows that depending on whether or
not p is a loop, the flip operation on p can merge connected components or
modify/split a connected component.

Theorem 11. Let G = B(E1, E2) ∈ G, let E ∈ ωG, let H = B(E1, E), and let,
for p ∈ dom(G), Hp = B(E1, flipp(E)).

– If p ∈ bridge(H), then PCHp ≈ mergep(PCH)
(and therefore o(PCHp) = o(PCH)− 1).

– If p ∈ dom(H)\bridge(H), then o(PCH) ≤ o(PCHp) ≤ o(PCH) + 1.

Example 9. Consider again Figure 5, and let G = B(E1, E2) be the abstract
reduction graph (ignoring the merge-legal edges) of this figure. If we let E ∈ ωG

be the set of merge-legal edges depicted on the left-hand side of the figure, then
2 ∈ bridge(H) with H = B(E1, E). Therefore, by Theorem 11 and the fact that
G has exactly two connected components, H2 = B(E1, flip2(E)) is a connected
graph. Indeed, this is clear from the right-hand side of the figure (by ignoring
the edges from E2).

8 Connectedness of Pointer-Component Graphs

We now characterize the requirement θG �= ∅ found in Theorem 7. The proof of
this result depends heavily on Theorem 11.

Theorem 12. Let G ∈ G. Then PCG is a connected graph iff θG �= ∅.

Example 10. By Theorem 12 and the left-hand side of Figure 10, for the (ab-
stract) reduction graph G1 in Figure 2 we have θG1 �= ∅. By the right-hand side
of Figure 10, for the abstract reduction graph G2 in Figure 3 we have θG2 = ∅.

By Theorem 12 and Theorem 7 we obtain the first main result of this paper.
It shows that one needs to check only a few computationally easy conditions to
determine whether or not a 2-edge coloured graph is (isomorphic to) a reduction
graph. Surprisingly, the “high-level” notion of pointer-component graph is crucial
in this characterization.

Theorem 13. Let G be a 2-edge coloured graph. Then G isomorphic to a re-
duction graph iff G ∈ G and PCG is a connected graph.

Not only is it computationally efficient to determine whether or not a 2-edge
coloured graph G is isomorphic to a reduction graph, but, when this is the case,
then it is also computationally easy to determine a legal string u for which
G ≈ Ru. Indeed, we can determine such a u from G = B(E1, E2) as follows:
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1. Determine an E ∈ ωG. As we have seen, such an E is easily obtained.
2. Compute PCH with H = B(E1, E), and determine a set of edges D such

that PCH |D is a tree, where PCH |D is PCH restricted to the set of edges D,
3. Compute G′ = B(E1, E2, flipD(E)), and determine a u ∈ LG′ .

As a consequence, every connected multigraph G = (V, E, ε) with E ⊆ Δ
is isomorphic to a pointer-component graph of a legal string. Thus pointer-
component graphs of legal strings can, surprisingly, take all imaginable forms.

9 Dual String Rules

If we let R be the function that assigns to each legal string u its reduction graph
Ru, then Theorem 13 characterizes the range of R. Here we characterize the
fibers R−1(Ru) modulo graph isomorphism, i.e., we characterize when two legal
strings have isomorphic reduction graphs.

First we define the dual string rules. These rules turn out to characterize the
effect of flip operations on the underlying legal string, cf. Theorem 14 below. For
all p, q ∈ Π with p �= q we define

– the dual string positive rule for p is defined by dsprp(u1pu2pu3) = u1pū2pu3,
– the dual string double rule for p, q is defined by dsdrp,q(u1pu2qu3p̄u4q̄u5) =

u1pu4qu3p̄u2q̄u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π . Notice that
the dual string rules are self-inverse. Also notice the strong similarities between
these rules and the string pointer rules, given, e.g., in [10,7].

Let u and v be legal strings. We say that u and v are dual, denoted by ≈d if
there is a (possibly empty) sequence ϕ of dual string rules applicable to u such
that ϕ(u) ≈ v. Notice that ≈d is an equivalence relation.

We define dom(dsprp) = {p} and dom(dsdrp,q) = {p, q} for p, q ∈ Π . For a
composition ϕ = ρn · · · ρ2 ρ1 of dual string rules we define dom(ϕ) = ∪idom(ρi).
We call ϕ reduced if dom(ρi) ∩ dom(ρj) = ∅ for all 1 ≤ i < j ≤ n.

Let G = B(E1, E2, E3) be an extended abstract reduction graph, and let
D ⊆ dom(G). Then we define flipD(G) = B(E1, E2, flipG′,D(E3)), where G′ =
B(E1, E2).

Theorem 14. Let u be a legal string, and let D ⊆ dom(u). There is a re-
duced sequence ϕ of dual string rules applicable to u such that dom(ϕ) = D iff
flipD(Mu) ∈ θu. In this case, Eϕ(u) ≈ flipD(Eu), and consequently Rϕ(u) ≈ Ru.

Using the previous result, we are ready to show the second (and final) main
result of this paper. It shows that R−1(Ru) (modulo graph isomorphism) for
legal string u is the “orbit” of u under the dual string rules.

Theorem 15. Let u and v be legal strings. Then u ≈d v iff Ru ≈ Rv.
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10 Discussion

This paper characterizes the range of R (Theorem 13) and each fiber R−1(Ru)
modulo graph isomorphism (Theorem 15).

The first characterization corresponds to a computationally efficient algorithm
that determines whether or not a graph G is isomorphic to a reduction graph.
It turns out that once G satisfies the “look and feel” of reduction graphs, e.g.,
each vertex label should occur exactly four times, then reduction graphs are
characterized as having a connected pointer-component graph. Moreover, if G
is isomorphic to a reduction graph, then the algorithm given below Theorem 13
allows for an efficient determination of a legal string u such that G ≈ Ru.

The second characterization determines, given u, the whole setR−1(Ru) mod-
ulo graph isomorphism. From a biological point of view, the fibers characterize
which micronuclear genes obtain the same macronuclear structure. It turns out
that R−1(Ru) is the orbit of u under the dual string rules. Surprisingly, these
two types of string rewriting rules are very similar to the string positive rules
and the string double rules that are used to define the model.
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Abstract. Visibly Pushdown Automata (VPA) are a special case of
pushdown machines where the stack operations are driven by the in-
put. In this paper, we consider VPA with two stacks, namely 2-VPA.
These automata introduce a useful model to effectively describe con-
current pushdown systems using a simple communication mechanism
between stacks. We show that 2-VPA are strictly more expressive than
VPA. Indeed, 2-VPA accept some context-sensitive languages that are
not context-free and some context-free languages that are not accepted
by any VPA. Nevertheless, the class of languages accepted by 2-VPA is
closed under all boolean operations and determinizable in ExpTime, but
does not preserve decidability of emptiness problem. By adding an or-
dering constraint on stacks (2-OVPA), decidability of emptiness can be
recovered (preserving desirable closure properties) and solved in PTime.
Using these properties along with the automata-theoretic approach, we
prove that the model checking problem over 2-OVPA models against
2-OVPA specifications is ExpTime-complete.

1 Introduction

In the area of formal design verification, one of the most significant developments
has been the discovery of the model checking technique, that automatically allows
to verify on-going behaviors of reactive systems ([4, 9, 12]). In this verification
method (for a survey see [5]), one checks the correctness of a system with respect
to a desired behavior by checking whether a mathematical model of the system
satisfies a formal specification of this behavior.

Traditionally, model checking is applied to finite-state systems, typically mod-
eled by labeled state-transition graphs. Recently, model checking has been ex-
tended to infinite-state sequential systems (e.g., see [13, 2]). These are systems in
which each state carries a finite, but unbounded, amount of information, e.g., a
pushdown store. Pushdown automata (PDA) naturally model the control flow of
sequential programs with nested and recursive procedure calls. Therefore, PDA
are the proper model to tackle with program analysis, compiler optimization,
and model checking questions that can be formulated as decision problems for
PDA. While many analysis problems, such as identifying dead code and accesses
to uninitialized variables, can be captured as regular requirements, many others
require inspection of the stack or matching of calls and returns, and are non-
regular context-free. More examples of useful non-regular properties are given
� Work partially supported by MIUR FIRB Project no. RBAU1P5SS.
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in [10], where the specification of unbounded message buffers is considered. Since
checking context-free properties on PDA is proved in general to be undecidable
[7], weaker models have been proposed to decide different kinds of non-regular
properties. One of the most promising approaches is that of Visibly Pushdown
Automata (VPA) [1]. These are PDA where the push or pop actions on the stack
are controlled externally by the input alphabet. Such a restriction on the use of
the stack allows to enjoy all desirable closure properties and tractable decision
problems, though retaining an expressiveness adequate to formulate program
analysis questions (as summarized in Figure 1). Therefore, checking pushdown
properties of pushdown models is feasible as long as the calls and returns are
made visible. This visibility requirement seems quite natural while writing re-
quirements about pre/post conditions or for inter-procedural flow properties. In
particular, requirements that can be verified in this manner include all regular
properties, and non-regular properties such as: partial correctness (if P holds
when a procedure is invoked, then, if the procedure returns, P ′ holds upon
return), total correctness (if P holds when a procedure is invoked, then the pro-
cedure must return and P ′ must hold at the return state), local properties (the
computation within a procedure by skipping over calls to other procedures sat-
isfies a regular property, for instance, every request is followed by a response),
access control (a procedure A can be invoked only if another procedure B is in
the current stack), and stack limits (whenever the stack size is bounded by a
given constant, a property A holds). Unfortunately, some natural context-free
properties like “the number of calls to procedures A and B is the same” cannot
be captured by any VPA [1]. Moreover, VPA cannot explicitly represent con-
currency: for instance, properties of two threads running in parallel, each one
exploiting its own pushdown store.

In this paper, we propose an extension of VPA in order to enrich with fur-
ther expressiveness the model though maintaining some desirable closure prop-
erties and decidability results. We first consider VPA with an additional, input
driven, pushdown store and we call the proposed model 2-Visibly Pushdown Au-
tomaton (2-VPA). As in the VPA case, 2-VPA input symbols are partitioned
in subclasses, each one triggering a transition belonging to a specific class, i.e.,
push/pop/local transition, which also selects the operating stack, i.e., the first or
the second or both. Moreover, visibility in 2-VPA affects the transfer of informa-
tion from one stack to the other. 2-VPA turn out to be strictly more expressive
than VPA and they also accept some context-sensitive languages that are not
context-free. Unfortunately, this extension does not preserve decidability of the
emptiness problem as we prove by a reduction from the halting problem over
Minsky Machines. In the automata-theoretic approach, to gain with a decidable
model checking procedure, decidability of the emptiness problem is crucial. For
this reason, we add to 2-VPA a suitable restriction on stack operations, namely
we consider 2-VPA in which pop operations on the second stack are allowed
only if the first stack is empty. We call such a variant ordered 2-VPA (2-OVPA).
The ordering constraint is inspired from the class of multi-pushdown automata
(MPDA), defined in [3]. These are pushdown automata exploiting an ordered
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collection of arbitrary number of pushdown stores in which a pop action on the
i-th stack can occur only if all previous stacks are empty. In [3], it has been
shown that the class of languages accepted by MPDA is strictly included into
context-sensitive languages, it has the emptiness problem decidable, it is closed
under union, but not under intersection and complement.

From an expressive point of view, 2-OVPA are a proper subclass of MPDA
with two stacks (PD2). Differently from PD2, exploiting visibility allows to re-
cover in 2-OVPA closure under intersection and complement thus allowing to
face the model checking problem following the automata-theoretic approach. In
such an approach, to verify whether a system, modeled as a 2-OVPA S, satisfies
a correctness requirement expressed by a 2-OVPA P , we check for emptiness
the intersection between the language accepted by S and the complement of the
language accepted by P (i.e., L(S)∩L(P ) = ∅). Since we prove for 2-OVPA that
intersection and emptiness can be performed in polynomial time while com-
plementation in exponential time, and since inclusion for VPA is ExpTime-
complete [1], we get that model checking an 2-OVPA model against an 2-OVPA
specification is ExpTime-complete. This is notable since checking context-free
properties on PDA is proved to be undecidable [7], as well as model checking
multi-pushdown properties over MPDA.

The extension we propose for VPA does not only affect expressiveness, but
also gives us a way to naturally describe distributed pushdown systems behav-
ior. In fact, we show that 2-OVPA capture the behavior of systems built on
pairs of VPA running in a suitable synchronous way according to a distributed
computing paradigm. To this purpose, we introduce a composition operator on
VPA parameterized on a communication interface. Given a pair of VPA, this
operator allows to build a Synchronized System of VPA (S-VPA), which behaves
synchronously and in parallel. A communication between two synchronous VPA
consists in a transfer of information from the top of the stack of one VPA to
the top of stack of the other. If we interpret each one of the involved VPA as
a process with its pushdown store (containing activation records of procedure
calls, for instance), the enforced communication form can be seen as a Remote
Procedure Call [11], widely exploited in the client-server paradigm of distributed
computing. In our case, ordering of VPA modules can be interpreted as follows:
we can see the former one acting as a client and the latter as a server. The client
can always demand to the server the execution of a task and the server can
return a result to the client whenever this is available (its stack is empty). The
properties of languages accepted by 2-VPA and 2-OVPA we obtain along the
paper are summarized in Figure 1. Due to page limitations, proofs are omitted
and reported in the extended version1.

2 Preliminaries

Let Σ be a finite alphabet partitioned into three pairwise disjoint sets Σc, Σr,
and Σl standing respectively for call, return, and local alphabets. We denote
1 http://people.na.infn.it/∼carotenuto/research/2vpaTechRep.pdf.
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Languages Closure Properties Decision problems

∪ ∩ Complement Emptiness Inclusion

Regular Yes Yes Yes Nlogspace Pspace

CFL Yes No No Ptime Undecidable

VPL Yes Yes Yes Ptime ExpTime

LPD2 Yes No No Ptime Undecidable

2-VPL Yes Yes Yes Undecidable Undecidable
2-OVPL Yes Yes Yes Ptime ExpTime

Fig. 1. A comparison between closure properties and decision problems

the tuple Σ̃ = 〈Σc, Σr, Σl〉 a visibly pushdown alphabet. A (nondeterministic)
visibly pushdown automaton (VPA) on finite words over Σ̃ [1] is a tuple M =
(Q, Qin, Γ,⊥, δ, QF ), where Q, Qin, QF , and Γ are respectively finite sets of
states, initial states, final states, and stack symbols ; ⊥ �∈ Γ is the stack bottom
symbol and we use Γ⊥ to denote Γ ∪ {⊥}; and δ ⊆ δc ∪ δr ∪ δl, is the transition
relation where δc = Q×Σc×Q×Γ , δr = Q×Σr×Γ⊥×Q, and δl = Q×Σl×Q.
We call (q, a, q′, γ) ∈ δc a push transition, where on reading a the symbol γ is
pushed onto the stack and the control state changes to q′; (q, a, γ, q′) ∈ δr a pop
transition, where γ is popped from the stack leading to the control state q′; and
(q, a, q′) ∈ δl a local transition, where the automaton on reading a only changes
its control to q′. A configuration for a VPA M is a pair (q, σ) ∈ Q × (Γ ∗.⊥)
where σ is the stack content. A run ρ = (q0, σ0) . . . (qk, σk) of M on a word
w = a1 . . . ak is a sequence of configurations such that q0 ∈ Qin, σ0 = ⊥, and
for every i ∈ {0, . . . , k}, one of the following holds: [Push]: (qi, ai, qi+1, γ) ∈ δc,
and σi+1 = γ.σi; [Pop]: (qi, ai, γ, qi+1) ∈ δr, and either γ ∈ Γ and σi = γ.σi+1,
or γ = σi = σi+1 = ⊥; or [Local]: (qi, ai, qi+1) ∈ δl and σi+1 = σi.

A run is accepting if its last configuration contains a final state. The language
accepted by a VPA M is the set of all words w with an accepting run of M on
w, say it L(M). A language of finite words L ⊆ Σ∗ is a visibly pushdown lan-
guage (VPL) with respect to a pushdown alphabet Σ̃, if there is a VPA M such
that L = L(M). VPLs are a subclass of deterministic context-free languages, a
superclass of regular languages, and are closed under intersection, union, com-
plementation, concatenation, and Kleene-∗. Furthermore, the emptiness problem
for a VPA M , i.e., deciding whether L(M) �= ∅, is decidable with time complexity
O(n3), where n is the number of states in M .

In the literature, different extensions of classical pushdown automata with
multiple stacks have been considered. Here, we recall multiple-pushdown au-
tomata as they were introduced in [3]. These machines are pushdown automata
endowed with an ordered set of an arbitrary number of stacks and the constraint
that pop operations occur sequentially and only operate on the first non-empty
stack. Thus, push operations are never constrained and they can be performed
independently on every stack. The formal definition follows.

A multi-pushdown automaton with n ≥ 1 stacks (PDn, for short) is a tuple
M = (Σ, Q, Qin, Γ , Z0, δ, QF ), where Σ, Q, Qin, Γ , and QF are respectively
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finite sets of input symbols, states, initial states, stack symbols, and final states,
Z0 �∈ Γ is the bottom stack symbol and used to identify the initial non-empty
stack, and δ is the transition relation defined as a partial function from Q ×
(Σ ∪ {ε}) × Γ to 2Q×(Γ ∗)n

. If (q′, α1, . . . , αn) ∈ δ(q, a, γ), on reading a the
automaton changes its control state from q to q′, the stack symbol γ ∈ Γ
is popped from the first non-empty stack, and for each i in {1, . . . , n}, and
αi ∈ Γ ∗ is pushed on the i-th stack. A configuration of M is a n + 2-tuple
〈q, x; σ0, . . . , σn〉, where q ∈ Q, x ∈ Σ∗, σ0, . . . , σn ∈ Γ ∗, and σi is the content
of the i-th stack. The above configuration is initial if q = q0, σ0 = Z0, and all
other stacks are empty, and it is final if q ∈ F . The transition relation (M over
configurations is defined in the following way: 〈q, ax; ε, . . . , ε, γ.γi, . . . , γn〉 (M

〈q′, x; α1, . . . , αi−1, αiγi, . . . , αnγn〉 if (q′, α1, . . . , αn) ∈ δ(q, a, γ). A word w is
accepted by a PDn M iff 〈q, w; Z0, ε . . . , ε〉 (∗M 〈qF , ε; γ1, . . . , γn〉, where (∗M is
the Kleene-closure of (M and qF ∈ QF . The language of a PDn M is the set
of words accepted by M . We denote the class of languages accepted by PDn as
LPDn . The following theorem summarizes the main results about PDn.

Theorem 1 ([3]). For every n ≥ 1, we have that LPDn subsumes CFLs, it
is strictly included in CSLs as well as in LPDn+1 . It is closed under union,
concatenation and Kleene-∗. Moreover, it has a decidable emptiness problem and
solvable in O(|Q|3), where |Q| is the number of states of the automaton.

3 Visibly Pushdown Automata with Two Stacks

A 2-pushdown alphabet is a pair of pushdown alphabets Σ̃ = 〈Σ̃0, Σ̃1〉, where
Σ̃0 = 〈Σ0

c , Σ0
r , Σ0

l 〉 and Σ̃1 = 〈Σ1
c , Σ1

r , Σ1
l 〉 are a possibly different partitioning

of the same input alphabet Σ. The intuition is that the Σ̃0 drives the operations
over the first stack and Σ̃1 those over the second. Symbols in Σ̃ belonging to call,
return or local partitions of both Σ̃0 and Σ̃1 are simply denoted by Σc, Σr, Σl,
respectively. Furthermore, input symbols that drive a call operation on the first
(resp., second) stack and a return on the second (resp., first) stack are called
synchronized communication symbols and formally denoted as Σs1 = Σ0

c ∩ Σ1
r

(resp., Σs0 = Σ0
r ∩ Σ1

c ). Finally, we denote with Σci (resp., Σri) the set of call
(resp., return) symbols for the stack i and local for the other, with i = 0, 1. In the
following, we use Σ̃ to denote both a 2-pushdown alphabet and a (1-)pushdown
alphabet, when the meaning is clear from the context.

Definition 1 (2-Visibly Pushdown Automaton). A (nondeterministic) 2-
Visibly Pushdown Automaton (2-VPA) on finite words over a 2-pushdown al-
phabet Σ̃ is a tuple M = (Q, Qin, Γ,⊥, δ, QF ), where Q, Qin, QF , and Γ are
respectively finite sets of states, initial states, final states and stack symbols,
⊥ �∈ Γ is the stack bottom symbol (with Γ⊥ used to denote Γ ∪ {⊥}), and δ is
the transition relation defined as the union of the following sets, for i ∈ {0, 1}:

• δci ⊆ (Q×Σci ×Q× Γ ), • δri ⊆ (Q×Σri × Γ⊥ ×Q),
• δc ⊆ (Q×Σc ×Q× Γ × Γ ), • δr ⊆ (Q×Σr × Γ⊥ × Γ⊥ ×Q),
• δsi ⊆ (Q×Σsi × Γ⊥ ×Q× Γ ), • δl ⊆ Q×Σl ×Q.
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We say that M is deterministic if Qin is a singleton, and for every q ∈ Q, a ∈ Σ,
and γr, γ′r ∈ Γ⊥, there is at most one transition of the form (q, a, q′), (q, a, q′, γ),
(q, a, q′, γ, γ′), (q, a, γr, q′), (q, a, γr, γ′r, q′), or (q, a, γr, q′, γ′) belonging to δ.

Transitions in δl, δci , and δri extend VPA’s local, call, and return transitions
to deal with two stacks, in a natural way. We call (q, a, q′, γ, γ′) ∈ δc a double-
call transition where on reading a the automaton changes its control state from
q to q′, and the symbols γ and γ′ are pushed on the first and second stack,
respectively; we call (q, a, γ, γ′, q′) ∈ δr a double-pop transition where on reading
a the automaton changes its control state from q to q′, and the symbols γ
and γ′ are popped from the first and second stack, respectively; finally, we call
(q, a, γ, q′, γ′) ∈ δsi , with i ∈ {0, 1}, a synchronous (communication) transition
between stacks, where on reading a the automaton changes its control state from
q to q′ and the symbol γ is popped from the stack i and γ′ pushed on the other.

A configuration of a 2-VPA M is a triple (q, σ0, σ1) where q ∈ Q and σ0, σ1 ∈
Γ ∗.⊥. For an input word w = a1 . . . ak ∈ Σ∗, a run of M on w is a sequence
ρ = (q0, σ0

0 , σ1
0) . . . (qk, σ0

k, σ1
k) where q0 ∈ Qin, σ0

0 = σ1
0 = ⊥, and for all i ∈

{0, . . . , k − 1}, there are j, j′ ∈ {0, 1}, j �= j′, such that one of the following
holds:

Push: (qi, ai, qi+1, γ) ∈ δcj , then σj
i+1 = γ.σj

i and σj′

i+1 = σj′

i ;
2Push: (qi, ai, qi+1, γ, γ′) ∈ δc then σj

i+1 = γ.σj
i and σj′

i+1 = γ′.σj′

i ;
Pop: (qi, ai, γ, qi+1) ∈ δrj , then either γ = σj

i = σj
i+1 = ⊥, or γ �= ⊥ and

σj
i = γ.σj

i+1. In both cases σj′

i+1 = σj′

i ;
2Pop: (qi, ai, γ0, γ1, qi+1) ∈ δr then, for k ∈ {0, 1}, either γk = σk

i = σk
i+1 = ⊥,

or γk �= ⊥ and σk
i = γ.σk

i+1;
Local: (qi, ai, qi+1) ∈ δl then σ0

i+1 = σ0
i and σ1

i+1 = σ1
i ;

Synch: (qi, ai, γ, qi+1, γ̂) ∈ δsj then either γ = σj
i = σj

i+1 = ⊥, or γ �= ⊥ and

σj
i = γ.σj

i+1. In both cases σj′

i+1 = γ̂.σj′

i .

From the above definition, we notice that communication between stacks is
only allowed by applying a synch. transition. For a configuration c, we write
c (M c′ meaning that c′ is obtained from c by applying one of the rules above.
We omit M when it is clear from the context. A run ρ is accepting when it ends
with a configuration containing a final state. A word w is accepted if there is an
accepting run ρ of M on w. The language accepted by M , denoted by L(M), is
the set of all words accepted by M . A language L ⊆ Σ∗ is a 2-VPL with respect
to Σ̃ if there is a 2-VPA M over Σ̃ such that L(M) = L.

Theorem 2. The emptiness problem for 2-VPA is undecidable.

Proof. [sketch] We prove the result by showing a reduction from the halting
problem of two counters Minsky machines. A Minsky machine with two coun-
ters C0 and C1 is a finite sequence M = (L1 : I1; L2 : I2; . . . ; Ln : halt)
where n ≥ 1, L1, . . . , Ln are pairwise different instruction labels, and I1, . . . , In

are instructions of type increment, i.e., Cm := Cm + 1; goto Lj , or of type
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test and decrement, i.e., if Cm = 0 then goto Lj else Cm := Cm−1; goto Lk,
where 0 ≤ m ≤ 1 and 1 ≤ j, k ≤ n. A configuration of M is a triple (Li, v0, v1)
where Li is an instruction label, and v0, v1 ∈ N represent the values of the
counters C0 and C1, respectively. Let Conf be the set of all configurations of
M , the transition relation ↪→⊆Conf×Conf between configurations is defined in
an obvious way, and ↪→∗ is the transitive and reflexive closure of ↪→. If (L1, 0, 0)
↪→ . . . ↪→ (Lj , v0

j , v1
j ) holds for a Minsky machine M , we say that (L1, 0, 0) . . .

(Lj , v0
j , v1

j ) is an execution trace for M . The halting problem for M is to decide
whether there exist v0, v1 ∈ N such that (L1, 0, 0) ↪→∗ (Ln, v0, v1). This problem
is known to be undecidable [8].

We now prove that given a two counters Minsky machine M there exists a
2-VPA M ′ over Σ̃ such that L(M ′) �= ∅ iff M eventually halts. Let M = (L1 :
I1; L2 : I2; . . . ; Ln : halt), we define M ′ = (Q, Qin, Γ , ⊥, δ, QF ) such that
Q = {L1, . . . , Ln}, Qin = {L1}, Γ = {A}, where A does not appear in M ,
QF = {Ln}, and Σ̃ is the partitioned set of all instructions Ii, with i = 1, . . . , n,
such that Ii ∈ Σc0 (resp., Ii ∈ Σc1) if Ii is an increment instruction of the
counter C0 (resp., C1), or Ii ∈ Σr0 (resp., Ii ∈ Σr1) if Ii is a test and decrement
instruction over the counter C0 (resp., C1). Finally, δ is defined as follows: if Ii

is an increment instruction such as Cm := Cm + 1; goto Lj, with m ∈ {0, 1},
then (Li, Ii, Lj, A) ∈ δcm ; otherwise, if Ii is a test and decrement instruction
such as if Cm = 0 then goto Lj else Cm := Cm−1; goto Lk, with m ∈ {0, 1}
then (Li, Ii,⊥, Lj), (Li, Ii, A, Lk) ∈ δrm . It remains to prove that M halts iff M ′

accepts a word. It is easy to show by induction the following assertion.
Given a sequence of numbers s = s1s2 . . . sk, with si ∈ {1, . . . , n} for all

i ∈ {1, . . . , k}, the sequence (Ls1 , v0
s1

, v1
s1

) . . . (Lsk
, v0

sk
, v1

sk
) of elements from

{L1, . . . Ln} × N × N is an execution trace of M if and only if the sequence
(Ls1 , σ0

s1
, σ1

s1
) . . . (Lsk

, σ0
sk

, σ1
sk

) of elements from Q× Γ ∗.⊥ × Γ ∗.⊥ is a run of
M ′, with |σj

si
| = vj

si
+ 1 for each i ∈ {1, . . . , k} and j ∈ 0, 1.

The above assertion implies that M halts iff M ′ accepts a word. 
�

It is interesting to notice that the reduction we consider in the proof of Theorem
2 also applies to the restricted model of VPA with 2 stacks where operations
acting simultaneously on both stacks are avoided. This follows from the fact
that two counters Minsky machine instructions only involves one counter at a
time, and the sets Σc, Σr and Σsi , with i ∈ {0, 1}, are empty.

4 Ordered Visibly Pushdown Automata with Two Stacks

In this section, we consider the subclass of 2-VPA which enforces the ordering
constraints on using pushdown stores as defined for MPDA. In more detail, we
consider a class of ordered 2-VPA (2-OVPA) as the class of 2-VPA in which a
pop operation on the second stack can occur only if the first stack is empty.
Thus, in such a model simultaneous pop operations are not allowed. The formal
definition of 2-OVPA follows.
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Definition 2. A 2-OVPA M over Σ̃ is a 2-VPA such that Σr is empty and for
all input word w = a1 . . . ak ∈ Σ∗ and run ρ = (q0, σ0

0 , σ1
0) . . . (q,σ

0
k, σ1

k) of M
over w, for all i ∈ {1, . . . , n}, the following hold:

Pop: (qi, ai, γ, qi+1) ∈ δr1 then σ0
i = σ0

i+1 = ⊥ and σ1
i+1 = γ.σ1

i

Synch: (qi, ai, γ, qi+1, γ̂) ∈ δs1 then σ0
i = ⊥ and σ0

i+1 = γ̂.⊥ and σ1
i+1 = γ.σ1

i .

Directly from the fact that 2-OVPA are a subclass of MPDA and the fact that
for MPDA the emptiness is solvable in cubic time, we get the following.

Corollary 1. Given a 2-OVPA M , deciding whether L(M) �= ∅ is solvable in
O(n3), where n is the number of states in M .

While dealing with automata, one interesting question is whether the acceptance
power increases while using ε-moves, i.e., transitions that allow to change the
state without consuming any input. Here we investigate 2-VPA with the ability
of performing a restricted form of ε-moves: we only enable ε-moves on reading
the top of the stack symbols on a local action. More formally, the variant 2-VPAε

of 2-VPA we consider is obtained by replacing δl in Definition 1 with a subset of
Q× (Σ ∪ {ε})× Γ × Γ ×Q and by substituting the Local rule in the definition
of a run for 2-VPA with the following:
Localε: ai ∈ Σl ∪ {ε} and there exists (qi, ai, γ0, γ1, qi+1) ∈ δ such that σj

i =
σj

i+1 = γj.σj , for all j ∈ {0, 1}.
Since at each step, a 2-VPAε can now choose whether to consume an input

symbol or take an ε-move, we consider the run definition modified accordingly.
In the following theorem, we show that 2-VPA and 2-VPAε, as well as 2-OVPA
and 2-OVPAε, are expressively equivalent.

Theorem 3. L ∈2-VPL iff L ∈ 2-VPLε and L ∈2-OVPL iff L ∈2-OVPAε.

We conclude the section with an example of a language accepted by a 2-OVPAε.

Example 1. Let L1 = {anbncn | ∃n ∈ N }. We show a 2-OVPAε M accepting
L1. The alphabet Σ̃ we use for M is partitioned in Σc0 = {a}, Σs0 = {b}, and
Σr1 = {c} (i.e., all the other partition elements are empty). The automaton is the
following M = (Q, Qin, Γ,⊥, δ, QF ), with Q = {q0, q1, q2, q3, qF }, Qin = {q0},
QF = {q0, qF }, Γ = {A, B} and δ = {(q0, a, q1, A), (q1, a, q1, A), (q1, b, A, q2, B),
(q2, b, A, q2, B), (q2, ε,⊥, B, q3), (q3, c, B, q3), (q3, ε,⊥,⊥, qF )}. The 2-OVPAε M
is depicted in Figure 2, where we adopt the following conventions to represent
arcs: for a local transition such as (qi, a, A, B, qj) we label the arc between qi

ε, (⊥,⊥)

Fig. 2. A 2-OVPAε accepting L1 = {anbncn|∃n ∈ N}
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and qj as a, (A, B); for a synch transition such as (qi, a, A, qj , B) we label the
arc as s, A → B, if a ∈ Σs0 , and as s, B ← A , otherwise; moreover a push or
pop transition is labeled like a synch transition but with one part missing. For
example, a pop from the second stack (qi, a, B, qj) is labeled as a, ∗ ← B.

5 Expressiveness and Closure Properties

In this section, we compare 2-VPLs and 2-OVPLs with VPLs [1], determinis-
tic and (nondeterministic) context-free languages (resp., DCFLs and CFLs) [6],
and multi-pushdown languages [3] (LPDn). Recall that the following chain of
inclusions holds: VPLs ⊂ DCFLs ⊂ CFLs ⊂ LPD2 ⊂ CSLs.

Theorem 4. The following assertions hold:
a) 2-OVPLs ⊂ 2-VPLs; b) VPLs ⊂ 2-OVPLs; c) VPLs ⊂ 2-VPLs;
d) DCFLs \ 2-VPLs �= ∅; e) DCFLs \ 2-OVPLs �= ∅;
f) (2-VPLs ∩ CFLs)\ VPLs �= ∅; g) 2-OVPLs ⊂LPD2 ; h) 2-OVPLs ⊂ CSLs.

Although 2-VPLs and 2-OVPLs are strictly more expressive than VPLs, we
show they preserve union, intersection, complementation (and thus inclusion).
These properties, along with the emptiness problem for 2-OVPA being solvable
in Ptime, make 2-OVPA a powerful engine for system verification using the
automata-theoretic approach. We recall that 2-VPA and MPDA do not support
such an approach since MPDA does not enjoy closure under intersection and
complementation, and for 2-VPA the emptiness problem is undecidable.

Theorem 5 (Closure Properties). Let L1 and L2 be two 2-VPLs (resp., 2-
OVPLs) with respect to the same Σ̃. Then, L1 ∩L2, L1 ∪L2 are 2-VPLs (resp.,
2-OVPLs) over Σ̃. Also, L1 · L2, and L∗1 are 2-VPLs over Σ̃. Furthermore, all
the mentioned operations can be performed in polynomial-time.

The closure of 2-VPA and 2-OVPA under complementation can be proved as an
immediate consequence of determinization.

Theorem 6 (Determinization). Given a 2-VPA (resp., 2-OVPA) M over Σ̃,
there is a deterministic 2-VPA (resp., deterministic 2-OVPA) M ′ over Σ̃ such
that L(M) = L(M ′). Moreover, if M has n states, we can construct M ′ with
O(22n2

) states and O(2n2 · |Σ|) stack symbols.

Proof. [sketch] The proof we present is inspired from that given in [1] for VPA.
There, the main idea is to do a subset construction, postponing handling push
transitions. The push transitions are stored into the stack and simulated later,
namely at the time of the matching pop transitions. The construction has two
components: a set of summary edges S, that keeps track of what state transitions
are possible from a push transition to the corresponding pop transition, and a set
of path edges R, that keeps track of all possible state reached from an initial state.
In our case, we have to handle two stacks and the communication mechanism.
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Therefore, we have to use two summary edges sets S0 and S1, and, in order
to manage the communication transitions, we augment the structure of states
adding information about the top of the stacks. Let M be a 2-VPA (resp., 2-
OVPA) over Σ̃. We define a deterministic 2-VPA (resp., 2-OVPA) M ′ over Σ̃
such that L(M) = L(M ′) behaving as sketched in the following example. We
refer to the extended version for the detailed definition. Let w = w1c0

1w2c1
1w3 be

an input word, where in w1 each push, either into the first or into the second
stack, is matched by a pop, but there may be unmatched pop transitions; w2

and w3 are words in which all push and pop transitions are matched for both
stacks; c0

1 and c1
1 are push, the former for the first stack and the latter for the

second. In M ′, after reading w, the first stack is (S0, R0, c0
1).⊥, the second stack

is (S1, R1, c1
1).⊥, and the control state is (S′′0 , S′′1 , R′′). S0 contains all the pair of

states (q, q′) such that the 2-VPA (resp., 2-OVPA) M can go from q with first
stack empty to q′ with first stack empty on reading w1. Analogously, S1 contains
all the pairs (q, q′) such that M can go from q with second stack empty to q′

with second stack empty on reading w1c0
1w2. R0 and R1 are the sets of all states

reachable by M from an initial state on reading w1 and w1c0
1w2, respectively. S′′0

and S′′1 are the current summaries for the first and second stack, respectively,
and R′′ is the set of all states reachable by M on reading w. 
�

Corollary 2 (Closure under complementation). Let L ∈ 2-VPLs (resp.,
2-OVPLs) over Σ̃, then Σ∗\ L ∈ 2-VPLs (resp., 2-OVPLs) over Σ̃.

6 Model Checking and Synchronized Systems of VPA

A model checking procedure verifies the correctness of a system with respect to
a desired behavior by checking whether a mathematical model of the system sat-
isfies a formal specification of this behavior. Here, we consider the case whether
both the model of the system and the formal specification of the required be-
havior are given by VPA with two stacks, say them M and P , respectively. The
automata-theoretic approach to model checking exploits the combination of clo-
sure properties and emptiness decidability: checking whether M satisfies P is
reduced to check whether L(M)∩L(P ) = ∅ (all the runs of the model M satisfy
the behavioral property represented by P ).

Recall that the emptiness problem for 2-OVPA is solvable in cubic time (Corol-
lary 1). Since determinization for 2-OVPA is in ExpTime (Theorem 6), and
intersection can be done in polynomial-time (Theorem 5), we get an ExpTime

algorithm to solve the model checking problem. The completeness follows from
the fact that VPA model checking is ExpTime-complete [1].

Theorem 7. The model checking problem for 2-OVPA is ExpTime-complete.

In the remaining part of this section we show that 2-OVPA gives a natural
way to describe distributed pushdown systems. In fact, we show that 2-OVPA
capture the behavior of systems built on pairs of VPA working in a suitable
synchronous way according to distributed computing paradigm. To this purpose,
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we introduce an operator of synchronous composition on VPA that allows to
build a Synchronized System of VPA from a pair of VPA M0 and M1. The
automata M0 and M1 run independently on the same input so that each input
symbol can drive different transitions on the two, that is a local transition for the
former and a push transition for the latter. Only communications between M0

and M1 have to be synchronized in accordance with a relation λ (a parameter
of the synchronous composition operator) that contains all the transitions that
are push transitions for the one and pop transitions for the other. The idea is
that λ contains all the pairs of transitions on which the two VPA are allowed to
communicate. The only constraint on the pushdown alphabets is that an input
symbol can not trigger a pop transition on both VPA. Moreover, we have to
prevent that M1 can pop whenever M0 has a non-empty stack, and thus every
pop transition of M1 is synchronized with M0. Two VPA M0 and M1 over Σ̃0

and Σ̃1, respectively, are synchronizable if Σ0 = Σ1 and Σ0
r ∩Σ1

r is empty.

Definition 3 (Synchronized Systems of VPA). A Synchronized System of
VPA (S-VPA) M0||λM1 is a pair of synchronizable VPA M0 and M1 over Σ̃0

and Σ̃1, respectively, together with a communication relation λ ⊆ δ0
c×δ1

r∪δ0
r×δ1

c ,
where δ0 and δ1 are the transition relations of M0 and M1, respectively.

A run ρ on w = a1 . . . an ∈ (Σ0 ∪Σ1)∗ for M0||λM1 is a pair of VPA runs on w,
π0 = (q0

0 ,⊥)(q0
1 , σ0

1) . . . (q0
n, σ0

n) for M0 and π1 = (q1
0 ,⊥)(q1

1 , σ1
1) . . . (q1

n, σ1
n) for

M1 such that, for all k ∈ {0, . . . , n− 1}, where t0k is the transition applied from
(q0

k, σ0
k) to (q0

k+1, σ0
k+1) in M0, and t1k is the transition applied from (q1

k, σ1
k) to

(q1
k+1, σ1

k+1) in M1, such that if t1k is a pop transition then σ0
k is empty and if

(t0k, t1k) ∈ δ0
c×δ1

r ∪δ0
r×δ1

c then (t0k, t1k) ∈ λ. A run ρ is accepting if both π0 and π1

are accepting and thus w is accepted. L(M0||λM1) is the set of words accepted
by M0||λM1. From Definition 3, it follows that L(M0||λM1) ⊆ L(M0) ∩ L(M1).
Next theorem states that 2-OVPA are more expressive than S-VPA.

Theorem 8. Let M0||λM1 be a S-VPA over Σ̃0, Σ̃1, then L(M0||λM1) is a
2-OVPL with respect to Σ̃ = 〈Σ̃0, Σ̃1〉.

We give an evidence of the power of the introduced S-VPA by means of an
example of a system behaving in a context-sensitive way. Consider a client-server
system of pushdown processes described by a pair of synchronized VPA (see
Figure 3) behaving in the following way: first, the client collects in its pushdown
store an ordered pool of jobs on reading a sequence of input jobi ∈ JobSet;
after that, the client transfers (rcall) the whole ordered sequence of jobs to the

Jobi
startpool

endpool endRcall
pop(

jobi
push( )|Jobi

, returnSol  ,j
)

⊥)

restart
solve,

push( )

startpool

endpool

rcall,push(

restart, pop( )

endRcall

solve,
pop(

returnSol

Jobi|

Jobi|λ

q1
2 ||q1

1q1
0|q0

0 |q0
1 |q0

2 q0
3 |

j

jobi

jSol

Client Server

)rcall,pop( )

)
j|Solpop(

⊥

Fig. 3. An example of an S-VPA
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server; then the server dispatches to the client a solution for each job (solve)
in the same order the client has collected the jobs; moreover, the server waits a
special commitment from the client (returnSolj) after each dispatching, which is
necessary to process next job; when the server runs out of pending jobs, the whole
system can restart the computation (restart). Notice that the communication
interface λ relates each Jobi that the server has to pop, with its solution Solj
that the client has to push, determining the computation.

7 Conclusions

In this paper, we have investigated ordered visibly pushdown automata with two
stacks (2-OVPA), obtained by merging the definitions of visibly pushdown au-
tomata [1] and multi-pushdown automata with two stacks [3]. We have shown
that 2-OVPA are determinizable, closed under intersection and complementa-
tion, and have the emptiness problem decidable and solvable in polynomial time.
Thus, we get that the inclusion problem is also decidable for 2-OVPA, and in par-
ticular, it is ExpTime-complete. It is worth noticing that dropping visibility or
the ordering constraint from 2-OVPA makes inclusion undecidable. The proper-
ties satisfied by 2-OVPA, along with the fact that they accept some context-free
languages that are not regular as well as some context-sensitive languages that
are not context-free, make 2-OVPA a powerful model in system verification while
using the automata-theoretic approach. Finally, the model we propose can be
also extended to deal with an arbitrary number n of stacks (n-OVPA). We argue
(it is left to further investigation) that n-OVPA still retain decidability and clo-
sure properties of 2-OVPA and that, from an expressivity viewpoint, n-OVPA
define a strict hierarchy based on the number of pushdown stores.
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Abstract. The aim of this paper is to describe a quadratic algorithm to compute
the equation K-automaton of a regular K-expression as defined by Lombardy and
Sakarovitch. Our construction is based on an extension to regular K-expressions
of the notion of c-continuation that we introduced to compute the equation au-
tomaton of a regular expression as a quotient of its position automaton.

1 Introduction

The conversion of a regular expression into an automaton is a rather old problem.
The first algorithms appeared in the sixties, respectively based on the notion of po-
sition [21,15], prebase [22] and ε-transition [25]. In the nineties, different techniques
were developed to design quadratic1 algorithms for the construction of the position
automaton: the star normal form [3], the compressed normal NFA [13] and the ZPC-
structure [26]. Moreover the notion of partial derivative of a regular expression intro-
duced by Antimirov [2] raised several challenging problems that boosted the research
in this topic.

First, what is the relation between these different constructions? It was proved in [10]
that the notions of prebase and of partial derivative lead to an identical automaton, the
equation automaton2. Based on the notion of c-continuation it was shown in [11] that the
equation automaton is a quotient of the c-continuation automaton that is itself isomor-
phic to the position automaton. A new construction [17] based on the follow relation
was introduced in [17] and the follow automaton was proved to be a quotient of the
position automaton. It was shown in [7] that the follow automaton can be constructed
from the ZPC-structure. Finally, as mentioned in [27], the deep relation that exists be-
tween position, equation and follow automata can be easily understood through the
ZPC-structure and the c-continuation computation.

Second, how to compare the performance of the algorithms that yield a quotient of
the position automaton? The equation automaton [11] and the follow automaton [17,7]
are both computed in quadratic time and space. Comparing the number of states of these
automata is a more intricated issue. A new approach for this problem appears in [8,9]:

1 In the following, complexity depends on the size of the expression.
2 This name refers to the systems of expression equations used by Mirkin [22]. Other names are

partial derivative automaton and Antimirov automaton.
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a class of normalized expressions is defined such that any expression can be turned into
an equivalent normalized one in linear time, and it is proved that the equation automaton
of a normalized expression is always smaller than its follow automaton.

Last, how to extend these constructions to the case of K-expressions? Concerning
the position K-automaton, the first algorithm, based on an inductive construction, is
described in [5], and the first quadratic one, based on a generalization of the notion
of ZPC-structure appears in [27,6]. As for the extension of the equation automaton, the
notion of K-derivative is used in [19,20,23] to show that the automaton of derived terms
of a regular K-expression is the weighted equivalent of the equation automaton. More
recently, a unified frame is presented in [1] for the construction of position, equation,
and follow automata and K-automata, based on Thompson ε-automaton construction,
epsilon-removal and minimization.

This paper addresses the construction of the equation K-automaton. Our algorithm
is based on the computation of a K-covering [20] from the c-continuation K-automaton
onto the equation K-automaton. It therefore provides a good understanding of this au-
tomaton. The structure of the automaton is derived from a set of c-continuations that
is computed straightforwardly via the boolean case algorithm, while the set of weights
is computed apart, leading to an overall quadratic complexity, i.e. as efficient as in the
boolean case. Let us mention that this algorithm has been implemented inside VAU-
CANSON platform [14], using the data structure proposed in [12] for the computation
of the c-continuations.

The next section contains useful preliminaries and Section 3 is a reminder of the
fundamental results presented in [20]. Section 4 generalizes the computation of c-
derivatives to regular K-expressions, describes the construction of the equation K-
automaton from the c-continuation one and gives an analysis of its complexity.

2 Preliminaries

Let A be a finite alphabet, and (K,⊕,⊗, 0, 1) be a semiring (commutative or not). The
star operator � can be partially defined over K as follows [16,18]: the scalar y� ∈ K
is the unique solution (if it exists) of the equations y ⊗ x ⊕ 1 = x and x⊗ y ⊕ 1 = x,
with 0� = 1. In this paper, examples come from the semiring (Q, +,×).

Definition 1. A (non-commutative) formal series S with coefficients in K and variables
in A is a mapping from the free monoid A∗ to K that associates with the word w ∈ A∗

a coefficient 〈S, w〉 ∈ K .

A formal series is usually written as an infinite sum: S =
∑

u∈A∗〈S, u〉u. The support
of the formal series S is the language supp(S) = {u ∈ A∗ | 〈S, u〉 �= 0}. The set
of formal series over A with coefficients in K is denoted by K〈〈A〉〉. A structure of
semiring is defined on K〈〈A〉〉 as follows [18]:

– 〈S ⊕ T, u〉 = 〈S, u〉 ⊕ 〈T, u〉,
– 〈S ⊗ T, u〉 =

⊕

u1u2=u
〈S, u1〉 ⊗ 〈T, u2〉, with S, T ∈ K〈〈A〉〉.

The star of a series S is defined by: S∗ =
⊕

n≥0 Sn with S0 = ε, Sn = Sn−1 ⊗ S
if n > 0. For clarity the symbol S∗ is used for series, whereas the symbol � is kept
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for the semiring of coefficients K. The star of a formal series does not always exist.
The proper series Sp associated with a formal series S is defined by 〈Sp, ε〉 = 0 and
〈Sp, u〉 = 〈S, u〉 for any word u ∈ A+. The star of a proper series always exists. We
will use the following construction for the star of a formal series.

Proposition 1. [18] The star of a formal series S ∈ K〈〈A〉〉 is defined if and only if
〈S, ε〉� is defined in K. In this case: S∗ = 〈S, ε〉�(Sp〈S, ε〉�)∗.

A polynomial is a formal series with finite support. The set of polynomials is denoted
by K〈A〉 that is a subsemiring of K〈〈A〉〉.

Definition 2. The semiring of regular series K Rat(A∗) ⊂ K〈〈A〉〉 is the smallest set
of K〈〈A〉〉 that contains the semiring K〈A〉 of polynomials, and that is stable under the
operations of addition, product and star (when it is defined).

Definition 3. A regular K-expression over an alphabet A is inductively defined by:

– a ∈ A, k ∈ K are regular K-expressions that respectively denote the regular series
Sa = a and Sk = k,

– if F, G and H are regular K-expressions that respectively denote the regular series
SF, SG and SH (such that SH

∗ exists), then (F + G), (F ·G) and (H∗) are regu-
lar K-expressions that respectively denote the regular series SF ⊕ SG, SF ⊗ SG,
and SH

∗.

Let E be a K-expression. We will denote by AE the alphabet of E, and by |E | its size
that is equal to the size of the syntax tree of E. The linearized version E of E is the
K-expression deduced from E by associating with every occurrence of a symbol a of
AE its rank i in E. Subscripted symbols ai are called positions. Let h be the mapping
that associates with a position ai ∈ AE the symbol a ∈ AE. Given an expression F
over a set of positions, we denote by h(F) the expression obtained by replacing every
position x in F by h(x). We write E ≡ F if E and F graphically coincid.

An element of K can be seen as a K-expression (written k) or as a scalar (written
k). It induces a morphism from the semiring of K-expressions with no occurrence of
symbol of AE to the semiring K. We denote by K the scalar3 associated to such an ex-
pression K . Following [6], the null term λ(E) of a K-expression E is the K-expression
induced from E by replacing each occurrence of a symbol of AE by the symbol 0 (as-
sociated to the scalar 0 of K). For example, if E = (1

2 · a∗ + 1
3 · b∗)∗ · a∗, we get

AE = {a, b}, E = (1
2 · a∗1 + 1

3 · b∗2)∗ · a∗3, AE = {a1, b2, a3} and |E| = 13. It comes

λ(E) = (1
2 · 0∗ + 1

3 · 0∗)∗ · 0∗ and λ(E) = 6.

Definition 4. A K-automatonA = 〈Q, A, q0, δ, γ, μ〉 is defined as follows4:

– Q is a finite set of states; A is the alphabet; q0 is the initial state,
– δ ⊆ Q×A×Q is the set of transitions,
– γ : δ → K (resp. μ : Q→ K) is the transition (resp. output) weight function.

3 Actually there is no conflict with the notation E used for the linearized version of E.
4 A more general definition is given in [4].
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A path p from a state q0 to a state qn is a sequence of transitions p = (p1, p2, · · · , pn)
with pi = (qi−1, ai, qi) for 1 ≤ i ≤ n. Its label is the word w(p) = a1a2 · · ·an. We
denote by coef(p) the weight of the path p inA, with coef(p) = γ(p1)⊗ γ(p2)⊗ · · · ⊗
γ(pn) ⊗ μ(qn). Let CA be the set of all paths in A starting from q0. The K-automaton
A realizes the series SA defined by:

SA =
∑

u∈A∗

〈SA, u〉u, where 〈SA, u〉 =
⊕

p∈CA,w(p)=u

coef(p)

A series S ∈ K〈〈A〉〉 is recognizable if there exists a K-automaton that realizes it.

Theorem 1. (Schützenberger [24]) A formal series is recognizable if and only if it is
regular.

Definition 5. [20] Let A and B be two K-automata. Let Δ(q, q′) =
⊕

(q,a,q′)∈δ

γ(q, a, q′)a. A surjective mapping ϕ from the set of states of A onto the set

of states of B induces a K-covering from A onto B if A is such that:

∀p, q ∈ QA, ϕ(p) = ϕ(q)⇒

⎧
⎪⎪⎨

⎪⎪⎩

1) μ(p) = μ(q)

2) ∀r ∈ QA,
⊕

s∈ϕ−1ϕ(r)

ΔA(p, s) =
⊕

s∈ϕ−1ϕ(r)

ΔA(q, s)

and if B satisfies the following conditions:

3) ∀r ∈ QB, μ(r) = μ(p) for any p ∈ ϕ−1(r)
4) ∀(r, s) ∈ Q2

B, ΔB(r, s) =
⊕

q∈ϕ−1(s)

ΔA(p, q) for any p ∈ ϕ−1(r)

Proposition 2. [20] LetA and B be two K-automata. If ϕ : A −→ B is a K-covering,
then SA = SB.

Let E be a regular K-expression over an alphabet A and consider the language L(E)
associated to the linearized version of E [6]. The polynomials First(E), Last(E) and
Follow(·, E) in K〈AE〉 can be computed as follows (where x is a position of E):

First(k) = 0 for all k ∈ K

First(a) = 1ai (ai is the position associated to a in AE)

First(F + G) = First(F)⊕ First(G)
First(F ·G) = First(F)⊕ λ(F)First(G)

First(F∗) = λ(F)
�

First(F)

Similar rules hold for Last except for Last(F ·G) = Last(G)⊕ λ(G) Last(F).

Follow(x, k) = 0 for all k ∈ K

Follow(x, a) = 0 for all a ∈ A

Follow(x, F + G) = Follow(x, F)⊕ Follow(x, G)
Follow(x, F ·G) = Follow(x, F)⊕ 〈Last(F), x〉First(G)⊕ Follow(x, G)

Follow(x, F∗) = Follow(x, F)⊕ 〈Last(F∗), x〉First(F)
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These polynomials lead to the definition of the position K-automaton of E, that real-
izes the series denoted by E.

Definition 6. The position K-automaton PE = 〈Q, AE, q0, δ, γ, μ〉 is defined by:

– Q = {q0} ∪AE, with q0 /∈ AE,

– (q, a, p) ∈ δ ⇔ h(p) = a and

{
〈First(E), p〉 �= 0 if q = q0,
〈Follow(q, E), p〉 �= 0 otherwise.

– For all (p, a, q) ∈ δ, it holds:

γ(q, a, p) =
{
〈First(E), p〉 if q = q0,
〈Follow(q, E), p〉 otherwise.

– μ(q) =
{

λ(E) if q = q0,
〈Last(E), q〉 otherwise.

3 From K-Derivatives to the Equation K-Automaton

In this section, we recall the main results reported in [20] about the computation of
the set of K-derivatives of a regular K-expression. Such a K-derivative is defined as a
polynomial, which leads to a generalization of the notion of partial derivative [2].

Definition 7. Let E be a regular K-expression5 and a ∈ A. The K-derivative of E
w.r.t. a is the polynomial ∂a(E) inductively defined as follows:

∂a(k) = 0

∂a(b) =
{

1 if b = a
0 otherwise

∂a(E + F) = ∂a(E)⊕ ∂a(F)
∂a(E ·F) = ∂a(E) · F⊕λ(E)∂a(F)

∂a(E∗) = λ(E)
�

(∂a(E) · E∗)

By linearity, the K-derivative of a polynomial is given by: ∂a(
⊕

i∈I

ki Ei) =
⊕

i∈I

ki∂a(Ei).

The K-derivative of a regular K-expression E w.r.t. a word u ∈ A+ is defined by:
∀u ∈ A+, ∀a ∈ A, ∂ua(E) = ∂a(∂u(E)).

Example 1. The K-derivatives w.r.t. a and b of the regular K-expression E = 1
2a∗(1

3b∗

+ 1
6b∗)∗ are the polynomials ∂a(E) = 1

2a∗(1
3b∗+ 1

6b∗)∗ and ∂b(E) = 1
2b∗(1

3b∗+ 1
6b∗)∗.

Proposition 3. [20] Let E and F be regular K-expressions. Let u ∈ A+ and k ∈ K.
Then it holds:

1) ∂u(E + F) = ∂u(E)⊕ ∂u(F),
2) ∂u(E ·F) = ∂a(E) · F⊕

⊕

u=vw

〈∂v(E), 1〉∂w(F),

3) ∂u(E∗)=
⊕

u=u1···un

λ(E)
�〈∂u1(E), 1〉λ(E)

�· · ·〈∂un−1(E), 1〉λ(E)
�

(∂un(E) ·E∗).

5 In [20] a different definition of a K-regular expression is used, where k is not an expression.
Hence a slightly different formulation of the K-derivative.
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There exists a set of regular K-expressions that plays a specific role in the computation
of the K-derivatives of E: the set of derived terms of E.

Definition 8. The set dt(E) of the derived terms of a regular K-expression E is induc-
tively defined as follows:

dt(k) = ∅
dt(a) = {1}

dt(F + G) = dt(F) ∪ dt(G)

dt(F ·G) =
⋃

Fi∈dt(F)

(Fi ·G) ∪ dt(G)

dt(F∗) =
⋃

Fi∈dt(F)

(Fi ·F∗)

The set of derived terms of a regular K-expression E is the equivalent of the prebase of
a regular expression, as introduced by Mirkin [22].

Example 2. For the regular K-expression E = 1
2a∗(1

3b∗ + 1
6b∗)∗, we have:

dt(E) = {1
2

a∗(
1
3

b∗ +
1
6

b∗)∗, a∗(
1
3

b∗ +
1
6

b∗)∗, b∗(
1
3

b∗ +
1
6

b∗)∗}.

The computation of the K-derivatives of a regular K-expression E leads to the construc-
tion of the equation K-automaton6 that realizes the series denoted by E.

Definition 9. The equation K-automaton EE = 〈Q, AE, q0, δ, γ, μ〉 of a regular K-
expression E is defined as follows:

– Q = dt(E) ∪ {E}; q0 = {E},
– (Ei, a, Ej) ∈ δ ⇔ 〈∂a(Ei), Ej〉 �= 0 for all Ei, Ej ∈ Q,
– γ(Ei, a, Ej) = 〈∂a(Ei), Ej〉 for all Ei, Ej ∈ Q; μ(Ei) = λ(Ei).

Example 3. (Ex. 1 continued)

E

E1

E2

1a

2b

1
2a

1
2b

1b

1

2

2

Fig. 1. The equation K-automaton EE associated with E = 1
2a∗( 1

3 b∗ + 1
6b∗)∗

Theorem 2. [20] There exists a K-covering from the position K-automaton onto the
equation K-automaton of a regular K-expression.

6 Also called the automaton of derived terms in [20].
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4 From c-Derivatives to the Equation K-Automaton

We now define the notions of c-derivative, c-continuation and c-continuation automaton
for a regular K-expression. The main point here is that, following Definition 3, a regular
K-expression E can be seen as a regular expression over the alphabet AE ∪BE, where
BE is the set of elements of K occurring in E. Therefore, for any symbol x ∈ AE,
the c-continuation w.r.t. x of the regular K-expression E graphically coincids with the
c-continuation w.r.t. x of the associated regular expression. As a consequence, the set
of states and the set of transitions of the c-continuation K automaton of E are computed
straightforwardly via the boolean case algorithm described in [12].

We also define the notion of coefficient of a regular K-expression w.r.t. a symbol
and show how the weights of the transitions are deduced from the coefficients of the
c-continuations. We assume that, for E a regular K-expression, the following identities
are satisfied: 0 · E = E · 0 = 0, 0 + E = E+ 0 = E, 1 · E = E · 1 = E.

4.1 From c-Derivatives to the c-Continuation K-Automaton

Definition 10. The c-derivative of a regular K-expression E w.r.t. a symbol a, written
da(E), is defined by:

da(k) = 0

da(x) =

{
1 if a = x
0 otherwise

da(F+G) =

{
da(F) if da(F) �= 0
da(G) otherwise

da(F ·G) =

⎧
⎨

⎩

da(F) · G if da(F) �= 0
da(G) if da(F) = 0 and λ(F) �= 0
0 otherwise

da(F
∗) = da(F) · F∗

The c-derivative of E w.r.t. a word u is defined by: dε(E) = E, and du1...un(E) =
du2...un(du1(E)).

The main property of c-derivatives still holds for regular K-expressions, leading to
the notion of c-continuation.

Theorem 3. If E is linear, for every symbol a ∈ AE there exists a K-expression ca(E),
called the c-continuation of E w.r.t. a, such that for every word u ∈ A∗

E
, the c-derivative

dua(E) is either 0 or ca(E).

Example 4. (Ex. 1 continued)
We have db2b2(E) = b∗2(

1
3b∗2 + 1

6b∗3)
∗ and db3b2(E) = b∗2(

1
3b∗2 + 1

6b∗3)
∗.

Proposition 4. For every symbol a of a linear expression E, the c-continuation ca(E)
can be computed as follows:

ca(a) = 1

ca(F + G) =
{

ca(F) if ca(F) exists
ca(G) otherwise

ca(F ·G) =
{

ca(F) ·G if ca(F) exists
ca(G) otherwise

ca(F∗) = ca(F) · F∗

In the following we will write cx instead of cx(E) when there is no ambiguity.
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Definition 11. The coefficient of a linear K-expression E w.r.t. a symbol a is the scalar
ka(E) inductively defined as follows:

ka(k) = 0

ka(b) =
{

1 if b = a
0 otherwise

ka(F + G) = ka(F)⊕ ka(G)
ka(F ·G) = ka(F)⊕ λ(F)⊗ ka(G)

ka(F∗) = λ(F)
� ⊗ ka(F)

The coefficient of E w.r.t. a word u is defined by: kε(E) = λ(E), and ku1...un(E) =
ku1(E)⊗ ku2...un(du1(E)).

Definition 12. The c-continuation automaton CE = 〈QC , AE, qC , δC , γC , μC〉 of a reg-
ular K-expression E is defined by:

• QC = {(x, cx) | x ∈ AE ∪ {0}}; qC = (0, c0),
• ((x, cx), a, (y, cy)) ∈ δC ⇔ h(y) = a and dy(cx) ≡ cy ,

• γC((x, cx), a, (y, cy)) = ky(cx); μC(cx) = λ(cx).

Notice that if ky(cx) = 0 then the transition is not considered.

Example 5. (Ex. 1 continued)

c0(E) = E

ca1(E) = a∗1(
1
3

b∗2 +
1
6

b∗3)
∗

cb2(E) = b∗2(
1
3

b∗2 +
1
6

b∗3)
∗

cb3(E) = b∗3(
1
3

b∗2 +
1
6

b∗3)
∗

c0

ca1 cb2 cb3

1

2 2 2

1a

1b

1b

2
3b

1
2a

1
3 b

1
6b

1
3b

2
3b

1
3b

Fig. 2. The c-continuation K-automaton associated with
E = 1

2a∗( 1
3 b∗ + 1

6 b∗)∗

4.2 From the c-Continuation K-Automaton to the Equation K-Automaton

As for the boolean case, we can relate the c-continuation K-automaton to both the
position and the equation K-automata.

Proposition 5. Let E be a regular K-expression. Then the following equalities hold:
First(E) =

⊕

x∈AE

kx(E)x, Last(E) =
⊕

x∈AE

λ(cx)x, Follow(x, E) =
⊕

y∈AE

ky(cx)y.

Theorem 4. The c-continuation and position K-automata of a regular K-expression
are isomorphic.
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As a corollary and according to Proposition 2, the K-automaton CE realizes the series
denoted by E.

Following the boolean track [11], we now consider the equivalence∼ defined by:

∀(x, cx), (z, cz) ∈ QC , (x, cx) ∼ (z, cz)⇔ h(cx) ≡ h(cz)

We will denote by [x] the class of the state (x, cx) and we will write z instead of (z, cz)
whenever there is no ambiguity (for instance z ∈ [x]). Let z be an arbitrary element
of [x]. We denote by C[x] the expression h(cz) that is identical for all z ∈ [x]. Notice
that [x] is characterized by the expression C[x].

We now define the K-automaton CE/∼ = 〈Q∼, AE, I∼, δ∼, γ∼, μ∼〉 whose states
are the ∼-classes and that will be proved to be equivalent to CE. The relation ∼ be-
ing right-invariant [11], the function δ∼ is well-defined. The soundness of the weight
functions γ∼ and μ∼ will be proved by exhibiting a K-covering from CE onto CE/∼.

Definition 13. The K-automaton CE/∼ = 〈Q∼, AE, q∼, δ∼, γ∼, μ∼〉 is defined by:

• Q∼ = {C[x] | x ∈ AE ∪ {0}}; q∼ = C[0],
• (C[x], a, C[y]) ∈ δ∼ ⇔ for any z ∈ [x], ∃t ∈ [y] | h(t) = a and (cz, a, ct) ∈ δC ,

• γ∼(C[x], a, C[y]) =
⊕

t∈[y],h(t)=a

γC((z, cz), a, (t, ct)), for any z ∈ [x],

• μ∼(C[x]) = λ(cz), for any z ∈ [x].

Theorem 5. Let E be a regular K-expression. Then the mapping h defines a
K-covering from CE onto CE/∼.

Proof. Let h : QC −→ Q∼ be the surjective mapping defined by: h(x, cx) = h(cx),
for all x ∈ AE ∪ {0}. We have h(x, cx) = h(z, cz) ⇔ (x, cx) ∼ (z, cz) ⇔ h(cx) ≡
h(cz).

Condition 1 of the Definition 5 says that two equivalent states in CE should have the
same output weight. It can be rewritten: ∀(x, cx), (z, cz) ∈ QC, (x, cx) ∼ (z, cz) ⇒
μC(x, cx) = μC(z, cz). This condition is satisfied since μC(x, cx) = λ(cx) and (x, cx)
∼ (z, cz) ⇒ h(cx) ≡ h(cz) ⇒ λ(cx) = λ(cz). Moreover, since (x, cx) ∼ (z, cz) ⇒
λ(cx) = λ(cz), μ∼(C[x]) can be computed as λ(cz), for any z ∈ [x]. Hence the Con-
dition 3 is also satisfied.

Condition 2 ensures that the transition weights in CE/∼ can be computed from the
weights of the transitions outgoing from any state in the origin class. Let us set Sx =

⊕

t∈[y],h(t)=a

γC((x, cx), a, (t, ct)). The transition weight function γC must be such that:

∀(x, cx), (z, cz) ∈ QC , (x, cx) ∼ (z, cz) ⇒ ∀(y, cy) ∈ QC , ∀a ∈ AE, Sx = Sz .
We have γC((x, cx), a, (t, ct)) = kt(cx). Let t = ai (resp. t = aj) be the kth symbol
occurring in cx (resp. cz). Since h(cx) ≡ h(cz), we have h(ai) = h(aj). Moreover,
since h(dai(cx)) = h(daj (cz)), we get h(cai) = h(caj ), and thus (ai, cai) ∼ (aj , caj ).
Hence for all position t = ai occurring in the left sum there is a corresponding position
t = aj occurring in the right sum. Finally, by a simple induction we get that kai(cx) =
kaj (cz). Consequently, the two sums are equal and Condition 2 is satisfied. Moreover,
since the sum Sz is independent from the choice of z in [x], γ∼(C[x], a, C[y]) can be
computed as Sz for any z ∈ [x]. Hence the Condition 4 is also satisfied. �
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As a corollary and according to Proposition 2, the K-automaton CE/∼ realizes the series
denoted by E.

We now show that the K-automaton CE/∼ and the equation K-automaton EE are
isomorphic.

Lemma 1. Let E be a regular K-expression. Then it holds: dt(E) =
⋃

x∈AE

h(cx(E)).

Lemma 2. The following equality holds for all positions x in AE ∪ {0}:

∂a(h(cx(E))) =
⊕

ai∈AE,h(ai)=a

kai(cx(E))h(dai(cx(E)))

Corollary 1. The following equality holds for all positions x, y in AE ∪ {0}:

〈∂a(h(cx(E)), h(cy(E))〉 =
⊕

ai∈[y],h(ai)=a

kai(cx(E))

Theorem 6. Let E be a regular K-expression. The K-automaton CE/∼ and the equa-
tion K-automaton EE are isomorphic.

Proof. By Lemma 1, the K-automata CE/∼ and EE have identical sets of states and
identical output weight functions. By Lemma 2, they have identical sets of transitions,
and by Corollary 1, identical transition weight functions. �

Finally, let us notice that combining Theorem 4, Theorem 5 and Theorem 6 provides a
proof of Theorem 2.

4.3 The Algorithm for Converting E into EE

We now give the sketch of the Algorithm AlgoKExptoEq for converting a regular K-
expression into its equation K-automaton.

The complexity is as follows. Let n (resp. ñ) be the number of states in CE (resp.
CE/∼). We assume that O(n) = O(|E|). Although O(ñ) = O(n), time complexity
will be expressed as far as possible w.r.t. ñ for more accuracy.

On the one hand, the computation of the set of states of CE/∼ (Step 1: Lines 3–4) and
the computation of its set of transitions (Step 2: Lines 6,7,9,10) are carried out via the
boolean case algorithm AlgoCtoE [12]. As a straightforward consequence, Step 1 can
be implemented in O(n2) time over the ZPC-structure [26] of the regular expression
associated with E, and Step 2 in O(ñn) time. Notice that any optimisation of Step 1 or
of Step 2, would lead to an improvement of both boolean and weighted algorithms.

On the other hand, the computation of the transition weight function (Step 4: Lines
6,7,9,11) can be implemented in O(ñn) time. Indeed, the weight γ∼(C[x], a, C[y]) only
depends on the weights of the transitions outgoing from one arbitrarily chosen element
in [x]. Moreover, each weight γC((z, cz), h(y), (y, cy)) is involved in the computing of
at most one weight γ∼(C[x], a, C[y]). Notice that the output weight function (Step 3:
Lines 6–8) is computed in O(ñ) time since μ∼(C[x]) = μC((z, cz)) for any z ∈ [x].

Finally it comes an O(n2 + ñn) complexity. Let us put emphasis on the fact that it
is actually the use of the ZPC-structure that allows us to get this quadratic complexity.
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Algorithm 1. AlgoKExptoEq(E)
1: Input: a regular K-expression E
2: Output: the K-automaton CE/∼
3: Compute the set of c-continuations of E and the K-automaton CE

4: Compute Q∼ as the quotient QC/ ∼
5: Set δ∼ to ∅ and γ∼ to 0
6: for all C[x] ∈ Q∼ do
7: Choose an arbitrary element (z, cz) in C[x].
8: Set μ∼(C[x]) = μC((z, cz)).
9: for all ((z, cz), h(y), (y, cy)) ∈ δC do

10: δ∼ = δ∼ ∪ (C[x], h(y), C[y])
11: γ∼(C[x], h(y), C[y]) = γ∼(C[x], h(y), C[y]) ⊕ γC((z, cz), h(y), (y, cy))
12: end for
13: end for

Theorem 7. Let E be a regular K-expression. The Algorithm AlgoKExptoEq computes
the equation K-automaton of E with a time complexity O(|Q2

C | + |Q∼||QC|), that is a
quadratic time complexity w.r.t. the size of E.

5 Conclusion

The algorithm we described for converting a regular K-expression into its equation K-
automaton makes complete the general approach based on the notion of ZPC-structure
and of c-continuation computation that we already used to handle boolean constructions
as well as the one of the position K-automaton. Its main advantadge is its robustness: it
is straightforwardly deduced from our algorithm for constructing the equation automa-
ton. The role of the set of c-continuations is easy to understand, its computation and
its partitionning are well-studied procedures, leading to a quadratic time complexity in
both boolean and weighted cases.
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Abstract. Fixed point equations x = F (x) over ω-continuous semi-
rings are a natural mathematical foundation of interprocedural program
analysis. Equations over the semiring of the real numbers can be solved
numerically using Newton’s method. We generalize the method to any
ω-continuous semiring and show that it converges faster to the least fixed
point than the Kleene sequence 0, F (0), F (F (0)), . . . We prove that the
Newton approximants in the semiring of languages coincide with finite-
index approximations studied by several authors in the 1960s. Finally,
we apply our results to the analysis of stochastic context-free grammars.

1 Introduction

In [2] we have argued that fixed point equations over ω-continuous semirings are
a natural mathematical foundation of interprocedural program analysis. In this
approach a program is mapped (in a syntax-driven way) to a system of fixed
point equations over an abstract semiring. The carrier and the operations of the
semiring are instantiated depending on the information about the program one
wishes to compute. The information is the least solution of the system.

On ω-continuous semirings one can apply Kleene’s fixed point theorem, and
so the least solution of a system of equations x = F (x) is the supremum of
the sequence 0, F (0), F 2(0), . . ., where 0 is the vector whose components are all
equal to the neutral element of +. If the carrier of the semiring is finite, this
yields a procedure to compute the solution. However, if the carrier is infinite,
the procedure rarely terminates, and its convergence can be very slow. So it
is natural to look for “accelerations”. Loosely speaking, an acceleration is a
function G having the same least fixed point μF as F , but such that (Gi(0))i≥0

converges faster to μF than (F i(0))i≥0.
In [2] we presented a generic acceleration scheme for commutative ω-con-

tinuous semirings, which we call the Newton scheme. We showed that the New-
ton scheme generalizes two well-known but apparently disconnected accelera-
tion schemes from the literature: Newton’s method for approximating a zero of
a differentiable function (this is the reason for the name of our scheme) (see
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for instance [12]), and the Hopkins-Kozen iteration scheme for Kleene algebras
(which are very close to idempotent commutative semirings) [9].

In this paper we further generalize the Newton scheme of [2] to arbitrary
ω-continuous semirings, commutative or not. In particular, this allows us to
solve systems of fixed point equations over the language semiring having the
set of languages over a given alphabet as carrier and union and concatenation
of languages as sum and product, respectively. For instance, if we consider this
semiring for the alphabet {(, )}, then the least solution of the equation X =
(X) + XX + 1 is the Dyck language of well-parenthesized expressions. Clearly,
the least solution of a system is a context-free language, and every context-free
language is the solution of a system.

The Newton acceleration scheme approximates the least solution from below.
In the case of languages, it computes a chain L0 ⊆ L1 ⊆ L2 . . . of approximations
of the least solution L =

⋃
i≥0 Li. Our main theorem characterizes these approx-

imations, and shows that, once again, a well-known concept from the literature
“is nothing but” Newton’s approximation technique.

The i-th approximation of the Newton scheme turns out to be the index-
(i + 1) approximation Li+1(G) of L(G). Recall that a terminal word w is in
Li(G) if there is a derivation S ⇒ α1 ⇒ · · · ⇒ αr = w and every αi, 0 ≤ i ≤ r
contains at most i occurrences of variables [13,8,14,7].

Our result allows to transfer results from language theory to numerical anal-
ysis and vice versa. We develop a way of applying finite-index approximations
to stochastic context-free grammars and computing the approximation quality.

It is well-known that Newton’s method for approximating the zero of a func-
tion is based on the notion of differential. Our results require to give a definition
of derivative of a polynomial expressions for arbitrary ω-continuous semirings.
This can be seen as a generalization of the Brzozowski’s definition of deriva-
tive for regular languages and Hopkins and Kozen’s definition for commutative
semirings, and could have some interest of its own.

Organization and Contributions of This Paper. In Section 2 we define differen-
tials for power series over ω-continuous semirings. Section 3 introduces a gen-
eralized Newton’s method for approximating the least solution of fixed point
equations over arbitrary ω-continuous semirings. In Section 4 (Theorem 4.1) we
characterize the iterates of the Newton scheme in terms of the tree dimension, a
concept generalized from [2]. We apply this result to context-free grammars in
Section 5 and prove that the Newton iterates coincide with finite-index approx-
imations. In Section 6 we apply the generalized Newton’s method to stochastic
context-free grammars.

Missing proofs can be found in a technical report [1].

2 Differentials in ω-Continuous Semirings

The goal of this section is to generalize the notion of differential of a function
to ω-continuous semirings. More precisely, we will only define the notion for
functions that can be represented as a power series.
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Recall the classical notion of differential that can be found in any elementary
calculus textbook. Let V be a vector space of finite dimension over the real
numbers R. The dual of V is the vector space whose elements are the linear
functions V → R, usually called linear forms. Given f : V → R, the differential
Df of f (when it exists) is an application Df : V → Ṽ that assigns to every
vector v ∈ V a linear form Df |v. Loosely speaking, Df |v is the best linear
approximation of f at the point v.

We wish to generalize the notion of differential to the case in which R is
replaced by an arbitrary ω-continuous semiring, and f is a power series. For
this, we first introduce ω-continuous semirings in Section 2.1. In Section 2.2 we
generalize the notions of vector and linear form over the reals. In Section 2.3 we
introduce power series, and finally in Section 2.4 the notion of differential itself.

2.1 ω-Continuous Semirings

In the following, we work with ω-continuous semirings, as defined in [11].

Definition 2.1. A semiring S is given by 〈S, +, ·, 0, 1〉, where S is a set with
0, 1 ∈ S, 〈S, +, 0〉 is a commutative monoid with neutral element 0, 〈S, ·, 1〉 is a
monoid with neutral element 1, 0 is an annihilator w.r.t. ·, i.e. 0 · a = a · 0 = 0
for all a ∈ S, and · distributes over +, i.e. a · (b + c) = a · b + a · c, and
(a + b) · c = a · c + b · c. The natural order relation - on a semiring S is defined
by a - b ⇔ ∃d ∈ S : a + d = b. The semiring S is naturally ordered if - is a
partial order on S.

An ω-continuous semiring is a naturally ordered semiring extended by an infinite
summation-operator

∑
that satisfies the following properties1:

– For every sequence a : N→ S the supremum sup{
∑

0≤i≤k ai | k ∈ N} exists
in S w.r.t.-, and is equal to

∑
i∈N

ai. As a consequence, every non-decreasing
sequence ai - ai+1 converges, i.e. sup{ai} exists.

– It holds
∑

i∈N

(c·ai) = c·
(
∑

i∈N

ai

)

,
∑

i∈N

(ai ·c) =

(
∑

i∈N

ai

)

·c,
∑

j∈J

⎛

⎝
∑

i∈Ij

aj

⎞

⎠ =
∑

i∈N

ai

for every a : N→ S, c ∈ S, and every partition (Ij)j∈J of N.

In the following we often omit the dot · in products.

Example 2.1. The real semiring, denoted by SR, has R≥0 ∪{∞} as carrier. Sum
and multiplication are defined as expected (e.g. a · ∞ = ∞ for a �= 0). Notice
that sum is not idempotent and product is commutative.

The language semiring over an alphabet Σ, denoted by SΣ , has the set of
all languages over Σ as carrier. Sum is union, and product is concatenation of
languages. Notice that sum is idempotent and product is not commutative.

1 [11] requires infinite summation for any sum, but we need only countable sums here.
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2.2 Vectors and Linear Forms

We introduce the notion of vectors and linear forms over an ω-continuous semi-
ring S. Notice that the name vector and linear form have to be taken with a
grain of salt, because for instance the set of vectors over S does not build a vector
space (since S may not be a field). However, it is useful to keep the names to
remember that they generalize the usual notions of vector and linear form.

Definition 2.2. Let S be an ω-continuous semiring and let X be a finite set of
variables.

A vector is a mapping v : X → S. The set of all vectors is denoted by V .
Given a countable set I and a vector vi for every i ∈ I, we denote by

∑
i∈I vi

the vector given by
(∑

i∈I vi

)
(X) =

∑
i∈I vi(X) for every X ∈ X .

A linear form is a mapping l : V → S satisfying l(v + v′) = l(v) + l(v′) for
every v, v′ ∈ V and l(0) = 0, where 0 denotes the vector given by 0(X) = 0 for
every X ∈ X . Given a linear form l and s, s′ ∈ S, we denote by s · l ·s′ the linear
form given by (s · l · s′)(v) = s · l(v) · s′ for every v ∈ V . Given a countable set I
and a linear form li for every i ∈ I, we denote by

∑
i∈I li the linear form given

by
(∑

i∈I li
)
(v) =

∑
i∈I li(v) for every v ∈ V .

2.3 Polynomials and Power Series

Definition 2.3. Let S be an ω-continuous semiring and X be a finite set of
variables. A monomial is a finite expression

a1X1a2 · · · akXkak+1

where k ≥ 0, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X . A polynomial is an expres-
sion of the form m1 + . . . +mk where k ≥ 0 and m1, . . . , mk are monomials. We
let S[X ] denote the set of polynomials w.r.t. S and X . Similarly, a power series
is an expression of the form

∑
i∈I mi, where I is a countable set and mi is a

monomial for every i ∈ I. We use S�X � to denote this set.

Definition 2.4. Let f = α1X1α2X2α3 . . . αkXkαk+1 ∈ S�X � be a monomial
and let v be a vector. We define f(v), the evaluation of f at v, as

f(v) = α1v(X1)α2v(X2)α3 · · ·αkv(Xk)αk+1.

We extend this to any power series f =
∑

i∈I fi ∈ S�X � by f(v) =
∑

i∈I fi(v).

Finally, we can also define the product of polynomials and linear forms as follows:

Definition 2.5. Let I ⊆ N, let f, g ∈ S[X ] be polynomials, and let l be a linear
form. The expression flg denotes the mapping T : V → V → S given by

T (u, v) = f(u)l(v)g(u) .

We denote by T |u : V → S the linear form given by T |u(v) = T (u, v).
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2.4 Differential of a Power Series

Recall that in the real case the differential of a function f : V → R is a mapping
Df : V → Ṽ that assigns to every vector v ∈ V a linear form Df |v, the best linear
approximation of f at the point v. Given the basis {e1, . . . , en} of unit vectors
of V , the dual basis {dX1, . . . , dXn} of Ṽ is defined by dXi(a1e1+. . .+anen) = ai

for every a1, . . . , an ∈ R. Since {dX1, . . . , dXn} is a basis of Ṽ there are functions
λ1, . . . , λn : V → R such that

Df |v = λ1(v)dX1 + · · ·+ λn(v)dXn

for every v ∈ V (here λi is the partial derivative of f w.r.t. Xi). If for every
variable Xi we define DXi f : V → Ṽ as the mapping that assigns to every vector
v the linear form DXi f |v = λi(v)dXi, then we have Df = DX1 f + . . . + DXn f .

Definition 2.7 below generalizes the linear forms DXi f |v to the case in which
R is replaced by an ω-continuous semiring. We start by generalizing the dXi:

Definition 2.6. For every X ∈ X , we denote by dX the linear form defined by
dX(v) = v(X) for every v ∈ V .

Definition 2.7. Let f be a power series and let X ∈ X be a variable. The
differential of f w.r.t. X is the mapping DX f : V → V → S that assigns to every
vector v the linear form DX f |v : V → S inductively defined as follows:

DX f |v =

⎧
⎪⎪⎨

⎪⎪⎩

0 if f ∈ S or f ∈ X \ {X}
dX if f = X

DX g|v · h + g ·DXh|v if f = g · h
∑

i∈I DX fi |v if f =
∑

i∈I fi.

Further, we define the differential of f as the linear form

Df :=
∑

X∈X
DX f .

In the real case the differential is used to approximate the value of a differentiable
function f(v + u) in terms of f(v) and Df |v(u). The following lemma goes in
the same direction.

Lemma 2.1. Let f be a power series and let v, u be two vectors. We have

f(v) + Df |v(u) - f(v + u) - f(v) + Df |v+u(u).

3 Solving Systems of Fixed Point Equations

The partial order - on the semiring S can be lifted to an order on vectors, also
denoted by -, given by v - v′ iff v(X) - v′(X) for every X ∈ X .

In the following, let F be a vector of power series, i.e., a mapping that assigns
to each variable X ∈ X a power series F (X). For convenience we denote F (X)
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by F X . Given a vector v, we define F (v) as the vector satisfying (F (v))(X) =
F X(v) for every X ∈ X , i.e., F (v) is the vector that assigns to X the result of
evaluating the power series F X at v. So, F can be seen as a mapping F : V → V .

Given a vector of power series F , we are interested in the least fixed point of
F , i.e., the least vector v w.r.t. - satisfying v = F (v).

3.1 Kleene’s Iteration Scheme

Recall that a mapping f : S → S is monotone if a - b implies f(a) - f(b), and
ω-continuous if for any infinite chain a0 - a1 - a2 - . . . we have sup{f(ai)} =
f(sup{ai}). The definition can be extended to mappings F : V → V from vectors
to vectors in the obvious way (componentwise). Then we may formulate the
following proposition (cf. [11]).

Proposition 3.1. Let F be a vector of power series. The mapping induced by F
is monotone and continuous. Hence, by Kleene’s theorem, F has a unique least
fixed point μF . Further, μF is the supremum (w.r.t. -) of the Kleene sequence
given by κ(0) = F (0), and κ(i+1) = F (κ(i)).2

Kleene’s iteration scheme converges very slowly. Consider for instance the equa-
tion X = aXb + 1 over the semiring of languages over {a, b} (where 0 = ∅ and
1 = {λ}). The i-th iteration κ(i) is the language {ajbj | j ≤ i}, so the scheme
needs an infinite number of iterations to reach μF . Newton’s iteration scheme,
introduced below, can be seen as an “acceleration” of Kleene’s scheme.

3.2 Newton’s Iteration Scheme

Let F be a vector of power series, and v any vector. Then DF |v denotes the
mapping V → V with

(
DF |v(u)

)

X
= DFX |v(u). So DF |v can be seen as the

evaluation of a mapping DF : V → V → V at v (cf. Definition 2.7). Lemma 2.1
then becomes F (v) + DF |v(u) - F (v + u) - F (v) + DF |v+u(u).

Newton’s scheme uses DF to obtain a sequence that converges more quickly
to the least fixed point than Kleene’s sequence. In order to introduce it we first
define the Kleene star of an arbitrary mapping V → V :

Definition 3.1. Let F : V → V be an arbitrary mapping. The mapping F i : V
→ V is inductively defined by F 0(v) = v and F i+1(v) = F (F i(v)). The Kleene
star of F , denoted by F ∗, is the mapping F ∗ : V → V given by F ∗(v) =
∑

i≥0 F i(v).

Now we can define Newton’s scheme.

Definition 3.2. Let F : V → V be a vector of power series. We define the New-
ton sequence (ν(i))i∈N as follows:

ν(0) = F (0) and ν(i+1) = ν(i) + DF |∗ν(i)(δ(i)),
where δ(i) has to satisfy F (ν(i)) = ν(i) + δ(i).

In words, ν(i+1) is obtained by adding to ν(i) the result of evaluating the Kleene
star of DF |ν(i) at the point δ(i).
2 In [2] we define κ(0) = 0, but κ(0) = F (0) is slightly more convenient for this paper.
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The name “Newton’s method” is justified as follows: Consider a univariate
equation X = F (X) over SR with F ′|x ∈ (−1, 1) for x ∈ [0, μF ). Applying
Newton’s method as described above to X = F (X), yields ν(i+1) = ν(i) +
F ′|∗

ν(i)(F (ν(i))− ν(i)) = ν(i) +
∑

k∈N
F ′|k

ν(i)(F (ν(i))− ν(i)) = ν(i) + F (ν(i))−ν(i)

1−F ′|
ν(i)

=

ν(i) − G(ν(i))
G′|

ν(i)
. But this is exactly Newton’s method for finding a zero of G(X) =

F (X)−X . This can be generalized to equation systems (see [2,5]).
The following theorem summarizes the properties of the Newton sequence.

Theorem 3.1. Let F ∈ S�X �X be a vector of power series. For every i ∈ N:
κ(i) - ν(i) - F (ν(i)) - μF = supj κ(j).

In particular, this theorem ensures the existence of a suitable δ(i) (because ν(i) -
F (ν(i)), and the convergence of the Newton sequence to the same value as the
Kleene sequence. Moreover, since κ(i) - ν(i), the Newton sequence converges
“at least as fast” as the Kleene sequence.

Example 3.1. In the following examples we set X = {X}. Since in this case
vectors only have one component, given an element s of a semiring we also use
s to denote the vector v given by v(X) = s.

Consider the language semiring S{a,b} over the alphabet {a, b}. One can show
that by taking δ(i) = F (ν(i)) Newton’s sequence can be simplified to

ν(0) = F (0) and ν(i+1) = DF |∗ν(i)(F (ν(i))).

(1) Consider again the polynomial f(X) = aXb+1. As already mentioned above,
the Kleene sequence needs ω iterations to reach the fixed point {anbn | n ≥ 0}.
As a warm-up we show that the Newton sequence converges after one step.

We have Df |v = a dX b for every v ∈ V , and so

ν(1) = (a dX b)∗(1) =
∑

j≥0

aj dX(1)bj = {ajbj | j ≥ 0}.

The next example shows a more interesting case.

(2) Consider the polynomial f(X) = aXX + b. We have:

Df |v = av(X)dX + a dXv(X)

ν(0) = b

ν(1) = Df |∗b(abb + b) = (ab dX + a dX b)∗(abb + b)
= L(X → abX | aXb | abb | b)

ν(i+1) = Df |∗
ν(i)(f(ν(i))) = (aν(i) dX + a dXν(i))∗(f(ν(i)))

In this case the Newton sequence also needs ω iterations. We shall see in Section 5
that ν(i) contains the words generated by the grammar X → aXX, X → b via
derivations of index at most i+1, i.e., derivations in which no intermediate word
contains more than i + 1 occurrences of variables.
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(3) Consider the same polynomial as in (2), but over a semiring where product
is commutative (and + is still idempotent). In this case we have:

Df |v = av(X)dX

ν(0) = b
ν(1) = Df |∗b(ab2 + b) = (ab dX)∗(ab2 + b) = (ab)∗(ab2 + b) = (ab)∗b
ν(2) = Df |∗

ν(1)(f(ν(1))) = (aν(1))∗(f(ν(1))) = a(ab)∗b(a((ab)∗b)2 + b) = (ab)∗b

So the Newton sequence reaches the fixed point at ν(1). The language (ab)∗b is a
regular language having the same Parikh mapping as the context-free language
generated by X → aXX, X → b.

4 Derivation Trees and the Newton Iterates

In language theory, given a grammar G, one associates derivations and derivation
trees with G. The language L(G) can be seen as the set of all words that can be
derived by a derivation tree of G. On the other hand, if G is context-free, then
L(G) is the least solution of a fixed point equation x = F (x) over a language
semiring, where the equation x = F (x) is essentially the production set of G.

In this section we extend the notion of derivation trees to fixed point equations
x = F (x) over any ω-continuous semiring. It will be easy to see that the Kleene
iterates κ(i) correspond to the derivation trees of height at most i. We will show
that the Newton iterates ν(i) correspond to the derivation trees of dimension
at most i, generalizing the concept of dimension introduced in [2]. This gives
valuable insight into the generalized Newton’s method from the previous section
and establishes a strong link between two apparently disconnected concepts, one
from language theory (finite-index languages, see Section 5) and the other from
numerical mathematics (Newton’s method).

Definition 4.1 (derivation tree). Let F be a vector of power series. A deriva-
tion tree of F is defined inductively as follows. Let a1X1a2 · · ·Xsas+1 be a sum-
mand of F X (X ∈ X ) and let v be a node labelled by

λ(v) = (λ1(v), λ2(v)) = (X, a1X1a2 · · ·Xsas+1).

Let t1, . . . , ts be derivation trees with λ1(tr) = Xr (1 ≤ r ≤ s). Then the tree
whose root is v and whose (ordered) children are t1, . . . , ts is a derivation tree.

We identify a derivation tree and its root from now on and often simply write
tree when we mean derivation tree.

Remark to multiplicities. Let F be a system of power series. If, for a variable
X ∈ X , the same monomial m occurs more than once as a summand of F X , and
there is a node v in a tree of F s.t. λ1(v) = X and λ2(v) = m, then it is not clear
“which” summand m of F X was used at v. But we assume in the following that
λ2(v) is a particular occurrence of m in F X . Hence, two trees which are equal
up to different occurrences are regarded as different in the following. However,
we do not make that explicit in our definition to avoid notational clutter.
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Definition 4.2 (height, yield). The height h(t) of a derivation tree t is the
length of a longest path from the root to a leaf of t. The yield Y (t) of a derivation
tree t with λ2(t) = a1X1a2 · · ·Xsas+1 is inductively defined to be

Y (t) = a1Y (t1)a2 · · ·Y (ts)as+1.

We can characterize the Kleene sequence (κ(i))i∈N using the height as follows.

Proposition 4.1. For all i ∈ N and X ∈ X , we have that
(
κ(i)

)

X
is the sum

of yields of all derivation trees with λ1(t) = X and h(t) ≤ i.

Now we aim at characterizing the Newton sequence (ν(i))i∈N in terms of deriva-
tion trees. To this end we need use another property of a tree, the tree dimension.
As does the height, it depends only on the graph structure of a tree.

Definition 4.3 (dimension). For a tree t, define dl (t) = (d(t), l(t)) as follows.

1. If h(t) = 0, then dl(t) = (0, 0).
2. If h(t) > 0, let {t1, . . . , ts} be the children of t where d(t1) ≥ . . . ≥ d(ts). Let

d1 = d(t1). If s > 1, let d2 = d(t2), otherwise let d2 = 0. Then

dl(t) =
{

(d1 + 1, 0) if d1 = d2

(d1, l(t1) + 1) if d1 > d2.

We call d(t) the dimension of the tree t.

The following Theorem 4.1 defines a concrete Newton sequence (ν(i))i∈N which
allows for the desired tree characterization of ν(i) (cf. Prop. 4.1).

Theorem 4.1. Let F be a vector of power series. Define the sequence (ν(i))i∈N

as follows:

ν(0) = F (0) and ν(i+1) = ν(i) + DF |∗ν(i)(δ(i)) ,

where δ
(i)
X is the sum of yields of all derivation trees t with λ1(t) = X and

dl(t) = (i + 1, 0). Then for all i ≥ 0 :

(1) F (ν(i)) = ν(i)+δ(i), so (ν(i))i∈N is a Newton sequence as defined in Def. 3.2;
(2) ν

(i)
X is the sum of yields of all derivation trees t with λ1(t) = X and d(t) ≤ i.

5 Languages with Finite Index

In this section we study fixed point equations x = F (x) over language semirings.
Let SΣ be the language semiring over a finite alphabet Σ. Let F be a vector of
polynomials over X whose coefficients are elements of Σ. Then, for each X0 ∈ X ,
there is a naturally associated context-free grammar GF ,X0 = (X , Σ, P, X0),
where the set of productions is P = {(Xi → α) | α is a summand of F Xi}.
It is well-known that L(GF ,X0) =

(
μF

)

X0
(see e.g. [11]). Analogously, each

grammar is naturally associated with a vector of polynomials. In the following
we use grammars and vectors of polynomials interchangeably.
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We show in this section that the approximations ν(i) obtained from our gener-
alized Newton’s method are strongly linked with the finite-index approximations
of L(G). Finite-index languages have been extensively investigated under differ-
ent names [13,8,14,7,6] (see [6] for historical background).

Definition 5.1. Let G be a grammar, and let D be a derivation X0 = α0 ⇒
· · · ⇒ αr = w of w ∈ L(G), and for every i ∈ {0, . . . , r} let βr be the projection
of αr onto the variables of G. The index of D is the maximum of {|β0|, . . . , |βr|}.
The index-i approximation of L(G), denoted by Li(G), contains the words deriv-
able by some derivation of G of index at most i.

We show that for a context-free grammar G in Chomsky normal form (CNF), the
Newton approximations to L(G) coincide with the finite-index approximations.

Theorem 5.1. Let G = (X , Σ, P, X0) be a context-free grammar in CNF and
let (ν(i))i∈N be the Newton sequence associated with G. Then

(
ν(i))X0 = Li+1(G)

for every i ≥ 0.

In particular, it follows from Theorem 5.1 that the (first component of the)
Newton sequence for a context-free grammar G converges in finitely many steps
if and only if L(G) = Li(G) for some i ∈ N.

6 Stochastic Context-Free Grammars

In this section we show how the link between finite-index approximations and
(the classical version of) Newton’s method can be exploited for the analysis of
stochastic context-free grammars (SCFGs), a model that combines the language
semiring and the real semiring.

A SCFG is a CFG where every production is assigned a probability. SCFGs
are widely used in natural language processing and in bioinformatics (see also the
example at the end of the section). We use the grammar Gex with productions

X
1/6−→ X6, X

1/2−→ X5, X
1/3−→ a as running example.

SCFGs can be seen as systems of polynomials over the direct product of the
semiring SΣ of languages over Σ and the semiring of non-negative reals (R≥0 ∪
{∞}, +, ·, 0, 1). The system for the grammar G has one polynomial, namely
FX = (λ, 1

6 )X6 + (λ, 1
2 )X5 + (a, 1

3 ).
Given an SCFG it is often important to compute the termination probability

T (X) of a given variable X (see [4,3] for applications to program verification).
T (X) is the probability that a derivation starting at X “terminates”, i.e., gen-
erates some word. For Gex we have 0.3357037075 < T (X) < 0.3357037076. It is
easy to see that the termination probabilities are given by (the real part of) the
least fixed point of the corresponding system of polynomials [4,5], and that they
may be irrational and not representable by radicals (in fact, Gex is an example).
Therefore, they must be numerically approximated. This raises the problem that
whenever other parameters are calculated from the termination probabilities it
is necessary to conduct an error propagation analysis.
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A solution to this problem is to replace the original SCFG G by another one,
say G′, generating “almost” the same language, and for which all termination
probabilities are 1. “Almost” means that (1) the probability of the derivations
of G that are not derivations of G′ is below a given bound, and (2) that the
quotient of the probabilities of any two derivations that appear in both G and
G′ is the same in G and G′. G′ can be obtained as follows. Since δ(i) is uniquely
determined by the equation F (ν(i)) = ν(i) + δ(i) over SR, we know that ν(K) is
the probability of the derivation trees of dimension at most K. Hence, we can
approximate the terminating runs by choosing G′ = GK , where GK generates
the derivation trees of G of dimension at most K. Assuming that G is in Chomsky
normal form, GK has variables X0, X1, X≤1, . . . , XK , X≤K for every variable X
of G, with X≤K as axiom. Its productions are constructed so that Xi (X≤i)
generates the derivation trees of G of dimension i (at most i) with X as root.
For this, GK has: (i) a production X0 → a for every production X → a of
G, (ii) productions3 Xi → Yi−1Zi−1, Xi → YiZ≤i−1 and Xi → Y≤i−1Zi for
every production X → Y Z of G and every i ∈ {1, . . . , K}, and (iii) productions
X≤i → Xi and X≤i → X≤i−1 for every variable X and every i ∈ {1, . . . , K}.
It remains to define the probabilities of the productions so that the probability
that a tree t is derived from X≤K in GK is equal to the conditional probability
that t is derived from X in G under the condition that a tree of dimension at
most K is derived from X . For this we set p(X0 → a) = p(X→a)

ν
(0)
X

. For K > 0, an

induction over the tree dimension shows that we have to choose the remaining
probabilities as follows (we omit some symmetric cases):

p(X≤K → XK) = Δ
(K)
X

ν
(K)
X

p(XK → YKZ≤K−1) = p(X→Y Z)

Δ
(K)
X

Δ
(K)
Y ν

(K−1)
Z

p(X≤K → X≤K−1) = ν
(K−1)
X

ν
(K)
X

p(XK → YK−1ZK−1) = p(X→Y Z)

Δ
(K)
X

Δ
(K−1)
Y Δ

(K−1)
Z

with Δ(k) = ν(k) − ν(k−1) for k > 0, and Δ(0) = ν(0).
The first iterations of the Newton sequence for our running example Gex are

ν(0) = 1/3, ν(1) = 0.3357024402, ν(2) = 0.3357037075, ν(3) = 0.3357037075

(up to machine accuracy). In this case we could replace Gex by Gex
2 or even Gex

1 .
We finish the section with another example. The following SCFG, taken

from [10], is used to describe the secondary structure in RNA:

L
0.869−→ CL L

0.131−→ C S
0.788−→ pSp S

0.212−→ CL C
0.895−→ s C

0.105−→ pSp.

The following table shows the first iterates of the Newton and Kleene sequences
for the corresponding system of polynomials.

i ( ν
(i)
L , ν

(i)
S , ν

(i)
C ) ( κ

(i)
L , κ

(i)
S , κ

(i)
C )

1 ( 0.5585, 0.4998, 0.9475 ) ( 0.1172, 0, 0.895 )
3 ( 0.9250, 0.9150, 0.9911 ) ( 0.2793, 0.0571, 0.8973 )
5 ( 0.9972, 0.9968, 0.9997 ) ( 0.3806, 0.1414, 0.9053 )

3 where X≤0 is identified with X0.
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As we can see, the contribution of trees of dimension larger than 5 is negligible.
Here, the Newton sequence converges much faster than the Kleene sequence.

7 Conclusions

We have generalized Newton’s method for numerically computing a zero of a
differentiable function to a method for approximating the least fixed point of a
system of power series over an arbitrary ω-continuous semiring. We have charac-
terized the iterates of the Newton sequence in terms of derivation trees: the i-th
iterate corresponds to the trees of dimension at most i. Perhaps surprisingly, in
the language semiring the Newton iterates turn out to coincide with the clas-
sical notion of finite-index approximations. Finally, we have sketched how our
approach can help to analyze stochastic context-free grammars.
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Abstract. Size (the number of states) of finite probabilistic automata
with an isolated cut-point can be exponentially smaller than the size of
any equivalent finite deterministic automaton. The result is presented
in two versions. The first version depends on Artin’s Conjecture (1927)
in Number Theory. The second version does not depend on conjectures
but the numerical estimates are worse. In both versions the method of
the proof does not allow an explicit description of the languages used.
Since our finite probabilistic automata are reversible, these results imply
a similar result for quantum finite automata.

1 Introduction

M.O.Rabin proved in [14] that if a language is recognized by a finite probabilistic
automaton with n states, r accepting states and isolation radius δ then there
exists a finite deterministic automaton which recognizes the same language and
the deterministic automaton may have no more than (1 + r

δ )n states. However,
how tight is this bound? Rabin gave an example of languages in [14] where prob-
abilistic automata indeed had size advantages but these advantages were very
far from the exponential gap predicted by the formula (1 + r

δ )n . Unfortunately,
the advantage proved by Rabin’s example was only linear, not exponential. Is it
possible to diminish the gap? Is the upper bound (1 + r

δ )n tight or is Rabin’s
example best possible?

R. Freivalds in [5] constructed an infinite sequence of finite probabilistic au-
tomata such that every automaton recognizes the corresponding language with
the probability 3

4 , and if the probabilistic automaton has n states then the lan-
guage cannot be recognized by a finite deterministic automaton with less than
Ω(2

√
n) states. This did not close the gap between the lower bound Ω(2

√
n)

and the purely exponential upper bound (1 + r
δ )n but now it was clear that

the size advantage of probabilistic versus deterministic automata may be super-
polynomial.

A.Ambainis [1] constructed a new sequence of languages and corresponding se-
quence of finite probabilistic automata such that every automaton recognizes the
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corresponding language with the probability 3
4 and if the probabilistic automa-

ton has n states then the language cannot be recognized by a finite deterministic
automaton with less than Ω(2

nloglogn
logn ) states. On the other hand, the languages

in [5] were in a single-letter alphabet but for the languages in [1] the alphabet
grew with n unlimitedly.

This paper gives the first ever purely exponential distiction between the sizes
of probabilistic and deterministic finite automata. Existence of an infinite se-
quence of finite probabilistic automata is proved such that all of them recognize
some language with a fixed probability p > 1

2 and if the probabilistic automaton
has n states then the language cannot be recognized by a finite deterministic
automaton with less than Ω(an) states for a certain a > 1. This does not end
the search for the advantages of probabilistic finite automata over deterministic
ones. We still do not know the best possible value of a. Moreover, the best esti-
mate proved in this paper is proved under assumption of the well-known Artin’s
conjecture in Number Theory. Our final Theorem 3 does not depend on any open
conjectures but the estimate is worse, and the description of the languages used
is even less constructive. These seem to be the first results in Finite Automata
depending on open conjectures in Number Theory.

The essential proofs are non-constructive. Such an approach is not new. A
good survey of many impressive examples of non-constructive methods is by
J. Spencer [15]. Technically, the crucial improvement over existing results and
methods comes from our usage of mirage codes to construct finite probabilistic
automata. Along this path of proof, it turned out that the best existing result
on mirage codes (Theorem A below) is not strong enough for our needs. The
improvement of Theorem A is based on the notion of Kolmogorov complexity.
It is well known that Kolmogorov complexity is not effectively computable. It
turned out that non-computability of Kolmogorov complexity allows to prove
the existence of the needed mirage codes and it is enough for us to prove an ex-
ponential gap between the size of probabilistic and deterministic finite automata
recognizing the same language. On the other hand, some results of abstract al-
gebra (namely, elementary properties of group homomorphisms) are also used in
these proofs.

2 Number-Theoretical Conjectures

By p we denote an odd prime number, i.e. a prime greater than 2. To prove the
main theorems we consider several lemmas. Most of them are valid for arbitrary
p but we are going to use them only for odd primes of a special type.

Consider the sequence

20, 21, 22, . . . , 2p−2, 2p−1, 2p, . . .

and the corresponding sequence of the remainders of these numbers modulo p

r0, r1, r2, . . . , rp−2, rp−1, rp, . . . (1)
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(rk ≡ 2k (mod p)). For arbitrary p, the sequence (1) is periodic. Since r0 = 1
and, by the Fermat Little Theorem, rp−1 ≡ 2p−1 ≡ 1 (mod p), one may think
that p− 1 is the least period of the sequence (1).

This is not the case. For instance, 27−1 ≡ 1 (mod 7). but also 23 ≡ 1
(mod 7). However, sometimes p − 1 can be the least period of the sequence
(1). In this case, 2 is called a primitive root modulo p. More generally, a number
a is called a primitive root modulo p if and only if a is a relatively prime to p and
p− 1 is the least period in the sequence of remainders modulo p of the numbers

a0 = 1, a1, a2, . . . , ap−2, ap−1, ap, . . .

Emil Artin made in 1927 a famous conjecture the validity of which is still an
open problem.

Artin’s Conjecture. [3] If a is neither -1 nor a square, then a is a primitive root
for infinitely many primes.

Moreover, it is conjectured that density of primes for which a is a primitive root
equals A = 0.373956 . . .. In 1967, C.Hooley [9] proved that Artin’s conjecture
follows from the Generalized Riemann hypothesis. D.R.Heath-Brown [10] proved
that Artin’s conjecture can be wrong no more than for 2 distinct primes a.

3 Linear Codes

Linear codes is the simplest class of codes. The alphabet used is a fixed choice
of a finite field GF (q) = Fq with q elements. For most of this paper we consider
a special case of GF (2) = F2. These codes are binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n matrix with
entries in the finite field Fq, whose rows are linearly independent. The linear code
corresponding to the matrix G consists of all the qk possible linear combinations
of rows of G. The requirement of linear independence is equivalent to saying that
all the qk linear combinations are distinct. The linear combinations of the rows in
G are called codewords. However we are interested in something more. We need
to have the codewords not merely distinct but also as far as possible in terms
of Hamming distance. Hamming distance between two vectors v = (v1, . . . , vn)
and w = (w1, . . . , wn) in Fqk is the number of indices i such that vi �= wi.

The textbook [7] contains

Theorem A. For any integer n ≥ 4 there is a [2n, n] binary code with a minimum
distance between the codewords at least n/10.

However the proof of the theorem in [7] has a serious defect. It is
non-constructive. It means that we cannot find these codes or describe them
in a useful manner. This is why P.Garret calls them mirage codes.

If q is a prime number, the set of the codewords with the operation
“component-wise addition” is a group. Finite groups have useful properties. We
single out Lagrange’s Theorem. The order of a finite group is the number of
elements in it.
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Lagrange’s Theorem. (see e.g. [7]) Let GR be a finite group. Let H be a subgroup
of GR. Then the order of H divides the order of G.

Definition 1. A generating matrix G of a linear code is called cyclic if along
with an arbitrary row (v1, v2, v3, . . . , vn) the matrix G contains also a row
(v2, v3, . . . , vn, v1).

We would have liked to prove a reasonable counterpart of Theorem A for cyclic
mirage codes, but this attempt fails. Instead we consider binary generating ma-
trices of a bit different kind. Let p be an odd prime number, and x be a binary
word of length p. The generating matrix G(p, x) has p rows and 2p columns.
Let x = x1x2x3 . . . xp. The first p columns (and all p rows) make a unit matrix
with elements 1 on the main diagonal and 0 in all the other positions. The last
p columns (and all p rows) make a cyclic matrix with x = x1x2x3 . . . xp as the
first row, x = xpx1x2x3 . . . xp−1 as the second row, and so on.

Lemma 1. For arbitrary x, if h1h2h3 . . . hphp+1hp+2hp+3 . . . h2p is a codeword
in the linear code corresponding to G(p, x), then hph1h2 . . . hp−1h2php+1hp+2

. . . h2p−1 is also a codeword.

There are 2p codewords of the length 2p. If the codeword is obtained as a linear
combination with the coefficients c1, c2, . . . , cp then the first p components of the
codeword equal c1c2 . . . cp. We denote by R(x, c1c2 . . . cp) the subword containing
the last p components of this codeword.

Lemma 2. If c1c2 . . . cp = 000 . . .0, then R(x, c1c2 . . . cp) = 000 . . .0, for arbi-
trary x.

Definition 2. We will call a word trivial if all its symbols are equal. Otherwise
we call the word nontrivial.

Lemma 3. If c1c2 . . . cp is trivial, then R(x, c1c2 . . . cp) is trivial for arbitrary x.

Proof. Every symbol of R(x, c1c2 . . . cp) equals x1 + x2 + · · ·+ xp (mod 2).

Lemma 4. If x is trivial, then R(x, c1c2 . . . cp) is trivial for arbitrary c1c2 . . . cp.

Definition 3. A word x = x1x2 . . . xp is called a cyclic shift of the word y =
y1y2 . . . yp if there exists i such that x1 = yi, x2 = yi+1, . . . , xp = yi+p where the
addition is modulo p. If (i, p) = 1, then we say that this cyclic shift is nontrivial.

Lemma 5. If x is a cyclic shift of y, then R(x, c1c2 . . . cp) is a cyclic shift of
R(y, c1c2 . . . cp).

Lemma 6. If p is an odd prime, x is a nontrivial word and y is a nontrivial
cyclic shift of x, then x �= y.

Lemma 7. If p is an odd prime and c1c2 . . . cp is nontrivial, then the set
Tc1c2...cp = {R(x, c1c2 . . . cp)|x ∈ {0, 1}p and R(x, c1c2 . . . cp) nontrivial } has
a cardinality which is a multiple of p.
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Proof. Immediately from Lemmas 5 and 6.

For arbitrary fixed c1c2 . . . cp, the set {R(x, c1c2 . . . cp)|x ∈ {0, 1}p} with alge-
braic operation “component-wise addition modulo z” is a group. We denote this
group by B. By D we denote the group of all 2p binary words of the length p
with the same operation.

Lemma 8. For arbitrary c1c2 . . . cp, x and y, R(x, c1c2 . . . cp)+ R(y, c1c2 . . . cp)
= R(x + y, c1c2 . . . cp).

In other words, for arbitrary c1c2 . . . cp, the map D → B defined by x →
R(x, c1c2 . . . cp) is a group homomorphism. (Definition and properties of group
homomorphisms can be found in every textbook on group theory. See e.g. [4].)
The kernel of the group homomorphism is the set ker0 = {x|R(x, c1c2 . . . cp) =
000 . . .0}.

The image of the group homomorphism is the set B. For arbitrary z ∈ B, by
kerz we denote the set kerz = {x|R(x, c1c2 . . . cp) = z}.

From Lemma 8 we easily get

Lemma 9. For arbitrary z ∈ B, card(kerz) = card(ker0).

Lemma 10. For arbitrary z ∈ B, card(kerz) = card(D)
card(B) .

Lemma 11. If x contains (p−1) zeroes and 1 one, and c1c2 . . . cp is nontrivial,
then R(x, c1c2 . . . cp) is nontrivial.

Proof. For such an x, the number of ones in R(x, c1c2 . . . cp) is the same as the
number of ones in c1c2 . . . cp.

Lemma 12. If p is an odd prime such that 2 is a primitive root modulo p and
c1c2 . . . cp is nontrivial, then the set Sc1c2...cp = {R(x, c1c2 . . . cp)|x ∈ {0, 1}p} is
either of cardinality 1 or of cardinality 2.

Proof. By Lagrange’s Theorem the order 2p of the group B divides the order of
the group D. Hence the order of B is 2b for some integer b. The neutral element
of these groups is the word 000 . . .0. It belongs to every subgroup. There are
two possible cases:

1. 111 . . .1 is in B,
2. 111 . . .1 is not in B.

In the case 1 card(Tc1c2...cp) = card(B) − 2, and by Lemmas 7 and 10
card(Tc1c2...cp) is a multiple of p. Hence 2b = card(B) ≡ 2 (mod p) and
2b−1 ≡ 1 (mod p). Since 2 is a primitive root modulo p, either 2b−1 = 2p−1

or 2b−1 = 20. If 2b−1 = 2p−1, then 2b = 2p and for this fixed c1c2 . . . cp the
map x → R(x, c1c2 . . . cp) takes distinct x’es into distinct R(x, c1c2 . . . cp)’s. If
2b−1 = 20, then 2b = 2 and B = {000 . . .0, 111 . . .1}, but this is impossible by
Lemma 11.
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In the case 2 card(Tc1c2...cp) = card(B) − 1 and by Lemma 7 card(Tc1c2...cp)
is a multiple of p. Hence 2b ≡ 1 (mod p). Since 2 is a primitive root modulo p,
either 2b = 2p−1 or 2b = 20. If 2b = 2p−1, then card(B) = 2p−1 and, by Lemma
10, for arbitrary z ∈ Tc1c2...cp , card(kerz) = 2. If 2b = 20, then B = {000 . . .0}
but this is impossible by Lemma 11.

4 Kolmogorov Complexity

The theorems in this section are well-known results in spite of the fact that it is
not easy to find exact references for all of them.

Definition 4. We say that the numbering Ψ = {Ψ0(x), Ψ1(x), Ψ2(x), . . .} of 1-
argument partial recursive functions is computable if the 2-argument function
U(n, x) = Ψn(x) is partial recursive.

Definition 5. We say that a numbering Ψ is reducible to the numbering η if
there exists a total recursive function f(n) such that, for all n and x, Ψn(x) =
ηf(n)(x).

Definition 6. We say that a computable numbering ϕ of all 1-argument partial
recursive functions is a Gödel numbering if every computable numbering (of
any class of 1-argument partial recursive functions) is reducible to ϕ.

Theorem. There exists a Gödel numbering.

Definition 7. We say that a Gödel numbering ϑ is a Kolmogorov numbering
if for arbitrary computable numbering Ψ (of any class of 1-argument partial
recursive functions) there exist constants c > 0, d > 0, and a total recursive
function f(n) such that:

1. for all n and x, Ψn(x) = ϑf(n)(x),
2. for all n, f(n) ≤ c · n + d.

Kolmogorov Theorem. [11] There exists a Kolmogorov numbering.

5 New Mirage Codes

In the beginning of Section 3 we introduced a special type generating matrices
G(p, x) where p is an odd prime and x is a binary word of length p. Now we
introduce two technical auxiliary functions. If z is a binary word of length 2p,
then d(z) is the subword of z containing the first p symbols, and e(z) is subword
of z containing the last p symbols. Then z = d(z)e(z).

There exist many distinct Kolmogorov numberings. We now fix one of them
and denote it by η. Since Kolmogorov numberings give indices for all partial
recursive functions, for arbitrary x and p, there is an i such that ηi(p) = x. Let
i(x, p) be the minimal i such that ηi(p) = x. It is easy to see that if x1 �= x2, then
i(x1, p) �= i(x2, p). We consider all binary words x of the length p and denote by
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x(p) the word x such i(x, p) exceed i(y, p) for all binary words y of the length p
different from x. It is obvious that i ≥ 2p − 1.

Until now we considered generating matrices G(p, x) for independently chosen
p and x. From now on we consider only odd primes p such that 2 is a primitive
root modulo p and the matrices G(p, x(p)). We wish to prove that if p is suffi-
ciently large, then Hamming distances between two arbitrary codewords in this
linear code is at least 4p

19 .
We introduce a partial recursive function μ(z, ε, p) defined as follows. Above

when defining G(p, x) we considered auxiliary function R(x, c1c2 . . . cp). To define
μ(z, ε, p) we consider all 2p binary words x of the length p. If z is not a binary
word of length 2p, then μ(z, ε, p) is not defined. If ε is not in {0, 1}, then μ(z, ε, p)
is not defined. If z is a binary word of length 2p and ε ∈ {0, 1}, then we consider
all x ∈ {0, 1}p such that R(x, d(z)) = e(z). If there are no such x, then μ(z, ε, p)
is not defined. If there is only one such x, then μ(z, ε, p) = x. If there are two
such x, then

μ(z, ε, p) =
{

the first such x in the lexicographical order, for ε = 1
the second such x in the lexicographical order, for ε = 0

If there are more than two such x, then μ(z, ε, p) is not defined.
Now we introduce a computable numbering of some partial recursive func-

tions. This numbering is independent of p.
For each p (independently from other values of p) we order the set of all the

22p binary words z of the length 2p: z0, z1, z2, . . . , z22p−1. We define z0 as the
word 000 . . . 0. The words z1, z2, . . . , z22p−1 are words with exactly one symbol
1. We strictly follow a rule “if the word zi contains less symbols 1 than the
word zj, then i < j”. Words with equal number of the symbol 1 are ordered
lexicographically. Hence z22p−1 = 111 . . .1.

For each p, we define

Ψ0(p) = μ(z0, 0, p)
Ψ1(p) = μ(z0, 1, p)
Ψ2(p) = μ(z1, 0, p)
Ψ3(p) = μ(z1, 1, p)
Ψ4(p) = μ(z2, 0, p)
Ψ5(p) = μ(z2, 1, p)
. . .
Ψ22p+1−2(p) = μ(z22p−1, 0, p)
Ψ22p+1−1(p) = μ(z22p−1, 1, p)

For j ≥ 22p+1, Ψj(p) is undefined.
We have fixed a Kolmogorov numbering η and we have just constructed a

computable numbering Ψ of some partial recursive functions.

Lemma 13. There exist constants c > 0 and d > 0 (independent of p) such that
for arbitrary i there is a j such that

1. Ψi(t) = ηj(t) for all t, and
2. j ≤ ci + d.
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Proof. Immediately from Kolmogorov Theorem.

We consider generating matrices G(p, x(p)) for linear codes where p is an odd
prime such that 2 is a primitive root modulo p, and, as defined above, x(p) is a
binary word of length p such that ηi(p) = x(p) implies i ≥ 2p − 1. We denote
the corresponding linear code by LC2(p).

Now we prove several lemmas showing that, if p is sufficiently large, then
Hamming distances between arbitrary two codewords are no less than 4p

19 .

Lemma 14. For every linear code, there is a codeword 000 . . .0.

Proof. The codeword 000 . . .0 is obtained by using coefficients c1c2 . . . cp =
000 . . .0.

Lemma 15. For every linear code, if there exists a pair of distinct codewords
with Hamming distance less than d, then there is a codeword with less than d
symbols 1 in it.

Proof. If x1 and x2 are codewords, then x1 ⊕ x2 also is a codeword.

Lemma 16. If p is sufficiently large, and a codeword in LC2(p) contains less
than 4p

19 symbols 1, then the codeword is 000 . . . 0.

Proof. Assume from the contrary that there is a codeword z �= 000 . . .0 contain-
ing less than 4p

19 symbols 1. Above we introduced an ordering z0, z1, z2, . . . , z22p−1

of all binary words of the length 2p. Then z = zi where

i ≤
(

2p
0

)

+
(

2p
1

)

+
(

2p
2

)

+ · · ·+
(

2p⌊
4p
19

⌋

)

.

Hence i = o(2p). On the other hand, the choice of x(p) implies that i ≥ 2p−1.
Contradiction.

Lemma 17. If p is sufficiently large, then the Hamming distance between any
two distinct codewords in LC2(p) is no less than 4p

19 .

Proof. By Lemmas 16 and 15.

6 Probabilistic Reversible Automata

M.Golovkins and M.Kravtsev [8] introduced probabilistic reversible automata
(PRA) to describe the intersection of two classes of automata, namely, the classes
of the 1-way probabilistic and quantum automata. The paper [8] describes several
versions of these automata. We concentrate here on the simplest and the least
powerful class of PRA.

Σ = {a1, a2, . . . , am} is the input alphabet of the automaton. Every input
word is enclosed into end-marker symbols # and $. Therefore the working al-
phabet is defined as Γ = Σ ∪ {#, $}. Q = {q1, q2, . . . , qn} is a finite set of
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states. Q is presented as a union of two disjoint sets: QA (accepting states) and
QR (rejecting states). At every step, the PRA is in some probability distribution
(p1, p2, . . . , pn) where p1+p2 + · · ·+pn = 1. As the result of reading the input #,
the automaton enters the initial probability distribution (p1(0), p2(0), . . . , pn(0)).
M1, M2, . . . , Mm are doubly-stochastic matrices characterising the evolution of
probability distributions.

If at some moment t the probability distribution is

(p1(t), p2(t), . . . , pn(t))

and the input symbol is au, then the probability distribution

(p1(t + 1), p2(t + 1), . . . , pn(t + 1))

equals (p1(t), p2(t), . . . , pn(t)) ·Mu. If after having read the last symbol of the in-
put word x the automaton has reached a probability distribution (p1, p2, . . . , pn)
then the probability to accept the word equals

probx = Σi∈QApi

and the probability to reject the word equals

1− probx = Σi∈QRpi.

We say that a language L is recognized with bounded error with an interval
(p1, p2) if p1 < p2 where p1 = sup{probx|x �∈ L} and p2 = inf{probx|x ∈ L}.

We say that a language L is recognized with a probability p > 1
2 if the language

is recognized with interval (1− p, p).
In the previous section we constructed a binary generating matrix G(p, p(x))

for a linear code. Now we use this matrix to construct a probabilistic reversible
automaton R(p).

The matrix G(p, x(p)) has 2p columns and p rows. The automaton R(p) has
4p + 1 states, 2p of them being accepting and 2p + 1 being rejecting. The input
alphabet consists of 2 letters.

The (rejecting) state q0 is special in the sense that the probability to enter this
state and the probability to exit from this state during the work equals 0. This
state always has the probability 17

36 . The states q1, q2, . . . , g4p are related to the
columns of G(p, x(p)) and should be considered as 2p pairs (q1, q2), (q3, q4), . . . ,
. . . (q4p−1, q4p) corresponding to the 2p columns of G(p, x(p)). The states
q1, q3, q5, q7, . . . , q4p−1 are accepting and the states q2, q4, q6, q8, . . . , q4p are re-
jecting. The initial probability distribution is as follows:

⎧
⎨

⎩

17
36 , for q0,
19
72p , for each of q1, q3, . . . , q4p−1

0, for each of q2, q4, . . . , q4p.
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The processing of the input symbols a, b is deterministic. Under the input
symbol a the states are permuted as follows:

q1 → q3 q2 → q4 q2p+1 → q2p+3 q2p+2 → q2p+4

q3 → q5 q4 → q6 q2p+3 → q2p+5 q2p+4 → q2p+6

q5 → q7 q6 → q8 q2p+5 → q2p+7 q2p+6 → q2p+8

· · · · · · · · · · · ·
q2p−3 → q2p−1 q2p−2 → q2p q4p−3 → q4p−1 q4p−2 → q4p

q2p−1 → q1 q2p → q2 q4p−1 → q2p+1 q4p → q2p+2

The permutation of the states under the input symbol b depends on G(p, x(p)).
Let

G(p, x(p)) =

⎛

⎜
⎜
⎝

g11 g12 . . . g1 2p

g21 g22 . . . g2 2p

· · · · · · · · · · · ·
gp1 gp2 . . . gp 2p

⎞

⎟
⎟
⎠

For arbitrary i ∈ {1, 2, . . . , p},
⎧
⎪⎪⎨

⎪⎪⎩

q2i−1 → q2i−1 , if g1i = 0
q2i → q2i , if g1i = 0
q2i−1 → q2i , if g1i = 1
q2i → q2i−1 , if g1i = 1.

In order to understand the language recognized by the automaton R(p) we
consider the following auxiliary mapping W from the words in {a, b}∗ into the
set of binary 2p-vectors defined recursively:

1. CW (Λ) = g11g12 . . . g1 2p

2. if CW (w) = h1h2h3 . . . hphp+1hp+2hp+3 . . . h2p then
{

CW (wa) = hph1h2 . . . hp−1h2php+1hp+2 . . . h2p−1 and
CW (wb) = (h1 ⊕ g11)(h2 ⊕ g12)(h3 ⊕ g13) . . . (h2p ⊕ g1 2p).

The next two lemmas can be proved by induction over the length of w.

Lemma 18. For arbitrary word w ∈ {a, b}∗, CW (w) is a codeword in the linear
code corresponding to the generating matrix G(p, x(p)).

Lemma 19. Let w be an arbitrary word in {a, b}∗, and CW (w) = h1h2 . . . h2p.
Then the probability distribution of the states in R(p) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

17
36 , for g0,
19
72p , for g2i−1 if hi = 0,

0 , for g2i if hi = 0,
0 , for g2i−1 if hi = 1,
19
72p , for g2i if hi = 1.

We introduce a language

LG(p,x(p)) = {w|w ∈ {a, b}∗&CW (w) = 000 . . .0}.
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Lemma 20. If 2 is a primitive root modulo p and p is sufficiently large, then
the automaton R(p) recognizes the language LG(p,x(p)) with the probability 19

36 .

Lemma 21. For arbitrary p and arbitrary deterministic finite automaton A rec-
ognizing LG(p,x(p)) the number of states of A is no less than 2p.

Lemmas 20 and 21 imply

Theorem 1. If 2 is a primitive root for infinitely many distinct primes then
there exists an infinite sequence of regular languages L1, L2, L3, . . . in a 2-letter
alphabet and a sequence of positive integers p(1), p(2), p(3), . . . such that for ar-
bitrary j:

1. any deterministic finite automaton recognizing Lj has at least 2p(j) states,
2. there is a probabilistic reversible automaton with (4p(j)+1) states recognizing

Lj with the probability 19
36 .

7 Without Conjectures

In 1989 D. R. Heath-Brown [10] proved Artin’s conjecture for “nearly all inte-
gers”. We use the following corollary from Heath-Brown’s Theorem:

Corollary From Heath-Brown’s Theorem. [10] At least one integer a in the set
{3, 5, 7} is a primitive root for infinitely many primes p.

Above we constructed a binary linear code, the binary generating matrix
G(p, x(p)) of which incorporated a binary word x(p) with maximum complicity
in the Kolmogorov numbering η. Now we are going to modify the construction
to get generating matrices G3(p, x3(p)), G5(p, x5(p)), G7(p, x7(p)) for ternary,
pentary and septary linear codes LC3(p), LC5(p) and LC7(p), respectively. The
constructions remain essentially the same only the words x and c1c2 . . . cp now are
in {0, 1, 2}p, {0, 1, 2, 3, 4}p or {0, 1, . . . , 6}p, resp., and the summation is modulo
3, 5, 7, resp. Recall that by Heath-Brown’s Theorem [10] there exists u ∈ {3, 5, 7}
such that u is a primitive root for infinetely many distinct primes.

Theorem 1 can be re-formulated as follows.

Theorem 2. Assume Artin’s Conjecture. There exists an infinite sequence of
regular languages L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence
of positive integers z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with (z(j) states recognizing Lj

with the probability 19
36 ,

2. any deterministic finite automaton recognizing Lj has at least (21/4)z(j) =
= (1.1892071115 . . .)z(j) states,

Corollary from Heath-Brown’s Theorem allows us to prove the following coun-
terpart of Theorem 2.
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Theorem 3. There exists an infinite sequence of regular languages L1, L2,
L3, . . . in a 2-letter alphabet and an infinite sequence of positive integers
z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with z(j) states recognizing Lj

with the probability 68
135 ,

2. any deterministic finite automaton recognizing Lj has at least (7
1
14 )z(j) =

(1.1149116725 . . .)z(j) states,
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Abstract. A segmented morphism σn : Δ∗ −→ {a, b}∗, n ∈ N, maps
each symbol in Δ onto a word which consists of n distinct subwords in
ab+a. In the present paper, we examine the impact of n on the unam-
biguity of σn with respect to any α ∈ Δ+, i. e. the question of whether
there does not exist a morphism τ satisfying τ (α) = σn(α) and, for some
symbol x in α, τ (x) �= σn(x). To this end, we consider the set U(σn) of
those α ∈ Δ+ with respect to which σn is unambiguous, and we com-
prehensively describe its relation to any U(σm), m �= n. Our paper thus
contributes fundamental (and, in parts, fairly counter-intuitive) results
to the recently initiated research on the ambiguity of morphisms.

1 Introduction

This paper deals with morphisms that map a pattern, i. e. a finite string over
an infinite alphabet Δ of variables, onto a finite word over {a, b}; for the sake
of convenience, we choose Δ := N. With regard to such a morphism σ, we ask
whether it is unambiguous with respect to any pattern α, i. e. there is no mor-
phism τ : N∗ −→ {a, b}∗ satisfying τ(α) = σ(α) and, for some symbol x in α,
τ(x) �= σ(x). As recently demonstrated in the initial paper on the ambiguity of
morphisms by Freydenberger, Reidenbach and Schneider [5], for every pattern
α, there is a particular morphism σsu

α such that σsu
α is unambiguous with respect

to α if and only if α is succinct, i. e. a shortest generator of its E-pattern lan-
guage, which, in turn, is equivalent to the fact that α is not a fixed point of a
nontrivial morphism φ : N∗ −→ N∗. Since there is no single morphism which
is unambiguous with respect to all succinct patterns, the morphism σsu

α has to
be tailor-made for α. More precisely, for various patterns α ∈ N+, σsu

α must be
heterogenous with respect to α, which means that there exist certain variables
x, y in α such that the first (or, if appropriate, the last) letter of σsu

α (x) differs
from the first (or last, respectively) letter of σsu

α (y). In addition to this, σsu
α has

a second important feature: it maps each variable in α onto a word that consists
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Technische Universität Kaiserslautern.
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of exactly three distinct segments, i.e. subwords taken from ab+a (or, in order
to guarantee heterogeneity, ba+b).

A closer look at the approach by Freydenberger et al. [5] – which is mainly
meant to prove the existence of an unambiguous morphism with respect to any
succinct pattern – reveals that it is not optimal, as there exist numerous pat-
terns with respect to which there is a significantly less complex unambiguous
morphism. For instance, as demonstrated by Reidenbach [11], the standard mor-
phism σ0 given by σ0(x) := abx, x ∈ N, is unambiguous with respect to every
pattern α satisfying, for some m ∈ N and e1, e2, . . . , em ≥ 2, α = 1e1 ·2e2 ·. . .·mem

(where the superscripts ej refer to the concatenation). With regard to this re-
sult, it is noteworthy that, first, σ0 maps each variable onto a much shorter
word than σsu

α and, second, σ0 is homogeneous, i. e. for all variables x, y ∈ N,
σ0(x) and σ0(y) have the same first and the same last letter. Consequently, σ0

is unambiguous with respect to each pattern in a reasonably rich set, although
it does not show any of the two decisive properties of σsu

α .
In the present paper, we wish to further develop the theory of unambigu-

ous morphisms. In accordance with the structure of σsu
α , we focus on segmented

morphisms σn, which map every variable onto n distinct segments. More pre-
cisely, for every x ∈ N, we define the homogeneous morphism σn by σn(x) :=
abnx−(n−1)aabnx−(n−2)a . . . abnx−1aabnxa. With regard to such morphisms, we
introduce the set U(σn) ⊆ N+ of all patterns with respect to which σn is unam-
biguous, and we give a characterisation of U(σm) for m ≥ 3. Furthermore, for
every n ∈ N, we compare U(σn) with every U(σm), m �= n, and, since every σn is
a biprefix code, we complement our approach by additionally considering the set
U(σ0) of the suffix code σ0 as introduced above. Our corresponding results yield
comprehensive insights into the relation between any two sets U(σm), U(σn),
m, n ∈ N ∪ {0}.

Our studies are largely motivated by the intrinsic interest involved in the
examination of the unambiguity of fixed instead of tailor-made morphisms.
Thereby, we face a task which gives less definitional leeway than the original
setting studied by Freydenberger et al. [5], and therefore our paper reveals new
elementary phenomena related to the ambiguity of morphisms that have not
been discovered by the previous approach. The choice of segmented morphisms
as main objects of our considerations, in turn, is primarily derived from the ob-
servation that σ3 is simply the homogeneous version of σsu

α . Hence, the insights
gained into U(σ3) immediately yield a deeper understanding of the necessity of
the heterogeneity of σsu

α and, thus, of a crucial concept introduced in [5]. In ad-
dition to this, our partly surprising results on the relation between the number
of segments of a morphism σn and the set of patterns for which σn is unam-
biguous suggest that – in a similar manner as the work by, e. g., Halava et al. [6]
with respect to the Post Correspondence Problem, which is loosely related to
our subject – we deal with a vital type of morphisms that addresses some of the
very foundations of the problem field of ambiguity of morphisms. Finally, it is
surely worth mentioning that the properties of segmented morphisms have also
been studied in the context of pattern languages (cf., e. g., Jiang et al. [8]); in
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particular, recent papers prove the substantial impact of the (un-)ambiguity of
such morphisms on pattern inference (cf. Reidenbach [10,11]). Thus, our results
provide a worthwhile starting point for further considerations in a prominent
algorithmic research field related to pattern languages. In the present paper,
however, we do not explicitly discuss this aspect of our work.

2 Definitions and Basic Notes

We begin the formal part of this paper with a number of basic definitions. A ma-
jor part of our terminology is adopted from the research on pattern languages (cf.
Mateescu and Salomaa [9]). Additionally, for notations not explained explicitly,
we refer the reader to Choffrut and Karhumäki [3].

Let N := {1, 2, 3, ...} and N0 := N∪{0}. Let Σ be an alphabet, i.e. an enumer-
able set of symbols. We regard two different alphabets: N and {a, b} with a �= b.
Henceforth, we call any symbol in N a variable and any symbol in {a, b} a letter.
A string (over Σ) is a finite sequence of symbols from Σ. For the concatenation
of two strings w1, w2 we write w1 ·w2 or simply w1w2. The notation |x| stands for
the size of a set x or the length of a string x, respectively. We denote the empty
string by λ, i.e. |λ| = 0. In order to distinguish between a string over N and a
string over {a, b}, we call the former a pattern and the latter a word. We name
patterns with lower case letters from the beginning of the Greek alphabet such
as α, β, γ. With regard to an arbitrary pattern α, V (α) denotes the set of all
variables occurring in α. For every alphabet Σ, Σ∗ is the set of all (empty and
non-empty) strings over Σ, and Σ+ := Σ∗\{λ}. Furthermore, we use the regular
operations +, ∗ and · on sets and letters in the usual way. For any w ∈ Σ∗ and
any n ∈ N, wn describes the n-fold concatenation of w, and w0 := λ. We say
that a string v ∈ Σ∗ is a substring of a string w ∈ Σ∗ if and only if, for some
u1, u2 ∈ Σ∗, w = u1vu2. Subject to the concrete alphabet considered, we call a
substring a subword or subpattern.

Since we deal with word semigroups, a morphism σ is a mapping that is
compatible with the concatenation, i.e. for patterns α, β ∈ N+, a morphism
σ : N∗ −→ {a, b}∗ satisfies σ(α · β) = σ(α) · σ(β). Hence, a morphism is fully
explained as soon as it is declared for all variables in N. Note that we restrict
ourselves to total morphisms, even though we normally declare a morphism only
for those variables explicitly that, in the respective context, are relevant.

For any pattern α ∈ N+ with σ(α) �= λ, we call σ(α) unambiguous (with
respect to α or on α) if there is no morphism τ : N∗ −→ {a, b}∗ such that τ(α) =
σ(α) and, for some x ∈ V (α), τ(x) �= σ(x); otherwise, we call σ ambiguous (with
respect to α or on α). For a given morphism σ, let U(σ) denote the set of all
α ∈ N+ such that σ is unambiguous on α.

We continue the definitions in this section with a partition of the set of all
patterns subject to the following criterion that is due to Freydenberger et al. [5]:

Definition 1. We call any α ∈ N+ prolix if and only if there exists a decompo-
sition α = β0γ1β1γ2β2 . . . βn−1γnβn with n ≥ 1, βk ∈ N∗ and γk ∈ N+, k ≤ n,
such that
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1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2,
2. for every k, 1 ≤ k ≤ n, and for every k′, 0 ≤ k′ ≤ n, V (γk) ∩ V (βk′ ) = ∅,
3. for every k, 1 ≤ k ≤ n, there exists an xk ∈ V (γk) such that xk occurs exactly

once in γk and, for every k′, 1 ≤ k′ ≤ n, if xk ∈ V (γk′) then γk = γk′ .

We call α ∈ N+ succinct if and only if it is not prolix.

Succinct and prolix patterns possess several interesting characteristic properties.
First, Freydenberger et al. [5] demonstrate that a pattern α is succinct if and
only if there is an injective morphism σsu

α such that σsu
α is unambiguous on α.

Furthermore, there is no injective morphism that is unambiguous on all succinct
patterns, and all nonerasing morphism are ambiguous on all prolix patterns.
These results serve as the main fundament of the present work. In addition to
this aspect, the set of prolix patterns exactly corresponds to the set of finite fixed
points of nontrivial morphisms, i.e. for every prolix pattern α there exists a mor-
phism φ : N∗ −→ N∗ such that, for an x ∈ V (α), φ(x) �= x and yet φ(α) = α (cf.,
e. g., Hamm and Shallit [7]). Finally, according to Reidenbach [10], the succinct
patterns are the shortest generators for their respective E-pattern language –
this explains the terms “succinct” and “prolix”.

Whithin the scope of the present paper, we call a morphism σ : N∗ −→ {a, b}∗
homogeneous if there exist p, s ∈ {a, b}+ such that for all x ∈ N, p is a prefix of
σ(x) and s is a suffix of σ(x). Otherwise, σ is heterogeneous.

For every n ∈ N, we define σn (the segmented morphism with n segments)
by σn(x) := abnx−(n−1)a abnx−(n−2)a . . . abnx−1a abnxa for every x ∈ N and
refer to the subwords ab+a as segments. In this work, we mostly concentrate on
the morphisms σ1, σ2, σ3 given by σ1(x) := abxa, σ2(x) := ab2x−1a ab2xa and
σ3(x) := ab3x−2a ab3x−1a ab3xa. Although it is not a segmented morphism, we
also study the morphism σ0 given by σ0(x) := abx, as it is quite similar to σ1

and often used to encode words over infinite alphabets using only two letters.
There is an interesting property of all σn with n ≥ 3 that can be derived from

the proof of Lemma 28 by Freydenberger et al. [5]:

Lemma 1. Let α ∈ N+ succinct, n ≥ 3 and τ(α) = σn(α) for some morphism
τ �= σn. Then, for every x ∈ V (α), τ(x) contains a abnx−(n−2)a . . . abnx−1a a.

This lemma is of great use in the next section, and the fact that there is no
similar property for n ≤ 2 is the very reason for the existence of Section 4.

3 Homogeneous Morphisms with Three or More
Segments

Due to Freydenberger et al. [5], we know that the characteristic regularities in
prolix patterns render every injective morphism ambiguous on these patterns.
Although succinctness prohibits those regularities, some other structures sup-
porting ambiguity of segmented morphisms can occur. For example, it is easy to
see that σ1 is ambiguous on the succinct pattern α := 1 · 2 · 1 · 3 · 3 · 2, e. g. by
considering morphisms τ1 or τ2 which are given by τ1(1) := ab, τ1(2) := a ab2a
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and τ1(3) := a ab3 and τ2(1) := aba a, τ2(2) := b2a and τ2(3) := b3a a. In both
cases, the arising ambiguity can be understood (albeit rather metaphorically) as
some kind of communication where occurrences of 1 decide which modification is
applied to their image under σ1 and communicate this change to occurrences of
2, where applicable using 3 as a carrier. The patterns that show such a structure
can be generalised as follows:

Definition 2. Let α ∈ N+. An SCRN-partition for α is a partition of V (α) into
pairwise disjoint sets S, C, R and N such that α ∈ (N∗SC∗R)+ N∗. We call α
SCRN-partitionable if and only if it has an SCRN-partition.

As demonstrated by the above example, the existence of an SCRN-partition of a
pattern α is a sufficient condition for the ambiguity of any segmented morphism
(and σ0 as well). In fact, it holds for every homogeneous morphism:

Proposition 1. Let α ∈ N+. If α is SCRN-partitionable, then every homoge-
neous morphism σ is ambiguous on α.

Proof. As σ is homogeneous, there exist a p ∈ {a, b}+ and, for every x ∈ N,
an sx ∈ {a, b}∗ such that σ(x) = p sx. Let S, C, R, N be an SCRN-partition
for α. We define τ by, for all x ∈ S, τ(x) := σ(x) p, for x ∈ R, τ(x) := sx,
for x ∈ C, τ(x) := sx p. For x ∈ N , we simply define τ(x) := σ(x). As we are
using an SCRN-partition, α /∈ N∗; therefore, τ �= σ holds. It is easy to see that
τ(α) = σ(α). Thus, σ is ambiguous on α. 
�

We now wish to demonstrate that, for σn with n ≥ 3, this condition is even
characteristic. If σn is ambiguous on some succinct α ∈ N+ (i.e., there is some
τ �= σn with τ(α) = σn(α)), every variable possessing different images under τ
and σn still keeps all its characteristic inner segments under τ (cf. Lemma 1). Any
change is therefore limited to some gain or loss of its (or its neighbours’) outer
segments and has to be communicated along subpatterns resembling the SC∗R-
sequences of a SCRN-partition. This allows to construct an SCRN-partition from
τ and leads to the following theorem:

Theorem 1. Let α ∈ N+. Then, for every n ≥ 3, σn is ambiguous on α if and
only if α is prolix or SCRN-partitionable.

Proof. As mentioned above, [5] demonstrates that we can safely restrict ourselves
to succint α, since every injective morphism is ambiguous on every prolix α ∈ N+.
We begin with the only-if-direction. Assume σn is ambiguous on some succinct
α ∈ N+; then there exists some morphism τ �= σn with τ(α) = σn(α). Lemma 1
guarantees that every τ(x) contains the inner segments of σn(x). This allows us
to distinguish the following cases: For every x ∈ V (α), let x ∈ N if and only if
τ(x) = σn(x). If x has neither lost nor gained to its left, but has lost or gained
to the right, let x ∈ S, if its the other way around, let x ∈ R. Finally, if τ(x) is
different from σn(x) on both sides, let x ∈ C. To show that α ∈ (N∗SC∗R)+ N∗,
we read α from the left to the right. As the first variable has no left neighbour,
it cannot have gained or lost some word on its left side; thus, it must belong to
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N or S. If it belongs to N , the same is true for the next variable, but as α ∈ N+

would contradict τ �= σn, sooner or later some variable from S must occur.
As this variable has a changed right segment, its right neighbour experienced
the corresponding change on its left segment. Consequently, that variable must
belong to C or R. If it is from C instead, again variables from C must follow
until a variable from R is encountered; so α has a prefix from N∗SC∗R. But as
variables from R do not change their right segments under τ , we now have the
same situation as when we started. We conclude α ∈ (N∗SC∗R)+ N∗; therefore,
α is SCRN-partitionable. The if-direction follows from Proposition 1. 
�

Consequently, ambiguity of morphisms with at least three segments on succinct
patterns is always only a transfer of parts of segments in blocks consisting of
a sender, a receiver and possibly some carriers between them.1 As a sidenote,
consider generalised segmented morphisms with n segments as morphisms σG :
N∗ −→ Σ∗ where σG(x) ∈ (ab+a)n for all x ∈ N, and for every w ∈ ab+a, there
is at most one x ∈ N such that w is a subword of σG(x). It can be shown that
if n ≥ 3, Lemma 1 holds for σG as well. Thus, for every generalised segmented
morphism σG with at least three segments, U(σG) = U(σ3). Furthermore, as
σ3 is the homogeneous version of the heterogeneous unambiguous morphism σsu

α

constructed by Freydenberger et al. [5], Theorem 1 precisely distinguishes the
patterns for which there is an unambiguous homogeneous morphism from those
patterns where an unambiguous morphism has to be heterogeneous. Thus, our
result significantly contributes to a deeper understanding of the impact of the
heterogeneity of a segmented morphism on its unambiguity.

Theorem 1 demonstrates, that for σn with n ≥ 3, ambiguity on succinct pat-
terns is inherently related to the occurrence of global regularities that depend on
local interactions between neighbouring variables only. In fact, these regularities
can be described by the equivalence classes L∼i and R∼i on V (α) introduced by
Freydenberger et al. [5] as fundamental tools to construct tailor-made unambigu-
ous morphisms σsu

α . In the present paper, we describe these equivalence classes
using an equivalent but simpler definition that is based on the adjacency graph
of a pattern, a construction that has first been employed by Baker et al. [1]
to simplify the Bean-Ehrenfeucht-McNulty-Zimin characterisation of avoidable
words, cf. Cassaigne [2]. Like Baker et al., we associate a pattern α ∈ N+ with a
bipartite graph AG(α), the adjacency graph of α: The vertex set consists of two
marked copies of V (α), V L and V R (for left and right, respectively); for each
x ∈ V (α), there is an element xL ∈ V L and an element xR ∈ V R. There is an
edge xL − yR for x, y ∈ V (α) if and only if xy is a subpattern of α.

Unlike Baker et al., we consider a partition of V L ∪ V R into sets H1, . . . , Hn

such that each Hi is the set of vertices of a maximal and connected subgraph
of AG(α). We call such a set Hi a neighbourhood in α and refer to the set of all
neighbourhoods as H(α). For every neighbourhood Hi, the left neighbourhood
class L∼i denotes the set of all x such that xL is in Hi and likewise the right
neighbourhood class R∼i the set of all x such that xR is in Hi.
1 Hence the letters S, C, R,N stand for sender, carrier, receiver and neutral,
respectively.
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Example 1. Let α := 1 · 2 · 3 · 1 · 2 · 2 · 3. We obtain H1 = {1L, 2L, 2R, 3R}
and H2 = {3L, 1R} and therefore, L∼1 = {1, 2}, L∼2 = {3}, R∼1 = {2, 3} and
R∼2 = {1}. In the following figure, we display the adjacency graph of α. Boxes
mark the elements of H1:

�
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�
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As no injective morphism is unambiguous on a prolix pattern, we mainly deal
with succinct patterns. It is useful to note that, apart from patterns of length 1
(like 1), no succinct pattern contains variables that occur only once. Therefore,
in succinct patterns every neighbourhood contains elements from V L and V R,
and every variable belongs to exactly one left and one right neighbourhood class.

Utilising our definition of neighbourhood classes, we now give a second char-
acterisation of U(σn), n ≥ 3:

Theorem 2. For every α ∈ N+ with first variable f and last variable l and any
n ≥ 3, σn is ambiguous on α if and only if α is prolix or there is a neighbourhood
Hi ∈ H(α) such that f /∈ R∼i and l /∈ L∼i .

Proof. First, assume that, for some succinct α := fα′l with α′ ∈ N∗, there is
some τ �= σn such that τ(α) = σn(α). Now we construct an SCRN-partition
S, C, R, N of V (α) like in the proof to Theorem 1. Let x ∈ S and choose i such
that x ∈ L∼i . Then τ(x) can be seen as the result of σn(x) either loosing a word
b∗a to or gaining some word ab∗ from every right neighbour of an occurrence of
x in α. Therefore, all those neighbours must reflect this change on the left side of
their image under τ , as anything else would contradict Lemma 1 or τ(α) = σn(α).
Likewise, all those neighbours’ left neighbours must change their right segment
in the same way as x. This has to propagate through all of Hi; so all elements of
L∼i show the same change to their right segment, and all elements of R∼i show the
corresponding change to their left segment. Now assume f ∈ R∼i . As f is the first
variable of α and due to Lemma 1, τ(f) can differ from σn(x) only to the right
of the middle segment, and only by some part of a segment. But this contradicts
our previous observation that all elements of R∼i are afflicted by a change to
their left segment. This leads to f /∈ R∼i . Likewise, l /∈ L∼i , which concludes this
direction of the proof. For the other direction, let α := fα′l be succinct with
some neighbourhood Hi such that f /∈ R∼i and l /∈ L∼i . Now define S, C, R, N
by S = L∼i \R∼i , C = L∼i ∩R∼i , R = R∼i \ L∼i and N = V (α) \ (L∼i ∪R∼i ). The
four sets form a partition of V (α), so it merely remains to be shown that their
elements occur in α in the right order. First observe that, by definition, f ∈ S∪N
and l ∈ R ∪ N . Furthermore, for any subpattern xy of α, if x ∈ S or x ∈ C,
then x ∈ L∼i . Therefore, y ∈ R∼i and thus y ∈ C ∪R. Likewise, x ∈ N or x ∈ R
implies x /∈ L∼i and y /∈ R∼i , which leads to y ∈ N ∪S and α ∈ (N∗SC∗R)+ N∗.
By Theorem 1, we conclude that σn is ambiguous on α. 
�
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Consequently, in order to decide ambiguity of σn, n ≥ 3, on a succinct pat-
tern α, it suffices to construct H(α) and check the classes of the first and last
variable of α. The construction can be done efficiently, e. g. by using a Union-
Find-algorithm.

This theorem provides a useful corollary for a class of patterns first described
by Baker et al. [1]. We call a pattern α ∈ N+ locked if and only if |H(α)| = 1
and thus L∼1 = R∼1 = V (α). We observe the following consequence:

Corollary 1. Let α ∈ N+. If α is succinct and locked, then α ∈ U(σ3).

This corollary is of use in the next section, where we shall see that having less
than three segments entails other types of ambiguity than the one described in
the previous section.

4 Homogeneous Morphisms with Less Than Three
Segments

In this section, we examine the effects caused by reducing the number of seg-
ments. One might expect no change in the corresponding sets of unambiguous
patterns, or a small hierarchy that reflects the number of segments, but as we
shall see, neither is the case. To this end, we construct the following five patterns:

Definition 3. We define α0, α1, α2 and α0\2 as follows:

α0 := 1 · 2 · 3 · 1 · 3 · 2,

α1 := 1 · 2 · 2 · 3 · 1 · 1 · 3 · 1,

α2 := (1 · 2 · 3 · 3 · 4)2 · 5 · 2 · 6 · 5 · 7 · (8 · 6)2 · (9 · 7)2 · 10 · 4 · 11 · 4 · 10 · 12 ·
11 · 12 · (3 · 13)2 · (14 · 3 · 2 · 15)2,

α0\2 := (1 · 2 · 3)2 · (4 · 5 · 4)2 · (6 · 7 · 6 · 8)2 · 1 · 7 · 3 · (9 · 6 · 6 · 10)2 · (11 · 12)2 ·
(13 · 7 · 7 · 4 · 14 · 12)2 · (15 · 14)2 · 9 · 6.

Finally, we define α1\2 by α1\2 := 12 · δ · 1 · p(δ) · 1, where

δ :=β1 · 1 · β2 · 1 · β3 · 1 · β4 · 1 · β5 · 1 · γ1 · β6 · 1 · β7 · 1 · γ2 · 1 · β8·
1 · γ3 · 1 · β9 · 1 · β10 · 1 · β11 · 1 · β12 · 1 · β13 · 1 · β14,

and p(1) := λ, p(x) := x for all x ∈ N \ {1}, and furthermore

β1 := 2 · 3 · 3 · 4, β2 := 3 · 2 · 2 · 5,

β3 := 6 · 7, β4 := 8 · 9,

β5 := 10 · 11, γ1 := (12 · 1)(13 · 1) · . . . · (17 · 1),
β6 := 18 · 19, β7 := 6 · 20 · 9,

γ2 := 21 · 1 · 22, β8 := 6 · 23 · 11,

γ3 := 24 · 1 · 25 · 1 · 26, β9 := 27 · 2 · 20 · 2 · 20 · 28 · 2 · 29,
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β10 := 30·2·(20·2·23·2)3·20·(31)4·32, β11 := 33·3·34·23·3·23·3·35,

β12 := 36 · 20 · 20 · 28 · 2 · 29, β13 := 33 · 3 · 34 · 23 · 23 · 37,

β14 := 18 · 31 · 32.

We begin by establishing the relation between U(σ3) and the other sets:

Theorem 3. The sets U(σ0), U(σ1) and U(σ2) are strictly included in U(σ3).

Proof. For all three languages, the inclusion directly follows from Theorem 1:
If α /∈ U(σ3) then α is prolix or SCRN-partitionable. In the former case, every
injective morphism is ambiguous on α, and, due to Proposition 1, the existence
of an SCRN-partition is sufficient for ambiguity of segmented morphisms and
σ0. To prove strictness, we show that σ0, σ1, σ2 are ambiguous on the patterns
α0, α1, α2, respectively, from Definition 3. All three patterns are succinct and –
as demonstrated by their adjacency graphs – have only one neighbourhood class
each. Hence, due to Corollary 1, σ3 is unambiguous on each of the patterns.

We start with α0 and define τ by τ(1) := σ0(1·2), τ(2) := σ0(2) and τ(3) := b.
Then τ �= σ0, but τ(α0) = σ0(1 · 2) · σ0(2) · b · σ0(1 · 2) · b · σ0(2) = σ0(α0).
Therefore, σ0 is ambiguous on α0. For α1, we set τ(1) := a, τ(2) := baab and
τ(3) := ba σ1(3) ab. It is easy to see that τ �= σ1 and τ(α1) = σ1(α1). With
regard to σ2, we consider the morphism τ given by

τ(1) := σ2(1 · 2 · 3) ab5a ab3, τ(2) := b3a ab3,

τ(3) := λ, τ(4) := b4a ab8a,

τ(5) := σ2(5) a, τ(6) := ba σ2(6),

τ(7) := b13a ab14a, τ(8) := ab15a ab15,

τ(9) := σ2(9) a, τ(10) := σ2(10) ab3,

τ(11) := σ2(11) ab3, τ(12) := b20a ab24a,

τ(13) := σ2(3 · 13), τ(14) := ab27a ab25,

τ(15) := b2a ab6a σ2(2 · 15).

Then τ �= σ2. Proving τ(α2) = σ2(α2) is less obvious, but straightforward. 
�

The proof for Theorem 3 is of additional interest as Freydenberger et al. [5]
propose to study a morphism σ2-seg

α that maps each variable x in a succinct
pattern α onto a word that merely consists of the left and the right segment of
σsu

α (x) (recall that σsu
α is a heterogeneous morphism which maps every variable

x onto three segments). In [5] it is asked whether, for every succinct pattern α,
σ2-seg

α is unambiguous on α, thus suggesting the chance for a major improve-
ment of σsu

α . With regard to this question, we now consider the pattern α2.
In the above proof, it is stated that α is a locked pattern, which implies that
σ2-seg

α2
only maps the variable 1 onto a word b . . .b and all other variables in α2

onto words a . . .a. Consequently, for each x ∈ V (α2) \ {1}, σ2-seg
α2

(x) = σ2(x).
Therefore – and since, for the corresponding τ introduced in the proof of Theo-
rem 3, the word τ(1) completely contains σ2(1) – we can define a morphism τ ′ by



190 D.D. Freydenberger and D. Reidenbach

τ ′(1) := σ2-seg
α2

(1·2·3) ab5a ab3 and τ ′(x) := τ(x), x ∈ V (α2)\{1}, and this defini-
tion yields τ ′(α2) = σ2-seg

α2
(α2). So, there exists a succinct pattern α (namely α2)

such that σ2-seg
α is ambiguous on α. Thus, α2 does not only prove U(σ2) ⊂ U(σ3),

but it also provides a negative answer to an intricate question posed in [5].
Returning to the focus of the present paper, the examples in the proof for The-

orem 3 demonstrate ambiguity phenomena that are intrinsic for their respective
kind of morphisms and cause ambiguity on patterns that are neither prolix nor
SCRN-partitionable: With regard to σ0, the fact that for each x, y with x < y,
σ0(x) is a prefix of σ0(y) can be used to achieve ambiguity, as demonstrated by
α0. Concerning σ1, a variable x can achieve τ(x) = a both by giving abx to the
left or bxa to the right, which can be prefix or suffix of some σ1(y). In α1, we
use this for τ(1). The situation is less obvious and somewhat more complicated
for σ2, as suggested by the fact that we do not know a shorter pattern serving
the same purpose as α2. Here, a variable x can obtain an image τ(x) ∈ b∗aab∗,
which can be used both as a middle part of some σ2(y), and as the borderline
between some σ2(y) and some σ2(z). In the proofs for Theorem 5 and Theorem 6
we utilise further examples for complicated cases of σ2-ambiguity.

It is natural to ask whether these phenomena can be used to find patterns
where one of the three morphisms σ0, σ1, σ2 is ambiguous, and another is not.
We begin with a comparison of U(σ0) and U(σ1):

Theorem 4. The sets U(σ0) and U(σ1) are incomparable.

Proof. We have already established the ambiguity of σ0 on α0 and of σ1 on α1

in the proof of Theorem 3. The proofs for the unambiguity of σ1 on α0 and of
σ0 on α1 are left out due to space reasons. 
�

This result is perhaps somewhat counter-intuitive, but the fact that U(σ0) and
U(σ1) can be separated by two very short examples might be considered evidence
that the two languages are by far not as similar as the two morphisms. We
proceed with a comparison of U(σ0) and U(σ2). Surprisingly, the same result
holds (although one of the examples is considerably more involved):

Theorem 5. The sets U(σ0) and U(σ2) are incomparable.

Proof. Here, we use α0 and α0\2. In spite of the NP-completeness of the problem
(cf. Ehrenfeucht, Rozenberg [4]), α0\2 ∈ U(σ0) and α0 ∈ U(σ2) can be verified by
a computer; therefore (and due to space constraints), we omit the corresponding
proof. Contrary to this, the length of σ2(α0\2) does not allow for the use of a
computer. With regard to the ambiguity of σ2, we thus refer to the morphism τ
given by

τ(1) = σ2(1) ab2, τ(2) = ba ab2,

τ(3) = b2a σ2(1), τ(4) = λ,

τ(5) = σ2(4 · 5 · 4), τ(6) = a,

τ(7) = b11a ab12, τ(8) = σ2(7 · 6 · 8),
τ(9) = σ2(9 · 6), τ(10) = σ2(6 · 10),
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τ(11) = σ2(11) ab23a ab12, τ(12) = b12a,

τ(13) = σ2(13 · 7 · 7 · 4) ab27a ab17, τ(14) = λ,

τ(15) = σ2(15 · 14),

which yields τ(α0\2) = σ2(α0\2) and, hence, the ambiguity of σ2 on α. 
�

We conclude this section by the examination of the last open case, namely the
relation between U(σ1) and U(σ2). Again, one might conjecture that the more
complex morphism σ2 is “stronger” than σ1, but our most sophisticated example
pattern α1\2 shows that this expectation is not correct:

Theorem 6. The sets U(σ1) and U(σ2) are incomparable.

Proof. For this proof we use the patterns α1 and α1\2. Recall that σ1 is am-
biguous on α1 (cf. proof of Theorem 3). With little effort, it can be seen that
σ2 is unambiguous on α1. Thus, we know that α1 ∈ U(σ2) \ U(σ1). The fact
that σ1 is unambiguous on α1\2 requires extensive reasoning, which is left out
due to space reasons. Showing that σ2 is ambiguous on α1\2 is more straight-
forward. Let τ(x) := λ for x ∈ {2, 3, 28, 31, 34} and τ(x) := σ2(x) for x ∈
V (γ1) ∪ V (γ2) ∪ V (γ3). For all other x ∈ V (α1\2), define τ(x) as follows:

τ(4) := σ2(2 · 3 · 3 · 4), τ(5) := σ2(3 · 2 · 2 · 5),

τ(6) := σ2(6) ab11, τ(7) := b2a ab14a,

τ(8) := ab15a ab3, τ(9) := b13a σ2(9),

τ(10) := ab19a ab8, τ(11) := b12a σ2(11),

τ(18) := σ2(18) ab27, τ(19) := b10a ab38a,

τ(20) := b28a ab27, τ(23) := b34a ab34,

τ(27) := σ2(27 · 2 · 20 · 2) ab39a ab12, τ(29) := b29a σ2(2 · 29),

τ(30) := σ2

(
30 · 2 · (20 · 2 · 23 · 2)3

)
ab39a ab12, τ(32) := b34a ab62a · σ2(32),

τ(33) := σ2(33 · 3) ab33, τ(35) := w σ2(3 · 23 · 3 · 35),

τ(36) := σ2(36 · 20) ab39a ab12, τ(37) := w σ2(23 · 37),

where w := b11a ab46a. Obviously τ �= σ2. As τ(x) = σ2(x) for x ∈ V (γ1) ∪
V (γ2) ∪ V (γ3), especially for x = 1, it suffices to show τ(βi) = σ2(βi) for all
i ∈ {1, 2, . . . , 14}. For β1 and β2, the claim holds trivially. For the other βi, the
process is straightforward but somewhat lenghty. Thus, α1\2 ∈ U(σ1) \ U(σ2),
and therefore U(σ1) and U(σ2) are incomparable. 
�

Note that we do not know any nontrivial characterisation of U(σ0), U(σ1) and
U(σ2). Moreover, we cannot refer to a computationally feasible method to suc-
cessfully seek for any patterns in U(σ1)\U(σ2), U(σ0)\U(σ2) and U(σ3)\U(σ2).
Therefore, we cannot answer the question of whether there exist shorter examples
than α2, α0\2 and α1\2 suitable for proving Theorems 3, 5 and 6, respectively.
The intricacy of the ambiguity phenomena relevant for the construction of such
patterns, however, suggests that our examples cannot be shortened significantly.
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5 Conclusion and Open Problems

In the present paper, we have studied the unambiguity of an important type of
injective morphisms. More precisely, we have examined the impact of the num-
ber n of segments of a segmented morphism σn on the set U(σn) of patterns for
which σn is unambiguous. Our main results show that a change of n, surprisingly,
does not give rise to a “real” hierarchy of sets of patterns, as the three pairwise
incomparable languages U(σ0), U(σ1) and U(σ2) are all contained in one com-
mon superset U(σ3), that is also the maximum any homogeneous morphism can
achieve. We have established the result on U(σ3) by two characteristic crite-
ria on U(σ3), which additionally entail a substantial improvement of the main
technique introduced in the initial paper [5] on the unambiguity of morphisms.

Contrary to this, a major part of our results on σ0, σ1 and σ2 are not based
on criteria, but on example patterns. We regard it as a very interesting problem
to find characterisations of U(σ0), U(σ1) and U(σ2). In consideration of the
remarkable complexity of the patterns α0\2, α1\2 and α2, however, we expect
this to be an extraordinarily cumbersome task.
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Abstract. We solve the commutation equation AB = BA for binary
factorial languages A and B. As we show, the situations when such lan-
guages commute can be naturally classified. The result is based on the
existence and uniqueness of a canonical decomposition of a factorial lan-
guage, proved by S. V. Avgustinovich and the author in 2005. It continues
investigation of the semigroup of factorial languages.

1 Introduction

The commutation equation XY = Y X is one of the simplest equations, whatever
X and Y are and whatever XY means. Its solution is sometimes also simple: for
example, if x and y are finite words (i. e., elements of a free semigroup), and the
operation considered is just the catenation, then xy = yx implies x = zn and
y = zm for some word z and some non-negative integers n and m.

However, if X and Y are languages, and the operation considered is still the
catenation (defined naturally by XY = {xy|x ∈ X, y ∈ Y }), the commuta-
tion equation becomes very difficult to solve. Much attention has been paid in
particular to the centralizer of a language X , which is the maximal language
commuting with it (this maximal language exists since the set of languages com-
muting with X is closed under union). Conway [2] conjectured in 1971 that the
centralizer of a rational language is rational. Although this conjecture has been
recently disproved by Kunc [7] in a very strong sense, positive partial results
for prefix codes [9], codes [5] and languages with at most three elements [6] are
known. A survey on the history of the problem can also be found in [7].

In this paper, we restrict ourselves to considering factorial languages. A lan-
guage is called factorial if it is closed under taking factors of its elements. It is
clear that since each factorial language contains the empty word, its centralizer
is always Σ∗, where Σ is the alphabet. Moreover, factorial languages clearly
commute in the following two situations:

Word type commutation: AB = BA if A = Cm and B = Cn for some
factorial language C and non-negative integers n and m.

Commutation by absorption: Let ΣA be the subalphabet of all letters oc-
curring in a factorial language A. Then AB = BA = B if BΣA ⊂ B, ΣAB ⊂ B,
and thus B = BΣ∗A = Σ∗AB: the language B absorbs A.
� Supported in part by RFBR grants 05-01-00364 and 06-01-00694.
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An example of commutation by absorption is given by A = a∗ and B = {a, b}∗.
In fact, there exists a continuum of binary factorial languages absorbing A: there
is a continuum of binary factorial languages, and for each of them, denoted by
C, we can take B = a∗Ca∗.

It is also clear that all unary factorial languages on the alphabet Σ = {a}
commute and this commutation is described by one of the two cases above: if
the languages are {ak|k ≤ n} and {ak|k ≤ m} for some n, m ≥ 0, this is word
type commutation, and if at least one of them is equal to a∗, this is absorption.

However, the following binary example shows that commutation of factorial
languages in general is not entirely described by these two situations.

Example 1. The languages A = a∗b∗ ∪ b∗a∗ and B = a∗ commute since AB =
BA = a∗b∗a∗.

In this paper, we classify the cases when binary factorial languages commute by
defining three types of so-called unexpected commutation; an example of one of
its types is given above, and the complete description is done in Section 7. The
main result of this paper is

Theorem 1. Two binary factorial languages commute if and only if either they
are powers of the same factorial language; or one of them absorbs the other; or
their relationship is described below as unexpected commutation I, II, or III.

Most auxiliary statements of the paper hold or can be generalized to the arbitrary
alphabet. The fact that the alphabet is binary is needed only for one of the
cases considered in Subsection 7.2. Extending that part of the proof to arbitrary
alphabets is a subject of future work.

The proof is based on existence and uniqueness of the canonical decompo-
sition of a factorial language proved by Avgustinovich and the author in [1],
and on an investigation of canonical decomposition of a catenation of factorial
languages taken in [4]. Practically, we examine factorial languages as words on
the infinite alphabet of indecomposable languages. Although the semigroup of
factorial languages is not free, we may consider it almost as a free one and use
classical results on word equations.

In Sections 2 and 3, main definitions and techniques are introduced. Section 4
contains technical lemmas conccerning properties of the introduced operators. In
all the three sections, factorial languages on arbitrary alphabets are considered.

In Section 5 we list needed classical results on word equations. In Section 6,
specific features of the binary alphabet are explained. At last, Section 7 contains
the main part of the proof, relying on the results of the previous sections. Cases
of unexpected commutation are marked by frames.

2 Factorial Languages and Canonical Decompositions

Let Σ be a finite alphabet; for a while, we not require Σ to be binary. A language
is an arbitrary subset of the set Σ∗ of all finite words on Σ. The empty word is
denoted by λ.
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A word v is called a factor of a word u if u = svt for some words s and t
(which can be empty). In particular, λ is a factor of any word. The factorial
closure Fac(L) of a language L is the set of all factors of all its elements. Clearly,
Fac(L) ⊇ L. If Fac(L) = L, that is, if L is closed under taking factors, we say
that L is a factorial language.

Typical examples of factorial languages include the set of factors of a finite
or infinite word; the set of words avoiding a pattern, etc. Clearly, the factorial
closure of an arbitrary language is a factorial language; if the initial language
is regular, so is its factorial closure. The family of factorial languages is closed
under taking union, intersection and catenation. Factorial languages equipped
with catenation constitute a submonoid of the monoid of all languages, and its
unit is the language {λ}. We are interested in properties of this submonoid.

A factorial language L is called indecomposable if L = L1L2 implies L = L1

or L = L2 for any factorial languages L1 and L2. In particular, we have the
following

Lemma 1. [1] For each alphabet Σ, the language Σ∗ is indecomposable.

Other examples of indecomposable languages include a∗ ∪ b∗ with a, b ∈ Σ, and
languages of factors of any recurrent infinite word.

A decomposition L = L1 · · ·Lk of a factorial language L to catenation of
factorial languages is called minimal if L �= L1 · · ·Li−1L′iLi+1 · · ·Lk for any fac-
torial language L′i � Li. A minimal decomposition to indecomposable languages
is called canonical.

The following theorem is the starting point of our technique.

Theorem 2. [1] For each factorial language L, a canonical decmposition exists
and is unique.

Example 2. If L is indecomposable, then its canonical decomposition is just L =
L. The canonical decomposition of the language a∗b∗ ∪ b∗a∗ is (a∗ ∪ b∗)(a∗ ∪ b∗).

3 Important Tools

Let F be the set of all indecomposable factorial languages. In what follows, the
canonical decomposition of a language L considered as a word on the alphabet
F will be denoted by L. Due to Theorem 2, the equality between two factorial
languages L1 and L2 always implies the equality of words on F corresponding to
their canonical decompositions. We shall write it as L1

.= L2 (or, more rigorously,
L1

.= L2).
In what follows we compare canonical decompositions of factorial languages

as words on F : although the alphabet F is infinite, all considered words on it
are finite, and we can use classical results and techniques on word equations.

Another series of results which we shall need concerns canonical decomposi-
tions of catenation of factorial languages. Suppose we are given canonical de-
compositions A of a language A and B of a language B. What is the canonical
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decomposition AB of their catenation? The answer has been found in [4] and is
expressed in terms of subalphabets Π(A) and Δ(B), where

Π(X) = {x ∈ Σ|Xx ⊂ X} and Δ(X) = {x ∈ Σ|xX ⊂ X}.

So, Π(X) is defined as the greatest subalphabet such that XΠ∗(X) = X , and
Δ(X) is the greatest subalphabet such that Δ∗(X)X = X .

Example 3. If X = {a, b}∗, then Δ(X) = Π(X) = {a, b}. If X = a∗b∗, then
Δ(X) = {a} and Π(X) = {b}. If X = a∗ ∪ b∗, then Δ(X) = Π(X) = ∅. We also
have Δ(X) = Π(X) = ∅ for each finite language X .

Now, given a factorial language X and a subalphabet Δ, let the operators L and
R on factorial languages be defined by

LΔ(X) = Fac(X\ΔX) and RΔ(X) = Fac(X\XΔ).

The meaning of these sets is described by the following lemma proved in [4].

Lemma 2. For factorial languages X and Y we have RΔ(Y )(X)Y = XY , and
RΔ(Y )(X) is the minimal factorial set with this property: it is equal to the in-
tersection of all factorial languages Z such that ZY = XY . Symmetrically,
Y LΠ(Y )(X) = Y X, and LΠ(Y )(X) is the minimal factorial language with this
property.

Let us list several staightforward properties of the operators L and R.

Lemma 3. Suppose that Σ = {a1, . . . , aq}, and X is a factorial language on Σ.
Then

{λ} =LΣ(X) ⊆ L{a1,...,aq−1}(X) ⊆ · · · ⊆ L{a1}(X) ⊆ L∅(X) = X, and

{λ} =RΣ(X) ⊆ R{a1,...,aq−1}(X) ⊆ · · · ⊆ R{a1}(X) ⊆ R∅(X) = X. �

Lemma 4. For each subalphabet Γ and a factorial language X we have XΓ ∗ =
RΓ (X)Γ ∗ and Γ ∗X = Γ ∗LΓ (X).

The two following lemmas show that in many cases we just have LΓ (X) = X
and RΓ (X) = X .

Lemma 5. [4] Let X be a factorial language and Γ ⊂ Σ be a subalphabet. If
Π(X) contains a symbol not belonging to Γ , then RΓ (X) = X. Symmetrically,
if Δ(X) contains a symbol not belonging to Γ , then LΓ (X) = X.

Lemma 6. [4] Let X be a factorial language with X
.= X1 · · ·Xk. Then

LΔ(X)(X) .=
{

X2 · · ·Xk, if X1 = Δ∗(X),
X, otherwise;

and symmetrically,

RΠ(X)(X) .=
{

X1 · · ·Xk−1, if Xk = Π∗(X),
X, otherwise.
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These two lemmas combined with Lemma 2 lead to the following main result
of [4].

Theorem 3. [4] Let A and B be factorial languages with A
.= A1 · · ·Ak and

B
.= B1 · · ·Bm, where Ai, Bj ∈ F . Then the canonical decomposition of AB is

1. AB = RΔ(B)(A) B if Π(A) � Δ(B); symmetrically, AB
.= A LΠ(A)(B) if

Δ(B) � Π(A);
2. AB

.= A1 · · ·Ak−1B if Δ(B) = Π(A) = Δ and Ak = Δ∗; symmetrically,
AB = AB2 · · ·Bm if Δ(B) = Π(A) = Δ and B1 = Δ∗. Note that the
situation of Ak = B1 = Δ∗ falls into both cases.

3. AB
.= A B otherwise.

Corollary 1. For all factorial languages A and B, the canonical decomposition
of AB is either AB

.= RΔ(B)(A) B or AB
.= A LΠ(A)(B).

Proof. In fact, in the latter two cases of Theorem 3 the equality also holds as
it is listed in Lemmas 5 and 6. For details, see [4]. 
�

4 Properties of Decompositions and Operators L and R

In this section, the alphabet considered is still arbitrary.

Lemma 7. [4] If X
.= X1 · · ·Xn, Xi ∈ F , then Π(X) = Π(Xn) and Δ(X) =

Δ(X1).

Lemma 8. Let X
.= X1 · · ·Xm, Xi ∈ F , be the canonical decomposition of a

factorial language X. Then each factor Xi · · ·Xj, i ≤ j, of the “word” X1 · · ·Xm

is also a canonical decomposition of the respective language:

Xi · · ·Xj
.= Xi · · ·Xj.

Proof. Suppose that Xi · · ·Xj is not a canonical decomposition. Since all
languages Xk are already indecomposable, it is possible only if Xi · · ·Xj =
Xi · · ·X ′

k · · ·Xj for some factorial language X ′
k � Xk, i ≤ k ≤ j. But then X =

X1 · · · (Xi · · ·X ′
k · · ·Xj) · · ·Xm = X1 · · ·X ′

k · · ·Xm, that is, X �= X1 · · ·Xm, a
contradiction. 
�

Lemma 9. Let X be a factorial language. Then for all subalphabets Δ, Π ⊂ Σ
the equality LΠ(RΔ(X)) = RΔ(LΠ(X)) holds.

Proof. If a non-empty word u ∈ LΠ(RΔ(X)), then there exists v (which can
be empty) such that vu starts with a symbol from Σ\Π and belongs to RΔ(X).
This, in its turn, means that there exists a word w (which can be empty) such
that the last symbol of the word vuw belongs to Σ\Δ, and vuw ∈ X .

We see that the obtained condition is symmetric with respect to the order of
applying the operators LΠ and RΔ, so, we get it another time if we consider an
arbitrary word u ∈ RΔ(LΠ(X)). Thus, these two sets are equal. 
�
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Lemma 10. Let Γ ⊂ Σ be a subalphabet and X be a factorial language with
RΓ (X) = Y �= {λ}. Then Δ(Y ) ⊇ Δ(X).

Proof. Let a be a symbol from Δ(X). Suppose by contrary that a /∈ Δ(Y ),
that is, that ay �= Y for some y ∈ Y .

If y is not the empty word, y ∈ Y means that yz ∈ X for some z such that
the last symbol of yz does not belong to Γ . Since a ∈ Δ(X), we have ayz ∈ X
and thus ay ∈ Y , a contradiction.

Now it remains to observe that if ay ∈ Y for all non-empty words y ∈ Y
(which exist by the assertion), then the same holds for the empty word λ: the
symbol a = aλ ∈ Y since Y is factorial. We have shown that a ∈ Δ(X) implies
a ∈ Δ(Y ), which was to be proved. 
�

Lemma 11 (see [4] for another formulation). Let X be a factorial language
with X

.= X1 · · ·Xm, Xi ∈ F . Consider a subalphabet Δ ⊂ Σ and the factorial
language Y = RΔ(X) with Y

.= Y1 · · ·Yn, Yj ∈ F . Then there exist integers
0 = i0 ≤ . . . ≤ im−1 ≤ im = n such that Yik−1+1 · · ·Yik

⊆ Xk for all k =
1, . . . , m. Moreover, if Y = RΔ(X), then for each k < m we have Y1 · · ·Yik

=
RΔ(Yik+1)(X1 · · ·Xk) and Yik+1 · · ·Yn = RΔ(Xk+1 · · ·Xm).

Note that in this lemma, ik may be equal to ik+1, and thus the sequence of Yj

included into a given Xk can be empty.
Lemmas symmetric to the latter two can be proved as well.

Lemma 12. Suppose that Y = RΔ(X) (or Y = LΔ(X)) for some Δ ⊂ Σ,
X

.= X1 · · ·Xn, Xi ∈ F , and Y
.= Xσ(1) · · ·Xσ(n) for some permutation σ. Then

X = Y .

Proof. The assertion of the lemma means that each indecomposable factorial
language occurs in the canonical decompositions of X and Y an equal number
of times.

For the sake of convenience, let us denote Xσ(i) = Yi. Due to Lemma 11, there
exist integers 0 = i0 ≤ . . . ≤ in−1 ≤ in = n such that Yik−1+1 · · ·Yik

⊆ Xk for
all k = 1, . . . , n. We wish to prove that ik = k for all k, and all the inclusions
are in fact equalities (of the form Yi = Xi).

Suppose the opposite. Then there exists some k1 such that the corresponding
inclusion is of the form Yik1−1+1 · · ·Yik1

⊂ Xk1 (the equality is impossible even if
ik1− ik1−1 ≥ 2, since all the involved languages are indecomposable, and decom-
positions are minimal). In particular, neither of the languages Yik1−1+1, . . . , Yik1

is equal to Xk1 . But we know that the language Xk1 occurs in X and Y an
equal number of times. So, Xk1 is equal to some Yj , where ik2−1 + 1 ≤ j ≤ ik2 ,
and Xk1 = Yj � Xk2 . Continuing this argument, we get an infinite sequence
Xk1 � Xk2 � · · · � Xkm � · · · . But there is only a finite number of entries in
the canonical decomposition of a factorial language. A contradiction. 
�

Lemma 13. Let us fix a subalphabet Δ ⊂ Σ. A factorial language Y can be equal
to RΔ(X) (LΔ(X)) for some factorial language X if and only if Y = RΔ(Y )
(respectively, Y = LΔ(Y )).
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Proof. Clearly, the ”if” part of the proof is just given by X = Y . To prove the
”only if” part suppose that Y �= RΔ(Y ), which means that there exists a word
u ∈ Y such that u = u′a, a ∈ Δ, and u is not a prefix of any word from Y whose
last symbol does not belong to Δ. Suppose that Y = RΔ(X) for some X . Since
u ∈ Y , we must have uv ∈ X for some word v whose last symbol is from Σ\Δ.
But then uv ∈ Y , contradicting to our assumption. The proof for the operator
LΔ is symmetric. 
�

Lemma 14. Let Y be a factorial language with Y = RΔ(Y ) (Y = LΠ(Y )) for
a given Δ, Π ⊂ Σ. Then Y = RΔ(X) (Y = LΠ(X)) if and only if for a factorial
language X we have Y ⊆ X ⊆ Y Δ∗ (respectively, Y ⊆ X ⊆ Π∗Y ).

Proof. Suppose that Y = RΔ(X); then Y ⊆ X by the construction (and
Lemma 3), and X ⊆ XΔ∗ = RΔ(X)Δ∗ = Y Δ∗ due to Lemma 4.

On the other hand, if Y ⊆ X ⊆ Y Δ∗, then Y \XΔ ⊆ X\XΔ ⊆ Y Δ∗\XΔ =
Y \XΔ. So, Y \XΔ = X\XΔ and thus Y = RΔ(Y ) = RΔ(X).

The proof for the operator LΠ is symmetric. 
�

5 Simple Word Equations

Here we list several classical word equations and their solutions. Words are con-
sidered on an alphabet A which may be infinite since all considered words are
finite anyway.

Lemma 15 (Commutation of words, see e.g. [8]). Let words x, y ∈ A∗
commute: xy = yx. Then x = zn and y = zm for some z ∈ A∗ and n, m ≥ 0.


�

Lemma 16 (see, e. g., [3]). Let xz = zy for some x, y, z ∈ A∗. Then either
x = y = λ, or z = λ, or x = rs, y = sr, and z = (rs)kr for some r, s ∈ A∗ with
r �= λ and k ≥ 0. 
�

At last, the following lemma can be easily proved by a standard technique de-
scribed, e. g., in [3].

Lemma 17. Let xay = yax for some x, y ∈ A∗, a ∈ A. Then x = (za)nz and
y = (za)mz for some z ∈ A∗ and n, m ≥ 0. 
�

6 Binary Alphabet

In this section we pass to considering languages on the binary alphabet Σ2 =
{a, b} and discuss what changes after this restriction. In what follows we denote
an arbitrary letter of the binary alphabet by x and the other letter by y.

Lemma 18. For each binary factorial language X ⊂ Σ∗2 not equal to Σ∗2 , each
of the subalphabets Π(X) and Δ(X) can be equal only to {a}, {b}, or ∅.
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Proof. The equality Π(X) = {a, b} or Δ(X) = {a, b} would imply that X ⊇
{a, b}∗ = Σ∗2 . So, X = Σ∗2 , contradicting to the assertion. 
�

Lemma 19. Let Γ ⊂ Σ2 be a subalphabet and X be a binary factorial language
with Y = RΓ (X) �= {λ} and Δ(X) = {x}. Then Δ(Y ) = {x}.

Proof. We have Δ(Y ) ⊇ {x} due to Lemma 10 and Δ(Y ) �= {a, b} due to
Lemma 18, since Y ⊆ X �= Σ∗2 . 
�

7 Main Derivations

So, we have the equality AB = BA, where A and B are binary factorial lan-
guages. Then canonical decompositions of AB and BA are also equal due to
Theorem 2. Due to Corollary 1, there are only three possibilities of how the
equality for canonical decompositions looks like: either

RΔ(B)(A) ·B .= B · LΠ(B)(A), (1)

(or A · LΠ(A)(B) .= RΔ(A)(B) ·A, which is the same up to renaming A and B);
or

RΔ(B)(A) ·B .= RΔ(A)(B) ·A, (2)

or, symmetrically to the previous case,

A · LΠ(A)(B) .= B · LΠ(B)(A). (3)

These cases intersect: for example, the situation when LΠ(B)(A) = A and
RΔ(A)(B) = B falls into both (1) and (2). However, to get a classification of
the cases of commutation, we may consider the cases (1) and (2) separately (the
case (3) is symmetric to (2)).

7.1 Case of (1)

Suppose that (1) holds. If we denote RΔ(B)(A) = A′ and LΠ(B)(A) = A′′, we
get a word equation on F :

A′B
.= BA′′.

Note that the unit element of the semigroup F∗ is the language {λ}. So, accord-
ing to Lemma 16, the equation has the following solutions:

1. Either B = {λ}; then A′ = A′′ = A and this is a particular case of absorption.
2. Or A′ = A′′ = {λ}, and this is again absorption, since AB = BA = B.
3. Or A′

.= RS, A′′
.= SR, and B

.= (RS)kR for some R, S ∈ F∗, R �= {λ},
k ≥ 0.

Let us consider this third situation in detail.
First, note that due to Lemma 8, the languages R and S are given in canonical

decompositions. Due to Lemma 7 (applied several times), we have

Δ(B) = Δ(R) = Δ(A′) and Π(B) = Π(R) = Π(A′′); (4)
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in what follows we denote these subalphabets just by Δ and Π .
Suppose first that one of the subalphabets Δ and Π is empty: say, Δ = ∅.

Then A′ = R∅(A) = A = RS and A′′ = LΠ(B)(A) = SR; due to Lemma 12,
A′′ = A, and the commutation equation (1) is just AB

.= BA. Due to Lemma
15, we have A

.= Cn and B = Cm for some factorial language C ∈ F∗, and this
is word type commutation.

Note that if B = Σ∗2 , then A′ = A′′ = {λ}, and this is absorption. So, due to
Lemma 18, we have essentially two situations when anything unexpected may
occur: either Δ = {x} and Π = {y}, y �= x, or Δ = Π = {x}. We shall consider
these two situations in succession, but before that, note that in both cases,

LΠ(A′) = RΔ(A′′) (5)

due to Lemma 9 and A′ ∪ A′′ ⊆ A ⊆ A′Δ∗ ∩ Π∗A′′ due to Lemma 14, which
gives

RS ∪ SR ⊆ A ⊆ RSΔ∗ ∩Π∗SR. (6)

Case of Δ = {x} and Π = {y}. Then L{y}(A′) = A′ and R{x}(A′′) = A′′ due to
Lemma 5. By (5) we see that A′ = A′′, that is, RS

.= SR, and due to Lemma
15, we have R = Zn and S = Zm for some Z ∈ F+. So, A′ = A′′ = Zn+m

and B = Zk(n+m)+n. After renaming variables we can write A′ = A′′ = Zr and
B = Zp for some r, p > 0 (if p or r is equal to 0, the language A′ or B is equal
to {λ}, and we have already considered these degenerate situations).

Now (6) can be rewritten as

Zr ⊆ A ⊆ Zrx∗ ∩ y∗Zr. (7)

If Zr = Zrx∗ ∩ y∗Zr, then A = Zr and we have word type commutation.
But if Zr � Zrx∗ ∩ y∗Zr, consider a word u of minimal length belonging to
(Zrx∗∩y∗Zr)\Zr. We see that u = yvx, where yv ∈ Zr, vx ∈ Zr, but yvx /∈ Zr.

If such a word u exists, then we can take any factorial set A lying between
Zr and Zrx∗ ∩ y∗Zr, and it will commute with any power of Z. This gives us

Unexpected commutation I. Let Z be a binary factorial language
with Δ(Z) = {x} and Π(Z) = {y}, x �= y. Then for all r, p > 0 the
language Zp commutes with any language A satisfying the inclusion (7).
Such a language not equal to Zr exists if and only if there exists a word
v such that yv ∈ Zr, vx ∈ Zr, but yvx /∈ Zr.

Example 4. Consider Σ = {a, b} and the languages Fa =Fac({a, ab}∗) and
Fb =Fac({b, ab}∗): the language Fa contains all words avoiding two successive
bs, and the language Fb contains all words avoiding two successive as. Consider
Z = Fb · Fa; then Π(Z) = {a} and Δ(Z) = {b}. Let us fix r = 1. The word
v = ab satisfies our conditions since aab ∈ Z, abb ∈ Z, but aabb /∈ Z. So, any
language A = Z ∪ S, where S is a factorial subset of a∗b∗, commutes with any
power Zp of Z.

Case of Δ = Π = {x}. Suppose first that R does not start with x∗. Then we
have L{x}(A′) = L{x}(RS) = RS due to Lemma 6, and thus RS = R{x}(SR)
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due to (5). So, due to Lemma 12 we have RS
.= SR, and due to Lemma 15,

RS = SR = A′ = A′′ = Zr for some factorial language Z with R
.= Z

n
and

S
.= Z

m
. Now (6) can be rewritten as

Zr ⊆ A ⊆ Zrx∗ ∩ x∗Zr;

but in fact, both inclusions here are equalities: Zrx∗ = x∗Zr = Zr since Δ(Z) =
Δ(R) = {x} and Π(Z) = Δ(R) = {x} due to Lemma 7. So, A = Zr, B =
(RS)kR = Zp, and this is word type commutation. The same holds if R does
not end with x∗. So, it remains to check the situation when R

.= x∗ or R
.= x∗T x∗

for some T ∈ F+ (note that T �= {λ} since x∗x∗
.= x∗).

Suppose first that R
.= x∗. Then (6) can be rewritten as

x∗S ∪ Sx∗ ⊆ A ⊆ x∗Sx∗. (8)

Any language A satisfying these inclusions commutes with all languages of the
form (x∗S)kx∗. Here S is an arbitrary language which can precede and follow x∗

in a canonical decomposition: that is, an arbitrary language such that L{x}(S) =
R{x}(S) = S and x /∈ Δ(S), Π(S) (which means that Δ(S) and Π(S) are equal
to {y} or to ∅).

Now suppose that R
.= x∗T x∗, T ∈ F+. Then L{x}(RS) .= T Δ∗S and

R{x}(SR) .= SΔ∗T due to Lemma 6; due to (5), we have the following word
equation on F∗:

T x∗S = Sx∗T.

Due to Lemma 17, the general solution of this equation is S
.= (Qx∗)nQ and

T
.= (Qx∗)mQ for some Q ∈ F∗ such that L{x}(Q) = R{x}(Q) = Q and x /∈

Δ(S), Π(S), and for n, m ≥ 0. So, RS = (x∗Q)n+m+2, SR = (Qx∗)n+m+2, and
B = (x∗Q)k(n+m+2)+m+1x∗. After renaming variables, we get RS = (x∗Q)r,
SR = (Qx∗)r, and B = (x∗Q)px∗ for some r ≥ 2 and p ≥ 1; and (6) takes the
form

(x∗Q)r ∪ (Qx∗)r ⊆ A ⊆ (x∗Q)rx∗. (9)

This inclusion together with (8) (which adds the cases of r = 1 and p = 0) gives

Unexpected commutation II. Let x ∈ Σ2 be a symbol and Q be a
binary factorial language with LΔ(Q) = RΔ(Q) = Q and Δ(Q), Π(Q)
equal to ∅ or {y}, y �= x. Then for all p ≥ 0 and r ≥ 1 the language
(x∗Q)px∗ commutes with any language A satisfying the inclusions (9).

Note that if the second inclusion of (9) turns into equality, that is, if
A = (x∗Q)rx∗, then for p ≥ 1 it is again a word type commutation since A =
(x∗Qx∗)r and B = (x∗Qx∗)p. However, if the equality does not hold, it is a
situation of a new type.

An easiest example of commutation of this type has been mentioned above as
Example 1: if x = a, and Q = b∗, we see that x∗ = a∗ commutes with a∗b∗∪b∗a∗

(and with any factorial language which includes a∗b∗ ∪ b∗a∗ and is included
into a∗b∗a∗). A more sophisticated “intermediate” example of this family is the
following:
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Example 5. For each p ≥ 0, the language (a∗b∗)pa∗ commutes with the language
A = a∗b∗(aa)∗b∗a∗ ∪ a∗b∗(aa)∗ab∗, since a∗b∗a∗b∗ ∪ b∗a∗b∗a∗ ⊂ A ⊂ a∗b∗a∗b∗a∗.

We have considered all situations possible if (1) holds.

7.2 Case of (2)

In this section, we suppose that the canonical decomposition of AB = BA is

RΔ(B)(A) ·B .= RΔ(A)(B) ·A.

In what follows we denote RΔ(B)(A) .= A′ and RΔ(A)(B) .= B′, so that

A′B
.= B′A. (10)

Suppose first that A′ = {λ} or B′ = {λ}. Then AB = B or AB = A, and this
is commutation by absorption. So, in what follows we assume that the canonical
decompositions of A′ and B′ are not empty.

Suppose that Δ(A) = ∅. Then B′
.= B due to Lemma 3, and our case have

been considered in the previous subsection (where it has been shown that this is
inevitably word type commutation). Due to Lemma 18, we thus have Δ(A) = {x}
and Δ(B) = {z} for some x, z ∈ Σ2. Note also that Δ(B′) ⊇ {z} and Δ(A′) ⊇
{x} due to Lemma 10; but Δ(A′) = Δ(B′) due to Lemma 7 since A′ and B′ are
not equal to {λ}. At the same time, we cannot have Δ(A′) = Δ(B′) = Σ2 since
it would imply that A′B

.= Σ∗2 , but Σ∗2 is indecomposable (see Lemma 1). So,
x = z, that is,

Δ(A) = Δ(B) = Δ(A′) = Δ(B′) = {x}

for some x ∈ Σ2. Note that this is essentially the only point where we require
the alphabet to be binary, since all the arguments of the previous subsection
could be extended to the general case.

Note that if A′ = B′, then A = B, and this is word type commutation. So,
we may assume that one of the “words” A′, B′ on the alphabet F is a proper
prefix of the other: say, A′

.= B′C for some C ∈ F+. Then A
.= CB because

of (10), and B′C
.= A′

.= R{x}(A) .= R{x}(CB) .= RΔ(R{x}(B))(C)R{x}(B);
the latter equality holds due to Lemma 11. But R{x}(B) = B′, and we already
know that Δ(B′) = {x}; so, B′C

.= R{x}(C)B′. Clearly, R{x}(C) .= C since C
precedes B in the canonical decomposition of AB, and Δ(B) = {x}. Thus, we
have B′C

.= CB′, so that B′ = Zn, C = Zm for some n, m > 0 due to Lemma
15. Here Z is a factorial language with Δ(Z) = Δ(B′) = {x} and ZZ

.= Z Z.
Due to Lemma 14, we have B′ = Zn ⊆ B ⊆ Znx∗, and B can be equal to any

set satisfying these inclusions. Note that B can be not equal to B′ only if Π(Z)
is equal to ∅ or {y}, y �= x. After that we just define A = ZmB and observe that
A and B really commute: AB = BA = Zn+mB. So, this is the “right-to-left”
version of
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Unexpected commutation III. Let Z be a binary factorial language
such that ZZ

.= Z Z and Δ(Z) = {x}. Let B be a factorial language
satisfying Zn ⊆ B ⊆ Znx∗, n > 0. Then B commutes with ZmB for all
m > 0.
Symmetrically, if Z is a binary factorial language with ZZ

.= Z Z and
Π(Z) = {x}, and if B is a factorial language satisfying Zn ⊆ B ⊆ x∗Zn,
then B commutes with BZm for all n, m > 0.

Note that the symmetric “left-to-right” version of unexpected commutation
III described above can be found and stated symmetrically starting from (3).

Of course unexpected commutation III includes some cases of word type
commutation: in particular, if B = Zn−1D for some Z ⊆ D ⊆ Zx∗, where
{x} = Δ(Z), then B = Dn and A = Dm+n. But situations when it is not word
type commutation also exist.

Example 6. Consider Z = a∗b∗ and B =Fac(a∗(bb)∗a∗b∗∪a∗b(bb)∗a∗b∗a∗). Here
Δ(Z) = {a} and Z2 = a∗b∗a∗b∗ ⊂ B ⊂ a∗b∗a∗b∗a∗ = Z2a∗. We can see that B
commutes with all sets A of the form A = ZmB (even if m is odd): AB = BA =
Zm+2B.

We have studied all possible cases when binary factorial languages commute.
Theorem 1 is proved. 
�
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Abstract. Inapproximability results concerning minimization of nonde-
terministic finite automata relative to given deterministic finite automata
were obtained only recently, modulo cryptographic assumptions [4]. Here
we give upper and lower bounds on the approximability of this problem
utilizing only the common assumption P �= NP, in the setup where the
input is a finite language specified by a truth table. To this end, we derive
an improved inapproximability result for the biclique edge cover prob-
lem. The obtained lower bounds on approximability can be sharpened
in the case where the input is given as a deterministic finite automaton
over a binary alphabet. This settles most of the open problems stated
in [4]. Note that the biclique edge cover problem was recently studied
by the authors as lower bound method for the nondeterministic state
complexity of finite automata [5].

1 Introduction

Finite automata are one of the oldest and most intensely investigated compu-
tational models. As such, they found widespread use in many other different
areas such as circuit design, natural language processing, computational biology,
parallel processing, image compression, to mention a few, see [13] and references
therein. As some of these applications deal with huge masses of data, the amount
of space needed by finite automata is an important research topic.

On the one hand, it is well known that while nondeterministic finite automata
and deterministic finite automata are equal in expressive power, nondetermin-
istic automata can be exponentially more succinct than deterministic ones. On
the other hand, minimizing deterministic finite automata can be carried out effi-
ciently, whereas the state minimization problem for nondeterministic finite state
machines is PSPACE-complete, even if the regular language is specified as a
deterministic finite automaton [8]. This prompted the authors of the aforemen-
tioned paper to ask whether there exist at least polynomial-time approximation
algorithms with a reasonable performance guarantee. However, recent work [4]
shows that this problem cannot be approximated within

√
n

polylog(n) for state mini-
mization and n

polylog(n) for transition minimization, provided some cryptographic
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assumption holds. As the result is based on a rather strong assumption, the au-
thors asked for proving approximation hardness results under the weaker (and
more familiar) assumption P �= NP as an open problem. Moreover, they asked
to determine the approximation complexity when given a regular language spec-
ified by a truth table.

In this paper we solve these open problems. To summarize, we have obtained
the following results on the minimization problems for nondeterministic finite
automata:

– If the input is given as a nondeterministic finite automaton with n states
(transitions, respectively), the state (transition, respectively) minimization
problem is not fixed-parameter tractable (the parameter being the upper
bound on the number of states/transitions to be reached) by Theorem 1,
unless P = PSPACE. Earlier work established that this problem is not
approximable within o(n), provided P = PSPACE [4], and this holds even
for unary input alphabets, unless P = NP [7].

– If the input is given by a truth table specifying a Boolean function of total
size N , the state minimization problem is NP-complete (Theorem 4). More-
over we establish a lower bound of N1/6−ε on the approximability both for
state and transition minimization, provided P �= NP (Theorems 7 and 10).
These results are nicely contrasted by two simple polynomial-time algorithms
achieving ratios of O(

√
N/ log N) for state minimization, and O(N/ (log N)2)

for the case of transition minimization, respectively (Theorem 5).
– Finally, if the input is given by a deterministic finite automaton, Theo-

rem 1 asserts that the corresponding state and transition minimization prob-
lems become fixed-parameter tractable. But assuming P �= NP, the state
minimization problem is not approximable within n1/3−ε for alphabets of
size O(n) (Corollary 14), and not approximable within n1/5−ε for a binary
alphabet, for all ε > 0 (Theorem 15). Under the same assumption, we show
that the transition minimization problem for binary input alphabets is not
approximable within n1/5−ε, for all ε > 0 (Corollary 16). Before this work,
the known inapproximability results for these problems were based on a
much stronger assumption [4].

Some of the hardness results are based on a reduction from the biclique edge cover
problem, which we prove to be neither approximable within |V |1/3−ε nor |E|1/5−ε

unless P = NP in Theorem 6.

2 Preliminaries

First we recall some definitions from formal language and automata theory. In
particular, let Σ be an alphabet and Σ∗ the set of all words over the alphabet Σ,
containing the empty word λ. The length of a word w is denoted by |w|, where
|λ| = 0. The reversal of a word w is denoted by wR and the reversal of a
language L ⊆ Σ∗ by LR, which equals the set {wR | w ∈ L }. Furthermore let
Σn = {w ∈ Σ∗ | |w| = n }.
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A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q ×
Σ → 2Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of accepting states. The transition function δ is extended to a function
from δ : Q × Σ∗ → 2Q in the natural way, i.e., δ(q, λ) = {q} and δ(q, aw) =⋃

q′∈δ(q,a) δ(q′, w), for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. A nondeterministic finite
automaton A = (Q, Σ, δ, q0, F ) is a deterministic finite automaton (DFA), if
|δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. The language accepted by a finite
automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }. Two automata are
equivalent if they accept the same language.

For a regular language L, the deterministic (nondeterministic, respectively)
state complexity of L, denoted by sc(L) (nsc(L), respectively) is the minimal
number of states needed by a deterministic (nondeterministic, respectively) fi-
nite automaton accepting L. The transition complexity is analogously defined
as the state complexity and we abbreviate the deterministic (nondeterministic,
respectively) transition complexity of a regular language L by tc(L) (ntc(L),
respectively).

Here we are interested in the state (transition, respectively) minimization
problem for nondeterministic finite automata. This problem is defined as fol-
lows: For a given finite automaton A and an integer k, decide whether there
exists a nondeterministic finite automaton B with at most k states (transitions,
respectively) such that L(A) = L(B). As already mentioned in the introduction,
this problem is PSPACE-complete even if the given automaton is guaranteed to
be deterministic [8]. However, other computational complexity aspects may vary
if the instance to minimize is described as a nondeterministic or deterministic
finite automaton. The following theorem describes such a situation—we omit the
proof due to lack of space.

Theorem 1. (i) The problem to determine for a given deterministic finite au-
tomaton, whether there exists a nondeterministic finite automaton B with at
most k states (transitions, respectively) such that L(A)=L(B) is fixed-parameter
tractable w.r.t. parameter k. (ii) Provided P �= PSPACE, the aforementioned
problems are not fixed-parameter tractable, if the input is given as a nondeter-
ministic finite automaton instead. 
�
We also need some notions from graph theory. A bipartite graph is a 3-tuple
G = (U, V, E), where U and V are finite sets of vertices, and E ⊆ U × V is a
set of edges. A bipartite graph H = (U ′, V ′, E′) is a subgraph of G if U ′ ⊆ U ,
V ′ ⊆ V , and E′ ⊆ E. The subgraph H is induced if E′ = (U ′×V ′)∩E, the sub-
graph induced by U ′ and V ′ is denoted by G[U ′, V ′]. A set C = {H1, H2, . . . , Hk}
of non-empty bipartite subgraphs of G is an edge cover of G if every edge in G
is present in at least one subgraph. An edge cover C of the bipartite graph G
is a biclique edge cover if every subgraph in C is a biclique, where a biclique is
a bipartite graph H = (U, V, E) satisfying E = U × V . The bipartite dimension
of G is referred to as d(G) and is defined to be the size of a smallest biclique
edge cover of G. The associated decision problem is a classical one [3, GT18],
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and a reformulation of the biclique edge cover problem in terms of finite sets
gives the set basis problem [3, SP7]. The following result was shown in [10]:

Theorem 2. Deciding whether for a given bipartite graph G and an integer k
there exists a biclique edge cover for G consisting of at most k bicliques is NP-
complete.

Finally, we assume the reader to be familiar with the basic notations of approxi-
mation theory as contained in textbooks such as [12]. In particular, transferring
known inapproximability results to new problems is most easily achieved if we
use some kind of approximation-preserving reduction. Several such types of re-
duction have been proposed; our weapon of choice is the S-reduction introduced
in [9]: Loosely speaking, for two minimization problems Π and Π ′ and associated
functions |x|Π and |y|Π′ measuring the size of respective inputs, an S-reduction
from Π to Π ′ with amplification (a(n), |x|Π , |y|Π′), where a(n) is monotonically
increasing, consists of a polynomial-time computable function f which maps
each instance x of Π to an instance y of Π ′ such that |y|Π′ ≤ a(|x|Π), and a
polynomial-time computable function g that maps back instance-solution pairs
of Π ′ to instance-solution pairs of Π such that the performance ratios of the
solutions are linearly related. This kind of reduction has the following nice prop-
erty [9, Proposition 1]:

Lemma 3. Let b : IN → IR+ be a positive function, and let Π = (I, sol, m),
Π ′ = (I ′, sol′, m′) be two minimization problems. Assume Π ′ is approximable
within b(|y|Π′), for all y ∈ I ′, and there is an S-reduction from Π to Π ′ with
amplification (a(n), | · |Π , | · |Π′). Then Π is approximable within O(b(a(|x|Π))),
for all instances x of Π.

3 Synthesizing a Minimal Nondeterministic Finite
Automaton from a Given Truth Table

In this section we investigate the approximation complexity of minimizing non-
deterministic finite automata when specifying the input by a truth table, an
open question in [4]. First we show that the decision version of the problem of
minimizing the number of states is NP-complete. Then we present two simple
approximation algorithms for minimizing the number of states or transitions.
Moreover, we show that the best possible approximation ratio is related to the
one of the biclique edge cover problem. In order to formally define the problem
we are interested in, we need some more notations.

To each m-bit Boolean function f : {0, 1}m → {0, 1}, where m ≥ 1 is some
natural number, we can naturally associate a finite binary language as follows:

Lf = { x1x2 . . . xm ∈ {0, 1}m | f(x1, x2, . . . , xm) = 1 }.

In [4], the following problem was proposed: Given a truth table specifying a
Boolean function f : {0, 1}m → {0, 1} and an integer k, is there a nondetermin-
istic finite automata with at most k states (transitions, respectively) accepting
the language Lf?
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For the the above stated problem we are able to show NP-completeness in case
of state minimization by a reduction from the biclique edge cover problem. But
the used reduction does not preserve approximability. The proof of the following
Theorem can be found in the full version of the paper.

Theorem 4. Deciding whether for a given truth table f : {0, 1}m → {0, 1} and
a positive integer k there is a nondeterministic finite automaton with at most k
states accepting language Lf is NP-complete. 
�

Next we consider how well the problem under consideration can be approxi-
mated. By very simple algorithms, we obtain the following situation:

Theorem 5. (i) Given a truth table of size N = 2m, specifying an m-bit Boolean
function function f , then there is a polynomial-time algorithm approximating
the number of states of a state minimal nondeterministic (unambiguous, re-
spectively) finite automaton accepting Lf within a factor of O(

√
N/ log N). (ii)

When considering transition minimization the performance ratio changes to
O(N/(log N)2).

Proof (Sketch). First we note that nondeterministic state and transition com-
plexity are both at least m = log N , except when Lf is empty. For state mini-
mization we use a construction given in [6] to obtain a NFA with O(

√
N) states.

For transition minimization recall that the minimal deterministic finite automa-
ton accepting Lf can have at most O(N/ log N) transitions [2]. Then the stated
bounds easily follow. 
�

In the remainder of this section we derive an inapproximability result for the
problem under consideration. In order to get good inapproximability ratios, the
biclique edge cover problem is a natural candidate to reduce from. By combining
a recent inapproximability result for the chromatic number problem [14] with the
approximation preserving reduction from the minimum clique partition problem
given in [11], we see that the problem is not approximable within |V |1/5−ε. But
that is not the end of the line:

Theorem 6. For all ε > 0, the biclique edge cover problem cannot be approx-
imated within |V |1/3−ε or |E|1/5−ε, unless P = NP. This still holds in the
restricted case where the input G = (U, V, E) is a balanced bipartite graph, that
is |U | = |V |, and has bipartite dimension at least Ω(|V |2/3).

Proof. Let the clique partition number χ(I) of a graph I be defined as the small-
est number k such that the vertex set of I can be covered by at most k cliques.
The associated decision problem is NP-complete [3, GT15], and as a simple re-
formulation of the graph coloring problem, not approximable within |V |1−ε, for
all ε > 0, unless P = NP [14]. We briefly recall the construction for reducing
the clique partition problem to the biclique edge cover problem given in [11,
Theorem 5.1a].

For an undirected graph I = (V, E) with V = {v1, v2, . . . , vn}, we con-
struct its bipartite version by setting IB = (XB , YB, EB) as set of left vertices
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XB = {x1, x2, . . . , xn}, as set of right vertices YB = {y1, y2, . . . , yn}, and
(xi, yj) ∈ EB if and only if i = j or {vi, vj} ∈ E. An edge (xi, yj) is called
ascending if i < j, descending if i > j, and horizontal if i = j.

The biclique edge cover instance G = (X, Y, E) consists of t2 copies (the
number t to be fixed later accordingly) of IB , which we think of as being arranged
in a t× t grid; and the bipartition of the vertex set is inherited from IB. The ith
left (right, respectively) vertex in copy (p, q) is denoted by (xi, p, q) ((yi, p, q),
respectively). Two vertices (xi, p, q) and (yj , r, s) in different copies are connected
by an edge if: either they are in the same row, i.e., p = r, and (xi, yj) is an
ascending edge in EB, or they are in the same column, i.e., q = s, and (xi, yj)
is a descending edge in EB . Accordingly, we say that an edge in E connecting
vertices (xi, p, q) and (yj , r, s) is ascending if i < j, descending if i > j, and
horizontal if i = j.

In [11], it is noted that if there is a system of s bicliques covering all horizontal
edges in E, then a partition of I into at most s/t2 cliques can be constructed in
polynomial time from this system, and

χ(I) ≤ d(G)/t2. (1)

Conversely, each partition of I into r cliques corresponds to a system of rt2 bi-
cliques which cover all the horizontal edges in E, and maybe some non-horizontal
edges. However, note that the rt2 bicliques do not necessarily cover all edges in-
volving only vertices of a single copy of IB: As an example, consider the partition
of the graph I given in Figure 1 into r = 3 cliques.

To cover the remaining edges, we can do somewhat better than proposed in
the original reduction: For xi ∈ XB, define Xi,p as the set of ith left vertices in
the copies of IB which are in row p, and define Yi,p as the set of right vertices y
in row p such that ((xi, p, q), y) is an ascending edge in E. It is not hard to see
that the induced subgraph G[Xi,p, Yi,p] is a biclique which covers all ascending
edges in row p incident to xi, see Figure 1 for illustration by example.

By proceeding in this way for each row and each left vertex xi in XB, all
ascending edges in G can be covered using no more than tn bicliques. The de-
scending edges in G can be covered by tn bicliques in a similar manner. Thus

d(G) ≤ t2χ(I) + 2tn. (2)

Suppose now C is a biclique edge cover for G of size s. Then we can construct a
clique partition for I of size s/t2 in polynomial time from C, see [11] for details.
Now we fix t = 4n, and compare performance ratios using Inequality (2):

s/t2

χ(I)
≤ s

d(G)− 2tn
≤ 2

s

d(G)
,

where the last statement above holds since 2tn = 1
2 t2 ≤ 1

2d(G) by Inequal-
ity (1). We have established a S-reduction with expansion (O(n3), |V |, |X |).
Then the desired hardness result regarding the measure |X | follows by Lemma 3.
Estimating the number of edges in E gives a total number of at most
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Fig. 1. The original graph I (top left), the bipartite graph IB (lower left), and the
subgraph of G induced by the vertices in row r (right), consisting of t = 3 copies of IB.
The induced subgraph G[X1,r , Y1,r] forms a biclique.

t2|EB | + 2t ·
(

t
2

)
|EB| = O(|V |5), so this is equally a S-reduction with expan-

sion (O(n5), |V |, |E|). Again by Lemma 3, the claimed inapproximability result
follows. Finally, we note that Inequality (1) implies that d(G) ≥ t2 = Ω(|X |2/3),
since |X | = Θ(n3) and t = 4n. �

Theorem 7. Given a truth table of size N specifying a Boolean function func-
tion f , no polynomial-time algorithm can approximate the number of states of a
state minimal nondeterministic finite automaton accepting Lf with performance
ratio N1/6−ε, for all ε > 0, unless P = NP.

Proof. We use the finite language to encode the edges in the graph G = (X, Y, E)
from the proof of Theorem 6, and the notations defined therein. Recall X consists
of nodes of the form (xi, p, q) with xi ∈ XB, p denotes a row index and q a column
index, and similar for yj, that is (xi, p, q) and (yj , p, q) belong to the same copy
of IB. Without loss of generality we assume V = {0, 1}m for some m. The t
addresses for rows and columns can be respectively encoded in binary using a
fixed length of log t = m + 2. Throughout the rest of the proof, c1, c2, . . . , ct

denote the words encoding the t column addresses, and in a similar manner,
r1, r2, . . . , rt the row addresses. We then encode the edges ((x, p, q), (y, a, b))
in E as xrpcq(racb)Ry, and define LG as the set of all codewords corresponding
to an edge in E. In the following, we will use the term “edge” to denote a word
encoding an edge in E if there is no risk of confusion.

Claim 8. The nondeterministic state complexity of LG is bounded below by the
bipartite dimension of G.

Proof. We apply the biclique edge cover technique [5, Theorem 4] to give a
lower bound for nsc(LG). Let Γ = (A, B, ELG) be the bipartite graph given by
A = B = {0, 1}m+2(m+2), and ELG = { (u, v) ∈ A × B | uv ∈ LG }. By an
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obvious bijection holds d(G) = d(Γ ), and the latter gives a lower bound for the
nondeterministic state complexity of LG. 
�
Claim 9. nsc(LG) = O(d(G)) + O(|X |2/3 log |X |).
Proof. We establish the claim by constructing a sufficiently small NFA accepting
the language LG from a minimum biclique edge cover for G. For the horizontal
edges in E, we give a construction inspired by the proof of Theorem 6. Let
{ (Xj, Yj) | 1 ≤ j ≤ χ(I) } be a minimum set of bicliques covering all horizontal
edges in IB = (XB, YB, EB). For the ith biclique, we define an auxiliary language
Hj as Hj = Xj ·M ·Yj , where M = { rc(rc)R | r, c ∈ {0, 1}m+2 } is the language
ensuring that the row and column address of x ∈ Xj is the same as the row and
column address of y ∈ Yj . As there are no horizontal edges between different
copies of IB, language M provides that the union of languages

⋃
j Hj contains all

codewords corresponding to horizontal edges in E, and is a subset of LG. Each Hj

can be described by a nondeterministic finite automaton having O(t2) states: As
all words in the sets Xj and Yj have length m, each of them can be accepted by
a NFA with O(2m/2) = o(t) states. The language M can be accepted by a NFA
with O(22(m+2)) = O(t2) states. A schematic drawing of such an automaton
is given in Figure 2. And a standard construction for nondeterministic finite
automata yields an automaton with O(t2) states for the concatenation of these
languages. Finally, the union of these languages can be accepted by a NFA having
O(t2 · χ(I)) = O(d(G)) many states.

We use a similar matching language as M to construct a NFA accepting a
subset of the codewords of E which contains all ascending edges. This time, the
language has to ensure that the the left and the right vertex share the same row
address, that is M ′ = { rc1c2rR | r, c1, c2 ∈ {0, 1}m+2 }, and this language can
be accepted by a NFA with only O(t log t) states, see Figure 2 for illustration.

Following the idea in the proof of Theorem 6, the graph G has for every row p
and every vertex xi ∈ XB a biclique G[Xi,p, Yi,p] containing only ascending
edges. As we have an ascending biclique for each xi ∈ {0, 1}m, it is more economic
to share the states needed for addressing. Thus, a part of the automaton is a
binary tree, whose root is the start state and whose leaves address the nodes
in XB. That is, after reading a word x of length m, the automaton is in a unique
leaf of the binary tree. In a symmetric manner, we construct an inverted binary
tree whose leaves address the nodes in YB , and whose transitions are directed
towards the root, which is the final state of the automaton. It remains to wire the
copies of the automaton accepting M ′ into these two binary trees appropriately,
using no more than |XB| copies of it: Each leaf xi of the binary tree, addressing
some node in XB, is identified with the start state of a fresh copy of the NFA.
The transitions entering the final state of this copy are replaced with transitions
entering the inverted binary tree at the appropriate address. This completes the
description of the construction for a NFA having O(|XB |+ |YB |+ |XB|t log t) =
O(|X |2/3 log |X |) states accepting a subset of E including all ascending edges,
since |X | = Θ(t3) and |XB| = |YB| = Θ(t).

For the descending edges, we carry out a similar construction, this time using
the language M ′′ = { r1ccRr2 | r1, c, r2 ∈ {0, 1}m+2 } ensuring that the column
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Fig. 2. Schematic drawings of the nondeterministic finite automata accepting M (left),
M ′ (top right), and M ′′ (bottom right)

addresses match, see Figure 2. Then a similar construction gives a compact NFA
describing the codewords of a set of edges including all descending edges in G.
Finally, the union of all these languages can be described by a NFA with the
desired upper bound on the number of states. 
�

Assume now there exists a polynomial-time algorithm approximating nsc(LG)
within |X |1/3−ε, that is it finds a NFA A of size at most |X |1/3−ε · nsc(LG). By
Claim 8, this can be seen equivalently as an algorithm finding a biclique edge
cover for G of size at most |X |1/3−ε ·nsc(LG). We estimate the performance ratio
of the latter algorithm:

|X |1/3−ε · nsc(LG)
d(G)

= |X |1/3−ε · O(d(G)) + O(|X |2/3 log |X |)
d(G)

by using Claim 9. The latter term is O(|X |1/3−ε log |X |) because Theorem 6
asserts that d(G) ≥ |X |2/3. If we choose a small positive real δ such that ε−δ > 0,
then for |X | large enough, |X |1/3−ε log |X | < |X |1/3−(ε−δ). Together with the
final argument given in Theorem 6, this implies P = NP.

As the size of the graph and the size of the truth table are related by N =
Θ(|X |2), the problem is not approximable within N1/6−2ε for every positive
real ε, and the theorem is established. 
�

For transition minimization we encounter the following situation.

Theorem 10. Given a truth table of size N specifying a Boolean function f , no
polynomial-time algorithm can approximate the number of transitions of a tran-
sition minimal nondeterministic finite automaton accepting Lf with performance
ratio N1/6−ε, for all ε > 0, unless P = NP.

Proof. The language LG defined in the proof of Theorem 7 can be accepted by
a polynomial-time constructible DFA A having at most O(m · |LG|) states and
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transitions. We can mimic the proof of Theorem 7 if we are able to verify in-
equalities relating nondeterministic transition complexity of LG to the bipartite
dimension of G in a way similar to Claim 8 and Claim 9.

Claim 11. The nondeterministic transition complexity of LG is bounded below
by the bipartite dimension of G minus 1.

For an upper bound on ntc(LG), we take a closer look at the NFA constructed
in the proof of Claim 9.

Claim 12. ntc(LG) = O(d(G)) + O(|X |2/3 log |X |).

The rest of the proof follows along the lines of the proof of Theorem 7. 
�

4 Synthesizing a Minimal Nondeterministic Finite
Automaton from a Given Deterministic One

This section contains results on the inapproximability of the minimization prob-
lem for nondeterministic finite automata, when the input is specified by a (deter-
ministic) finite state automaton. This problem was investigated in [4,8]: Given a
finite automaton A and an integer k, is there a nondeterministic finite automaton
with at most k states (transitions, respectively) accepting language L(A)?

Note that the minimization problems w.r.t. states (transitions, respectively)
for nondeterministic finite automata are trivially approximable within
O(n/ log n), if the input is given by a deterministic finite automaton. Observe
that the minimal deterministic finite automaton equivalent to a given determin-
istic one is also a feasible solution for the respective problem. The performance
ratio of this solution can be bounded using the fact that the blow-up in the
number of states or transitions inferred by determinization is at most exponen-
tial. While this is only a poor performance guarantee, a strong inapproximability
result is obtained in [4], but under a much stronger (cryptographic) assumption
than P �= NP. We just note their result in passing:

Theorem 13. (i) Given an n-state deterministic finite automaton A, no poly-
nomial-time algorithm can approximate the number of states of a state minimal
nondeterministic finite automaton accepting L(A) with performance ratio better
than

√
n

polylog(n) , if nonuniform logspace contains strong pseudo-random functions.
(ii) In case of transition minimization the problem remains inapproximable with
the same assumption as above and performance ratio better than n

polylog(n) , where t

is the number of transitions of the given deterministic finite state automaton.

In order to obtain our first inapproximability result on the problem where a
DFA is given, we use Theorem 6 and a reduction from the biclique edge cover
problem to the nondeterministic finite state automaton minimization problem,
where the input is a deterministic finite state automaton, given in [1, Lemma 1].
The noted reduction is an S-reduction with expansion (O(n), |V |, |Q|).
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Corollary 14. Given a n-state deterministic finite automaton A accepting a
finite language over an alphabet of size O(n), no efficient algorithm can approxi-
mate the number of states of a state minimal nondeterministic finite automaton
accepting L(A) with performance ratio n1/3−ε, for all ε > 0, unless P = NP. 
�
For fixed alphabet size, we obtain a corresponding result from Theorem 7, as
from every truth table, an equivalent DFA of smaller size can be constructed
in polynomial time. Exploiting the special structure of the language used in the
proof of Theorem 7, we can get an even higher bound.

Theorem 15. Given a n-state deterministic finite automaton A accepting a
finite language over an alphabet of size two, no efficient algorithm can approxi-
mate the number of states of a state minimal nondeterministic finite automaton
accepting L(A) within a factor of n1/5−ε, for all ε > 0, unless P = NP.

Proof (Sketch). To obtain the inapproximability result, we again use the lan-
guage LG defined in the proof of Theorem 7. The crucial observation is that this
language contains |E| = O(25m) words of length O(m). Thus, a binary tree-like
deterministic finite automaton of size O(m · |E|) accepting all these words can
be constructed in polynomial time—note that this size is much smaller than
the truth table specifying LG. Then one can show, similarly as in the proof of
Theorem 7, that the stated inapproximability bound holds. 
�

By combining the observations in Theorems 10 and 15, we obtain for the
corresponding problem of minimizing the number of transitions:

Corollary 16. Given a deterministic finite automaton A with t transitions ac-
cepting a finite language over a binary alphabet, no efficient algorithm can ap-
proximate the number of transitions of a transition minimal nondeterministic
finite automaton accepting L(A) within a factor of t1/5−ε, for all ε > 0, unless
P = NP. 
�

5 Conclusions

We compared nondeterministic finite automata minimization problems for regu-
lar languages, where the language is specified by different means—in decreasing
order of succinctness: By a nondeterministic finite automaton, a deterministic
automaton, or by a truth table. When given an NFA, the approximability of
these problems is already settled [4,7]. When given a DFA as input, approxima-
tion hardness was known only modulo cryptographic assumptions [4]. The main
contribution of this paper is that we do not need such strong assumptions, that
is, the problems are hard to approximate unless P = NP. This essentially also
holds if the input is specified as a truth table, but for the latter case, we were
able to provide simple approximation algorithms with nontrivial performance
guarantees. This settles most of the research problems suggested in [4].
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and corrections.
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Abstract. We investigate the state complexity of union and intersec-
tion for finite languages. Note that the problem of obtaining the tight
bounds for both operations was open. We compute the upper bounds
based on the structural properties of minimal deterministic finite-state
automata (DFAs) for finite languages. Then, we show that the upper
bounds are tight if we have a variable sized alphabet that can depend
on the size of input DFAs. In addition, we prove that the upper bounds
are unreachable for any fixed sized alphabet.

1 Introduction

Regular languages are one of the most important and well-studied topics in
computer science. They are often used in various practical applications such as
vi, emacs and Perl. Furthermore, researchers developed a number of software
libraries for manipulating formal language objects with the emphasis on regular
languages; examples are Grail [12] and Vaucanson [2].

The applications and implementations of regular languages motivate the study
of the descriptional complexity of regular languages. The descriptional complex-
ity of regular languages can be defined in different ways since regular languages
can be defined in different ways. For example, a regular language L is accepted
by a deterministic finite-state automaton (DFA) or a nondeterministic finite-
state automaton (NFA). L is also described by a regular expression. Yu and
his co-authors [1,13,14] regarded the number of states in the minimal DFA for
L as the complexity of L and studied the state complexity of basic operations
on regular languages and finite languages. Holzer and Kutrib [5,6] investigated
the state complexity of NFAs. Recently, Ellul et al. [3] examined the size of the
shortest regular expression for a given regular language. There are many other
results on state complexity with different viewpoints [4,8,9,10,11]. We focus on
the measure of Yu [13]: The state complexity of a regular language L is the num-
ber of states of the minimal DFA for L. The state complexity of an operation
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on regular languages is a function that associates to the state complexities of
the operand languages the worst-case state complexity of the language resulting
from the operation. For instance, we say that the state complexity of the inter-
section of L(A) and L(B) is mn, where A and B are minimal DFAs and the
numbers of states in A and B are m and n, respectively. It means that mn is
the worst-case number of states of the minimal DFA for L(A) ∩ L(B).

Yu et al. [14] gave the first formal study of state complexity of regular language
operations. Later, Câmpeanu et al. [1] investigated the state complexity of finite
languages. Let A and B be minimal DFAs for two regular languages L1 and L2,
and m and n be the numbers of states for A and B, respectively.

operation finite languages regular languages

L1 ∪ L2 O(mn) mn

L1 ∩ L2 O(mn) mn

Σ∗ \ L1 m m

L1 · L2 (m − n + 3)2n−2 − 1� (2m − 1)2n−1

L∗
1 2m−3 + 2m−4, for m ≥ 4� 2m−1 + 2m−2

3 · 2p−1 − 1 if m = 2p
LR

1 2p − 1 if m = 2p − 1
2m

Fig. 1. State complexity of basic operations on finite languages and regular lan-
guages [1,14]. Note that � refers to results using a two-character alphabet.

Fig. 1 shows the state complexity of basic operations on finite languages and
regular languages. All complexity bounds, except for union and intersection of
finite languages, in Fig. 1 are tight; namely, there exist worst-case examples that
reach the given bounds. Clearly, mn is an upper bound since finite languages
are a proper subfamily of regular languages. We also note that Yu [13] briefly
mentioned a rough upper bound mn−(m+n−2) for both operations. Therefore,
it is natural to investigate the tight bounds for union and intersection of finite
languages.

We define some basic notions in Section 2. In Section 3, we obtain an upper
bound mn− (m + n) for the union of two finite languages L1 and L2 based on
the structural properties, where the sizes of L1 and L2 are m and n. Then, we
prove that the bound is tight if the alphabet size can depend on m and n. We
also examine the intersection of L1 and L2 in Section 4 and obtain an upper
bound mn − 3(m + n) + 12. We again demonstrate that the upper bound is
reachable using a variable sized alphabet. We conclude the paper in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over
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Σ is any subset of Σ∗. The symbol ∅ denotes the empty language and the
symbol λ denotes the null string. A finite-state automaton (FA) A is specified
by a tuple (Q, Σ, δ, s, F ), where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → 2Q is a transition function, s ∈ Q is the start state and F ⊆ Q
is a set of final states. Given a DFA A, we assume that A is complete; namely,
each state has |Σ| out-transitions and, therefore, A may have a sink (or dead)
state. Since all sink states are always equivalent, we can assume that A has a
unique sink state. Let |Q| be the number of states in Q and |δ| be the number
of transitions in δ. For a transition δ(p, a) = q in A, we say that p has an out-
transition and q has an in-transition. Furthermore, p is a source state of q and q
is a target state of p. A string x over Σ is accepted by A if there is a labeled path
from s to a final state in F such that this path spells out the string x. Thus, the
language L(A) of an FA A is the set of all strings that are spelled out by paths
from s to a final state in F . We say that A is non-returning if the start state of
A does not have any in-transitions and A is non-exiting if all out-transitions of
any final state in A go to the sink state.

Given an FA A = (Q, Σ, δ, s, F ), we define the right language Lq of a state q to
be the set of strings that are spelled out by some path from q to a final state in
A; namely, Lq is the language accepted by the FA obtained from A by changing
the start state to q. We say that two states p and q are equivalent if Lp = Lq.

3 Union of Finite Languages

Given two minimal DFAs A and B for non-empty finite languages L1 and L2,
we can in the standard way construct a DFA for the union of L(A) and L(B)
based on the Cartesian product of states.

Proposition 1. Given two DFAs A = (Q1, Σ, δ1, s1, F1) and B = (Q2, Σ, δ2,
s2, F2), let M∪ = (Q1 × Q2, Σ, δ, (s1, s2), F ), where for all p ∈ Q1 and q ∈ Q2

and a ∈ Σ, δ((p, q), a) = (δ(p, a), δ(q, a)) and F = {(p, f2) | p ∈ Q1 and f2 ∈
F2} ∪ {(f1, q) | f1 ∈ F1 and q ∈ Q2}. Then, L(M∪) = L(A) ∪ L(B) and M∪ is
deterministic.

A crucial observation is that both A and B must be non-returning since L1 and
L2 are finite. Therefore, as Yu [13] observed, if we apply the Cartesian product
for union, all states (s1, q) for q �= s2 and all states (p, s2) for p �= s1 are not reach-
able from the start state (s1, s2) in M∪. Thus, we can reduce (m + n)− 2 states.

Another observation is that A must have a final state f such that all of f ’s
out-transitions go to the sink state. Consider the right language of a state (i, j)
in M∪.

Proposition 2 (Han et al. [4]). For a state (i, j) in M∪, the right lan-
guage L(i,j) of (i, j) is the union of Li in A and Lj in B.

Let d1 and d2 be the sink states of A and B and f1 and f2 be final states of A and
B such that d1 is the only target state of f1 in A and d2 is the only target state
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of f2 in B, respectively. Then, by Proposition 2, (f1, f2), (d1, f2) and (f1, d2) are
equivalent and, thus, can be merged into a single state. It shows that we can
reduce two more states from M∪. Therefore, we obtain the following result.

Lemma 1. Given two minimal DFAs A and B for finite languages, mn−(m+n)
states are sufficient for the union of L(A) and L(B), where m = |A| and n = |B|.

We next examine whether or not we can reach the upper bound of Lemma 1.

Lemma 2. The upper bound mn− (m + n) for union cannot be reached with a
fixed alphabet when m and n are arbitrarily large.

Lemma 2 shows that we cannot reach the upper bound in Lemma 1 if |Σ| is
relatively small compared with the number states of the given DFAs. Then, the
next question is what if |Σ| is large enough?

Lemma 3. The upper bound mn− (m + n) for union is reachable if the size of
the alphabet can depend on m and n.

Proof. Let m and n be positive numbers (namely, m, n ∈ N) and

Σ = {b, c} ∪ {ai,j | 1 ≤ i ≤ m− 2, 1 ≤ j ≤ n− 2 and (i, j) �= (m− 2, n− 2)}.

Let A = (Q1, Σ, δ1, p0, {pm−2}), where Q1 = {p0, p1, . . . , pm−1} and δ1 is
defined as follows:

– δ1(pi, b) = pi+1, for 0 ≤ i ≤ m− 2.
– δ1(p0, ai,j) = pi, for 1 ≤ i ≤ m− 2 and 1 ≤ j ≤ n− 2, (i, j) �= (m− 2, n− 2).

For all other cases in δ1 that are not covered above, the target state is the sink
state pm−1.

Next, let B = (Q2, Σ, δ2, q0, {qn−2}), where Q2 = {q0, q1, . . . , qn−1} and δ2 is
defined as follows:

– δ2(qi, c) = qi+1, for 0 ≤ i ≤ n− 2.
– δ2(q0, ai,j) = qj , for 1 ≤ j ≤ n− 2 and 1 ≤ i ≤ m− 2, (i, j) �= (m− 2, n− 2).

Again, for all other cases in δ2 that are not covered above, the target state is
the sink state qn−1. Fig. 2 gives an example of such DFAs A and B.

Let L = L(A1) ∪ L(A2). We claim that the minimal (complete) DFA for L
needs mn − (m + n) states. To prove the claim, it is sufficient to show that
there exists a set R consisting of mn− (m + n) strings over Σ that are pairwise
inequivalent modulo the right invariant congruence of L, ≡L.

We show that R = R1 ∪R2 ∪R3, where

R1 = {bi | 0 ≤ i ≤ m− 1}.
R2 = {cj | 1 ≤ j ≤ n− 3}. (Note that R2 does not include strings c0, cn−2 and

cn−1.)
R3 = {ai,j | 1 ≤ i ≤ m− 2 and 1 ≤ j ≤ n− 2 and (i, j) �= (m− 2, n− 2)}.

Any string bi from R1 cannot be equivalent with a string cj from R2 since
cj ·cn−2−j ∈ L but bi ·cn−2−j /∈ L. Note that j ≥ 1 and hence also b0 ·cn−2−j /∈ L.
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0 1 2 3 4 5
b, a11, a12, a13 b

a21, a22, a23

a31, a32, a33

a41, a42

0 1 2 3 4
c, a11, a21, a31, a41 c

a12, a22, a32, a42

a13, a23, a33

b b b

c c

Fig. 2. An example of two minimal DFAs for finite languages whose sizes are 6 and
5, respectively, where state 5 above and state 4 below are sink states. Except for the
b-transition to state 5 in A and the c-transition to state 4 in B, we omit all other
in-transitions of the sink state.

Next consider a string bi from R1 and a string ak,j from R3. There are four
cases to consider.

1. k �= i and 0 ≤ i ≤ m − 3: It means that bi and ak,j are inequivalent since
bi · bm−2−i ∈ L but ak,j · bm−2−i /∈ L.

2. k �= i and i = m − 2: It implies that k < m − 2 and, thus, bi and ak,j are
inequivalent since ak,j · bm−2−k ∈ L but bi · bm−2−k /∈ L.

3. k �= i and i = m − 1: The path for bi = bm−1 must end at the sink state
for the minimal DFA for L since bm−1 /∈ L. On the other hand, ak,j can be
completed to be a string of L by appending zero or more symbols c.

4. k = i: Now we have strings bi and ai,j .
(a) j < n − 2: We note that ai,j · cn−2−j ∈ L but bicn−2−j /∈ L since no

string of L can have both b’s and c’s. Note that k = i implies that i ≥ 1.
(b) j = n − 2: Since j = n − 2, i < m − 2 by the definition of R3. Now

bi · λ /∈ L but ai,j = ai,n−2 · λ ∈ L(B) ⊆ L.
Therefore, bi and ai,j are inequivalent.

Symmetrically, we see that any string from R2 cannot be equivalent with a
string from R3. This case is, in fact, simpler than the previous case since R2 is
more restrictive than R1.

Finally we need to show that all strings from R1 (respectively, from R2 and
from R3) are pairwise inequivalent with each other.

1. R1: By appending a suitable number of b’s, we can always distinguish two
distinct strings from R1.

2. R2: By appending a suitable number of c’s, we can always distinguish two
distinct strings from R2.

3. R3: Consider two distinct strings ai,j and ax,y from R3. Without loss of
generality, we assume that i < x. The other possibility, where j and y differ,
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is completely symmetric. Since ai,j · bm−2−i ∈ L and ax,y · bm−2−i �∈ L, ai,j

and ax,y are inequivalent. Note that m−2−i > 0 and, thus, the inequivalence
holds even in the case when y = n− 2.

This concludes the proof. 
�
In the construction of R = R1 ∪R2 ∪R3 for Lemma 3, the size of Σ that we use
is mn − 2m − 2n + 5. By using a more complicated construction, we might be
able to reduce the size of Σ. On the other hand, we already know from Lemma 2
that |Σ| has to depend on m and n.

We establish the following statement from Lemmas 1 and 3.

Theorem 1. Given two minimal DFAs A and B for finite languages, mn−(m+
n) states are necessary and sufficient in the worst-case for the minimal DFA of
L(A) ∪ L(B), where m = |A| and n = |B|.
Lemma 2 shows that the upper bound in Lemma 1 is unreachable if |Σ| is
fixed and m and n are arbitrarily large whereas Lemma 3 shows that the upper
bound is reachable if |Σ| depends on m and n. These results naturally lead us to
examine the state complexity of union with a fixed sized alphabet. For easiness of
presentation, we first give the result for a four character alphabet and afterward
explain how the construction can be modified for a binary alphabet.

Lemma 4. Let Σ be an alphabet with four characters. There exists a constant
c such that the following holds for infinitely many m, n ≥ 1, where min{m, n}
is unbounded. There exist DFAs A and B, with m and n states respectively,
that recognize finite languages over Σ such that the minimal DFA for the union
L(A) ∪ L(B) requires c(min{m, n})2 states.

The same result holds for a binary alphabet.

Proof. Let Σ = {a, b, c, d}. We introduce some new notations for the proof. Given
an even length string w ∈ Σ∗, odd(w) denotes the subsequence of characters that
occur in odd positions in w and, thus, the length of odd(w) is half the length of
w. For example, if w = adacbcbc, then odd(w) = aabb. Similarly, even(w) denotes
the subsequence of characters that occur in even positions in w. With the same
example above, even(w) = dccc.

Let s ≥ 1 be arbitrary and r = "log s#. We define the finite language

L1 = {w1w2 | |w1| = 2r, w2 = odd(w1) ∈ {a, b}∗, even(w1) ∈ {c, d}∗}.

The language L1 can be recognized by a DFA A with at most 10s states. For
reading a prefix of length 2r of an input string, the start state of A has two
out-transitions with labels a and b and the two corresponding target states are
different. Then, each target state has two out-transitions with labels c and d
where the target states are the same. This repeats in A until we finish reading
the prefix of length 2r. All other transitions go to the sink state. Fig. 3 illustrates
the construction of A with r = 3.

The computations of A, which do not go to the sink state, on inputs of
length 2r form a tree-like structure that branches into 2r different states. Each
of the 2r states represents a unique string odd(u) ∈ {a, b}∗, where u is the (prefix
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a

b

c, d

c, d

a

a

b

b

c, d

c, d

c, d

c, d

a

b

a

b

a

b

a

b

a

b

a

b

b

a

a

b

a

b

a

b

a

b

expanding tree merging tree

c, d

c, d

c, d

c, d

c, d

c, d

c, d

c, d

Fig. 3. A DFA A that recognizes L1 when r = 3. We omit the sink state and its
in-transitions.

of the) input of length 2r. Then, the computation from each of these 2r states
verifies whether or not the remaining suffix is identical to the string odd(u). This
can be accomplished using a tree that merges all the computations into a single
final state. (See the right part of Fig. 3 for an example.) From each state, there
is only one out-transition (either with symbol a or b), if we ignore transitions
into the sink state. (The structure looks like a tree when we ignore transitions
into the sink state.)

The computations ofA on strings of length 2rbranch into 2r states. Thefirst “ex-
panding” tree (for instance, the left part of Fig. 3) uses less than 4 ·2r < 8s states1

since we repeat each level with the c, d transitions in the tree and s ≤ 2r < 2s.
Finally, consider the number of states in the “merging” tree. (For example,

we rotate the right part of Fig. 3.) Similarly, the merging tree has 2r states and,
therefore, the tree needs at most 2 ·2r < 4s states. However, we observe that the
the last 2r states of the expanding tree is the same state to the last 2r states of
the merging tree in A. Therefore, we only need 2s states for the merging tree.

The total number of states in A is less than 10s. (1)

Symmetrically, we define

L2 = {w1w2 | |w1| = 2r, odd(w1) ∈ {a, b}∗, w2 = even(w1) ∈ {c, d}∗}.

The language L2 consists of strings uv, where |u| = 2r, odd characters of u
are in {a, b}, even characters of u are in {c, d} and even(u) coincides with v.
Using an argument similar to that for equation (1), we establish that

1 Note that a balanced tree with 2r leaves has less than 2 · 2r nodes.
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L2 can be recognized by a DFA with less than 10s states. (2)

Now let L = L1 ∪L2. Let u1 and u2 be distinct strings of length 2r such that
odd(ui) ∈ {a, b}∗ and even(ui) ∈ {c, d}∗ for i = 1, 2.

If odd(u1) �= odd(u2), then u1 ·odd(u1) ∈ L1 ⊆ L but u2 ·odd(u1) /∈ L. Hence,
u1 and u2 are not equivalent modulo the right invariant congruence of L. Simi-
larly, if even(u1) �= even(u2), then, u1 · even(u1) ∈ L2 ⊆ L but u2 · even(u1) �∈ L.

The above implies that the right invariant congruence of L has at least
2r ·2r ≥ s2 different classes. Therefore, if m = n = 10s is the size of the minimal
DFAs for the finite languages L1 and L2, then from equations (1) and (2) we
know that the minimal DFA for L = L1 ∪ L2 needs at least

1
100

n2 states. (3)

Note that |Σ| = 4. The languages L1 and L2 can be straightforwardly en-
coded over a binary alphabet with the only change that the constant 1

100 in
equation (3) would become smaller. 
�

4 Intersection of Finite Languages

We examine the state complexity of intersection of finite languages. Our ap-
proach is again based on the structural properties of minimal DFAs of finite
languages. We start from the Cartesian product of states for the intersection of
two DFAs.

Proposition 3 (Hopcroft and Ullman [7]). Given two DFAs A = (Q1, Σ, δ1,
s1, F1) and B = (Q2, Σ, δ2, s2, F2), let M∩ = (Q1 × Q2, Σ, δ, (s1, s2), F1 × F2),
where for all p ∈ Q1 and q ∈ Q2 and a ∈ Σ,

δ((p, q), a) = (δ1(p, a), δ2(q, a)).

Then, L(M∩) = L(A) ∩ L(B).

Let M∩ denote the Cartesian product of states. Let m and n denote the sink
states of A and B and m−1 and n−1 denote the final states whose target states
are always the sink states of A and B, respectively. If we regard M∩ as a m ×
n matrix, then all states in the first row and in the first column are unreachable
from (1, 1) since A and B are non-returning and, thus, these states are useless in
M∩. Moreover, by the construction, all remaining states in the last row and in the
last column are equivalent to the sink state and, therefore, can be merged. Let us
examine the remaining states in the second-to-last row and in the second-to-last
column except for (m− 1, n− 1).

Lemma 5. A state (i, n − 1) in the second-to-last column, for 1 ≤ i ≤ m − 1,
is either

equivalent to (m− 1, n− 1) if state i is a final state in A or
equivalent to (m, n) if state i is not a final state in A.
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We can obtain a similar statement for the states in the second-to-last row in M∩.
Therefore, all the remaining states at the second-to-last row and at the second-
to-last column except for (n−1, m−1) can be merged with either (n−1, m−1)
or (n, m). Thus, the number of remaining states is

mn− {(m− 1) + (n− 1)} − {(m− 2) + (n− 2)} − {(m− 3) + (n− 3)}

= mn− 3(m + n) + 12,

where {(m− 1) + (n− 1)} is from the first row and the first column, {(m− 2)+
(n−2)} is from the last row and the last column and {(m−3)+(n−3)} is from
the second-to-last row and the second-to-last column. We establish the following
lemma from the calculation.

Lemma 6. Given two minimal DFAs A and B for finite languages, mn−3(m+
n)+12 states are sufficient for the intersection of L(A) and L(B), where m = |A|
and n = |B|.

We now show that mn− 3(m + n) + 12 states are necessary and, therefore, the
bound is tight. Let m, n ∈ N and choose Σ = {ai,j | 1 ≤ i ≤ m− 1 and 1 ≤ j ≤
n− 1}.

Let A = (Q1, Σ, δ1, p0, {pm−2}), where Q1 = {p0, p1, . . . , pm−1} and δ1 is
defined as follows:

– δ1(px, ai,j) = px+i, for 0 ≤ x ≤ m− 2, 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1.

If the sum x + i is larger than m − 1, then px+i is the sink state (= pm−1).
For all other cases in δ1 that are not covered above, the target state is the sink
state pm−1.

Next, let B = (Q2, Σ, δ2, q0, {qm−2}), where Q2 = {q0, q1, . . . , qn−1} and δ2 is
defined as follows:

– δ2(qx, ai,j) = qx+j , for 0 ≤ x ≤ m− 2, 1 ≤ j ≤ n− 1 and 1 ≤ i ≤ m− 1.

Similarly, if the sum x+j is larger than n−1, then qx+j is the sink state (= qm−1).
For all other cases in δ2 that are not covered above, the target state is the sink
state qm−1. Fig. 4 shows an example of such DFAs A and B.

Lemma 7. Let L = L(A) ∩ L(B). The minimal (complete) DFA for L needs
mn− 3(m + n) + 12 states.

Proof. We prove the statement by showing that there exists a set R of mn −
3(m + n) + 12 strings over Σ that are pairwise inequivalent modulo the right
invariant congruence of L, ≡L. We assume that m ≤ n.

We choose R = R1 ∪R2 ∪R3 ∪R4, where

R1 = {λ}.
R2 = {am−2,n−2}.
R3 = {am−1,n−1}.
R4 = {ai,j | for 1 ≤ i ≤ m− 3 and 1 ≤ j ≤ n− 3}.
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0 1 2 3 4 5
a11, a12, a13 a11, a12, a13 a11, a12, a13 a11, a12, a13

a21, a22, a23

a31, a32, a33
a41, a42, a43

a21, a22, a23

a31, a32, a33

a21, a22, a23

0 1 2 3 4
a11, a21, a31, a41 a11, a21, a31, a41 a11, a21, a31, a41

a12, a22, a32, a42

a13, a23, a33, a43

a12, a22, a32, a42

a41, a42, a43

a31, a32, a33

a21, a22, a23

a11, a12, a13

a11, a21, a31, a41

a13, a23, a33, a43

a12, a22, a32, a42

Fig. 4. An example of two minimal DFAs for finite languages whose sizes are 6 and 5,
respectively, where state 5 above and state 4 below are sink states. We omit a large
number of in-transitions of the sink state.

Any string x from R2 ∪ R3 ∪ R4 cannot be equivalent with λ from R1 since
λ ·am−2,n−2 ∈ L but x ·am−2,n−2 /∈ L. Similarly, any string x from R1 ∪R3 ∪R4

cannot be equivalent with am−2,n−2 from R2 since am−2,n−2 ·λ ∈ L but x·λ /∈ L.
Note that string am−1,n−1 from R3 is not in L and it can never be in L by
appending some string whereas any string x from R1 ∪ R2 ∪ R4 can be in L
by appending a suitable string. Therefore, R1, R2 and R3 are inequivalent with
each other including R4.

Finally, we consider two strings ai,j and ax,y in R4. The two strings are not
equivalent since ai,j · am−2−i,n−2−j ∈ L but ax,y · am−2−i,n−2−j /∈ L when
(i, j) �= (x, y). Therefore, any two strings from R4 are not equivalent.

Now we count the number of strings in R. We note that |R1| = |R2| = |R3| = 1
and |R4| = (m− 3)(n− 3). Therefore, |R| = mn− 3(m + n)+ 12. It implies that
there are at least mn− 3(m + n) + 12 states in the minimal DFA for L. 
�

We obtain the following result from Lemmas 6 and 7.

Theorem 2. Given two minimal DFAs A and B for finite languages, mn −
3(m + n) +12 states are necessary and sufficient in the worst-case for the inter-
section of L(A) and L(B), where m = |A| and n = |B|.

Note that the upper bound mn− 3(m + n) + 12 is reachable when |Σ| depends
on m and n as shown in Lemma 7. On the other hand, we can prove that it is
impossible to reach the upper bound with a fixed Σ using the same argument
as in Lemma 2.

Let us investigate a lower bound for the state complexity of intersection of
L(A) and L(B) over a fixed alphabet.

Lemma 8. Let Σ be an alphabet with four characters. There exists a constant
c such that the following holds for infinitely many m, n ≥ 1, where min{m, n}
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unbounded. There exist minimal DFAs A and B that recognize finite languages
over Σ such that the minimal DFA for the intersection L(A) ∩ L(B) requires
c(min{m, n})2 states, where |A| = m and |B| = n.

The same result holds for a binary alphabet.

Proof. We omit the proof due to the space limit. The proof is similar to the
proof for Lemma 4. 
�

5 Conclusions

The state complexity of an operation on regular languages is the number of states
in the minimal DFA that recognizes the resulting language from the operation.
Fig. 1 gives a summary of the results. We have noted that the precise state
complexity of union and intersection cases have been open although rough upper
bounds were given by Yu [13]. Based on the structural properties of minimal
DFAs for finite languages, we have proved that

1. For union, mn− (m + n) states are necessary and sufficient.
2. For intersection, mn− 3(m + n) + 12 states are necessary and sufficient.

We have also noted that the bounds are reachable if |Σ| depends on m and n,
where m and n are the sizes of minimal DFAs for two finite languages. If |Σ|
is fixed and m and n are arbitrarily large, then we have shown that the upper
bounds for both cases are not reachable.
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Abstract. We generalise existing forward and backward bisimulation
minimisation algorithms for tree automata to weighted tree automata.
The obtained algorithms work for all semirings and retain the time com-
plexity of their unweighted variants for all additively cancellative semi-
rings. On all other semirings the time complexity is slightly higher (linear
instead of logarithmic in the number of states). We discuss implementa-
tions of these algorithms on a typical task in natural language processing.

1 Introduction

By the Myhill-Nerode theorem there exists, for every regular string language L,
a unique (up to isomorphism) minimal deterministic finite automaton (dfa) that
recognises L. It was a breakthrough when Hopcroft [1] presented an O(n log n)
minimisation algorithm for dfa where n is the number of states. This still up-to-
date bound was obtained by partitioning the state space through a “process the
smaller half” strategy. However, in general there exists no unique minimal non-
deterministic finite automaton (nfa) recognising a given regular language. Meyer
and Stockmeyer [2] proved that minimisation of nfa is PSPACE-complete. The
minimisation problem for nfa with n states cannot even be efficiently approx-
imated within the factor o(n), unless P = PSPACE [3]. This meant that the
problem had to be simplified; either by restricting the domain to a smaller class
of devices, or by surrendering every hope of a non-trivial approximation bound.
Algorithms that minimise with respect to a bisimulation are examples of the
latter approach. The concept of bisimularity was introduced by Milner [4] as
a formal tool to investigate transition systems. Simply put, two transition sys-
tems are bisimulation equivalent if their behaviour—in response to a sequence of
actions—cannot be distinguished by an outside observer. Although bisimulation
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equivalence, as interpreted for various devices, implies language equality, the op-
posite does not hold in general. We consider weighted tree automata (wta) [5],
which are a joint generalisation of tree automata [6,7] and weighted automata [8].
Classical tree automata can then be seen as wta with weights in the Boolean
semiring, i.e. a transition has weight true if it is present, and false otherwise.

One type of bisimulation, called forward bisimulation in [9,10], restricts bisim-
ilar states to have identical futures. The future of a state q is the tree series of
contexts that is recognised by the wta if the computation starts with the state q
and weight 1 at the unique position of the special symbol � in the context. A
similar condition is found in the Myhill-Nerode congruence for a tree lan-
guage [11] or even in the Myhill-Nerode congruence [12] for a tree series.
Let us explain it on the latter. Two trees t and u are equal in the Myhill-

Nerode congruence for a given tree series S over the field (A, +, ·, 0, 1), if there
exist nonzero coefficients a, b ∈ A such that for all contexts C we observe that
a−1 · (S, C[t]) = b−1 · (S, C[u]). The coefficients a and b can be understood as
the weights of t and u, respectively. In contrast to the Myhill-Nerode congru-
ence, a forward bisimulation requires a local condition on the tree representation.
The condition is strong enough to enforce equivalent futures, but not too strong
which is shown by the fact that, on a deterministic all-accepting [13] wta M over
a field [14] or a wta M over the Boolean semiring [10], minimisation via forward
bisimulation yields the unique (up to isomorphism) minimal deterministic wta
that recognises the same tree series as M .

The other type of bisimulation we will consider is called backward bisimu-
lation in [9,10]. Backward bisimulation also uses a local condition on the tree
representation that enforces that the past of any two bisimilar states is equal.
The past of a state is the series that is recognised by the wta if that particular
state would be the only final state and its final weight would be 1 (i.e., the past
of a state q is the series that maps an input tree t to hμ(t)q ; see Sect. 2).

The idea behind bisimulation minimisation is to discover and collapse states
that in some sense exhibit the same behaviour, thus freeing the input automaton
of redundancy. This implies a search for the coarsest relation on the state space
that meets the local conditions of the bisimulation relation that we are inter-
ested in. The O

(
n2 log n

)
minimisation algorithm for nfa by Paige & Tarjan [15]

could be called a forward bisimulation minimisation. Bisimulation minimisation
of tree automata is discussed in [10]. The paper [10] presents two minimisation
algorithms that are based on forward and backward bisimulation and run in
time O(rnr+1 log n) and O(r2nr+1 log n), respectively, where r is the maximal
rank of the input symbols and n is the number of states. In this paper, we gener-
alise these results to weighted tree automata and obtain minimisation algorithms
that work for arbitrary semirings in O(rnr+2) and O

(
r2nr+2

)
for the forward

and backward approach, respectively. The counting argument used in [15] and
later in [10] is no longer applicable: it was devised for the Boolean semiring and
does not generalise. However, when cancellative semirings are considered, we can
improve the algorithms to run in O(rnr+1 log n) and O(r2nr+1 log n) for the for-
ward and backward approach, respectively, by taking advantage of the “process
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the smaller half” strategy of Hopcroft. When the forward algorithm is given a
deterministic wta, it yields an equivalent deterministic wta in time O(rnr+1),
which can be optimised to O(rnr log n) for additively cancellative semirings.

There are advantages that support having two algorithms. First, forward and
backward bisimulation minimisation only yield a minimal wta with respect to
the corresponding bisimulation. Thus applying forward and backward bisimula-
tion minimisation in an alternating fashion commonly yields a yet smaller wta.
Since both minimisation procedures are very efficient, this approach also works
in practice. For the problem of tree language model minimisation, discussed in
Sect. 5, we minimised our candidate wta in an alternating fashion and found
that we were able to get equally small wta after two iterations beginning with
backward or three iterations beginning with forward. Our implementation typi-
cally ran in Θ(rnr+1 log n)0.36 and Θ(r2nr+1 log n)0.36 for forward and backward,
respectively; well below the theoretical upper bound.

Second, in certain domains one type of bisimulation minimisation is more ef-
fective. For example, backward bisimulation is ineffective on deterministic wta
because no two states have the same past1. On the other hand, wta recognis-
ing languages of trees that vary greatly in the root but little in the leaves (for
example, syntax parses of natural language sentences), will benefit more from
backward bisimulation minimisation than forward. When presented with an un-
known wta, we know no way to say for certain which method of minimisation is
superior, so it is beneficial to have both.

The bisimulation introduced in [16] can be seen as a combination of backward
and forward bisimulation. Containing the restrictions of both, it is less efficient
than backward bisimulation when applied to the minimisation of nondeterminis-
tic automata, but just as expensive to calculate, and unlike forward bisimulation
it does not yield the standard algorithm when applied to deterministic automata.
The pair of algorithms presented in this paper thus supersedes that of [16].

2 Preliminaries

We write IN to denote the set of natural numbers including zero. The subset
{k, k + 1, . . . , n} of IN is abbreviated to [k, n], and the cardinality of a set S is
denoted by |S|. We abbreviate the Cartesian product S × · · · × S with n factors
by Sn, and the inclusion di ∈ Di for all i ∈ [1, k] as d1 · · ·dk ∈ D1 · · ·Dk.

Let P and R be equivalence relations on S. We say that P is coarser than R
(or equivalently: R is a refinement of P), if R ⊆ P . The equivalence class (or
block) of an element s ∈ S with respect to R is the set [s]R = {s′ | (s, s′) ∈ R}.
Whenever R is obvious from the context, we simply write [s] instead of [s]R.
It should be clear that [s] and [s′] are equal if s and s′ are in relation R, and
disjoint otherwise, so R induces a partition (S/R) = {[s] | s ∈ S} of S.

A semiring is a tuple (A, +, ·, 0, 1) such that (A, +, 0) is a commutative
monoid, (A, ·, 1) is a monoid, · distributes (both-sided) over +, and 0 is an
absorbing element with respect to · . We generally assume that · binds stronger
1 The alteration technique is thus useless for deterministic devices.
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than +, so a + b · c is interpreted as a + (b · c). The semiring A = (A, +, ·, 0, 1)
is said to be cancellative if a + b = a + c implies that b = c for every a, b, c ∈ A.

A ranked alphabet is a finite set of symbols Σ =
⋃

k∈IN Σ(k) which is par-
titioned into pairwise disjoint subsets Σ(k). The set TΣ of trees over Σ is the
smallest set of strings over Σ such that f t1 · · · tk in TΣ for every f in Σ(k) and
all t1, . . . , tk in TΣ . We write f [t1, . . . , tk] instead of f t1 · · · tk unless k is zero.

A tree series over the ranked alphabet Σ and semiring A = (A, +, ·, 0, 1)
is a mapping from TΣ to A. The set of all tree series over Σ and A is de-
noted by A〈〈TΣ〉〉. Let S ∈ A〈〈TΣ〉〉. We write (S, t) with t ∈ TΣ for S (t). A
weighted tree automaton M (for short: wta) [17] is a tuple (Q, Σ,A, F, μ), where
Q is a finite nonempty set of states ; Σ is a ranked alphabet (of input sym-
bols); A = (A, +, ·, 0, 1) is a semiring; F ∈ AQ is a final weight distribution; and
μ = (μk)k∈IN with μk : Σ(k) → AQk×Q is a tree representation.

We define hμ : TΣ → AQ for every σ ∈ Σ(k), q ∈ Q, and t1, . . . , tk ∈ TΣ by

hμ(σ[t1, . . . , tk])q =
∑

q1,...,qk∈Q

μk(σ)q1···qk,q · hμ(t1)q1 · . . . · hμ(tk)qk
.

Finally, the tree series recognised by M is given by (‖M‖, t) =
∑

q∈Q Fq · hμ(t)q

for every tree t ∈ TΣ and denoted by ‖M‖.

3 Forward Bisimulation

Foundation. Let M = (Q, Σ,A, F, μ) be a wta. Roughly speaking, a forward
bisimulation on M is an equivalence relation on Q such that equivalent states
react equivalently to future inputs. We enforce this behaviour with only a local
condition on μ and F . Let � /∈ Q. The set CQ

(k) of contexts (over Q) is given
by {w ∈ (Q ∪ {�})k | w contains � exactly once}, and for every context c and
state q we write c[[q]] to denote the word that is obtained from c by replacing
the special symbol � with q. Henceforth, we assume that the special symbol �

occurs in no set of states of any wta.

Definition 1 (cf. [9, Definition 3.1]). Let R ⊆ Q × Q be an equivalence
relation. We say that R is a forward bisimulation on M if for every (p, q) in R
we have (i) F (p) = F (q) and (ii)

∑
r∈D μk(σ)c[[p]],r =

∑
r∈D μk(σ)c[[q]],r for

every σ ∈ Σ(k), block D in (Q/R), and context c of CQ
(k).

Example 2. Let Δ = Δ(0) ∪ Δ(2) be the ranked alphabet where Δ(0) = {α}
and Δ(2) = {σ}. The mapping zigzag from TΔ to IN is recursively defined for
every t1, t2, and t3 in TΔ by zigzag(α) = 1 and zigzag(σ[α, t2]) = 2 and
zigzag(σ[σ[t1, t2], t3]) = 2 + zigzag(t2). Consider the wta N = (P, Δ, IN, G, ν)
with the semiring IN = (IN, +, ·, 0, 1) and P = {l, r, L, R,⊥}, G(l) = G(L) = 1
and G(p) = 0 for every p ∈ {r, R,⊥}, and

1 = ν0(α)ε,l = ν0(α)ε,R = ν0(α)ε,⊥ = ν2(σ)r⊥,l = ν2(σ)⊥l,r = ν2(σ)⊥⊥,l

1 = ν2(σ)R⊥,L = ν2(σ)⊥L,R = ν2(σ)⊥⊥,R = ν2(σ)⊥⊥,⊥ .
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All remaining entries in ν are 0. A straightforward induction shows that N
recognises zigzag. Let us consider P = {l, L}2 ∪ {r, R}2 ∪ {⊥}2. We claim that
P is a forward bisimulation on N . Obviously, G(l) = G(L) and G(r) = G(R).
It remains to check Condition (ii) of Definition 1. We only demonstrate the
computation on the symbol σ, the context ⊥� and the block {r, R}.

∑

p∈{r,R}
ν2(σ)⊥l,p = 1 =

∑

p∈{r,R}
ν2(σ)⊥L,p �

Let R be a forward bisimulation on M . We identify bisimilar states in order to
reduce the size of the wta. Next we present how to achieve this. In essence, we
construct a wta (M/R) that uses only one state per equivalence class of R.

Definition 3 (cf. [9, Definition 3.3]). The forward aggregated wta (M/R)
is the wta ((Q/R) , Σ,A, F ′, μ′) with F ′([q]) = F (q) for every state q of Q, and
μ′k(σ)[q1]···[qk],D =

∑
r∈D μk(σ)q1···qk,r for every σ ∈ Σ(k), word q1 · · · qk ∈ Qk,

and block D ∈ (Q/R).

Example 4. Recall the wta N and the forward bisimulation P of Example 2. Let
us compute (N/P) = (P ′, Δ, IN, G′, ν′). We obtain P ′ = {[l], [r], [⊥]}, the final
weights G′([l]) = 1 and G′([r]) = G′([⊥]) = 0 and the nonzero entries

1 = ν′2(σ)[r][⊥],[l] = ν′2(σ)[⊥][l],[r] = ν′2(σ)[⊥][⊥],[l] = ν′2(σ)[⊥][⊥],[r] = ν′2(σ)[⊥][⊥],[⊥]

1 = ν′0(α)ε,[l] = ν′0(α)ε,[r] = ν′0(α)ε,[⊥] . �

We should verify that the recognised tree series remains the same. The proof of
this property is prepared in the next lemma. It essentially states that a collapsed
state of (M/R) works like the combination of its constituents in M .

Lemma 5 (cf. [9, Theorem 3.1]). Let (M/R) = (Q′, Σ,A, F ′, μ′). Then
hμ′(t)D =

∑
q∈D hμ(t)q for every tree t ∈ TΣ and block D ∈ (Q/R).

The final step establishes that ‖(M/R)‖ = ‖M‖. Consequently, collapsing a wta
with respect to some forward bisimulation preserves the recognised series.

Theorem 6 (cf. [9, Theorem 3.1]). ‖(M/R)‖ = ‖M‖.

The coarser the forward bisimulation R on M , the smaller (M/R). Our aim is
thus to find the coarsest forward bisimulation on M . First we show that a unique
coarsest forward bisimulation on M exists.

Theorem 7. There exists a coarsest forward bisimulation P on M , and (M/P)
admits only the identity as forward bisimulation.

The previous theorem justifies the name forward bisimulation minimisation;
given the coarsest forward bisimulation P on M , the wta (M/P) is minimal
with respect to forward bisimulation.
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input: A wta M = (Q,Σ, A, F, μ);

initially: P0 := Q × Q;
R0 := ker(F ) \ split (Q);
i := 0;

while Ri �= Pi: choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that
Bi ⊂ Si and |Bi| ≤ |Si| /2;

Pi+1 := Pi \ cut (Bi);
Ri+1 :=

(
Ri \ split (Bi)

)
\ split (Si \ Bi);

i := i + 1;

return: (M/Ri);

Algorithm1. A forward bisimulation minimisation algorithm for wta

Algorithm. We now present a minimisation algorithm for wta that draws on
the ideas presented in the previous section. Algorithm 1 searches for the coarsest
forward bisimulation R on the input wta M by producing increasingly refined
equivalence relations R0,R1,R2, . . . . The first of these is the coarsest candidate
solution that respects F . The relationRi+1 is derived from Ri by removing pairs
of states that prevent Ri from being a forward bisimulation. The algorithm also
produces an auxiliary sequence of relations P0,P1,P2, . . . that are used to find
these offending pairs. Termination occurs whenRi and Pi coincide. At this point,
Ri is the coarsest forward bisimulation on M .

Before we discuss the algorithm, its correctness, and its time complexity, we
extend our notation. For the rest of this section, let M = (Q, Σ,A, F, μ) be an
arbitrary but fixed wta. We use the following shorthands in Alg. 1.

Definition 8. Let B be a subset of Q. We write

– cut (B) for the subset (Q2 \B2) \ (Q \B)2 of Q×Q, and
– split (B) for the set of all pairs (p, q) in Q × Q such that

∑
r∈B μk(σ)c[[p]],r

and
∑

r∈B μk(σ)c[[q]],r differ for some σ ∈ Σ(k) and c ∈ CQ
(k).

Example 9. Let N = (P, Δ, IN, G, ν) be the wta of Example 2 that recognises
the tree series zigzag. We will show the iterations of the algorithm on this
example wta. Let us start with the initialisation: Clearly, P0 is P × P , and R0

is the union {l, L}2 ∪ {r, R}2 ∪ {⊥}2. In the first iteration, we select S0 = P
and B0 = {l, L} and thus compute P1 to be {l, L}2 ∪ {r, R,⊥}2, and R1 to be
R0. Obviously, P1 is still different from R1, so the algorithm enters a second
iteration. We now let S1 = {r, R,⊥} and B1 = {⊥}, which yields R2 = P2, so
the algorithm terminates and returns the aggregated wta (N/R2). �

We henceforth abbreviate |Q| to n, and denote by r the maximum k such that
Σ(k) is non-empty. As we will later argue, there exists a t < n such that Alg. 1
terminates when i = t. We use the notations introduced in the algorithm when
we set out to prove correctness and termination.
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Lemma 10. The relation Ri is a refinement of Pi for all i ∈ [0, t].

Lemma 10 ensures that Ri is a proper refinement of Pi, for all i ∈ [0, t−1]. Since
Pi+1 is in turn, by definition, a proper refinement of Pi, termination is guaranteed
in less than n iterations. It follows that, up to the termination point t, we can
always find blocks Bi ∈ (Q/Ri) and Si ∈ (Q/Pi) such that Bi is contained in
Si, and the size of Bi is at most half of that of Si.

Theorem 11. Algorithm 1 returns the minimal wta (M/P) with respect to for-
ward bisimulation. Equivalently; P is the coarsest forward bisimulation on M .

We now analyse the running time of Alg. 1. We use

m =
∑

k∈[0,r]
|{(σ, q1 · · · qk, q) ∈ Σ(k) ×Qk ×Q | μk(σ)q1···qk,q �= 0}| .

to denote the size of μ. In this paper, we assume that the tree representation is
not sparse, i.e. that it contains some Ω

(∑
k∈[0,r] nk+1

)
entries. For a discussion

of how sparse representations affect the performance of the algorithm, see [14].
We also assume that semiring addition can be performed in constant time. We
denote by μf

B the part of μ that contains entries of the form μk(σ)q1···qk,q, where
q ∈ B. The overall time complexity of the algorithm is

O
(
Init

f +
∑

i∈[0,t−1]

(
Selecti + Cuti + Split

f
i

)
+ Aggregate

f
)

,

where Init
f , Selecti, Cuti, Split

f
i, and Aggregate

f are the complexity of:
(i) the initialisation phase; (ii) the choice of Si and Bi; (iii) the computation of
Pi+1; (iv) the computation of Ri+1, and (v) the construction of the aggregated
automaton (M/Rt); respectively.

Lemma 12. Init
f and Aggregate

f are both in O(m + n), whereas Selecti

is in O(1), Cuti is in O(|Bi|), and Split
f
i is in O(r |μf

Si
|).

In the worst case, |Si| equals n− i, which means that
∣
∣μf

Si

∣
∣ is close to m.

Theorem 13. Algorithm 1 has time complexity O(rmn).

We now consider a simplification of Alg. 1 for cancellative semirings. In essence,
the second split in the computation of Ri+1 can be omitted.

Lemma 14. When the underlying semiring is cancellative, we can replace the
computation of Ri+1 in Alg. 1 simply by Ri+1 = Ri \ split (Bi).

The optimised algorithm thus only splits against the block Bi, for each i ∈
[0, t− 1]. As no state occurs in more than log n distinct B-blocks, we are able to
obtain a lower time complexity:

Theorem 15. Alg. 1 optimised for cancellative semirings is in O(rm log n).
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4 Backward Bisimulation

Foundation. Let M = (Q, Σ,A, F, μ) be a wta. In this section we investigate
backward bisimulations [9]. We introduce the following notation. Let Π be a
partition of Q. We write Π(k) for the set {D1 × · · · ×Dk | D1, . . . , Dk ∈ Π} for
every k ∈ IN. Moreover, we write Π(≤k) for the set Π(0) ∪ · · · ∪Π(k).

Definition 16 (cf. [9, Definition 4.1]). Let R be an equivalence relation on Q.
If
∑

w∈L μk(σ)w,p =
∑

w∈L μk(σ)w,q for every (p, q) ∈ R, symbol σ in Σ(k), and
word L ∈ (Q/R)(k), then we say that R is a backward bisimulation on M .

Example 17. Let N = (P, Δ, IN, G, ν) where P = {l, r, L, R,⊥}, Δ is as in Ex-
ample 2, and G(l) = 1 and G(p) = 0 for every p ∈ {r, L, R,⊥} and

1 = ν0(α)ε,l = ν0(α)ε,r = ν0(α)ε,L = ν0(α)ε,R = ν0(α)ε,⊥

1 = ν2(σ)⊥L,R = ν2(σ)⊥L,r = ν2(σ)⊥l,r

1 = ν2(σ)R⊥,L = ν2(σ)R⊥,l = ν2(σ)r⊥,l = ν2(σ)⊥⊥,⊥ .

All remaining entries in ν are 0. The wta N also recognises zigzag. We propose
P = {l}2 ∪ {r}2 ∪ {L, R,⊥}2 as backward bisimulation. We note that ν0(α)ε,L

and ν0(α)ε,R and ν0(α)ε,⊥ are all equal and
∑

p1p2∈[⊥][⊥] ν2(σ)p1p2,p = 1 and
ν2(σ)p1p2,p = 0 for every p ∈ {L, R,⊥} and p1, p2 ∈ P such that (p1,⊥) /∈ P and
(p2,⊥) /∈ P . �

For the rest of this section, let R be a backward bisimulation on M . Next we
define how to collapse M with respect to R.

Definition 18 (cf. [9, Definition 3.3]). The backward aggregated wta (M/R)
is the wta ((Q/R) , Σ,A, F ′, μ′) such that (i) F ′(D) =

∑
q∈D F (q) for every

block D of (Q/R) and (ii) μ′k(σ)D1···Dk,[q] =
∑

w∈D1···Dk
μk(σ)w,q for every sym-

bol σ in Σ(k), word D1 · · ·Dk of blocks in (Q/R), and state q ∈ Q.

Example 19. Recall the wta N and the backward bisimulation P from Ex-
ample 17. We obtain (N/P) = (P ′, Δ, IN, G′, ν′) with P ′ = {[l], [r], [⊥]} and
G′([l]) = 1 and G′([r]) = G([⊥]) = 0 and the nonzero tree representation entries

1 = ν′2(σ)[⊥][⊥],[r] = ν′2(σ)[⊥][l],[r] = ν′2(σ)[⊥][⊥],[l] = ν′2(σ)[r][⊥],[l] = ν′2(σ)[⊥][⊥],[⊥]

1 = ν′0(α)ε,[l] = ν′0(α)ε,[r] = ν′0(α)ε,[⊥] . �

Next we prepare Theorem 21, which will show that M and (M/R) recognise the
same series. First we prove that every state q of M recognises the same series as
the state [q] of (M/R).

Lemma 20 (cf. [9, Theorem 4.2] and [18, Lemma 5.2]). Let (M/R) be
(Q′, Σ,A, F ′, μ′). Then hμ′(t)[q] = hμ(t)q for every state q ∈ Q and tree t ∈ TΣ.

The previous lemma establishes a nice property of bisimilar states. Namely,
hμ(t)p = hμ(t)q for every pair (p, q) ∈ R of bisimilar states and every tree
t ∈ TΣ .
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input: A wta M = (Q,Σ, A, F, μ);

initially: P0 := Q × Q; L0 := (Q/P0)(≤r);
R0 := P0 \ splitb(L0); i := 0;

while Ri �= Pi: choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that
Bi ⊂ Si and |Bi| ≤ |Si| /2;

Pi+1:= Pi \ cut (Bi);
Li+1:= (Q/Pi+1)(≤r);

Ri+1:=
(
Ri \ splitb(Li+1(Bi))

)
\ splitb(Li+1(Si \ Bi, ¬Bi));

i := i + 1;

return: (M/Ri);

Algorithm2. A backward bisimulation minimisation algorithm for wta

Theorem 21 (cf. [9, Theorem 4.2] & [18, Lemma 5.3]). ‖(M/R)‖ = ‖M‖.

Among all backward bisimulations on M , the coarsest one yields the smallest
aggregated wta, and this wta admits only the trivial backward bisimulation.

Theorem 22. There exists a coarsest backward bisimulation P on M , and the
wta (M/P) only admits the identity as backward bisimulation.

Algorithm. We now show how Alg. 1 can be modified so as to minimise with
respect to backward bisimulation. For this we recall the wta M = (Q, Σ,A, F, μ)
with n = |Q| states. Intuitively, the sum

∑
w∈D1···Dk

μk(σ)w,q captures the ex-
tent to which q is reachable from states in D1 · · ·Dk, on input σ, and is thus
a local observation of the properties of q (cf. Definition 16). To decide whether
states p and q are bisimilar, we compare

∑
w∈L μk(σ)w,p and

∑
w∈L μk(σ)w,q

on increasing languages L. If we find a pair (σ, L) on which the two sums dis-
agree, then (p, q) can safely be discarded from our maintained set of bisimilar
states.

Definition 23. Let B, B′ ⊆ Q and let L ⊆ P(Q∗) be a set of languages.

– We write L(B) to denote {L ∩Q∗BQ∗ | L ∈ L}.
– We write L(B,¬B′) when we mean {L ∩ (Q \B′)∗ | L ∈ L(B)}.
– We write splitb(L) for the set of all (p, q) in Q × Q for which there exist

σ ∈ Σ(k) and a language L ∈ L∩P(Qk) such that the sums
∑

w∈L μk(σ)w,p

and
∑

w∈L μk(σ)w,q differ.

Algorithm 2, as listed above, is obtained from Alg. 1 as follows. The initialisation
of R0 is replaced with the assignment R0 = P0 \ splitb((Q/P0)(≤r)), and the
computation of Ri+1 with

Ri+1 =
(
Ri \ splitb((Q/Pi+1)(≤r) (Bi))

)
\ splitb((Q/Pi+1)(≤r) (Si \Bi,¬Bi)) .
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Example 24. Consider the execution of the backward bisimulation minimisation
algorithm on the wta N = (P, Δ, IN, G, ν) of Example 17. Clearly, P0 is P×P . In
the computation of P0 \ splitb(L0), the state space can be divided into {L, R,⊥}
and {l, r}, as

∑
w∈PP νk(σ)w,p is 1 when p is in the former set, but 2, when in the

latter. No additional information can be derived by inspecting ν0(α)ε,p because
this value equals 1 for every p ∈ {l, r, L, R,⊥}, so R0 = {l, r}2 ∪ {L, R,⊥}2.

In Iteration 1, S0 is by necessity P , and B0 is {l, r}, so P1 = R0. The tree
representation entries for the nullary symbol α will have no further effect on R0.
On the other hand, we have that

∑
w∈[⊥][l] ν2(σ)w,p is nonzero only when p = l,

which splits the block {l, r}. Seeing that ν is such that the block {L, R,⊥} is
only affected by itself, we know that R1 = {l}2∪{r}2∪{L, R,⊥}2, is the sought
bisimulation. This means that termination happens in Iteration 3, when P3 has
been refined to the level of R1. �

Theorem 25. Algorithm 2 returns the minimal wta (M/P) with respect to back-
ward bisimulation. Equivalently; P is the coarsest backward bisimulation on M .

We now compute the time complexity of Alg. 2, using the same assumptions and
notations as in Sect. 3. In addition, we denote by μb

L, where L ⊆ P(Q∗), the
part of the tree representation μ that contains entries of the form μk(σ)q1···qk,q,
where q1 · · · qk is in L. The overall complexity of the Alg. 2 can be written as for
Alg. 1, with Init

f , Split
f
i, and Aggregate

f , replaced by Init
b, Split

b
i , and

Aggregate
b, respectively. By Lemma 26 we thus obtain Theorem 27.

Lemma 26. Init
b is in O(rm + n), whereas Aggregate

b is in O(m + n) and
Split

b
i is in O

(
r |μb

Li(Si)
|
)
.

Theorem 27. Algorithm 2 is in O(rmn).

As in the forward case, we present an optimisation of Alg. 2 for cancellative
semirings that reduces the time complexity.

Lemma 28. When the underlying semiring is cancellative, we can compute the
relation Ri+1 as Ri \ splitb(Li+1(Bi)) without effect on the overall algorithm.

Theorem 29. The optimisation of Alg. 2 is in O
(
r2m log n

)
.

5 Implementation

In this section we present experimental results obtained by applying an imple-
mentation (written in Perl) of Alg. 1 and Alg. 2 to the problem of language
modelling in the natural language processing domain [19]. A language model is
a formalism for determining whether a given sentence is in a particular language.
Language models are particularly useful in applications of natural language and
speech processing such as translation, transliteration, speech recognition, char-
acter recognition, etc., where transformation system output must be verified to
be an appropriate sentence in the domain language. Typically they are formed
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Table 1. Reduction of states and rules by the bisimulation minimisation algorithms

trees original forward backward convergence

states rules states rules states rules states rules
25 162 162 141 161 136 136 115 135
45 295 295 248 290 209 209 161 203
85 526 526 436 516 365 365 271 351
165 1087 1087 899 1054 672 672 468 623
305 1996 1996 1630 1924 1143 1143 735 1029

by collecting subsequences of sentences over a large corpus of text and assigning
probabilities to the subsequences based on their occurrence counts in the data.
To obtain the probability of a sentence one multiplies the probability of subse-
quences together. It is thus useful to have a data structure for efficiently looking
up many subsequences. As effective language models typically have many mil-
lions of unique subsequences, but there is considerable similarity between the
subsequences, a compressed dictionary of subsequences seems to be a natural
choice for such a data structure. A minimisation algorithm is particularly suited
for building a compressed dictionary from uncompressed sequence input.

Recent research in natural language processing has focused on using tree-based
models to capture syntactic dependencies in applications such as machine trans-
lation [20,21]. We thus require a language model of trees, and the subsequences
we will represent are subtrees. We prepared a data set by collecting 3-subtrees,
i.e. all subtrees of height 3, from sentences taken from the Penn Treebank cor-
pus of syntactically bracketed English news text [22], and collected observation
statistics on these subtrees, which we stored as probabilities. In our experiments,
we selected at random a subset of these subtrees and constructed an initial wta
over the semiring (IR+, +, ·, 0, 1) by representing each 3-subtree in a single path,
with an exit weight at the final state equal to the observed probability of the
subtree. The sizes of the initial wta are noted in columns 2 and 3 of Table 1.
We then performed a single iteration of the forward and backward variants, the
results of which are noted in columns 4–7 of Table 1. On average the wta size,
taken as m+n, is reduced by 10% of original by the forward algorithm and 34%
by the backward algorithm. Reduction as a percentage of size by the backward
algorithm grew with the size of the wta on this data set, e.g., the largest wta
presented in Table 1 was reduced by 42.7%. In contrast, forward minimisation
tended to reduce the size of the input by 10% for all wta in our test set. This
performance is likely due to the nature of the experimental data used and may
differ highly on, e.g., wta with a more densely packed μ, wta representing infinite
languages, etc.

As noted in Sect. 1, further minimisation may be obtained by applying the
two algorithms in an alternating manner. We found that for the wta in this
experiment, two iterations beginning with backward or three iterations beginning
with forward resulted in the smallest obtainable wta, the sizes of which are
noted in the last two columns of Table 1. On average, the maximal minimisation
reduced the size of the input wta by 45% and, as with backward minimisation,
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the reduction percentage grows with the size of the initial wta, to 55.8% for the
largest wta in the sample set.
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Knight. We appreciate the sample automata provided by Lisa Kaati and would
like to thank Frank Drewes for proof-reading the manuscript. Finally, we would
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16. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata.
In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 173–185.
Springer, Heidelberg (2006)

17. Borchardt, B.: The Theory of Recognizable Tree Series. Akademische Abhandlun-
gen zur Informatik. Verlag für Wissenschaft und Forschung (2005)



Bisimulation Minimisation for Weighted Tree Automata 241
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Abstract. Conjunctive grammars were introduced by A. Okhotin in [1]
as a natural extension of context-free grammars with an additional op-
eration of intersection in the body of any production of the grammar.
Several theorems and algorithms for context-free grammars generalize
to the conjunctive case. Still some questions remained open. A. Okhotin
posed nine problems concerning those grammars. One of them was a
question, whether a conjunctive grammar over unary alphabet can gen-
erate only regular languages. We give a negative answer, contrary to the
conjectured positive one, by constructing a conjunctive grammar for the
language {a4n

: n ∈ N}. We then generalise this result—for every set of
numbers L such that their representation in some k-ary system is reg-
ular set we show that {akn

: n ∈ L} is generated by some conjunctive
grammar over unary alphabet.

Keywords: Conjunctive grammars, regular languages, unary alphabet,
non-regular languages.

1 Introduction and Background

Alexander Okhotin introduced conjunctive grammars in [1] as a simple, yet beau-
tiful and powerful extension of context-free grammars. Informally speaking, con-
junctive grammars allow additional use of intersection in the body of any rule
of the grammar. More formally, conjunctive grammar is defined as a quadruple
〈Σ, N, P, S〉 where Σ is a finite alphabet, N is a set of nonterminal symbols, S
is a starting nonterminal symbol and P is a set of productions of the form:

A→ α1&α2& . . . &αk, where αi ∈ (Σ ∪N)∗ .

Word w can be derived by this rule if and only if it can be derived from every
string αi for i = 1, . . . , k.

We can also give semantics of conjunctive grammars with language equations
that use sum, intersection and concatenation as allowed operations. Language
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generated by conjunctive grammar is a smallest solution of such equations (or
rather one coordinate of the solution, since it is a vector of languages).

The usage of intersection allows us to define many natural languages that are
not context-free. On the other hand it can be shown [1] that languages generated
by the conjunctive grammars are deterministic context-sensitive.

Since in this paper we need only a small piece of theory of conjunctive gram-
mars, we give an example of a grammar, together with language generated by it,
instead of formal definitions. The Reader interested in the whole theory of the
conjunctive grammars should consult [1] for detailed results or [2] for shorter
overview. Also work on the Boolean grammars [3], which extend conjunctive
grammars by additional use of negation, may be interesting.

Example 1. Let us consider conjunctive grammar 〈Σ, N, P, S〉 defined by:

Σ = {a, b, c} ,

N = {S, B, C, E, A} ,

P = {A→ aA | ε, C → Cc | ε, S → (AE)&(BC),
B → aBb | ε, E → bEc | ε} .

The language generated by this grammar is equal to {anbncn : n ∈ N}. The
associated language equations are:

LA = {a}LA ∪ {ε} ,

LC = {c}LC ∪ {ε} ,

LS = (LALE) ∩ (LBLC) ,

LB = {a}LB{b} ∪ {ε} ,

LE = {b}LE{c} ∪ {ε} .

Their smallest solution is:

LA = a∗ ,

LC = c∗ ,

LS = {anbncn : n ∈ N} ,

LB = {anbn : n ∈ N} ,

LE = {bncn : n ∈ N} .

Many natural techniques and properties generalize from context-free grammars
to conjunctive grammars. Among them most important are: existence of the
Chomsky normal form, parsing using a modification of CYK algorithm etc. On
the other hand many other techniques do not generalize—there is no Pumping
Lemma for conjunctive grammars, they do not have bounded growth property,
non-emptiness is undecidable. In particular no technique for showing that a
language cannot be generated by conjunctive grammars is known; in fact, as for
today, we are only able to show that languages that are not context sensitive lay
outside this class of languages.
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A. Okhotin in [4] gathered nine open problems for conjunctive and Boolean
grammars considered to be the most important in this field. One of those prob-
lem was a question, whether conjunctive grammars over unary alphabet generate
only regular languages. It is easy to show (using Pumping Lemma), that this is
true in case of context-free grammars. The same result was conjectured for con-
junctive grammars. We disprove this conjecture by giving conjunctive grammar
for a non-regular language {a4n

: n ∈ N}.
The set {4n : n ∈ N} written in binary is a regular language. This leads to

a natural question, what is the relation between regular (over binary alphabet)
languages and unary conjunctive languages. We prove that every regular lan-
guage (written in some k-ary system) interpreted as a set of numbers can be
represented by a conjunctive grammar over an unary alphabet.

2 Main Result—Non-regular Conjunctive Language over
Unary Alphabet

Since we deal with an unary alphabet we identify word an with number n and
work with sets of integers rather than with sets of words.

Let us define the following sets of integers:

A1 = {1 · 4n : n ∈ N} ,

A2 = {2 · 4n : n ∈ N} ,

A3 = {3 · 4n : n ∈ N} ,

A12 = {6 · 4n : n ∈ N} .

The indices reflect the fact that these sets written in tetrary system begin with
digits 1, 2, 3, 12, respectively and have only 0’es afterwards. We will show that
those sets are the minimal solution of the equations:

B1 = (B2B2 ∩B1B3) ∪ {1} , (1)
B2 = (B12B2 ∩B1B1) ∪ {2} , (2)
B3 = (B12B12 ∩B1B2) ∪ {3} , (3)

B12 = (B3B3 ∩B1B2) . (4)

Where in the above equations XY reflects the concatenation of languages:

XY := {x + y : x ∈ X, y ∈ Y } .

This set of language equations can be easily transformed to a conjunctive gram-
mar over unary alphabet (we should specify the starting symbol, say B1). None
of the sets A1, A3, A3, A12 is a regular language over unary alphabet.

Since solutions are vectors of languages we use notation

(A1, . . . , An) ⊂ (B1, . . . , Bn) ,

meaning, that Ai ⊂ Bi for i = 1, . . . , n.
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Since we often prove theorems be induction on number of digits, it is conve-
nient to use the following notation for language (set) S:

S �n:= {s ∈ S : s has n digits at the most} .

We shall use it also for the vectors of languages (sets) with an obvious meaning.

Lemma 1. Every solution (S1, S2, S3, S12) of equations (1)–(4) satisfies:

(A1, A2, A3, A12) ⊂ (S1, S2, S3, S12). (5)

Proof. We shall prove by induction on n, that

(A1, A2, A3, A12) �n⊂ (S1, S2, S3, S12) .

For n = 1 we know that i ∈ Si by (1), (2) and (3). This ends induction basis.
For induction step let us assume that

(A1, A2, A3, A12) �n+1⊂ (S1, S2, S3, S12).

We shall prove that this is true also for (n + 2).
Let us start with 4n+1 and S1. By induction assumption 2 ·4n ∈ S2 and hence

(2 · 4n) + (2 · 4n) = 4n+1 ∈ S2S2. Also by induction assumption 4n ∈ S1 and
3 · 4n ∈ S3, hence (4n) + (3 · 4n) = 4n+1 ∈ S1S3, and so 4n+1 ∈ S2S2 ∩ S1S3 and
by (1) we conclude that 4n+1 ∈ S1.

Similar calculations can be made for other (n + 2)-digit numbers, we present
them in simplified way.

For 6·4n, which is a (n+2)-digit number, we can see that 3·4n ∈ S3, 2·4n ∈ S2

by induction hypothesis and 1 · 4n+1 = 4 · 4n ∈ S1, which was proved already in
induction step. Hence 6 · 4n ∈ S3S3 ∩ S1S2 and by (4) we get 6 · 4n ∈ S12.

For 2 · 4n+1 notice that 2 · 4n ∈ S2, 6 · 4n ∈ S12 and 1 · 4n+1 ∈ S1 hence
2 · 4n+1 ∈ S1S1 ∩ S12S2 and by (2) 2 · 4n+1 ∈ S2.

For 3 · 4n+1 notice that 2 · 4n+1 ∈ S2, 6 · 4n ∈ S12 and 1 · 4n+1 ∈ S1 hence
3 · 4n+1 ∈ S12S12 ∩ S1S2 and by (3) 3 · 4n+1 ∈ S3.

This ends induction step. 
�
Lemma 2. Sets A1, A2, A3, A12 are a solution of (1)–(4).

Proof. For every (1)–(4) we have to prove two inclusions: ⊂ (that is

A1 ⊂ (A2A2 ∩A1A3) ∪ {1} ,

A2 ⊂ (A12A2 ∩A1A1) ∪ {2} ,

A3 ⊂ (A12A12 ∩A1A2) ∪ {3} ,

A12 ⊂ (A3A3 ∩A1A2) .

And ⊃, that is

A1 ⊃ (A2A2 ∩A1A3) ∪ {1} ,

A2 ⊃ (A12A2 ∩A1A1) ∪ {2} ,

A3 ⊃ (A12A12 ∩A1A2) ∪ {3} ,

A12 ⊃ (A3A3 ∩A1A2) .

For the inclusions ⊂ the proof is the same as in Lemma 1 and so we skip it.
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For the inclusions ⊃, let us consider m—the smallest number that violates
this inclusion, that is m belongs to some right-hand side of one of the (1)–(4),
but does not belong to the corresponding left-hand side. First note the easy, but
crucial, fact that m �= 0 because all numbers appearing on the right-hand side
are strictly greater than 0.

Suppose m violates (1). Then m ∈ A2A2. By definition there are numbers k, l
such that k, l ∈ A2 and m = k + l. Since m is the smallest such number then
both k, l belong also to the left-hand side, hence k = 2 ·4n1 and l = 2 · 4n2 . Then
either k = l and m ∈ A1 and so it does not violate the inclusion or k �= l and so
m have only two non-zero digits, both being 2’s. On the other hand m ∈ A1A3,
so by definition there are k′ ∈ A1, l′ ∈ A3 such that m = l′ + k′. Since m is the
smallest such number then l′ = 1 ·4n3 and k′ = 3 ·4n4. And so either m = 4n3+1,
if n3 = n4, or m has only two non-zero digits: 1 and 3. But this is a contradiction
with a claim that m has only two non-zero digits, both being 2′s.

We shall deal with other cases in the same manner.
Suppose m violates (2). Then m ∈ A1A1. By definition there are numbers k, l

such that k, l ∈ A1 and m = k + l. Since m is the smallest such number then
both k, l belong also to the left-hand side, hence k = 1 ·4n1 and l = 1 · 4n2 . Then
either k = l and m ∈ A2 and so it does not violate the inclusion or k �= l and so
m have only two non-zero digits, both being 1’s. On the other hand m ∈ A12A2,
so by definition there are k′ ∈ A12, l′ ∈ A2 such that m = l′ + k′. Since m
is the smallest such number then l′ = 6 · 4n3 and k′ = 2 · 4n4 . And so either
m = 2 · 4n3+1, if n3 = n4, or m has exactly two non-zero digits: 3 and 2 or it
has exactly three non-zero digits 1, 2, 2. But this is a contradiction with a claim
that m has only two non-zero digits, both being 1’s.

Suppose m violates (3). Then m ∈ A12A12. By definition there are numbers
k, l such that k, l ∈ A12 and m = k+ l. Since m is the smallest such number then
both k, l belong also to the left-hand side, hence k = 6 ·4n1 and l = 6 · 4n2 . Then
either k = l and m ∈ A3 and so it does not violate the inclusion or k �= l and so
m can have the following multisets of non-zero digits: {1, 1, 2, 2} or {1, 2, 3}. On
the other hand m ∈ A1A2, so by definition there are k′ ∈ A1, l′ ∈ A2 such that
m = l′+k′. Since m is the smallest such number then l′ = 1 ·4n3 and k′ = 2 ·4n4 .
And so either m = 3 ·4n3, if n3 = n4, or m has exactly two non-zero digits: 1 and
2. But this is a contradiction with a previous claim on possible sets of non-zero
digits of m.

Suppose it violates (4). Then m ∈ A3A3. By definition there are numbers k, l
such that k, l ∈ A3 and m = k + l. Since m is the smallest such number then
both k, l belong also to the left-hand side, hence k = 3 ·4n1 and l = 3 · 4n2 . Then
either k = l and m ∈ A12 and so it does not violate the inclusion or k �= l and so
m have only two non-zero digits, both being 3’s. On the other hand m ∈ A1A2,
so by definition there are k′ ∈ A1, l′ ∈ A2 such that m = l′ + k′. Since m is the
smallest such number then k′ = 4n3 and l′ = 2·4n4 . And so either m has only two
non-zero digits: 1 and 2 or it has exactly one non-zero digit—3. But this is a con-
tradiction with a claim that m has only two non-zero digits, both being 3′s. 
�

Theorem 1. Sets A1, A2, A3, A12 are the smallest solution of (1)–(4).
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Proof. This follows from Lemma 1 and Lemma 2. 
�

Corollary 1. The non-regular language {a4n

: n ∈ N} can be generated by
conjunctive grammar over unary alphabet.

Corollary 2. Conjunctive grammars over unary alphabet have more expressive
power then context-free grammars.

3 Additional Results

3.1 Number of Nonterminals Required

The grammar described in the previous section uses four nonterminals. It can
be easily converted to Chomsky normal form, we need only to introduce two
new nonterminals for languages {1} and {2} respectively, hence grammar for
language {4n : n ∈ N} in Chomsky normal form requires only six nonterminals.
It is an interesting question, which mechanisms of conjunctive grammars and
how many of them are required to generate a non-regular language? How many
nonterminals are required? How many of them must generate non-regular lan-
guages? How many intersections are needed? Putting this question in the other
direction, are there any natural sufficient conditions for a conjunctive grammar
to generate regular language?

It should be noted that we are able to reduce the number of nonterminals to
three, but we sacrifice Chomsky normal form and introduce also concatenations
of three nonterminals in productions. This can be seen as some trade-off between
number of nonterminals and length of concatenations. Let us consider a language
equation:

B1 = (B2,12B2,12 ∩B1B3) ∪ {1} , (6)
B2,12 =

(
(B2,12B2,12 ∩B1B1) ∪ {2}

)
∪

∪
(
(B3B3 ∩B2,12B2,12)

)
, (7)

B3 = (B2,12B2,12 ∩B1B1B1) ∪ {3} . (8)

These are basically the same equations as (1)–(4), except that nonterminals
B2 and B12 are identified (or merged) and also conjunct B2B1 in (1)–(4) was
changed to B1B1B1. The Reader can easily check that after only the second
change applied to (1)–(4) proofs of Lemma 1 and Lemma 2 can be easily modified
to work with new situation.

Theorem 2. The smallest solution of (6)–(8) is

(A1, A2 ∪A12, A3) .

Proof. The proof of this theorem is just a slight modification of the proof of
Theorem 1, so we shall just sketch it.

The main idea of the proof is to think of nonterminal B2,12 that corresponds
to the set A2 ∪ A12 as two nonterminals: B2 and B12, corresponding to sets
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A2 and A12, respectively. To implement this approach we should show that
every occurrence of B2,12 on the right-hand side of any equation can be replaced
by exactly one of the nonterminals B2 or B12, meaning that in each language
equation from (6)–(8) if we substitute the variables with intended solution every
occurrence of set A2 ∪ A12 on the right hand-side can be in fact replaced by
exactly one of the sets A2, A12 with keeping the equations true.

Let us consider sets (A1, A2 ∪ A12, A3). Using the same arguments as in
Lemma 1 we can show that the smallest solutions of (6)–(8) is a pointwise
superset of considered sets.

Now we must show that these sets are in fact a solution. Showing ⊂ is easy,
as in Lemma 2. Showing ⊃ is the same as in Lemma 2 if we show earlier that
we can substitute every occurrence of B2,12 on the right-hand side with exactly
one of B2 or B12, respectively.

Notice that if we have an intersection of the form BiBj ∩BkBl then the sum
of tetrary digits from Bi and Bj must be equal modulo 3 the sum of tetrary
digits from Bk and Bl (this observation is easily generalized to the case with
more concatenated nonterminals). We take sums modulo 3 because if we sum
two numbers and digits in a column sum up to 4 (or more) then we loose 4 in
this column but gain 1 in the next, so the difference is 3. Now if we swap from
B2 to B12 then the sum of digits changes by 1. So to get an equation modulo
3 we would have to add and subtract some 1’s from both sides. Case inspection
shows that this is not possible. And so we can use the same arguments as in
Lemma 2. 
�

3.2 Related Languages

Theorem 3. For every natural number k, language

{kn : n ∈ N}

is generated by a conjunctive grammar over unary alphabet.

Proof. For every k > 4 we introduce non-terminals Bi,j , where i = 1, . . . k−1 and
j = 0, . . . , k− 1, with intention that Bi,j defines language of numbers beginning
with digits i, j and then only zeroes in k-ary system of numbers. Then we define
the productions as:

B1,0 → B2,0Bk−2,0 & B1,0Bk−1,0 ,
B1,1 → B1,0B1,0 & Bk−1,0B2,0 ,
B1,3 → B1,0B3,0 & B1,2B1,0 ,
B2,3 → B2,0B3,0 & B2,1B2,0 ,
Bi,j → B1,0Bi,j−1 & B2,0Bi,j−2 for (i, j) not mentioned above ,
Bi,0 → {i} for i = 1, . . . , k − 1 .
In the above equations Bi,j we use cyclic notation for second lower indices,

that is Bi,j = Bi,j mod k. It can be shown, using methods as in Lemma 1 and
Lemma 2, that the smallest solution of these equations is

Bi,j = {(k · i + j) · kn : n ∈ N}, for j �=0 ,

Bi,0 = {i · kn : n ∈ N} .
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For k = 2, 3 we have to sum up some languages generated in cases of k = 4, 9,
respectively. The case for k = 1 is trivial.

The productions used in this theorem could be simplified for fixed k. 
�

4 Regular Languages over k-ary Alphabet

Now we deal with major generalisation of the Theorem 1. We deal with languages
{an : n ∈ L}, where R is some regular language (written in some k-ary system).
To simplify the notation, let Σk = {0, . . . , k − 1}. From the following on we
consider regular languages over Σk for some k that do not have words with
leading 0, since this is meaningless in case of numbers.

Definition 1. Let w ∈ Σ∗k be a word. We define its unary representation as

fk(w) = {an : w read as k-ary number is n} .

When this does not lead to confusion, we also use fL applied to languages with
an obvious meaning.

The following fact shows that it is enough to consider the k parameter in fk

that are ‘large enough’.

Lemma 3. For every k = ln, n > 0 and every unary language L language
f−1

k (L) is regular if and only if language f−1
l (L) is regular.

Proof. An automaton over alphabet Σk can clearly simulate reading a word
written in l-ary system and vice-versa. 
�

In the following we shall use ‘big enough’ k, say k ≥ 100. We claim, that for
regular L language fk(L) is conjunctive.

We now define the conjunctive grammar for fixed regular language L ⊂ Σ∗k
without leading 0. Let

M = 〈Σk, Q, δ, Qfin, q0〉
be the (non-deterministic) automaton that recognizes Lr.

We define conjunctive grammar G = 〈{a}, N, P, S〉 over unary alphabet with:

N = {Ai,j,q, Ai,j : 1 ≤ i < k, 0 ≤ j < k, q ∈ Q} ∪ {S} .

The intended solution is

L(Ai,j) = {n : f−1
k (n) = ij0k for some natural k} , (9)

L(Ai,j,q) = {n : f−1
k (n) = ijw, δ(q0, wr, q)} , (10)

L(S) = fk(L) . (11)

We denote sets defined in (10) by Li,j,q.
From Theorem 3 we know, that Ai,j can be defined by conjunctive grammars,

and so we focus only on productions for Ai,j,q:

Ai,j,q → Ai,0Aj,x,q′ & Ai,1Aj−1,x,q′ & Ai,2Aj−2,x,q′ & Ai,3Aj−3,x,q′ , (12)
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for every j > 3, every i and every x, q′ such that δ(q′, x, q).

Ai,j,q → Ai−1,j+1Ak−1,x,q′ & Ai−1,j+2Ak−2,x,q′ &
& Ai−1,j+3Ak−3,x,q′& Ai−1,j+4Ak−4,x,q′ , (13)

for every j < 4 and i �= 1 and every x, q′ such that δ(q′, x, q).

A1,j,q → Ak−1,0Aj+1,x,q′ & Ak−2,0Aj+2,x,q′ &
& Ak−3,0Aj+3,x,q′ & Ak−4,0Aj+4,x,q′ , (14)

for every j < 4, every x, q′ such that δ(q′, x, q).

Ai,j,q0 → k · i + j , (15)
S → Ai,j,q for q such that ∃q′ ∈ Qfin, δ(q, ji, q′)

and i, j—arbitrary digits , (16)
S → i for i ∈ fk(L ∩Σk) . (17)

We shall prove, that Li,j,q are solution of proper language equations and that
they are the minimal solution (are included in every other solution). The case
of L(S) in (11) will then easily follow. We identify the equations with produc-
tions (12)–(14).

Lemma 4. Every solution (Xi,j,q) of language equations defining G for non-
terminals (Ai,j,q) is a superset of (Li,j,q).

Proof. We prove by induction that for every n > 1

Li,j,q �n⊂ Xi,j,q.

When |ijw| = 2 then this is obvious by rule (15).
Suppose we have proven the Lemma for k < n, we prove it for n. Choose

any ijw ∈ Li,j,q �n. Let w = xw′, suppose j > 3. Let p be a state such
that δ(q0, w′r , p) and δ(p, x, q) (choose one if there are many). Consider words
jxw′ ∈ Lj,x,p �n−1, (j − 1)xw′ ∈ Lj−1,x,p �n−1, (j − 2)xw′ ∈ Lj−2,x,p �n−1

and (j − 3)xw′ ∈ Lj−3,x,p �n−1. By induction hypothesis Lj,x,p �n−1⊂ Xj,x,p,
Lj−1,x,p �n−1⊂ Xj−1,x,p, Lj−2,x,p �n−1⊂ Xj−2,x,p and Lj−3,x,p �n−1⊂ Xj−3,x,p.
And so by (12) ijw ∈ Xi,j,q.

Other cases (which use productions (13), (14)) are proved analogously. 
�

Lemma 5. languages Li,j,q are a solution of of (12)–(14).

Proof. For the ⊂ part the proof is essentially the same as in Lemma 4.
To prove the the ⊃ part we proceed by induction on number of digits in

w ∈ Li,j,q.
We begin with (12). Suppose w belong to the right-hand side. We shall show

that it also belongs to the left-hand side. We first proof, that it in fact has the
desired two first digits. Then we shall deal with the q index.
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Consider the possible positions of the two first digits of each conjunct. Notice,
that if j is on the position one to the right of i, then the digits are as desired.
And so we may exclude this case from our consideration. The following table
summarizes the results:

i and j are together j is leading i is leading
Ai,0Aj,xq′ (i + j), x j, x〈+i〉 i, 0

Ai,1Aj−1,xq′ (i + j − 1), (x + 1) (j − 1), x〈+i〉 i, 1
Ai,2Aj−2,xq′ (i + j − 2), (x + 2) (j − 2), x〈+i〉 i, 2
Ai,3Aj−3,xq′ (i + j − 3), (x + 3) (j − 3), x〈+i〉 i, 3

The drawback of this table is that it does not include the possibility, that some
digits sum up to k (or more) and influence another digit (by carrying 1), we
handle with this manually. Also in the second column i may be or may be not
on the same position as x, but we deal with those two cases together. This
possibility was marked by writing 〈+i〉. Also there may be an add up to k
somewhere to the right, and hence we can add 1 to x.

If we want the intersection to be non-empty we have to choose four items, no
two of them in the same row. We show, that this is not possible. We say that
some choices fit, if the digits included in the table are the same in those choices.

First of all, no two elements in the third column fit. They have fixed digits
and they clearly are different.

Suppose now that we choose two elements from thefirst column. We show that
if in one of them (i+ j−z) sums up to k (or more) then the same thing happens
in the second choice. If i + j − z ≥ k (perhaps by additional 1 carried from the
previous position) then the first digit is 1. In the second element the first digit
can be 1 (if there is a carrying of 1) or at least i + j − z′, but the latter is not
possible, since i + j − z′ > 1. Whatever happens, it is not possible to fit the
digits on the column with x.

It is not possible to choose three elements from the second column. Suppose
that we have three fitting choices in this column. As before we may argue, that
either all of them have j(−z) as the first digit or the digits add up to more than
k − 1 and the first digit is 1. Suppose they add up. Since j < k then this is
possible only for the first row. Suppose they do not add up. Then if there are
three fitting choices, then one of them must be increased by at least 2. But the
maximal value carried from the previous position is 1. Contradiction. Note, that
by the same reasoning we may prove, that if there are two fitting choices then
the first digit is between j − 3 and j.

And so we know, that if there are four fitting choices, then exactly one of them
is in the first column, one in the third column and two in the middle column.
The third column always begins with i. In the first column the leading digit is
at least i + j − 3 > i or it is 1. Hence i = 1. And so the choices in the second
column begin with 1 as well. Hence j < 4, which is a contradiction.

We now move to (13). The following table summarizes the possible first two
digits:
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i and k − z are together k − z is leading i− 1 is leading
Ai−1,j+1Ak−1,x,q′ (k + i− 2), (1 + j + x) (k − 1), x(+i) i− 1, j + 1
Ai−1,j+2Ak−2,x,q′ (k + i− 3), (2 + j + x) (k − 2), x(+i) i− 1, j + 2
Ai−1,j+3Ak−3,x,q′ (k + i− 4), (3 + j + x) (k − 3), x(+i) i− 1, j + 3
Ai−1,j+4Ak−4,x,q′ (k + i− 5), (4 + j + x) (k − 4), x(+i) i− 1, j + 4

As before we may argue, that if there are some fitting entries in some column
then on their leading position digits sum up to k in all choices or in all choices
do not sum up to k.

We cannot have two choices from the third column (the second digits do not
match). We can have at the most two from the second column (to obtain three we
would have to ad carry at least 2 to one of them and this is not possible). Fr the
same reason there can be at the most two choices from the first column, but in
such a case we cannot match the positions with x. Hence there is at the most one
choice from the first column. And so we have one choice from the first column, one
from the third and two from the second. Since the third and the second column
match, then i is a big digit, at least k− 3. But in such a case in the first column
we have at least k + k − 3− 5 > k and so the leading digit is 1. Contradiction.

Consider the last possibility, the (14).The following table summarizes the pos-
sible first two digits:

k − z is leading j + z is leading
Ak−1,0Aj+1,x,q′ (k − 1), 0(+j + 1) (j + 1), x(+k − 1)
Ak−2,0Aj+2,x,q′ (k − 2), 0(+j + 2) (j + 2), x(+k − 2)
Ak−3,0Aj+3,x,q′ (k − 3), 0(+j + 3) (j + 3), x(+k − 3)
Ak−4,0Aj+4,x,q′ (k − 4), 0(+j + 4) (j + 4), x(+k − 4)

In the first column there are no two fitting choices. So we would have to take at
least three from the second one. Since j is small, it cannot add up to more than
k. So we cannot choose three different choices there—it would force a carrying
of at least 2 from the previous position. Contradiction.

We should also take the indices denoting states of the automaton into our
consideration. Consider one production:

Ai,j,q → Ai,0Aj,x,q′ & Ai,1Aj−1,x,q′ & Ai,2Aj−2,x,q′& Ai,3Aj−3,x,q′

and some w belonging to the right-hand side. We will explain the case of conjunct
Ai,0Aj,x,q′ . Consider jxw′ ∈ Lj,x,q′ that was used in derivation of w. By defini-
tion of Lj,x,q′ we obtain δ(q0, w′r , q′) and by definition of the Production (12)
δ(q′, x, q), and so δ(q0, w′rx, q). By previous discussion w begins with digits i, j,
then it inherits its digits from jxw′ and hence has digit x and then word w′.
And so w = ijxw′ and δ(q0, w′rx, q), therefore it belongs to the left-hand side.
The case with other productions and conjuncts is proved in the same way. 
�
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Theorem 4. For every natural k > 1 and every regular L ⊂ Σ∗k without words
with leading 0 language fk(L) is a conjunctive unary language.

Proof. By Lemma 3, Lemma 4 and Lemma 5. 
�

5 Conclusions and Open Problems

The main result of this paper is an example of a conjunctive grammar over unary
alphabet generating non-regular language. This grammar has six nonterminal
symbols in Chomsky normal form. Number of nonterminals could be reduced to
three if we consider a grammar that is not in a Chomsky normal form. It re-
mains an open question, how many nonterminals, intersection etc. are required
to generate a non-regular language. In particular, can we give natural sufficient
conditions for a conjunctive grammar to generate a regular language? Also, no
non-trivial algorithm for recognizing conjunctive languages over unary alphabet
is known. An obvious modification of the CYK algorithm requires quadratic time
and linear space. Can those bounds be lowered? Closure under complementation
of conjunctive languages (both in general and and in case of unary alphabet) re-
mains unknown, with conjectured negative answer. Perhaps dense languages, like

N \ {2n : n ∈ N}

are a good starting point in search for an example.
The second important result is a generalisation of the previous one: for every

regular language R ⊂ {0, ..., k − 1}∗ treated as set of k-ary numbers language
{an : ∃w ∈ R w read as a number is n} is a conjunctive unary language.
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Abstract. We show that for all integers n and α such that n � α � 2n,
there exists a minimal nondeterministic finite automaton of n states with
a four-letter input alphabet whose equivalent minimal deterministic finite
automaton has exactly α states. It follows that in the case of a four-letter
alphabet, there are no “magic numbers”, i.e., the holes in the hierarchy.
This improves a similar result obtained by Geffert for a growing alphabet
of size n + 2 (Proc. 7th DCFS, Como, Italy, 23–37).

1 Introduction

Finite automata and regular languages are among the oldest and the simplest
topics in formal language theory. They have been studied for several decades. De-
spite their simplicity, some important problems are still open. Let us remind the
question of how many states are sufficient and necessary for two-way determinis-
tic finite automata to simulate two-way nondeterministic finite automata [3,21].

In recent years, we can observe a renewed interest of researchers in automata
theory; see [11,24] for a discussion. Many aspects in this field are now intensively
investigated. One such aspect is descriptional complexity which studies the costs
of the description of languages by different formal systems. In this paper, we
study the relations between the sizes of minimal nondeterministic finite automata
and their corresponding minimal deterministic counterparts.

Iwama at al. [13] stated the question whether there always exists a minimal
nondeterministic finite automaton (NFA) of n states whose equivalent minimal
deterministic finite automaton (DFA) has α states for all integers n and α such
that n � α � 2n. The question has also been considered in [14]. In these two
papers, it is shown that if α = 2n−2k or α = 2n−2k−1, where 0 � k � n/2−2,
or if α = 2n − k, where 2 � k � 2n − 2 and some coprimality condition holds,
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then the corresponding binary n-state NFAs requiring α deterministic states do
exist. In [15], appropriate NFAs has been described for all values of n and α,
however, the size of the input alphabet for these automata grows exponentially
with n. Later, in [7], the size of the input alphabet for the witness automata has
been reduced to n + 2.

In this paper, we continue research on this topic. We reduce the input alphabet
to a fixed size. We prove that for all integers n and α such that n � α � 2n,
there exists a minimal nondeterministic finite automaton of n states with a four-
letter input alphabet whose equivalent minimal deterministic finite automaton
has exactly α states. Using terminology of [8], this means that in the case of a
four-letter alphabet, there are no magic numbers, i.e., the holes in the hierarchy
that cannot be reached as the size of the minimal DFA corresponding to a
minimal n-state NFA. Let us note that in the case of a unary alphabet, all
numbers from Θ(F (n)) to 2n, where F (n) ≈ e

√
n ln n, are known to be magic

since any n-state unary NFA can be simulated be an O(F (n))-state DFA [6,18].
Moreover, it has been recently shown in [8] that there are much more magic
than non-magic numbers in the range from n to e

√
n lnn in the unary case. The

question of whether or not there are some magic numbers for binary and ternary
alphabets seems to be a challenging open problem.

The paper consists of four sections, including this introduction. The next
section contains basic definitions, notations and preliminary results. Section 3
presents the main results of the paper. The last section contains concluding
remarks and open problems.

2 Preliminaries

In this section, we give some basic definitions and notations used throughout the
paper. For further details, we refer to [22,23].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet
Σ including the empty string ε. The length of a string w is denoted by |w|. A
language is any subset of Σ∗. The cardinality of a finite set A is denoted by |A|
and its power-set by 2A.

A deterministic finite automaton (DFA) is a 5-tuple M = (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite input alphabet, δ is the transition
function that maps Q×Σ to Q, q0 is the initial state, q0 ∈ Q, and F is the set
of accepting states, F ⊆ Q. In this paper, all DFAs are assumed to be complete,
i.e., the next state δ(q, a) is defined for each state q in Q and each symbol a
in Σ. The transition function δ is extended to a function from Q × Σ∗ to Q
in the natural way. A string w in Σ∗ is accepted by the DFA M if the state
δ(q0, w) is an accepting state of the DFA M . The language accepted by the DFA
M, denoted L(M), is the set of strings {w ∈ Σ∗ | δ(q0, w) ∈ F}.

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, Σ, δ, q0, F ),
where Q, Σ, q0, and F are defined in the same way as for a DFA, and δ is the
nondeterministic transition function that maps Q × Σ to 2Q. The transition
function can be naturally extended to the domain Q×Σ∗. A string w in Σ∗ is
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accepted by the NFA M if the set δ(q0, w) contains an accepting state of the
NFA M. The language accepted by the NFA M, denoted L(M), is the set of
strings {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}.

Two automata are said to be equivalent if they accept the same language. A
DFA (an NFA) M is called minimal if all DFAs (all NFAs, respectively) that
are equivalent to M have at least as many states as M. It is known that each
regular language has a unique minimal DFA, up to isomorphism. However, the
same result does not hold for minimal NFAs.

The (deterministic) state complexity of a regular language is the number of
states in its minimal DFA. The nondeterministic state complexity of a regular
language is defined as the number of states in a minimal NFA accepting this
language. A regular language with nondeterministic state complexity n is called
an n-state NFA language.

Every nondeterministic finite automaton M = (Q, Σ, δ, q0, F ) can be con-
verted to an equivalent deterministic finite automaton M ′ = (2Q, Σ, δ′, q′0, F ′)
using an algorithm known as the “subset construction” [20] in the following
way. Every state of the DFA M ′ is a subset of the state set Q. The initial
state of the DFA M ′ is the set {q0}. The transition function δ′ is defined by
δ′(R, a) =

⋃
r∈R δ(r, a) for each state R in 2Q and each symbol a in Σ. A state

R in 2Q is an accepting state of the DFA M ′ if it contains at least one accepting
state of the NFA M.

To prove that a NFA is minimal we use a fooling-set lower-bound technique
known from communication complexity theory [2,10]. Although the lower bounds
obtained using fooling sets may sometimes be exponentially smaller than the size
of minimal NFAs for the corresponding language [1,12], this technique has been
successfully used in the field of regular languages several times [4, 5, 9, 16]. We
first define a fooling set. Then we give the lemma from [4] describing a fooling-set
lower-bound technique. For the sake of completeness, we recall its proof here.

Definition 1. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a regular language L if for every i and j in {1, 2, . . . , n},
(1) the string xiyi is in the language L, and
(2) if i �= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 1 (Birget [4]). Let a set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n}
be a fooling set for a regular language L. Then every NFA for the language L
needs at least n states.

Proof. Let M = (Q, Σ, δ, q0, F ) be any NFA accepting the language L. Since
the string xiyi (1 � i � n) is in L, there is a state pi in Q such that pi ∈
δ(q0, xi) and δ(pi, yi) ∩ F �= ∅, i.e., pi is a state on an accepting computation
of M on xiyi that is reached after reading the string xi. Assume that a fixed
choice of pi has been made for every i in {1, 2, . . . , n}. We prove that pi �= pj

if i �= j. Suppose by contradiction that pi = pj and i �= j. Then the NFA M
accepts both strings xiyj and xjyi which contradicts the assumption that the
set {(xi, yi) | 1 ≤ i ≤ n} is a fooling set for the language L. Hence the NFA M
has at least n states. 
�
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3 Deterministic Blow-Ups of Minimal NFAs over a
4-Letter Alphabet

In this section, we present the main results of our paper. We start by describing
two nondeterministic finite automata that we will use later in our constructions.
We prove several properties concerning these two automata in the two lemmata
below.

First, let us consider a k-state NFA Ak = (QA, {a, b}, δA, 1, FA), where QA =
{1, 2, . . . , k}, FA = {k}, and for each q in QA,

δA(q, a) =
{
{1, q + 1}, if 1 � q � k − 1,
∅, if q = k,

δA(q, b) =
{
{q + 1}, if 1 � q � k − 1,
∅, if q = k.

The automaton Ak is depicted in Fig. 1. The next lemma shows that every subset
of the state set QA is a reachable state in the deterministic finite automaton
obtained from the NFA Ak by the subset construction.
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Fig. 1. The nondeterministic finite automaton Ak

Lemma 2. Let A′k = (2QA , {a, b}, δ′A, {1}, F ′A) be the DFA obtained from the
NFA Ak by the subset construction. Then every subset of the state set QA is
reachable in the DFA A′k.

Proof. The proof is by induction on the cardinality of subsets. The empty set
and all the singletons are reachable because

∅ = δ′A({1}, bk) and {q} = δ′A({1}, bq−1) for all q = 1, 2, . . . , k.

Now let 2 � t � k and assume by induction that every subset of QA of size t− 1
is reachable. Let {q1, q2, . . . , qt} be a subset of size t such that 1 � q1 < q2 <
· · · < qt � k. Then

{q1, q2, . . . , qt} = δ′A({q2 − q1, q3 − q1, . . . , qt − q1}, abq1−1),

where the latter subset of size t − 1 is reachable by induction. Thus the set
{q1, q2, . . . , qt} is reachable and our proof is complete. 
�

Now, consider the following (k + 1)-state NFA Bk = (QB, {a, b}, δB, 0, {k}),
where QB = {0, 1, 2, . . . , k}, and for each q in QB,
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δB(q, a) =

⎧
⎨

⎩

{0, 1}, if q = 0,
{q + 1}, if 1 � q � k − 1,
{1, 2, . . . , k}, if q = k,

δB(q, b) =

⎧
⎨

⎩

{0}, if q = 0,
{q + 1}, if 1 � q � k − 1,
{1, 2, . . . , k}, if q = k.

The automaton Bk is shown in Fig. 2. Note that if we would omit all the
transitions defined in the final state k, then the resulting automaton would
accept all strings containing a symbol a in the k-th position from the end.
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Fig. 2. The nondeterministic finite automaton Bk

Let B′k be the deterministic finite automaton obtained from the NFA Bk

by the subset construction. The DFA B′4 (or, to be more precise, its reachable
states, each of which contains the initial state 0 of the NFA B4) is shown in
Fig. 3. The automaton in the figure looks like a binary tree whose leaves go to
state {0, 1, 2, 3, 4} on a and b.

In the following, we will consider states {0, 2}, {0, 2, 3}, . . . , {0, 2, 3, . . . , r}, . . . ,
{0, 2, 3, . . . , k} of the DFA B′k. Notice that

{0, 2} ⊂ {0, 2, 3} ⊂ . . . ⊂ {0, 2, 3, . . . , r} ⊂ . . . ⊂ {0, 2, 3, . . . , k}

which is a property that will play a crucial role in the proof of our main result.
Before stating the next lemma we introduce some notation. Let 2 � r � k. Let

R1,1 = {R ⊆ QB | R = δ′B({0, 1}, w) for some w in {a, b}∗},

R1,r = {R ⊆ QB | R = δ′B({0, 1, 2, 3, . . . , r}, w) for some w in {a, b}∗},

R2,r = {R ⊆ QB | R = δ′B({0, 2, 3, 4, . . . , r}, w) for some w in {a, b}∗},

i.e., R1,1, R1,r, and R2,r are the sets of states of the DFA B′k that are reachable
from states {0, 1}, {0, 1, 2, 3, . . . , r}, and {0, 2, 3 . . . , r}, respectively. For example,
in our Figure 3, we haveR1,3 = {{0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 2, 3, 4}} andR2,3 =
{{0, 2, 3}, {0, 1, 3, 4}, {0, 3, 4}, {0, 1, 2, 3, 4}}.
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Fig. 3. The deterministic finite automaton B′
4

Lemma 3. Let 2 � r � s < t � k and let R1,1, R1,r, and R2,r be as above.
Then we have:

(i) State {0, 1, 2, 3, . . . , k} is a member of the sets R1,1, R1,r, and R2,r.
(ii) The size of the set R1,1 is 2k − 1.
(iii) The size of the set R1,r and of the set R2,r\{{0, 1, 2, 3, . . . , k}} is 2k−r+1−1.
(iv) The sets R1,r and R2,s have only state {0, 1, 2, 3, . . . , k} in common.
(v) The sets R2,s and R2,t have only state {0, 1, 2, 3, . . . , k} in common.

Proof. First, notice that every reachable state of the DFA B′k contains the initial
state 0 of the NFA Bk since state 0 goes to itself on a and b in Bk.

To prove (i) note that state k of the NFA Bk is reachable from every state of
this NFA and the transitions on a and b from state k go to {1, 2, . . . , k}.

To prove the rest of the lemma let us see how the sets R1,r and R2,r look like.
Figures 4 and 5 show what states are reachable from state {0, 1, 2, 3, . . . , r} and
from state {0, 2, 3, 4, . . . , r} after reading a string of length at most two.

It can be shown by induction on the length of strings that after reading a
string w of length i, where 0 � i � k − r and 1 � r � k, we can reach state
{0}∪S∪{i+1}∪{i+2, i+3, . . . , i+r} for each subset S of the set {1, 2, . . . , i} from
state {0, 1, 2, 3, . . . , r}. Note that δ′B({0, 1, 2, 3, . . . , r}, ak−r) = {0, 1, 2, 3, . . . , k}
and that each set reachable from state {0, 1, 2, 3, . . . , r} by a string of length
k − r contains state k which goes to {1, 2, 3, . . . , k} on a and b in the NFA Bk.
It follows that after reading a string of length more then k − r we are always in
state {0, 1, 2, 3, . . . , k}. Thus, the size of the set R1,r is 1 + 2 + 4 + · · ·+ 2k−r.
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Fig. 4. The states reachable from state {0, 1, 2, 3, . . . , r} by strings ε, a, b, aa, ab, ba, bb
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Fig. 5. The states reachable from state {0, 2, 3, 4, . . . , r} by strings ε, a, b, aa, ab, ba, bb

Similarly, we can reach every state {0} ∪ S ∪ {i + 2, i + 3, . . . , i + r}, where S
is a subset of {1, 2, . . . , i}, from state {0, 2, 3, 4, . . . , r} after reading the strings
of length i (0 � i � k − r and 2 � r � k). After reading a string of length more
then k − r we are again always in state {0, 1, 2, 3, . . . , k}. Thus,

|R2,r \ {{0, 1, 2, 3, . . . , k}}| = 1 + 2 + 4 + · · ·+ 2k−r = 2k−r+1 − 1,

and we have shown (ii) and (iii).
Finally, to show (iv) and (v) let 2 � r � s < t � k. Then each member

of the set R2,s has a “tail” of size s − 1, while each member of the set R2,t

has a “tail” of size t − 1, and each member of the set R1,r has a “tail” of
size at least r (here, by a “tail” of size s for a subset S of {0, 1, 2, 3, . . . , k} we
mean a sequence q1, q2, . . . , qs such that qi ∈ S, qi+1 = qi + 1, q1 − 1 /∈ S, and
S ∩{qs +1, qs + 2, . . . , k} = ∅). This proves the last two items of the lemma and
completes our proof. 
�

We are now ready to prove our main result showing that in the case of a four-
letter alphabet, there are no “magic numbers”, i.e., each value in the range from
n to 2n can be obtained as the deterministic state complexity of an n-state NFA
language over a four-letter alphabet.

Theorem 1. For all integers n and α such that n � α � 2n, there exists a
minimal nondeterministic finite automaton of n states with a four-letter input
alphabet whose equivalent minimal deterministic finite automaton has α states.

Proof. Let n and α be arbitrary but fixed integers such that n � α � 2n. If
α = n, then we can consider a unary n-state NFA that counts the numbers of
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a’s modulo n. On the other hand, the n-state NFAs that need 2n deterministic
states are well-known [17, 19, 15].

If n < α < 2n, then we have n − k + 2k � α < n − (k + 1) + 2k+1 for some
integer k such that 1 � k � n−1. It follows that α = n− (k +1)+2k +m, where
m is an integer such that 1 � m < 2k. For this integer m one of the following
cases holds

m = (2k1 − 1) + (2k2 − 1) + · · ·+ (2k�−1 − 1) + (2k� − 1) (1)
m = (2k1 − 1) + (2k2 − 1) + · · ·+ (2k�−1 − 1) + 2 · (2k� − 1) (2)

where 1 � � � k − 1 and k � k1 > k2 > · · · > k�−1 > k� � 1, which can
be seen from the following considerations. If m = 2k − 1, then m = 2k� − 1,
where � = 1 and k� = k. If m = 2k − 2, then m = 2(2k� − 1), where � = 1 and
k� = k − 1. Otherwise, m < 2k − 2, and let k1 be the greatest integer such that
2k1 − 1 � m. Then m = 2k1 − 1+ m1, where m1 � 2k1 − 1. If m1 = 2k1 − 1, then
m = 2 · (2k1 − 1), otherwise m = (2k1 − 1) + (2k2 − 1) + m2, where k1 > k2 and
m2 � 2k2 − 1, and we can continue by induction.

Define an n-state NFA C = Cn,k,m = (Q, {a, b, c, d}, δ, q0, {k}), where Q =
{0, 1, 2, . . . , n− 1}, q0 = n− 1 if k < n− 1 and q0 = 1 if k = n− 1, and for each
q in Q,

δ(q, a) =

⎧
⎪⎪⎨

⎪⎪⎩

{0, 1}, if q = 0,
{1, q + 1}, if 1 � q � k − 1,
{1, 2, . . . , k}, if q = k,
∅ if k + 1 � q � n− 1,

δ(q, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{0}, if q = 0,
{q + 1}, if 1 � q � k − 1,
{1, 2, . . . , k}, if q = k,
{1}, if q = k + 1,
{q − 1}, if k + 2 � q � n− 1,

δ(q, c) =
{
{q + 1}, if 0 � q � k − 1,
∅, if k � q � n− 1,

δ(q, d) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{0, 2, 3, 4, . . . , k − kq + 1}, if 1 � q � �− 1,
{0, 1, 2, 3, . . . , k − k� + 1}, if q = � and (1) holds for m,
{0, 2, 3, 4, . . . , k − k� + 1}, if q = � and (2) holds for m,
{0, 1, 2, 3, . . . , k − k� + 1}, if q = � + 1 and (2) holds for m,
∅, otherwise.

The NFA Cn,k,m for m = 2k−1−1 is shown in Fig. 6; notice that in this case tran-
sitions on d are defined only in state 1 and go to {0, 1, 2}. Fig. 7 shows transitions
on b and d in the NFA Cn,k,m for m = (2k−1−1)+2 ·(2k−2−1); here, transitions
on d are defined in states 1,2, and 3 and go to {0, 2}, {0, 2, 3}, and {0, 1, 2, 3},
respectively. Next, note that the transitions on a and b in states 1, 2, . . . , k−1 are
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defined in the same way as for the automaton Ak, while the transitions on these
two letters in states 0, 1, 2, . . . , k are defined as for the automaton Bk except for
transitions on a going to state 1 from states 1, 2, . . . , k− 1. Transitions on d are
defined in states 1, 2, . . . , � in case (1) and in states 1, 2, . . . , �, � + 1 in case (2),
and go either to a set {0, 2, 3, 4, . . . , r} or to a set {0, 1, 2, 3, . . . , r}. As we will
see later, this assures that all subsets of the set {1, 2, . . . , k} and m subsets of
the set {0, 1, 2, . . . , k} containing state 0 are reachable in the DFA C′ obtained
from the NFA C by the subset construction. Transitions on symbol c will be
used to prove the inequivalence of these reachable subsets.
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Fig. 6. The nondeterministic finite automaton Cn,k,m, where m = 2k−1 − 1
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Fig. 7. Transitions on b and d in the NFA Cn,k,m, where m = (2k−1 −1)+2 ·(2k−2 −1)

Now, we are going to prove that:

(i) The NFA C is minimal.
(ii) The DFA C′ obtained from the NFA C by the subset construction has

n− (k + 1) + 2k + m reachable states.
(iii) The reachable states of the DFA C′ are pairwise inequivalent.

Then, since α = n− (k + 1) + 2k + m, the theorem follows immediately.
To prove (i) consider the following sets of pairs of strings

A = {(bi−1, bn−k−ick−1) | i = 1, 2, . . . , n− k},
B = {(bn−k−1ci, ck−1−i) | i = 1, 2, . . . , k − 1} ∪ {(bn−k−1d, ck)}.

The set A ∪ B is a fooling set for the language L(C) because

(1) the strings bn−k−1ck−1 and bn−k−1dck are in the language L(C) and
(2) if 1 � i < j � n− k, then the string bi−1bn−k−jck−1 is not in L(C),
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if 1 � i < j � k − 1, then the string bn−k−1cjck−1−i is not in L(C),
if 1 � i � n− k and 1 � j � k − 1, then the strings bi−1ck−1−j , bi−1ck,

and bn−k−1cjck are not in the language L(C).

By Lemma 1, every NFA for the language L(C) needs at least n states and
so the NFA C is minimal.

To prove (ii) let C′ = (2Q, {a, b, c, d}, δ′, q′0, F ′) be the DFA obtained from
the NFA C by the subset construction. Consider the following systems S1 and
S2 of sets of states of the NFA C (remind that the sets Ri,r were defined above
Lemma 3):

S1 = {{n− 1}, {n− 2}, . . . , {k + 1}} ∪ 2{1,2,...,k}∪
∪R2,k−k1+1 ∪R2,k−k2+1 ∪ · · · ∪ R2,k−k�−1+1 ∪R1,k−k�+1,

S2 = {{n− 1}, {n− 2}, . . . , {k + 1}} ∪ 2{1,2,...,k}∪
∪R2,k−k1+1 ∪R2,k−k2+1 ∪ · · · ∪ R2,k−k�−1+1 ∪R2,k−k�+1 ∪R1,k−k�+1.

We are going to show that S1 (S2) is the system of all reachable states of the
DFA C′ if (1) holds for m (if (2) holds for m, respectively). We prove the case
(1); the second case is similar.

Let m = (2k1 − 1) + (2k2 − 1)+ · · ·+ (2k�−1 − 1) + (2k� − 1). We need to show
that each set in S1 is a reachable state of the DFA C′ and that no other subset
of the state set Q is reachable in C′. The singletons {n− 1}, {n− 2}, . . . , {k +1}
are reachable since they can be reached from the initial state of C′ by reading
an appropriate numbers of b’s. By Lemma 2, every nonempty subset of the set
{1, 2, . . . , k} is reachable because state {1} is reachable and the transitions on a
and b in states 1, 2, . . . , k − 1 (that were used in the proof of Lemma 2) are the
same as in the NFA Ak. The empty set is reachable since ∅ = δ′({1}, ck). Next,
we have

δ′(q′0, bn−k−1+q−1d) = δ′({q}, d) = {0, 2, 3, . . . , k − kq + 1} for q = 1, 2, . . . , �− 1

and
δ′(q′0, bn−k−1+�−1d) = δ′({�}, d) = {0, 1, 2, 3, . . . , k − k� + 1}.

The reachability of sets R2,k−k1+1,R2,k−k2+1, . . . ,R2,k−k�−1+1, and R1,k−k�+1

then follows from their definition and the fact that the transitions on a and b
in states 0, 1, 2, . . . , k are almost the same as in the NFA Bk (notice that the
transitions on a to state 1 do not mind since the sets in Ri,r always contain
state 0 and this state goes to state 1 on a in the NFA Bk). Thus, each set in
the system S1 is a reachable state in the DFA C′. By Lemma 3, the size of the
set R2,k−ki+1 \ {{0, 1, 2, 3, . . . , k}} is 2ki − 1 (1 � i � � − 1), the size of the
set R1,k−k�+1 is 2k� − 1, and these sets are pairwise disjoint accept for they all
contain state {0, 1, 2, 3, . . . , k}. It follows that

|S1| = n− k − 1 + 2k + (2k1 − 1) + (2k2 − 1) + · · ·+ (2k�−1 − 1) + (2k� − 1)
= n− (k + 1) + 2k + m = α.
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Hence the DFA C′ has α reachable states. To see that no other subset of the
state set Q is reachable note that for each set S in the system S1, the sets
δ′(S, a), δ′(S, b), δ′(S, c), and δ′(S, d) are again in the system S1. This is quite
straightforward for symbols a, b, c. In the case of symbol d, it is important to
notice that

δ(1, d) ⊂ δ(2, d) ⊂ . . . ⊂ δ(�− 1, d) ⊂ δ(�, d).

It follows that δ′(S, d) is either the empty set or is equal to δ(q, d) for the greatest
integer q in {1, 2, . . . , �} which is in S, and so δ′(S, d) is in the system S1.

To prove (iii) let S and T be two reachable states of the DFA C′. If both
S and T are some subsets of {0, 1, 2, . . . , k}, then, w.l.o.g., there is a state q
in {0, 1, 2, . . . , k} such that q ∈ S \ T. Then the string ck−q distinguishes these
two states. If S is a subset of {0, 1, 2, . . . , k} and T is one of the singletons
{k + 1}, {k + 2}, . . . , {n− 1}, then a string from c∗ distinguishes S and T in the
case that S �= ∅ and a string from b+ck−1 otherwise. If S = {p} and T = {q},
where k + 1 � p < q � n− 1, then the string bp−kck−1 is accepted by the DFA
C from state S but not from state T. This completes our proof. 
�

4 Conclusions

In this paper, we have continued investigation of the relations between the sizes
of minimal nondeterministic and deterministic finite automata. We have shown
that for all integers n and α such that 1 � n � α � 2n, there exists a minimal
nondeterministic finite automaton of n states with a four-letter input alphabet
whose equivalent minimal deterministic counterpart has α states. This improves
the results of [7] that has been obtained using a growing alphabet of size n + 2.
On the other hand, it has been recently shown [8] that in the case of a unary
alphabet there are a lot of values in the range from n to O(e

√
n ln n) that cannot be

reached as the deterministic state complexity of an n-state unary NFA language.
It remains open whether the whole range of complexities from n to 2n can be
produced in the case of a binary or ternary alphabet.
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Abstract. We consider the following decision problem: “Is a rational
ω-language generated by a code ?” Since 1994, the codes admit a char-
acterization in terms of infinite words. We derive from this result the
definition of a new class of languages, the reduced languages. A code is
a reduced language but the converse does not hold. The idea is to “re-
duce” easy-to-obtain minimal ω-generators in order to obtain codes as
ω-generators.

Introduction

Our research deals with the classical theory of automata and languages. We
particularly focus on the rational languages of infinite words (ω-languages) which
are recognized by Büchi or Muller automata [16]. A rational ω-language may be
ω-generated by a language. The operation ω stands for the infinite concatenation
and maps a language L into an ω-language Lω. Lω is then called an ω-power and
L is one of its ω-generators. One can decide if a rational ω-language admits an
ω-generator. If so, a rational ω-generator exists [14]. Various decision problems
arise from the set of ω-generators of a given rational ω-language.

Here is the open decision problem on which we focus: “Is a rational ω-language
generated by a code ?” A language L is a code if and only if every non-empty
word in L∗ has a unique factorization over L [2]. The similar problem for the
Kleene closure ∗ instead of ω has a simple solution. The monoid L∗ is its own
greatest generator and is generated by a code if and only if its root L∗\(L∗\{ε})2
is a code. By analogy, we wonder when a rational ω-language Lω is the ω-power
of a code.

Unfortunately, the set of ω-generators of a rational ω-language does not admit
one but a finite number of maximal ω-generators [14]. Even if the greatest ω-
generator exists, the ω-power can be generated by a code without the root of its
greatest ω-generator being a code. For instance, consider the ω-power Lω with
the root of its greatest ω-generator equals to L = a + ab + ba, which is not a
code. Surprisingly, Lω is ω-generated by the infinite code C = a + (ab)∗ba.

Our approach of the problem consists of the definition of a new class of ω-
languages called the reduced languages. It is known that a code is minimal (with

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 266–277, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Reduced Languages as ω-Generators 267

respect to inclusion) in the set of ω-generators. Our new class of reduced lan-
guages is useful here because it contains the codes and is included in the set
of minimal ω-generators. Usual approaches restrict the problem to subclasses of
codes: prefix codes [13], ω-codes [9], codes with delay [5]. In addition, the prob-
lem is solved for prefix codes in [13]. Here, we decide to widen the problem by
considering a notable superclass: the class of reduced languages.

The graph of a Büchi automaton reveals that it is possible to sligthly modify
an ω-generator without changing the ω-power expressed. But in practice, we
had no idea about how to modify a minimal ω-generator towards another which
could be a code. Hopefully, to get a reduced language is possible, and may provide
codes.

The paper is divided in five main sections. The two first ones set prelimi-
nary definitions and useful results, in particular, the characterization of codes
by means of infinite words [6]. The third introduces the concept of reduced lan-
guages, followed by the study of the whole class and its decidability. Different
cases are then detailed in the fourth section to convince that, despite of their
great similitary, the reduced languages do not behave exactly as codes when
taken as ω-generators. At last, the fifth section explores the ability of the con-
struction of reduced ω-generators to reach codes.

1 Preliminaries

Let Σ be a finite alphabet. A word (resp. ω-word) is a finite (resp. infinite)
concatenation of letters in Σ. We note ε the empty word. Σ∗ is the set of words
over Σ, Σ+ = Σ∗ \ {ε}. Σω is the set of ω-words. Any subset of Σ∗ is called a
language and any subset of Σω is called an ω-language.

A word u is a prefix of v if v ∈ u(Σ∗ ∪Σω) and we write: u < v. The induced
order is the prefix order. For v ∈ (Σ∗ ∪ Σω), Pref(v) stands for the set of all
prefixes of v. Hence, for every L ⊆ (Σ∗ ∪ Σω), Pref(L) is the set of the prefixes
of the words in L.

Let L ⊆ Σ∗ be a language, the language L∗ is the set of words built with
words in L: L∗ = {ε} ∪ {a1 . . . an | ∀i 1 ≤ i ≤ n, ai ∈ L}. In the same way, the
ω-power Lω is the set of ω-words: Lω = {a1 . . . an . . . | ∀i > 0, ai ∈ L \ {ε}}. L∗

(resp. Lω) is generated (resp. ω-generated) by L, and so L is called a generator
(resp. ω-generator). Henceforth, minimality or maximality are specifically used
with respect to inclusion over the set of ω-generators.

Both of following languages are useful: Prem(L) = (L\{ε})\(L\{ε})(L\{ε})+
and, whenever M is a monoid, Root(M) = Prem(M) = (M \ {ε}) \ (M \ {ε})2.

The stabilizer of Lω is the language: Stab(Lω) = {u ∈ Σ+ | uLω ⊆ Lω}.
Stab(Lω) is a semigroup in which every ω-generator of Lω is included. So, when
Stab(Lω) is an ω-generator of Lω, it is the greatest [14]. The characteristic lan-
guage of Lω is the language: χ(Lω) = {u ∈ Σ+ | uLω ⊆ Lω and uω ∈ Lω}.
χ(Lω) is not anymore a semigroup. Every ω-generator of Lω is still included in
χ(Lω) and so, when χ(Lω) is an ω-generator of Lω, it is also the greatest [14].
Lω rational implies that Stab(Lω) and χ(Lω) are also rational.
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Let L = L \ {ε} (abusively written L = L \ ε). A L-factorization of a
word u in L+ is a finite sequence of words in L: (u1, u2, . . . , un) such that u =
u1u2 . . . un. A L-factorization of an ω-word w in Lω is an infinite sequence:
(w1, w2, . . . , wn, . . .) such that w = w1w2 . . . wn . . . . We will say indifferently
L-factorization or factorization over L. A language L is a code (resp. an ω-
code) if every word u ∈ Σ∗ (resp. every ω-word w ∈ Σω) has at most one
L-factorization [2][17]. Any ω-code is a fortiori a code. Later, rational languages
and ω-languages can be denoted by their regular (ω)-expressions.

Let L be a language, the adherence of L is the ω-language Adh(L) = {w ∈
Σω | Pref(w) ⊆ Pref(L)} and an ω-language A is an adherence if A = Adh(L)
for some language L.

A language L is said to have a bounded (deciphering) delay if: ∃d ≥ 0 ∀u ∈ L
(uLdΣω ∩ Lω) ⊆ uLω.

A finite automaton A (resp. Büchi automaton B) is specified by (Σ, Q, δ, I, T )
where Σ denotes the finite alphabet, Q the finite set of states, I ⊆ Q the set of
initial states and T ⊆ Q the set of recognition states. A run of a word m in A
(resp. a run of an ω-word w in B) is a finite sequence l = (qi)0≤i≤n (resp. an
infinite sequence l = (qi)i≥0) of states in Q such that q0 ∈ I and ∀i δ(qi, mi+1) =
qi+1, with mi the ith letter of m (resp. w). A word m (resp. an ω-word w) belongs
to the language recognized byA (resp. ω-language recognized by B) if there exists
a run (qi)0≤i≤n (resp. a run (qi)i≥0) such that q0 ∈ I and qn ∈ T (resp. q0 ∈ I
and Inf(w) ∩ T �= ∅, where Inf(w) = {q ∈ Q/Card({i/qi = q}) is infinite}). We
note L(A) (resp. L(B)) the language (resp. ω-language) recognized by A (resp.
B). The set of recognized languages coincide with the set of rational languages.
A rational ω-language is of the form: L =

⋃n
i=1 AiB

ω
i with n ≥ 1 such that

for every i, Ai and Bi are rational languages respectively included in Σ∗ and
Σ+. Their class coincides with the class of ω-languages recognized by Büchi
automata [18].

2 Useful Results

In this section, we present some preliminary results. The first one is very im-
portant for our purpose. It gives an elegant characterization of codes based on
periodic infinite words.

Proposition 1. [6] Let L ⊆ Σ+. The language L is a code if and only if for
every word u ∈ L+, uω has a unique L-factorization.

Below, we recall two results about adherence needed in the sequel to justify the
hypothesis taken.

Proposition 2. [3][11] Let L be a language. If Lω is an adherence, then

Lω = Adh(L∗) = Adh(Pref(L∗)).

Proposition 3. [14] Let L be a language. If Lω is an adherence then χ(Lω) and
Stab(Lω) coincide with the greatest ω-generator of Lω.
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Example 1. Consider L = a + ab + b2. Lω is finitely ω-generated so it is an
adherence and χ(Lω) = Stab(Lω) = L+ is the greatest ω-generator. Let K =
a∗b. Kω is not an adherence, Stab(Lω) = Σ+ is not ω-generator of Kω but
χ(Lω) = Σ∗bΣ∗ is the greatest ω-generator. Finally, let M = Σ∗(aa + bb).
There are two maximal ω-generators M1 = Σ∗(aa + bb)Σ∗ + a(ba)∗ and M2 =
Σ∗(aa + bb)Σ∗ + b(ab)∗. Neither Stab(Lω) = Σ+ nor χ(Lω) = M1 ∪M2 are
ω-generators of Mω.

The following result is about languages with a bounded delay. Usually, this
deciphering property is linked to codes, not here.

Proposition 4. [7] Let L be a language with a bounded delay such that L+ is
the greatest ω-generator of Lω. If Lω is an adherence, then every ω-generator
code of Lω is necessarily a finite ω-code.

We point out here the result called lemma of infinite iteration frequently used
to prove the equality between two ω-powers.

Lemma 1. [14] Let L and R ⊆ Σ+ be two rational languages, Lω ⊆ RLω ⇒
Lω ⊆ Rω.

The language L \ LStab(Lω) is still an ω-generator of Lω and will be useful to
finally simplify ω-generators.

Proposition 5. [12] Let L be a language, the following properties hold:

(i) L \ LStab(Lω) ⊆ Prem(L).
(ii) L \ LStab(Lω) and Prem(L) are ω-generators of Lω.

At last, let us recall now a classic result on words.

Lemma 2. [15] Two words u, v ∈ Σ+ commute, i.e. uv = vu, if and only if
there exists a word z ∈ Σ+ and two different integers i and j ≥ 1 such that
u = zi and v = zj.

3 Reduced Languages

In this section, we present a new class of languages based on a property partic-
ularly relevant when refering to ω-generators. This class lies between the class
of codes and the class of minimal ω-generators. We call it the class of reduced
languages.

3.1 Presentation

In the sequel, we present the definition of reduced langages which involves pe-
riodic ω-words. Then, we state a characterization of them in order to locate
reduced ω-generators among minimal ω-generators.
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Definition 1. A language R ⊆ Σ+ is called reduced if:

∀u ∈ R uω /∈ (R \ u)ω

Proposition 6. Every reduced ω-generator is a minimal ω-generator.

Proof. Let L be a language. If L is not minimal, then there exists a word u ∈ L
such that uω ∈ Lω = (L \ u)ω. Hence L is not reduced. 
�
The converse does not hold. For instance, the language L = a+ab+ba is minimal
but is not reduced. Clearly, (ab)ω ∈ (L \ ab)ω.

Proposition 7. A language L is reduced if and only if for each word u ∈ L, the
periodic ω-word uω has a unique L-factorization.

Proof. The second condition clearly implies L reduced. Conversely, assume there
exists u ∈ L such that uω has two L-factorizations with different first steps:
(u, u, . . .) and (v0, v1, . . .). Two cases arise:

– either, for each integer i ≥ 0, vi �= u, hence uω ∈ (L \ u)ω.
– either there exists a smallest integer k > 0 verifying vk = u.

Hence, there exist two words α, β ∈ Σ∗ and n > 0 such that:

- v0 . . . vk−1α = un

- v0 . . . vk−1u = unβ
- v0 . . . vk−1uα = unβα = un+1

then, u = αβ = βα. According to Lemma 2, there exists z verifying α =
zi and β = zj. We obtain uω = zω = (v0 . . . vk−1)ω and so, uω ∈ (L \ u)ω.

In both cases, a contradiction appears with L reduced. 
�
Table 1 gives the maximal number of factorizations of different kinds of ω-words,
like in [6]. The asterisk ∗ attests that the column property characterizes the
corresponding class of languages. Consequently:

Proposition 8. A code is a reduced language.

The converse does not hold. For instance, the language L = a + ab + bc + c is
a reduced language but is not a code since the ω-word (abc)ω has two distinct
L-factorizations. We summarize below the relations between the different classes
of ω-generators we consider:

Code ω-generator ⇒ reduced ω-generator ⇒ minimal ω-generator.

Table 1. Maximal number of factorizations over ω-codes, codes, reduced languages

Language L uω uω any
(u ∈ L) (u ∈ L+)

ω-code 1 1 1∗
code 1 1∗ ∞

reduced language 1∗ ∞ ∞
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3.2 Decidability

The aim of this part is to ensure that the property of reduced language is de-
cidable over the set of rational languages. Four preliminary lemmas are needed
before stating the main result.

Let L ⊆ Σ+ a language. We use the set Amb(L) introduced in [10]. We
restrict Amb(L) to ω-words, so the set Amb(L) contains ω-words in Lω with
several L-factorizations with different first steps.

Amb(L) = {w ∈ Lω | ∃(wi)i∈N, (wj
′)j∈N

two L-factorizations of w with w0 �= w0
′}

Lemma 3. [6][9] If a language L ⊆ Σ+ is rational, then the set Amb(L) is
rational too.

Proof. If L is rational, the congruence defined as u 1 v ⇔ u−1L = v−1L has a
finite index. Let us write 〈u〉 the equivalence class of the word u. The set Amb(L)
is obtained as: Amb(L) =

⋃
〈u〉⊆L 〈u〉 (Lω ∩ (u−1L \ ε)Lω). 
�

The following lemma is a consequence of Definition 1:

Lemma 4. Let L ⊆ Σ+ be a language, L is reduced if and only if L verifies:

∀u ∈ L uω /∈ Amb(L)

We present here some notation concerning the Büchi congruence [4] in order to
prove our result. Let A = (Σ, Q, I, δ, T ) a complete Büchi automaton. For each
state q ∈ Q, and for every word u ∈ Σ∗, we write:

δT (q, u) = {q′ ∈ Q | exists t ∈ T and u1, u2 ∈ Σ∗

with u = u1u2 and t ∈ δ(q, u1) and q′ ∈ δ(t, u2)}
The Büchi congruence ≈ is defined by:

u ≈ v ⇔ ∀q ∈ Q,

{
δ(q, u) = δ(q, v)
δT (q, u) = δT (q, v)

for every u, v ∈ Σ+. Let [u] = {w ∈ Σ+|w ≈ u} be the equivalence class of u.
As ≈ has a calculable finite index, we obtain:

Lemma 5. [4] For each u ∈ Σ+, its equivalence class [u] is a constructible
rational language.

Lemma 6. If v1 ≈ v2, then v1
ω ∈ Lω(A) ⇔ v2

ω ∈ Lω(A).

It is time to state the main result.

Theorem 1. One can decide whether a rational language is a reduced language.

Proof. Let L be a rational language. It is effective to:
– construct the automaton A which recognizes the set Amb(L) (according to

Lemma 3);
– compute the equivalence classes [u1], . . . , [uk] (according to Lemma 5);
– verify if there exists [ui] such that [ui] ∩ L �= ∅ and ui

ω ∈ Amb(L).

If so, L is not reduced, otherwise, L is reduced (according to lemmas 4 and 6).

�
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4 Reduced Languages as ω-Generators

The class of reduced languages comes from considerations on the set of ω-
generators. This set contains or not a reduced language. If so, this set contains
or not a code. Both subsections illustrate the main two cases, the first revealing
incidently that a rational ω-power is not necessarily ω-generated by a code.

4.1 No Reduced ω-Generator

We show that there exists an ω-power that cannot be generated by a reduced
language. Consequently, this implies that a rational ω-power is not necessarily
generated by a code. Previously, this result has been proved in [19] and clearly
reinforces the interest in the decision problem we study.

Proposition 9. Some rational ω-powers do not admit reduced ω-generators.

Proof. Consider L = a2 + a3 + ba + b. Notice that Lω = Σω \ abΣω and that
L = χ(Lω) is the greatest ω-generator of Lω. Assume that there exists a reduced
ω-generator R of Lω. Let us prove the following two facts:

Fact 1. Let w ∈ Lω. If w ∈ aΣω then aw ∈ Lω.

Proof (Fact 1). Clearly, w ∈ (a2Lω ∪a3Lω). If w ∈ a2Lω then aw ∈ a3Lω ⊆ Lω.
If w ∈ a3Lω then aw ∈ (a2)2Lω ⊆ Lω. 
�

Fact 2. For all k ≥ 1 and u ∈ Σ∗, we obtain {aku, akua} �⊆ R.

Proof (Fact 2). If {aku, akua} is included in R, using Fact 1, we get:

(akua)ω = (aku) (ak+1u)ω

︸ ︷︷ ︸
∈Rω

Consequently, (akua)ω has two R-factorizations: (αi)i≥0 and (βj)j≥0 with α0 =
akua and β0 = aku. Hence, R is not reduced. 
�

– as aω ∈ Lω, there exists a unique i0 > 1 such that ai0 ∈ R (according to
Fact 2 with u = ε).

– as ai0abaω ∈ Lω and abaω /∈ Lω, there exists a unique integer i1 ≥ 0 such
that ai0abai1 ∈ R.

– as ai0abai1abaω ∈ Lω and ai0abai1a /∈ R (according to Fact 2), then, there
exists a unique integer i2 ≥ 0 such that ai0abai1abai2 ∈ R.

– and so forth, we define a unique infinite sequence (ij)j≥0.

Now, let us consider the following ω-word: w = ai0abai1ab . . . abain . . .. This
word w belongs to Lω but lacks a factorization over R. We deduce that R is
not an ω-generator of Lω. We conclude that Lω does not have any reduced ω-
generator. 
�

Corollary 1. Some rational ω-powers do not admit codes as ω-generators.
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4.2 Reduced vs Code ω-Generator

In this section, we show that an ω-power generated by a reduced language is not
necessarily generated by a code.

Proposition 10. A rational language ω-generated by a reduced language is not
necessarily ω-generated by a code.

Proof. L = a+ab+bc+c is a language with a bounded delay 1, studied in [1]. Lω

is an adherence since L is finite and then χ(Lω) = L+ is its greatest ω-generator.
It is clear that L is reduced. Let us show that Lω cannot be generated by a code.
Assume firstly that C is an ω-code ω-generator of Lω. As (uai)aω = (u) aω

︸︷︷︸
∈Lω

and

(ub)cω = (u) bcω
︸︷︷︸
∈Lω

, we obtain the property P : {uai, u} �⊆ C and {ub, u} �⊆ C, for

every u ∈ Σ+ and i > 0. We intend to construct an infinite sequence of elements
from C:

– as aω ∈ Lω, there exists a unique integer i0 > 0 (according to P ) such that
ai0 ∈ C;

– i0 > 0, then ai0baω ∈ Lω, but ai0b /∈ C (according to P ), and there exists a
unique integer i1 > 0 such that ai0bai1 ∈ C;

– and so on; we define a unique infinite sequence (ij)j≥0.

The cardinality of C is necessarily infinite, so there is no finite ω-code ω-
generating Lω. According to Prop. 4, there is no code C ω-generating Lω. 
�

5 Reducing ω-Generator

For the moment, the interest of the new class of reduced languages is not proven.
However, some minimal ω-generators which are not codes are prevented from
being codes essentially because there are not reduced. So, we present a method
in order to make ω-generators reduced without affecting their ω-power.

5.1 Reduction

The reduction mixes two ideas: the first is a transformation required to aim at
the uniqueness of factorizations of specific periodic ω-words, according to the
characterization of reduced languages (Prop. 7). The second one is a simplifica-
tion to guarantee the minimality of reduced ω-generators (Prop. 6).

Let us call A(L) the language of words in L which prevents L from being
reduced.

A(L) = {u ∈ L | uω ∈ (L \ u)ω}

A step of reduction consists in the elimination of an element from A(L),
eventually compensated by the apparition of other elements. A first way to do
this is described below:
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Proposition 11. Let L ⊆ Σ+ be a rational language. For every u ∈ A(L), both
languages G = u∗(L \ u) and especially Γ = G \ GStab(Lω) are ω-generators
of Lω.

Proof. Let G = u∗(L \ u). As u ∈ L, we get that G ⊆ L+ and then Gω ⊆ Lω.
Conversely, let w ∈ Lω. There are two cases:

- either w = uω and then w ∈ (L \ u)ω ⊆ (u∗(L \ u))ω.
- either there exists n ≥ 0 such that w = xyw′ where x = un, y ∈ (L \ u) and

w′ ∈ Lω. Hence, w ∈ (u∗(L \ u))Lω. From Lemma 1, w ∈ (u∗(L \ u))ω .

The equality Lω = Gω is proved. Lω = Γ ω follows from Prop. 5. 
�

Example 2. Let L = a + ab + ba. As (a, ba, ba, . . .) is a L-factorization of the
word (ab)ω, we know that A(L) = ab. According to Prop. 11, the languages
G = (ab)∗(a + ba) and Γ = a + (ab)∗ba are ω-generators of Lω. Here, the latter
language is an ω-code. It is necessarily a code and a reduced language too.

To increase the possibility to find a code when reducing a language, we have
to treat separately the case where A(L) contains two words sharing the same
primitive root. So, here is a second way to remove an element from A(L).

Proposition 12. Let L ⊆ Σ+ be a rational language. If A(L) contains two
non-empty words u and v such that u and v commute, then both languages G =
u + v∗(L \ {u, v}) and especially Γ = G \GStab(Lω) are ω-generators of Lω.

Proof. From Lemma 2, uv = vu implies that there exist two different integers i ≥
1 and j ≥ 1 and a word z ∈ Σ+ such that u = zi and v = zj. As {zi, zj} ⊆ A(L),
according to Prop. 11, G′ = (zj)∗(L \ zj) is an ω-generator of Lω. Moreover,
(zj)+zi = zi(zj)+ ⊆ G′Stab(Lω). Then, we obtain: G′ \ G′Stab(Lω) ⊆ G =
zi+(zj)∗(L\{zi, zj}) ⊆ G′ and we deduce from Prop. 5 that G is an ω-generator
of Lω. From Prop. 5 again, Γ = G \GStab(Lω) is an ω-generator of Lω. 
�

Example 3. Let L = a2 + a3 + b. A(L) = a2 + a3 and we choose to remove
a3. We deduce from Prop. 12 that G = a2 + (a3)∗b and Γ = a2 + a3b + b are
ω-generators of Lω. So Γ is an ω-code. The other choice would have lead to the
ω-code Γ ′ = a3 + a2b + a4b + b.

Obviously, the ω-generators computed by a step of reduction are not necessarily
reduced. Perhaps the problem has just been moved. We study in the next section
the use of the reduction, its range, and of course, its limit.

5.2 Experimentation

This section explains how to use the reduction in order to find reduced ω-
generators, possibly codes. We limit ourselves to rational ω-powers which are
adherences. Indeed, from Prop. 2 and Prop. 3, such ω-powers verify:

Lω = (χ(Lω))ω = Adh(χ(Lω))
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Moreover, every finitely ω-generated language is an adherence [11]. From now
on, L will denote the root of χ(Lω) which is ever characteristic of Lω [8] and
is, in addition here, the greatest ω-generator. The reduction principle consists
in applying recursively either Proposition 11 or Proposition 12 to L and the
languages obtained, while it is possible.

As an illustration, we make here a digression towards automata. Let A be the
minimal (deterministic) automaton which recognizes L∗, we note L∗ = L(A). Let
B be the same automaton in its Büchi version, Lω is recognized by B and we note
Lω = Lω(B). So, we intend to apply the reduction to L which is already minimal
whenever it is not reduced. How does a reduction step operate on a deterministic
Büchi automaton ? It suppresses a recognition state from one cycle. To do this,
it induces a dilation of others as shown in Figure 1.

q2

q0

q1a

b

a

b
a

q0 q1

q3q2

a

b

a

b

b a

a

Fig. 1. Two automata for L∗ = (a + ab + ba)∗ and C∗ = (a + (ab)∗ba)∗ coupled with
two Büchi automata for Lω = Cω = (a + ab + ba)ω

Let us come back to the implementation of reduction. Thus, three different
cases arise when we apply a step of reduction:

(i) the process halts and gives an ω-generator code;
(ii) the process halts on a reduced ω-generator which is not a code;
(iii) the process does not halt.

In the sequel, we discuss the three cases from examples. The last two cases
explore the actual limit of the reduction principle.

Case (i). In this case, the reduction provides a code, as illustrated in the follow-
ing example. Note that the examples from Section 5.1 would have be convenient
here. However, we give another example to show that, sometimes, it is also pos-
sible to get a code which is not ω-code.

Example 4. Let L = ab + aba + baba. The set A(L) = ab since, in particular,
(aba, baba, baba, . . .) is a (L \ ab)-factorization of the word (ab)ω. According to
Prop. 11, the language G = (ab)∗(aba + baba) is an ω-generator of Lω. Hence,
Γ = aba+ ababa+(ab)∗baba is a reduced ω-generator of Lω. It is a code but not
an ω-code. It was already known that Lω has no ω-code as ω-generator [1].
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Case (ii). This time, the process of reduction provides a reduced ω-generator
which is not a code.

Example 5. Let L = a + ab + bab. We have A(L) = ab. According to Prop. 11,
Γ = a + bab + aba + ab2ab is an ω-generator of Lω. It is reduced but it is still
not a code. However, there is no way to continue the reduction because Γ is
reduced: one can easily verify that A(Γ ) = ∅. In addition, L is a language with
a bounded delay 1 and it was already known that Lω cannot be ω-generated by
an ω-code [1]. According to Prop. 4, Lω has no code among its ω-generators.

Every time the process halts on a reduced ω-generator which is not a code, we
succeed in finding a proof more or less ad hoc that the concerned ω-power is not
ω-generated by a code. But examples are quickly difficult to handle and we do
not know more. Nevertheless, it is not excluded that a generalization would be
possible. We have to investigate for instance deciphering delays.

Case (iii). How do we interpretate the third case ? Our process does not halt.
It clearly contains the case where Lω has no reduced ω-generator, nor code.

Example 6. Let L = a2 + a3 + ba + b. We get A(L) = a2 + a3. According to
Prop. 12, Γ = a2 + a3ba + a3b + ba + b and Γ ′ = a3 + a2ba + a2b + a4ba +
a4b + ba + b are both ω-generators of Lω. Neither Γ nor Γ ′ are reduced since
A(Γ ) = a3ba + a3b and A(Γ ′) = a2ba + a4ba + a4b. So neither Γ nor Γ ′ are
codes. We can continue the process for a while . . . But it necessarily continues
without halting (nor looping) because we proved there is no reduced ω-generator
for such an ω-language (in the proof of Prop. 9).

Is the condition sufficient ? We have no counterexample, nor proof. The only
certitude is that the process cannot halt if there is no reduced languages among
the ω-generators.

To decide if a rational adherence admits an ω-generator code, it is not suffi-
cient to test whether the root of the greatest ω-generator is a code. The technique
of reduction can help but obscure areas remain. Finally, several significative
examples are recapitulated in Table 2 like in [19]. It is not worth exhibiting
complicated examples to illustrate the complexity of the problem.

Table 2. Examples in brief

L = Lω has an ω-generator . . .
Root(χ(Lω)) reduced code ω-code

a + ab a + ab

a2 + a3 + b a2 + a3b + b

a + ab + ba a + (ab)∗ba

a + ab + b2 a + ab + b2 no

ab + aba + baba aba + ababa + (ab)∗baba no

a + ab + bc + c a + ab + bc + c no

a + ab + bab a + bab + aba + ab2ab no

a2 + a3 + ba + b no
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6 Conclusion

The research of ω-generators codes lead us to define the new class of reduced
languages, strongly connected with periodic ω-words. Particularly, we have ex-
plained its remarkable position between code and minimal ω-generators though
this area is not so large. In the rational case, the definition of reduced languages
allows an algorithmic approach to search and sometimes find ω-generators codes.
Up to what point does our method produce a code whenever it exists ? An in-
tensive work of experimentation is needed to understand where is exactly the
limit of such a method.
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Abstract. As is well-known, Axel Thue constructed an infinite word
over a 3-letter alphabet that contains no squares, that is, no nonempty
subwords of the form xx. In this paper we consider a variation on this
problem, where we try to avoid approximate squares, that is, subwords
of the form xx′ where |x| = |x′| and x and x′ are “nearly” identical.

1 Introduction

A hundred years ago, Norwegian mathematician Axel Thue initiated the study of
combinatorics on words [14,15,2]. One of his achievements was the construction
of an infinite word over a three-letter alphabet that contains no squares, that is,
no nonempty subwords of the form xx.

Many variations on this problem have been considered. For example, Bran-
denburg [3] and Dejean [6] considered the problem of avoiding fractional powers.
A word w is an α-power if it can be written in the form w = xny, where y is a
prefix of x and α = |w|/|x|. A word z contains an α-power if some subword is a
β-power, for β ≥ α; otherwise it avoids α-powers. Similarly, a word z contains an
α+-power if some subword is a β-power for β > α; otherwise it avoids α+-powers.
We say α-powers (resp. α+-powers) are avoidable over a k-letter alphabet if there
exists an infinite word over that alphabet avoiding α-powers (resp., α+-powers).

Dejean [6] improved Thue’s result by showing how to avoid (7/4)+-powers
over a 3-letter alphabet; this result is optimal, as every ternary word of length
≥ 39 contains a 7/4-power. Pansiot [13] showed how to avoid (7/5)+-powers over
a 4-letter alphabet. Again, this is optimal, as every quaternary word of length
≥ 122 contains a 7/5-power.

Dejean also proved that for k ≥ 5, one cannot avoid k/(k − 1)-powers over
a k-letter alphabet. She conjectured that it was possible to avoid (k/(k − 1))+-
powers over a k-letter alphabet. This conjecture was proved for 5 ≤ k ≤ 11 by
Moulin-Ollagnier [11], for 7 ≤ k ≤ 14 by Mohammad-Noori and Currie [10], and
for k ≥ 38 by Carpi [4]. The cases 15 ≤ k ≤ 37 remain open.
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Another variation is to avoid not all α-powers, but only sufficiently long ones.
Entringer, Jackson, and Schatz [7] showed how to construct a word over a 2-
letter alphabet that avoids squares xx with |x| ≥ 3; here the number 3 is best
possible.

In this paper we consider yet another variation, but one that seems natural:
we consider avoiding approximate squares, that is, subwords of the form xx′

where x′ is “almost the same” as x. The precise definitions are given below. One
of our main results is a further strengthening of Dejean’s improvement on Thue
for 3 letters.

Approximate squares (also known as approximate tandem repeats in the bi-
ological literature) have been studied before, but from the algorithmic point of
view. Landau and Schmidt [8] and Kolpakov and Kucherov [9] both gave efficient
algorithms for finding approximate squares in a string.

Notation: we use Σk to denote the alphabet of k letters {0, 1, 2, . . . , k − 1}.

2 Approximate Squares

There are at least two natural notions of approximate square. We define them
below.

For words x, x′ of the same length, define the Hamming distance d(x, x′) as the
number of positions in which x and x′ differ. For example, d(01203, 11002) = 3.
We say that a word xx′ with |x| = |x′| is a c-approximate square if d(x, x′) ≤ c.
Using this terminology, for example, a 0-approximate square is a square, and a
1-approximate square is either a square or differs from a square in exactly one
position.

To avoid c-approximate squares, we would like to enforce the condition
d(x, x′) > c for all x, x′ of the same length, but clearly this is impossible if
|x| ≤ c. To avoid this technicality, we say a word z avoids c-approximate squares
if for all its subwords xx′ where |x| = |x′| we have d(x, x′) ≥ min(c + 1, |x|).

This definition is an “additive” version; there is also a “multiplicative” version.
Given two words x, x′ of the same length, we define their similarity s(x, x′) as
the fraction of the number of positions in which x and x′ agree. Formally,

s(x, x′) :=
|x| − d(x, x′)

|x| .

Thus for example, s(123456, 101406) = 1/2. The similarity of a finite word z is
defined to be α = maxxx′a subword of z

|x|=|x′|
s(x, x′); we say such a word is α-similar.

Thus, a 1-similar finite word contains a square.
For infinite words, the situation is slightly more subtle. We say an infinite

word z is α-similar if α = supxx′a subword of z
|x|=|x′|

s(x, x′) and there exists at least one

subword xx′ with |x| = |x′| and s(x, x′) = α. Otherwise, if α =
supxx′a subword of z

|x|=|x′|
s(x, x′), but α is not attained by any subword xx′ of z, then

we say z is α−-similar.
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As an example, consider the infinite word over Σ3, c =21020121012021020120···,
defined to be the length of contiguous blocks of 1’s between consecutive 0’s in
the Thue-Morse sequence t. As is well-known, c is square-free, so it cannot be
1-similar. However, since t contains arbitrarily large squares, it follows that c
must contain arbitrarily large 1-approximate squares, and so c is 1−-similar.

Another definition of approximate square was given in [5], but we do not
consider it here.

3 Words of Low Similarity

The main problem of interest is, given an alphabet Σ of size k, what is the small-
est similarity possible over all infinite words over Σ? We call this the similarity
coefficient of k.

Answering this question has two aspects. We can explicitly construct an infi-
nite word that is α-similar (or α−-similar). To show that α is best possible, we
can construct a tree of all finite words that are β-similar for β < α. The root of
this tree is labeled 0 (which suffices by symmetry), and if a node is labeled w,
its children are labeled wa for all a ∈ Σ. If a node is β-similar for some β ≥ α,
it becomes a leaf and no children are added. We can then use depth-first or
breadth-first search to explore this tree. The number of leaves of this tree equals
the (finite) number of words beginning with 0 that are β-similar for β < α, and
the height h of the tree is the length of the longest words with this property.
The number of leaves at depth h equals the number of maximal words beginning
with 0 that are β similar for some β < α.

We performed this computation for various alphabet sizes k, and the results
are reported below in Table 1. For k = 8, our method took advantage of some
symmetries to speed up the computation, and as a result, we did not compute the
number of leaves or maximal strings. For the reported values, these computations
represent a proof that the similarity coefficient is at least as large as the α
reported.

For alphabet size k = 2, every infinite word is 1-similar. We now report on
larger alphabet sizes.

Table 1. Similarity bounds

Alpha Similarity Height Number Number of Lexicographically
bet Coefficient of of Maximal

Size k α Tree Leaves Words First Maximal Words

2 1 3 4 1 010
3 3/4 41 2475 36 01020120210120102120121020120210120102101

4 1/2 9 382 6 012310213
5 2/5 75 3902869 48 012304310342041340120314210412342012403-

410230420312340321024320410342140243

6 1/3 17 342356 480 01234150325143012
7 ? ? ? ? ?
8 1/4 71 — — 0123405673146025164730127563407621357-

4102364075120435674103271564073142
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Theorem 1. There exists an infinite 3/4-similar word w over {0, 1, 2}.

Proof. Let h be the 24-uniform morphism defined by

0→ 012021201021012102120210

1→ 120102012102120210201021

2→ 201210120210201021012102.

The following lemma may be verified computationally.

Lemma 1. Let a, b, c ∈ {0, 1, 2}, a �= b. Let w be any subword of length 24 of
h(ab). If w is neither a prefix nor a suffix of h(ab), then h(c) and w mismatch
in at least 9 positions.

Let w = hω(0). We shall show that w has the desired property. We argue by
contradiction. Suppose that w contains a subword yy′ with |y| = |y′| such that
y and y′ match in more than 3/4 · |y| positions. Let us suppose further that |y|
is minimal.

We may verify computationally that w contains no such subword yy′ where
|y| ≤ 72. We therefore assume from now on that |y| > 72.

Let w = a1a2 · · ·an be a word of minimal length such that h(w) = xyy′z for
some x, z ∈ {0, 1, 2}∗. By the minimality of w, we have 0 ≤ |x|, |z| < 24.

For i = 1, 2, . . . , n, define Ai = h(ai). Then since h(w) = xyy′z, we can write

h(w) = A1A2 · · ·An = A′1A′′1A2 · · ·Aj−1A′jA′′j Aj+1 · · ·An−1A′nA′′n

where

A1 = A′1A′′1
Aj = A′jA′′j
An = A′nA′′n

x = A′1
y = A′′1A2 · · ·Aj−1A′j

y′ = A′′j Aj+1 · · ·An−1A′n
z = A′′n,

and |A′′1 |, |A′′j | > 0. See Figure 1.
If |A′′1 | > |A′′j |, then, writing y and y′ atop one another, as illustrated in

Figure 2, one observes that for t = j + 1, j + 2, . . . , n − 1, each At “lines up”
with a subword, say Bt, of At−jAt−j+1. We now apply Lemma 1 to conclude
that each At mismatches with Bt in at least 9 of 24 positions. Consequently, y
and y′ mismatch in at least 9(j−2) positions. Since j ≥ |y|/24+1, we have that
9(j − 2) ≥ 9(|y|/24− 1). However, 9(|y|/24 − 1) > |y|/4 for |y| > 72, so that y
and y′ mismatch in more than 1/4 · |y| positions, contrary to our assumption.

If |A′′1 | < |A′′j |, as illustrated in Figure 3, then a similar argument shows that
y and y′ mismatch in more than 1/4 · |y| positions, contrary to our assumption.



282 D. Krieger et al.

A1 A2 Aj−1 Aj+1 An−1

A′
1 A′′

1 A′
j A′′

j A′
n A′′

n

· · ·· · ·
y y′

Aj An

zx

Fig. 1. The string xyy′z within h(w)

· · ·
· · · A′

n

A′
j

An−1A′
j+2Aj+1A′′

j

A2A′′
1

y′ =
y = Aj−1

Fig. 2. The case |A′′
1 | > |A′′

j |

· · · An−1Aj+1A′′
j

Aj−1A2A′′
1

A′
n

A′
jA′

3 · · ·
y′ =
y =

Fig. 3. The case |A′′
1 | < |A′′

j |

Therefore |A′′1 | = |A′′j |. We first observe that any pair of words taken from
{h(0), h(1), h(2)} mismatch at every position. We now consider several cases.

Case 1: A1=Aj=An. Then letting u = A1A2 · · ·Aj−1 and u′ = AjAj+1 · · ·An−1,
we see that u and u′ match in exactly the same number of positions as y and y′.
Case 2: A1=Aj �= An. Then letting u=A1A2 · · ·Aj−1 and u′=AjAj+1 · · ·An−1,
we see that u and u′ match in at least as many positions as y and y′.
Case 3: A1 �= Aj = An. Then letting u = A2A3 · · ·Aj and u′ = Aj+1Aj+2 · · ·An,
we see that u and u′ match in at least as many positions as y and y′.
Case 4: A1 =An �= Aj . Then letting u=A1A2 · · ·Aj−1 and u′ = AjAj+1 · · ·An−1,
we see that u and u′ match in exactly the same number of positions as y and y′.
Case 5: A1, Aj , and An are all distinct. Then letting u = A1A2 · · ·Aj−1 and
u′ = AjAj+1 · · ·An−1, we see that u and u′ match in exactly the same number
of positions as y and y′.

We finish the argument by considering the word uu′. First observe that either

uu′ = h(a1a2 · · ·aj−1)h(ajaj+1 · · · an−1)

or
uu′ = h(a2a3 · · · aj)h(aj+1aj+2 · · ·an).

Without loss of generality, let us assume that the first case holds.
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Recall our previous observation that the words h(0), h(1), and h(2) have
distinct letters at every position. Suppose then that there is a mismatch between
u and u′ occurring within blocks At and At+j for some t, 1 ≤ t ≤ j. Then At

and At+j mismatch at every position. Moreover, we have aj �= aj+t. Conversely,
if At and At+j match at any single position, then they match at every position,
and we have at = at+j .

Let v = a1a2 · · · aj−1 and v′ = ajaj+1 · · · an−1. Let m be the number of
matches between u and u′. From our previous observations we deduce that the
number of matches m′ between v and v′ is m/24, but since |v| = |u|/24, m′/|v| =
m/|u|. Thus, if m/|u| > 3/4, as we have assumed, then m′/|v| > 3/4. But the
set {h(0), h(1), h(2)} is a code, so that vv′ is the unique pre-image of uu′. The
word vv′ is thus a subword of w, contradicting the assumed minimality of yy′.
We conclude that no such yy′ occurs in w, and this completes the argument that
w is 3/4-similar. 
�

Next, we consider the case of alphabet size k = 4.

Theorem 2. There exists an infinite 1/2-similar word x over {0, 1, 2, 3}.

Proof. Let g be the 36-uniform morphism defined by

0→ 012132303202321020123021203020121310

1→ 123203010313032131230132310131232021

2→ 230310121020103202301203021202303132

3→ 301021232131210313012310132313010203.

Then x = gω(0) has the desired property. The proof is entirely analogous to that
of Theorem 1 and is omitted. 
�

In our last result of this section, we show that we can obtain infinite words of
arbitrarily low similarity, provided the alphabet size is sufficiently large. The
main tool is the following [1, Lemma 5.1.1]:

Lemma 2 (Lovász Local Lemma; asymmetric version). Let I be a finite
set, and let {Ai}i∈I be events in a probability space. Let E be a set of pairs
(i, j) ∈ I × I such that Ai is mutually independent of all the events {Aj : (i, j) �∈
E}. Suppose there exist real numbers {xi}i∈I, 0 ≤ xi < 1, such that for all i ∈ I,

Prob(Ai) ≤ xi

∏

(i,j)∈E

(1− xj).

Then

Prob

(
⋂

i∈I

Ai

)

≥
∏

i∈I

(1− xi) > 0.

We now state our result.

Theorem 3. Let c > 1 be an integer. There exists an infinite 1/c-similar word.
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Proof. Let k and N be positive integers, and let w = w1w2 · · ·wN be a random
word of length N over a k-letter alphabet Σ. Here each letter of w is chosen
uniformly and independently at random from Σ.

Let

I = {(t, r) : 0 ≤ t < N, 1 ≤ r ≤ �(N − t)/2�}.

For i = (t, r) ∈ I, write y = wt · · ·wt+r−1 and y′ = wt+r · · ·wt+2r−1. Let Ai

denote the event s(y, y′) > 1/c. We can derive a crude overestimate of Prob(Ai)
by first choosing a fraction ≥ 1

c of the positions in the first half that will match
the second half, and letting the remaining positions be chosen arbitrarily. We get

Prob(Ai) ≤
(

r
�r/c�+1

)
k�r/c�+1k2r−2(�r/c�+1)

k2r

≤
(

r

"r/2#

)

k−r/c ≤ 2rk−r/c,

where the last inequality comes from Stirling’s approximation.
For all positive integers r, define ξr = 2−2r. For any real number α ≤ 1/2, we

have (1 − α) ≥ e−2α. Hence, (1 − ξr) ≥ e−2ξr . For i = (t, r) ∈ I, define xi = ξr.
Let E be as in the local lemma. Note that a subword of length 2r of w overlaps
with at most 2r+2s−1 subwords of length 2s. Thus, for all i = (t, r) ∈ I, we have

xi

∏

(i,j)∈E

(1− xj) ≥ ξr

	N/2
∏

s=1

(1− ξs)2r+2s−1 ≥ ξr

∞∏

s=1

(1− ξs)2r+2s−1

≥ ξr

∞∏

s=1

e−2ξs(2r+2s−1) ≥ 2−2r
∞∏

s=1

e−2(2−2s)(2r+2s−1)

≥ 2−2r exp

[

−2

(

2r

∞∑

s=1

1
22s

+
∞∑

s=1

2s− 1
22s

)]

≥ 2−2r exp
[

−2
(

2r

(
1
3

)

+
5
9

)]

≥ 2−2r exp
(

−4
3

r − 10
9

)

.

The hypotheses of the local lemma are met if 2rk−r/c ≤ 2−2r exp
(
− 4

3r − 10
9

)
.

Taking logarithms, we require r log 2− r
c log k ≤ −2r log 2− 4

3r− 10
9 . Rearranging

terms, we require c
(
3 log 2 + 4

3 + 10
9r

)
≤ log k. The left side of this inequality is

largest when r = 1, so we define d1 = 3 log 2+ 4
3 + 10

9 , and insist that c·d1 ≤ log k.
Hence, for k ≥ ec·d1, we may apply the local lemma to conclude that with pos-
itive probability, w is 1/c-similar. Since N = |w| is arbitrary, we conclude that
there are arbitrarily large such w. By König’s Infinity Lemma, there exists an
infinite 1/c-similar word, as required. 
�
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4 Words Avoiding c-Approximate Squares

In this section we consider the “additive” version of the problem. Table 2 reflects
our results using a backtracking algorithm: there is no infinite word over a k-
letter alphabet that avoids c-approximate squares, for the k and c given below.

Table 2. Lower bounds on avoiding c-approximate squares

Height Number Number of Lexicographically
Alphabet c of of Maximal
Size k Tree Leaves Words First Maximal Words

2 0 4 3 1 010
3 1 5 23 2 01201
4 2 7 184 6 0123012
5 2 11 3253 24 01234102314
6 3 11 35756 960 01234051230
7 4 13 573019 6480 0123450612340
8 5 15 - - 012345607123450

Theorem 4. There is an infinite word over a 3-letter alphabet that avoids 0-
approximate squares, and the 0 is best possible.

Proof. Any ternary word avoiding squares, such as the fixed point, starting with
2, of 2→ 210, 1→ 20, 0→ 1, satisfies the conditions of the theorem. The result
is best possible, from Table 2. 
�

Theorem 5. There is an infinite word over a 4-letter alphabet that avoids 1-
approximate squares, and the 1 is best possible.

Proof. Let c be any squarefree word over {0, 1, 2}, and consider the image under
the 48-uniform morphism γ defined by

0→ 012031023120321031201321032013021320123013203123

1→ 012031023120321023103213021032013210312013203123

2→ 012031023012310213023103210231203210312013203123

The resulting word d = γ(c) avoids 1-approximate squares. The result is best
possible, from Table 2.

The proof is similar to that of Theorem 1. Suppose to the contrary that d
contains a 1-approximate square yy′, |y| = |y′|. We may verify computationally
that d contains no such subword yy′ where |y| ≤ 96. We therefore assume from
now on that |y| > 96.

Let w = a1a2 · · ·an be a word of minimal length such that γ(w) = xyy′z for
some x, z ∈ {0, 1, 2, 3}∗. By the minimality of w, we have 0 ≤ |x|, |z| < 48.

For i = 1, 2, . . . , n, define Ai = γ(ai). Just as in the proof of Theorem 1, we
write
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γ(w) = A1A2 · · ·An = A′1A′′1A2 · · ·Aj−1A′jA′′j Aj+1 · · ·An−1A′nA′′n,

so that the situation illustrated in Figure 1 applies to xyy′z within γ(w). We
now make the following observations regarding the morphism γ:

1. Let a, b, c ∈ {0, 1, 2}, a �= b. Let u be any subword of length 48 of γ(ab). If u
is neither a prefix nor a suffix of γ(ab), then γ(c) and u mismatch in at least
18 positions.

2. Let a, b ∈ {0, 1, 2}, a �= b. Then γ(a) and γ(b) mismatch in at least 18
positions.

3. Let u, u′, v, v′ be words satisfying the following:
– |u| = |u′|, |v| = |v′|, and |uv| = |u′v′| = 48;
– each of u and u′ is a suffix of a word in {γ(0), γ(1), γ(2)}; and
– each of v and v′ is a prefix of a word in {γ(0), γ(1), γ(2)}.

Then either uv = u′v′ or uv and u′v′ mismatch in at least 18 positions.
4. Let a ∈ {0, 1, 2}. Then γ(a) is uniquely determined by either its prefix of

length 17 or its suffix of length 17.

From the first observation, we deduce, as in the proof of Theorem 1, that the
cases illustrated by Figures 2 and 3 cannot occur. In particular, we have that
|A′′1 | = |A′′j | and |A′j | = |A′n|.

From the second observation, we deduce that for i = 2, 3, . . . , j − 1, Ai =
Ai+j−1, and consequently, ai = ai+j−1.

From the third observation, we deduce that A′′1 = A′′j and A′j = A′n.
From the fourth observation, we deduce that either A1 = Aj or Aj = An.

If A1 = Aj , then a1 = aj ; if Aj = An, then aj = an. In the first case,
a1a2 · · · aj−1ajaj+1 · · · an−1 is a square in c, contrary to our assumption. In the
second case, a2a3 · · ·ajaj+1aj+2 · · · an is a square in c, contrary to our assump-
tion.

We conclude that d contains no 1-approximate square yy′, as required. 
�

Theorem 6. There is an infinite word over a 6-letter alphabet that avoids 2-
approximate squares, and the 2 is best possible.

Proof. Let c be any squarefree word over {0, 1, 2}, and consider the image under
the 6-uniform morphism β defined by

0→ 012345; 1→ 012453; 2→ 012534.

The resulting word avoids 2-approximate squares. The result is best possible,
from Table 2.

The proof is similar to that of Theorem 5, so we only note the properties of
the morphism β needed to derive the result:

1. Let a, b, c ∈ {0, 1, 2}, a �= b. Let u be any subword of length 6 of β(ab). If u
is neither a prefix nor a suffix of β(ab), then β(c) and u mismatch in at least
3 positions.

2. Let a, b ∈ {0, 1, 2}, a �= b. Then β(a) and β(b) mismatch in at least 3
positions.
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3. Let u, u′, v, v′ be words satisfying the following:
– |u| = |u′|, |v| = |v′|, and |uv| = |u′v′| = 6;
– each of u and u′ is a suffix of a word in {β(0), β(1), β(2)}; and
– each of v and v′ is a prefix of a word in {β(0), β(1), β(2)}.

Then either uv = u′v′ or uv and u′v′ mismatch in at least 3 positions.
4. Let a ∈ {0, 1, 2}. Then β(a) is uniquely determined by either its prefix of

length 4 or its suffix of length 1. 
�

Further results on additive similarity are summarized in the next theorem.

Theorem 7. For each k, n, d given in Table 3, there is an infinite word over
a k-letter alphabet that avoids n-approximate squares, and in each case such
an infinite word can be generated by applying the given d-uniform morphism to
any infinite squarefree word over {0, 1, 2}. (Note that we have used the coding
A = 10, B = 11, etc. )

In each case, the proof is similar to the ones given previously, and is omitted.

Theorem 8. For all integers n ≥ 3, there is an infinite word over an alphabet
of 2n letters that avoids (n− 1)-approximate squares.

Table 3. Morphisms for additive similarity

k n d Morphism

7 3 14 0 → 01234056132465

1 → 01234065214356

2 → 01234510624356

8 4 16 0 → 0123456071326547

1 → 0123456072154367

2 → 0123456710324765

9 5 36 0 → 012345607821345062718345670281346578

1 → 012345607182346750812347685102346578

2 → 012345607182346510872345681702346578

11 6 20 0 → 012345670A812954768A

1 →0123456709A1843576A9

2 → 01234567089A24365798

12 7 24 0 → 012345678091AB2354687A9B

1 → 012345678091A3B4257689AB

2 → 012345678091A2B3465798AB

13 8 26 0 → 01234567890A1BC24635798BAC

1 → 01234567890A1B3C4257689ABC

2 → 01234567890A1B2C354687A9BC

14 9 28 0 → 0123456789A0B1DC32465798BDAC

1 → 0123456789A0B1DC243576A98DBC

2 → 0123456789A0B1CD325468A79CBD

15 10 30 0→ 0123456789AB0D1CE3246579B8ACDE

1 → 0123456789AB0D1CE2435768A9DCBE

2 → 0123456789AB0CED32154687BA9DEC
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Proof. Consider the 2n-uniform morphism h : Σ∗3 → Σ∗2n defined as follows:

0→ 012 · · · (n− 1)n · · · (2n− 1)
1→ 012 · · · (n− 1)(n + 1)(n + 2) · · · (2n− 1)n
2→ 012 · · · (n− 1)(n + 2)(n + 3) · · · (2n− 1)n(n + 1)

We claim that if w is any squarefree word over Σ3, then h(w) has the desired
properties. The proof is a simple generalization of Theorem 6. 
�

5 Another Variation

Yet another variation we can study is trying to avoid xx′ where x is very similar
to x′, but only for sufficiently large x. Let us say that a finite word is (r, α)-similar
if α = sup xx′a subword of z

|x|=|x′|≥r

s(x, x′), and analogous definitions for infinite z.

Exercise 5.8.1 of Alon and Spencer [1] asks the reader to show, using the
Lovász local lemma that, (in our language) for every ε > 0, there exists an
infinite binary word z and an integer c such that z is (c, α)-similar for some
α ≤ 1

2 + ε. The following result shows 1
2 is best possible.

Theorem 9. There is no infinite binary word z and integer c such that every
subword xx′ with |x| = |x′| ≥ c satisfies s(x, x′) < 1

2 .

Proof. Suppose such a z and c exist. Consider a subword of z of the form xx′yy′,
with |x| = |x′| = |y| = |y′| = c. By our assumption, s(x, x′) < 1

2 and s(x′, y) < 1
2 ;

hence, since z is defined over a binary alphabet, necessarily s(x, y) > 1
2 . Similarly,

we must have s(x′, y′) > 1
2 . But then by definition of s, 2c · s(xx′, yy′) = c ·

s(x, y) + c · s(x′, y′) > c
2 + c

2 = c, and so s(xx′, yy′) > 1
2 , a contradiction to our

assumption. 
�

6 Edit Distance

There are many definitions of edit distance, but for our purposes, we say the edit
distance e(x, y) = c if x can be transformed into y by a sequence of c insertions,
deletions, or replacements, and no sequence of c − 1 insertions, deletions, or
replacements suffices.

We can expand our notion of approximate square to avoid all words that are
within edit distance c of all squares. For example, consider the case c = 1. Then
every word of length 2, say ab, is within edit distance 1 of a square, as we can
simply replace the b by a to get aa. Thus we need to restrict our attention to
avoiding words that are within edit distance c of all sufficiently large squares.

Theorem 10. There is an infinite word over 5 letters such that all subwords x
with |x| ≥ 3 are neither squares, nor within edit distance 1 of any square. There
is no such word over 4 letters.
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Proof. The usual tree traversal technique shows there is no such word over 4
letters. Over 5 letters we can use the 5-uniform morphism h defined by

0→ 01234; 1→ 02142; 2→ 03143.

We claim the image of every square-free word under h has the desired property.
Details will appear in the final paper. 
�

References

1. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, Chichester (2000)
2. Berstel, J.: Axel Thue’s Papers on Repetitions in Words: a Translation. Number 20

in Publications du Laboratoire de Combinatoire et d’Informatique Mathématique.
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14. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906) Reprinted in [12, pp. 139–158]
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Abstract. Recently the duplication closure of words and languages has
received much interest. We investigate a reversal of it: the duplication
root reduces a word to a square-free one. After stating a few elementary
properties of this type of root, we explore the question whether or not a
language has finite duplication root. For regular languages and uniformly
bounded duplication root this is decidable.

The main result then concerns the closure of regular and context-
free languages under duplication. Regular languages are closed under
bounded and uniformly bounded duplication root, while neither regular
nor context-free language are closed under general duplication root.

1 Duplication

A mutation, which occurs in DNA strands, is the duplication of a factor inside a
strand. The interpretation of this as an operation on a string has inspired much
recent work in Formal Languages, most prominently the duplication closure.

The duplication closure of a word was introduced by Dassow et al. [6], who
showed that the languages generated are always regular over two letters. Wang
then proved that this is not the case over three or more letters [14]. These
results had actually been discovered before in the context of copy systems [8],
[2]. Later on, length bounds for the duplicated factor were introduced [12], [11],
and also the closure of language classes under the duplication operations was
investigated [5].

In the work presented here, we investigate the effect of applying the inverse of
duplications, i.e., the effect of undoing duplications leaving behind only half of
a square. In this way words are reduced to square-free words, which are in some
sense primitive under this notion; this is why we call the set of all square-free
words reachable from a given word w the duplication root of w in analogy to
concepts like the primitive root or the periodicity root of words. Duplication
roots were already introduced in earlier work [11].

As the duplication root is a type of generating set with respect to duplication
closure, an immediate question is whether a given language has a finite root. We
show that even very simple languages generated only by catenation and iteration
can have infinite duplication root. For uniformly bounded duplication roots the
decidability is deduced from the fact that regular languages are closed under this
operation. Also their closure under bounded duplication roots is proven.

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 290–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Part of the results exposed here were presented at the Theorietag Formale
Sprachen [10].

2 Duplication Roots

For applying duplications to words we use string-rewriting systems. In our no-
tation we mostly follow Book and Otto [1] and define such a string-rewriting
system R on Σ to be a subset of Σ∗ × Σ∗. Its single-step reduction relation is
defined as u →R v iff there exists (�, r) ∈ R such that for some u1, u2 we have
u = u1�u2 and v = u1ru2. We also write simpler just →, if it is clear which is
the underlying rewriting system. By ∗→ we denote the relation’s reflexive and
transitive closure, which is called the reduction relation or rewrite relation. The
inverse of a single-step reduction relation → is →−1:= {(r, �) : (�, r) ∈ R}.

The string-rewriting system we use here is the duplication relation u♥v :⇔
∃z[z ∈ Σ+ ∧ u = u1zu2 ∧ v = u1zzu2]. If we have length bounds |z| ≤ k or
|z| = k on the factors to be duplicated we write ♥≤k or ♥k respectively; the
relations are called bounded and uniformly bounded duplication respectively. ♥∗
is the reflexive and transitive closure of the relation♥ and thus it is our reduction
relation. The duplication closure of a word w is then w♥ := {u : w♥∗u}. The
languages w♥≤k and w♥k are defined analogously.

Further notation that will be used is IRR(R) for the set of words irreducible
of a string-rewriting system R. For a word w with w[i] we denote its i-th letter,
with w[i . . . j] the factor from position i to j. We call a word w square-free iff it
does not contain any non-empty factor of the form u2, where exponents of words
refer to iterated catenation, and thus ui is the i-fold catenation of the word u
with itself. If also w2 does not contain such a square shorter than the entire
w2, then w is said to be circular square-free. With this we come to our central
definition.

Definition 1. The duplication root of a non-empty word w is

♥
√

w := IRR(♥−1) ∩ {u : w ∈ u♥}.

As usual, this notion is extended in the canonical way from words to languages
such that

♥√
L :=

⋃

w∈L

♥
√

w.

The roots ♥≤k
√

w and ♥k
√

w are defined in completely analogous ways, and also
these are extended to entire languages in the canonical way. When we want to
contrast the duplication (root) without length bound to the bounded variants
we will at times call it general duplication (root). First off, we illustrate this
definition with an example that also shows that duplication roots are in general
not unique, i.e., the set ♥

√
w can contain more than one element.

Example 2. By undoing duplications, i.e., by applying rules from ♥−1, we obtain
from the word w = abcbabcbc the words in the set {abc, abcbc, abcbabc, abcbabcbc}
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; in a first step either the prefix (abcb)2 or the suffix (bc)2 can be reduced, only
the former case results in a word with another square, which can be reduced
to abc.

Thus we have the root ♥√abcbabcbc = {abc, abcbabc}. Exhaustive search of all
shorter words shows that this is a shortest possible example of a word with more
than one root over three letters.

Other examples with different cardinalities of the root are the words w3 =
babacabacbcabacb where

♥
√

w3 = {bacabacb, bacbcabacb, bacb},

and w5 = ababcbabcacbabcabacbabcab where

♥
√

w5 = {abcbabcabacbabcab, abcbabcab, abcacbabcab, abcabacbabcab, abcab},

As the examples have finite length, the bounded duplication root is in general
not unique either. The uniformly bounded duplication root, however, is known
to be unique over any alphabet [11].

It is not clear at this point, whether there exist words wk over three letters for
every k > 0 such that ♥

√
wk has cardinality k. Further it would be interesting to

find a function relating this number k to the length of the shortest such word wk.

3 Finiteness of the Duplication Root

In some way, duplication roots can be seen as generating sets –via duplication
closure– for the given language, though not in a strict sense, because they usually
generate larger sets. That is, we have L ⊆ ( ♥√L)♥. One of the main questions
about generating sets in algebra seems especially interesting also here: does there
exist a finite generating set? Or in our context: is the root finite? Trivially,
duplication roots are finite over two letters.

Proposition 3. Over a two-letter alphabet for every language L its duplication
root ♥√L is finite.

Proof. It is well-known that over an alphabet of two letters there exist only six
non-empty square-free words. Since ♥

√
L contains only square-free words, it must

be finite. 
�

Things become more difficult over three or more letters. Let us first define the
letter sequence seq(u) of a word u as follows: any word u can be uniquely fac-
torized as u = xi1

1 xi2
2 · · ·x

i�

� for some integers � ≥ 0 and i1, i2, . . . , i� ≥ 1 and
for letters x1, x2, . . . , x� such that always xj �= xj+1; then seq(u) := x1x2 · · ·x�.
Intuitively speaking, every block of several adjacent occurrences of the same
letter is reduced to just one occurrence. Notice that seq(u) = ♥1

√
u. As usual,

seq(L) :=
⋃

u∈L seq(u) for languages L.
We now collect a few elementary properties that connect a word’s letter se-

quence with duplication and duplication roots.
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Lemma 4. If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then there exists
a word w such that u(♥−1)∗ w ♥∗v, i.e. both u and v are reducible to w via
unduplications.

Proof. This is immediate, since every word can be reduced to its letter sequence
via rules (xx, x) for x ∈ Σ. Thus our statement can be satisfied by setting
w = seq(u). 
�

Now we state a result that links the letter sequence and the duplication root of
a word in a fundamental way.

Lemma 5. If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also ♥
√

u =
♥
√

v = ♥
√

seq(u).

Proof. Via rules (xx, x) for all x ∈ Σ we can obviously go from u to seq(u).
Therefore we have ♥

√
seq(u) ⊆ ♥

√
u. So it remains to show the converse inclusion,

and ♥
√

seq(u) = ♥
√

u will then imply our statement.
Let us suppose there exists a word z ∈ ♥

√
u, which is not contained in

♥
√

seq(u). As already stated there exists a reduction from u to seq(u) using only
rules (xx, x) for x ∈ Σ. Application of these rules preserves the letter sequence
of a word. There is also a reduction from u to z via rules from ♥−1. Let us look
at one specific reduction of this type. As all possible reductions from u to seq(u)
via rules (xx, x) this reduction starts in u, too. At some point –possibly already
in the first step– it uses for the first time a rule (ww, w) with |w| ≥ 2 and results
in a word z′. Here this reduction becomes different from the ones to seq(u).

If the first and the last letter of w are different, then seq(w)2 is a subsequence
of the letter sequence of the word, to which this rule is applied. Consequently,
seq(w)2 is a factor of seq(u). Thus we can apply a rule (seq(w)2, seq(w)) there
and obtain the word seq(z′). If the first and the last letter of w are the same,
then seq(w2) = seq(w) · seq(w[2 . . . |w|]), and we obtain z′ by application of the
rule (w[2 . . . |w|]2, w[2 . . . |w|]).

By Lemma 4 z′ is reducible to seq(z′), and it is still reducible to z. So we can
repeat our reasoning. Because the reduction from u to z is finite, this process
will terminate and show that there is a word v reachable from both z and seq(u)
via rules from ♥−1.

But z ∈ ♥
√

u is irreducible under this relation, and thus we must have v = z.
Now seq(u)(♥−1)∗z shows that z ∈ ♥

√
seq(u). Since this contradicts our assump-

tion, there can be no word in ♥
√

u \ ♥
√

seq(u), and this concludes our proof. 
�

In the proof, the word seq(z′) is obtained by rules, whose left sides are not longer
than the one of the simulated rule (ww, w). Therefore the same argumentation
works for bounded duplication.

Corollary 6. If for two words u, v ∈ Σ∗ and an integer k we have seq(u) = seq(v),
then also ♥≤k

√
u = ♥≤k

√
v = ♥≤k

√
seq(u).

Without further considerations, we also obtain a statement about the finiteness
of the root of a language.
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Corollary 7. A language L has finite duplication root, iff ♥
√

seq(L) is finite.

If a language does not have a finite duplication root, then this root can not be
of any given complexity with respect to the Chomsky Hierarchy. There is a gap
between finite and context-free languages, in which no duplication root can be
situated.

Proposition 8. If a language has a context-free duplication root, then its duplica-
tion root is finite.

Proof. For infinite regular and context-free languages the respective, well-known
pumping lemmata hold. Since a duplication root consists only of square-free
words, no such language can fulfill these lemmata. 
�

Already for the bounded case this does not hold any more. For example, for any
k ≥ 1 we can use a circular square-free word w of length greater than k; such
words exist for all k ≥ 18 [4]. Then we have ♥≤k

√
w+ = w+, and this language is

regular.
It is quite clear how the iteration of the union of several singleton sets can

generate a regular language with infinite root; for the simplest case of this type
consider {a, b, c}+. We will now illustrate with an example that there are also
regular languages constructed exclusively by concatenation and iteration, which
have an infinite duplication root.

Example 9. We have seen in Example 2 that the root of u = abcbabcbc consists of
the two words u1 = abc and u2 = abcbabc. Let ρ be the morphism, which simply
renames letters according to the scheme a→ b→ c→ a. Then ρ(u) has the two
roots ρ(u1) and ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

We will now use this ambiguity to construct a word w such that ♥
√

w+ is
infinite. This word over the four-letter alphabet {a, b, c, d} is

w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d.

Thus the duplication root of w contains among others the three words

wa = abc · d · bca · d · cabacab · d
wb = abc · d · bcacbca · d · cab · d
wc = abcbabc · d · bca · d · cab · d,

which are square-free. We now need to recall that a morphism h is called square-
free, iff h(w) is square-free for all square-free words w. Crochemore has shown
that a uniform morphism h is square-free iff it is square-free for all square-free
words of length 3, [3]. Here uniform means that all images of single letters have
the same length, which is given in our case.

The morphism we define now is ϕ(x) := wx for all x ∈ {a, b, c}. Thus to
establish the square-freeness of ϕ, we need to check this property for the images
of all square-free words up to length 3. These are
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ϕ(aba) = abcdbcadcabacabdabcdbcacbcadcabdabcdbcadcabacabd
ϕ(abc) = abcdbcadcabacabdabcdbcacbcadcabdabcbabcdbcadcabd
ϕ(aca) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcadcabacabd
ϕ(acb) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcacbcadcabd
ϕ(bab) = abcdbcacbcadcabdabcdbcadcabacabdabcdbcacbcadcabd
ϕ(bac) = abcdbcacbcadcabdabcdbcadcabacabdabcbabcdbcadcabd
ϕ(bca) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcadcabacabd
ϕ(bcb) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcacbcadcabd
ϕ(cac) = abcbabcdbcadcabdabcdbcadcabacabdabcbabcdbcadcabd
ϕ(cab) = abcbabcdbcadcabdabcdbcadcabacabdabcdbcacbcadcabd
ϕ(cba) = abcbabcdbcadcabdabcdbcacbcadcabdabcdbcadcabacabd
ϕ(cbc) = abcbabcdbcadcabdabcdbcacbcadcabdabcbabcdbcadcabd,

where, of course, the images of all words shorter than three are contained in
them. All the twelve words listed here are indeed square-free as an eager reader
can check, and thus ϕ is square-free.

Now let t be an infinite square-free word over the letters a, b and c. Then
ϕ(pref(t)) is an infinite set of square-free words. From the construction of ϕ we
know that for any word z of length i we can reach ϕ(z) from wi by undoing
duplications. Therefore ϕ(pref(t)) ⊆ ♥√

w+, whence also the latter set is infinite.

Thus even very simple languages can have rather complicated roots. Therefore it
seems to be a challenging problem to decide the finiteness for regular languages
in general.

4 Closure Under Duplication Root

Now we investigate the closure of regular languages under the three variants of
duplication root. We start with the most restricted variant, uniformly bounded
duplication.

Proposition 10. If L ∈ REG, then also ♥k
√

L ∈ REG for all k ≥ 1.

Proof. If a language L is regular, then it can be generated by a regular grammar
G = (N, Σ, S, P ), which has only rules of the forms (A, xB) and (A, x) for non-
terminals A and B and x ∈ Σ; for simplicity we ignore the possible rule (S, λ)
to generate the empty word. From this grammar we construct another one that
generates ♥k

√
L.

The new grammar’s set of non-terminals is N ′ = {Aw : A ∈ N ∧ w ∈ Σ≤2k}.
The rule set is derived from P in the following way. The rules from {(Aw, Bwx) :
(A, B) ∈ P ∧ |w| < 2k − 1} go in parallel to those of P , but store the letters
generated in the non-terminals’ index instead of actually generating them. When
the index reaches length 2k, the first letters stored in the index are finally put
out, when new ones come in. This is done by rules from the set

{(Aw, w[1]Bw[2...2k]x) : (A, xB) ∈ P ∧ |w| = 2k ∧ w[2 . . . 2k]x ∈ IRR((♥k)−1)}.
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Only if the index would become a square u2 of length k, then this square is
reduced to u, instead of putting anything out. The set

{(Aw, Bw[1...k+1]) : (A, xB) ∈ P ∧ |w| = 2k ∧ w[2 . . . 2k]x �∈ IRR((♥k)−1)}

provides the rules implementing this. The rules from

{(Aw, Bw[1...k]) : (A, xB) ∈ P ∧ |w| = 2k − 1 ∧ w[1 . . . k] = w[k + 1 . . . 2k − 1]x}

take care of the case that upon filling the index already a k-square is produced.
From the terminating rules of P we derive the sets

{(Aw, wx) : (A, x) ∈ P ∧ wx is not a k − square}

and
{(Aw, w[1 . . . k]) : (A, x) ∈ P ∧ wx is a k − square} .

This new grammar obviously generates the words that also G generates, only
leaving out all squares of length 2k that occur when going from left to right. If
there are two squares of length 2k overlapping in more than k symbols, then the
entire sequence has period k, and thus the reduction of either one results in the
same word. Therefore this proceeding from left to right will indeed reduce all
the squares, and in this way all the words in ♥k

√
L are reached. 
�

The grammar constructed for ♥k
√

L uses a similar idea as the algorithm for
deciding the question “u ∈ v♥k?,” which we gave in an earlier article [11]. The
effective closure of regular languages under uniformly bounded duplication can
be used to decide the problem of the finiteness of the root for the uniformly
bounded case.

Corollary 11. For regular languages it is decidable, whether their uniformly
bounded duplication root is finite.

Proof. From the proof of Proposition 10 we see that from a regular grammar
for a language L a regular grammar for the language ♥k

√
L can be constructed.

This construction method is effective. Since the finiteness problem is decidable
for regular languages, it can then also be decided for ♥k

√
L. 
�

Now we turn to bounded duplication. As the bounded duplication closure of
even single words is in general not regular, it is not clear whether its inverse
will preserve regularity. We will show that this is the case by essentially reduc-
ing bounded duplication root to an inverse monadic string-rewriting system. A
string-rewriting system is monadic, iff for all of its rules (�, r) we have |�| > |r|
and |r| ≤ 1. Such a system R is said to preserve regularity (context-freeness)
iff for all regular languages L also the language

⋃
w∈L{u : w

∗→R u} is regular
(context-free).

Proposition 12. The class of regular languages is closed under bounded duplica-
tion root.



Duplication Roots 297

Proof. For a given regular language L the defining condition for a word w to be
in ♥≤k

√
L can be formulated in the following way: w♥≤k ∩L �= ∅. This is the way

we will decide the word problem for ♥≤k
√

L.
Thus we start from the input word and have to determine, whether from

it one can reach another word in a given regular language L. Let the length
bound for duplication be k. We will transform words from Σ+ into a redundant
representation, where every letter contains also the information about the k− 1
following ones. This way rewrite rules from ♥≤k can be simulated by ones with
a left side of length only one, i.e. by context-free ones.

First off we define the mapping φ : Σ+ �→ ((Σ ∪ {�})k)+ as follows. We
delimit with (. . .) letters from (Σ ∪ {�})k and with [. . .] factors of a word as
usual. The image of a word u is

u �→ (u[1 . . . k]) (u[2 . . . k + 1]) · · · (u[|u| − k + 1 . . . |u|]) ·
(u[|u| − k + 2 . . . |u|]�) · · · (u[|u|]�k−1).

Thus every letter contains also the information about the k following original
ones from the original word u, at the end of the word letters are filled up with
the space symbol �. This encoding can be reversed by a letter-to-letter homo-
morphism h defined as h(x) := x[1] if x[1] ∈ Σ, for the other case we select for
the sake of completeness some arbitrary letter a and set h(x) := a if x[1] = �;
the latter case will never occur in our context. It is clear that h(φ(u)) = u for
words from Σ∗. Both mappings are extended to languages in the canonical way
such that φ(L) := {φ(u) : u ∈ L} and h(L) := {h(u) : u ∈ L}.

Now we define the string-rewriting system R over the alphabet (Σ ∪{�})k as
follows:

R := {((uv), φ(u2v′)[1 . . . |φ(u2v′)| − k + 1]) : uv ∈ Σk ∧ v′ ∈ Σ∗ ∧
v ∈ v′ · {�∗}}.

A letter [uv] is replaced by the image of u2v under φ minus the suffix of letters
that contain �. This way application of rules from R keeps this space symbol
only in the last letters of our words. It should be rather clear that φ(w♥≤k) =
{u : φ(w)R∗u} or, in other words w♥≤k = h({u : φ(w)R∗u}).

As all the rules of R have left sides of length one, the application of this
system amounts to substituting each letter of w with a word from a context-free
language. Since context-free languages are closed under this type of substitution,
the language of all the resulting words is context-free if the original one is.

As all the rules of R have left sides of length one and right sides of length
greater than one, their inverses are all monadic, i.e. the system R−1 is monadic.
Monadic string-rewriting systems preserve regularity, see for example the work
of Hofbauer and Waldmann [9].

The language ♥≤k
√

Σ∗ is regular as it is the complement of the regular Σ∗{uu :
|u| ≤ k}Σ∗.

Summarizing, we can obtain ♥≤k
√

L by a series of regularity-preserving oper-
ations in the following way:

♥≤k
√

L = (R−1)∗(φ(L)) ∩ ♥≤k
√

Σ∗.
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Though φ is not a morphism, it is a gsm mapping and as such certainly preserves
regularity. Thus bounded duplication root preserves regularity. 
�

Reducing the set R does not affect the context-freeness of the language. Thus we
can take away all rules effecting duplications shorter than the length bound k and
obain another proof for Proposition 10, however not a constructive one that lets
us conclude the decidability. Unfortunately, the proof can not be generalized
to context-free languages, because inverse monadic rewriting systems do not
preserve context-freeness.

Under the unbounded root neither the regular nor the context-free languages
are not closed, as for example ♥

√
{a, b, c}∗, the language of all square-free words,

is not context-free, see [7] and [13].
Summarizing we state the closure properties determined in this article in a

comprehensive form.

Theorem 13. The closure properties of the class of regular languages under the
three duplication roots are as follows:

♥k
√

L ♥≤k
√

L ♥
√

L

REG Y Y N
CF ? ? N

Here Y stands for closure, N stands for non-closure, and ? means that the
problem is open.

5 Outlook

Theorem 13 leaves open the closure of context-free languages under bounded
duplication root. The answer might actually depend on the length bound as is
the case for bounded duplication. For k ∈ {1, 2} regular languages are closed
under bounded duplication, for k ≥ 4 they are not, while for k = 3 the problem
remains open, see [5]. Also for context-sensitive languages the only trivial case
seems to be uniformly bounded duplication root. For all others the straight-
forward approach of the proof of Theorem 12 cannot be used with a LBA,
because it would exceed the linear length bound.

The other complex of interesting questions is the investigation of the bound-
ary between decidability and undecidability for the question of the finiteness of
duplication roots. For the simplest case, i.e. regular languages and uniformly
bounded duplication, Corollary 11 establishes decidability; on the other hand,
for context-free languages or even more complicated classes, one would expect
undecidability for all variants of duplication. Thus sómewhere inbetween there
must be the crucial point, probably at different complexities for the different
variants of duplication root.

Finally, the investigation of the duplication root of single words promises to
pose some interesting questions, as hinted at the end of Section 2. Especially the
possible degrees of ambiguity might follow interesting rules.
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Abstract. This paper proposes a notion of time complexity in spli-
cing systems and presents fundamental properties of SPLTIME, the
class of languages with splicing system time complexity t(n). Its rela-
tions to classes based on standard computational models are explored.
It is shown that for any function t(n), SPLTIME[t(n)] is included in
1-NSPACE[t(n)]. Expanding on this result, 1-NSPACE[t(n)] is charac-
terized in terms of splicing systems: it is the class of languages accepted
by a t(n)-space uniform family of extended splicing systems having pro-
duction time O(t(n)) with regular rules described by finite automata
with at most a constant number of states. As to lower bounds, it is
shown that for all functions t(n) ≥ log n, all languages accepted by a
pushdown automaton with maximal stack height t(|x|) for a word x are
in SPLTIME[t(n)]. From this result, it follows that the regular languages
are in SPLTIME[O(log(n))] and that the context-free languages are in
SPLTIME[O(n)].

1 Introduction

The splicing system [4] is a computational model that is inspired by the DNA re-
combination process that consists of splicing and reassembling. Intuitively speak-
ing, a splicing system produces words by cutting, with respect to a given set of
rules, two words into two parts and then swapping their second parts. In a spli-
cing system word production starts with an initial collection of words. Then, for
each pair of words in the set, every applicable rule is applied independently and
each of the resulting two words is added to the collection, if it is not already in
the set. Since words never disappear from the collection we can naturally view
that a splicing system produces its language in rounds. Indeed, the standard
definition of a splicing system uses this view.

The complexity of a splicing system can be studied in terms of the complex-
ity of the initial set and the complexity of the rules in the Chomsky Hierarchy.
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The complexity of splicing systems has been well studied in this regard (see,
e.g. [2,11,12,13,14]). In particular, it is known [11] that the extended splicing
system with a finite initial language and with rules whose patterns are spec-
ified using regular expressions is universal (i.e., as powerful as the recursively
enumerable) and that this system with the set of rules restricted to be finite is
regular [2,14].

The universality of extended system with finite set of rules states that the
model is equivalent to other standard abstract computation models, such as Tur-
ing machines and random access machines. Since these standard models are used
to define computational complexity by introducing the concept of resources, one
may wonder whether there exists a natural concept of computational resources
in the extended splicing system and what complexity classes are defined in terms
of the resource concept.

Surprisingly, although these questions sound natural, and indeed for other
models of DNA computing similar questions have been addressed before [8,9,15],
they have never been asked about splicing systems. We propose a notion of
computational complexity in the splicing model. Since the words in a language
are thought of as being produced in rounds, the proposal here is to consider the
minimum number of rounds that it takes for the system to produce the word as
the complexity of the word with respect to the system. The complexity of the
language produced by the system at length n is then defined to be the maximum
of the time complexity of the word with respect to the system for all members of
the language having length n. This time complexity concept is reminiscent of the
derivational complexity of grammars [1,3], where the complexity of a word with
respect to a grammar is defined to be the smallest number of derivational steps
for producing the word with respect to the grammar. Although the derivational
complexity uses the number of operational steps as a measure, it is fundamentally
different from our notion of time complexity because splicing is applied to two
words and the two input words for splicing can be produced asynchronously in
preceding steps.

In this paper we explore properties of the proposed notion of time complexity.
Based on the aforementioned universality result we will use the model with a
finite initial set and with a regular set of rules. It is easy to see that if L(Γ ) is
infinite then the time complexity of L with respect to Γ is not o(log n). This
is because the initial set is finite and the length of the longest word produced
by Γ increases by a factor of at most 2 at each round. It is also easy to show
that a regular language a+ has splicing time complexity Θ(log n) with respect
to an extended splicing system. Indeed, we show that every regular language
has splicing time complexity of O(log n). As an upper bound, we show that the
languages produced by extended splicing systems with time complexity t(n) are
accepted by t(n) space-bounded nondeterministic Turing machines with one-way
input head. From this general result, it follows that every language generated by
a splicing system with time complexity of O(log n) is in 1-NL.

Exploring this result further, we show that the class of languages produced by
extended splicing systems with time bound t(n) is captured in terms of extended
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splicing systems: a language L belongs to this class if and only if there exists
a t(n)-space uniform family of splicing systems {Γn}n≥0 such that for each n,
the length-n portion of L is produced by Γn in O(t(n)) rounds and the num-
ber of states of each automaton appearing in Γn is bounded by a constant not
depending on n.

As a general lower bound, we show that for all t(n) ∈ Ω(log n), all languages
accepted by a pushdown automaton M with maximal stack height f(|x|) for a
word x in L(M) are produced by extended splicing systems with time complexity
O(f(n)). From this result it follows that all context-free languages have splicing
time complexity of at most O(n).

2 Basic Definitions and Notation

We assume the reader’s familiarity with the basic concepts in complexity theory
and formal language theory. Good references to these are respectively [6] and [10].

A splicing rule over an alphabet V is a word of the form u1#u2$v1#v2 such
that u1, u2, v1, and v2 are in V ∗ and such that $ and # are two symbols not
in V .

For a splicing rule r = u1#u2$v1#v2 and for x, y, w, z ∈ V ∗, we say that
r produces (w, z) from (x, y), denoted by (x, y) (r (w, z), if there exist some
x1, x2, y1, y2 ∈ V ∗ such that x = x1u1u2x2, y = y1v1v2y2, z = x1u1v2y2, and
w = y1v1u2x2.

We simplify the notation by viewing (x, y) and (w, z) as unordered pairs and
write (x, y) (r (w, z) and (x, y) (r (z, w) interchangeably.

A splicing scheme is a pair (V, R), where V is a finite alphabet and R ⊆
V ∗#V ∗$V ∗#V ∗ is a finite (possibly infinite but finitely represented) set of spli-
cing rules. For a splicing scheme h = (V, R) and for a language L ⊆ V ∗, define

σR(L) = {z, w ∈ V ∗ | (∃u, v ∈ L, r ∈ R)[(u, v) (r (z, w)]}. (1)

Given a splicing scheme h = (V, R) and an initial language L, the splicing lan-
guage σ∗R(L) is defined as follows.

σ0
R(L) = L, (2)

σi+1
R (L) = σi

R(L) ∪ σR(σi
R(L)), i ≥ 0, (3)

σ∗R(L) =
⋃

i≥0

σi
R(L). (4)

In the following, we omit the subscript R if the omission will not cause confusion.
We consider two types for the set, R, of splicing rules. One is the finite set

and the other is the regular language. The definition when R is regular can be
given as follows: A set of rules R is regular if there exist some m ≥ 1 and m
quadruples of regular languages (Ai, Bi, Ci, Di), 1 ≤ i ≤ m, such that R =
∪1≤i≤m{ai#bi$ci#di | ai ∈ Ai, bi ∈ Bi, ci ∈ Ci, di ∈ Di}.

Now we are ready to define splicing systems. A splicing system is a triple
Γ = (V, A, R) such that (V, R) is a splicing scheme and A ⊆ V ∗ is the initial
language. The language generated by Γ , denoted by L(Γ ), is σ∗R(A).
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We say that a splicing system is finite if it consists of a finite set of rules and
a finite initial language, i.e., both A and R are finite sets. It is shown [2,14] that
finite splicing systems generate only regular languages.

An extended splicing system is a quadruple Γ = (V, Σ, A, R) such that Γ ′ =
(V, A, R) is a splicing system. The language produced by Γ , denoted by L(Γ ),
is Σ∗ ∩ L(Γ ′).

It is known that extended systems with a finite initial set and a regular set of
rules are “universal” [11]. Because of this first universality result, the extended
splicing system with a finite initial language and a regular set of rules can be
considered to be the “standard” universal splicing system, and this is the model
we will consider in this paper. Indeed, many well-studied computational models
having universal power can be straightforwardly simulated with these systems,
with at most a constant slowdown (see Chapter 8 of [13] for an overview).

3 Time Complexity for Splicing Systems

Let Γ = (V, Σ, A, R) be an extended splicing system. For each w ∈ V ∗, define

SplicingTimeΓ (w) =
{

min{i | w ∈ σi
R(A)} if w ∈ σ∗R(A)

0 otherwise.

Let N denote the set of all natural numbers.

Definition 1. Let T (n) be a monotonically nondecreasing function from N to
itself. Then we define SPLTIME[T (n)] to be the set of all languages L for which
there exists an extended splicing system with regular rules Γ = (V, Σ, A, R) such
that for all w ∈ L, it holds that SplicingTimeΓ (w) ≤ T (|w|).

Definition 2. For a class C of functions from N to itself, define

SPLTIME[C] = ∪T (n)∈CSPLTIME[T (n)].

As first observations we have that all finite languages have zero complexity and
that for any extended splicing system Γ = (V, Σ, A, R), at any step i, the length
of the longest word in σi

Γ (A) is at most twice that in σi−1
Γ (A). This implies that

the length is at most 2i times the longest word in A. Thus, we have:

Proposition 1. SPLTIME[o(log n)] contains no infinite languages.

Due to Proposition 1 a time complexity function T (n) is meaningful for extended
splicing systems if T (n) ∈ Ω(log n). Thus, the smallest splicing time complexity
class is SPLTIME[O(log n)]. Here we show some fundamental results about this
class.

First, it is not hard to see that the regular language a+ belongs to
SPLTIME[O(log n)] via the following unextended system Γ = (V, A, R):

V = {a}, A = {a}, and R = { a#λ$λ#a }.



304 R. Loos and M. Ogihara

This splicing system generates {λ, a, aa} in the first step, {λ, a, aa, a3, a4} in the
second and in general σi

Γ (A) = {ax | 0 ≤ x ≤ 2i}.
Actually, it is not very difficult to show that every regular language belongs

to this class.

Theorem 1. REG ⊆ SPLTIME[O(log n)].

Proof. Let L be an arbitrary regular language. If L is finite, an unextended
system whose initial language is L and whose rule set is empty produces L in no
rounds, and so L ∈ SPLTIME[O(log n)].

Suppose that L is an infinite regular language. We will construct an extended
finite splicing system Γ = (V, Σ, A, R) witnessing that L ∈ SPLTIME[O(log n)].
Let M = (Q, Σ, δ, q0, F ) be a non-deterministic finite automaton accepting L,
where Q is the set of states, Σ the input alphabet, q0 the initial state, F the set of
final states, and δ the transition function. We assume without loss of generality
that M has no λ-transitions. We construct Γ as follows:

– V = Σ ∪Q ∪ {Z}, where Z is a new symbol not in Σ ∪Q.
– A = {Z} ∪ {qiaqj | qi, qj ∈ Q, a ∈ Σ, δ(qi, a) = qj}.
– R consists of the following rules:
• a#q$q#b for all q ∈ Q, a, b ∈ Σ,
• q0#λ$λ#Z,
• λ#qf$Z#λ for all qf ∈ F .

The initial language A contains all the words of the form qiaqj such that M
transitions from qi to qj on a. Thus, A is the set of all valid paths of length 1.
The rules of the form a#q$q#b connect two paths sharing the same state in the
middle. The last two rules eliminate the initial state appearing at the beginning
and the final state appearing at the end.

Production of a word w in L can be in a divide-and-conquer fashion: split w
into halves, separately produce them with the corresponding states at each end,
and connect them. Thus, the time that it takes to produce a word having length
n is "log(n + 1)# + 2 (the additive term of 2 is for eliminating the initial and
accept states after producing a word of the form q0wqf such that qf ∈ F ). Thus,
L ∈ SPLTIME[O(log n)]. This proves the theorem. 
�

Note that the set of rules in the above construction is finite. Thus, from the
characterization of the class of languages generated by extended splicing systems
with a finite set of rules [12] we have:

Corollary 1. Let F be an arbitrary class of monotonically nondecreasing func-
tions from N to itself such that F ⊇ O(log n). If the set of rules is restricted to
be finite, then REG = SPLTIME[O(log n)] = SPLTIME[F ].

We go on to show some closure properties for the class SPLTIME[O(T (n))].

Theorem 2. Let T (n) be an arbitrary monotonically nondecreasing function
such that T (n) ∈ Ω(log n). Then the class SPLTIME[O(T (n))] is closed under
concatenation, star-operation, and union.
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Proof (sketch). Let L1 and L2 be languages in SPLTIME[O(T (n))]. For each i ∈
{1, 2}, suppose that Li ∈ SPLTIME[T (n)] is witnessed by an extended splicing
system Hi = (Vi, Σi, Ai, Ri). Without loss of generality, assume that there is no
common nonterminal between H1 and H2, that is, (V1−Σ1)∩ (V2−Σ2) = ∅. To
prove the theorem it suffices to show that L1 ∪L2, L1L2, and (L1)∗ each belong
to SPLTIME[O(T (n))].

For all three cases, the idea is to add delimiters αi to the left and βi to the
right to all words in Ai. The rules of each Ri are adapted to also test for the
presence of αi or βi. This ensures that there are no interferences between the
derivations in the two systems. In this way, if Hi produces w, we obtain αiwβi.
Finally, we add rules to perform the operation (for catenation and star) and to
remove the delimiters. It is not hard to see that the resulting languages are in
SPLTIME[O(T (n))]. 
�

We note here that it is unknown whether for any time function T (n) ∈ Θ(log n),
SPLTIME[O(T (n))] is closed under intersection or under complementation.

4 Splicing Systems Versus One-Way Nondeterministic
Space-Bounded Computation

In this section we consider an upper bound of splicing time complexity classes.
The difficulty here is that, although the extended splicing system is universal,
there doesn’t appear to exist any immediate connection between the running
time of a Turing machine and the number of production rounds required by the
splicing system that produces the language recognized by the Turing machine.

A straightforward method for checking the membership of a word w in a
language L in SPLTIME[T (n)] would be to simulate the splicing system for at
most T (|w|) rounds while keeping the collection of the words that have been
produced and then check whether w appears in the final collection. Though cor-
rect, the space needed for this algorithm can increase rapidly. Indeed, following
this strategy gives rise to a doubly-exponential (!) space upper bound.

This upper bound is, not surprisingly, very naive. By guessing the “compo-
nents” of the splicing operations that are conducted produce a word w, we can
reduce the upper bound to a nondeterministic exponential time.

Theorem 3. For all monotonically nondecreasing functions T (n),

SPLTIME[T (n)] ⊆ ∪c>0NTIME[cT (n)].

Proof. Let L ∈ SPLTIME[T (n)] be witnessed by an extended splicing system
Γ = (V, Σ, A, R). Let d be the length of the longest word in A. For all natural
numbers i ≥ 0, and for all w ∈ V ∗ such that SplicingTimeΓ (w) ≤ i, |w| ≤ d2i.
Also, for all positive integers i and for all w ∈ V ∗, SplicingTimeΓ (w) ≤ i if and
only if
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– either w ∈ SplicingTimeΓ (w) ≤ i− 1 or
– there exist x, y, z ∈ V ∗ and a rule r ∈ R such that SplicingTimeΓ (u) ≤ i−1,

SplicingTimeΓ (v) ≤ i − 1, and (u, v) (r (z, w) (recall that we use (u, v) (r

(z, w) and (u, v) (r (w, z) interchangeably).

Consider the following nondeterministic algorithm Q that takes as input an
integer i ≥ 0 and a word w ∈ V ∗ and tests whether w is produced by Γ within
i rounds.

Step 1. If i = 0, return 1 if w ∈ A and 0 otherwise.
Step 2. Nondeterministically select u, v ∈ V ∗ having length at most d2i−1,

z ∈ V ∗ having length at most d2i, and a finite automaton quadruple r ∈ R.
Step 3. Test whether (u, v) (r (z, w) by exhaustively examining all possible

positions for aligning the finite automata on u and v. If (u, v) (r (z, w)
doesn’t hold, return 0.

Step 4. Make two recursive calls, Q(i− 1, u) and Q(i− 1, v). Both return with
1 as the value, return 1; otherwise, return 0.

It is not difficult to see that this nondeterministic algorithm works correctly. The
total number of recursive calls to Q on input (i, w) is at most 2+ 22 + · · ·+ 2i <
2i+1; the running time for the algorithm excluding the time spent on recursive
calls is bounded by polynomial in d2i on input (i, w). Thus, the total running
time is O(ci) for some constant c > 0. Now, to test whether w ∈ L, we have only
to execute Q(T (|w|), w). This implies, that L ∈ NTIME[cT (n)]. This proves the
theorem. 
�

From the above theorem, we immediately have the following corollary.

Corollary 2. SPLTIME[O(log n)] ⊆ NP.

The idea of nondeterministic verification shown in the above can be further ex-
plored to tighten the upper bound. For a function T (n) from N to N,
1-NSPACE[T (n)] is the set of all languages accepted by a T (n) space-bounded
nondeterministic Turing machine with one-way input tape [5]. In the one-waynon-
deterministic space-bounded Turing machine model, since the input head moves
from left to right only, the usable amount of space must be communicated to the
machine prior to computation. For a T (n) space-bounded machine in this model,
this communication is accomplished by assuming that on input of length n on each
work tape a blank word of length T (n) is written flanked by end markers with the
initial position of the head being at the symbol immediately to the right of the left
end marker and that the head never goes beyond the end markers.

Among the many 1-NSPACE classes of particular interest to us is 1-NL, which
is ∪c>01-NSPACE[c(log n)]. Hartmanis and Mahaney [5] show that the reacha-
bility problem of topologically sorted directed graph is complete for 1-NL under
the logarithmic space-bounded many-one reductions.

We show an improved upper-bound of 1-NL for SplicingTime.

Theorem 4. SPLTIME[O(log n)] ⊆ 1-NL.
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This theorem is straightforwardly derived from the following more general
statement.

Theorem 5. For all f(n) ≥ log n, SPLTIME[f(n)] ⊆ 1-NSPACE[f(n)].

Proof (sketch). Let f(n) ≥ log n. Let L be a language in SPLTIME[f(n)]. Let
Γ = (V, Σ, I, R) be a splicing system that witnesses L ∈ SPLTIME[f(n)]. We
regard each rule in R as a quadruple of finite automata r = (A, B, C, D).

Let n be an arbitrary natural number. The process in which Γ produces a
word in at most f(n) rounds can be described as a node-labelled, full binary tree
of height at most f(n) with each leaf labelled with a word in I and each non-leaf
labelled with a word w ∈ V ∗, a rule r, and two natural numbers i and j.

Each non-leaf represents a splicing operation as follows: Let g be a non-leaf
with labels w, r, i, j. Let r = (A, B, C, D), and let u and v be the word label of
the left and right child respectively. Then u is of the form u1u2 and v is of the
form v1v2 such that

– w = u1v2, |u1| = i, |v1| = j,
– u1 ∈ L(A), u2 ∈ L(B), v1 ∈ L(C), and v2 ∈ L(D).

Note that given a valid production tree the word label of each non-leaf can be
computed from the labels of its proper descendants. The output of the production
tree is the word label of the root.

Using this notion of production trees, the membership test of any word x ∈ Σn

in L can be done by testing whether there is a production tree of height at most
f(n) whose output is x. Our goal is to design an O(f(n)) space-bounded one-way
nondeterministic algorithm for this task. So our algorithm should

1. Encode, as a word over some finite alphabet, the tree structure, the leaf
labels, and the rule and the splicing positions at each non-leaf.

2. Test, given such an encoding, whether it is in a valid format and, if so, in
the specified production tree whether the word assigned to each leaf is in the
initial language I and whether the splicing rule specified at each non-leaf
can be successfully applied to the word labels of the children.

3. Test whether x is the output of the encoded tree.

We will not give details of our encoding, but it should be clear that introducing
delimiters we can represent the tree structure. After guessing such a production
tree, it is not particularly difficult to see that its syntactical correctness can be
tested deterministically in space O(f(n)) by scanning w from left to right. For
checking the correctness of the splicing specified at each non-leaf, we need to
check the parts of the encoding against the rule automata. This means moving
down the tree until a word over V is reached. Since membership in a regular
language can be tested by simply scanning the input from left to right and
only nodes appearing in a downward path are considered simultaneously, this
test can be done deterministically in space O(f(n)) by scanning w from left to
right. Finally, checking whether the production tree produces x can be tested by
comparing the letters of W of x letter by letter. Thus, by concurrently running



308 R. Loos and M. Ogihara

these tests while nondeterministically producing an encoding of a production
tree, the membership of x in L can be tested in space O(f(n)). 
�

Theorem 4 immediately raises the question of whether we might have equal-
ity between SPLTIME[O(log n)] and 1-NL. We show that this is unlikely—even
allowing the use of larger splicing systems for longer words does not enable log-
arithmic time-bounded splicing systems to produce anything beyond 1-NL. A
family of boolean circuits F = {Fn}n≥0 is said to be logarithmic-space uni-
form [16] if the function 1n �→ Fn is logarithmic-space computable. By analogy
we introduce a concept of uniform families of splicing systems.

Let Γ = (V, Σ, A, R) be a splicing system. We consider a binary encoding of
Γ similar to those given for Turing machines (see, e.g. [6]). Here we leave out
the details of the encoding.

Definition 3. Let f(n) ≥ log n be a function from N to itself. We say that a
family of extended splicing systems, G = {Γn}n≥0, is f(n)-space uniform if the
function that maps for each n ≥ 0 from 1n to the encoding of Γn is computable
in deterministic f(n) space.

Definition 4. We say that a family of extended splicing systems, G = {Γn}n≥0

accepts a language L if the splicing systems in G have the same terminal alphabet
Σ such that L ⊆ Σ∗ and for all n ≥ 0, it holds that L=n, the length-n portion
of L, is equal to that of L(Γn).

Now we characterize 1-NSPACE using uniform families of splicing systems.

Theorem 6. Let f(n) ≥ log n be a function from N to itself that is (Turing-
machine) space-constructible. A language L is in 1-NSPACE[f(n)] if and only
if there is an f(n)-space uniform family G = {Γn}n≥0 of splicing systems that
accepts L with the following properties:

1. There exists a constant c such that for all n ≥ 0, each automaton appearing
in the rule set of Γn has at most c states.

2. There exists a constant d such that for all n ≥ 0 and for all w ∈ L=n, there
is a production tree of Γn to produce w of height not more than df(n).

Proof (sketch). We omit the “if”-part, which is based on the nondeterministic
one-way algorithm presented in the proof of Theorem 5. To prove the “only
if”-part, let L be accepted by a one-way nondeterministic f(n) space-bounded
machine M . Let Σ be the input alphabet of M . We assume that a special
symbol 3 not in Σ is appended at the end of the input of M so that M knows
the end of the input. We also assume that M accepts only after seeing a 3. Let
Q be the set of states of M . Let qA be a unique accept state of M . For each
symbol a ∈ Σ, introduce a new symbol â. Let Σ̂ be the collection of all newly
introduced symbols and let Δ = Σ ∪ {3} ∪ Σ̂. Let n be fixed. We construct Γn

as follows: Let Sn be the set of all configurations of M on an input of length
M without the specification of the input head position and without the symbol
scanned by the input head. Since M is f(n) space-bounded, each element in Sn
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can be encoded using O(f(n)) characters. Let α0 be the initial configuration
in Sn and let Θ be the set of all accepting configurations in Sn. Suppose M
may nondeterministically transition from a configuration α to another β upon
scanning an input symbol a. If the input head moves to the right when M makes
the transition, we describe this as (α, a) → β; if the input head does not move
when M makes the transition, we describe this as (α, â)→ β.

Let @ and % be new symbols. We define

Vn = Δ ∪ Sn ∪ {@, %},
In = {@, %} ∪ {αaβ | (α, a)→ β is a transition of M},
Rn = {SnΣ+#α$α#(Σ ∪ {3})+Sn | α ∈ Sn} ∪

{Snh#α$αh#Sn | α ∈ Sn, h ∈ Σ̂} ∪
{Sn#ĥα$α#hSn | α ∈ Sn, h ∈ Σ} ∪
{α0Σ∗# 3 Θ$@#λ, α0#Σ∗$λ#&}.

Note that each finite automaton appearing in these rules has at most four
states, so its deterministic version has at most 16 states. The constant c thus
can be 16. Γn produces valid computations of M and gives a string w ∈ σ∗ only if
it takes M from an initial to an accepting configuration. The system produces a
word x ∈ L=n in a number of rounds bounded by "log(hf(n)+1)#+"log(n+1)#+2
for some fixed constant h. Since f(n) ≥ log n, this bound is Θ(f(n)). 
�
The following corollary immediately follows from the above theorem.

Corollary 3. A language L is in 1-NL if and only if there is a logarithmic-
space uniform family G = {Γn}n≥0 of splicing systems that accepts L with the
following properties:

1. There exists a constant c such that for all n ≥ 0, each automaton appearing
in the rule set of Γn has at most c states and has at most c transitions
appearing in the encoding.

2. There exists a constant d such that for all n ≥ 0 and for each w ∈ L=n,
there is a production tree of Γn to produce w of height not more than d log n.

5 Splicing Systems Versus Pushdown Automata

Theorem 4 sheds light on the question of whether CFL ⊆ SPLTIME[O(log n)].
Since the closure of 1-NL under the logarithmic-space Turing reducibility (see [7])
is NL, the closure of SPLTIME[O(log n)] under that reducibility is included in
NL. On the other hand, the closure of CFL under the logarithmic-space many-
one reducibility, i.e., LOGCFL, is equal to SAC1, the languages accepted by a
logarithmic space uniform, polynomial-size, logarithmic-depth semi-unbounded-
fan-in circuits [17]. The class SAC1 is known to include NL but it is unknown
whether the two classes are equal to each other. If CFL ⊆ SPLTIME[O(log n)],
then we have that SAC1 = NL. Because of this, it appears difficult to settle
the question of whether CFL ⊆ SPLTIME[O(log n)]. We show that CFL ⊆
SPLTIME[O(n)]. This inclusion follows from the following general result.
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Theorem 7. Let f(n) ≥ log n be an arbitrary function. Let L be a language
accepted by a pushdown automaton M with the property that for each member
x of L there exists an accepting computation of M on x such that the height of
the stack of M never exceeds f(|x|). Then L belongs to SPLTIME[f(n)].

For lack of space, we omit the proof of this theorem, in which we construct a
splicing system which simulates M in a way reminiscent of the system used in
Theorem 6.

The standard PDA algorithm for a context-free language uses the Greibach
normal form and the stack height is bounded by a linear function of the input
size. More precisely, one push operation is executed when a production rule of
the form A → BC is performed and when alignment of C with the input is
postponed until the alignment of B with the input has been completed (see, for
example, [6]). Since each nonterminal produces a nonempty word, this property
means that the number of symbols in the stack does not exceed the length of
the input. This observation immediately yields the following corollary.

Corollary 4. CFL ⊆ SPLTIME[O(n)],

Can we improve the upper bound of SPLTIME[O(n)] to SPLTIME[O(log n)]?
This is a hard question to answer. As mentioned earlier, the logarithmic-space re-
ducibility closure of CFL is equal to SAC1, the languages accepted by polynomial
size-bounded, logarithmic depth-bounded, logarithmic-space uniform families of
semi-unbounded-fan-in (OR gates have no limits on the number of input sig-
nals feeding into them while the number is two for AND gates) circuits. This
class clearly solves the reachability problem, so SAC1 ⊆ NL, but it is not known
whether the converse holds. Theorem 4 shows that SPLTIME[O(log n)] ⊆ 1-NL.
Since NL is closed under logarithmic-space reductions, we have that the closure
of SPLTIME[O(log n)] under logarithmic-space reductions is included in NL. So,
the hypothesis CFL ⊆ SPLTIME[O(log n)] implies SAC1 = NL.

Proposition 2. CFL �⊆ SPLTIME[O(log n)] unless SAC1 = NL.

6 Conclusions and Further Research

In this paper, we laid the foundations of the study of time complexity in splicing
systems. We defined the time complexity function in terms of the number of
rounds needed to generate a word of length n. Specifically, for each n we define
the time complexity of the system at length n to be the maximum of the smallest
number of rounds needed to generate the words having length n in the language
produced by the system. We showed that the class SPLTIME[O(log n)] is in-
cluded in the class 1-NL, and in general SPLTIME[f(n)] ⊆ 1-NSPACE[f(n)].
In addition, we saw that SPLTIME[O(log n)] includes all regular languages and
SPLTIME[O(n)] includes all context-free languages. In fact, SPLTIME[f(n)]
contains all languages accepted by a pushdown automaton with maximal stack
height f(|x|) for a word x.
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Our work gives rise to many interesting research questions. Of course, we
would like to find an exact characterization of our splicing classes. By our char-
acterization of 1-NSPACE[f(n)] in terms of splicing system we show that equal-
ity with SPLTIME[f(n)] is unlikely: it is the class of languages accepted by a
f(n)-space uniform family of extended splicing systems whose production time
is O(f(n)) such that each finite automaton appearing in the splicing systems has
at most a constant number of states. We believe that our concept will be a useful
tool in understanding the intrinsic computational power of splicing systems.
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Abstract. Finite-turn pushdown automata (PDA) are investigated con-
cerning their descriptional complexity. It is known that they accept ex-
actly the class of ultralinear context-free languages. Furthermore, the
increase in size when converting arbitrary PDAs accepting ultralinear
languages to finite-turn PDAs cannot be bounded by any recursive func-
tion. The latter phenomenon is known as non-recursive trade-off. In this
paper, finite-turn PDAs accepting letter-bounded languages are consid-
ered. It turns out that in this case the non-recursive trade-off is reduced
to a recursive trade-off, more precisely, to an exponential trade-off. A
conversion algorithm is presented and the optimality of the construc-
tion is shown by proving tight lower bounds. Furthermore, the question
of reducing the number of turns of a given finite-turn PDA is studied.
Again, a conversion algorithm is provided which shows that in this case
the trade-off is at most polynomial.

Keywords: automata and formal languages, descriptional complexity,
finite-turn pushdown automata, recursive trade-offs, bounded languages.

1 Introduction

Finite-turn pushdown automata (PDAs) were introduced in [2] by Ginsburg and
Spanier. They are defined by fixing a constant bound on the number of switches
between push and pop operations in accepting computation paths of PDAs. The
class of languages defined by these models is called the class of ultralinear lan-
guages and is a proper subclass of the class of context-free languages. It can
be also characterized in terms of ultralinear and non-terminal bounded gram-
mars [2]. (In the special case of 1-turn PDAs, i.e., devices making at most one
switch between push and pop operations, we get the class of linear context-free
languages).
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T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 312–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Descriptional Complexity of Bounded Context-Free Languages 313

In [8], descriptional complexity questions concerning finite-turn PDAs were
investigated, by showing, among other results, the existence of non-recursive
trade-offs between PDAs and finite-turn PDAs. Roughly speaking, this means
that for any recursive function f(n) and for arbitrarily large integers n, there
exists a PDA of size n accepting an ultralinear language such that any equivalent
finite-turn PDA must have at least f(n) states. Thus, a PDA with arbitrary many
turns may represent an ultralinear language more succinctly than any finite-turn
PDA and the savings in size cannot be bounded by any recursive function.

This phenomenon of non-recursive trade-offs was first observed between con-
text-free grammars and deterministic finite automata (DFAs) in the fundamental
paper by Meyer and Fischer [9]. Nowadays, many non-recursive trade-offs are
known which are summarized, e.g., in [1] and [7]. In the context of context-free
languages non-recursive trade-offs are known to exist between PDAs and deter-
ministic PDAs (DPDAs), between DPDAs and unambiguous PDAs (UPDAs),
and between UPDAs and PDAs.

Interestingly, the witness languages used in [9] were defined over an alphabet
of two symbols and leave open the unary case which was recently solved in [10]
by proving an exponential trade-off. Thus, the non-recursive trade-off in the bi-
nary case turns into a recursive trade-off in the unary case. More generally, a
careful investigation of the known cases of non-recursive trade-offs reveals that
the used witness languages are not bounded resp. word-bounded, i.e., they are
not included in some subset of w∗1w∗2 . . . w∗m for some fixed words w1, w2, . . . , wm.
So, the question arises whether the above non-recursive trade-offs can be trans-
lated to the bounded case or whether the structural limitation on boundedness
is one that will allow only recursive trade-offs.

In this paper we tackle this question and restrict ourselves to the case of letter-
bounded languages, namely, subsets of a∗1 . . . a∗m, where a1, . . . , am are symbols.
Our main result shows that for these languages the trade-off between PDAs (or
context-free grammars) and finite-turn PDAs becomes recursive. More precisely,
in Section 3 we first show that each context-free grammar in Chomsky normal
form with h variables generating a letter-bounded set can be converted to an
equivalent finite-turn PDA whose size is 2O(h). Furthermore, the resulting PDA
makes at most m − 1 turns where m is the number of letters in the terminal
alphabet. In a second step, an exponential trade-off is also shown for arbitrary
context-free grammars. We prove (in Section 5) that this result is tight by show-
ing that the size of the resulting PDA and the number of turns cannot be reduced.
Note that this result is a generalization of the above-mentioned transformation
of unary context-free grammars into finite automata which is presented in [10].
In Section 4 the investigation is further deepened by studying how to reduce the
number of turns in a PDA. In particular, given a k-turn PDA accepting a subset
of a∗1a∗2 . . . a∗m, where k > m−1, we show how to build an equivalent (m−1)-turn
PDA. It turns out that in this case the trade-off is polynomial. This result is also
used to prove the optimality of our simulation of PDAs accepting letter-bounded
languages by finite-turn PDAs. The results of this paper on letter-bounded lan-
guages can be seen as a first step towards proving similar results for the general
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situation of word-bounded languages. Note that many proofs are omitted in this
version of the paper due to space limits.

2 Preliminaries and Definitions

Let Σ∗ denote the set of all words over the finite alphabet Σ, with the empty
string denoted by ε, and Σ+ = Σ∗ \ {ε}. Given a string x ∈ Σ∗, |x| denotes its
length. For the sake of simplicity, we will consider languages without the empty
word ε. However, our results can be easily extended to languages containing ε. We
assume that the reader is familiar with the common notions of formal language
theory as presented in [5].

A context-free grammar (CFG, for short) will be denoted as usual as a 4-tuple
G = (V, Σ, P, S). For productions and derivations, we will use the symbols →,
⇒, �⇒, and +⇒, with the usual meanings. If T is a parse tree whose root is labeled
with a variable A ∈ V and such that the labels of the leaves, from left to right,
form a string α ∈ (V ∪Σ)∗, then we write T : A

�⇒ α. Furthermore, we indicate
as ν(T ) the set of variables which appear as labels of some nodes in T .

Let M = (Q, Σ, Γ, δ, q0, Z0, F ) be a pushdown automaton [5]. The language
accepted by M will be denoted, as usual, as T (M). A configuration of M is a
triple (q, w, γ) where q is the current state, w the unread part of the input, and
γ the current content of the pushdown store. Given two configurations c′, c′′, we
write c′ ( c′′ if c′′ is an immediate successor of c′. A sequence of configurations on
M (q1, w1, γ1) ( . . . ( (qk, wk, γk) is called one-turn if there exists i ∈ {1, . . . , k}
such that

|γ1| ≤ . . . ≤ |γi−1| ≤ |γi| > |γi+1| ≥ . . . ≥ |γk|

A sequence of configurations c0 ( . . . ( cm is called k-turn if there are integers
0 = i0, . . . , il = m with l ≤ k such that for j = 0, . . . , l−1 holds: cij ( . . . ( cij+1

is one-turn. M is a k-turn pushdown automaton if every word w ∈ T (M) is
accepted by a sequence of configurations which is k-turn. Without loss of gen-
erality, we make the following assumptions about PDAs (cf. [10]).

(1) at the start of the computation the pushdown store contains only the start
symbol Z0; this symbol is never pushed or popped on the stack;

(2) the input is accepted if and only if the automaton reaches a final state, the
pushdown store only contains Z0 and all the input has been scanned;

(3) if the automaton moves the input head, then no operations are performed
on the stack;

(4) every push adds exactly one symbol on the stack.

According to the discussion in [3] the size of a PDA should be defined de-
pending on the number of states, the number of stack symbols, the number of
input symbols, and the maximum number of stack symbols appearing in the
right hand side of transition rules. In this paper, we consider PDAs in the above
defined normal form over a fixed alphabet Σ. Thus, size(M) of a PDA M in
normal form is defined as the product of the number of states and the number
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of stack symbols. The size of a finite automaton is defined to be the number of
states. As measures for the size of a context-free grammar G = (V, Σ, P, S) we
consider the number of non-terminals of G, defined as Var(G) = #V , and the
number of symbols of G, defined as Symb(G) =

∑
(A→α)∈P (2 + |α|) (cf. [6]).

Some general information on descriptional complexity may be found in [1].

3 From Grammars to Finite-Turn PDAs

In this section, we study the transformation of CFGs into finite-turn PDAs. Our
main result shows that given a grammar G of size h, we can build an equivalent
finite-turn PDA M of size 2O(h). Furthermore, if the terminal alphabet of G
contains m letters, then M is an (m−1)-turn PDA. The tightness of the bounds
will be shown in Section 5. For the sake of simplicity, we start by considering
CFGs in Chomsky normal form with the measure Var for the size. At the end of
the section, we will discuss the generalization to arbitrary context-free grammars,
taking into consideration the more realistic measure Symb.

In the following we consider an alphabet Σ = {a1, . . . , am} and a CFG G =
(V, Σ, P, S) in Chomsky normal form with h variables, generating a subset of
a∗1 . . . a∗m. Without loss of generality, we can suppose that each variable of G
is useful, i.e., for each A ∈ V , there exist terminal strings u, v, w, such that
S

�⇒ uAw
�⇒ uvw.

It can be proved that with each variable A we can associate at most one pair
of indices from {1, . . . , m} as follows:

border(A) =

⎧
⎪⎪⎨

⎪⎪⎩

(l, r) if A
+⇒ uAv for some u ∈ a+

l , v ∈ a+
r

(l, l) if u ∈ a+
l and v = ε for any A

+⇒ uAv

(r, r) if u = ε and v ∈ a+
r for any A

+⇒ uAv
undefined otherwise.

For the sake of brevity, border(A) will be denoted also as (lA, rA).
We now consider the relation ≤ on the set of possible borders defined as

(l, r) ≤ (l′, r′) if and only if l ≤ l′ and if l = l′ then r ≥ r′, for all (l, r), (l′, r′) ∈
{1, . . . , m}2, with l ≤ r and l′ ≤ r′. It is not difficult to verify that ≤ is a total
order on the set of pairs of indices l, r from {1, . . . , m}, such that l ≤ r.

Actually, we are interested in computing borders of variables belonging to the
same derivation tree. In this case, either a variable is a descendant of the other in
the tree, and then the interval defined by its border is inside the interval defined
by the border of the other variable, or one variable is to the right of the other
one, and then the corresponding interval is to the right of the other one. More
formally, we can prove the following:

Lemma 3.1. Given a derivation tree T and two variables A, B ∈ ν(T ), if
border(A) ≤ border(B) then either:

(a) lA ≤ lB ≤ rB ≤ rA, or
(b) lA < lB, rA < rB, and rA ≤ lB.
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A partial derivation tree (or partial tree, for short) U : A
�⇒ vAx is a parse tree

whose root is labeled with a variable A and all the leaves, with the exception of
one whose label is the same variable A, are labeled with terminal symbols.

Given a partial tree U : A
�⇒ vAx, any derivation tree T : S

�⇒ z with
A ∈ ν(T ) can be “pumped” using U , by replacing a node labeled A in T with
the subtree U . In this way, a new tree T ′ : S

�⇒ z′ is obtained, where z′ = uvwxy,
such that z = uwy, S

�⇒ uAy, and A
�⇒ w. Moreover, ν(T ′) = ν(T ) ∪ ν(U).

On the other hand, any derivation tree producing a sufficiently long terminal
string can be obtained by pumping a derivation tree of a shorter string with a
partial tree. By applying the pumping lemma several times, we can prove that
any derivation tree can be obtained by starting from a derivation tree of a “short”
string (namely, a string of length at most 2h−1) and iteratively pumping it with
“small” partial trees. Furthermore, a sequence of partial trees can be considered
such that the sequence of borders of their roots is not decreasing. More precisely:

Lemma 3.2. Given a derivation tree T : S
�⇒ z of a string z ∈ Σ∗, with

|z| > 2h−1, for some integer k > 0 there are:

– k + 1 derivation trees T0, T1, . . . , Tk, where Ti : S
�⇒ zi, i = 0, . . . , k, 0 <

|z0| ≤ 2h−1, Tk = T , zk = z;
– k partial trees U1, . . . Uk, where, for i = 1, . . . , k, Ui : Ai

+⇒ viAixi, 0 <
|vixi| < 2h, and Ti is obtained by pumping Ti−1 with Ui.

Furthermore, border(A1) ≤ border(A2) ≤ . . . ≤ border(Ak).

Example 3.3. The language L = {an+k
1 ak+p

2 ap+n
3 | n, k, p > 0} can be generated

by a grammar in Chomsky normal form with the following productions:

S → A1E S′ → AB A→ A1F B → A2G A1 → a1

E → SA3 A→ A1A2 F → AA2 G→ BA3 A2 → a2

E → S′A3 B → A2A3 A3 → a3

Note that S
+⇒ a1Sa3, A

+⇒ a1Aa2, and B
+⇒ a2Ba3. It is easy to get a tree

T0 : S
+⇒ a2

1a2
2a2

3 and three partial trees U ′ : S
+⇒ a1Sa3, U ′′ : A

+⇒ a1Aa2, and
U ′′′ : B

+⇒ a2Ba3. Given integers n, k, p > 0, a derivation tree for the string
an+k
1 ak+p

2 ap+n
3 can be obtained considering T0, and pumping it n− 1 times with

the tree U ′, k− 1 times with the tree U ′′, and p− 1 with the tree U ′′′. Note that
border(S) = (1, 3) ≤ border(A) = (1, 2) ≤ border(B) = (2, 3).

At this point we are able to describe an (m − 1)-turn PDA recognizing the
language generated by the grammar G. Such a PDA implements the following
nondeterministic procedure, which builds strings in L(G) starting from short
derivation trees and pumping them, by respecting the order stated in Lemma 3.2.
The procedure verifies the matching between the generated and the input strings.
Its correctness is proved in Lemma 3.4 and Theorem 3.5.
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nondeterministically select a tree T : S
�⇒ an1

1 an2
2 . . . anm

m ,

with n1 + n2 + . . . + nm ≤ 2h−1

read an1
1 from the input

enabled ← ν(T )
(l, r) ← (1, m) // the “work context”
iterate ← nondeterministically choose true or false
while iterate do

nondeterministically select a tree U : A
+⇒ vAx, with 0 < |vx| < 2h,

A ∈enabled, and (l, r) ≤ border(A) = (lA, rA)
if r < rA then //new context to the right of the previous one

for j ← l + 1 to r − 1 do
consumeInputAndCounter(j)

endfor
for j ← r to lA do

consumeInputAndCounter(j)
consumeInputAndStack(j)

endfor
else //rA ≤ r: new context inside the previous one

for j ← l + 1 to lA do
consumeInputAndCounter(j)

endfor
endif
(l, r) ← (lA, rA)
read v from the input
if r �= l then push x on the stack

else read x from the input
endif
enabled ←enabled ∪ ν(U)
iterate ← nondeterministically choose true or false

endwhile
for j ← l + 1 to r − 1 do

consumeInputAndCounter(j)
endfor
for j ← r to m do

consumeInputAndCounter(j)
consumeInputAndStack(j)

endfor
if the end of the input has been reached then accept

else reject
endif

In the previous procedure and in the following macros, the instruction “read x
from the input tape,” for x ∈ Σ∗, actually means that the automaton verifies
whether or not x is a prefix of the next part of the input. If the outcome of
this test is positive, then the input head is moved immediately to the right of x,
namely, x is “consumed,” otherwise the machine stops and rejects.
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The macros are defined as follows:
ConsumeInputAndCounter(j):
while nj ≥ 0 do

read aj from the input tape
nj ← nj − 1

endwhile

ConsumeInputAndStack(j):
while the symbol at the top of the stack is aj do

read aj from the input tape
pop

endwhile

In order to prove that the pushdown automaton described in the previous
procedure accepts the language L(G) generated by the given grammar G, it is
useful to state the following lemma:

Lemma 3.4. Consider one execution of the previous procedure. Let T0 : S
�⇒

an1
1 . . . anm

m be the tree selected at the beginning of such an execution. At ev-
ery evaluation of the condition of the while loop, there exists a tree T : S

�⇒
ak1
1 . . . akm

m , for some k1, . . . , km ≥ 0, such that

– the scanned input prefix is z = ak1
1 . . . akl

l ;
– the pushdown store contains the string γ = apr

r . . . apm
m , where, for j =

r, . . . , m, pj ≥ 0 and kj = pj + nj;
– for l < j < r, kj = nj;
– enabled = ν(T ).

As a consequence:

Theorem 3.5. The pushdown automaton M described by the previous procedure
is an (m− 1)–turn PDA accepting the language L(G).

Proof. First, we show that the number of turns of the PDA M defined in the
above procedure is at most m − 1. To this aim we count how many times the
automaton can switch from push operations to pop operations.

At each iteration of the while loop, the automaton can perform push opera-
tions. Pop operations are possible only by calling the macro consumeInputAnd-
Stack. This happens first in the while loop, when the condition r < rA holds
true, i.e., when the new context (lA, rA) is to the right of the previous context
(l, r), and secondly after the end of the loop.

Let (l1, r1), (l2, r2), . . . (lk, rk) be the sequence of the contexts which in the
computation make the above-mentioned condition hold true. Hence, 1 < l1 <
. . . < lk ≤ m, that implies k ≤ m − 1. If k < m − 1, then the PDA M makes
at most k ≤ m− 2 turns in the simulation of the while loop and one more turn
after the loop. So the total number of turns is bounded by m− 1.

Now, suppose that k = m − 1. This implies that lk = m = rk. Before reaching
the context (lk, rk), at most m − 2 turns can be performed. When the automaton
switches to thenewcontext (lk, rk) = (m, m), it canmakepopoperations,by calling
the macro consumeInputAndStack(m). This requires one more turn. After that,
the automaton can execute further iterations, using the same context (m, m). By
reading the procedure carefully, we can observe that it never executes further push
operations. Finally, at the exit of the loop, further pop operations can be executed
(consumeInputAndStack). Hence, the total number of turns is bounded by m− 1.
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To prove that the language L(G) and the language accepted by the automaton
defined in the above procedure coincide it is enough to observe that given a
string z ∈ L(G), the procedure is able to guess the tree T0 and the partial
trees U1, . . . , Uk of Lemma 3.2, recognizing in this way z. Conversely, using
Lemma 3.4, it is easy to show that each string accepted by the procedure should
belong to L(G). 
�

Corollary 3.6. Let Σ = {a1, . . . , am}. For any context–free grammar G in
Chomsky normal form with h variables generating a letter-bounded language
L ⊆ a∗1 . . . a∗m, there exists an equivalent (m− 1)-turn PDA M with 2O(h) states
and O(1) stack symbols.

Proof. The most expensive information that the automaton defined in the pre-
vious procedure has to remember in its state are the m − 1 counters bounded
by 2h−1, and the set enabled, which is a subset of V . For the pushdown store
an alphabet with m + 1 symbols can be used. With a small modification, the
pushdown store can be implemented using only two symbols (one symbol to
keep a counter pj and another one to separate two consecutive counters), and
increasing the number of states by a factor m, to remember what input symbol
aj the stack symbol A is representing. 
�

Using standard techniques, a PDA of size n can be converted to an equivalent
CFG in Chomsky normal form with O(n2) variables. Hence, we easily get:

Corollary 3.7. Each PDA of size n accepting a subset of a∗1 . . . a∗m can be sim-
ulated by an equivalent (m− 1)-turn PDA of size 2O(n2).

We now consider the situation when the given CFG is not necessarily in Chomsky
normal form.

Corollary 3.8. Let Σ = {a1, . . . , am}. For any context–free grammar G with
Symb(G) = h and generating a letter-bounded language L ⊆ a∗1 . . . a∗m, there exists
an equivalent (m− 1)-turn PDA M with 2O(h) states and O(1) stack symbols.

Proof. At first, it can be observed that Lemma 3.2 is true not only for CFGs
in Chomsky normal form but also for CFGs whose productions have right hand
sides of length at most 2. Thus, all arguments in Section 3 are also true for such
“normalized” CFGs. It can be shown that any CFG G can be converted to an
equivalent CFG G′ such that the length of the right hand side of any production
belonging to G′ is at most 2 and Var(G′) ≤ Symb(G). With similar arguments
as in Corollary 3.6 we obtain the claim. 
�

4 Reducing the Number of Turns

By the results presented in Section 3, each context-free subset of a∗1 . . . a∗m can
be accepted by an (m − 1)-turn PDA. In particular, Corollary 3.7 shows that
the size of an (m− 1)-turn PDA equivalent to a given PDA of size n accepting
a subset of a∗1 . . . a∗m, is at most exponential in the square of n.
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In this section, we further deepen this kind of investigation by studying how
to convert an arbitrary k-turn PDA accepting a language L ⊆ a∗1a∗2 . . . a∗m to an
(m− 1)-turn PDA. It turns out that the increase in size is at most polynomial.

Let us start by considering the unary case, i.e., m = 1, which turns out to be
crucial to get the simulation in the general case. All PDAs we consider are in
normal form. Then we know that at most one symbol is pushed on the stack in
every transition.

Lemma 4.1. Let M be a PDA accepting a unary language L. Let L(q1, A, q2) be
the set of all words which are processed by 1-turn sequences π of configurations
starting with some stack height h in a state q1 and having A as topmost stack
symbol and ending with the same stack height h in some state q2 and having
A as topmost stack symbol. Then, L(q1, A, q2) can be recognized by an NFA M ′

such that size(M ′) ≤ n2 and n = size(M).

Proof. Consider the following CFG G with start symbol [q1, A, q2] having the
following rules. Let p, p′, q, q′ ∈ Q, Z ∈ Γ , and σ ∈ {a, ε}.
(1) [p, Z, q]→ σ[p′, Z, q], if δ(p, Z, σ) 4 (p′,−),
(2) [p, Z, q]→ σ[p, Z, q′], if δ(q′, Z, σ) 4 (q,−),
(3) [p, Z, q]→ [p′, Z ′, q′], if δ(p, Z, ε) 4 (p′, push(Z ′)) and δ(q′, Z ′, ε) 4 (q, pop),
(4) [p, Z, q]→ ε, if p = q.

We want to describe how M ′ simulates a 1-turn sequence π. We simulate
the parts of π with A as topmost stack symbol and stack height h with rules
(1) and (2). The first part from the beginning up to the first push operation is
simulated using rule (1). The second part starting at the end of the computation
and going backwards up to the last pop operation is simulated with rule (2).
We may change nondeterministically between rules (1) and (2). This is possible,
since the input is unary. Having simulated the parts of π with stack height h it
is decided nondeterministically to proceed with simulating the parts of π with
stack height h + 1. Rule (3) simulates a push operation and the corresponding
pop operation. Then, rules (1) and (2) can be again used to simulate the parts
of π with stack height h + 1. Now, we iterate this behavior and simulate all
computational steps in π while the stack height simulated is growing. Finally,
we can terminate the derivation when the stack height has reached its highest
level and all computational steps have been simulated.

Construct an NFA M ′ = (Q′, Σ, δ′, (q1, A, q2), F ′) as follows: Q′ = Q×Γ ×Q
and F ′ = {(q, Z, q) | q ∈ Q, Z ∈ Γ}. For σ ∈ {a, ε} the transition function δ′ is
defined as follows:

(1) δ′((p, Z, q), σ) 4 (p′, Z, q), if δ(p, Z, σ) 4 (p′,−),
(2) δ′((p, Z, q), σ) 4 (p, Z, q′), if δ(q′, Z, σ) 4 (q,−),
(3) δ′((p, Z, q), σ) 4 (p′, Z ′, q′), if δ(p, Z, ε) 4 (p′, push(Z ′)) and δ(q′, Z ′, ε) 4

(q, pop). 
�

Corollary 4.2. Let M be some 1-turn PDA accepting a unary language L.
Then, an equivalent NFA M ′ can be constructed such that size(M ′) ≤ n2 + 1
and n = size(M).
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Proof. We can use the above construction, but additionally have to guess in
a first step in which state a computation ends. Therefore, we add a new start
symbol S and add rules S → [q0, Z0, qf ] for all qf ∈ F . For the NFA construction
we add a new initial state q′0 and the following rules δ′(q′0, ε) 4 (q0, Z0, qf ), for
all qf ∈ F to M ′.

It is easy to observe that the parts of π with stack height one can be again
simulated with rules (1) and (2). The remaining part of the simulation is identical
to the above described construction. 
�

A subcomputation π′ is called strong of level A if it starts with some stack height
h and topmost stack symbol A, ends with the same stack height h, and in all
other configurations of π′ the stack height is greater than h.

Lemma 4.3. Let M be some k-turn PDA accepting a unary language L. Let
L(q1, A, q2) be the set of all words which are processed by sequences π of strong
computations of level A which, additionally, start in some state q1 and end in
some state q2. It can be observed that all words in L(q1, A, q2) are accepted
with j ≤ k turns. Then, L(q1, A, q2) can be accepted by an NFA M ′ such that
size(M ′) ∈ O(n2	log2 j
+2) and n = size(M).

Proof (Sketch). The construction is very similar to the above described construc-
tion. Additionally, we store the number of turns, which have to be simulated, in
the fourth component of the non-terminals. There are two cases how π may look
like. In the first case (type I, cf. Fig. 1, left) π consists of more than two strong
computations of level A. We introduce a new rule (5) which is used to decompose
a sequence of strong computations with i turns into two subsequences with i1
and i2 turns, respectively. A resulting subsequence is then either again of type
I and can be again decomposed with the new rule (5), or it is of type II, i.e., it
consists of one strong computation of level A (cf. Fig. 1, right). If this computa-
tion is 1-turn, it can be simulated with the rules (1) to (3) and finished with rule
(4). If it is not 1-turn, we can reduce it to a sequence of strong computations
of level B by using the rules (1) to (3). Then, the same analysis can be made
for strong computations of level B. An induction on the number of turns shows
that G generates L(q1, A, q2). 
�

A

B

A

Fig. 1. The two cases arising in the construction in Lemma 4.3

Corollary 4.4. Let M be some k-turn PDA accepting a unary language L.
Then, an equivalent NFA M ′ can be constructed with size(M ′) ∈ O(n2	log2 k
+2)
and n = size(M).
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Proof. Observe that an accepting computation in M is a sequence of strong
computations of level Z0 starting in q0 and ending in some accepting state. 
�

Now, we are able to consider the general case, i.e., m ≥ 1 and claim the following.

Theorem 4.5. Let M be some k-turn PDA accepting a letter-bounded language
L ⊆ a∗1a∗2 . . . a∗m. Then, an equivalent (m− 1)-turn PDA M ′ can be constructed
such that size(M ′) ∈ O(m6n4	log2 k
+8) and n = size(M).

It has been shown in the previous section that any L ⊆ a∗1a∗2 . . . a∗m can be
accepted by an (m − 1)-turn PDA. If L is accepted by a k-turn PDA such
that k > m − 1, then some turns are in a way “not necessary.” It is a result
of the proof of this theorem that this finite number of additional turns takes
place within unary parts of the input, i.e., while reading some input a∗i with
1 ≤ i ≤ m. With the help of the construction of Lemma 4.3 these parts can be
accepted by NFAs and hence do not affect the stack height in the construction
of an (m− 1)-turn PDA accepting L.

Corollary 4.6. The trade-offs between finite-turn pushdown automata that ac-
cept letter-bounded languages are at most polynomial.

5 Lower Bounds

In this section we show the optimality of the simulation of grammars generating
letter-bounded languages by finite-turn PDAs (Corollary 3.6), and of some other
simulation results presented in the paper. Even in this case, the preliminary
investigation of the unary case will be useful to afford the general case.

Theorem 5.1. For any integer n ≥ 1, consider the language Ln = {a2n}.

(1) Ln can be generated by some CFG in Chomsky normal form with n + 1
non-terminals.

(2) Every NFA accepting Ln needs at least 2n states.
(3) For each k > 0, every k-turn PDA accepting Ln is at least of size 2cn for

some constant c > 0 and any sufficiently large n.

From Theorem 5.1(3), it turns out that for each integer m the simulation result
stated in Corollary 3.6 is optimal. The witness languages are unary. Hence, they
can be also accepted by “simpler” devices, i.e., finite automata or PDAs with less
than m−1 turns. We now show the optimality in a stronger form, by exhibiting,
for each integer m, a family of witness languages that cannot be accepted with
less than m− 1 turns.

Theorem 5.2. Given the alphabet Σ = {a1, . . . , am}, for any integer n ≥ 1
consider the language

L̃n = {an0+n1
1 an1+n2

2 . . . a
nm−2+nm−1
m−1 anm−1

m | n0 = 2n, n1 ≥ 1, . . . , nm−1 ≥ 1}.



Descriptional Complexity of Bounded Context-Free Languages 323

(1) L̃n is generated by some CFG in Chomsky normal form with n + 4m − 3
non-terminals.

(2) L̃n is accepted by an (m− 1)-turn PDA of size 2O(n).
(3) For each integer k ≥ m − 1, every k-turn PDA accepting L̃n is at least of

size 2cn for some constant c > 0 and any sufficiently large n.
(4) L̃n cannot be accepted by any PDA which makes less than m− 1 turns.

Remark that we have considered so far only CFGs in Chomsky normal form and
the measure Var. It is easy to observe that we also obtain exponential trade-offs
when considering the measure Symb. This shows that the result of Corollary 3.8
is also optimal. Since L̃n can be accepted by a PDA of size O(n), we obtain that
the result of Corollary 3.7 is nearly optimal.

We complete this section by considering again the unary case. In particular,
we prove that the upper bound stated in Corollary 4.2 is tight.

Theorem 5.3. Consider the language family

L′n = {at | t ≥ 0 ∧ t ≡ 0 mod n ∧ t ≡ 0 mod n + 1}

for natural numbers n ≥ 2. Then each L′n can be accepted by some 1-turn PDA
of size 2n + 1, but every NFA accepting L′n needs at least n2 + n states.
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Abstract. A text is a word together with an additional linear order on it. We
study quantitative models for texts, i. e. text series which assign to texts ele-
ments of a semiring. We consider an algebraic notion of recognizability follow-
ing Reutenauer and Bozapalidis and show that recognizable text series coincide
with text series definable in weighted logics as introduced by Droste and Gastin.
In order to do so, we study certain definable transductions and show that they
are compatible with weighted logics. Moreover, we show that the behavior of
weighted parenthesizing automata coincides with certain definable series.

1 Introduction

Texts as introduced by Rozenberg and Ehrenfeucht [9] extend the model of words by
an additional linear order. The theory of texts originates in the theory of 2-structures
(cf. [8]) and it turns out that texts represent an important subclass of 2-structures,
namely T-structures [10]. Moreover, Ehrenfeucht and Rozenberg proposed texts as a
well-suited model for natural texts that may carry in its tree-like structure grammatical
information [10, p.264].

A number of authors [11,14,15] have investigated classes of text languages such as
the families of context-free, equational or recognizable text languages and developed
a language theory. In particular, the fundamental result of Büchi on the coincidence
of recognizable and definable languages has been extended to texts [15]. Recently,
Droste and Gastin [5] introduced weighted logics over words and showed a Büchi-
type characterization for weighted automata over words. They enrich the language
of monadic second order logic with values from a semiring in order to add quanti-
tative expressiveness. Since they define their logic for arbitrary commutative semi-
rings, the framework is very flexible, e.g. one may now express how often a certain
property holds, how much execution time a process needs or how reliable it is. The
result of Droste and Gastin has been extended to trees, traces, pictures and infinite
words [6,7,16,17].

In this paper we consider quantitative aspects of texts and study weighted logics for
them. We extend both results, that of Hoogeboom and ten Pas to a weighted setting
and that of Droste and Gastin to texts. However, rather than using a combinatorial au-
tomaton model we follow Hoogeboom and ten Pas who considered recognizability in
the algebraic sense. We regard a weighted algebraic recognizability concept for gen-
eral algebras following a line of research initiated by Reutenauer [19] and continued
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by Bozapalidis [2]. It generalizes weighted automata on words and trees as well as the
notion of recognizable languages as defined by Mezei and Wright in the 1960s [18].

In order to show the coincidence of recognizable series with the ones definable by
certain sentences in weighted logics, we refine the transductions from texts to terms
and vice versa given by Hoogeboom and ten Pas such that they are compatible with
weighted logics. Therefore, we study a certain subclass of Courcelle’s definable trans-
ductions [3] and show that it preserves definability with respect to weighted logics. This
tool enables us to easily transfer results on weighted logics to different structures.

An important subclass of texts, the class of alternating texts, forms the free bisemi-
group and is isomorphic to the class of the so-called sp-biposet introduced by Ésik and
Németh in [12]. In the last section we will generalize the parenthesizing automata of
Ésik and Németh to a weighted setting and show that their behaviors are exactly the
series definable by certain sentences in weighted logics.

We point out that our method extends to classes of graphs where there are similar
pairs of transductions as for texts. This applies e.g. to classes of graphs where the mod-
ular decompositions can be defined by certain restricted formulae in the graph itself,
i. e. to classes of graphs that are, in terminology of Courcelle, “RMSO-parsable”. This
will be subject of further research.

2 Recognizable Series over General Algebras

Let Σ be a finite ranked alphabet interpreted as a functional signature and let rk(f) ∈ �
denote the rank of f for all f ∈ Σ. Let C be a finitely generated Σ-algebra. We fix a
finite generating set Δ ⊆ C. We recall the following definition:

Definition 2.1 (Mezei & Wright [18]). A C-language L ⊆ C is recognizable if there is
a finite Σ-algebra A and a homomorphism ϕ : C → A such that ϕ−1(ϕ(L)) = L.

The free Σ-algebra over Δ is denoted TΣ(Δ) and comprises all Σ-terms or equivalently
all Σ-trees over Δ. Let ηC : TΣ(Δ) → C denote the unique epimorphism extending
id(Δ). Let x be a fresh symbol. The set of contexts CTX(Σ, Δ) ⊆ TΣ(Δ∪{x}) is the
set of trees where x appears at exactly one leaf. For s ∈ C and τ ∈ CTX(Σ, Δ), τ [s]
denotes the value of the term function of τ on C at s.

Similar to Definition 2.1, we introduce a concept of recognizability for (formal) C-
series, i. e. for functions from C to a semiring �. A semiring � is an algebraic struc-
ture (�, +, ·, 0, 1) such that (�, +, 0) is a commutative monoid, (�, ·, 1) is a monoid,
multiplication distributes over addition and 0 acts absorbing. If multiplication is com-
mutative, then � is a commutative semiring. If addition is idempotent, then � is an
idempotent semiring. We call a semiring locally finite if any finitely generated sub-
semiring is finite. Examples for semirings comprise the trivial Boolean algebra � =
({0, 1},∨,∧, 0, 1) and the natural numbers (�, +, ·, 0, 1) as well as the tropical semi-
ring (�∪ {∞}, min, +,∞, 0) and the arctical semiring (�∪ {−∞}, max, +,−∞, 0)
which are used to model problems in operations research. Important examples are also
the probabilistic semiring ([0, 1], max, ·, 0, 1) and the semiring of formal languages
(P(Δ∗),∪,∩, ∅, Δ∗). Let in the sequel� be a commutative semiring such that 0 �= 1.
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A �-semimodule M is an Abelian monoid (M, +) together with a scalar multipli-
cation · : �×M →M such that for all k, l ∈ � and m, n ∈M we have

k · (m + n) = k ·m + k · n, (k + l) ·m = k ·m + l ·m, (kl) ·m = k · (l ·m),
1 ·m = m, 0 ·m = 0.

A submonoid N of M is a subsemimodule if �N ⊆ N . It is finitely generated if
N = � ·m1 + . . . +� ·mn for some m1, . . . , mn ∈M .

A �-Σ-algebra A = (A , (μf )f∈Σ) consists of a �-semimodule A together with
multilinear operations μf of rank rk(f) (cf. [1]). Letting μf interpret the function sym-
bol f ∈ Σ, A becomes a Σ-algebra. A�-Σ-algebra is said to have finite rank if it is a
finitely generated�-semimodule.

Example 2.2. In the following, �〈〈C〉〉 denotes the set of (formal) C-series. Together
with pointwise addition and the scalar multiplication (k · S, s) = k · (S, s) for all
k ∈ �, S ∈ �〈〈C〉〉 and s ∈ C it is a �-semimodule. The set �〈C〉 of series P having
finite support, i. e. where {s ∈ C | (P, s) �= 0} is finite, is a subsemimodule of�〈〈C〉〉. It
is the free�-semimodule over C. Hence, any S : C → � extends linearly to�〈C〉. We
will not distinguish between S and its linear extension. P ∈ �〈C〉 is called polynomial.

We equip the �-semimodule�〈C〉 with multilinear operations in order to make it a
�-Σ-algebra. We define

(μf (P1, . . . , Pn), s) =
∑

s1,...,sn∈C
f(s1,...,sn)=s

(P1, s1) · . . . · (Pn, sn).

Note, as the Pi are polynomials, the sum is in fact finite. It is not hard to see that this
definition indeed gives multilinear operations μf . Hence, �〈C〉 is a �-Σ-algebra and
thus a Σ-algebra. Identifying s ∈ C with the polynomial that maps s to 1 and any other
element of C to 0, C becomes a subalgebra of�〈C〉.
We interpret �-Σ-algebras as algebras in the sense of universal algebra over
the signature (+, (k·)k∈�, (μf )f∈Σ). Semimodules are algebras over the signature
(+, (k·)k∈�). The notion of a �-Σ-homomorphism and a �-Σ-epimorphism as well
as the notion of a congruence are defined as usual in universal algebra.

Remark 2.3. It is not hard to see that�〈TΣ(Δ)〉 is the free�-Σ-algebra over Δ. Hence,
for any �-Σ-algebra A , any mapping μA : Δ → A extends uniquely to a �-Σ-
homomorphism μA : �〈TΣ(Δ)〉 → A .

For any function h : A → B the kernel of h denoted ker(h) is the set {(x, y) ∈
A2 | h(x) = h(y)}. If h is a homomorphism, then ker(h) is a congruence. Now, we are
ready to define a general notion of weighted recognizability.

Definition 2.4. A C-series S : C → � is recognizable if there is a �-Σ-algebra of
finite rank A and a�-Σ-epimorphism ϕ : �〈C〉 → A such that ker(ϕ) ⊆ ker(S).

Note that the definition is independent of the set of constants, i. e. independent of the
symbols of Σ of rank 0. Hence, we may e.g. add constants from Δ to Σ without altering
the class of recognizable series.

First, we show that Definition 2.4 generalizes Definition 2.1. For a language L ⊆ C
let �L denote the characteristic series of L.
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Proposition 2.5. A language L ⊆ C is recognizable iff �L : C → � is recognizable.

Proof. (If ). Let L ⊆ C and let �L : C → � be recognized by ϕ : �〈C〉 → A . Since
ker(ϕ) ⊆ ker(S), it is easy to see that ϕ|C saturates L.

(Only if ). Let L ⊆ C be recognized by ϕ : C → A . We extend ϕ to a �-Σ-
epimorphism ϕ : �〈C〉 → �〈ϕ(C)〉. We show that ker(ϕ) ⊆ ker(S) which concludes
the proof. Let P1, P2 ∈ C with ϕ(P1) = ϕ(P2). We may interpret P1, P2 as finite
subsets of C. We have (S, P1) = 1 iff there is c1 ∈ P1 with (S, c1) = 1 iff there is
c1 ∈ P1 with ϕ(c1) ∈ ϕ(L) iff there is c2 ∈ P2 with ϕ(c2) ∈ ϕ(L) iff (S, P2) = 1.
Hence, (S, P1) = (S, P2). 
�

We say a formal power series S : Δ∗ → � is regular if it is the behavior of some
weighted finite automaton. Reutenauer proved the following for commutative rings.
His proof also works for locally finite commutative semirings.

Proposition 2.6 (Reutenauer [19]). Let� be a commutative ring or let� be a locally
finite commutative semiring. A formal power series is recognizable iff it is regular.

Let S : C → � and let ∼S= {(P1, P2) ∈ �〈C〉 × �〈C〉 | (S, τ [P1]) =
(S, τ [P2]) for all τ ∈ CTX(Σ, Δ)}. It is not hard to see that this is a �-Σ-
congruence. Let ∼ be any congruence contained in ker(S) and let (P1, P2) ∈∼.
Then (τ [P1], τ [P2]) ∈∼ for any τ ∈ CTX(Σ, Δ) as ∼ is a congruence. Therefore,
we have (S, τ [P1]) = (S, τ [P2]) for all τ ∈ CTX(Σ, Δ). This shows that ∼⊆∼S

and, hence, that ∼S is the greatest congruence fully contained in ker(S). We define
AS = �〈C〉/ ∼S , the syntactic�-Σ-algebra of S. Note this definition is independent
of the choice of Δ. We conclude:

Proposition 2.7. A series S : C → � is recognizable iff AS is of finite rank.

Lemma 2.8. Let C1, C2 be finitely generated Σ-algebras, let ψ : C1 → C2 be an epi-
morphism and let S : C2 → �. Then ψ−1(S) is recognizable iff S is recognizable.

Proof. (If ). Extend ψ linearly to a �-Σ-epimorphism ψ : �〈C1〉 → �〈C2〉. As S is
recognizable, there is a �-Σ-algebra A of finite rank and a �-Σ-epimorphism ϕ :
�〈C2〉 → A such that ker(ϕ) ⊆ ker(S). Hence, ker(ψ ◦ ϕ) ⊆ ker(ψ−1(S)).

(Only if ). Let Δ1 ⊆ C1 be a finite generating set. Let ψ−1(S) : C1 → � be recog-
nizable. Hence, Aψ−1(S) is of finite rank. We have

P1 ∼ψ−1(S) P2 ⇐⇒(ψ−1(S), τ [P1]) = (ψ−1(S), τ [P2]) for all τ ∈ CTX(Σ, Δ1)

⇐⇒(S, ψ(τ [P1])) = (S, ψ(τ [P2])) for all τ ∈ CTX(Σ, Δ1)
⇐⇒(S, τ [ψ(P1)]) = (S, τ [ψ(P2)]) for all τ ∈ CTX(Σ, ψ(Δ1))
⇐⇒ψ(P1) ∼S ψ(P2).

There is, hence, an epimorphism from Aψ−1(S) to AS. Thus, we conclude that AS is
of finite rank, too. 
�

Corollary 2.9. A series S : C → � is recognizable iff η−1
C (S) is recognizable.

We now show that the proposed notion of recognizability coincides with the well-known
notion of the behavior of weighted tree automata (over trees in TΣ(Δ)) (see e.g. [1]). A
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weighted tree automatonA is a tuple (Q, δ, κ) where Q is a finite set of states, κ : Q→
� and δ = (δf )f∈Σ∪Δ is a family of mappings δf : Qrk(f) → �

Q. We extend δf to
δf : �Q × . . .×�Q

︸ ︷︷ ︸
rk(f)

→ �
Q by letting

δf (v1, . . . , vk)q =
∑

q1,...,qk∈Q
δf (q1, . . . , qk)q · (v1)q1 · . . . · (vn)qn .

Note that the δf are multilinear. Hence, they turn �Q into a �-Σ-algebra. Let
δ : �〈TΣ(Δ)〉 → �

Q be the �-Σ-homomorphism mentioned in Remark 2.3 ex-
tending δ : Δ → �

Q : a �→ δa. Now, the behavior ‖A‖: TΣ(Δ) → � of A is defined
by (‖A‖, t) =

∑
q∈Q δ(t)q ·κq . We say a formal tree series is regular if it is the behavior

of a weighted tree automaton.

Proposition 2.10. Let S : TΣ(Δ)→ �. Then S is regular if it is recognizable.

Proof. Let A be of finite rank generated by m1, . . . , mn and ϕ : �〈TΣ(Δ)〉 → A
a �-Σ-epimorphism such that ker(ϕ) ⊆ ker(S). We set Q = [n] := {1, . . . n}.
Let f ∈ Σ ∪ Δ with rk(f) = k and let i1, . . . ik ∈ Q. Then μf (mi1 , . . . , mik

) =
∑

1≤j≤n δf (i1, . . . , ik)jmj for some δf (i1, . . . , ik)j ∈ �. This defines δf : Qk →
�

Q. Since ker(ϕ) ⊆ ker(S), there is a linear form γ : A → � such that γ ◦ ϕ = S.
We define κ : Q→ � by setting κ(i) = γ(mi) for all 1 ≤ i ≤ n. Let A = (Q, δ, κ). It
is easy to see by induction that ϕ(t) =

∑
1≤j≤n δ(t)jmj . Hence, ‖A‖= S. 
�

Similar to the proof of Reutenauer for Proposition 2.6 one shows for trees:

Proposition 2.11. Let� be a commutative ring or let� be a commutative and locally
finite semiring. A tree series S : TΣ(Δ)→ � is recognizable iff it is regular.

Remark 2.12. For the proofs of Propositions 2.6 and 2.11 one needs that finitely gener-
ated modules over finitely generated rings are Noetherian, i.e. any submodule is finitely
generated. It is open whether the propositions hold for arbitrary commutative semirings.

3 Relational Structures and Weighted Logics

Let σ = ((Ri)i∈I , ρ) be a relational signature consisting of a family of relation
symbols Ri each of which is equipped with an arity through ρ : I → �+. Let
s = (V (s), (Rs

i )i∈I) be a σ-structure consisting of a domain V (s) together with a
relation Rs

i of arity ρ(i) for every relation symbol Ri. Subsequently, we assume that
the domain is finite. Moreover, we will distinguish relational structures only up to iso-
morphisms. In the following, let C be a class of σ-structures.

We review classical MSO logic for relational structures over signature σ =
((Ri)i∈I , ρ). Formulae of MSO(σ) are inductively built from the atomic formulae
x = y, Ri(x1 . . . xρ(i)), x ∈ X using negation ¬, the connective ∨ and the quan-
tifications ∃x. and ∃X. where x, y, xj are first-order variables and X is a second-order
variable.

Let ϕ ∈ MSO(σ) and let Free(ϕ) denote the set of variables that occur free in ϕ.
Let V be a finite set of first-order and second-order variables. A (V , s)-assignment γ is
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a mapping from V to the power set P(V (s)) such that first-order variables are mapped
to singletons. For v ∈ V (s) and T ⊆ V (s) we denote by γ[x→ v] and γ[X → T ] the
(V ∪ {x}, s)-assignment which equals γ on V \ {x} (resp. V \ {X}) and assumes {v}
for x (resp. T for X). Now, let Free(ϕ) ⊆ V and γ be a (V , s)-assignment. We write
(s, γ) |= ϕ if ϕ holds in s under the assignment γ.

We write ϕ(x1, . . . , xn, X1, . . . , Xm) if Free(ϕ) = {x1, . . . , xn, X1, . . . , Xm}. In
this case write s |= ϕ[v1, . . . , vn, T1, . . . , Tm] when we have (s, γ) |= ϕ if γ(xi) =
{vi} and γ(Xi) = Ti. For ϕ(x1, . . . , xk) ∈ MSO(σ) we define ϕs = {(v1, . . . , vk) ∈
V (s)k | s |= ϕ[v1, . . . , vk]}. In the sequel, we identify the pair (s, γ) with the relational
structure which expands s with additional unary relations xs = γ(x) and Xs = γ(X)
for each first-order variable x ∈ V and each second-order variable X ∈ V . By σV we
denote the corresponding signature and by NV the class of all σV -structures (s, γ) for
s ∈ C and γ a (V , s)-assignment. Let ϕ ∈ MSO(σ) and V ⊇ Free(ϕ) be a finite set of
variables, then LV(ϕ) = {(s, γ) ∈ NV | (s, γ) |= ϕ} and L (ϕ) = LFree(ϕ)(ϕ).

Let Z ⊆ MSO(σ). A language L ⊆ C is Z-definable if L = L (ϕ) for a sentence
ϕ ∈ Z . MSO(σ)-definable languages are simply called definable. Formulae containing
no quantification at all are called propositional. First-order formulae, i. e. formulae con-
taining only quantification over first-order variables are collected in FO(σ). The class
EMSO(σ) consists of all formulae ϕ of the form ∃X1. . . . ∃Xm.ψ where ψ ∈ FO(σ).

We now define weighted MSO logic as introduced in [5]. Formulae of MSO(�, σ)
are built from the atomic formulae k (for k ∈ �), x = y, Ri(x1 . . . xρ(i)), x ∈ X ,
¬(x = y), ¬Ri(x1 . . . xρ(i)), ¬(x ∈ X) using the connectives ∨, ∧ and the quantifi-
cations ∃x., ∃X., ∀x., ∀X.. Let ϕ ∈ MSO(�, σ) and Free(ϕ) ⊆ V . The weighted
semantics �ϕ�V of ϕ is a function which assigns to each pair (s, γ) ∈ NV an element of
�. For k ∈ � we put �k�V (s, γ) = k. For all other atomic formulae ϕ semantics �ϕ�V
is given by the characteristic function �LV(ϕ). Moreover, we define

�ϕ ∨ ψ�V(s, γ) = �ϕ�V (s, γ) + �ψ�V (s, γ),
�ϕ ∧ ψ�V(s, γ) = �ϕ�V (s, γ) · �ψ�V(s, γ),

�∃x.ϕ�V (s, γ) =
∑

v∈V (s)
�ϕ�V∪{x}(s, γ[x→ v]),

�∃X.ϕ�V (s, γ) =
∑

T⊆V (s)
�ϕ�V∪{X}(s, γ[X → T ]),

�∀x.ϕ�V (s, γ) =
∏

v∈V (s)
�ϕ�V∪{x}(s, γ[x→ v]),

�∀X.ϕ�V (s, γ) =
∏

T⊆V (s)
�ϕ�V∪{X}(s, γ[X → T ]).

We put �ϕ� = �ϕ�Free(ϕ). We give an example at the end of Section 5.

Remark 3.1

1. A formula ϕ ∈ MSO(�, σ) which does not contain a subformula k ∈ � can be
interpreted as an unweighted formula.

2. Let � be the boolean semiring. Then it is easy to see that weighted logics and
classical MSO logic coincide. In this case k is either 0 (false) or 1 (true).

Lemma 3.2. Let s be a σ-structure, ϕ ∈MSO(�, σ) and V ⊇ Free(ϕ). Moreover, let
γ be a (s,V)-assignment. Then �ϕ�V (s, γ) = �ϕ�(s, γ|Free(ϕ)).
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For words examples show that unrestricted application of universal quantification does
not preserve recognizability. We follow Droste and Gastin [5] to resolve this.

Definition 3.3. A function S : C → � is a definable step function if S =
∑

1≤j≤m kj�Lj for kj ∈ � and definable languages Lj ⊆ C.

Lemma 3.4. Let ϕ ∈ MSO(�, σ) and V ⊇ Free(ϕ). Then �ϕ� is a definable step
function iff �ϕ�V is a definable step function.

Definition 3.5. A formula ϕ ∈MSO(�, σ) is restricted if it does not contain universal
set quantification and whenever ϕ has subformula ∀x.ψ, then �ψ� is a definable step
function.

Let Z ⊆ MSO(�, σ). A series S : C → � is Z-definable if S = �ϕ� for a sentence
ϕ ∈ Z . MSO(�, σ)-definable series are simply called definable. Let RMSO(�, σ)
comprise all restricted formulae of MSO(�, σ). Furthermore, let REMSO(�, Σ) con-
sist of all ϕ ∈ RMSO(�, σ) having the form ∃X1. . . .∃Xm.ψ with ψ not containing
any set quantification.

The following theorem extends the result of Droste and Gastin [5] to trees in TΣ(Δ).
The domain of a tree is a finite, nonempty, prefix-closed subset of�∗ and it has relations
for the node labeling and relations Ei(x, y) saying that y is the i-th child of x.

Theorem 3.6 (Droste & Vogler [7]). Let � be a commutative semiring. A tree series
S : TΣ(Δ)→ � is regular iff it is RMSO-definable iff it is REMSO-definable.

We will show how to transfer this result to other relational structures using definable
transductions. First, we need some preparing definitions.

Definition 3.7. Let ϕ ∈ MSO(σ).

1. We call ϕ +-disambiguatable (resp. +-RMSO-disambiguatable) if there is a for-
mula (resp. restricted formula) ϕ+ such that �ϕ+� = �L (ϕ).

2. We call ϕ −-disambiguatable (resp. −-RMSO-disambiguatable) if there is a for-
mula (resp. restricted formula) ϕ− such that �ϕ−� = �L (¬ϕ).

3. We call ϕ disambiguatable (resp. RMSO-disambiguatable) if it is both
+-disambiguatable and−-disambiguatable (resp. +-RMSO-disambiguatable and
−-RMSO-disambiguatable).

For any +-disambiguatable (resp. +-RMSO-disambiguatable) formula ϕ we choose
an arbitrary but fixed formula (resp. restricted formula) ϕ+ such that �ϕ+� = �L (ϕ).
We define ϕ− analogously.

Remark 3.8

1. Every propositional formula is RMSO-disambiguatable. Moreover, if � is idem-
potent, then any ϕ is disambiguatable. If additionally ϕ does not contain universal
set quantification, then ϕ is RMSO-disambiguatable.

2. Let � = �. Consider the class of graphs without edges where the vertices are
labeled with a or b. Then ∀x. Laba(x) is +-RMSO-disambiguatable but it is not
−-disambiguatable.
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Using Theorem 3.6 and Doner’s famous Büchi-type theorem for trees [4], we obtain

Lemma 3.9. Let C be the class of trees. Then every formula ϕ ∈ MSO(σ) is RMSO-
disambiguatable.

The following lemma is a slight modification of Lemma 5.1 in [17].

Lemma 3.10 (Meinecke [17]). If there is a +-RMSO-disambiguatable formula
ϕ(x, y) such that (ϕ+)s is a linear order for every s ∈ C, then every first-order for-
mula is RMSO-disambiguatable.

4 Definable Transductions

In model theory it is common to interpret one relational structure in another. Cour-
celle [3] takes quite a constructive point of view by introducing the notion of definable
transductions between classes of relational structures. There one derives a new struc-
ture by interpreting it in m copies of a given structure. Here we only regard determin-
istic definable transductions which, therefore, we call definable functions. Let σ1 and
σ2 = ((Ri)i∈I , ρ) be two relational signatures and let C1 and C2 be classes of finite σ1-
and σ2-structures, respectively.

Definition 4.1. A (σ1, σ2)-m-copying definition scheme (without parameter) is a tuple

D = (ϑ, (δj)1≤j≤m, (ϕl)l∈I�m) where I � m = {(i, j̃) | i ∈ I, j̃ ∈ [m]ρ(i)}
of formulae in MSO(σ1) such that Free(ϑ) = ∅, Free(δj) = {x1} and Free(ϕl) =
{x1, . . . , xρ(i)} for l = (i, j̃) ∈ I � m.

Let D be a (σ1, σ2)-m-copying definition scheme and let s1 ∈ C1 such that s1 |= ϑ.
Then define the σ2-structure defD(s1) = s2 = (V (s2), (Rs2

i )i∈I) where V (s2) =
⋃

1≤j≤m δs1
j × {j} and Rs2

i = {(v1, j1), . . . , (vr, jr) ∈ V (s2)r | (v1, . . . , vr) ∈
ϕs1

i,(j1,...,jr)} with r = ρ(i). The function defined by D is given by s1 �→ defD(s1).

Definition 4.2. A partial function Φ : C1 → C2 is a definable function if there is a
definition scheme D such that Φ = defD . If there is a D such that ϑ, δj and ϕl are
disambiguatable, then Φ is an unambiguously definable function. If ϑ, δj and ϕl are
RMSO-disambiguatable, then Φ is a RMSO-definable function.

Courcelle [3] showed that the preimage of a definable set under a definable function
is again definable. We will show a similar result for series. Let Φ : C1 → C2 be a
partial function with domain dom(Φ) and let S : C2 → �. Define Φ−1(S) by letting
(Φ−1(S), s1) = (S, Φ(s1)) for all s1 ∈ dom(Φ) and (Φ−1(S), s1) = 0 otherwise.

Proposition 4.3. Let Φ : C1 → C2 be a partial function.

1. Let Φ be unambiguously definable. If there is a +-disambiguatable formula ϕ(x, y)
such that (ϕ+)s1 is a linear order for every s1 ∈ C1 and if S : C2 → � is definable,
then so is Φ−1(S).

2. Let Φ be RMSO-definable. If S : C2 → � is RMSO-definable, then so is Φ−1(S).

Remark 4.4. To show Proposition 4.3 one translates formulae in MSO(σ2) to formulae
in MSO(σ1) using an appropriate definition schemeD = (ϑ, (δj), (ϕl)). If ϑ+, δ+

j , δ−j ,
ϕ+

l and ϕ−l can be chosen in FO, then a translation can be given such that REMSO-
definability is preserved.
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5 Definable and Recognizable Text Series

A text is, roughly speaking, a word with an additional linear order. More precisely:

Definition 5.1. Let Δ be a finite alphabet. A text over Δ is a tuple (V, λ,≤1,≤2) where
≤1 and≤2 are linear orders over the domain V and λ : V → Δ is a labeling function.

We consider texts as relational structures where the relations are given by the labeling
and by ≤1 and ≤2. As usual, we identify isomorphic texts.

We now define an algebraic structure on texts following Hoogeboom and
ten Pas [15]. A biorder is a pair of two linear orders, i. e. a text without labeling. Each
biorder defines an operation – we obtain a new text by substituting given texts into the
nodes of the biorder. These texts then become intervals of the new text in both the first
and the second order. Subsets being intervals of both orders are called clans. A biorder
is primitive if it has only trivial clans, i. e. the singletons and the domain itself.

Let Σ be a finite set of primitive biorders of cardinality at least two and let
TXTΣ(Δ) be the set of texts generated from Δ using Σ. Let txt = ηTXTΣ(Δ). Apply-
ing the theory of 2-structures developed by Ehrenfeucht and Rozenberg [9] one obtains
that TXTΣ(Δ) is almost freely generated in the variety of all Σ-algebras from the sin-
gleton texts, i. e. from Δ. Only the two biorders of cardinality two satisfy an associative
law [15]. Thus, different preimages of a text τ ∈ TXTΣ(Δ) under txt only differ with
respect to these two associativity laws. Let sh(τ) be the preimage where the brackets
are in the right most form. Clearly, sh−1(txt−1(L)) = L for any L ⊆ TXTΣ(Δ).
Hoogeboom and ten Pas call sh(τ) the r-shape of τ . They show

Theorem 5.2 (Hoogeboom & ten Pas [15]). A language L ⊆ TXTΣ(Δ) is recogniz-
able iff it is definable.

To prove it, they show that sh and txt are definable functions. Now, Lemma 3.9 implies:

Proposition 5.3. The natural epimorphism txt : TΣ(Δ) → TXTΣ(Δ) is an RMSO-
definable function.

Proposition 5.4. The function sh : TXTΣ(Δ)→ TΣ(Δ) is RMSO-definable.

Proof (Sketch). Again we follow the idea in [15]. There a 2-copying scheme for sh
is given. The formulae involved contain nested universal quantification over sets. The
formula interpreting the label of an inner node of an r-shape in its text is e.g. in Σ4.
However, analyzing the formulae it turns out that any quantification only concerns clans.
Hence, we can transform them into equivalent first-order formulae by identifying a clan
with its first and its last element with respect to the first order, say. Now, any formula
involved becomes a first-order formula. The result follows then from Lemma 3.10. 
�

Theorem 5.5. Let� be a commutative ring or let� be a commutative and locally finite
semiring. Let S : TXTΣ(Δ)→ � be a text series. Then the following are equivalent.

1. S is recognizable.
2. S is RMSO-definable.
3. S is REMSO-definable.
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Proof (Sketch). Let S be recognizable. By Proposition 2.10 and Corollary 2.9 txt−1(S)
is regular. By Theorem 3.6 txt−1(S) is REMSO-definable. From the proofs of Propo-
sition 5.4 and Lemma 3.10 in [17] we obtain a 2-copying definition scheme for sh
consisting of restricted first-order formulae only. By Remark 4.4 sh−1(txt−1(S)) = S
is definable in REMSO and, hence, in RMSO.

It remains to show that S is recognizable if it is RMSO-definable. Let S be RMSO-
definable. From Proposition 5.3 using Proposition 4.3(2), txt−1(S) is RMSO-definable
and, hence, regular by Theorem 3.6. By Prop. 2.11 and Cor. 2.9 S is recognizable. 
�

Note that there is a +-disambiguatable formula ϕ(x, y) such that ϕt is the lexicographic
order of positions for any t ∈ TΣ(Δ). Using the result of Droste and Vogler on the
coincidence of regular and definable tree series over commutative and locally finite
semirings [7] and Proposition 4.3(1) we obtain the following theorem.

Theorem 5.6. Let � be a commutative and locally finite semiring. A text series
S : TXTΣ(Δ)→ � is definable iff it is recognizable.

A computable field is a field with computable operations (+,−, ·,−1); e.g. the rationals.

Corollary 5.7. Let � be a computable field. It is decidable whether two given re-
stricted sentences over texts ϕ and ψ satisfy �ϕ� = �ψ�.

Proof. The proof of Proposition 4.3 is effective and gives restricted tree formulae ϕ′

and ψ′ such that �ϕ′� = txt−1(�ϕ�) and �ψ′� = txt−1(�ψ�). Clearly, �ϕ� = �ψ� iff
�ϕ′� = �ψ′�. The latter can be decided by Corollary 5.9 of [7]. 
�

Similarly, using Corollary 6.7 of [7] we obtain

Corollary 5.8. Let� be a computable locally finite commutative semiring. It is decid-
able whether two given sentences over texts ϕ and ψ satisfy �ϕ� = �ψ�.

The following corollary sharpens one implication of Theorem 5.2.

Corollary 5.9. A language L ⊆ TXTΣ(Δ) is definable iff it is definable in EMSO.

Example 5.10. Let � = � be the ring of integers. Let Clan(x1, x2) be a first-order
formula saying that for a text τ , {x ∈ τ | x1 ≤1 x ≤1 x2} is a proper clan. Consider

ϕ = ∃x1, x2. Clan(x1, x2)+ ∧ ∀x, y.x1 ≤1 x, y ≤1 x2 → (x ≤1 y ↔ y ≤2 x).

For a text τ , (�ϕ�, τ) gives the number of proper clans generated only from the biorder
of cardinality two having two reversed orders. By Theorem 5.5 �ϕ� is recognizable.

6 Alternating Texts and Weighted Parenthesizing Automata

In this section let Σ = {◦h, ◦v} be the set of the two biorders of cardinality two,
where for ◦h both orders coincide. Then TXTΣ(Δ), the set of the so-called alternating
texts ([10, p. 261]), is the free bisemigroup generated by Δ; where a bisemigroup is a
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set together with two associative operations. Several authors have investigated the free
bisemigroup as a fundamental, two-dimensional extension of classical automaton the-
ory, see e.g. Ésik and Németh [12] and Hashiguchi et. al. (e.g. [13]). Ésik and Németh
consider as a representation for the free bisemigroup the so-called sp-biposets. They
define parenthesizing automata. Here we define weighted parenthesizing automata.

Definition 6.1. A weighted parenthesizing automaton (wpa for short) over Δ is a tuple
P = (H,V , Ω, μ, μop, μcl, λ, γ) where

1. H,V are finite disjoint sets of horizontal and vertical states, respectively.
2. Ω is a finite set of parentheses, 1

3. μ : (H×Δ×H) ∪ (V ×Δ× V)→ � is the transition function,
4. μop, μcl : (H× Ω × V) ∪ (V ×Ω ×H)→ � are the opening and closing paren-

thesizing functions and
5. λ, γ : H∪ V → � are the initial and final weight functions.

A run r of P is a certain word over the alphabet (H∪V)× (Δ∪Ω)× (H∪V) defined
inductively as follows. We also define its label lab(r), its weight wgt(r), its initial state
init(r) and its final state fin(r).

1. (q1, a, q2) is a run for all (q1, q2) ∈ (H×H) ∪ (V × V) and a ∈ Δ. We set

lab((q1, a, q2)) = a ∈ TXTΣ(Δ), wgt((q1, a, q2)) = μ(q1, a, q2),
init((q1, a, q2)) = q1 and fin((q1, a, q2)) = q2.

2. Let r1 and r2 be runs with fin(r1) = init(r2) ∈ H (resp. V). Then r = r1r2 is a
run having

lab(r) = lab(r1) ◦h lab(r2) (resp. lab(r) = lab(r1) ◦v lab(r2)),
wgt(r) = wgt(r1) ·wgt(r2), init(r) = init(r1) and fin(r) = fin(r2).

3. Let r be a run resulting from 2 such that fin(r), init(r) ∈ H (resp. V). Let q1, q2 ∈
V (resp.H) and s ∈ Ω. Then r′ = (q1, (s, init(r)) r (fin(r), )s, q2) is a run having

lab(r′) = lab(r), wgt(r′) = μop((q1, (s, init(r))) ·wgt(r) · μcl((fin(r), )s, q2)),
init(r′) = q1 and fin(r′) = q2.

Let τ ∈ TXTΣ(Δ). Since we do not allow repeated application of rule 3, there are only
finitely many runs with label τ . If r is a run with lab(r) = τ , init(r) = q1, fin(r) = q2,
we write r : q1

τ→ q2. The behavior of P is a series ‖P‖: TXTΣ(Δ)→ � with

(‖P‖, τ) =
∑

q1,q2∈H∪V
λ(q1) ·

∑

r:q1
τ→q2

wgt(r) · γ(q2).

An alternating text series S is regular if there is a wpa P such that ‖P‖= S.

1 Contrary to the definition of Ésik and Németh we let s ∈ Ω represent both the opening and
the closing parentheses. To help the intuition we write (s or )s.
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Proposition 6.2. Let S : TXTΣ(Δ)→ �. Then S is regular iff txt−1(S) is regular.

From Theorem 3.6 and Propositions 5.3 and 5.4 we now conclude the following con-
nection between weighted logics and weighted parenthesizing automata.

Theorem 6.3. Let� be any commutative semiring. An alternating text series is regular
iff it is RMSO-definable iff it is REMSO-definable.

Corollary 6.4. Let � be a commutative ring or let � be a commutative and locally
finite semiring. An alternating text series is regular iff it is recognizable.

Remark 6.5. The class of alternating texts is isomorphic to the class of sp-biposets.
There is an isomorphism that can be defined by propositional formulae (see e.g. [12]).
Thus, the results of the last two sections hold as well for sp-biposets.

Acknowledgments. The author thanks Pascal Weil, Manfred Droste and Dietrich
Kuske for their helpful comments as well as an anonymous referee whose remarks
resulted in improvements of the paper.
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Abstract. The paper deals with star-free languages in trace monoids. We define
a constrained star operation, named star-free star, and show a new characterisa-
tion of star-free trace languages, using this operation instead of complement. We
obtain this characterisation combining a star-free star characterisation for word
languages and logical characterisation of trace languages (Ebinger/Muscholl).
Moreover, some new, simple proofs of known results are presented in the
paper.
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1 Introduction

Traditional rational expressions (with union, concatenation and star) play an impor-
tant role in the theory of formal languages, since its very beginning (Kleene Theorem),
as well as in the general theory of monoids. Also a big role play extended rational
expressions (with intersection and complement, beside the traditional ones) and star-
free expressions (with union, concatenation and complement). Subsets defined by star-
free expressions are called star-free subsets. They are highly valued, as they have nice
algebraic (aperiodicity, Schützenberger [13]) and logical (first-order definability, Mc-
Naughton/Papert [7]) properties in free monoids.

Trace theory was initiated by Mazurkiewicz [6] (cf. [1,2] for surveys). It provides a
mathematical model for behaviour of concurrent systems. The most important results
about star-free trace languages are those of Guaiana/Restivo/Salemi [5] (aperiodicity)
and Ebinger/Muscholl [4] (first-order definability).

As it was mentioned above, star-free expressions differ from traditional rational ex-
pressions by complement replacing star. It is interesting and useful to have a method
of describing star-free subsets with (a subclass of) traditional rational expressions. We
introduced, in [10], a constrained star operation, named star-free star, and we showed
that this operation, together with union and product, is able to build the whole class of
star-free word languages (Theorem 5). It does not hold in all monoids (Example 4). A
question, if the same holds for trace languages, remained unsolved in [10].

In the present paper we put into work the logical characterisation (Theorem 9) of
Ebinger/Muscholl [4]. Combining the star-free-star characterisation of word languages
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with the logical characterisation of [4], we generalise the star-free-star characterisa-
tion to traces. Namely, we have shown that the classes of star-free and star-free star
languages coincide in any trace monoid. This is the main result of the paper.

The notion of star-free star seems to be quite useful. Using it, we produce new proofs
of results of Guaiana/Restivo/Salemi [5] (Theorem 7, (1)≡(4)) and Ebinger/Muscholl
[4] (Theorem 11), both much shorter than originals.

2 Preliminaries

In this section, we recall some basic notions and results, used in the paper.

2.1 Word and Trace Languages

An alphabet A is assumed to be finite. The set A∗ with concatenation as the product
operation form the free monoid; subsets of A∗ are called (word) languages. Let I ⊆ A×
A be a symmetric and irreflexive relation on A, called independency, its complement
D = A×A− I is named dependency.

The couple (A, I) or (A, D) is said to be a concurrent alphabet. Given a concurrent
alphabet (A, I), the trace monoid A∗/I is the quotient of the free monoid A∗ by the
least congruence on A∗ containing the relation {ab = ba | aIb}. Members of A∗/I
are called traces, and sets of traces (i.e. subsets of A∗/I) are called trace languages.
Clearly, a trace monoid A∗/I is free iff I = ∅. Given a monoid M , the complement of
a subset X ⊆M will be denoted by ′ , i.e. X ′ = M −X .
Let (A, I) be a concurrent alphabet. Any word w ∈ A∗ induces a trace [w] ∈ A∗/I –
the congruency class of w; any word language L ⊆ A∗ induces a trace language [L] =
{[w] | w ∈ L} – the set of all traces induced by members of L. Given a trace language
T ⊆ A∗/I , the flattening of T is the word language

⋃
T = {w ∈ A∗ | [w] ∈ T } –

the union of traces in T , viewed as subsets of A∗. Given a word language L ⊆ A∗, the
closure of L is the word language L̄ =

⋃
[L]. A word language L is said to be closed

(w.r.t. I) iff L = L̄ . The closure operation allows to study trace languages on the level
of free monoids. Namely, trace languages can be identified with closed word languages.

2.2 Star-Free and Aperiodic Subsets

Given a monoid M and a subset L ⊆M , the following notions are commonly known:
• atomic set (atoms, for short): empty set ∅ and singletons {m} for all m ∈M ;
• syntactic congruence≈L⊆M ×M of L : x ≈L y iff

(∀r, s ∈M) rxs ∈ L⇔ rys ∈ L;
• syntactic monoid of L: the quotient monoid ML = M/ ≈L.

A subset L ⊆M is said to be:
• rational iff it is built from atoms with union, product and star;
• recognizable iff its syntactic monoid is finite;
• star-free iff it is built from atoms with union, product and complement;
• aperiodic iff its syntactic monoid is finite and aperiodic:

(∃n)(∀x ∈ML)xn =xn+1, or equivalently (∃n)(∀w∈M)wnwn+1.
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Classes of subsets, defined above, will be denoted by RAT(M), REC(M), SF(M) and
AP(M), respectively. The argument will be possibly omitted, if it will not lead to a
confusion. As RAT(A∗) = REC(A∗) in finitely generated free monoids (Kleene The-
orem), the class RAT(A∗) = REC(A∗) will be uniformly denoted by REG(A∗), and
its members will be called regular languages. By definitions, AP(M) ⊆ REC(M) for
any monoid M . Moreover, if M is a trace monoid, there hold the inclusions SF(M) ⊆
REC(M) ⊆ RAT(M).

Theorem 1 (Schützenberger [13]). In any finitely generated free monoid A∗, the
classes SF(A∗) of star-free languages and AP(A∗) of aperiodic languages coincide.

2.3 Automata and Their Languages

A (deterministic) automaton is a quadruple A =< A, Q, q0, F >, where A is a finite
alphabet, Q is a finite set of states, q0 ∈ Q is an initial state and F ⊆ Q is a set of final
states; states are (partial) functions q : A → Q. A triple qaq′ is said to be an arc in A
if qa = q′; then a is called the label of the arc qaq′. A path in A, from q1 to qn, is any
sequence q1a1q2a2 . . . an−1qn, where all qi ∈ Q and all ai ∈ A, such that (∀i)qiaiqi+1

is an arc in A; then a1a2 . . . an−1 is called the label of the path. A computation in A
is any path q1a1q2a2 . . . an−1qn, from the initial state q1 = q0 to a final state qn ∈ F ;
then its label a1a2 . . . an is said to be a word accepted by A, and the set of all words
accepted by A is called the language accepted by A or simply the language of A,
and denoted by L(A). Any automaton accepting a language L ⊆ A∗ is said to be an
automaton for L. An automaton is a minimal deterministic automaton (shortly, m.d.a.)
iff its number of states is minimal from among all deterministic automata accepting the
language L(A). Languages accepted by finite automata are called regular languages.
An automaton is said to be aperiodic (or counter-free) iff (qwp and pwnq) ⇒ p = q,
for any state q and any word w.

The following theorem follows from Schützenberger Theorem 1.

Theorem 2. Given a regular language L ⊆ A∗, the following statements are
equivalent:

(1) The language L is star-free;
(2) The minimal deterministic automaton for L is aperiodic;
(3) There exists an aperiodic automaton for L.

3 Star-Free Star and Word Languages

In this section we deal with free monoids. We introduce the notion of star-free star,
basic for this paper, and characterise the class of star-free languages using this notion.
This characterisation will play crucial role in this paper.

Definition 3. Star-free star operation, expressions and languages

• The star-free star operation × is defined as follows:

L× =

{
L∗ if L* is star-free

undefined otherwise
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• A rational expression is called an SFS-expression if and only if it is built from
atomic expressions with symbols of union, concatenation and star-free star (if
defined);
• A language is said to be an SFS-language if and only if it is built from atoms us-

ing union, concatenation and star-free star; the class of all SFS-languages will be
denoted by SFS.

It follows directly from Definition 3 that, in any monoid, SFS is a subclass of SF. The
following example shows that the inverse inclusion does not hold in general.

Example 4. Let us take the monoid (ZZ, +) of integers with addition. In this monoid
X is star-free if and only if X or X ′ is finite. The class of SFS-languages in (ZZ, +) is
the smallest class of languages, built from ∅ , 1, −1 and ZZ, using only ∪ and +. The
set ZZ − {0} is SF, but not SFS. See [10] for details.

The following theorem says that in free monoids classes SF and SFS coincide.

Theorem 5. A regular word language L ⊆ A∗ is SF if and only if it is SFS. In other
words, the class of star free word languages is the smallest class of languages, built
from atoms using union, product and star-free star.

Proof. The proof follows the McNaughton/Yamada [8] construction of rational expres-
sions for automata, taking into account Theorem 2. The detailed proof has been pre-
sented in [10]. 
�

4 Star-Free Trace Languages

Now, we start to enter into the world of traces. We consider the operation of partially
commutative closure. The following lemma will appear quite effective in studies of
star-free trace languages.

Lemma 6. Closing product of closed star-free languages
If languages K, L ⊆ A∗ are closed and star-free, then the closure KL of their product
is star-free.

Proof. Let A′ = {a′ | a ∈ A} and A′′ = {a′′ | a ∈ A} be differently coloured, so
disjunctive, copies of the alphabet A. Denote C = A′ ∪ A′′. Let the independency
relation IC ⊆ C×C be the smallest relation, such that if aIb then a′ICb . Since K and
L are closed, we have

KL = h(K ′L′′),

where K ′ and L′′ are the coloured copies of the languages K and L, respectively; the
morphism h : C → A is the washing morphism, such that h(a′) = h(a′′) = a, for all
a ∈ A; the left closure is with respect to I , and the right one with respect to IC .

Let us define two basic substitutions f ′, f ′′ : A → 2C∗
, where f ′(a) = A′′

∗
a′A′′

∗

and f ′′(a) = A′
∗
a′′A′

∗. These substitutions colour letters of alphabet A and surround
them by words of the other colour.

To complete the proof we need two claims.

Claim 1. If X ⊆ A∗ is star-free, then f ′(X) and f ′′(X) are star-free.
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Proof of Claim 1. We construct the automaton for f ′(X) by rebuilding m.d.a. for X ,
which is aperiodic, by Theorem 2. First, we colour the labels of the automaton with
the colour of the copy A′, i.e. if an arc is labelled with a ∈ A, then the new label is
a′ ∈ A′. This automaton accepts the language X ′ . Now we join, with each state q, the
bunch of self-loops qa′′q, for all a ∈ A. This way we have built the m.d.a. accepting
f ′(X). It is aperiodic, because X ′ was such one. Hence, f ′(X) is star-free. And the
dual construction for f ′′(X) shows that f ′′(X) is star-free. 
�

Observe that, if aDb, then always a′DCb′′. Hence, we have the equality

K ′L′′ = f ′(K) ∩ f ′′(L)−
⋃
{C∗b′′C∗a′C∗ | aDb}.

It follows from Claim 1 that the language K ′L′′ is star-free, because the class SF is
closed under boolean operations.

We have shown that K ′L′′ is star-free. Now we will show that, if we wash up the
colours, the language remains star-free.

Claim 2. If a language X ⊆ C∗ −
⋃
{C∗b′′C∗a′C∗ | aDb} is star-free, then the lan-

guage h(X) is star-free.

Proof of Claim 2. We show the claim by structural induction on SFS-expressions. For
atomic languages – obvious. Let us assume that if Y, Z ⊆ C∗−

⋃
{C∗b′′C∗a′C∗ | aDb}

are star-free, then h(Y ) and h(Z) are star-free.

• If X = Y ∪ Z , then h(X) = h(Y ) ∪ h(Z) is star-free;
• If X = Y Z , then h(X) = h(Y )h(Z) is star-free;
• To show that h(Y ∗) is star-free we need to notice that at most one of letters a′ and

a′′, for any a ∈ A, can occur in Alph(Y ), because a′′ cannot occur before a′ in
Y ∗. Hence, h(Y ∗) is an isomorphic copy of Y ∗, thus it is star-free. 
�

It is easy to see that the language K ′L′′ satisfies the assumption of Claim 2. Hence, the
language h(K ′L′′) is star-free. The proof is completed, because KL = h(K ′L′′). 
�

We show that star-freeness of trace languages is equivalent to star-freeness of their
flattenings. This fact will be important for our further considerations.

Theorem 7. Let T be a trace language. The following statements are equivalent:

(1) T is star-free
(2)

⋃
T is star-free

(3)
⋃

T is aperiodic
(4) T is aperiodic

Proof. (1)⇒(2): Structural induction on SF-expressions. For atomic languages – ob-
vious. Assume that, for star-free trace languages X and Y , both

⋃
X and

⋃
Y are

star-free. Let us check the three cases:
(a) If Z = X ∪ Y , then

⋃
Z =

⋃
(X ∪ Y ) =

⋃
X ∪

⋃
Y is star-free;

(b) If Z = XY , then
⋃

Z =
⋃

(XY ) =
⋃

X ·
⋃

Y is star-free, by Lemma 6;;
(c) If Z = X ′, then

⋃
Z =

⋃
X ′ = (

⋃
X)′ is star-free.
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(2)⇒(3): Directly from Schützenberger Theorem 1.
(3)⇒(4): From definitions (subsection 2.2). For any u, v ∈ A∗ we have u ≈⋃

T v iff
[u] ≈T [v], thus syntactic monoids of T and

⋃
T are equal.

(4)⇒(1): This part of the proof, as it was remarked in [5], is exactly the same as the
proof of the analogous part of Schützenberger Theorem in [11]. 
�

The equivalence (1)≡(4) of Theorem 7 was proved by Guaiana/Restivo/Salemi [5] with
quite involved, combinatorial techniques on traces. The present proof, using
Lemma 6, is much simpler, and more general, than that of [5].

5 First-Order Logic for Traces

Logical definability of trace languages was described by Thomas [15]. The following
notation is based on that of [4] and [1].

Let (A, D) be a concurrent alphabet and w = a1 . . . an ∈ A∗ be a word. A trace-
graph of the word w is an acyclic graph [V, E, λ], where V = {x1, . . . , xn} is a finite
set of vertices, E ⊆ V × V is a set of edges and λ : V → A, with λ(xi) = ai for all i,
is a node labelling such that (xi, xj) ∈ E if and only if i < j and (λ(xi), λ(xj)) ∈ D.
Two words u, v ∈ A∗ are equivalent (i.e. [u] = [v]) iff their trace-graphs are isomorphic.
If I = ∅ (free case), then E is a total order on V .

A model for a trace is a trace-graph. First-order formulas have variables x, y, . . .
ranging over elements of V , and are built up from atomic formulas x = y, (x, y) ∈ E
and λ(x) = a for a ∈ A, logical connectives∨,∧,→,↔,¬, and the quantifiers ∀ and ∃.

The trace language defined by a sentence Ψ is L(Ψ) = {α ∈ A∗/I | Ψ is satisfied in
α}. A trace language T ⊆ A∗/I is first-order definable if and only if a first-order sen-
tence Ψ exists such that T = L(Ψ). A class of first-order definable trace languages in
A∗/I will be denoted by FO(A∗/I).

Theorem 8 (McNaughton/Papert [7]). A word language is star-free if and only if it
is first-order definable.

A concurrent alphabet, equipped with a strict order on the alphabet, will be called an
oriented concurrent alphabet and denoted by (A, <, I). Any strict order on A induces
the well-known lexicographic order on A∗. A word w ∈ A∗ is said to be lexicographic
(w.r.t. < and I) iff it is lexicographically first in its closure w ⊆ A∗. The set of all lexico-
graphic words is denoted by LEX (assuming < and I are unambiguously fixed). Sub-
sets of LEX are called lexicographic languages. Given a trace language T ⊆ A∗/I , the
word language Lex(T ) =

⋃
T ∩ LEX is called the lexicographic representation of T .

Observe that, for any oriented concurrent alphabet (A, <, I), the set LEX is star-
free, as

LEX = A∗ −
⋃
{A∗bIa

∗aA∗ | aIb ∧ a < b}, where Ia = {c ∈ A | aIc},

hence, by Theorem 8, LEX is first-order definable.
We assume, from now on, that the alphabets under consideration are equipped with

a strict order.
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Theorem 9 (Ebinger/Muscholl [4]). Let T be a trace language. The following state-
ments are equivalent:

(1) T is first-order definable,
(2)

⋃
T is first-order definable,

(3) Lex(T ) is first-order definable.

Directly from (2)≡(3) and Theorem 8 we get

Corollary 10. Let T be a trace language. Then
⋃

T is star-free if and only if Lex(T )
is star-free.

Theorem 11. A trace language T is star-free if and only if it is first-order definable.

Proof. From Theorem 7, T is star-free iff
⋃

T is star-free. By Theorem 8,
⋃

T is star-
free iff

⋃
T is first-order definable. By Theorem 9,

⋃
T is first-order definable iff T is

first-order definable. 
�

6 Star-Free Star and Trace Languages

We show that Theorem 5 (SF = SFS in free monoids) holds in arbitrary trace monoid.
From Theorem 7 and Corollary 10, we directly obtain

Lemma 12. Let L be a word language included in LEX . Then

L is star-free if and only if [L] is star-free.

The following lemmas make use of Theorem 5.

Lemma 13. Let L be a word language.

If L ∈ SFS(A∗) and L ⊆ LEX, then [L] ∈ SFS(A∗/I).

Proof. Structural induction on SFS-expressions. For atomic languages – obvious. As-
sume for word languages X, Y ∈ SFS(A∗) and X, Y ⊆ LEX , both [X ], [Y ] ∈
SFS(A∗/I).

(a) If L = X ∪ Y , then [L] = [X ] ∪ [Y ] ∈ SFS(A∗/I).
(b) If L = XY , then [L] = [X ][Y ] ∈ SFS(A∗/I).
(c) Let L = X∗, where X∗ ⊆ LEX and X∗ ∈ SFS(A∗), so X∗ ∈ SF(A∗).

By Lemma 12, [X ]∗ = [X∗] ∈ SF(A∗/I). Hence [L] = [X ]∗ ∈ SFS(A∗/I).

�

Lemma 14. Let T be a trace language.

If
⋃

T ∈ SFS(A∗), then T ∈ SFS(A∗/I).

Proof. Let T ⊆ A∗/I and
⋃

T ∈ SFS(A∗), so
⋃

T ∈ SF(A∗). Then Lex(T ) =⋃
T ∩ LEX ∈ SF(A∗). By Theorem 5, Lex(T ) ∈ SFS(A∗). From Lemma 13,

T = [Lex(T )] ∈ SFS(A∗/I). 
�

This way, we have proved
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Theorem 15. Let T be a trace language.

T ∈ SF(A∗/I) if and only if T ∈ SFS(A∗/I)

Proof. By Theorem 7, if T ∈ SF(A∗/I) then
⋃

T ∈ SF(A∗). By Theorem 5,
⋃

T ∈
SFS(A∗). By Lemma 14, T ∈ SFS(A∗/I). By Definition 3 (of SFS-language), T ∈
SF(A∗/I). 
�

7 Conclusions and Problems

Let us collect the main characterisations of star-free trace languages.

Theorem 16. Given a trace language T , the following statements are equivalent

(1) T is star-free

(2) T is aperiodic

(3) T is first-order definable

(4) T is an SFS-language

Main and original result of the paper is (1)≡(4). Its proof uses Theorem 9 of
Ebinger/Muscholl [4] and our result SF = SFS in free monoids (Theorem 5).

The equivalence (1)≡(3) was formulated by Ebinger/Muscholl [4] with a short sketch
of the proof; more detailed sketch was presented in [1]. Another proof, for a more gen-
eral class of monoids, was given by Droste/Kuske [3]. All the proofs are quite long and
involved; they utilise some advanced techniques in logic. Our proof (Theorem 11), us-
ing implicitly star-free star, is much simpler. Let us recall that also the proof of (1)≡(2)
(Theorem 7), using star-free star, is shorter than the original combinatorial proof of
Guaiana/Restivo/Salemi [5].

It seems to the authors that the new result (1)≡(4) and the new proofs of (1)≡(2) and
(1)≡(3) confirm efficiency of the star-free star notion.

Remark 1. We have shown (1)≡(4) with Theorem 9 on the first-order definability. We
were able to prove Lemma 12 (in [14]), hence the equivalence (1)≡(4), without logic,
but only for trace monoids possessing a transitively oriented alphabet (I∩ < transitive).
It would be interesting to find a general proof without logic.

Problem 1. We have defined star-free star in a semantic way – star in T ∗ is star-free
star if T ∗ is star-free. Find a syntactically formulated condition for star-free star in trace
monoid, like that for “recognizable star” – star in T ∗ is recognizable, if T is connected.

Problem 2. Is the question “Is T ∗ star-free?” decidable for star-free trace languages
T ? The similar decision problem for recognizability of T ∗ for recognizable T has been
open for over twenty years. The general problem “Is T star-free?” for arbitrary rational
T is undecidable (Muscholl/Petersen [9]).



A Star Operation for Star-Free Trace Languages 345

References

1. Diekert, V., Metivier, Y.: Partial Commutation and Traces, in [12], pp. 457–533 (1997)
2. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)
3. Droste, M., Kuske, D.: Languages and Logical Definability in Concurrency Monoids. In:

Kleine Büning, H. (ed.) CSL 1995. LNCS, vol. 1092, pp. 233–251. Springer, Heidelberg
(1996)

4. Ebinger, W., Muscholl, A.: Logical Definability of Infinite Traces. Theoretical Computer
Science 154, 67–84 (1996)

5. Guaiana, G., Restivo, A., Salemi, S.: Star-free trace languages. Theoretical Computer
Science 97, 301–311 (1992)

6. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Report DAIMI-
PB-78, Aarhus University (1977)

7. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, MA (1971)
8. McNaughton, R., Yamada, R.: Regular expressions and state graphs for automata. Trans. of

IRE EC 9(1), 11–18 (1960)
9. Muscholl, A., Petersen, H.: A note on the commutative closure of star-free languages.

Information Processing Letters 57, 71–74 (1996)
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Abstract. We introduce linear expressions for unrestricted dags (di-
rected acyclic graphs) and finite deterministic and nondeterministic au-
tomata operating on them. Those dag automata are a conservative ex-
tension of the Tu,u-automata of Courcelle on unranked, unordered trees
and forests. Several examples of dag languages acceptable and not ac-
ceptable by dag automata and some closure properties are given.

Keywords: finite state automata, directed acyclic graphs, regular dag
languages.

1 Introduction

Finite automata that operate on finite or infinite words and (ordered and ranked)
trees and various equivalent concepts to regularity are known. Those are recog-
nizability with congruences, rationality with magmas, expressibility with regular
expressions, definability in certain classes of monadic second order logic, gener-
ation by certain right-linear grammars. A good overview on the tree results is
given in the TATA book [6]. However, only ranked and ordered trees are consid-
ered there . Note, a graph is ranked if the degree of any node is determined by
its label, leading to ranked alphabets. This is not the case in unranked graphs
and the degree in an infinite set of such unranked graphs may be unbounded.
Thus, a finite automaton operating on unranked graphs has to operate on nodes
with an unknown number of incoming and/or outgoing arcs (let us call this
the “problem of unbounded degree”). An unpublished but well-known report
[4] of Brüggemann-Klein, Murata and Wood researches ordered, unranked trees
in some detail. Unranked, ordered and unordered trees have been investigated
as an algebra by Courcelle in [8]. He presents a very elegant characterization
of acceptability by Tu,u-magmas and frontier-to-root Tu,u-automata. Unranked
and unordered trees with arc labels instead of node labels allow for a simpler
algebraic approach and are found in Boneva and Talbot [2]. Brüggemann-Klein,
Murata, Wood, and also Boneva, Talbot, solve the problem of unbounded degree
for their unranked trees by allowing infinite but regular sets of transitions for
their automata while Courcelle uses an associative and commutative transition
function on pairs of state that easily extends to unbounded multisets of states.
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Some generalizations of automata to ranked graphs or to their sub-class of
ranked directed acyclic graphs are known: Finite graph automata have been
introduced by Thomas [14], automata over planar dags by Kamimura and Slutzki
[10]. A Kleene theorem for planar dags has been presented by Bossut, Dauchet
and Warin [3]. They describe planar dags by linear expression that follow a
graphic lay-out and use seriell and parallel composition. Graph expressions have
also been introduced by Courcelle [7] for hyper-graphs to define context-free
graph grammars. Charatonik [5] has researched automata on t-dags where no
isomorphic sub-trees are allowed. Anantharaman, Narendran and Rusinowitch
[1] continue this work, where the dag automata are mainly tree automata that
run on dags, and present several interesting properties of such recognizable dag
languages.

However, there exists no satisfying concept of automata on unrestricted un-
ranked, unordered graphs. Kaminski and Pinter [11] avoid the problem of un-
bounded degree as their automata define a bound on the degree of acceptable
graphs. However, the language of all graphs over a fixed alphabet now is not
accepted any more. Fanchon and Morin [9] define regular pomsets languages
over unranked alphabets with auto-concurrency via congruences of finite index.
Those congruences mirror a serial-parallel composition of pomsets. They receive
a concept of regularity that is closed under union but not under intersection or
complement.

We will follow Courcelle’s approach towards automata - but without using
algebras as a semantics. We introduce linear dag expressions as a syntax and
give a set-theoretical semantics as graphs. Finite automata operating as well
on (congruence classes of) dag expressions as on abstract dags are introduced.
In contrast to trees, dags possess incoming and outgoing arcs and all problems
of root-to-frontiers and of frontiers-to-root automata must appear in dags. It is
known that on trees deterministic root-to-frontier automata are a proper sub-
class of nondeterministic ones which are equivalent to deterministic or nondeter-
ministic frontier-to-root automata. As a consequence, the ’root-to-frontier’ part
of dag automata should be nondeterministic. Our dag automata will therefore
contain aspects of deterministic frontier-to-root and nondeterministic root-to-
frontier automata.

2 Graphs and DAGs

Set-Theoretic Approach. A set-theoretical approach to graphs is simple:
A graph γ over an alphabet Σ is a triple γ = (N, E, λ) of two finite sets N of
nodes and E ⊆ N ×N of edges and a labelling mapping λ : N → Σ. Two graphs
γi = (Ni, Ei.λi) are isomorphic, γ1 ∼iso γ2, if there exists a bijective function
h : N1 → N2 with (v, v′) ∈ E1 ⇔ (h(v), h(v′)) ∈ E2 and λ2(h(v)) = λ1(v) holds
for all v, v′ in N1.

Thus, graphs in this paper are directed, unranked, unordered, finite and node
labelled. We use the following rather standard notations.
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•v := {v′ ∈ V |(v′, v) ∈ E}, v• := {v′ ∈ V |(v, v′) ∈ E}. For V ′ ⊆ V :
•V ′ :=

⋃
v∈V ′

•v, V ′• :=
⋃

v∈V ′ v•. Any node in •v (v•) is a father (son) of v.
|•v| (|v•|) is the in- (out-)degree of v. A root (leaf) of a graph is a node with
in-degree (out-degree) 0. A connection of length n between two nodes v, v′ is a
word w = v1...vn+1 s.t. v = v1, v′ = vn+1 and (vi, vi+1) ∈ E ∪ E−1 holds for
1 ≤ i ≤ n. If (vi, vi+1) ∈ E holds for all i w is called a directed path from v to
v′. A cycle is a directed path of some length > 0 from one node to itself.

A dag (directed acyclic graph) is a graph without cycles. A forest is a dag
where any node possesses at most one connection to at most one root. A tree is
a forest with exactly one root. Thus, the empty graph ε := (∅, ∅, ∅) is a forest but
not a tree. We usually identify isomorphic graphs and thus deal with abstract
graphs.

By Σt, Σf , Σ†, and Σg we denote the sets of all abstract trees, forests, dags,
and graphs, respectively, over Σ.

A graph is ranked if all nodes with the same label must also possess the same
out-degree, and double ranked if the label defines both the in- and out-degree. It
is ordered if a specific order between all sons of any node is given.

Algebraic Specification for Unranked Trees. Courcelle [8] defines a theory
Tuu for unranked, unordered trees that consists of a syntax of sorts Suu = {l, t, f}
(for letter, tree, forest), operator symbols Opuu = {pl×f→t, rt→f , +f×f→f , θ→f},
and equations Euu :

u + v = v + u
(u + v) + w = u + (v + w)

u + θ = u,

for variables u, v, w of sort f .
Let Σ denote a set of 0-ary generators of sort l. Any unranked, unordered tree

over Σ now simply becomes an element of sort t of F(Tuu, Σ) =
T erm(Suu, Σ)/≡uu , where T erm(Suu, Σ) are all terms generated by Opuu ∪ Σ
and ≡uu is the Suu-algebra congruence induced by the equations Euu. To get a
theory Tuo for unranked, ordered trees just drop the equation for commutativity.

We might try to follow this approach and define a theory Td for dags by
adding to Tuu a new sort s for synchronization point and a new operator symbol
qs×t→t and study T erm(Td, Σ ∪ N), where any integer i ∈ N is regarded as a
0-ary symbol of sort s. However, as we will not be able to use Td-algebras as a
semantics for dags such an approach seems to be overloaded. In the following
syntax of linear dag expression we mainly abbreviate p(a, f) by af , p(a, θ) by a,
q(i, t) by it, and r(t) by t and give a set-theoretic semantics.

Syntax of Graph Expressions. Let Σ denote a finite alphabet with Σ∩N = ∅.
We define the sets Et

Σ∪N
and Ef

Σ∪N
of tree and forest expressions over Σ ∪N as

the smallest sets fulfilling the following requirements ∀x ∈ Σ ∪N:

Et
Σ∪N

⊆ Ef
Σ∪N

, θ ∈ Ef
Σ∪N

, x ∈ Et
Σ∪N

,

f, g ∈ Ef
Σ∪N

=⇒ xf ∈ Et
Σ∪N

, (f + g) ∈ Ef
Σ∪N

.
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Define for a ∈ Σ, i ∈ N, f, g ∈ Ef
Σ∪N

:
int(θ) := last(θ) := first(θ) := nol(θ) := ∅,
int(a) := last(a) := nol(a) := first(a) := ∅,
nol(i) := ∅, int(i) := last(i) = first(i) := {i},
first(af) := ∅, X(af) := X(f), for X ∈ {int, last, nol},
first(if) := {i}, last(if) := last(f),
X(if) := X(f) ∪ {i}, for X ∈ {int, nol},
X(f + g) := X(f) ∪X(g), for X ∈ {int, last, first, nol}.

int(f) tells which integers appear in f , last(f) which integers appear as last
elements, nol(f) which integers as “no last” elements, and first(f) which inte-
ger as first elements of f . The binary relation ≡ on forest expressions is defined
∀f, f ′, g, g′, h,∈ Ef

Σ∪N
, x ∈ Σ ∪N by

1) f ≡ f, f ≡ g =⇒ g ≡ f, (f ≡ g ∧ g ≡ h) =⇒ f ≡ h,
2) f ≡ f ′ =⇒ xf ≡ xf ′, (f ≡ f ′ ∧ g ≡ g′) =⇒ (f + g) ≡ (f ′ + g′),
3) (f + g) ≡ (g + f), (f + (g + h)) ≡ ((f + g) + h), (f + θ) ≡ f .

By 1) ≡ becomes an equivalence relation, by 2) a congruence on our expressions,
and fulfills by 3) the equations Euu. The congruence ≡0 is defined as above but
without the requirement f +θ ≡0 f in 3). (f1+...+fn) or

∑
1≤ν≤n fν abbreviates

(...(f1 + f2) + ...) + fn).

Semantics of Graph Expressions. In a first, intermediate step we interpret
a graph expression as a forest over Σ ∪N.

∀x ∈ Σ ∪ N, f, g ∈ Eg
Σ :

5o(θ) := (∅, ∅, ∅), 5o(x) := ({1}, ∅, λ(1) := x),
5o(f) = (V, E, λ) =⇒ 5o(xf) := (V ∪ {vnew}, E ∪ {(vnew , v)|v ∈ V ∧• v =
∅}, λ ∪ λ(vnew) := x},
5o(f + g) := 5o(f) +5o(g), where α + β is the disjoint union of the two graphs
α, β.

To get our intended interpretation as abstract graphs over Σ we regard all
integers as synchronization points that must be synchronized (i.e., all occur-
rences of the same integer are identified) and deleted. Therefor we introduce the
operation Syd (for “Synchronize and delete”):

Sydi1,...,ik
(α) := Syd(i1(...(Sydik

(α)...), with

Sydi(α) := (V ′, E ∩ (V ′ × V ′) ∪ E′, λ|V ′), for

V ′ = {v ∈ V |λ(v) �= i}, E′ = {(v, v′)|∃v1, v2 ∈ V : λ(v1) = λ(v2) = i ∧
(v, v1), (v2, v′) ∈ E}, setting all nodes v as a father of all nodes v′ if v possesses
some son with label i and v′ possesses some father with label i, deleting such all
melted synchronization points.

The interpretation of an expression as an abstract graph is given as

5(f) := [Sydint(f)(50(f))]∼iso.
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5o(f): a → 2
1↗

↘ a

a → b

a → 1 → b → 2 → a

���
a � b � a

������

5(f): a � a

a � b

c
�� a

��	
d

α:
b �



� β: c → d
↗↘

e ↗

a → b

Fig. 1. Some graphs of example 2.1

Example 2.1. 5o(f) and 5(f) for f = a1b2a + a(1 + 2 + a) + ab are shown in
figure 1. The abstract graph α is the interpretation of the expressions 1a2c(1 +
db2), 1c(a1 + db1), and 1db2c(a2 + 1). β = 5(di) for the expressions di for
1 ≤ i ≤ 5 with

d1 = a(1b + 2d) + c(1 + 2) + e2, d2 = a(1b + 2) + c(2d + 1) + e2
d3 = a1b + c1 2d + e2, d4 = a1(b + 2d) + c1 + e2
d5 = a1(b + 2d3) + 4c1 + 4e2.

Of course, ≡- or ≡0-congruent expressions describe the same abstract graph.

DAG Expressions. Regard the relation �(f) ⊆ int(f)× int(f) defined induc-
tively for i ∈ N, a ∈ Σ, f, g ∈ Ef

Σ∪N
:

�(θ) := �(a) := �(i) := ∅,
�(af) := �(f), �(if) := �(f) ∪ {(i, j)|j ∈ int(f)}, �(f + g) := �(f) ∪�(g).

Obviously, the interpretation 5(f) of an expression f is an abstract dag if
the transitive closure �(f)+ of �(f) is a partial order. Example 2.1 presents 5
rather different expression di for the same abstract dag β of figure 1. However,
only d1 and d2 are “smooth” expressions whilst d3 to d5 are against intuition.
We need a formal definition for smoothness:

An expression f ∈ Ef
Σ∪N

is called smooth if f contains no sub-expressions

- θ, ij, ig,
- (g + h) with nol(g) ∩ nol(h) �= ∅,
- it with i ∈ nol(t),
- i that occurs exactly once in f or with i ∈ int(f)− nol(f),
-
∑

1≤ν≤n tν with two trees tν0 , tν1 for 1 ≤ ν0 < ν1 ≤ n with first(tv0) =
first(tν1) �= ∅,
for a ∈ Σ, i, j ∈ N, t, tν ∈ Et

Σ∪N
, g, h ∈ Ef

Σ∪N
.

In a smooth expression each synchronization point i must occur several times
but only once not as a last element. In this case i must precede some tree ex-
pression. No two synchronization points must follow each other. No brother trees
must be synchronized.
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Tree and forest expressions over Σ are expressions without integers, a graph
expression over Σ is a forest expression over Σ ∪ N, and a dag expression over
Σ is a smooth graph expression where �+ is a partial order:

Et
Σ := {t ∈ Et

Σ∪N
| int(t) = ∅},

Ef
Σ := {f ∈ Ef

Σ∪N
| int(f) = ∅}, Eg

Σ := Ef
Σ∪N

,

E†Σ := {f ∈ Eg
Σ |f is smooth and �i, j ∈ int(f) : (i �(f)+j ∧ j �(f)+i)}.

All abstract trees, forest, dags, and graphs can be expressed:

Lemma 2.1. 5(Et
Σ) = Σt, 5(Ef

Σ) = Σf , 5(E†Σ) = Σ†, 5(Eg
Σ) = Σg.

Example 2.2. Let f1 = a1b2a7 + 6a(1 + 2 + θ + 2 + 3a4) + 6 + ab(θ + 7),
f2 = 3a1 + 3 + a(1b2 + 2a4 + a5) + 6ab5, and d6 = a1 + a(1b2 + 2a + a) + ab.
5(f1) = 5(f2) = 5(d6) = 5(f) of figure 1. d6 is a dag expression but f1, f2 are
not as they violate smoothness.

3 DAG-Automata

Let M be a set. A function f : M ×M → M is associative and commutative if
f(x, y) = f(y, x) and f(x, f(y, z)) = f(f(x, y), z) holds for all x, y, z ∈M .

Such an associative and commutative function f is easily extended to

f∗ : (NM−{0})→M

operating on nonempty multisets over M : ∀a ∈M : ∀m ∈ NM−{0}:

f∗(1·a) := a, f∗(1·a + m) := f(a, f∗(m)).

A (root-to-frontier) dag automaton

A = (Q, Σ, δ, δi, δo, δI , δF , I, F )

consists of
- a finite set Q of states with Q ∩ N = ∅,
- a finite alphabet Σ with Q ∩Σ = ∅ = Σ ∩ N,
- a function δ : Q×Σ → 2Q,
- four associative and commutative functions

δi, δo, δI , δF : Q×Q→ Q,

- a set I ⊆ Q of initial states, and
- a set F ⊆ Q of final states.

We now introduce the concept of configurations and computations of dag
automata. By a simple scan through a dag expression d one can identify as d-
roots those occurrences of letters in Σ that become roots in 5(d). A configuration
C for A is a dag expression over Σ∪Q where exactly the states form the C-roots.
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Now, for a given dag d, put in front of each d-root in d some state of Q to get a
configuration Cd. Cd is admissible if for the multiset m of added state δ∗I (m) ∈ I
holds. Cd denotes the set of all those admissible configurations for d. Each C ∈ Cd
is called a start configuration for d. As a configuration is a dag expression itself
the congruences ≡ and ≡0 hold also for configurations.

A configuration C′ is a direct successor of a configuration C, C (A C′, if there
exists a configuration Ĉ with C ≡0 Ĉ and C′ is the result of replacing in Ĉ a
sub-expression

- sa by s′, with s′ ∈ δ(s, a), or
- s(f1 + f2) by (s1f1 + s2f2), with δo(s1, s2) = s, or
- (s1 + s2) by s′, with δF (s1, s2) = s′, or
- (s1it + s2i) by s′it, with δi(s1, s2) = s′, or
- (s1i + s2i) by s′i, with δi(s1, s2) = s′, or
- si by s, if i occurs exactly once in Ĉ,

for a ∈ Σ, i ∈ N, t ∈ Σt
Σ∪N

, f1, f2 ∈ Σg
Σ, s, s1, s2 ∈ Q. In addition, we write d ( C

for a dag expression d and a start configuration C ∈ Cd. Only here δI plays a
rôle. δo handles the transport of a state to outgoing arcs and δi of states from
incoming arcs.

evalA(d) := {s ∈ Q|d (∗A s} is the set of all states into which a dag expression
d may evaluate under A.

D(A) := {d ∈ E†Σ |evalA(d) ∩ F �= ∅} is the dag language accepted by A. A
dag language is regular if it is accepted by some dag automaton.

We may regard a dag automaton as operating on dag expressions,
≡0-congruence classes of them, or on abstract dags, as any dag automaton op-
erates identically on different dag expressions of the same abstract dag:

Theorem 1. For all dag expressions d1, d2 and dag automata A over the same
alphabet:

5(d1) = 5(d2) =⇒ evalA(d1) = evalA(d2).

Example 3.1. Let Σ†even denote the language of all dags over Σ with an even
number of nodes. Σeven is accepted by Aeven with Q := {0, 1}, where we use
boldface integers as states, I := F := {0}, δ(s, a) := s + 1 mod 2 for all a ∈ Σ,
and δF := δI := δi := δo := + mod 2.

A nondeterministic computation with some dag expression d for the dag 5(f)
of figure 1 is, e.g.

d = a1b2a(3 + θ) +
(

a
(
(1 + 2) + a

)
+ ab

)

( 1a1b2a +
(
0a
(
(1 + 2) + a

)
+ 1ab

)
(∈ Cd)

(∗(δ) 01b2a + 1
(
(1 + 2) + a

)
+ 0b (∗(δo,δ) 01b2a +

(
1(1 + 2) + 0a

)
+ 1

((δo) 01b2a +
(
(11 + 02) + 0a

)
+ 1 ≡0

((
(01b2a + 11) + 02

)
+ 0a

)
+ 1

((δi)

(
(11b2a + 02) + 0a

)
+ 1 (∗ (1b2a + 02) + (1 + 1) (∗ (02a + 02) + 0

( 02a + 0 (∗ 1.
Any computation for d leads to 1, thus d /∈ D(Aeven).
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Example 3.2. Let Σ†dis denote the language of all disconnected dags over Σ
and Σ†con those of all connected dags. We present an automaton Ad accepting
Σ†dis. When an abstract dag α consists of two disjunct dags α1, α2 an accepting
computation of Ad guesses a state s1 to be attached to all roots of α1 and a
different state s2 to all roots of α2. Ad passes si through αi. If α1 and α2 should
have a common node the states s1 and s2 will meet and pass an error message
to some leaf thats forbids acceptance. Thus simply choose
Q := {s0, s1, s2, �,⊥} with a sink state ⊥ (s.t. δ•(x, y) = ⊥ if x = ⊥ or y = ⊥
for all transition functions), I := {s0}, F := {�},
δI(s1, s2) := s0, δI(s1, s1) := s1, δI(s2, s2) := s2,
δ(s1, x) := s1, δ(s2, x) := s2, for x ∈ Σ,
δo(s1, s1) := s1, δo(s2, s2) := s2,
δi(s1, s1) := s1, δi(s2, s2) := s2, δi(s1, s2) := ⊥,
δF (s1, s1) := s1, δF (s2, s2) := s2, δF (s1, s2) := �, δF (�, si) := � for i = 1, 2,
plus all required transitions to get commutative and associative mappings and
make ⊥ a sink state. A “false” not accepting computation for the above dag
expression d is shown in Figure 2.

a b a

a a

a b

� �

�
�

��������

�

s1

s2

s1

�

�

�
a b a

a a

a b

� �

�
�

��������

�∗

s1 b a

s2 a

s1 b

� �

�
�

��������

�

s1 b a

s2 s2

s1 b

a

� �

�

���� ���

�∗

⊥ b a

s2

s1 s2

� �

a�

��� �∗
⊥ � a

s2
��� s2

s1

�∗
⊥ � a

�
�

⊥

�
� ⊥ .

Fig. 2. A not accepting computation of Adis

Although the treatment of incoming and outgoing arcs in dag expressions
is completely different (using a simple + for outgoing arcs but an alphabet
of infinitely many synchronization points for incoming arcs) they are treated
symmetrically in dag automata. This is easily seen with reverse dags.

The reverse Arev of an automaton A = (Q, Σ, δ, δi, δo, δI , δF , I, F ) is

Arev = (Q, Σ, δrev, δrev
i , δrev

o , δrev
I , δrev

F , Irev, F rev),

with
Irev := F, F rev := I, δrev(s, a) := {s′|s ∈ δ(s′, a)},

δrev
i := δo, δrev

o := δi, δrev
I := δF , δrev

F := δI .

Any successful computation in A for some α defines in reverse order immediately a
successful computation for αrev in Arev. This implies D(A)rev ⊆ D(Arev). Further

D(A) = (D(A)rev)rev ⊆ D(Arev)rev ⊆ D((Arev)rev) = D(A), thus

Lemma 3.1. D(Arev) = D(A)rev
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4 Regular and Nonregular DAG Languages

Simple Regular DAG Languages and Closure Properties. Some typical
examples of regular dag languages are - as expected - the language of all dags

- where no node possesses several sons with the same labels,
- where no node possesses several fathers with the same labels,
- where no node possesses several sons (fathers, respectively) with different

labels,
- with exactly j roots (j leaves or j nodes, respectively),
- with 0 roots (0 leaves or 0 nodes, respectively) modulo some constant,
- where all nodes have the in-degree i or 0 (out-degree i or 0, in-degree mod

i is 0, out-degree mod i is 0, respectively).
Constructing dag automata that accept those languages is just a simple

exercise.

A maximal path in a dag is a directed path from some root to some leaf. A
path is identified with the word of labels of its nodes. path(α) is the set of all
maximal paths in a dag α and path(D) =

⋃
α∈D path(α) for D ⊆ Σ† defines a

projection
path : 2Σ† → 2Σ∗

from languages over dags into languages over words. In the opposite direction
there are two canonical ways to embed languages over words into languages over
dags:

- the skinny embedding of L ⊆ Σ∗ regards any word w ∈ Σ∗ as a path w ∈ Σ†

and is also denoted as L (⊆ Σ†),
- the fat embedding DL of L ⊆ Σ∗ is the dag language

DL := {α ∈ Σ†|path(α) ⊆ L}.

Lemma 4.1. The skinny embedding L and the fat embedding DL of a regular
word language L are regular dag languages.

The opposite statement holds for projections of a fat embedding but not for
projections of general dag languages.

Lemma 4.2. If DL is a regular dag language then L is a regular word language.
But there exist regular dag languages whose path projection is not even a context-
free word language.

Lemma 4.3. The class of regular dag languages is closed under union and in-
tersection.

The proofs for all mentioned three lemmata are rather straight-forward. Inter-
esting is a counter example for lemma 4.2 of a regular dag language with a
noncontext-free path language: It is possible to construct a dag automaton AD

that accepts only dags of the form as shown in Figure 3 with an equal number of
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Fig. 3. A dag accepted by AD

labels a, b, c and d where the order a before b before c before d must be respected.
This can be achieved by forcing all nodes with a label a to have four sons, labelled
with a, b, c, d, but one who has three sons labelled with b, c and d. All nodes la-
belled with x ∈ {b, c, d} are forced to have two fathers, one labelled with a and
a second labelled with x with an exception for the first label x as shown. Thus,
path(D(AD)) = {aidj |1 ≤ i, j}∪{aicjdn|1 ≤ i, j ≤ n}∪{aibjcndn|1 ≤ i, j ≤ n},
a noncontext-free language. �

Some Gaps Between Regular and Nonregular DAG Languages. There
are simple example of nonregular dag languages as finite dag automata cannot
count above some boundary: the language Dr=l of all dags with the same number
of roots and leaves, or Dn= (Dr=, Dl=) over {a, b} where equally many nodes
(roots, leaves, respectively) are labelled with a and b. However, if one would
change the concept of nondeterministic dag automata in such a way that also
partial, not associative functions δI and δF are allowed then Dr= and Dl= (in
contrast to Dn=) become regular. To accept Dl= choose Q = {s0, sa, sb, �}, I =
{s0}, F = {�}, δI(s0, s0) = s0, δ(s0, x) = sx and δi(sx, sy) = s0 and δo(sx, sx) =
sx for x, y ∈ {a, b} such that sx tells that the last node visited has been labelled
with x. Now, simply set δF (sa, sb) = �, δF (�, �) = � and δF (., .) undefined
elsewhere to accept Dl=. For Dr= use the reverse automaton. However, such a
trick is impossible with total associative and commutative functions δI , δF .

Theorem 2. Σ†dis is regular but Σ†con is not. Thus, regular dag languages are
not closed under complement.

Proof. Regularity of Σ†dis was shown in example 3.2. Non-regularity of Σ†con is
seen as follows: Suppose there exists an automaton A that accepts Σ†con. Set

d :=
∑

1≤i≤n

a(ia + i′)

with i′ := i +1 for 1 ≤ i < n and n′ := 1, compare Figure 4 with α := 5(d). α is
connected. Thus, A accepts α. For n large enough (i.e., longer than (|Q| + 1)2)
there must exist two different occurrences o′1, o′2 of labels a on the lower row and
o1, o2 of their right fathers in the upper row where an accepting computation C
of A reaches in o1 and o2 the same state, say s, and in o′1 and o′2 a same state, say
s′. Now, let β result from re-pointing the arc originally from o1 to o′1 now to o′2
and the arc pointing originally from o2 to o′2 now to o′1. This doesn’t introduce
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Fig. 4. �(d)

cycles and the same computation C will still accept β - but β is disconnected
(and still planar). �
However, “bounded” connectivity becomes regular:

Lemma 4.4. The languages of all connected dags with a fixed or bounded num-
ber of roots or leaves, respectively, are regular.

Ladders of type 1 or 2 and beams are dags as presented in figure 5. D1−ladder,
D2−ladder, Dbeam denote the languages of all type 1 ladders, all type 2 ladders,
and all beams, respectively, over a.

Fig. 5. A type 1 ladder (left), type 2 ladder (midle) and beam (right)

Theorem 3. Dbeam and D2−ladder are regular, D1−ladder is not.

At a first sight, theorem 3 seems to point to a disadvandage of our concept of
dag automata: type 1 ladders and type 2 ladders seem to be so similar that one
might think that one type of ladders could result from the other by some “regu-
lar transformation” (and automata should preserve “regular transformations”).
However, this is not the case. Type 1 and type 2 ladders have very distinct
“synchronization properties”: An automaton may evaluate the upper row of a
type-1-ladder ignoring the evaluation of the lower row, which is impossible for
type 2 ladders. The situation is similar for Petri nets: There is a (rather simple)
Petri net with D2−ladder as it true-concurrency dag semantics, but no Petri net
can possess D1−ladder as its dag semantics, see [12].

One can prove theorem 3 by showing that any dag automaton accepting
D1−ladder must also accept some connected but not planar dag (that is not
in D1−ladder). Thus, D1−ladder can’t even be recognized relative to connected
dags, i.e., if input dags are restricted to be connected. Both automata α, β of
the proof of theorem 2 are planar. Thus, even if all input dags must be planar
Σ†con is not regular. This implies

Corollary 4.1. The language Σ†plan of all planar dags over Σ is not regular.
Σ†con is not regular relative to Σ†plan and Σ†plan is not regular relative to Σ†con.

The shuffle
D1 ‖ D2 := {α1 + α2|αi ∈ Di}
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of two dag languages consists of disjoint unions of one dag from D1 with one
from D2. ‖i and the big shuffle ‖∗ are defined as

‖0D := {5(θ)}, ‖n+1:= (‖nD) ‖ D, ‖∗D :=
⋃

i≥0

‖nD.

It turns out that the big shuffle of even a single dag may be no regular lan-
guage. Let � be the beam of length 1, consisting of four nodes and being de-
scribed by a(1a + 2a) + a(1 + 2). d := a(a1a + a1) describes a dag ♦ := 5(d)
with also only four nodes and four arcs as � but only one root and leaf.

Theorem 4. ‖∗� and ‖∗♦ are nonregular.

This immediately implies:

Lemma 4.5. The class of regular dag languages is closed under ‖n for any n
but not under ‖∗.

5 Deterministic DAG Automata

A dag automaton A = (Q, Σ, δ, δi, δo, δI , δF , I, F ) is called deterministic if
|δ(s, a)| = 1 holds for s ∈ Q, a ∈ Σ, I = {s0} for one initial state s0, there
exists a sink state ⊥ ∈ Q and δI(s0, s0) = s0, δI(., .) = ⊥ elsewhere, δo(s, s) = s
for some states s ∈ Q and δo(., .) = ⊥ elsewhere. Thus, to ensure a deterministic
computation a start configuration for a dag α receives by δI the same state s0

attached to all roots and the same state must be prolonged by δo from a father
to all sons. As in a parse tree for a context-free derivation, the order of where
to apply a transition in a configuration is still free, but |evalA(d)| = 1 will hold.
A regular dag language is called deterministic regular if it is accepted by some
deterministic dag automaton.

If one applies a deterministic (root-to-frontier) dag automata to the reverse
αrev of an unranked, unordered tree α it behaves exactly as Courcelle’s (frontiers-
to-root) Tuu-automata applied to α. Tree languages accepted by deterministic
root-to-frontier tree automata are a proper subclass of those accepted by de-
terministic or nondeterministic frontier-to-root automata. Let 
 = 5(d) for
d = a1a+a1. The trivial language {
} is deterministic regular but {
} ‖ {
} is
not, as any deterministic automaton accepting 
 + 
 = 5(a1a + a1 + a2a + a2)
must also accept � = 5(a(1a + 2a) + a(1 + 2)). Also, the regular languages
Σ†even and Σ†dis are no longer deterministic regular. It is easily seen that the
class of deterministic regular dag languages is closed under union, intersection
and complement.

When a deterministic dag automaton passes a state from a father node to its
sons it cannot react on the possibly different labels of the sons. Thus, determin-
istic dag automata are forward blind. One easily can define with the help of com-
mutative and associative mappings a concept of not forward-blind deterministic
root-to-frontier dag automata where the state passed to a son may depend on
the state of the father and the multiset of labels of all sons. An nfb regular dag
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language is a regular dag language accepted by a deterministic not forward-blind
dag automaton. Table 1 presents some properties of the classes of regular, deter-
ministic regular, nfb regular and semi rational dag languages. A dag language is
semi rational if it is the dag semantics of some Petri net, see [13]. In contrast to
word languages, dag languages accepted by finite automata must not necessarily
be Petri net dag languages, see the last two lines of table 1.

Table 1. Closure Properties, () is a Conjecture

Closed under: Reg†
det Reg†

nfb Reg† SemiRat†

union � � � �
intersection � � � �
complement � � no no

reverse no no � �
shuffle no no � �
big shuffle no no no no

finite sets no no � �
fat embedding
of L3 � � � �
contains:

Σ†
dis no no � �

Dr=l no no no �
Dn= no no no �
can count
modulo i the:

nodes no no � �
roots no no � �
leaves � � � �
incoming arcs � � � (no)

outgoing arcs no � � (no)

6 Comparison to Further Automata Concepts

There are several concepts in the literature of finite automata analyzing graphs
or dags with “local conditions”. Kaminski and Pinter [11] operate on rooted
directed graphs over a double ranked alphabet, and, thus, with a global bound
for the in- and out-degree. With their automata D1−ladder is also not recogniz-
able, see Thomas [15]. (One easily may regard D1−ladder as a language over
a double ranked alphabet by using different labels for the upper and lower
row). Thomas introduces “acceptors” on ranked graphs equivalent to existential
monadic second-order logic (EMSL) on those graphs. Those acceptors simulate
a tiling of a ranked graph with elementary graphs of a finite set of types plus
some nonlocal constraints. D1−ladder becomes now acceptable relative to con-
nected graphs. However, connectedness is expressible in MSL but not in EMSL,
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and thus not acceptable by those graph acceptors. It is hard to imagine how to
generalize Thomas’ acceptor concept to unranked graphs and languages with no
fixed bound of the in- and out-degree.

It is also known that D1−ladder is acceptable relativ to a class of planar dags
(pdags) of Bossut, Dauchet and Warin [3]. They introduce algebraic pdag expres-
sions built from two-sorted letters and operations (iterated) parallel and serial
composition. They can present an automaton that accepts all connected pdag
expressions, in contrast to our theorem 2, corollary 4.1 and inexpressibility of
connectedness in EMSL. This contradiction is resolved if one notes that their
pdag expression cannot describe all planar dags, especially not all planar dags
of figure 4 that have been required for violating regularity of connectedness.

Résumé

We have introduced linear expressions that can describe all unranked and un-
ordered abstract dags and finite automata on those unrestricted dags defining
a class of regular dag languages. According to theorem 1, these dag automata
operate on abstract dags as well as on dag expressions. The closure properties
and examples of regular dag languages are just what should be expected from
a reasonable concept of nondeterministic and deterministic dag automata. Al-
though our approach is similar to the Tu,u approach of Courcelle we don’t have a
concept of rationality of dag languages by finite algebras, even not in the deter-
ministic case. The reason is that in our concept of a computation the treatment
of sorts l, t and f fits perfectly into the evaluation schema of algebras - such as
to replace sa ba δ(s, a) or s(f1 +f2) by sf1 +sf2. But for synchronization points
a global view is involved as we replace si by s only if i occurs exactly once in
the overall term. The examples of regular and nonregular dag languages are very
similar to those of semi-rational and not semi-rational ones in [13] although the
concepts of regularity (acceptance by dag automata) and of semi-rationality (dag
semantics of Petri nets) are rather different. This may be a hint that regularity
and semi-rationality of dag languages indeed point more to inherent properties
of dags than of the chosen concepts of automata and Petri nets.
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Abstract. In some particular cases we give criteria for morphic se-
quences to be almost periodic (=uniformly recurrent). Namely, we deal
with fixed points of non-erasing morphisms and with automatic
sequences. In both cases a polynomial-time algorithm solving the prob-
lem is found. A result more or less supporting the conjecture of decid-
ability of the general problem is given.

1 Introduction

Different problems of decidability in combinatorics on words are always of great
interest and difficulty. Here we deal with two main types of symbolic infinite
sequences — morphic and almost periodic — and try to understand connections
between them. Namely, we are trying to find an algorithmic criterion which given
a morphic sequence decides whether it is almost periodic.

Though the main problem still remains open, we propose polynomial-time al-
gorithms solving the problem in two important particular cases: for pure morphic
sequences generated by non-erasing morphisms (Section 3) and for automatic
sequences (Section 4). In Section 5 we say a few words about connections with
monadic logics. In particular, in a curious result of Corollary 4 we give a reason
why the main problem may be decidable.

Some attempts to solve the problem were already done. In [3] A. Cobham
gives a criterion for automatic sequence to be almost periodic. But even if his
criterion gives some effective procedure solving the problem (which is not clear
from his result, and he does not care about it at all), this procedure could not
be fast. We construct a polynomial-time algorithm solving the problem. In [5]
A. Maes deals with pure morphic sequences and finds a criterion for them to
belong to a slightly different class of generalized almost periodic sequences (but
he calls them almost periodic — see [9] for different definitions). And again, his
algorithm does not seem to be polynomial-time.
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2 Preliminaries

Denote the set of natural numbers {0, 1, 2, . . .} by N and the binary alphabet
{0, 1} by B. Let A be a finite alphabet. We deal with sequences over this alphabet,
i. e., mappings x : N → A, and denote the set of these sequences by AN.

Denote by A∗ the set of all finite words over A including the empty word Λ.
If i ≤ j are natural, denote by [i, j] the segment of N with ends in i and j, i. e.,
the set {i, i+1, i+2, . . . , j}. Also denote by x[i, j] a subword x(i)x(i+1) . . . x(j)
of a sequence x. A segment [i, j] is an occurrence of a word u ∈ A∗ in a sequence
x if x[i, j] = u. We say that u �= Λ is a factor of x if u occurs in x. A word of
the form x[0, i] for some i is called prefix of x, and respectively a sequence of
the form x(i)x(i + 1)x(i + 2) . . . for some i is called suffix of x and is denoted
by x[i,∞). Denote by |u| the length of a word u. The occurrence u = x[i, j] in x
is k-aligned if k|i.

A sequence x is periodic if for some T we have x(i) = x(i + T ) for each i ∈ N.
This T is called a period of x. We denote by P the class of all periodic sequences.
Let us consider an extension of this class.

A sequence x is called almost periodic1 if for every factor u of x there exists a
number l such that every factor of x of length l contains at least one occurrence
of u (and therefore u occurs in x infinitely many times). Obviously, to show
almost periodicity of a sequence it is sufficient to check the mentioned condition
only for all prefixes but not for all factors (and even for some increasing sequence
of prefixes only). Denote by AP the class of all almost periodic sequences.

Let A, B be finite alphabets. A mapping φ : A∗ → B∗ is called a morphism
if φ(uv) = φ(u)φ(v) for all u, v ∈ A∗. A morphism is obviously determined by
its values on single-letter words. A morphism is non-erasing if |φ(a)| � 1 for
each a ∈ A. A morphism is k-uniform if |φ(a)| = k for each a ∈ A. A 1-uniform
morphism is called a coding. For x ∈ AN denote

φ(x) = φ(x(0))φ(x(1))φ(x(2)) . . .

Further we consider only morphisms of the form A∗ → A∗ (but codings are of
the form A → B, which in fact does not matter, they can be also of the form
A → A without loss of generality). Let φ(s) = su for some s ∈ A, u ∈ A∗.
Then for all natural m < n the word φn(s) begins with the word φm(s), so
φ∞(s) = limn→∞ φn(s) = suφ(u)φ2(u)φ3(u) . . . is well-defined. If ∀n φn(u) �= Λ,
then φ∞(s) is infinite. In this case we say that φ is prolongable on s. Sequences
of the form h(φ∞(s)) for a coding h : A → B are called morphic, of the form
φ∞(a) are called pure morphic.

Notice that there exist almost periodic sequences that are not morphic (in
fact, the set of almost periodic sequences has cardinality continuum, while the
set of morphic sequences is obviously countable), as well as there exist morphic
sequences that are not almost periodic (you will find examples later). Our goal
is to determine whether a morphic sequence is almost periodic or not given its
constructive definition.
1 It was called strongly or strictly almost periodic in [7,8].
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First of all, observe the following

Lemma 1. A sequence φ∞(s) is almost periodic iff s occurs in this sequence
infinitely many times with bounded distances.

Proof. In one direction the statement is obviously true by definition.
Suppose now that s occurs in φ∞(s) infinitely many times with bounded

distances. Then for every m the word φm(s) also occurs in φ∞(s) infinitely many
times with bounded distances. But every word u occurring in φ∞(s) occurs in
some prefix φm(s) and thus occurs infinitely many times with bounded distances.


�

For a morphism φ : {1, . . . , n}→ {1, . . . , n} we can define a corresponding matrix
M(φ), such that M(φ)ij is a number of occurrences of symbol i into φ(j). One
can easily check that for each l we have M(φ)l = M(φl).

Morphism φ is called primitive if for some l all the numbers in M(φl) are
positive.

Let us construct an oriented graph G corresponding to a morphism. Let its
set of vertices be A. In G edges go from b ∈ A to all the symbols occurring
in φ(b).

For φ∞(s) it can easily be found using the graph corresponding to φ which
symbols from A really occur in this sequence. Indeed, these symbols form the
set of all vertices that can be reached from s. So without loss of generality from
now on we assume that all the symbols from A occur in φ∞(s).

A morphism is primitive if and only if its corresponding graph is strongly
connected, i. e., there exists an oriented path between every two vertices. This
reformulation of the primitiveness notion seems to be more appropriate for com-
putational needs.

By Lemma 1 (and the observation that codings preserve almost periodicity)
morphic sequences obtained by primitive morphisms are always almost periodic.
Moreover, in the case of increasing morphisms (such that |φ(b)| � 2 for each b)
this sufficient condition is also necessary (and this is a polynomial-time algo-
rithmic criterion). However when we generalize this case even on non-erasing
morphisms, it is not enough to consider only the corresponding graph or even
the matrix of morphism (which has more information), as it can be seen from
the following example.

Let φ1 be as follows: 0 → 01, 1 → 120, 2 → 2, and φ2 be as follows: 0 → 01,
1 → 210, 2 → 2. Then these two morphisms have identical matrices of morphism,
but φ∞1 (0) is almost periodic, while φ∞2 (0) is not. Indeed, in φ∞2 (0) there are
arbitrary long segments like 222. . . 22, so φ∞2 (0) /∈ AP . There is no such problem
in φ∞1 (0). Since 0 occurs in both φ1(0) and φ1(1), and 22 does not occur in
φ∞1 (0), it follows that 0 occurs in φ∞1 (0) with bounded distances. Thus φm

1 (0)
for every m � 0 occurs in φ∞1 (0) with bounded distances, so φ∞1 (0) ∈ AP . See
Theorem 1 for a general criterion of almost periodicity in the case of fixed points
of non-erasing morphisms.

To introduce a bit the notion of almost periodicity, let us formulate an in-
teresting result on this topic. It seems to be first proved in [3], but also follows
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from the results of [9]. For x ∈ AN, y ∈ BN define x × y ∈ (A × B)N such that
(x× y)(i) = 〈x(i), y(i)〉.

Proposition 1. If x is almost periodic and y is periodic, then x × y is almost
periodic.

3 Pure Morphic Sequences Generated by Non-erasing
Morphisms

Here we consider the case of morphic sequence of the form φ∞(s) for non-
erasing φ. We present an algorithm that determines whether a morphic sequence
φ∞(s) is almost periodic given an alphabet A, a morphism φ and a symbol s ∈ A.

Suppose we have A, φ and s ∈ A, such that |A| = n, maxb∈A |φ(b)| = k, s
begins φ(s). Remember that we suppose that all the symbols from A appear
in φ∞(s).

Divide A into two parts. Let I be the set of all symbols b ∈ A such that
|φm(b)| → ∞ as m → ∞. Denote F = A \ I, it is the set of all symbols b such
that |φm(b)| is bounded. Also define E ⊆ F to be the set of all symbols b such
that |φ(b)| = 1.

We can find a decomposition A = I � F in poly(n, k)-time as follows.
Find E. Then find all the cycles in G with all the vertices lying in E. Join all

the vertices of all these cycles in a set D. This set is stabilizing: F is the set of
all vertices in G such that all infinite paths starting from them stabilize in D.
Polynomiality can be checked easily.

Construct “a graph of left tails” L with marked edges. Its set of vertices
is I. From each vertex b exactly one edge goes off. To construct this edge, find a
representation φ(b) = uv, where c ∈ I, u is the maximal prefix of φ(b) containing
only symbols from F . It follows from the definitions of I and F that u does not
coincide with φ(b), that is why this representation is correct. Then construct in
L an edge from b to c and write u on it.

Analogously we construct “a graph of right tails” R. (In this case we consider
representations φ(b) = vu where u ∈ F ∗, c ∈ I.)

Now we formulate a general criterion.

Theorem 1. A sequence φ∞(s) is almost periodic iff

1) G restricted to I is strongly connected;
2) in graphs L and R on each edge of each cycle an empty word Λ is written.

It seems that full and detailed proof of this theorem can only confuse a reader,
rather than a proof sketch.

Proof (sketch). By Lemma 1 for almost periodicity it is necessary and sufficient
to check whether symbol s occurs infinitely many times with bounded distances.

For every symbol b ∈ I the symbol s should occur in some φl(b), that is what
the 1st part of the criterion says.
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Furthermore, in the sequence φ∞(s) all the segments of consecutive symbols
from F should be bounded. Indeed, every such segment consists only of symbols
from F , but s /∈ F . That is what the 2nd part of the criterion means, let us
explain why.

Consider some v = buc occurring somewhere in φ∞(a), where b, c ∈ I, u ∈ F ∗.
Every element of sequence of words v, φ(v), φ2(v), φ3(v), . . . occurs in φ∞(s).
Somewhere in the middle of φl(v) = φl(b)φl(u)φl(c) a word φl(u) occurs. As l
increases, some words from F ∗ might stick to φl(u) from left or right for these
words can come from φl(b) or φl(c). These words exactly correspond to those
written on edges of L or R. The 2nd part of the criterion exactly says that this
situation can happen only finitely many times, until we get to some cycle in L
or R. 
�

Let us consider examples with φ1 and φ2 from the end of Section 2. In both cases
I = {0, 1}, F = {2}. On every edge of R in both cases Λ is written. Almost the
same is true for L: the only difference is about the edge going from 1 to 1. In
the case of φ1 an empty word is written on this edge, while in the case of φ2 a
word 2 is written. That is why φ∞1 (0) is almost periodic, while φ∞2 (0) is not.

Corollary 1. If for all b ∈ A we have |φ(b)| � 2, then φ∞(s) is almost periodic
iff φ is primitive.

Proof. Follows from Theorem 1. In that case A = I, and on all the edges of L
and R the empty word is written. 
�

Corollary 2. There exists a poly(n, k)-algorithm that says whether φ∞(s) is
almost periodic.

Proof. Conditions from Theorem 1 can be checked in polynomial time. 
�

It also seems useful to formulate an explicit version of the criterion for the binary
case. We do it without any additional assumptions, opposite to the previous.

Corollary 3. For non-erasing φ : B → B that is prolongable on 0 a sequence
φ∞(0) is almost periodic iff one of the following conditions holds:

1) φ(0) contains only 0s;
2) φ(1) contains 0;
3) φ(1) = Λ;
4) φ(1) = 1 and φ(0) = 0u0 for some word u.

4 Uniform Morphisms

Now we deal with morphic sequences obtained by uniform morphisms. Again we
present a polynomial-time algorithm for solving the problem in this situation.

Suppose we have an alphabet A, a morphism φ : A∗ → A∗, a coding h : A → B,
and s ∈ A, such that |A| = n, |B| � n, ∀b ∈ A |φ(b)| = k, s begins φ(s). We
are interested in whether h(φ∞(s)) is almost periodic. Sequences of the form
h(φ∞(s)) with φ being k-uniform are also called k-automatic (see [1]).
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4.1 Equivalence Relations and Uniform Morphisms

For each l ∈ N define an equivalence relation on A: b ∼l c iff h(φl(b)) = h(φl(b)).
We can easily continue this relation on A∗: u ∼l v iff h(φl(u)) = h(φl(v)). In
fact, this means |u| = |v| and u(i) ∼l v(i) for all i, 1 � i � |u|.

Let Bm be the Bell number, i. e., the number of all possible equivalence
relations on a finite set with exactly m elements, see [12]. As it follows from this
article, we can estimate Bm in the following way.

Lemma 2. 2m � Bm � 2Cm log m for some constant C.

Thus the number of all possible relations ∼l is not greater than Bn = 2O(n log n).
Moreover, the following lemma gives a simple description for the behavior of
these relations as l tends to infinity.

Lemma 3. If ∼r equals ∼s, then ∼r+p equals ∼s+p for all p.

Proof. Indeed, suppose ∼r equals ∼s. Then b ∼r+1 c iff φ(b) ∼r φ(c) iff φ(b) ∼s

φ(c) iff b ∼s+1 c. So if ∼r equals ∼s, then ∼r+1 equals ∼s+1, which implies the
lemma statement. 
�

This lemma means that the sequence (∼l)l∈N turns out to be ultimately periodic
with a period and a preperiod both not greater than Bn. Thus we obtain the
following

Lemma 4. For some p, q�Bn we have for all i and all t>p that ∼t equals ∼t+iq.

4.2 Criterion

Now we are trying to get a criterion which we could check in polynomial time.
Notice that the situation is much more difficult than in the pure case because
of a coding allowed. In particular, the analogue of Lemma 1 for non-pure case
does not hold.

We will move step by step to the appropriate version of the criterion refor-
mulating it several times.

This proposition is quite obvious and follows directly from the definition of
almost periodicity since all h(φm(a)) are the prefixes of h(φ∞(a)).

Proposition 2. A sequence h(φ∞(s)) is almost periodic iff for all m the word
h(φm(s)) occurs in h(φ∞(s)) infinitely often with bounded distances.

And now a bit more complicated version.

Proposition 3. A sequence h(φ∞(s)) is almost periodic iff for all m the sym-
bols that are ∼m-equivalent to s occur in φ∞(s) infinitely often with bounded
distances.

Proof. ⇐. If the distance between two consecutive occurrences in φ∞(s) of sym-
bols that are ∼m-equivalent to s is not greater than t, then the distance between
two consecutive occurrences of h(φm(s)) in h(φ∞(s)) is not greater than tkm.
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⇒. Suppose h(φ∞(s)) is almost periodic. Let ym = 012 . . . (km − 2)(km −
1)01 . . . (km − 1)0 . . . be a periodic sequence with a period km. Then by Propo-
sition 1 a sequence h(φ∞(s)) × ym is almost periodic, which means that the
distances between consecutive km-aligned occurrences of h(φm(s)) in h(φ∞(s))
are bounded. It only remains to notice that if h(φ∞(s))[ikm, (i + 1)km − 1] =
h(φm(s)), then φ∞(s)(i) ∼m s. 
�

Let Ym be the following statement: symbols that are ∼m-equivalent to s occur
in φ∞(s) infinitely often with bounded distances.

Suppose for some T that YT is true. This implies that h(φT (s)) occurs in
h(φ∞(s)) with bounded distances. Therefore for all m � T a word h(φm(s))
occurs in h(φ∞(s)) with bounded distances since h(φm(s)) is a prefix of h(φT (s)).
Thus we do not need to check the statements Ym for all m, but only for all m � T
for some T .

Furthermore, it follows from Lemma 4, that we are sufficient to check the only
one such statement as in the following

Proposition 4. For all r � Bn: a sequence h(φ∞(s)) is almost periodic iff the
symbols that are ∼r-equivalent to s occur in φ∞(s) infinitely often with bounded
distances.

And now the final version of our criterion.

Proposition 5. For all r � Bn: a sequence h(φ∞(s)) is almost periodic iff for
some m the symbols that are ∼r-equivalent to s occur in φm(b) for all b ∈ A.

Indeed, if the symbols of some set occur with bounded distances, then they occur
on each km-aligned segment for some sufficiently large m.

4.3 Polynomiality

Now we explain how to check a condition from Proposition 5 in polynomial time.
We need to show two things: first, how to choose some r � Bn and to find in
polynomial time the set of all symbols that are ∼r-equivalent to s (and this is a
complicated thing keeping in mind that Bn is exponential), and second, how to
check whether for some m the symbols from this set for all b ∈ A occur in φm(b).

Let us start from the second. Suppose we have found the set H of all the
symbols that are ∼r-equivalent to s. For m ∈ N let us denote by P

(b)
m the set of

all the symbols that occur in φm(b). Our aim is to check whether exists m such
that for all b we have P

(b)
m ∩H �= ∅. First of all, notice that if ∀b P

(b)
m ∩H �= ∅,

then ∀b P
(b)
l ∩H �= ∅ for all l � m. Second, notice that the sequence of tuples

of sets ((P (b)
m )b∈Σ)∞m=0 is ultimately periodic. Indeed, the sequence (P (b)

m )∞m=0 is
obviously ultimately periodic with both period and preperiod not greater than 2n

(recall that n is the size of the alphabet Σ). Thus the period of ((P (b)
m )b∈Σ)∞m=0 is

not greater than the least common divisor of that for (P (b)
m )∞m=0, b ∈ A, and the

preperiod is not greater than the maximal that of (P (b)
m )∞m=0. So the period is not
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greater than (2n)n = 2n2
and the preperiod is not greater than 2n. Third, notice

that there is a polynomial-time-procedure that given a graph corresponding to
some morphism ψ (see Section 2 to recall what is the graph corresponding to a
morphism) outputs a graph corresponding to morphism ψ2. Thus after repeating
this procedure n2 + 1 times we obtain a graph by which we can easily find
(P (b)

2n2+2n
)b∈Σ , since 2n2+1 > 2n2

+ 2n.
Similar arguments, even described with more details, are used in deciding our

next problem. Here we present a polynomial-time algorithm that finds the set
of all symbols that are ∼r-equivalent to s for some r � Bn.

We recursively construct a series of graphs Ti. Let its common set of vertices
be the set of all unordered pairs (b, c) such that b, c ∈ A and b �= c. Thus the
number of vertices is n(n−1)

2 . The set of all vertices connected with (b, c) in the
graph Ti we denote by Vi(b, c).

Define a graph T0. Let V0(b, c) be the set {(φ(b)(j), φ(c)(j)) | j = 1, . . . , k,
φ(b)(j) �= φ(c)(j)}. In other words, b ∼l+1 c if and only if x ∼l y for all (x, y) ∈
V0(b, c).

Thus b ∼2 c if and only if for all (x, y) ∈ V0(b, c) for all (z, t) ∈ V0(x, y) we
have z ∼0 t. For the graph T1 let V1(b, c) be the set of all (x, y) such that there
is a path of length 2 from (b, c) to (x, y) in T0. The graph T1 has the following
property: b ∼2 c if and only if x ∼0 y for all (x, y) ∈ V1(b, c). And even more
generally: b ∼l+2 c if and only if x ∼l y for all (x, y) ∈ V1(b, c).

Now we can repeat operation made with T0 to obtain T1. Namely, in T2 let
V2(b, c) be the set of all (x, y) such that there is a path of length 2 from (b, c) to
(x, y) in T1. Then we obtain: b ∼l+4 c if and only if x ∼l y for all (x, y) ∈ V2(b, c).

It follows from Lemma 2 that log2 Bn � Cn log n. Thus after we repeat our
procedure r = [Cn log n] times, we will obtain the graph Tl such that b ∼2r c if
and only if x ∼0 y for all (x, y) ∈ V2(b, c). Recall that x ∼0 y means h(x) = h(y),
so now we can easily compute the set of symbols that are ∼2r -equivalent to s.

5 Monadic Theories

Combinatorics on words is closely connected with the theory of second order
monadic logics. Here we just want to show some examples of these connections.
More details can be found, e. g., in [10,11].

We consider monadic logics on N with the relation “<”, that is, first-order log-
ics where also unary finite-value function variables and quantifiers over them are
allowed. We also suppose that we know some fixed finite-value function x : N →
Σ and can use it in our formulas. Such a theory is denoted by MT〈N, <, x〉 and
is called monadic theory of x.

The main question here can be the question of decidability, that is, does there
exist an algorithm that given a sentence in a theory says whether this sentence
is true of false.

The criterion of decidability for monadic theories of almost periodic sequences
can be formulated in terms of some their very natural characteristic, namely, al-
most periodicity regulator. An almost periodicity regulator of an almost periodic
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sequence x is a function f : N → N such that every factor u of x of length n occurs
in each factor of x of length f(n). So an almost periodicity regulator somehow
regulates how periodic a sequence is. Notice that an almost periodicity regula-
tor of a sequence is not unique: every function greater than regulator is also a
regulator.

Theorem 2 (Semenov 1983 [11]). If x is almost periodic, then MT〈N, <, x〉
is decidable iff x and some its almost periodicity regulator are computable.

The following result was obtained recently, but uses the technics already used
in [10,11].

Theorem 3 (Carton, Thomas 2002 [2]). If x is morphic, then MT〈N, <, x〉
is decidable.

A curious result can be implied from two these theorems.

Corollary 4. If x is both morphic and almost periodic, then some its regulator
is computable.

Proof. Indeed, if x is morphic, then by Theorem 3 the theory MT〈N, <, x〉 is
decidable. Since x is almost periodic, from Theorem 2 it follows that some almost
periodicity regulator of x is computable.

Notice that Corollary 4 does not imply the existence of an algorithm that given
a morphic sequence computes some almost periodicity regulator of this sequence
whenever it is almost periodic (but probably this algorithm can be constructed
after deep analyzing the proofs of Theorems 2 and 3 and showing uniformity in
a sense). And it also does not imply the decidability of almost periodicity for
morphic sequences. This decidability also does not imply Corollary 4.

By the way, Corollary 4 allows us to hope that these algorithms exist. Though
the formulation of this statement uses only combinatorics on words, the proof
also involves the theory of monadic logics. Of course, it would be interesting to
find a simple combinatorial proof of the result.

And the last remark here is that Corollary 4 (and its probable uniform version)
seems to be the best progress that we can obtain by this monadic approach.
One could try to express in the monadic theory of morphic sequence (which is
decidable by Theorem 3) the property of almost periodicity, but it turns out to
be impossible.

6 In General Case

We have described two polynomial-time algorithms, but without any precise
bound for their working time. Of course, it can be done after deep analyzing of
all the previous, but is probably not so interesting.

It is not still known whether the problem of determining almost periodicity
of arbitrary morphic sequence is decidable. Corollary 4 somehow supports the
conjecture of decidability (but even does not follow from this conjecture!).
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Theorem 7.5.1 from [1] allows us to represent an arbitrary morphic sequence
h(φ∞(s)) as g(ψ∞(b)) where ψ is non-erasing. So it is sufficient to solve our main
problem for h(φ∞(s)) with non-erasing φ.

It seems that the general problem is tightly connected with a particular case
of h(φ∞(a)) where |φ(b)| � 2 for each b ∈ A. There is no strict reduction to this
case but solving problem in this case can help to deal with general situation.

The problem of finding an effective periodicity criterion in the case of arbitrary
morphic sequences is also of great interest, as well as criteria for variations
with periodicity and almost periodicity: ultimate periodicity, generalized almost
periodicity, ultimate almost periodicity (see [9] for definitions). If one notion is
a particular case of another, it does not mean that corresponding criterion for
the first case is more difficult (or less difficult) than for the second.
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Abstract. We prove that episturmian words and Arnoux-Rauzy se-
quences can be characterized using a local balance property. We also
give a new characterization of epistandard words.

Keywords: Arnoux-Rauzy sequences, episturmian words, balance
property.

1 Introduction

M. Morse and G.A. Hedlund [19] were the first to study in depth a family of words
called Sturmian words. Now a large literature exists on these words for which
many fascinating characterizations have been found (see for instance [1,3,20]).

Sturmian words are defined over a binary alphabet. From their various char-
acteristic properties, some generalizations of Sturmian words have emerged over
larger alphabets. One of them, the so-called Arnoux-Rauzy sequences, is based
on the notion of complexity of a word and is interesting by its geometrical,
arithmetic, ergodic and combinatorial aspects (see for instance [20]).

One of the first properties of Sturmian words stated by M. Morse and G.A.
Hedlund [19] is the balance property: any infinite word w over the alphabet {a, b}
is Sturmian if and only if it is non-ultimately periodic and balanced, that is the
number of occurrences of the letter a differs in two factors of same length of
w by at most one. Generalizations of balanced words were studied for instance
by P. Hubert [13] (see also [23] for a survey of this property). J. Justin and
L. Vuillon have stated a non-characteristic kind of the balance property [15] for
Arnoux-Rauzy sequences. Although it was first conjectured that the Arnoux-
Rauzy sequences are balanced [9], J. Cassaigne, S. Ferenczi and L.Q. Zamboni
have proved that this does not necessarily hold [6].

In 1973, E.M. Coven and G.A. Hedlund [7] stated that a word w over {a, b} is
not balanced if and only if there exists a palindrome t such that ata and btb are
both factors of w. This could be seen as a local balance property of Sturmian
words since to check the balance property we do not have to compare all factors
of the same length but only factors on the sets AtA for t being a factor of w.
The previous property can be rephrased as follows: an infinite word w over the
alphabet A = {a, b} is Sturmian if and only if it is non-ultimately periodic and
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for any factor t of w, the set of factors belonging to AtA is a subset of atA∪Ata
or a subset of btA∪Atb. In Section 3, we show that this result can be generalized
to Arnoux-Rauzy sequences.

Actually our result concerns a larger family of infinite words presented in
Section 2. Based on ideas of A. de Luca [8], Episturmian words were proposed
by X. Droubay, J. Justin and G. Pirillo [9] as a generalization of Sturmian
words. They have observed that Arnoux-Rauzy words are special episturmian
words which they called strict episturmian words. In the binary case episturmian
words are the Sturmian words and the balanced periodic infinite words. Let us
note that the remaining balanced words, namely the skew ones, have recently
been generalized [11,12].

In [9], episturmian words are defined as an extension to standard episturmian
words (Here we will call epistandard these standard episturmian words) previ-
ously introduced as a generalization of standard Sturmian words. In Section 4,
we generalize to epistandard words a characterization of standard words proving
a converse of a theorem in [14] and stating that an infinite word w is epistan-
dard if and only if there exists at least two letters such that aw and bw are both
episturmian. Interested readers can also consult [12] and its references for other
characterizations of episturmian words using left extension in the context of an
ordered alphabet.

Our last section comes back to the generalization of the local balance property
introduced by E.M. Coven and G.A. Hedlund. One another way to rephrase it is:
an infinite word w over the alphabet A = {a, b} is Sturmian if and only if it is non-
ultimately periodic and for any factor t of w, the set of factors belonging to AtA
is balanced. This yields a new family of words on which we give partial results.

2 Episturmian and Epistandard Words

Even if we assume the reader is familiar with combinatorics on words (see, e.g.,
[18]), we specify our notation. Given an alphabet A (a finite non-empty set of
letters), A∗ is the set of finite words over A including the empty word ε. The
length of a word w is denoted by |w| and the number of occurrences of a letter
a in w is denoted by |w|a. The mirror image of a finite word w = w1 . . . wn

(wi ∈ A, for i = 1, . . . , n) is the word wn . . . w1 (the mirror image of ε is ε itself).
A word equals to its mirror image is a palindrome. A word u is a factor of w if
there exist words p and s such that w = pus. If p = ε (resp. s = ε), u is a prefix
(resp. suffix ) of w. A word u is a left special (resp. right special) factor of w if
there exist (at least) two different letters a and b such that au and bu (resp. ua
and ub) are factors of w. A bispecial factor is any word which is both a left and
a right special factor (see, e.g., [5] for more informations on special factors). The
set of factors of a word w will be denoted F act(w).

Most of previous notions can be extended in a natural way to any infinite
words. Moreover any ultimately periodic infinite word can be written uvω for
two finite words u, v (v �= ε): it is then the infinite word obtained concatenating
infinitely often v to u. If u = ε, the word is said periodic.
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A word w is episturmian if and only if its set of factors is closed by mirror
image and w contains at most one left (or equivalently right) special factor of each
length. A word w is epistandard Sturmian or epistandard, if w is episturmian and
all its left special factors are prefixes of w. Let us note that, in [9], epistandard
words were introduced by several equivalent ways, and then episturmian words
were defined as words having same set of factors as an epistandard one.

The two theorems below recall a very useful property of episturmian words
which is the possibility to decompose infinitely an episturmian word using some
morphisms. This property already seen for Arnoux-Rauzy sequences in [2] is
related to the notion of S-adic dynamical system (see, e.g., [20] for more details).
This property could be useful to get information on the structure of episturmian
words (see for instance [4,16,17,22] for some uses in the binary cases).

Given an alphabet A, a morphism f on A is a mapping from A∗ to A∗ such
that f(uv) = f(u)f(v) for any words u, v over A. A morphism on A is entirely
defined by the images of elements of A.

Episturmian morphisms studied in [14,21] are the morphisms defined by com-
position of the permutation morphisms and the morphisms La and Ra defined,
for a being a letter, by

La

{
a �→ a
b �→ ab, if b �= a, Ra

{
a �→ a
b �→ ba, if b �= a.

Theorem 1. [14] An infinite word w is epistandard if and only if there exist an
infinite sequence of infinite words (w(n))n≥0 and an infinite sequence of letters
(xn)n≥1 such that w(0) = w and for all n ≥ 1, w(n−1) = Lxn(w(n)).

It is worth noting that any episturmian word is recurrent, that is, each factor of
w occurs infinitely often. An infinite word w is recurrent if and only if each factor
of w occurs at least twice. Equivalently each factor of w occurs at a non-prefix
position. Thus an infinite word w over an alphabet A is recurrent if and only if
for each of its factors u the set AuA ∩F act(w) (or simply Au∩ F act(w)) is not
empty.

Theorem 2. [14] An infinite word w is episturmian if and only if there exist an
infinite sequence of recurrent infinite words (w(n))n≥0 and an infinite sequence
of letters (xn)n≥1 such that w(0) = w and for all n ≥ 0, w(n−1) = Lxn(w(n)) or
w(n−1) = Rxn(w(n)).

Moreover, w has the same set of factors as the epistandard word directed by
(xn)n≥1.

The infinite sequence (xn)n≥1 which appears in the two previous theorem is
called the directive word of w and is denoted Δ(w): Actually in terms of [14], it
is the directive word of the epistandard word having the same set of factors as
w. Each episturmian word has a unique directive word.

We denote as in [14] Ult(w) the set of letters occurring infinitely often in w. For
B a subset of the alphabet, we introduce a new definition: we call ultimately B-
strict episturmian any episturmian word w for which Ult(Δ(w)) = B. Of course



374 G. Richomme

this notion is related to the notion of B-strict episturmian word (see [14, def. 2.3])
which is an ultimately B-strict episturmian word whose alphabet (the letters
occurring in w) is exactly B: B-strict episturmian words are also the Arnoux-
Rauzy sequences over B.

As shown in [9], there is a close relation between the directive word of an
episturmian word and its special words. Corollary 1 below will show it again for
ultimately strict episturmian words.

Let w be an episturmian word and Δ(w) = (xn)n≥1 its directive word. With
notations of Theorem 2, for n ≥ 1, we denote un,w (or simply un) the word:

un,w = Lx1(Lx2(. . . (Lxn−1(ε)xn−1) . . .)x2)x1

When n = 1, un,w = ε. These words play an important role in the initial defi-
nition of episturmian word by palindromic closure (see [14, Sec. 2]). In particular,
each un is a palindrom (see for instance [14, Lem. 2.5]). One can also observe
that, if Ult(Δ(w)) contains at least two letters, then each un is a bispecial factor
of w. Indeed for n ≥ 1, un is a prefix of the epistandard word s directed by Δ(w)
and so, by definition of an epistandard word, it is a left special factor of s and
so of w by Theorem 2. Since the set of factors of w is closed by mirror image
and since un is a palindrom, un is a right special factor of w. Conversely let us
observe that any bispecial factor of an episturmian word is a palindrom. Indeed
if u is a bispecial factor, then u and its mirror image ũ are left special factors of
an infinite word containing at most one left special word of length |u|. It follows
the construction of an epistandard word w by palindromic closure [9], that the
the words un,w are the only palindroms prefixes of w. From what precedes, we
deduce the following fact that does not seem to have been already quoted in the
literature:

Remark 1. For an episturmian word w with the directive word (xn)n≥1, a factor
u is bispecial if and only if u = un,w for an integer n ≥ 1.

Another result involving the palindroms un is:

Theorem 3. [9, Th. 6] Let s be an epistandard word over the alphabet A with
the directive word Δ(s) = (xn)n≥1. For n ≥ 1 and x ∈ A, un,sx (or equivalently
xun,s) is a factor of s if and only if x belongs to {xi | i ≥ n}.

By Theorem 2, an episturmian word w with a directive word Δ has the same set
of factors as the epistandard word with the directive word Δ. Hence the previous
theorem is still valid for any episturmian word, and we can deduce:

Corollary 1. Let w be an episturmian word over an alphabet A and let B ⊆ A
be a set containing at least two different letters. The word w is an ultimately B-
strict episturmian word if and only if for an integer n0, each left special factor
with |u| ≥ n0 verifies Au ∩ F act(w) = Bu.

Moreover for each left special factors with |u| < n0, Bu ⊆ F act(w).

The restriction on the cardinality of B (≥ 2) will be used in all the rest of the
paper. It is needed to have special factors of arbitrary length.
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3 A New Characterization of Episturmian Words

Now we give our first main result presented in the introduction as a kind of local
characteristic balance property of episturmian words.

Theorem 4. For a recurrent infinite word w, the following assertions are
equivalent:

1. w is episturmian;
2. for each factor u of w, a letter a exists such that AuA∩F act(w) ⊆ auA∪Aua;
3. for each palindromic factor u of w,

a letter a exists such that AuA ∩ F act(w) ⊆ auA ∪Aua.

In the previous theorem, the letter a and the cardinality of the set AuA depends
on u. This is shown for instance by the Fibonacci word (abaababaabaa. . . ), the
epistandard word having (ab)ω as the directive word, for which AεA∩F act(w) =
{aa, ab, ba}, AaA ∩ F act(w) = {aab, baa}, AbA ∩ F act(w) = {aba}, AaaA ∩
F act(w) = {baab}, . . .

Proof of Theorem 4.
Proof of 1 ⇒ 2. Assume w is episturmian. Since the result deals only with
factors of w, and since by Theorem 2 an episturmian word has the same set of
factors as an epistandard word, without loss of generality we can assume that
w is epistandard. Let u be a factor of w. Property 2 is immediate if u is not
a bispecial factor of w. If u is bispecial in w, by Remark 1, an integer n ≥ 1
exists such that u = un,w. Let Δ = (xi)i≥1 be the directive word of w, let s
(resp. t) be the epistandard word with (xi)i≥n (resp. (xi)i≥n+1) as the directive
word and let a = xn. Letters occurring in t are exactly the letters of the set
B = {xi | i ≥ n+1}. Since s = Lxn(t), the factors of length 2 in s are the words ab
and ba with b ∈ B. By definition of Δ and un,w, w = Lx1(Lx2(. . . Lxn−1(s) . . .))
and un,w = Lx1(Lx2(. . . (Lxn−1(ε)xn−1) . . .)x2)x1. Hence by an easy induction
on n, we deduce AuA ∩ F act(w) = auB ∪Bua ⊆ auA ∪Aua.

Proof of 2 ⇒ 1. Assume that, for any factor u of w, a letter a exists such that
AuA ∩ F act(w) ⊆ auA ∪ Aua. In particular, considering the empty word, we
deduce that AA ∩ F act(w) ⊆ aA∪Aa for a letter a. Hence, for an infinite word
x, w = La(y) if w starts with a and w = Ra(y) otherwise.

Let us prove that for each factor v of y, AvA ∩ F act(w) ⊆ bvA ∪ Avb for a
letter b. We consider w = La(y) (resp. w = Ra(y)). Let v be a factor of y and let
u = La(v)a (resp. u = aRa(v)). We observe that for letters c, d, the words cud is
a factor of w if and only if cvd is a factor of y. By hypothesis there exists a letter
b such that AuA ∩ F act(w) ⊆ buA ∪Aub. Hence AvA ∩ F act(w) ⊆ bvA ∪Avb.

Letting x1 = a and iterating infinitely the previous step, we get an infinite
sequence of letters (xi)i≥1 and an infinite sequence of words (w(i))i≥0 such that
w(0) = w and for all i ≥ 1, w(i−1) = Lxi(w(i)) or w(i−1) = Rxi(w(i)). Due to
the fact that w is recurrent, each word w(i) is also recurrent. By Theorem 2, the
word w is episturmian.
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The proof of 1 ⇔ 3 is similar to the proof of 1 ⇔ 2. Actually, 1 ⇒ 3 is
a particular case of 1 ⇒ 2. When proving 3 ⇒ 1, we need to prove in the
inductive step that u is a palindrome if and only if v is a palindrome. This is
stated by Lemma 2. 5 in [14] : a word u is a palindrome if and only the word
La(u)a = aRa(u) is a palindrome. 
�

We end this section with few remarks concerning results that can be proved
similarly.

Remark 2. Since an infinite word w over an alphabet A is recurrent if and only
if for each factor of w the set AuA ∩ F act(w) is not empty, we have: an infinite
word is episturmian if and only if for each (resp. palindromic) factor u of w,
AuA ∩ F act(w) is not empty and a letter a exists such that AuA ∩ F act(w) ⊆
auA ∪Aua.

Remark 3. We have already said that Arnoux-Rauzy sequences over an alphabet
A are exactly the (ultimately) A-strict episturmian word. One can ask for a
characterization of these words in a way quite similar to Theorem 4. Corollary 1
can fulfill this purpose. But the proof of Theorem 4 can also be easily reworked
to state : an episturmian word w over an alphabet A is an ultimately B-strict
episturmian word with B ⊆ A if and only if for all n ≥ 0, there exists a (resp.
palindromic) word u of length at least n and a letter a such that AuA∩F act(w) =
auB ∪Bua.

Remark 4. Another adaptation of the proof of Theorem 4 concerns finite words:
a finite word w is a factor of an infinite episturmian word if and only if for each
factor u of w, a letter a exists such that AuA ∩ F act(w) ⊆ auA ∪ Aua. We let
the reader verify this result. The main difficulty of the proof is that in the “if
part”, we do not have necessarily w = La(y) or w = Ra(y). But we have one
of the four following cases depending on the fact that w ends or not with a:
w = La(y), w = aLa(y), or wa = La(y) or wa = aLa(y). Except in small cases,
we have |y| < |w| and the technique of the proof of Theorem 4 can be applied.

4 A Characterization of Epistandard Words

Let us note that for any episturmian word w, there exists at least one letter a
such that aw is also episturmian. Indeed, since any episturmian word is recurrent,
for any prefix p of w, there exists a letter ap such that app is a factor of w. We
work with a finite alphabet hence an infinity of letters ap are mutually equal:
there exists a letter a such that ap is a factor of p for an infinity of prefixes (and
so for all prefixes) of w. The word aw has the same set of factors as w: it is
episturmian.

In restriction to epistandard words, a more precise result is already know:

Theorem 5. [14, Th. 3.17] If a word s is epistandard, then for each letter a in
Ult(Δ(s)), as is episturmian.
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As far as we know the converse of this result has already been stated only in the
Sturmian case (see [3, Prop. 2.1.22]): For every Sturmian word w over {a, b}, w is
standard episturmian if and only if aw and bw are both Sturmian. We generalize
here this result, proving a converse to Theorem 5 (when Ult(Δ(s)) contains at
least two elements).

Proposition 1. A non-periodic word w is epistandard if and only if, for (at
least) two different letters a and b, aw and bw are episturmian.

Proof. Let w be a non-periodic epistandard word w. By [9, Th. 3], we know that
Ult(Δ(w)) contains at least two different letters, say a and b. By Theorem 5, aw
and bw are episturmian.

Assume now that for two different letters a and b, aw and bw are episturmian.
Since aw (and also bw) is recurrent, w has the same set of factors as aw and
so w is episturmian. Moreover each prefix p is left special (since ap and bp are
factors of w). Since any episturmian word has at most one left special factor for
each length, the left special factors of w are its prefixes: w is epistandard. 
�
Let us give a more precise result:

Theorem 6. Let w be an infinite word over the alphabet A and assume B ⊆ A
contains at least two different letters. The two following assertions are equivalent:

1. The word w is ultimately B-strict epistandard;
2. For each letter a in A, aw is episturmian if and only if a belongs to B.

Proof. Assume first that w is B-strict epistandard, that is, Ult(Δ(w)) = B. By
Theorem 5, for each letter a in B, aw is episturmian. For any integer n ≥ 0, the
word un,w is a prefix of w. If a does not belong to B, by Theorem 3, for at least
one integer n ≥ 0, aun,w is not a factor of w. Thus the word aw is not recurrent
and so it is not episturmian. Hence if w is B-strict epistandard, for each letter
a in A, aw is episturmian if and only if a belongs to B.

Assume now that for each letter a in A, aw is episturmian if and only if a
belongs to B. Since B contains at least two letters, by Proposition 1, w is epis-
tandard. As a consequence of Theorem 3, we can deduce Ult(Δ(w)) = B. 
�

5 A New Family of Words

In this section, we consider recurrent infinite words w over an alphabet A having
the following property:

Property P : for any word u over A, the set of factors of w belonging to AuA is
balanced, that is, for any word u and for any letters a, b, c, d, if aub and cud
are factors of w then {a, b} ∩ {c, d} �= ∅.

Any word verifying Assertion 2 in Theorem 4 also verifies Property P . As
shown by the word (abc)ω, the converse does not hold. In other words, any
episturmian word verifies Property P , but this is not a characteristic property
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(except in the binary case for which it is immediate that a word w verifies
Property P if and only if for all words u, aua or bub is not a factor of w).

We prove:

Proposition 2. A recurrent word w over an alphabet A verifies property P if
and only if one of the two following assertions holds:

1. w is episturmian;
2. there exist three different letters a, b, c in A, a word w′ over {a, b, c} and an

episturmian morphism on {a, b, c} such that w = f(w′), w′ verifies Prop-
erty P and the three words ab, bc and ca are factors of w′.

This proposition is a consequence of the next two lemmas.

Lemma 1. If a recurrent infinite word w verifies property P, then one of the
two following assertions holds:

1. w = Lα(w′) or w = Rα(w′) for a letter α and a recurrent infinite word w′;
2. there exist three different letters a, b, c such that w ∈ {a, b, c}ω and the three

words ab, bc and ca are factors of w.

Proof. We first observe that if AA ∩ F act(w) ⊆ αA ∪Aα then (as in the proof
of Theorem 6) w = Lα(w′) or w = Rα(w′), for a letter α and a recurrent infinite
word w′.

We assume from now on that AA ∩ F act(w) �⊆ αA ∪Aα.
For any letter α in A, αα is not a factor of w. Indeed if such a word is a factor

of w, then, for any factor βγ with β and γ letters, by Property P , β = α or
γ = α, that is AA ∩ F act(w) ⊆ αA ∪Aα.

The alphabet A contains at least three letters. Indeed if A contains at most two
letters a and b, then Property P implies that aa and bb are not simultaneously
factors of w, and so we have AA∩F act(w) ⊆ aA∪Aa or AA∩F act(w) ⊆ bA∪Ab.

Let us prove that A contains exactly three letters. Assume by contradiction
that A contains at least four letters. Let a (resp. b) be the first (resp. the second)
letter of w. Since aa is not a factor of w, a �= b. At least two other letters c and d
occur in w (c, d �∈ {a, b}, c �= d). By Property P , each occurrence of c is preceded
by a or by b. Assume that ac occurs in w. Since ab also occurs, for any letter
α not in {a, b, c}, each occurrence of α is preceded and followed by the letter a.
But AA∩F act(w) �⊆ aA∪Aa. Hence bc or cb occurs in w. But then the factor ad
contradicts Property P . Assume now that bc occurs in w. Since ab also occurs,
for any letter α not in {a, b, c}, each occurrence of α is preceded and followed
by b. But AA ∩ F act(w) �⊆ bA ∪ Ab. Hence ac or ca occurs in w. But then the
factor db contradicts Property P .

Until now we have proved that w is written on a three-letter alphabet and
contains no word αα with α a letter. Assume that, for two letters a and b, ab is
a factor of w but not ba. Then for an integer n ≥ 1, a(bc)na (let recall that aa,
bb, cc and ba are not factors of w), and so ab, bc and ca are factors of w. Now if,
for all letters α and β, αβ and βα are factors of w then denoting by a, b and c
the letters occurring in w, once again ab, bc and ca are factors of w. 
�
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Lemma 2. Let α be a letter, w and w′ be recurrent words such that w = Lα(w′)
or w = Rα(w′). The word w verifies Property P if and only if w′ verifies Prop-
erty P.

Proof. We first assume w = Lα(w′).
Assume that w does not verify Property P : aub and cud are factors of w for

some letters a, b, c, d and a word u such that {a, b} ∩ {c, d} = ∅. At least one of
the two letters a and b is different from α and at least one of the two letters c
and d is different from α. Since w = Lα(w′), we deduce that u �= ε, and that
u begins and ends with α: u = Lα(v)α for a word v. Thus aub = aLα(v)αb
and cud = cLα(v)αd. We observe that if a �= α (resp. c �= α), αaLα(v)αb
(resp. αcLα(v)αd) is a factor of w. Thus we can deduce that avb and cvd are
factors of w′ (even if one of the letters a, b, c, d is α): the word w′ does not verify
Property P .

Assume conversely that the word w′ does not verify Property P : aub and cud
are factors of w′ for some letters a, b, c, d and a word u such that {a, b}∩{c, d} = ∅.
The word aLα(u)αb is a factor of w (if b = α, this is still true since we work with
infinite words and so in this case auαb′ is a factor of w for a letter b′). Similarly
cLα(u)αd is a factor of w: the word w does not verify Property P .

The proof when w = Rα(w′) is similar. Note that the fact that w′ is recurrent
is needed for the last part of the proof to know when a = α, that a′αub is a
factor of w′ for a letter a′. 
�
Proof of Proposition 2. Assume w is a recurrent word that verifies Property P
but that does not verify Assertion 2 of Lemma 1. Then w = Lα(w′) or w =
Rα(w′), with w′ a recurrent word. By Lemma 2, w′ verifies Property P .

Thus using Lemmas 1 and 2, we can prove by induction that, for any integer
n ≥ 0, one of the two following assertions holds:

– there exist recurrent infinite words w(0) = w, w(1), . . . w(n), and letters a1,
. . . , an such that for each 1 ≤ p ≤ n, w(p−1) = Lap(w(p)) or w(p−1) =
Rap(w(p)), and wn verifies property P ;

– for an integer m ≤ n, there exist recurrent infinite words w(0) = w, w(1),
. . . w(m), and letters a1, . . . , am such that for each 1 ≤ p ≤ m, w(p−1) =
Lap(w(p)) or w(p−1) = Rap(w(p)), and w(m) verifies Assertion 2 of Lemma 1.

Hence the proposition is a consequence of Theorem 2. 
�

6 Conclusion

The reader has certainly noticed that words verifying Property P are not com-
pletely characterized. For this, one should have to better know ternary recurrent
words verifying Property P and containing the words ab, bc and ca as factors.

Let us give examples of such words. One can immediately verify that if ab,
bc and ca are the only words of length 2 that are factors of a word w, then
w is (abc)ω, (bca)ω or (cab)ω. When a recurrent word w verifying property P
has exactly the words ab, bc, ca and ba as factors of length 2, one can see that
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w is a suffix of a word f(w′) where w′ is a Sturmian word over {a, b} and f
is the morphism defined by f(a) = (ab)nc and f(b) = (ab)n+1c for an integer
n ≥ 1. When f is replaced by one of the following morphisms g1 or g2, we
can get other examples of ternary words verifying Property P (and containing
exactly 5 factors of length 2 with amongst them ab, bc and ca) : g1(a) = (ab)nc,
g1(b) = (ab)ncb, g2(a) = (ab)nc, g2(b) = (ab)n+1cb. Our final example is the
periodic word (abcabacbabcb)ω which verifies Property P and contains as factors
all words of length 2 except aa, bb, cc: this word could be seen as the morphic
image of aω by the morphism that maps a onto abcabacbabcb.

All these examples lead to the question: Are all ternary recurrent words veri-
fying Property P and containing ab, bc and ca as factors are suffixes of a word
f(w′) with w′ a recurrent balanced word (that is a Sturmian word or a periodic
balanced word) and with f a morphism? If it is true, which are the possible
values for f?

We end with another question about the set of finite words that are not factors
of episturmian words. In [10] (see also [3, Pb. 2.1.4, p. 102]), it is proved: a word
w is not balanced (and so not a factor of a Sturmian word) if and only if it can
be written w = xauaybũbz for some words u, x, y, z and distinct letters a and b
(ũ is the mirror image of u). This result was then used to state that the set of
non-balanced word is context-free. Is it still true for words that are not factors of
episturmian words over a (at least) ternary alphabet? Can Theorem 4 be useful
to prove the context-freness or the non-context-freeness of this set of words?
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Abstract. Blumer et al. showed (cf. [3,2]) that the suffix automaton of a word w
must have at least |w|+1 states and at most 2|w|−1 states. In this paper we char-
acterize the language L of all binary words w whose minimal suffix automaton
S(w) has exactly |w| + 1 states; they are precisely all prefixes of standard Stur-
mian words. In particular, we give an explicit construction of suffix automaton
of words that are palindromic prefixes of standard words. Moreover, we establish
a necessary and sufficient condition on S(w) which ensures that if w ∈ L and
a ∈ {0, 1} then wa ∈ L. By using such a condition, we show how to construct
the automaton S(wa) from S(w). More generally, we provide a simple construc-
tion that by starting from an automaton recognizing all suffixes of a word w over
a finite alphabet A, allows to obtain an automaton that recognizes the suffixes of
wa, a ∈ A.

1 Introduction

Several structures are used to store the suffixes of a text and are designed to give a fast
access to all factors of the text itself. For this reason such structures have a lot of ap-
plications in text processing. Suffix tries provide a representation of all the suffixes of a
word by an ordinary tree. It has the advantage of being simple but can lead to a memory
size that is quadratic in the length of the considered word. Suffix trees are compact rep-
resentations of suffix tries and have been first introduced by Weiner [17], but the most
practical algorithms are by McCreight [13] and Ukkonen [16]. The total size of a suffix
tree is linear in the length of the considered word. Automata are alternative data struc-
ture to recognize all suffixes of a word. Whereas trees put together common prefixes of
all suffixes of a word, automata gather also the common suffixes. The suffix automaton
of a word is obtained by the minimization (related to automata) of the suffix trie of the
word itself. Suffix automata and suffix trees have similar applications to the implemen-
tation of indexes (inverted files), to pattern matching, and to data compression.

The linear size of suffix automata has been first noticed by Blumer et al. in [3,2]
where a linear algorithm on a fixed alphabet is given. In particular they showed that the
suffix automaton of a word w must have at least |w| + 1 states and at most 2|w| − 1
states. Moreover, in [5] Crochemore proved the minimality of such a structure as an
automaton and showed that the factor automaton of a word (i.e. the minimal determin-
istic automaton recognizing all the factors of the word) could be build within the same
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complexity. Upper and lower bounds on the number of states of a factor automaton are
also given in [4].

We focus on the suffix automata of a word and the language of the binary words
whose suffix automaton has exactly |w|+ 1 states.

Let A be a non-empty finite alphabet. Given a word w ∈ A∗, we denote by S(w)
the suffix automaton of w, i.e. the minimal deterministic (non necessarily complete)
automaton which recognizes the finite set of suffixes of w (see [6]). The set of states
and the set of edges of S(w) are denoted by Qw and Ew, respectively.

Let w = w1w2 . . . wn ∈ A+; then the suffix automaton of w must always contain
(as a sub-automaton) the automaton described in Figure 1 where the state X0 is initial.

X0 X1 X2 Xn−1 Xn
w1 w2 w3 . . .

wn−1 wn

Fig. 1. Sub-automaton of S(w)

Moreover X0 and Xn are always terminal states, corresponding to the empty word and
the entire word w, respectively. Typically other states Xi will also be terminal states,
but if w is unbordered, i.e. no proper non-empty prefix of w is also a suffix of w, then
X0 and Xn are the only terminal states.

In general, the suffix automaton of a word w = w1w2 . . . wn will contain other states
in addition to X0, X1, . . . Xn.

Example 1. Consider the factor w = 10100100101 of the infinite Fibonacci word. The
suffix automaton S(w) has 18 states as shown in Figure 2:

1

0

0

0

1 0 0 1 0 0 1 0 1

1 0 0 1 0

1
0

0 1

Fig. 2. Suffix automaton of 10100100101

As reported in [7], the following two propositions provide tight lower and upper bounds
on the size of the suffix automaton both in terms of the number of states and number
of edges. In particular one can show that the suffix automaton of a word w can have as
many as 2|w| − 1 states.

Proposition 1. Let A be a finite alphabet and w a word in A∗. If |w| = 0 then
#(Qw) = 1; and if |w| = 1 then #(Qw) = 2. If |w| ≥ 2 then |w| + 1 ≤ #(Qw) ≤
2|w| − 1 and the upper bound is reached when w has the form ab|w|−1 for distinct
letters a and b.
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Proposition 2. Let A be a finite alphabet and w a word in A∗. If |w| = 0, #(Ew) = 0;
and if |w| = 1, #(Ew) = 1. If |w| = 2, 2 ≤ #(Ew) ≤ 3 and if |w| ≥ 3 then
|w| ≤ #(Ew) ≤ 3|w| − 4 and the upper bound is reached when w has the form
ab|w|−2c for three distinct letters a, b and c.

In this paper we deal with the lower bound on the number of states in the case of binary
alphabets. More precisely, let us denote by L the following language

L = {w ∈ {0, 1}∗ | #(Qw) = |w|+ 1}.

Note that if w ∈ L, then the only states of S(w) are X0, X1, . . . , Xn. Also, unless
w = an, a ∈ A = {0, 1}, the suffix automaton S(w) will contain additional edges of
the form Xi

a→ Xj , where j − i > 1. We call such an edge a bypass edge while edges
of the form Xi

a→ Xi+1 will be called direct edges.

Example 2. Let w = 00100010010. Then the suffix automaton S(w) has 4 terminal
states and 4 bypass edges as described in Figure 3.

0

1

0

1

1

0

0 0 0

1

1 0 0 1 0

Fig. 3. Suffix automaton of 00100010010

In this paper we obtain the following characterization of the words in L :

Theorem 1. Let w ∈ {0, 1}∗. The word w belongs to L if and only if w is a prefix of a
standard Sturmian word.

Note that the fact that the suffix automaton of a prefix of a standard Sturmian word has
minimal size could be proved directly by using some results proved in [14,4,10]. In this
paper we introduce and use an explicit construction of suffix automaton of words that
are palindromic prefixes of standard Sturmian words. Moreover, we establish a nec-
essary and sufficient condition (name extendability condition) on the suffix automaton
S(w) of a word w, which assures that a word in L is extendable in L. Such a condition
also allows a simple construction of the suffix automaton of wa (a ∈ A) by starting
from S(w). Many of the ideas involved in the proof of such a theorem apply more
generally to the case of words on larger alphabets A.

In Section 2 we prove that the language L is closed under prefixes. Actually, given a
trim automaton A recognizing all suffixes of a word v, we construct a new automaton
P(A), called the pruning of A, that recognizes all suffixes of the |v| − 1 length prefix
of v. Moreover we introduce the extendability condition above mentioned. Finally, by
starting from an automaton A recognizing all suffixes of a word w, we show how to
construct the automaton Ea(A) that recognizes the suffixes of wa, a ∈ A.
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In Section 3, we give an explicit construction of suffix automaton of words that are
palindromic prefixes of standard sturmian words. We show that such words belong to
L. Section 4 contains the proof of the main result of the paper.

2 Closure Under Prefixes and Extendability Condition

Such a section is devoted to describe some properties of words in the language L defined
in previous section. First of all we prove that the language L is closed under prefixes.
Actually we define a construction, called pruning of an automaton, that allow to build
the suffix automaton of a word w ∈ A∗ starting from the suffix automaton of wa, a ∈ A.
Moreover we deal with the problem of extending a word in L to a word also belonging
to L. More generally, we introduce a construction that, by starting from an automaton
A recognizing all suffixes of a word w over a finite alphabet A, allow to obtain the au-
tomaton Ea(A) that recognizes the suffixes of wa, a ∈ A. Such a construction is based
on the notion of extendability condition that we establish for a generic deterministic
finite automaton recognizing a finite set of words in A+. In case of a binary word w of
L, the extendability condition on S(w) represents a necessary and sufficient condition
that ensures that wa ∈ L, where a ∈ A.

Definition 1. Let A be a deterministic automaton, where X0 denotes its initial state.
We say that A is trim if each of the following holds:

– For each state X in A, there is at least one path from X0 to X, i.e. each state is
accessible from the initial state.

– For each state X inA there exists a path starting from X and terminating at a final
state, i.e. each state is coaccessible from a final state.

Let us denote by FA be the set of all terminal states having no outgoing edges. A priori
this set may be empty.

Let w ∈ A+ and B be an automaton which recognizes the set of all suffixes of w.
Thus if B is trim, it follows that i) FB �= ∅, and ii) for each state Y of B, any two

edges pointing into Y have the same label. From here on, all automata recognizing all
suffixes of any word are assumed to be trim.

LetA be a trim deterministic finite automaton. We denote by QA the set of the states
of A. We define a new automaton P(A), called the pruning of A, as follows.

i) The set of states QP(A) of P(A) is equal to QA − FA. The initial state of P(A)
is equal to the initial state ofA.

ii) For X, X ′ ∈ QP(A), in P(A) there is an edge labeled b (b ∈ A) directed from X
to X ′ if and only if in A there exists an edge labeled b from X to X ′.

iii) A state X ∈ QP(A) is a terminal state of P(A) if and only if in A there exists an
edge labeled a from X to Y and Y is a terminal state in A.

In short, P(A) is obtained from A by simply deleting all states X ∈ FA together
with all edges pointing into X, and by changing the choice of terminal states according
to the rule: X is a terminal state of P(A) if and only if in A there is an edge labeled a
from X to a terminal state Y of A. We note that #QP(A) < #QA.
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Note that if A is trim, it follows that i) FA �= ∅ and ii) for each state Y of A, any
two edges pointing into Y have the same label. Moreover, we assume that all automata
recognizing all suffixes of any word are trim.

Proposition 3. Let A be an automaton which recognizes the suffixes of wa, where w ∈
A+ and a ∈ A. Then P(A) defined above recognizes the suffixes of w. Moreover P(A)
is trim.

Proof. Let x1x2 . . . xk denote a path in P(A) starting from the initial state X0 and
ending at some terminal state X in P(A). Then, there is an edge labeled a inA from X
to some terminal state Y . Thus x1x2 . . . xka defines a successful path in A and hence
x1x2 . . . xka is a suffix of wa. It follows that x1x2 . . . xk is a suffix of w.

Conversely, suppose x1x2 . . . xk is a suffix of w. Then, x1x2 . . . xka is a suffix of
wa and hence defines a path inA from X0 to some terminal state Y ofA. Let X denote
the final state in A corresponding to the path x1x2 . . . xk. Then by (iii), X is a terminal
state of P(A). Hence x1x2 . . . xk defines a successful path in P(A).

We can note also that, since A is trim then P(A) is trim, too. 
�

Corollary 1. Let A be an automaton recognizing the suffixes of wa. Then there is an
automaton B recognizing the suffixes of w with #QB ≤ #QA − 1.

Proof. We can simply take B = P(A). In fact, it follows from Proposition 3 that P(A)
recognizes the set of suffixes of w, and #QP(A) < #QA. 
�

Example 3. Note that even if A is minimal, P(A) need not be minimal. For instance,
consider the minimal suffix automaton of the word 100 shown below in Figure 4.

X0 X1 X2

X3

X4
1

0

0

0

0

Fig. 4. Suffix automaton of 100

Then P(A), shown in Figure 5, recognizes the suffixes of 10 but is not the minimal
such automaton. In fact the minimal automaton is shown in Figure 6.

As a consequence of Corollary 1 we deduce the following closure property of the words
of L.

Corollary 2. Let w ∈ A+. If S(w) has |w| + 1 many states, then for each prefix u of
w, S(u) has |u|+ 1 many states. In particular, if w is in L, then so is every prefix of w.

Proof. Let w = w1w2 . . . wn, and suppose that S(w) has n + 1 states. Set w′ =
w1w2 . . . wn−1 and a = wn, so that w = w′a. It suffices to show that S(w′) has n
states. By Corollary 1, there is an automaton B having at most n states which recog-
nizes the suffixes of w′. But by Proposition 1, B must have at least n = |w′|+ 1 states.
Whence, B has exactly n states. 
�

As a consequence of Proposition 3, if w = w′a ∈ L, then P(S(w)) = S(w′).
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X0 X1 X2

X3

1

0

0

Fig. 5. Automaton recognizing the suffixes of 10

X0 X1 X2
1

0

0

Fig. 6. Minimal automaton recognizing the suffixes of 10

0

1

0

1

1

0

0 0 0

1

1 0 0 1

Fig. 7. Suffix automaton of 0010001001

Example 4. We can use the ‘pruning’ method described in this section to construct the
suffix automaton (shown in Figure 7) of the word w′ = 0010001001, prefix of the word
w used in the Example 2.

Let us introduce now the extendability condition that we will use to extend the words
in L to words belonging to L.

LetM be a deterministic finite automaton recognizing a finite set of words in A+.
Let QM denote the set of states inM.

Definition 2. We say the automatonM satisfies the extendability condition for the let-
ter a ∈ A if for each state Y inM pointed by edges labeled a from states Xi and Xj ,
then Xi is a terminal state ofM if and only if Xj is a terminal state ofM.

Let us supposeM is trim. By definition of trim automaton the following two conditions
hold:

– For each state X ofM having no outgoing edges, X is a terminal state.
– FM �= ∅.

Recall that FM was defined as the set of all terminal states ofM having no outgoing
edges.

AsM is trim, associated toM is a new automaton Ea(M), the extension ofM with
respect to a, defined as follows.
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We distinguish two cases:

1. M satisfies the extendability condition for the letter a:
i) starting withM we adjoin a new state X∗.

ii) for each terminal state X in M, if X has no outgoing edge labeled a, then
we adjoin an edge labeled a from X to X∗.

iii) a state Y in Ea(M) is terminal if and only if there exists in Ea(M) an edge
labeled a from X to Y and X is a terminal state inM.

2. M does not satisfy the extendability condition for the letter a. This means that there
exists at least one state Y , and two states Xi and Xj and edges labeled a from Xi

to Y and Xj to Y and where Xi is terminal and Xj is not terminal. In this case, we
first we construct an intermediate automatonM′ as follows.
For each state Y violating the extendability condition for a we do the following:

a. we adjoin toM a state Y ′ that is terminal inM′ if and only Y is terminal in
M;

b. if inM there is an edge labeled a from a terminal state X to Y then inM′ we
re-direct that edge to an edge labeled a from X to Y ′;

c. for each edge labeled b ∈ A from Y to Z in M, in M′ we adjoin an edge
labeled b from Y ′ to Z.

It is now easy to see that the automatonM′ satisfies the extendability condition for
a, so we construct Ea(M) by applying item (1) to the automatonM′.

Remark 1. We note that the intermediate automatonM′ is never minimal as the two
states Y and Y ′ are indistinguishable.

The following proposition shows that, by starting from an automaton recognizing all
suffixes of a word w, the above construction allows to build the automaton that recog-
nizes all suffixes of wa, a ∈ A. Recall that we suppose that all automata recognizing
all suffixes of any word are trim.

Proposition 4. LetA be an automaton which recognizes the suffixes of a word w ∈ A∗.
Then Ea(A) recognizes the suffixes of wa. Moreover Ea(A) is trim, too.

Proof. First let us suppose that A satisfies the extendability condition for a. If x1x2 . . .
xka is a suffix of wa then x1x2 . . . xk is a suffix of w. Hence x1 . . . xk defines a path in
A from the initial state X0 to some terminal state X . By construction, in Ea(A) there is
an edge labeled a from X to some terminal state Y . Hence x1x2 . . . xka defines a path
in Ea(A) from X0 to some terminal state Y . Conversely, suppose x1x2 . . . xkx defines
a path in Ea(A) from X0 to some terminal state Y . Since all edges terminating at Y are
labeled a, it follows that x = a. By construction, x1x2 . . . xk defines a path in A from
X0 to some state X ; since Y is a terminal state of Ea(A), the extendability condition
guarantees that X is a terminal state of A. Hence x1x2 . . . xk is a suffix of w, whence
x1x2 . . . xka is a suffix of wa.

Let us suppose now that Y1, Y2, . . . , Yk are the states violating the extendability con-
dition for a. We claim that the intermediate automatonA′ defined above recognizes the
suffixes of w. Let Y ′1 , Y ′2 , . . . , Y ′k be the states adjoined by applying the item (2).a. It
is easy to see that for i = 1, . . . , k Yi and Y ′i are indistinguishable. In fact for each
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z ∈ A∗, there exists a path z from Yi to some terminal state Z if and only if there exists
the path z from Y ′i to Z . We claim that v defines a successful path in A if and only if
it defines a successful path in A′. The case in which the path does not go through any
state Yi is trivial. Otherwise we write v = uz such that u is a path from X0 to Yj and z
is a path from Yj to a terminal state inA. By construction there is a path labeled u inA′
from X0 to Yi or from X0 to Y ′i . So, v is recognized byA if and only if v is recognized
from A′. Since A′ satisfies the extendability condition for a, by using the first part of
this proof the result now follows.

Moreover, since A is trim it follows by construction that each state of Ea(A) is both
accessible and coaccessible. So, Ea(A) is trim, too. 
�

Corollary 3. Let A be an automaton recognizing the suffixes of w. If A satisfies the
extendability condition for a, then there is an automaton B recognizing the suffixes of
wa with #QB = #QA + 1.

Proof. From Proposition 4 it follows that Ea(A) is the required automaton B. In fact
Ea(A) recognizes all suffixes of wa and it has one more state than A. 
�

Corollary 4. LetA be an automaton recognizing the suffixes of w. IfA does not satisfy
the extendability condition for a, then there is an automaton B recognizing the suffixes
of wa with #QB = #QA + k + 1, where k is the number of states that violate the
extendability condition for a.

Proof. From Proposition 4 it follows that Ea(A) is the required automaton B. In fact
A′ is obtained by adding k states. Then Ea(A′) has one more state thanA′. 
�

Proposition 5. Let w ∈ A∗ and let S(w) be the suffix automaton recognizing the suf-
fixes of w. Then for each a ∈ A, there is at most one state in S(w) which does not
satisfy the extendability condition for a.

Proof. Let a ∈ A, and suppose to the contrary that there are at least two distinct states
Z1 and Z2 in S(w) which violate the extendability condition for a. Thus there exist
states X, Y, X ′, Y ′ in A with X and Y terminal, X ′ and Y ′ not terminal, and edges
X

a→ Z1, X ′ a→ Z1, Y
a→ Z2, Y ′

a→ Z2. Let u and u′ be paths from the initial state
X0 to X and X ′ respectively, and v and v′ be paths from X0 to Y and Y ′ respectively.
Since both X and Y are terminal it follows that both u and v are suffixes of w. We can
suppose without loss of generality that u is a proper suffix of v. We also know that u′

and v′ are not suffixes of w since neither X ′ nor Y ′ are terminal states. So we have:

1. u and v are suffixes of w, while u′ and v′ are not.
2. u is a proper suffix of v, hence every occurrence in w of v is an occurrence of u.
3. ua, u′a, va, v′a are all factors of w.
4. Every occurrence of ua in w is an occurence of u′a in w, and every occurrence of

va in w is an occurrence of v′a in w.
5. There is an occurrence of ua in w which is not an occurrence of va in w.

Item (5) is a consequence of the fact that S(w) is a minimal automaton, for otherwise
the states Z1 and Z2 would be identified. Now consider an occurrence of va in w. Then
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since this is also an occurrence of ua in w, we have that either u′a is a suffix of va or
va a suffix of u′a. But the first case implies that u′ is a suffix of v, and hence u′ is a
suffix of w, contradicting 1. In the second case we would have that every occurrence
of ua in w is an occurrence of va in w, contradicting 5. This contradiction implies the
desired result. 
�

Proposition 6. Let w ∈ A∗ and a ∈ A. Then

Ea(S(w)) = S(wa).

Proof. By Proposition 4, Ea(S(w)) recognizes the suffixes of wa. It remains to prove
that Ea(S(w)) is minimal. Thus we must show that any two distinct states P and Q of
Ea(S(w)) are distinguishable from one another. If there exists a z ∈ A∗ defined at one
of P and Q but not the other, then clearly P and Q are distinguishable. Thus we can
assume that for each z ∈ A∗, the path labeled z is defined at P if and only if it is defined
at Q. In this case, we must show that there exists a z ∈ A∗ such that the path starting at
P labeled z ends at a terminal state if and only if the path starting at Q labeled z does
not end at a terminal state.

First suppose S(w) satisfies the extendability condition for a. In this case both P
and Q are distinguishable states of S(w). Hence without loss of generality, there exists
a z′ ∈ A∗ such that the path labeled z′ starting at P ends at a terminal state of S(w)
while the path labeled z′ starting at Q does not end at a terminal state of S(w). In this
case, in Ea(S(w)), the path z = z′a starting at P ends at a terminal state of Ea(S(w))
while the path labeled z starting at Q does not end at a terminal state of Ea(S(w)). Thus
P and Q are distinguishable in Ea(S(w)).

Next suppose that S(w) does not satisfy the extendability condition for a. So we
consider the states P and Q of the intermediate automaton S(w)′. Again, if P and
Q are distinguishable states of S(w)′, then the above argument shows that they are
distinguishable states of Ea(S(w)). So it remains to consider the case in which P = Y
and Q = Y ′ where Y and Y ′ are the two indistinguishable states of S(w)′. But in
this case, Y ′ is a terminal state of Ea(S(w)) while Y is not. Hence again P and Q are
distinguishable in Ea(S(w)). 
�

As a consequence we recover the result reported in Proposition 1 on the upper bound
on the number of states of S(w), the lower bound being obvious.

Corollary 5. Let w ∈ A∗ and a ∈ A. Then #(Qwa) ≤ #(Qw) + 2. Moreover
#(Qwa) = #(Qw) + 1 if and only if S(w) satisfies the extendability condition for
the letter a. Hence if |w| ≥ 2, we have |w|+ 1 ≤ #(Qw) ≤ 2|w| − 1.

Now we consider the language L of all binary words such that S(w) has |w|+ 1 states.
The following lemma establishes a close relation between the extendability of the words
in L and the extendability condition for the automaton S(w).

Lemma 1. Suppose w ∈ L and a ∈ {0, 1}. Then wa ∈ L if and only if S(w) satisfies
the extendability condition for the letter a.

Proof. Suppose wa ∈ L; then S(w) is obtained from S(wa) in the way above de-
scribed. Suppose in S(w) there exist edges labeled a from Xi and Xj to Y . Then Xi is
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a terminal state of S(w) if and only if Y is a terminal state of S(wa). Similarly for Xj .
Hence Xi is a terminal state of S(w) if and only if Xj is a terminal state of S(w). Thus
S(w) satisfies the extendability condition for the letter a.

Conversely, suppose that the extendability condition holds. Since w ∈ L, the au-
tomaton S(w) has |w| + 1 states. From the previous proposition it follows that S(wa)
has one state nore than S(w), so it has |wa|+ 1 states. Hence wa ∈ L. 
�

Example 5. Let w be any word in L beginning in 001 and ending in 10. Then S(w)
must begin in

X0 X1 X2 X3
0

1

0

1

1 . . .

X1 is a terminal state since w ends in 0 but X2 is not terminal since 00 is not a suffix
of w. Yet both X1 and X2 have an edge labeled 1 to X3. Thus S(w) does not satisfy
the extendability condition for 1. Hence w1 /∈ L.

3 Suffix Automaton of Words in PER

In this section we give an explicit construction of suffix automaton of words that are
palindromic prefixes of standard Sturmian words.

Sturmian words were introduced in the forties by Morse and Hedlund (cf. [15]).
They are defined as the infinite binary sequences having exactly n + 1 distinct factors
of length n. Their numerous properties have lead to a great development of many fields
of research. Such a versatility explains also the existence of many equivalent definitions
(see [1]).

In particular, a Sturmian word can be defined by considering the intersections with
a squared-lattice of a semiline having a slope which is an irrational number. A vertical
intersection is denoted by the letter 0, an horizontal intersection by 1 and the intersection
with a corner by 01 or 10. If the semiline starts from the origin the corresponding
Sturmian words is called characteristic. Since the language of factors of a Sturmian
word depends only on the slope of the corresponding semiline, characteristic words
capture most of the properties of Sturmian words.

Characteristic Sturmian words can be constructed by a family of finite words called
standard Sturmian words (or simpler standard words), in the sense that every charac-
teristic word is the limit of a sequence of standard words (cf. [1]).

Let d1, d2 . . . dn, . . ., be a sequence of natural integers, with d1 ≥ 0 and di > 0 for
i = 2, . . . , n, . . .. Consider the following sequence of words {sn}n≥0: s0 = 1, s1 = 0,
and sn+1 = sdn

n sn−1 for n ≥ 1.
Each finite word sn in the sequence is called a standard word. It is univocally deter-

mined by the finite sequence (d0, d1, . . . , dn−1). We denote by STAND the language of
all standard words.
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Standard words have several characterizations (cf. [12,8] and references therein). A
characterization, that we use from here on, is based on the notion of periodicity of words
and it is closely related to Fine and Wilf’s theorem (cf. [11]). Let w ∈ A∗ and Π(w) be
the set of all periods of w. The set PER is defined as all words w having two periods
p, q ∈ Π(w) which are coprime and such that |w| = p + q− 2. Thus, a word w belongs
to PER if it is a power of a single letter or if it is a word of maximal length for which
the theorem of Fine and Wilf does not apply. In [9] it is proved that

STAND = A ∪ PER{01, 10}.

The words in PER are also called central words. Remind that (cf. [9,1] and refer-
ences therein) a word w belongs to PER if and only if w is a palindromic prefix of a
standard word. Moreover it is proved in [9] that a palindromic prefix of a word belong-
ing to PER, is also in PER. Finally, in [4] a computation of the index of the Nerode
equivalence of the language of all factors of a word in PER is given.

Let w = w1w2 . . . wn ∈ PER, i.e. w is a palindromic prefix of length n of a standard
word. In this section we show that w ∈ L and give an explicit description of S(w).

More precisely, we will prove that S(w) is constructed as follows: start with the
skeletal sub-automaton of n + 1 states X0, X1, . . . , Xn and direct edges labeled wi

from Xi−1 to Xi as shown below.

X0 X1 X2 Xn−1 Xn
w1 w2 w3 . . .

wn−1 wn

1. We modify some of the labels in the skeletal sub-automaton as follows: change the
label wi to ŵi if and only if either i = 1 or w1 . . . wi−1 is a palindrome. Otherwise
leave the label wi the same. For each a ∈ {0, 1}, we say the state Xi is of type a if
and only if the direct edge coming out of Xi is â, and is of co-type a if and only if
the direct edge coming into Xi is â.

2. For each a ∈ {0, 1}, we adjoin a bypass edge labeled a from each state of type
1− a to the next state of co-type a (if such state exists).

3. Finally the state Xi is a terminal state if and only if i = n or if Xi is a state of type
a for some a ∈ {0, 1}.

Example 6. For example, consider the palindromic prefix w = 001000100 of the Fi-
bonacci word. We modify the edges labels of skeletal sub-automaton according to (1)
to obtain the automaton in Figure 8.

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9
0̂ 0̂ 1̂ 0 0 0̂ 1 0 0

Fig. 8. Skeletal sub-automaton of S(001000100)

Finally we add the bypass edges according to (2) and assign the terminal states ac-
cording to (3) to obtain the automaton in Figure 9.
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X0 X1 X2 X3 X4 X5 X6 X7 X8 X9
0̂

1

0̂

1

1̂

0

0 0 0̂ 1 0 0

Fig. 9. The final automaton S(001000100)

With the following proposition we show that the above construction generates the suffix
automatonS(w) where of course it is understood that any label of the form â is replaced
with the label a.

Proposition 7. Let w = w1w2 . . . wn be a word in PER. Then the automaton defined
according to items (1), (2) and (3) above defines the suffix automaton S(w). In partic-
ular, we have that w ∈ L.

Proof. We proceed by induction on |w|. If |w| = 1, so w = a, a ∈ {0, 1}. Then we
obtain the automaton in Fig. 10 as required. Note that X0 is of type a while X1 is
of co-type a. More generally if w = ak then the above construction gives rise to the
automaton shown in Figure 11. It is easy to see that this automaton is in fact the suffix
automaton of ak.

Thus, we can assume that |w| > 1 and w contains both 0 and 1. We write w = ubv,
b ∈ {0, 1}, where u is the longest palindromic proper prefix of w. If b does not occur in
u then w is of the form w = akbak in which case our construction yields the automaton
shown in Figure 12.

Finally suppose b occurs in u. Since u is a palindromic prefix, u can be factorized
as u = zbv, where z is the longest palindromic proper prefix followed by b. We write
z = z1z2 . . . zk and v = v1v2 . . . vl. By induction hypothesis (since u is a palindromic
prefix of word in PER of length smaller than |w|), S(u) has the required structure shown
in Figure 13. The state Xk is the last state of type b. Moreover, if a state Xj between
Xk and Xk+l+1 is a terminal state, then such Xj is of type 1− b, and in this case there
would be a bypass edge from Xk to Xj. Note that any suffix of u of length greater than
k is represented by a path in S(u) beginning at X0 and ending at some terminal state
Xj for some j > k. Thus such Xj is either Xk+l+1 or a state of type 1− b.

Our automaton construction (applied to w = ubv) may be obtained by extending
S(u) as follows: adjoin to S(u) the automaton shown in Figure 14 by a direct edge
labeled b̂ from Xk+l+1 to Y0.

X0 X1
â

Fig. 10. Suffix automaton of w = a
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X0 X1 X2 Xk
â â â . . . â

Fig. 11. Suffix automaton of ak

X0 X1 Xk Xk+1 X2k+1
â â â

b

b

. . . b̂ a a. . . a

Fig. 12. Suffix automaton of w = akbak

Also put an edge labeled b from any state Xj (j > k) of type 1 − b to Y0. We claim
that the resulting automaton (call it A) defines S(w). In fact, if s is a suffix of w of
length less or equal to |u|, then s is a suffix of u, and hence is represented by a path in
A starting at X0 and terminating at some terminal state Xi for some 1 ≤ i ≤ k + l + 1;
and, conversely, any such path defines a suffix of u and hence a suffix of w of length
smaller than or equal to |u|.

If s is a suffix of w of length greater than |u|, then we can write s = xbv where x is
a suffix of u of length greater than |z|. Thus x is represented by a path in A beginning
at X0 and terminating at some terminal state Xj for some k < j ≤ k + l +1. But in our
construction of A, there is an edge labeled b from Xj to Y0. Thus s is represented by
a path in A from X0 to Yl. Conversely, any path σ from X0 to Yl can be factorized as
σ = σ1bv1 . . . vl, where σ1 is a path from X0 to a terminal state Xj (k < j ≤ k+ l+1).
Hence σ1 corresponds to a suffix of u and hence σ to a suffix of w. 
�

4 Main Result

In this section we give some characterizations of the prefixes of standard words. In
particular, in Theorem 1 we prove that the binary words whose suffix automaton has
minimal number of states are exactly the prefixes of standard words.

Theorem 1. A word w belongs to L if and only if w is a prefix of a standard word.

Proof. First, if w is a prefix of a standard word, then w is a prefix of a palindrome u
which is also a prefix of a standard word. In the previous section we saw that u ∈ L.
Since w is a prefix of u, by Corollary 2 it follows that w ∈ L.

We now show the converse; let us suppose w ∈ L. We proceed by induction on |w|.
If |w| = 1 then w is a prefix of a standard word. Next suppose w = ua ∈ L for some
a ∈ {0, 1}. Since L is closed under prefixes, it follows that u ∈ L. Since |u| < |w| we
can apply our induction hypothesis to u and conclude that u is a prefix of a standard
word. If u is a palindrome, then both u0 and u1 are prefixes of a standard word (cf.
[9]), hence w is a prefix of a standard word. So, suppose u is not a palindrome. In this
case there exists a unique a′ ∈ {0, 1} for which ua′ is a prefix of a standard word. So,
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X0 X1 Xk Xk+1 Xk+l+1

ẑ1 ẑ2 zk

b
b

. . . b̂ v1 vl. . .

Fig. 13. Suffix automaton of u = zbv (zk as well as some of the vi may be hatted)

Y0 Y1 Yl

v1 v2 . . . vl

Fig. 14. Sub-automaton of S(v1v2 . . . vl)

ua′ ∈ L. We want to show a = a′. To do this we will show that ub /∈ L for b �= a′. Let
u+ denote the right palindromic closure of u, i.e. u+ is the shortest palindrome having
u as a prefix. Then u+ is a palindromic prefix of a standard word and so S(u+) has
the structure given in the previous section. S(u) can be viewed as a sub-automaton of
S(u+) except that a terminal state of S(u) may not be a terminal state of S(u+). Recall
that the terminal states in S(u+) are all states of type 0, all states of type 1 and the final
state.

Without loss of generalities we can assume that u begins in 0r1 (for some r ≥ 1).
So, S(u) begins in the automaton shown in Figure 15.

X0 X1 Xr Xr+1
0 0 0

1

1

. . . 1 . . .

Fig. 15. Suffix automaton of u = 0r1 . . .

If for some Xi (with 1 ≤ i < r) is not a terminal state of S(u), then neither is Xr,
in other words, if 0i is not a suffix of u for some 1 ≤ i ≤ r, then neither is 0r. But then
S(u) does not satisfy the extendability condition for 1 since both X0 and Xr have an
edge labeled 1 to Xr+1, but X0 is a terminal state while Xr is not. Hence u1 /∈ L. Note
that we can deduce that if w = u0 then either w = 0k or w must begin in 0r1. In this
case u1 /∈ L. Similarly, if w = u1, then either w = 1k or w must begin in 1r0. In this
case u0 /∈ L. Hence w is a prefix of a standard word.

So suppose X0, X1, . . . , Xr are all terminal states of S(u). We claim that there exists
a letter b ∈ {0, 1} and a state Xk of type b in S(u) which is not a terminal state and
such that for every other state Xi for i < k, if Xi is either of type 0 or of type 1, then
Xi is a terminal state of S(u). In other words, Xk is the first state in S(u) which is of
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some type and which is not a terminal state. If we believe for a moment in the existence
of such a state Xk, then S(u) has the sub-automaton shown in Figure 16, where Xj is
a state of type 1 − b which is a terminal state, and there is a bypass edge from Xj to
Xk+1. But then S(u) does not satisfy the extendability condition for b since both Xj

and Xk have edges labeled b to Xk+1 but Xj is terminal while Xk is not.

Xj

. . .
Xk Xk+1

b

b

Fig. 16. Suffix automaton of u = 0r1 . . .

So, it remains to show the existence of this first state Xk which is not terminal but
which is either of type 0 or of type 1. We can write u = u′cv, with c ∈ {0, 1} and
where u′ is the longest palindromic prefix of u. Then u+ = (u′c)+ so |cv| ≤ |u′|.
Writing u′ = u1u2 . . . ut we have that S(u) must begin in the automaton described in
Figure 17.

X0 X1 Xt Xt+1
u1 u2 ut. . . c . . .

Fig. 17. First states in S(u)

We claim that Xt (which is of type c) is not a terminal state of S(u). If it were, then
u′ = u1u2 . . . ut would be a suffix of u. Thus the palindrome u′ would be both a prefix
and a suffix of u and two occurrences of u′ in u would overlap. This would imply that
u is a palindrome (a contradiction). This shows that S(u) contains at least one state Xi

(for some i > r) which is of type 0 or 1 and is not a terminal state. Hence there exists
at least such i. 
�

Let w be a word on a finite alphabet A, and S(w) the suffix automaton of w. The
following remark points out some properties of the suffix automaton of any word w
(cf. [7]).

Remark 2. Let X be any state of S(w), and u and v be any two paths in S(w) beginning
at the initial state X0 and terminating at X . Then, by minimality of S(w) we have that
(i) either u is a suffix of v or v a suffix of u. (ii) Every occurrence of u in w is an
occurrence of v in w and vice versa.

Recall that a factor u of a finite word w is called left special if there exist two distinct
letters x and y such that both xu and yu are factors of w. From the above remark one
easily deduces the following:
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Proposition 8. Let w a word in A∗ and S(w) its suffix automaton.

a) The number of states of S(w) is |w|+1 if and only if any left special factors of w is
a prefix of w, i.e., if au and bu are each factors of w with a �= b, then u is a prefix
of w.

b) For each factor u of w, let pw(u) denote the shortest prefix of w ending in u. Then
S(w) has |w|+1 states if and only if for each factor u of w, we have that each prefix
of w ending in u also ends in pw(u), i.e., every occurrence of u is an occurrence of
pw(u).

Thus in case w is a binary word, by Theorem 1 and Proposition 8, we have the following
characterization of prefixes of standard words:

Corollary 6. Let w be a binary word. The following statements are equivalent:

1. w is a prefix of a standard word;
2. every left special factor of w is a prefix of w
3. for every factor u of w, every occurrence of u in w is an occurrence of pw(u).

Many of the ideas involved in the proof of the main theorem and in this paper apply
more generally to the case of words on larger alphabets A. Further research will be
devoted to deeply investigate the bounds on the size of suffix automaton of words over
a finite alphabet A. Similar results can be obtained for the factor automaton of a word.
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Abstract. We develop a theory of regular aperiodic ω-languages in par-
allel with the theory around the Wagner hierarchy. In particular, we
characterize the Wadge degrees of regular aperiodic ω-languages, find
an effective version of the Wadge reducibility adequate for this class of
languages and prove “aperiodic analogs” of the Büchi-Landweber de-
terminacy theorem and of Landweber’s description of regular open and
regular Gδ sets.

Keywords: Automaton, acceptor, transducer, regular aperiodic ω-lan-
guage, Wagner hierarchy, reducibility.

1 Introduction

This paper is devoted to the theory of infinite behavior of computing devices
that is of primary importance for theoretical and practical computer science.
More exactly, we consider topological aspects of this theory in the simplest case
of finite automata.

A series of papers in this direction culminated with the paper [Wag79] giving
in a sense the finest possible topological classification of regular ω-languages
(i.e., of subsets of Xω for a finite alphabet X recognized by finite automata)
known as the Wagner hierarchy. In [Se94a, Se95, Se98] the Wagner hierarchy of
regular ω-languages was related to the Wadge hierarchy and to the author’s fine
hierarchy [Se95a]. This provided new proofs of results in [Wag79] and yielded
some new results on the Wagner hierarchy. See also an alternative approach
[CP97, CP99, DR06].

Later some results from [Wag79, Se98] were extended to more complicated
computing devices. In particular, the Wadge degrees of deterministic context-
free ω-languages, of ω-languages recognized by deterministic Turing machines,
and of infinite tree languages recognized by deterministic tree automata were
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determined respectively in [D03, Se03, M06]. Note that in all these three cases
some important properties of the Wagner hierarchy are either false or still open.

In this paper, we develop a complete analog of the theory from [Wag79, Se98]
for the class A of regular aperiodic ω-languages. The classA is certainly the most
important subclass of R which has several remarkable characterizations and is
essential in the field of specification and verification of finite-state systems. To
explain our results, let us recall some results on the Wagner hierarchy in more
details. In [Wag79] the following results (among others) were established:

1) The structure (R;≤CA) of regular set under reducibility by continuous func-
tions is almost well-ordered with order type ωω, i.e. there are Aα ∈ R,
α < ωω, such that Aα <CA Aα ⊕ Aα <CA Aβ for α < β < ωω and any
regular set is CA-equivalent to one of sets Aα, Āα, Aα ⊕Aα(α < ωω).

2) CA-reducibility coincides on R with DA-reducibility, i.e. the reducibility by
functions computed by deterministic asynchronous finite transducers, and R
is closed under DA-reducibility.

3) Any level Rα = {C | C ≤DA Aα} of the Wagner hierarchy is decidable.

In [Se98] the following additional facts (among others) about the Wagner
hierarchy were established:

4) Any class Rα has a natural set-theoretic description in terms of classes L0 of
regular open sets and L1 of regula Fσ sets. In particular, there is a Boolean
term t(x1, . . . , xn, y1, . . . , yn) with Rα = t(L0,L1), where t(L0,L1) is the set
of values of t when x1, . . . , xn range over L0 and y1, . . . , yn range over L1.

5) For every term t as above, the set t(L0,L1) coincides with one of classes Rα

or their duals.
6) If a regular set R is represented as R = t(B1, . . . , Bn, C1, . . . , Cn) for some

term t as above, open sets B1, . . . , Bn and Fσ-sets C1, . . . , Cn, then R =
t(B′1, . . . , B′n, C′1, . . . , C′n) for some B′1, . . . , B′n ∈ L0 and C′1, . . . , C′n ∈ L1.

In this paper we show that the sets Aα from 1) may be chosen from A, and
thus the Wadge degrees (as well as DA-degrees) of sets inA are the same as those
of sets in R (this result is not hard and, probably, may be obtained by a careful
analysis of the corresponding automata in [Se98]; our approach here is different).
We will find a reducibility ≤AA related to the class A in exactly the same way as
DA-reducibility is related to R. Thus, we obtain analogs of 1)—3). We also show
that classes Aα = {C | C ≤AA Aα} of the fine hierarchy of regular aperiodic
languages have properties 4)—6), if we take the classes K0 of regular aperiodic
open and K1 of regular aperiodic Fσ-sets in place of the classes L0 and L1,
respectively. We obtain also some facts of independent interest, e.g. “aperiodic
analogs” of the Büchi-Landweber determinacy theorem and of Landweber’s de-
scription of regular open and regular Gδ sets (cf. the algebraic approach in [C00]).
Note that these results actually subsume the corresponding results about regu-
lar sets, hence this paper formally subsumes many results from [Wag79, Se98].
Note that several proofs in this paper are not straightforward generalizations of
those in [Wag79, Se98] because this time we have to take care that corresponding
automata are aperiodic (or counter-free) which is often not obvious.
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The rest of the paper is organized as follows. In Section 2 we collect notation
and known facts we will rely upon. In Section 3 we establish some necessary facts
about aperiodic automata (known also as counter-free automata). In Section 4
we obtain the “aperiodic analog” of the Büchi-Landweber determinacy theorem.
In Section 5 we establish some facts about regular aperiodic sets in the Borel
hierarchy. Section 6 deals with the fine hierarchy of regular aperiodic sets, while
Section 7 — with reducibilities on such sets.

Because of space bounds, we omit all the proofs (most of which are short) in
this conference paper. They may be found in the full version [Se06].

2 Notation and Reminder

For a set S, P (S) is the class of subsets of S. For a class C ⊆ P (S), Č is the dual
class {C | C ∈ C} and B(C) is the Boolean closure of C.

Fix a finite alphabet X containing more than one symbol (for simplicity we
may assume that X = {x | x < k} for a natural number k > 1, so 0, 1 ∈ X).
Let X∗ and Xω denote respectively the sets of all words and of all ω-words
(i.e. sequences α : ω → X) over X . The empty word is denoted by ε. Let
X+ = X∗ \ {ε} and X≤ω = X∗ ∪ Xω. For n < ω, let Xn be the set of words
of length n. Sets of words X≤n and X>n are defined in the same way. For
X = {0, 1} we write 2∗ in place of X∗, 2ω in place of Xω and so on.

We use some almost standard notation concerning words and ω-words, so we
are not too casual in reminding it here. For w ∈ X∗ and ξ ∈ X≤ω, w - ξ
means that w is a substring of ξ, w · ξ = wξ denote the concatenation, l = |w|
is the length of w = w(0) · · ·w(l − 1). For w ∈ X∗, W ⊆ X∗ and A ⊆ X≤ω,
let w · A = {wξ | ξ ∈ A} and W · A = {wξ | w ∈ W, ξ ∈ A}. For k, l < ω and
ξ ∈ X≤ω, let ξ[k, l) = ξ(k) · · · ξ(l− 1) and ξ[k] = ξ[0, k). For u ∈ X∗ and n < ω,
un denote the concatenation of n copies of the word u. Our notation does not
distinguish a word of length 1 and the corresponding letter.

Note that usually we work with the fixed alphabet X but sometimes we are
forced to consider several alphabets simultaneously; in this case we denote the
alphabets by Y, Z, possibly with indices, and include the alphabets in the cor-
responding notation. The “fixed-alphabet mode” is the default one.

The set Xω carries the Cantor topology with the open sets W · Xω, where
W ⊆ X∗. Continuous functions in this topology are called also CA-functions.
A CS-function is a function f : Xω → Y ω satisfying f(ξ)(n) = φ(ξ[n + 1])
for some φ : X+ → Y . A delayed CS-function is a function f : Xω → Y ω

satisfying f(ξ)(n) = φ(ξ[n]) for some φ : X∗ → Y . Every delayed CS-function is
a CS-function, and every CS-function is a CA-function. In descriptive set theory
CS-functions are known as Lipschitz functions. All three classes of functions are
closed under composition.

Let B denote the class of Borel subsets of Xω, i.e. the least class containing
the open sets and closed under complement and countable union. Borel sets
are organized in the Borel hierarchy the lowest levels of which are as follows:
G and F are the classes of open and closed sets, respectively; Gδ (Fσ) is the
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class of countable intersections (unions) of open (resp. closed) sets; Gδσ (Fσδ)
is the class of countable unions (intersections) of Gδ- (resp. of Fσ-) sets, and so
on. In the modern notation of hierarchy theory, Σ0

1 = G, Σ0
2 = Fσ , Σ0

3 = Gδσ ,
Σ0

4 = Fσδσ and so on, Π0
n is the dual class for Σ0

n, and Δ0
n = Σ0

n ∩ Π0
n. For

any n > 0, the class Σ0
n contains ∅, Xω and is closed under countable unions

and finite intersections, while the class Δ0
n is a Boolean algebra. For any n > 0,

Σ0
n ∪Π0

n ⊆Δ0
n+1, and Σ0

n �⊆ Π0
n.

By automaton (over X) we mean a triple M = (Q, X, f) consisting of a
finite non-empty set Q of states, an input alphabet X and a transition function
f : Q ×X → Q. The transition function is naturally extended to the function
f : Q×X∗ → Q defined by induction f(q, ε) = q and f(q, u · x) = f(f(q, u), x),
where u ∈ X∗ and x ∈ X . Similarly, we may define the function f : Q×Xω → Qω

by f(q, ξ)(n) = f(q, ξ[n]). Note that in this paper we consider only deterministic
finite automata. A partial automaton is defined in the same way, only now f :
Q×X ⇀ Q is a partial function.

Automata equipped with appropriate additional structures are used as accep-
tors (devises accepting words or ω-words) and transducers (devices computing
functions on words or ω-words). A word acceptor is a triple (M, i, F ) consisting
of an automaton M, an initial state i of M and a set of final states F ⊆ Q.
Such an acceptor recognizes the language L(M, i, F ) = {u ∈ X∗ | f(i, u) ∈ F}.
Languages recognized by such acceptors are called regular. The languages rec-
ognized by partial automata are defined in the same way and coincide with the
regular languages.

For the case of ω-words, there are several notions of acceptors of which we will
use only three. A Büchi acceptor has the form (M, i, F ) as above and recognizes
the set Lω(M, i, F ) = {ξ ∈ X∗ | In(f(i, ξ)) ∩ F �= ∅}, where In(f(i, ξ)) is the
set of states which occur infinitely often in the sequence f(i, ξ) ∈ Qω. A Muller
acceptor has the form (M, i,F), where M, i are as above and F ⊆ P (Q); it
recognizes the set Lω(M, i,F) = {ξ ∈ Xω | In(f(i, ξ)) ∈ F}. A Mostowski
acceptor (known also as Rabin chain acceptor or parity acceptor) has the form
(M, i, Ω), whereM, i are as above and Ω = (E1, F1, . . . , En, Fn) for some E1 ⊆
F1 ⊆ · · · ⊆ En ⊆ Fn ⊆ Q; it recognizes the setLω(M, i, Ω) = {ξ ∈ Xω |
∃k(In(f(i, ξ))∩Ek = ∅∧In(f(i, ξ))∩Fk �= ∅)}. It is well known that Muller and
Mostowski acceptors recognize the same ω-languages; these are called regular ω-
languages or just regular sets. The class R of all regular ω-languages is a proper
subclass of B(Σ0

2) that in turn is a proper subclass of Δ0
3. Büchi acceptors

recognize a smaller class of sets, namely exactly the regular Π0
2-sets.

A synchronous transducer (over X, Y ) is a tuple T = (Q, X, Y, f, g, i), also
written as T = (M, Y, g, i), consisting of an automaton M as above, an initial
state i and an output function g : Q×X → Y . The output function is naturally
extended to a function g : Q ×X∗ → Y ∗ and to a function g : Q ×Xω → Y ω

denoted by the same letter. The transducer T computes the function gT : Xω →
Y ω defined by gT (ξ) = g(i, ξ). If the output function is of the form g : Q →
Y (i.e., does not really depend on the second argument), then T is called a
delayed synchronous transducer. An asynchronous transducer (over alphabets



Fine Hierarchy of Regular Aperiodic ω-Languages 403

X, Y ) is defined as a synchronous transducer with only one exception: this time
the output function g maps Q ×X into Y ∗. As a result, the value g(q, ξ) is in
Y ≤ω, and the function gT maps Xω into Y ≤ω. Usually we consider the case
when gT maps Xω into Y ω.

Functions computed by synchronous (delayed synchronous, asynchronous)
transducers are called DS-functions (respectively delayed DS-functions and
DA-functions). As is well known, all tree classes of functions are closed un-
der composition, and every DS-function (delayed DS-function, DA-function) is
a CS-function (delayed CS-function, CA-function).

We will study several reducibilities on subsets of Xω. For A, B ⊆ Xω, A is
said to be CA-reducible to B (in symbols A ≤CA B), if A = g−1(B) for some
CA-function g : Xω → Xω. The relations ≤DA, ≤CS and ≤DS on P (Xω) are
defined in the same way but using the other three classes of functions. The intro-
duced relations on P (Xω) are preorderings. The CA-reducibility is widely known
as Wadge reducibility, and CS-reducibility as Lipschitz reducibility. The other
two reducibilities are effective automatic versions of these. By ≡CA we denote
the induced equivalence relation which gives rise to the corresponding quotient
partial ordering. Following a well established jargon, we call this ordering the
structure of CA-degrees. The same applies to the other reducibilities (and to
reducibilities to be introduced later). In the “alphabet-dependent mode”, we say
that A ⊆ Xω is CA-reducible to B ⊆ Y ω, if A = g−1(B) for some CA-function
g : Xω → Y ω. Sometimes such variations are also of use.

The operation A⊕B = {0 ·α, i ·β|0 < i < k, α ∈ A, β ∈ B} on subsets of Xω,
X = {0, . . . , k−1}, induces the operation of least upper bound in the structures
of degrees under all four reducibilities introduced above. Any level of the Borel
hierarchy is closed under CA-reducibility (and thus under all four reducibilities)
in the sense that every set reducible to a set in the level is itself in that level.
The class R is closed under DA- and DS-reducibilities but is not closed under
CA- and CS-reducibilities. Every Σ-level C (and also every Π-level) of the Borel
hierarchy has a CA-complete set C which means that C = {A | A ≤CA C}.

More detailed information related to the introduced notions may be found in
many sources including [Sta97, Th90, Th96, TB70, PP04].

3 Aperiodic Acceptors and Transducers

Here we formulate some facts on the regular aperiodic sets, the main object
of this paper, and on the closely related aperiodic automata (known also as
counter-free automata).

Aperiodic languages were characterized in several ways, in particular as: lan-
guages defined by extended regular star-free expressions; languages of words
described by first-order sentences of a natural signature; languages of words sat-
isfying a formula of linear time temporal logic; languages recognized by aperiodic
acceptors. Similar characterizations exist also for regular aperiodic ω-languages
(see e.g. [Th79, Th90, Th96] and references therein). It is well-known (and follows
from the mentioned characterizations) that classes of regular aperiodic languages
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and ω-languages are closed under Boolean operations. For our paper, the char-
acterization in terms of aperiodic acceptors is the most relevant. Let us recall
the corresponding definition from [MP71].

Definition 1. An automatonM = (Q, X, f) is aperiodic if for all q ∈ Q, u ∈ X+

and n > 0 the equality f(q, un) = q implies f(q, u) = q. This is clearly equivalent
to say that for all q ∈ Q and u ∈ X+ there is m < ω with f(q, um+1) = f(q, um).
An acceptor (or a transducer) is aperiodic if so is the corresponding automaton.

A basic fact proved in [MP71] states that a regular language A ⊆ X∗ is aperiodic
iff it is recognized by an aperiodic acceptor. It is known and easy to check that
the same is true for ω-languages and aperiodic Muller acceptors.

Let us establish some results on functions gT computed by aperiodic trans-
ducers T (see Section 2).

Definition 2. A function h : Xω → Y ≤ω is called an AA-function (an AS-
function) if it is computed by an aperiodic asynchronous (respectively, aperiodic
synchronous) transducer T over X, Y , i.e. h = gT .

We have the following natural closure property of the introduced classes of
functions.

Proposition 1. The classes of AA-functions and of AS-functions are closed
under composition.

We say that a set A ⊆ Xω is AA-reducible (AS-reducible) to a set B ⊆ Y ω, in
symbols A ≤AA B (A ≤AS B) if A = g−1(B) for some AA-function (respectively,
AS-function) g : Xω → Y ω. For X = Y we obtain relations ≤AA and ≤AS on
P (Xω) called AA- and AS-reducibilities.

Corollary 1. The relations ≤AA and ≤AS on P (Xω) are preorders. The corre-
sponding quotient partial orderings of AA- and AS-degrees are upper semilattices
under operation induced by the operations ⊕ from Section 2.

Now we relate AA-transducers to regular aperiodic sets. We say that a set is
Büchi aperiodic if it is recognized by an aperiodic Büchi acceptor.

Proposition 2. The classes of Büchi aperiodic and of regular aperiodic ω-lan-
guages are closed under preimages of AA-functions and hence also under AA-
and AS-reducibilities.

4 Aperiodic Determinacy

Here we establish an “aperiodic version” of the Büchi-Landweber regular deter-
minacy theorem. This may be of independent interest and is also an important
technical tool to prove some results below.

We start with recalling some relevant information on Gale-Stewart games.
Relate to any set A ⊆ (X × Y )ω the Gale-Stewart game G(A) played by two
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opponents 0 and 1 as follows. Player 0 chooses a letter x0 ∈ X , then player 1
chooses a letter y0 ∈ Y , then 0 chooses x1 ∈ X , then 1 chooses y1 ∈ Y and so
on. Each player knows all the previous moves. After ω moves, 0 has constructed
a word ξ = x0x1 · · · ∈ Xω while 1 has constructed a word η = y0y1 · · · ∈ Y ω.
Player 1 wins this particular play if ξ × η ∈ A, otherwise 0 wins.

A strategy for player 1 (0) in the game G(A) is a function h : X+ → Y
(respectively, h : Y ∗ → X) that prompts the 1’s move (respectively, the 0’s move)
for any finite string of the opponent’s previous moves. It is clear that strategies
for 1 (for 0) are in a bijective correspondence with CS-functions h : Xω → Y ω

(respectively, with delayed CS-functions h : Y ω → Xω); we identify strategies
with the corresponding CS-functions.

A strategy h for player 1 (0) in the game G(A) is winning if the player wins
each play when following the strategy, i.e. if ξ×h(ξ) ∈ A for all ξ ∈ Xω (respec-
tively, h(η)× η ∈ A for all η ∈ Y ω). A set A ⊆ (X × Y )ω is determined if one of
the players has a winning strategy in G(A). It is interesting and useful to know
which sets are determined and, in case of determinacy, how complicated it is to
find the winner and how complicated is his winning strategy.

One of the best results of descriptive set theory is the Martin determinacy
theorem (see e.g. [Ke94]) stating that any Borel set is determined. Note that,
since any regular set is Borel, this implies determinacy of regular sets. One of
the best results of automata theory is the Büchi-Landweber regular determinacy
theorem stating that for any regular set A the winner in G(A) may be computed
effectively, he has a winning strategy which is a DS-function, and the strategy
is also computed effectively.

Now we are ready to establish the aperiodic version of the Büchi-Landweber
theorem.

Theorem 1. For any regular aperiodic set A ⊆ (X × Y )ω the winner of the
game G(A) may be computed effectively, he has a winning strategy which is an
AS-function, and the strategy is also computed effectively.

Corollary 2

(i) Let A ⊆ (X × Y )ω be regular aperiodic and player i has a winning CS-
strategy in the game G(A). Then i has also a winning AS-strategy.

(ii) Let B ⊆ Xω and C ⊆ Y ω be regular aperiodic and let h : Xω → Y ω be
a CS-function satisfying B = h−1(C). Then B = g−1(C) for some AS-
function g : Xω → Y ω.

(iii) Let B, C ⊆ Xω be regular aperiodic. Then B ≤AS C or C ≤AS B.

Define subsets K0, K1 of 2ω which play an essential role in further considerations
by K0 = 0∗1(0 ∪ 1)ω and K1 = (0 ∪ 1)∗0ω.

Corollary 3

(i) The sets K0 and K1 are Büchi aperiodic.
(ii) K0 ∈ Σ0

1 \Π0
1 and K1 ∈ Σ0

2 \Π0
2.

(iii) Any Σ0
1-set (Σ0

2-set) B ⊆ Xω is CS-reducible to K0 (respectively, to K1).
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(iv) Any regular Σ0
1-set ( regular Σ0

2-set) B ⊆ Xω is DS-reducible to K0 (re-
spectively, to K1).

(v) Any regular aperiodic Σ0
1-set (regular aperiodic Σ0

2-set) B ⊆ Xω is AS-
reducible to K0 (respectively, to K1).

5 Aperiodic Σ0
n-Sets

Here we establish some facts on regular aperiodic sets in the Borel hierarchy. Our
first result is an “aperiodic version” of Landweber’s characterizations of regular
Σ0

n-sets (see e.g. [Th90]).

Theorem 2

(i) A regular aperiodic set A ⊆ Xω is Σ0
1 iff A = W · Xω for some regular

aperiodic set W ⊆ X∗.
(ii) A regular aperiodic set A ⊆ Xω is Π0

2 iff A is Büchi aperiodic.

Recall that a class C has the reduction property, if for all C0, C1 ∈ C there are
disjoint C′0, C′1 ∈ C such that C′i ⊆ Ci for both i < 2 and C0 ∪ C1 = C′0 ∪ C′1;
such a pair (C′0, C′1) is called a reduct of (C0, C1). A class C has the separation
property, if all disjoint sets C0, C1 ∈ C are separable by a set B ∈ C ∩ Č (i.e.
C0 ⊆ B ⊆ C1). It is well known that if a class C has the reduction property then
the dual class Č has the separation property.

As is well known [Ke94], any level Σ0
n of the Borel hierarchy has the reduction

property. In [Se98] it was shown that classes Ln = R ∩Σ0
n+1, n < 2, have the

reduction property (this trivially holds also for n ≥ 2, because in this case we
have Ln = R and this class is closed under the Boolean operations). The next
result is an “aperiodic version” of the last fact. Let Kn = A ∩Σ0

n+1, where A
is the class of regular aperiodic ω-languages. Since again Kn = A is a Boolean
algebra for n ≥ 2, these classes trivially have the reduction property.

Theorem 3. The classes K0 and K1 have the reduction property.

Corollary 4. The classes Ǩ0 and Ǩ1 have the separation property.

Next we establish the “aperiodic version” of a theorem due to L. Staiger and K.
Wagner [SW74].

Theorem 4. Every regular aperiodic Δ0
2-set is a Boolean combination of open

regular aperiodic sets. In symbols, K1 ∩ Ǩ1 = B(K0).

We conclude this section with a corollary which is crucial for the subsequent
sections. Recall that a base (in a set S) is a sequence {Ln}n<ω of sublattices
of (P (S);∪,∩, 0, 1) satisfying Ln ∪ Ľn ⊆ Ln+1. A base L is reducible if every
Ln has the reduction property. A base L is interpolable if for all n < ω any
two disjoint elements A, B ∈ Ľn+1 are separable by a Boolean combination of
elements of Ln.

In [Se98] we have shown that the base {Ln}n<ω is reducible and interpolable.
From results of this section we obtain

Corollary 5. The base {Kn}n<ω is reducible and interpolable.



Fine Hierarchy of Regular Aperiodic ω-Languages 407

6 Fine Hierarchy

Here we describe some basic properties of the fine hierarchy of regular aperiodic
ω-languages which is just the fine hierarchy over the base K = {Kn}n<ω. For
background on the fine hierarchy see e.g. [Se95a, Se98]. Results of this section
are particular cases of the corresponding general facts about the fine hierarchy
[Se94, Se95].

In our definition of the fine hierarchy we use an operation bisep that relates to
classes C, D0, D1 and D2 of ω-languages the class bisep(C,D0,D1,D2) of all sets
{C0∩D0)∪ (C1 ∩D1)∪ (C0 ∩C1 ∩D2) where Ci ∈ C, Dj ∈ Dj and C0 ∩C1 = 0.

Definition 3. The fine hierarchy over K is the sequence {Aα}α<ωω defined by
induction on α < ωω as follows:
An = Dn(K0) is the n-the level of the difference hierarchy over K0 for n < ω;
Aωn = Dn(K1) for 0 < n < ω;
Aβ+ωn = bisep(K0,Aβ , Ǎβ ,Aωn) for 0 < n < ω and β of the form β = ωn ·β1

for some β1, 0 < β1 < ωω;
Aβ+1 = bisep(K0,Aβ , Ǎβ,A0) for ω ≤ β < ωω.

The definition is correct since every non-zero ordinal α < ωω is uniquely repre-
sentable in the form α = ωn0 + · · · + ωnk for a finite sequence n0 ≥ · · · ≥ nk

of ordinals < ω; applying it we subsequently get Aωn0 ,Aωn0+ωn1 , . . . ,Aα. Note
that the definition applies to any base in place of the base K above. For this pa-
per, the fine hierarchy {Sα} over the base {Σ0

n+1} and the fine hierarchy {Rα}
over the base L = {Ln}n<ω are also relevant. The hierarchy {Rα} coincides with
the Wagner hierarchy [Se98]. Note also that our definition here slightly differs
from (but is equivalent to) the definition of the fine hierarchy in [Se98].

Proof of the next result uses heavily the fact from the previous section that
the base K is reducible and interpolable.

Theorem 5

(i) For all α < β < ωω, Aα ∪ Ǎα ⊆ Aβ.
(ii)

⋃
α<ωω Aα = A.

(iii) For any limit ordinal λ < ωω, Aλ ∩ Ǎλ =
⋃

α<λAα.
(iv) For any α < ωω, Aα+1 ∩ Ǎα+1 coincides with the class of sets (A ∩ C) ∪

(B ∩C) where A ∈ Aα, B ∈ Ǎα and C ∈Δ0
1 = K0 ∩ Ǩ0.

(v) For any α < ωω, Ǎα has the separation property.

Next we give an alternative description of the fine hierarchy {Aα}. Recall that a
typed boolean term is a term of signature {∪,∩,̄ , 0, 1} with variables v0

n, v1
n(n <

ω). Variables v0
n are of type 0 while variables v1

n are of type 1. For a typed
boolean term t and a base L, let t(L0, L1) be the class of values of t when
variables vi

n(n < ω) of type i range over Li, i < 2.
The next result shows the close relation of classes t(K0,K1) to the fine hier-

archy {Aα}. The result follows from the reducibility of the base K. Similar facts
for the bases {Σ0

n+1} and L were established in [Se95a, Se98].
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Theorem 6. For every α < ωω one can effectively find a typed boolean term
t = tα such that Aα = t(K0,K1). Conversely, for every typed boolean term t the
class t(K0,K1) coincides with one of classes Aα, Ǎα for some α < ωω, and the
class is effectively computable from t.

7 Reducibilities on A

Here we establish the non-collapse property of the fine hierarchy {Aα}α<ωω

from the previous section and describe the structures of AA- and AS-degrees of
regular aperiodic sets. First we will show that for every α < ωω the class Aα has
an AA-complete set.

Theorem 7. For every α < ωω the class Aα has an AA-complete set Aα.

Corollary 6

(i) The set Aα is DA-complete in Rα and CA-complete in Sα.
(ii) The set Aα ⊕ Āα is AA-complete in (Aα+1 ∩ Ǎα+1) \ (Aα ∪ Ǎα) and DA-

complete in (Rα+1 ∩ Řα+1) \ (Rα ∪ Řα).

The non-collapse property is also an easy corollary.

Corollary 7. The hierarchy {Aα} does not collapse, i.e. Aα �⊆Ǎα for all α<ωω.

The relation of the hierarchy {Aα} to AA-reducibility is even tighter than The-
orem 7 and Corollary 6 suggest.

Theorem 8. For every α < ωω, Aα \ Ǎα = {C | C ≡AA Aα} and (Rα+1 ∩
Řα+1) \ (Rα ∪ Řα) = {C | C ≡AA Aα ⊕ Āα}.

Let us summarize some facts on AA-degrees of regular aperiodic sets.

Corollary 8

(i) For any α < ωω, Aα �≤AA Aα.
(ii) For all α < β < ωω, Aα ⊕Aα <AA Aβ.
(iii) Any regular aperiodic ω-language is AA-equivalent to exactly one of the

sets Aα, Aα, Aα ⊕Aα (α < ωω).
(iv) The relations ≤AA, ≤DA and ≤CA coincide on A.

Another corollary states interesting relationships between hierarchies {Aα} and
{Sα} parallel to those between hierarchies {Rα} and {Sα} established in [Se98].

Corollary 9

(i) For any α < ωω, Aα = A∩ Sα = A∩Rα, hence any level Aα is decidable.
(ii) Let t = t(x1, . . . , xn, y1, . . . , yn) be a typed boolean term, where xi are vari-

ables of type 0 and yi are variables of type 1. Let A be a regular aperi-
odic set such that A = t(B1, . . . , Bn, C1, . . . , Cn) for some B1, . . . , Bn ∈
Σ0

1 and C1, . . . , Cn ∈ Σ0
2. Then A = t(B′1, . . . , B′n, C′1, . . . , C′n) for some

B′1, . . . , B′n ∈ K0 and C′1, . . . , C′n ∈ K1.
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We conclude with a characterization of the structure (A;≤AS) similar to the
characterization of the structure (R;≤DS) in [Wag79, Se98]. To this end, we
define for all α < ωω and n < ω the regular aperiodic set An

α = 0n+1 ·Aα∪(∪{u ·
Aα | u ∈ Xk+1, u �= 0n+1}).

Theorem 9. Let α < ωω, n < ω and C ∈ A.

(i) C ≤AA Aα iff C ≤AS Aα.
(ii) Aα \ Ǎα = {C | C ≡AS Aα}.
(iii) An

α ≡AA Aα ⊕ Āα, An
α <AS An+1

α and An
α ≡AS A

n

α.
(iv) Cα ≡AA Aα ⊕Aα iff Cα ≡AS Ak

α for a unique k < ω.
(v) Analogs of (i)—(iv) hold true for R in place of A and DS-reducibility in

place of AS-reducibility.

Let us summarize some facts established above.

Corollary 10

(i) For all α < β < ωω and n < ω, Aα, Aα <AS An
α <AS An+1

α <AS Aβ , Aβ.
(ii) Any regular aperiodic ω-language is AS-equivalent to exactly one of the sets

Aα, Āα, An
α (α < ωω, n < ω).

(ii) The relations ≤AS, ≤DS and ≤CS coincide on A.
(iv) For every R ∈ R there is A ∈ A with R ≡DS A (and hence R ≡CS A). In

particular, the Lipschitz degrees of regular aperiodic sets coincide with the
Lipschitz degrees of regular sets.
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Abstract. Bideterministic automata are deterministic automata with
the property of their reversal automata also being deterministic. Bide-
terministic automata have previously been shown to be unique (up to
an isomorphism) minimal NFAs with respect to the number of states.
In this paper, we show that in addition to state minimality, bideter-
ministic automata are also transition-minimal NFAs. However, as this
transition minimality is not necessarily unique, we also present the nec-
essary and sufficient conditions for a bideterministic automaton to be
uniquely transition-minimal among NFAs. Furthermore, we show that
bideterministic automata are transition-minimal ε-NFAs.

1 Introduction

In automata theory, problems related to descriptional complexity issues have
been of interest for decades and a lot of research has been done on the subject
since the fifties. Many new results on state complexity were obtained in the last
ten years and there are still open problems in this research area [1,2]. For exam-
ple, it is long and well known that the deterministic state complexity, that is,
the number of states of the minimal deterministic finite automaton (DFA) for
a given language, can be exponentially larger than the nondeterministic state
complexity – the number of states in a minimal nondeterministic finite automa-
ton (NFA) [3]. However, it is also well known that the DFA minimization can be
done efficiently whereas the NFA minimization problem is PSPACE-complete [4].

But obviously, there are many cases where the maximal blow-up of size when
converting an NFA to DFA does not occur. Recently, some sufficient conditions
have been identified which imply that the deterministic and nondeterministic
state complexities are the same [5]. Especially, it was shown in [5] that every
bideterministic automaton – which is any deterministic automaton such that
its reversal automaton is also deterministic – is the unique state-minimal NFA
accepting its language. Since a bideterministic automaton was known to be the
minimal DFA [6,7], it was thus established that for any language accepted by
a bideterministic automaton, the deterministic and nondeterministic state com-
plexities coincide. Later, a larger class of automata (that includes bideterministic
� Supported by EU structural funds (RAK INNOVE project nr. 1.0101-0275) and the
Estonian Science Foundation grant 6940.

T. Harju, J. Karhumäki, and A. Lepistö (Eds.): DLT 2007, LNCS 4588, pp. 411–421, 2007.
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automata) was shown to have the property of having a unique minimal NFA [8]
but in that class, the deterministic and nondeterministic state complexities are
not necessarily equal.

While the state-minimal DFA is also minimal with respect to the number of
transitions, this is not necessarily the case with NFAs. Vice versa, even allowing
one more state in an NFA can produce a considerable reduction in the number of
transitions. By [9], there are languages L(n) such that the number of transitions
needed by a state-minimal NFA for L(n) is Ω(n2) but if an NFA for L(n) can
have one more state then it needs only O(n) transitions. Therefore, the number
of transitions may be even a better measure for the size of an NFA than the
number of states. Recently, lower bounds for transition complexity in terms of
nondeterministic state complexity have been studied in [9,10].

It is well known that ε-NFAs can be more compact with respect to the num-
ber of transitions than NFAs. By [11], there exist regular languages that can be
accepted by ε-NFAs with O(n log2 n) transitions but every NFA for these lan-
guages needs at least Ω(n2) transitions. This means that an ε-NFA may have
almost quadratically less transitions than an NFA.

In this paper, we present some transition complexity results for bideterminis-
tic automata, in addition to the earlier state complexity result. First, we show
that a bideterministic automaton is a transition-minimal NFA. However, as this
transition minimality is not necessarily unique, we also present the necessary and
sufficient conditions for a bideterministic automaton to be uniquely transition-
minimal among NFAs. And second, moreover, we show that a bideterministic
automaton is a transition-minimal ε-NFA. The first result can be derived using
a canonical automaton, called universal automaton of a regular language. This
automaton has been studied, for example, in [12,13]. The second, more general
result, is obtained by applying the theory for finding transition-minimal ε-NFAs
developed by S. John [14,15], to bideterministic automata.

Bideterministic automata or bideterministic languages have been considered,
for example, in the context of machine learning [6], as a special case of reversible
automata and languages [7], and in coding theory [16]. They have also been
considered in the study of the star height problem in [17,18] where it was shown
that the star height of a bideterministic language equals to the loop complexity
of the corresponding bideterministic automaton. This is an interesting result,
considering the fact that the star height of a regular language is not necessarily
equal to the loop complexity of the minimal DFA.

The rest of the paper is organized as follows. After giving some basic defi-
nitions of automata in Section 2, we will present the universal automaton of a
regular language in Section 3 and use it to show the transition minimality of
bideterministic automata among NFAs. In the same section, we will also give
the necessary and sufficient conditions for a bideterministic automaton to be a
unique transition-minimal NFA accepting the given language. In Section 4 we
will present the main ideas of the theory of finding transition-minimal ε-NFAs
of [14,15], and by applying that theory in Section 5 we will show that bideter-
ministic automata are transition-minimal among ε-NFAs.
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2 Definitions

A nondeterministic finite automaton with ε-transitions (ε-NFA) A is presented
by A = (Q, Σ, E, I, F ) where Q is a finite set of states, Σ is an input alphabet,
E ⊆ Q × (Σ ∪ {ε}) × Q is a set of transitions with ε being the empty string,
I ⊆ Q is a set of initial states and F ⊆ Q is a set of final states. Let p, q ∈ Q,
a ∈ Σ and c ∈ Σ ∪ {ε}. Given a transition t = (p, c, q) ∈ E, we say that t leaves
p and enters q. We denote by indegree(p) the number of transitions that enter
p, and by outdegree(p) the number of transitions leaving p. Let p · ε denote the
ε-closure of p, that is, a subset of Q consisting of p and all such states which
can be reached from p by a path consisting of ε-transitions only. Let p · a denote
the set {q ∈ Q | there are p′, q′ ∈ Q such that p′ ∈ p · ε, (p′, a, q′) ∈ E and
q ∈ q′ · ε}. We extend this definition in the following way: for all P ⊆ Q and
x ∈ Σ∗, P · c =

⋃
p∈P p · c, P · ax = (P · a) · x.

A special case of an ε-NFA is a nondeterministic finite automaton (NFA) if
there are no ε-transitions in the automaton. In turn, a special case of an NFA
is a deterministic finite automaton (DFA) which has a unique initial state and
which does not have any pair of transitions (p, a, q) and (p, a, r) such that q �= r,
for any p ∈ Q and a ∈ Σ. The reversal of an automaton A is the automaton
AR = (Q, Σ, ER, F, I) where for each p, q ∈ Q and c ∈ Σ ∪ {ε}, (p, c, q) ∈ ER

if and only if (q, c, p) ∈ E. An automaton A is called bideterministic if both A
and its reversal automaton AR are deterministic.

A string x ∈ Σ∗ is accepted by A if and only if I · x ∩ F �= ∅. The set of
all strings accepted by A is the language of A denoted by L(A). Let q ∈ Q.
The set LL(A, q) = {x ∈ Σ∗ | q ∈ I · x} is the left language of q and the set
LR(A, q) = {x ∈ Σ∗ | q · x ∩ F �= ∅} is the right language of q.

A state q of A is useful if it is on some path from an initial state to a final state
of A. An automaton A is trim if all of its states are useful. A language accepted
by a bideterministic automaton is a bideterministic language. Two automata are
equivalent if they accept the same language.

Given an NFA A, using the well-known operation of the subset construction,
we obtain an equivalent deterministic automaton D(A) [19]. This operation is
also called determinization. The automaton D(A) is trim.

Let A = (Q, Σ, E, I, F ) and A′ = (Q′, Σ, E′, I ′, F ′) be two NFAs. Then a
mapping μ from Q into Q′ is a morphism of automata if and only if p ∈ I
implies pμ ∈ I ′, p ∈ F implies pμ ∈ F ′, and (p, a, q) ∈ E implies (pμ, a, qμ) ∈ E′

for all p, q ∈ Q and a ∈ Σ.

3 Bideterministic Automata: Universal and Minimal

Applying the theory of state minimization of NFAs developed by Kameda and
Weiner [20], it was shown in [5] that any bideterministic automaton has the
minimum number of states among all NFAs accepting the same language, and
moreover, it is the only minimal NFA for the given language. By applying the
same theory, it can be proven that a bideterministic automaton is a minimal
NFA with respect to the number of transitions also [21, Theorem 3.6].
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However, there are other means to show the state minimality as well as tran-
sition minimality of bideterministic automata. Polak [22] showed how the unique
state minimality of bideterministic automata among NFAs can be obtained by
using the notion of the universal automaton of the given language. In this sec-
tion, we will demonstrate how the universal automaton can be used to obtain
the transition minimality result as well.

A universal automaton is a canonical automaton of a given regular language.
Its properties have been studied, for example, in [12,13,23,22]. In the following,
we will give the definition and some basic known properties of this automaton.

Let Σ be a finite alphabet and let L ⊆ Σ∗. Let ε denote the empty string.

Definition 1. A factorization of L is a maximal couple (with respect to the
inclusion) of languages (U, V ) such that UV ⊆ L. The universal automaton of
L is UL = (Q, Σ, E, I, F ) where Q is the set of factorizations of L and I =
{(U, V ) ∈ Q | ε ∈ U}, F = {(U, V ) ∈ Q | U ⊆ L}, E = {((U, V ), a, (U ′, V ′)) ∈
Q× a×Q | Ua ⊆ U ′}.

The following two propositions state the basic known properties of the universal
automaton:

Proposition 1. The universal automaton of the language L is a finite automa-
ton that accepts L.

Proposition 2. Let A be a trim automaton that accepts L. Then there exists
an automaton morphism from A into UL. In particular, UL contains as a sub-
automaton every state-minimal NFA accepting L.

The following proposition by Lombardy [23] gives an effective method for con-
structing the universal automaton from the minimal DFA of the given language.

Proposition 3 (Lombardy [23, Proposition 6]). Let A = (Q, Σ, E, {q0}, F ) be
the minimal DFA accepting L and let P be the set of states of the automaton
D(AR). Let P∩ be the closure of P under intersection, without the empty set: if
X, Y ∈ P∩ and X ∩Y �= ∅ then X ∩Y ∈ P∩. Then, the universal automaton UL

is isomorphic to (P∩, Σ, H, I, J) where H = {(X, a, Y ) ∈ P∩×Σ×P∩ | X ·a ⊆ Y
and for all p∈X, p · a �=∅}, I ={X ∈ P∩ | q0 ∈ X}, and J = {X ∈ P∩ | X ⊆ F}.

Now, let us apply the method of Proposition 3 to construct the universal au-
tomaton of a bideterministic language L. Let A = (Q, Σ, E, {q0}, {qf}) be a trim
bideterministic automaton. It is known that A is the minimal DFA. Since the
reversal automaton of A is deterministic, D(AR) = AR and the set P as well as
P∩ of Proposition 3 consist of all sets {q} such that q ∈ Q. Since it is easy to see
that also the transition relation H of UL is equal to E, I = {q0}, and J = {qf},
it is concluded that UL is isomorphic to A. Thus, the following proposition holds:

Proposition 4. The universal automaton of a bideterministic language is iso-
morphic to the corresponding bideterministic automaton.
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By using algebraic considerations, the fact given by Proposition 4 about a bide-
terministic automaton being the universal automaton of its language has been
observed by Polak [22].

By applying the theory of state minimization of NFAs developed by Kameda
and Weiner [20], it has been proved in [5] that any bideterministic automaton
is the unique state-minimal NFA accepting its language. Later, based on alge-
braic observations about the universal automaton, the same result was obtained
by Polak [22]. Indeed, based on Propositions 2 and 4, this result can easily be
obtained since a bideterministic automaton is a minimal DFA, and for any min-
imal DFA, no strict subautomaton of it can accept the same language. Thus, a
bideterministic automaton is the only state-minimal NFA for the given language
(up to an isomorphism).

Let A = (Q, Σ, E, {q0}, {qf}) be a trim bideterministic automaton and let
A′ = (Q′, Σ, E′, I ′, F ′) be another trim automaton (non-isomorphic to A) ac-
cepting the same language. From above we know that A′ has more states than
A does. Since A = UL(A) (Proposition 4), then by Proposition 2 there exists an
automaton morphism μ from A′ into A. In fact, we will show that μ defines an
automaton transformation from A′ to A. To see this, we present the following
two propositions:

Proposition 5. μ is surjective.

Proof. Since A is a state-minimal NFA then for each state q of A there exists at
least one state q′ of A′ such that q′μ = q. Thus, μ is surjective. 
�

Proposition 6. There is a transition (p, a, q) of A if and only if there is a
transition (p′, a, q′) of A′ such that p′μ = p and q′μ = q.

Proof. The “if” part follows immediately from the definition of automaton mor-
phism. Indeed, if there is a transition (p′, a, q′) of A′ such that p′μ = p and
q′μ = q for some p, q ∈ Q and a ∈ Σ then by the definition of automaton
morphism, (p, a, q) is a transition of A.

Now, the “only-if” part. Let us suppose that (p, a, q) is a transition of A
but there is no transition (p′, a, q′) of A′ such that p′μ = p and q′μ = q. Let
B = (Q, Σ, E \ {(p, a, q)}, {q0}, {qf}) be a subautomaton of A (without the
transition (p, a, q)). It is clear that μ is an automaton morphism from A′ into B.
Let us recall that for any automaton morphism ν from some automaton X into
an automaton Y , for any state r of X , it holds that LL(X, r) ⊆ LL(Y, rν) and
LR(X, r) ⊆ LR(Y, rν) [12,23], and thus L(X) ⊆ L(Y ). Therefore, L(A′) ⊆ L(B).
Since L(A) = L(A′), we also get L(A) ⊆ L(B). But, since A is the unique
minimal DFA and B has less transitions than A, it must be that L(B) ⊂ L(A).
We have obtained a contradiction. 
�

Now, based on Propositions 5 and 6, it is not difficult to see that μ defines
an automaton transformation from A′ to A. Let Q = {q0, . . . , qn−1}. Since μ
is surjective, we can form a partition Π = {Q′0, . . . , Q′n−1} of Q′ into n = |Q|
disjoint non-empty subsets so that for every q′ ∈ Q′ and i ∈ {0, . . . , n − 1},
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q′ ∈ Q′i if and only if q′μ = qi. Using the partition Π , A′ can be transformed
into an equivalent automaton A′′ in the following obvious way: for every i ∈
{0, . . . , n − 1}, all states in Q′i are merged into a single state q′′i of A′′ so that
all incoming and outgoing transitions of each q′i ∈ Q′i will respectively become
the incoming and outgoing transitions of q′′i (with the elimination of duplicate
transitions). By Propositions 5 and 6, it is clear that A′′ is isomorphic to A.
Also, it is clear that the number of transitions of A′′ is no more than the number
of transitions of A′. Thus, the following proposition holds:

Proposition 7. Any bideterministic automaton is a transition-minimal NFA.

However, differently from the state minimality, a bideterministic automaton is
not necessarily the only transition-minimal NFA for the corresponding language.
A simple example of this kind of language would be L = {a, b}. The bideter-
ministic automaton accepting L is A = ({q0, q1}, {a, b}, {(q0, a, q1), (q0, b, q1)},
{q0}, {q1}) which has two states and two transitions. Another automaton with
three states and two transitions accepting the same language is, for example,
A′ = ({q0, q1, q2}, {a, b}, {(q0, a, q1), (q0, b, q2)}, {q0}, {q1, q2}).

Next, we are interested in finding the necessary and sufficient conditions for
a bideterministic automaton to be uniquely transition-minimal among NFAs
accepting the same language. We will prove the following theorem:

Theorem 1. A trim bideterministic automaton A = (Q, Σ, E, {q0}, {qf}) is a
unique transition-minimal NFA if and only if the following three conditions hold:

(i) q0 �= qf ,
(ii) indegree(q0) > 0 or outdegree(q0) = 1,
(iii) indegree(qf) = 1 or outdegree(qf) > 0.

Proof. To prove the necessity part, let us assume that A is a unique transition-
minimal NFA and suppose first that (i) does not hold true, that is, q0 = qf . Let
p /∈ Q be some new state. Then it is easy to see that there is another automaton
A′ = (Q ∪ {p}, Σ, E, {q0, p}, {q0, p}) with the same number of transitions which
accepts the same language. Thus, the condition (i) must necessarily hold true
for a unique transition-minimal NFA. Second, let us suppose that (ii) does not
hold. Then the initial state q0 of A has no in-transitions but, since q0 �= qf ,
it must have at least two out-transitions. Now, consider another automaton A′

which is obtained from A by splitting q0 into, for example, as many states as
there are out-transitions from q0 so that each of these states is initial and has
only one out-transition. Clearly, A′ is equivalent to A, with the same number
of transitions. We have obtained a contradiction to our assumption that A is
uniquely transition-minimal. Similarly, a supposition that (iii) does not hold
allows us to build an equivalent automaton that is non-isomorphic to A but has
the same number of transitions.

Now, the sufficiency direction. Let us assume that the conditions (i), (ii) and
(iii) hold. Suppose that there is another automaton A′ = (Q′, Σ, E′, I ′, F ′),
different from A, accepting the same language, with the same number of tran-
sitions. Let Q = {q0, . . . , qn−1} and let Π = {Q′0, . . . , Q′n−1} be the partition of
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Q′ as described above. From Proposition 6 and |E| = |E′|, it follows that for
any transition (qi, a, qj) of A where i, j ∈ {0, . . . , n − 1} and a ∈ Σ, there is
exactly one transition (q′i, a, q′j) of A′ such that q′i ∈ Q′i and q′j ∈ Q′j . This im-
plies that for i = 0, . . . , n− 1, the equations indegree(qi) = Σq′∈Q′

i
indegree(q′)

and outdegree(qi) = Σq′∈Q′
i
outdegree(q′) must hold. Since |Q′| > |Q|, there has

to be some k ∈ {0, . . . , n − 1} such that Q′k = {q′k1
, . . . , q′km

}, m ≥ 2. Suppose
indegree(qk) ≥ 1 and outdegree(qk) ≥ 1. Then there is a pair of transitions of A
consisting of some in-transition (qh, a, qk) of qk and some out-transition (qk, b, ql)
of qk, with h, l ∈ {0, . . . , n−1} and a, b ∈ Σ, such that the corresponding transi-
tions of A′ are (q′h, a, q′k1

) and (q′k2
, b, q′l) where q′h ∈ Q′h and q′l ∈ Q′l. Then, there

is a word w ∈ L(A) with its accepting computation passing through the transi-
tion (qh, a, qk) followed by (qk, b, ql) such that no computation of A′ which goes
through (q′h, a, q′k1

) can take (q′k2
, b, q′l) as the next transition. Since it can be seen

that A as well as A′ are unambiguous, it is concluded that w /∈ L(A′) which leads
to a contradiction. So, it must be that indegree(qk) = 0 or outdegree(qk) = 0.
This means that qk must be either the initial or the final state of A because oth-
erwise qk cannot be useful. If indegree(qk) = 0 then qk = q0 and, since |Q′k| > 1,
we conclude that outdegree(q0) > 1 which is a contradiction to (ii). Similarly, if
outdegree(qk) = 0 then qk = qf and from |Q′k| > 1 we get that indegree(qf) > 1.
But, this is a contradiction to (iii).

Thus, we have proved that the conditions (i), (ii) and (iii) are necessary and, as
together, also sufficient conditions for a bideterministic automaton to be uniquely
(up to an isomorphism) transition-minimal among NFAs accepting the same
language. 
�

4 Transition-Minimal Unambiguous ε-NFA

S. John [15,14] has developed a theory to reduce the number of transitions of
ε-NFAs. In the following we present the main ideas from this theory that we
need to prove our result in Section 5.

Let A be an ε-NFA (Q, Σ, E, I, F ) where the transition relation E is parti-
tioned into subrelations EΣ and Eε such that EΣ = {(p, a, q) | (p, a, q) ∈ E, a ∈
Σ} and Eε = {(p, ε, q) | (p, ε, q) ∈ E}. Let t0 /∈ E be a new special transition
and let E0 = EΣ ∪ {t0}. Let the source and target states of a transition t be
denoted as source(t) and target(t). The follow-relation −→ is defined on E0×E0

as follows:

Definition 2 (John [15, Definition 3]). For s, t ∈ EΣ:

s −→ t :⇔ target(s) E∗ε source(t)
t0 −→ t :⇔ there is an initial state q ∈ I with q E∗ε source(t)
s −→ t0 :⇔ there is a final state q ∈ F with target(s) E∗ε q

A path η ∈ E∗Σ is a sequence η = η1 · · · ηm with m ≥ 0 of transitions ηi ∈ EΣ

connected by the follow-relation. The transitions ηi are labeled by l(ηi) ∈ Σ.
Let l(t0) = l(ε) = ε. Then, the string yielded by the path η is defined to be
l(η) = l(η1) · · · l(ηm).
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Definition 3 (John [15, Definition 5]). Let A be an ε-NFA. Then L(A) = {w ∈
Σ∗ | there is a path η ∈ E∗Σ with l(t0ηt0) = w}. The automaton A is un-
ambiguous if and only if for each w ∈ L(A) there is exactly one path η with
l(t0ηt0) = w.

Definition 4 (John [15]). Let t ∈ EΣ with l(t) = a. The future of t is the set
ϕ(t) = {w ∈ Σ∗ | there is a path η with l(ηt0) = w and η1 = t}. The past of
t is the set π(t) = {w ∈ Σ∗ | there is a path η with l(t0η) = w and η|w| = t}.
Also, the strict future of t is the set ϕ̂(t) = {w ∈ Σ∗ | aw ∈ ϕ(t)} and the strict
past of t is the set π̂(t) = {w ∈ Σ∗ | wa ∈ π(t)}.

Lemma 1 (John [15, Lemma 1]). Let v, w ∈ Σ∗ and a ∈ Σ. Then vaw ∈ L(A)
if and only if there exists a transition t such that va ∈ π(t) and aw ∈ ϕ(t).

Proposition 8 (John [15, Proposition 3]). L(A) =
⋃

t∈EΣ
π̂(t)l(t)ϕ̂(t).

Definition 5 (John [15, Definition 8]). Let L ⊆ Σ∗ be a regular language and
let U, V ⊆ Σ∗, a ∈ Σ. We call (U, a, V ) a slice of L if and only if U �= ∅ and
V �= ∅ and UaV ⊆ L. A slicing of L is a set of slices of L. Let S be the set
of all slices of L. We define a partial order on S by considering (U1, a, V1) ≤
(U2, a, V2) if and only if U1 ⊆ U2 and V1 ⊆ V2. We define Smax ⊆ S, the set of
maximal slices of L, by Smax := {(U, a, V ) ∈ S | there is no (U ′, a, V ′) ∈ S with
(U, a, V ) < (U ′, a, V ′)}.

Definition 6 (John [15, Definition 9]). Assume t0 /∈S and S0 :=S ∪ {t0}. The
follow-relation −→⊆S0×S0 is defined for all slices (U1, a, V1) and (U2, b, V2) ∈ S:

(U1, a, V1) −→ (U2, b, V2) :⇔ U1a ⊆ U2 and bV2 ⊆ V1

t0 −→ (U2, b, V2) :⇔ ε ∈ U2

(U1, a, V1) −→ t0 :⇔ ε ∈ V1

t0 −→ t0 :⇔ ε ∈ L

Let S′ ⊆ S be a finite slicing of L. In order to read an automaton AS′ out of S′,
each slice from S′ is transformed into a transition of AS′ , and these transitions
are connected via states and ε-transitions according to the follow-relation.

Theorem 2 (John [15, Theorem 2]). The three following statements are equiv-
alent for languages L ⊆ Σ∗ if the slicing Smax of L induces an unambiguous
ε-NFA ASmax :

– L is accepted by an ε-NFA
– L = L(AS′) for some finite slicing S′ ⊆ S
– Smax is finite

Furthermore, |Smax| ≤ |S′| ≤ |EΣ |.

Corollary 1 (John [15, Corollary 3]). An unambiguous ε-NFA ASmax has the
minimum number of non-ε-transitions.
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5 Bideterministic Automata Are Transition-Minimal
ε-NFAs

It is well known that ε-NFAs can be more compact with respect to the number of
transitions than NFAs. However, in the following, we will prove that bidetermin-
istic automata that we showed to be transition-minimal NFAs (see Section 3)
are also transition-minimal ε-NFAs. This is a more general result and, actually,
the transition minimality among NFAs can be obtained from this result as well.

Definition 7. Let A be a trim ε-NFA. For each non-ε-transition t of A, we
define the transition slice of t to be the slice (Ut, l(t), Vt) of L(A) where Ut = π̂(t)
and Vt = ϕ̂(t).

It is not difficult to see that the transition slice definition above is correct, that
is, (Ut, l(t), Vt) is a slice of L(A). Indeed, clearly, Ut = π̂(t) and Vt = ϕ̂(t) are
not empty sets and by Proposition 8, any string uav such that u ∈ π̂(t), a = l(t)
and v ∈ ϕ̂(t), is accepted by A.

Now, let A = (Q, Σ, E, {q0}, {qf}) be a trim bideterministic automaton. Then
A has no ε-transitions. That means, E = EΣ and Eε = ∅. We will prove the
following lemma:

Lemma 2. For a bideterministic automaton A, let t1 and t2 be two different
transitions of A, with the same label l(t1) = l(t2) = a ∈ Σ and with the corre-
sponding transition slices (Ut1 , a, Vt1) and (Ut2 , a, Vt2). Then Ut1 ∩ Ut2 = ∅ and
Vt1 ∩ Vt2 = ∅.

Proof. Let us suppose that Ut1 ∩ Ut2 �= ∅. Then there is a word w ∈ Ut1 and
w ∈ Ut2 . If w = ε then the initial state of A must have two out-transitions
with the label a which is a contradiction since A is deterministic. If |w| = k,
k ≥ 1, then there exist two paths η′ = η′1 · · · η′k and η′′ = η′′1 · · · η′′k such that
l(η′) = l(η′′) = w. Since A is deterministic, these paths have to coincide, that
is, η′i = η′′i , for i = 1, . . . , k, and both paths end in the same state. Again,
this state has two out-transitions with the label a, a contradiction. Therefore,
Ut1 ∩Ut2 = ∅. Similarly, since the reversal of A is deterministic, it can be shown
that Vt1 ∩ Vt2 = ∅. 
�

The following proposition is of central importance to obtain our result:

Proposition 9. Each transition slice of a bideterministic automaton A is max-
imal.

Proof. Let us suppose that there exists a transition t of A such that the cor-
responding transition slice (Ut, l(t), Vt) is not maximal. Then, by Definition 5,
there is some maximal slice (U, a, V ) of L(A) such that l(t) = a and (Ut, a, Vt) <
(U, a, V ). This implies that there is a string uav ∈ L(A) such that u ∈ U and
v ∈ V but either u /∈ Ut or v /∈ Vt (or both non-memberships hold). How-
ever, by Proposition 8, there must be some other transition t′ of A with the
transition slice (Ut′ , l(t′), Vt′) such that u ∈ Ut′ , a = l(t′), and v ∈ Vt′ and
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(Ut′ , a, Vt′) ≤ (U, a, V ). Now, by Definition 5, we know that Ut ⊆ U and Ut′ ⊆ U ,
and therefore also Ut ∪ Ut′ ⊆ U . In the same way, Vt ∪ Vt′ ⊆ V .

Next, we can see that (Ut ∪ Ut′ , a, Vt ∪ Vt′) is a slice of L(A). Indeed, from
Ut �= ∅ and Ut′ �= ∅ we know that Ut ∪Ut′ �= ∅, and similarly, Vt ∪ Vt′ �= ∅. Also,
for every string u1av1 such that u1 ∈ Ut ∪ Ut′ ⊆ U and v1 ∈ Vt ∪ Vt′ ⊆ V , we
know that u1av1 ∈ UaV ⊆ L(A), thus (Ut ∪ Ut′)a(Vt ∪ Vt′) ⊆ L(A), and we can
conclude that (Ut ∪ Ut′ , a, Vt ∪ Vt′ ) is a slice of L(A).

Then there is a word xay ∈ L(A) such that x ∈ Ut and y ∈ Vt′ . Since, by
Lemma 2, there does not exist a transition t′′ of A such that x ∈ Ut′′ , a = l(t′′)
and y ∈ Vt′′ , we may conclude by Proposition 8 that xay /∈ L(A). We have
obtained a contradiction. Thus, every transition slice of A is maximal. 
�

Theorem 3. A bideterministic automaton has the minimum number of transi-
tions among all ε-NFAs accepting the same language.

Proof. Let A be a bideterministic automaton. By Proposition 9, every transition
slice of A is a maximal slice of L(A). It is easy to see by Proposition 8 that there
are no other maximal slices of L(A). Thus, the set of maximal slices of L(A) is
given by Smax := {(Ut, l(t), Vt) | t ∈ E}. Note that |Smax| = |E|. The set Smax

is used to form the ε-NFA ASmax by converting every slice from Smax into a
transition of ASmax and connecting these transitions by ε-transitions according
to the follow-relation of Definition 6. Because A is bideterministic, A is clearly
unambiguous. It is not difficult to see that there is a one-to-one correspondence
between the accepting paths of A and ASmax . Thus, by Definition 3, ASmax is also
unambiguous. By Theorem 2 and Corollary 1, ASmax has a minimum number of
non-ε-transitions. Since the number of non-ε-transitions of ASmax is equal to the
number of transitions of A, and there are no ε-transitions in A, we conclude that
A is transition-minimal among all ε-NFAs accepting the given language. 
�

Remark 1. Theorem 3 is a generalization of Proposition 7. Since NFAs form a
subclass of ε-NFAs then from knowing that a bideterministic automaton is a
transition-minimal ε-NFA, it can be concluded that it must be also a transition-
minimal NFA.
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In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 315–326.
Springer, Heidelberg (2006)

10. Gruber, H., Holzer, M.: Results on the average state and transition complexity of
finite automata accepting finite languages. In: Proceedings of DCFS, Computer
Science Technical Report, NMSU-CS-2006-001, New Mexico State University, pp.
267–275 (2006)

11. Hromkovic, J., Schnitger, G.: NFAs with and without ε-transitions. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 385–396. Springer, Heidelberg (2005)

12. Arnold, A., Dicky, A., Nivat, M.: A note about minimal non-deterministic au-
tomata. Bull. EATCS 47, 166–169 (1992)

13. Sakarovitch, J.: Elements of Automata Theory (to appear)
14. John, S.: Minimal unambiguous ε-NFA. Technical Report TR-2003-22, Technical

University Berlin (2003)
15. John, S.: Minimal unambiguous ε-NFA. In: Domaratzki, M., Okhotin, A., Salomaa,

K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 190–201. Springer, Heidelberg
(2005)

16. Shankar, P., Dasgupta, A., Deshmukh, K., Rajan, B.S.: On viewing block codes as
finite automata. Theoretical Computer Science 290, 1775–1797 (2003)

17. McNaughton, R.: The loop complexity of pure-group events. Information and Con-
trol 11, 167–176 (1967)

18. Cohen, R.S.: Star height of certain families of regular events. J. Comput. Syst.
Sci. 4, 281–297 (1970)

19. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

20. Kameda, T., Weiner, P.: On the state minimization of nondeterministic automata.
IEEE Trans. Comput. C-19, 617–627 (1970)

21. Tamm, H.: On minimality and size reduction of one-tape and multitape finite
automata. PhD thesis, Department of Computer Science, University of Helsinki,
Finland (2004)

22. Polak, L.: Minimalizations of NFA using the universal automaton. International
Journal of Foundations of Computer Science 16, 999–1010 (2005)

23. Lombardy, S.: On the construction of reversible automata for reversible languages.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002)



Author Index

Anselmo, Madonia 36
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Högberg, Johanna 229
Holzer, Markus 108, 205
Hoogeboom, Hendrik Jan 120
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Jirásková, Galina 254
Julia, Sandrine 266

Kiefer, Stefan 157
Krieger, Dalia 278
Kufleitner, Manfred 1
Kunc, Michal 23
Kutrib, Martin 108

Leupold, Peter 290
Li, Ming 28

Loos, Remco 300
Luttenberger, Michael 157

Madonia, Maria 36
Malcher, Andreas 312
Maletti, Andreas 229
Mathissen, Christian 324
May, Jonathan 229
Murano, Aniello 132

Ochem, Pascal 278
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