

Lecture Notes in Computer Science 4574
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

John Derrick Jüri Vain (Eds.)

Formal Techniques
for Networked and
Distributed Systems –
FORTE 2007

27th IFIP WG 6.1 International Conference
Tallinn, Estonia, June 27-29, 2007
Proceedings

13

Volume Editors

John Derrick
University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK
E-mail: J.Derrick@dcs.shef.ac.uk

Jüri Vain
Tallinn University of Technology
Department of Computer Science
Ehitajate tee 5, 19086 Tallinn, Estonia
E-mail: vain@ioc.ee

Library of Congress Control Number: 2007928737

CR Subject Classification (1998): C.2.4, D.2.2, C.2, D.2.4-5, D.2, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-73195-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73195-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2007

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12079162 06/3180 5 4 3 2 1 0

Preface

These proceedings contain papers from the 27th FORTE conference. FORTE
(Formal Techniques for Networked and Distributed Systems) is the joint inter-
national annual conference combining the former PSTV (Protocol Specification
Testing and Verification) and former FORTE (Formal Description Techniques
for Distributed Systems and Communication Protocols) conferences. The first
PSTV conference took place in 1981, and the first FORTE took place in 1988.
They were merged into one larger conference in 1996 and have run under the
name of FORTE from 2001. The conference is a forum for presentation and dis-
cussion of the state of the art in theory, application, tools, and industrialization
of formal methods. Over the years, FORTE has been held in numerous loca-
tions, and this is reflected by its recent history, with meetings in Pisa (Italy),
Cheju Island (Korea), Houston (USA), Berlin (Germany), Madrid (Spain), Paris
(France), Taiwan and now Tallinn, Estonia.

FORTE was sponsored by Working Group 6.1 of Technical Committee 6
(TC6) of the InternationalFederation for Information Processing (IFIP). Indeed
FORTE is one of the flagship conferences of Working Group 6.1 (Architectures
and Protocols for Distributed Systems), and covers many aspects of the main
themes of WG6.1, namely, formal description techniques, open distributed sys-
tems, and quality of service. WG6.1 provided a Best Paper Award as well as
funds to help student participation, and we are particularly grateful for this.

The 27th FORTE conference was held during June 26–29, 2007, in Tallinn
(Estonia), in the historical building of the Brotherhood of the Black Heads.
The focus of FORTE 2007 was on service-oriented computing and architectures
using formalized and verified approaches. In addition to the classical protocol
specification and verification problems, FORTE 2007 addressed the issues of
composition of protocol functions and of algorithms for distributed systems.

We had a large number of submissions, and finally selected 22 papers from
67 submissions These papers covered a variety of topics, and the program was
divided into eight sessions: Message Sequence Charts and SDL; Concurrency;
Model Programs; Theory; Verification; Model Checking; Requirements and QoS;
and Components. Our invited speaker this year was Susanne Graf, and it was a
pleasure to welcome her to Tallinn and FORTE.

In a new departure for FORTE, this year’s conference was co-located with
TESTCOM/FATES.TESTCOM/FATES is itself a merger of two conferences:
the 19th edition of the IFIP-sponsored International Conference on Testing of
Communicating Systems and the seventh edition of the International Work-
shop on Formal Approaches to Testing of Software. TESTCOM is a series
of international conferences addressing the problems of testing communicat-
ing systems, including communication protocols, services, distributed platforms,
and middleware. FATES is an international series of workshops discussing the

VI Preface

challenges of using rigorous and formal methods for testing software systems,
such as communication-, control-, embedded-, administrative-, and Web-based
software. The aim of the combined TESTCOM/FATES 2007 conference was
to produce a forum for researchers, developers, testers, vendors, and users to
review, discuss, and learn about new approaches, concepts, theories, methodolo-
gies, tools, and experiences in the field of testing of software and communicating
systems. Testing is, of course, a subject which has had a strong presence in
FORTE, and, in particular, in PSTV. It was a pleasure to welcome our col-
leagues in TESTCOM and FATES, and we ensured that testing-related papers
were dealt with in TESTCOM/FATES rather than FORTE. We shared invited
speakers, and Antti Huima of Conformiq Software gave the TESTCOM/FATES
invited talk on “Implementing Conformiq Qtronic,” which appears in the TEST-
COM/FATES LNCS volume.

FORTE 2007 was organized jointly by the Department of Computer Sci-
ence and the Institute ofCybernetics at Tallinn University of Technology. We
owe special thanks to the local organization team, who provided a very smooth
organization and excellent set of facilities. Juhan Ernits acted as Local Arrange-
ments Chair, Monika Perkmann as Registrations Chair, and they were assisted
by Jaagup Irve, Ando Saabas, Kristi Uustalu, and Tarmo Uustalu. Kirill Bog-
danov (University of Sheffield, UK) acted as Publicity Chair. The proceedings
are published by Springer in the Lecture Notes in Computer Sciences series, and
we are grateful to all those at Springer for their help in producing the proceed-
ings. Submissions were made through EasyChair. Finally, we would like to thank
members of the FORTE Steering Committee, the Chair of WG6.1 Elie Najm,
and the Chair of TC6 Guy Leduc for their support in preparing the event. Of
course, special thanks go to all members of the Program Committee and addi-
tional reviewers for their efforts in compiling rigorous reviews.

June 2007 John Derrick
Jüri Vain

Organization

FORTE is one of the flagship conferences of Working Group 6.1 (Architectures
andProtocols for Distributed Systems) of IFIP.

Steering Committee

Gregor v. Bochmann (Canada) Tommaso Bolognesi (Italy)
John Derrick (UK) Ken Turner (UK)

Program Chairs

John Derrick (UK) Jüri Vain (Estonia)

Local Organization

Juhan Ernits Jaagup Irve
Monika Perkmann Ando Saabas
Kristi Uustalu Tarmo Uustalu
Kirill Bogdanov

Program Committee

G. V. Bochmann (Canada) K. Bogdanov (UK)
T. Bolognesi (Italy) M. Bravetti (Italy)
A. Cavalli (France) J. Colom (Spain)
J. Derrick (UK) L. Duchien (France)
C. Fidge (Australia) D. de Frutos-Escrig (Spain)
H. Garavel (France) R. Gotzhein (Germany)
S. Haddad (France) T. Higashino (Japan)
D. Hogrefe (Germany) G. J. Holzmann (USA)
P. Inverardi (Italy) C. Jard (France)
M. Kim (Korea) H. Koenig (Germany)
L. Logrippo (Canada) J. Magee (UK)
E. Najm (France) M. Nunez (Spain)
O. Owe (Norway) D. A. Peled (UK)
A. Petrenko (Canada) F. Plasil (Czech Republic)
J.-F. Pradat-Peyre (France) W. Reisig (Germany)
J.B. Stefani (France) K. Suzuki (Japan)
P. Traverso (Italy) K. Turner (UK)
H. Ural (Canada) J. Vain (Estonia)
F. Wang (Taiwan)

VIII Organization

Additional Reviewers

Omar Alfandi
Marco Beccuti
Sergiy Boroday
Henrik Brosenne
Tomas Bures
Patryk Chamuczynski
Fida Dankar
Sami Evangelista
Johan Fabry
Dirk Fahland
Blaise Genest
Andreas Glausch
Nicolas Gorse
Hesham Hallal
Irfan Hamid
May Haydar
Seng-Phil Hong
Akira Idoue
Baik Jongmoon

Sungwon Kang
In-Young Ko
Fang-Chun Kuo
Marcel Kyas
Ivan Lanese
Frédéric Lang
Luis Llana
Niels Lohmann
Natalia Lopez
Stephane Maag
Wissam Mallouli
Radu Mateescu
Mercedes G. Merayo
Yutaka Miyake
Satoshi Nishiyama
Tomohiko Ogishi
Yolanda Ortega-Mallén
Patrizio Pelliccione
Isabel Pita

Tomas Poch
Olivier Ponsini
Cristian Prisacariu
Fernando Rosa-Velardo
Gerardo Schneider
Soonuk Seol
Wendelin Serwe
Ondrej Sery
Carron Shankland
Christian Stahl
Martin Steffen
Massimo Tivoli
Miguel Valero
Bachar Wehbi
Gianluigi Zavattaro
Marcel Kyas

Supporting Institutions

Institute of Cybernetics at Tallinn University of Technology

Department of Computer Science, Tallinn University of Technology

Table of Contents

Invited Talk

Contracts for BIP: Hierarchical Interaction Models for Compositional
Verification . 1

Susanne Graf and Sophie Quinton

Technical Session 1. Message Sequence Charts and
SDL

Thread–Based Analysis of Sequence Diagrams . 19
Haitao Dan, Robert M. Hierons, and Steve Counsell

Recovering Repetitive Sub-functions from Observations 35
Guy-Vincent Jourdan, Hasan Ural, Shen Wang, and Hüsnü Yenigün

Specification of Timed EFSM Fault Models in SDL 50
S.S. Batth, E.R. Vieira, A. Cavalli, and M.Ü. Uyar

Technical Session 2. Concurrency

Coordination Via Types in an Event-Based Framework 66
Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto

Exploring the Connection of Choreography and Orchestration with
Exception Handling and Finalization/Compensation 81

Yang Hongli, Zhao Xiangpeng, Cai Chao, and Qiu Zongyan

Towards Modal Logic Formalization of Role-Based Access Control with
Object Classes . 97

Junghwa Chae

Technical Session 3. Model Programs

State Isomorphism in Model Programs with Abstract Data
Structures . 112

Margus Veanes, Juhan Ernits, and Colin Campbell

Composition of Model Programs . 128
Margus Veanes, Colin Campbell, and Wolfram Schulte

X Table of Contents

Technical Session 4. Theory

New Bisimulation Semantics for Distributed Systems 143
David de Frutos-Escrig, Fernando Rosa-Velardo, and
Carlos Gregorio-Rodŕıguez

Event Correlation with Boxed Pomsets . 160
Thomas Gazagnaire and Löıc Hélouët

A Simple Positive Flows Computation Algorithm for a Large Subclass
of Colored Nets . 177

S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

Technical Session 5. Verification

Improvements for the Symbolic Verification of Timed Automata 196
Rongjie Yan, Guangyuan Li, Wenliang Zhang, and Yunquan Peng

The DHCP Failover Protocol: A Formal Perspective 211
Rui Fan, Ralph Droms, Nancy Griffeth, and Nancy Lynch

Verifying Erlang/OTP Components in μCRL . 227
Qiang Guo

Technical Session 6. Model Checking

Formal Analysis of Publish-Subscribe Systems by Probabilistic Timed
Automata . 247

Fei He, Luciano Baresi, Carlo Ghezzi, and Paola Spoletini

Testing Distributed Systems Through Symbolic Model Checking 263
Gabriel Kalyon, Thierry Massart, Cédric Meuter, and
Laurent Van Begin

An Incremental and Modular Technique for Checking LTL\X Properties
of Petri Nets . 280

Kais Klai, Laure Petrucci, and Michel Reniers

Technical Session 7. Requirements and QoS

Identifying Acceptable Common Proposals for Handling Inconsistent
Software Requirements . 296

Kedian Mu and Zhi Jin

Formalization of Network Quality-of-Service Requirements 309
Christian Webel and Reinhard Gotzhein

Table of Contents XI

Technical Session 8. Components

Robustness in Interaction Systems . 325
Mila Majster-Cederbaum and Moritz Martens

Transactional Reduction of Component Compositions 341
Serge Haddad and Pascal Poizat

Specifying and Composing Interaction Protocols for Service-Oriented
System Modelling . 358

João Abreu, Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes

Author Index . 375

Contracts for BIP: Hierarchical Interaction
Models for Compositional Verification�

Susanne Graf and Sophie Quinton

Verimag/CNRS and Verimag/ENS Cachan

Abstract. This paper presents an extension of the BIP component
framework to hierarchical components by considering also port sets of
atomic components to be structured (ports may be in conflict or or-
dered, where a larger port represents an interaction set with larger in-
teractions). A composed component consisting of a set of components
connected through BIP connectors and a set of ports representing a sub-
set of the internal connectors and ports, has two semantics: one in terms
if interactions as defined by the BIP semantics, and one in terms of the
actions represented by external ports where the structure of the port set
of the component is derived from the internal structure of the component.

A second extension consists in the addition of implicit interactions
which is done through an explicit distinction of conflicting and concurrent
ports: interactions involving only non conflicting ports can be executed
concurrently without the existence of an explicit connector.

Finally, we define contract-based reasoning for component hierarchies.

1 Introduction

We aim at contract-based verification. We consider a framework where a system
is a hierarchically structured set of components. For this purpose, we extend the
component framework BIP [GS05,BBS06] and in particular its instance based
on hierarchical connectors [BS07] to a framework for hierarchical components
enriched with contracts as defined in the SPEEDS project [BC07+].

In the BIP framework, components interact through ports typed by trig or
sync and are connected via hierarchical n-ary connectors which are typed in the
same way as ports. In BIP, only connectors are hierarchical and we consider
here also a hierarchical organisation of the components. Only leaf components
represent models with behaviour explicitly defined by a transition system la-
belled by interactions. Originally, in BIP, atomic components have a sequential
behaviour, but here they are not different from hierarchical components, at least
from outside. We represent behaviours by an asynchronous transition system,
and we may choose other, more efficient, representations in the future.

The behaviour of a hierarchical component is obtained as a composition of
the behaviours of its leaf components depending on its internal connectors.

A hierarchical rich component (HRC) K has includes contracts, in the form of
an assumption A and a guarantee G, represented both by transition systems. A

� This work has been partially financed by the project SPEEDS and the NoE Artist.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 1–18, 2007.
c© IFIP International Federation for Information Processing 2007

2 S. Graf and S. Quinton

defines a property of the environment of K, and G a property of K that should
hold if K runs in an environment guaranteeing A. We define a framework for
verifying that components satisfy their contracts compositionally, by showing
that the contracts associated with each component dominate the contracts of its
inner components, and leaf components satisfy their contracts.

In Section 2, we define the syntactic framework of hierarchical components
and connectors. We define the semantics in two steps. First, we say how to obtain
a transition system defining the behaviour of a hierarchical component from the
transition systems of its subcomponents and the connectors between them.

The BIP framework allows expressing synchronous and asynchronous interac-
tion and execution, including blocking rendez-vous. Here, we only represent the
abstract setting without taking into account data flow.

A main issue in embedded systems is absence of interference between transac-
tions, possibly executed concurrently. Using BIP interactions, we can guarantee
interference freedom by construction, as only non interfering transactions are
executed concurrently. As a counterpart, it must be verified that interlock sit-
uations and violations of non functional requirements cannot occur; such bad
situations can be reduced a deadlock in a modified system.

In Section 3, we describe how we intend to verify the consistency of a contract
hierarchy. We adapt classical assume guarantee reasoning (see [RB+01] for a good
overview) to our framework. To prove that a contract (A,G) of K dominates a
composition of contracts {(Ai, Gi)} — those of the subcomponents of K — it is
sufficient to show that

– A‖G1‖....‖Gn |= G; that is, if every Ki ensures its guarantee, then the com-
position ensures G, as long as the environment behaves according to A

– A‖G1‖...‖Gn |= Ai for all i; that is, each assumption Ai can be derived from
A and the guarantees Gj of the peer components.

This proof rule is sound as A and G constrain different components. Notice
that this proof rule is global at a given level of hierarchy, the gain comes from a
hierachical structure with several layers.

In Section 4 we give a first idea on how we intend to achieve a more efficient
and scalable handling of contracts. In particular, proving verification conditions
is reduced to showing deadlock freedom of a transformed system, and we are
presently developing efficient methods for such checks.

2 Specifications and Their Semantics

Definition 1 (Interaction set). Let Σ be a set, and <,# ⊆ Σ × Σ binary
relations. Then (Σ,<,#), sometimes simply denoted Σ, is an interaction set if
the following conditions hold:

– < is a partial order relation;
– # is a non reflexive and symmetric conflict relation such that a#b and a < c

implies c#b.

Contracts for BIP: Hierarchical Interaction Models 3

For a ∈ Σ, we denote by ↑ a = {b ∈ Σ | a < b} the upwards closure of a in Σ
and by ↓ a = {b ∈ Σ | b < a} the downwards closure of a in Σ and we extend
these notions pointwise to sets and sequences.

Denote by a � b the c ∈ Σ representing the least upper bound of a and b, if it
exists. Define the closure of Σ, cl(Σ), the interaction set obtained by recursively
adding elements a � b, whenever a, b ∈ Σ, not a#b and there exists no c = a � b
in the set.

Note that a#b may hold even if a � b exists. Interactions for which a � b exists
can be connected, and only interactions for which not a#b can be executed
concurrently.

Definition 2 (Interaction model). An interaction set (Σ,<,#) is an inter-
action model if whenever a and b are not in conflict, that is not a#b, then there
exists an action c ∈ Σ that is a least upper bound of a and b.

Property 1. For an interaction set Σ, cl(Σ) is an interaction model.

Here, we consider interaction models that are defined as closures of an interaction
set Σ. And, we refer to a � b ⊆ cl(Σ) \ Σ as an implicit interaction.

In particular, a union of interaction (sets) models is an interaction set. The
product of interaction models, denoted Σ1 · Σ2 � a1 · a2 or ΠiΣi � (a1, ..., an),
is already an interaction model.

In interaction models of [GS05], a#b holds (implicitly) whenever a ·b = a�b is
not explicitly defined. Here, we can avoid the definition of an explicit interaction
a · b when a and b are independent; such interactions are implicitly captured by
a � b in cl(Σ).

Definition 3 (Ports and component interfaces). A port is defined as in
[BS07] by a name and a type trig or sync, where {sync, trig} form a boolean
algebra with sync < trig.

For P a set of (typed) ports, an (external) interface Int is the interaction
model (cl(P), <,#) defined by the interaction set (P , <,#).

The type of implicit ports p � r ∈ (cl(Sigma) \ Σ) is the ∨ of the types of p
and r.

Interactions on ports of type sync need to realise an interaction on a connector,
the collaboration of peer components, whereas those of type trig can go alone for
realising an interaction on a connector connecting this port to others. But they
need not to be system wide complete interactions. We might explicitly distinguish
complete ports as well.

Definition 4 (Component). A component K is defined by K =((P , <,#), TS)
where TS = (Q, q0, cl(P),→) is a transition system on cl(P), such that

– Q is a set of states and q0 ⊆ Q an initial state.
– →⊆ Q × cl(P) × Q is a transition relation. For a ∈ P, en(a) is the set of

states in which a is enabled (∃q′ ∈ Q . q
a→ q′). We use → also to represent

a sequences of transitions, where a; b; c : ... is used to denote a sequence of
interactions. → must satisfy the following constraints: for a, b ∈ cl(P),

4 S. Graf and S. Quinton

• if not a#b and not (a < b or b < a), then q ∈ en(a) ∩ en(b) implies
(q a;b→ q′′ implies q

b;a→ q′′) and q
a;b→ q′′ implies q ∈ en(a) ∩ en(b)

• c = a � b ∈ P implies en(a) ∩ en(b) = en(c) and a < b, implies en(b) ⊆
en(a).

We call (P , <,#) = Int(K) the (external) interface of K and TS = beh(K) the
(external) behaviour of K.

That is transitions of independent interactions commute, and the transition se-
quence a;b→ is semantically equivalent to b;a→ and also to a�b→ , where the latter may
or may not exist as an explicit transition in TS. In the semantics, we will ex-
plicitly add transitions for a � b. That means, TS represents an asynchronous
transition as defined in [WN95].

We now define hierarchical components as compositions of components, and
we define two views for them:

– an external view, which represents a hierarchical component to the environ-
ment exactly as an atomic component, as just defined.

– an internal view which makes visible the internal structure composition struc-
ture, consisting of a set of components Ki and a composition model CM
defined by a set of hierarchical connectors as in [BS07].

– the internal and external interfaces are linked via a relation associating
subsets of ports and connectors of CM with external ports in P such that
 is a structure preserving relation between the interaction set Σ defined by
CM and (cl(P), <,#).
The internal view of the behaviour is defined by transitions with labels Σ,
whereas the external one has transitions labels in cl(P).

We now define the internal view of a hierarchical component.

Definition 5 (Connector and hierarchical connector). Let (P =
⋃

Pi, <
,#) be the union interaction set induced by the set {Inti = (Pi, <i,#i)} of
(external) component interfaces. A typed connector con on {Inti} consists of:

– a subset of P (also denoted con) such that ∀pm, pn ∈ con, the least upper
bound pm � pn is defined in the union interaction model but pm � pn �∈ P.1

– a type sync or trig.

A connector con =
⋃

l=1..n pi defines an interaction set Σ = P ∪ act(con)
where act(con) contains:

– if all pl ∈ con are of type sync (that is, all ports must synchronise), then,
p1 · ... · pn is the only element of act(con)

– if con contains also ports of type trig, then act(con) contains all p1 · ... · pm

such that
⋃

l=1..m pi ⊆ con and ∃l ∈ {1..n} such that pl of type trig.
1 We will see that this means that either interactions of pn and pm are independent, or

pm#pn, and then pm�pn is a port defined somewhere “inside” one of the components
Ki, but the connector pm �i pn is not in the interface of Ki.

Contracts for BIP: Hierarchical Interaction Models 5

The preorder relation <′ on Σ is derived from < and p <′ p · q. The conflict
relation #′ contains # and σ#σ′ if their definitions involve conflicting ports or
ports related via <.

Extend act to all p ∈ Ports by act(p) = {p} and represent Σ by
⋃

p∈P act(p)∪
act(con). Now, define an extended port set Pcon = P ∪{′con′}, that is the set of
original ports extended by a port con representing the connector con.

Now we can define hierarchical connectors. Let be (Ports,<′,#′) an interac-
tion set and (Ports∪CON,<,#) a port set extended by a set of connector ports
CON . A hierarchical connector on P is a connector con on Ports ∪ CON that
may connect both ports and connector ports. The definition of con must respect
exactly the constraints imposed on a connector. But the interaction set act(con)
for con =

⋃
l=1..n pi is defined by recursively instantiating connector ports by

their interaction sets:

– if all p ∈ con are of type sync, then a1 · ... · an such that ai ∈ act(pi)
– if con contains ports of type trig then, a1 · ... ·am such that

⋃
i=1..m pi ⊆ con,

∃l ∈ [1..m] s.th. pl of type trig, and, as before ai ∈ act(pi)

The preorder and the conflict relations are defined exactly in the same way as for
a connector. Now, the connector set can be extended by adding the hierarchical
connector con as a new port for the definition of new hierarchical connectors.

We denote by CM = (Inti, (Σ,<,#),P ∪ CON), the composition model de-
fined by the set of (hierarchical) connectors CON , where Σ is the derived inter-
action set.

Property 2. Let CM = (Inti, (Σ,<,#),P ∪ CON), be a composition model.
Then, for all ports, including connectors con, act(con) is an upwards-closed in-
teraction set with maximal element p1 · ... · pk, such that {p1, ..., pk} is the set of
ports in P involved in con, obtained by recursively replacing connector ports by
the set of ports in act(p). Furthermore, ∀p, r ∈ Ports ∪ CON :

– p < r iff act(p) ⊆ act(r)
– p#r iff ∃a ∈ act(p)∃b ∈ act(r) such that a#b

Thus, a connector defines in turn a port, and a hierarchical connector is a con-
nector connecting ports and connectors. A port p defines an interaction set that
is the singleton containing just p, and a connector has a recursively defined
interaction set containing composed interactions.

Now, we want to turn a composition of a set of components defined by a
composition model CM into a (hierarchical) component. For this purpose, we
introduce a new (external) interface that makes available for further connection
a subset of ports and connectors as new external ports. The internal view of such
a component is defined by CM with interactions in Σ, whereas the external view
defines interactions in terms of the new external ports.

In a constructive approach, one may keep all ports and connectors available
for further composition. Here, we suppose given some global system architecture,
such that it is enough to expose those ports which are used in some connection
at some level of hierarchy.

We define a relation between ports and connectors and an external interface.

6 S. Graf and S. Quinton

Definition 6 (Mapping an interaction set on a set of ports). Let CM =
(Inti, (Σ,<,#),P ∪CON) be a composition model for a set of components, and
P ′ a set of new ports.

A relation ⊆ Σ ∪ CON × P ′ defines an interaction-port association if

– for each p′ ∈ P ′ there is a p ∈ P ∪ CON of the same type as p such that
a p′ iff a ∈ act(p)

– for each p ∈ P∪CON , either there exists p′ ∈ P ′ with type(p) < type(p′) and
act(p) p′ (exported port) or p ∈ CON is of type trig (internal port) or p ∈
CON is the least upper bound of ports pi mapped to P ′ where ∨types(pi) <
type(p) (implicit �-port)

Definition 7 (Hierarchical component). Let Ki be a set of components
with (external) interfaces Inti = (Pi, <i,#i) and CM = ({Inti}, (Σ,<,#),P =⋃

Pi∪CON) a composition model, and P ′ a set of new ports and a interaction-
port association between Σ and P.

Then, a hierarchical component K is defined as K = ({Ki}, CM,, Int).
Where,

– we call Ki its subcomponents.
– The composition model CM is sometimes referred to as the internal structure

of K
– We call (CM,,P ′) the internal interface.
– Int = (Ports′, <′,#′) which is derived from CM and in a straightforward

way is the external interface of K.
– The behaviour of K, beh(K) is defined from the beh(Ki) by composing them

according to CM . The behaviour expressed in terms of interactions in Σ is
the internal view, and the one obtained by replacing labels in Σ by labels in
P ′ the external view of the behaviour of K. We define next how the behaviour
of K is defined as a composition of behaviours of Ki.

– (Int, beh(K)) is the component K as seen from outside K.

We do not require that K provides an explicit transition system expressing its
behaviour. It is implicitly defined by the transition systems of its subcomponents.

We can show that the interaction model of a hierarchical component K does
not depend on how atomic components are grouped into subcomponents; this is
done by showing that a hierarchical component interface is equivalent to com-
position of all its atomic components obtained by hierarchically flattening K.

2.1 Semantics of Components

Now, we define the semantic transition system representing the behaviour of a
component. First, we transform a transition system defining the behaviour of
K into a semantic transition system, that will be interpreted as a set of traces
and refusals. and then we compose semantic transition systems to behaviours of
hierarchical components.

Contracts for BIP: Hierarchical Interaction Models 7

Definition 8 (Component Semantics). Let K be a component with an ex-
ternal interface Int = (Ports′, <′,#′), and if it is a hierarchical component, an
internal interface (CM,,P ′) with CM = ({Inti}, (Σ′, <,#),P ′).

Suppose that for K, an asynchronous transition system TS = (Q, q0, Σ,→)
as in Definition 4 is given, where Σ may be either cl(Σ) for the internal view of
the behaviour and cl(P ′) for the external view of the behaviour.

The (internal or external) view of the semantics of K defined by TS, is TS′ =
(Q, q0, Σ,→∗), where →∗ is like →, except that:

– for a, b ∈ Σ, a < b and such that ∀p ∈ P ′ . a p implies b p, then q
a→ q′

and q
a→ q′′ implies q

a→′′
∗ but q � a→∗.

– for a, b ∈ Σ, a� b ∈ cl(Σ) \Σ, whenever q ∈ en(a)∩ en(b) and q
a;b→ q′, then

there is a new transition q
a�b→ ∗ q′

If TS′ defines the internal view of the semantics on cl(Σ′), then the external
view is defined by TS′′ = (Q, q0, cl(P),⇒) obtained from TS′ by

– renaming internal interactions in σ ∈ Σ′ to external interactions p ∈ P ′:
transitions q

σ→∗ q′ of TS′ are replaced by a set of transitions q
p→x q′ for

each p such that σ p. If σ is an internal interaction not related to a port
in P, then q

σ→∗ q′ is replaced by q
τ→x q′.

– then by eliminating internal τ transitions: ⇒ is the least transition relation
such that q

p⇒ q′ if ∃q′′ such that q
τ∗;p;τ∗
→ x q′′.

The maximal progress rule giving priority to larger interactions is as in BIP: In a
global system, when a < b, then a b-transition has priority over an a-transition.
We can apply the maximal progress rule partly in the semantics of a subsystem
K, because the external ports define exactly the set of interactions that can
be extended to larger connectors in the environment of K and our rule never
eliminates all transitions corresponding to a given port, and the executability of
an interaction in the global system does not depend on the particular interaction
that is executed, only on the port.

The external view of the semantics of K forgets about the actual interactions
due to the composition model defined on the subcomponents of K, and replaces
interaction σ by port names p defined by .

Property 3. Due constraints on the selection of external ports, τ -transitions may
always be executed independently of the environment of K, that is they are
complete interactions in the sense of BIP.

We now define the behaviour of a hierarchical component.

Definition 9 (Semantics of a hierarchical component). Consider a hierar-
chical component K defined by K = ({Ki}, CM,, Int) with Int(Ki) = (Pi, <i

,#i), composition model CM = ({Inti}, (Σ,<,#),P) and external interface
Int = (Ports′, <′,#′).

8 S. Graf and S. Quinton

Suppose that the external view of the behaviour of the components Ki is given
by a transition system TSi = (Qi, qi0, cl(Portsi),→i) satisfying the requirements
of the relation →∗ of Definition 8 (using the semantic transition relations sim-
plifies the definition, but is not strictly required).

Then, the internal view of the behaviour of K can be defined through the
transition system TS = (Q, q0, cl(Σ),→), where

– Q = Πi=1..nQi where we write q = (q1, ...qn) for q ∈ Q; q0 = (q10, ...qn0);
– → is the smallest transition relation such that:

• if σ = (xi1 ..xiJ) ∈ Σ such that ∀j, k ∈ J , xij ∈ Portsj, and Pj �= Pk,

if qij

xij→j q′ij
for j ∈ J , then (q1, ...qn) σ→ (q′′1 , ...q′′n) where q′′i = q′i for

i ∈ J and q′′i = qi for i �∈ J .
• if qi

τ→i q′i and internal transition of TSi then (q1, ..qi..qn) τ→ (q1, ..q
′
i..qn)

TS may then be transformed in turn into the two different semantic transition
systems as in Definition 8.

In the following, we denote the resulting semantic transition system by ‖CMTSi,
respectively by ‖(CM,P)TSi. If the parameters are clear from the context, we may
omit them.

Notice that for σ = p1 · ... ·pk and pj, pl ∈ σ∩Pi, pj �pl is always defined. In the
definition above, we use the fact that the semantic transition relation of Defi-
nition 8 contains explicit transitions for such elements in cl(Σ) which simplifies
the definition of the product. Nevertheless, we could also directly compose the
original asynchronous transition systems in which, for a�b ∈ cl(Σ), the sequence
a; b is enabled implies both a and b are enabled.

Property 4. The transition system TS′′ = (Q, q0, Σ,⇒) defining the external
view of the behaviour of K is a again an asynchronous transition system as
required by Definition 4. Moreover, TS′′ and the transition system TS′ defining
the internal behaviour are bisimilar.

We derive now the set of traces and refusals used for the definition of the com-
parison of component behaviours and of the satisfaction relation.

Definition 10 (Traces and refusals). Let K be hierarchical component K =
({Ki}, CM,, Int) with Int(Ki) = (Pi, <i,#i), composition model CM =
({Inti}, (Σ′, <,#),P) and external interface Int = (Ports′, <′,#′).

Let TS = (Q, q0, Σ,→) represent either the internal or the the external view
of the behaviour of K, depending on the choice of Σ.

– tracesΣ(K) ⊆ Σ∗ :↓ {w ∈ Σ∗ | q0
w→} the downwards closure of the possible

traces of K in terms of interactions in Σ, where we use the extension of <
on Σ to traces.

– accΣ(K) ⊆ traces(K) × 2Σ : {(w, ↓ B) ∈ Σ∗ × 2Σ∗ | ∃q′ ∈ Q∃w′ . w <

w′ ∧ q0
w′
→ q′ ∧ B = {σ|q′ σ→}}. For each trace w, this defines the set of

maximal downwards closed sets of interactions that may be enabled in K

Contracts for BIP: Hierarchical Interaction Models 9

after some execution of an observable trace w. This is because internal tran-
sitions are under the control of the component and cannot be forbidden by a
non cooperative environment.

– refΣ(K) = {(w,B′) \B) |B′ ⊆ Σ, (w,B) ∈acc ∧B′ ⊆ Σ \B} is set defining
all interaction sets that may be refused by K in some state after w; it is
upwards closed with respect to < and with respect to set inclusion.
REFΣ(K) is the derived set of refused traces of the form w; b, where w is a
trace of K and b ∈ B where (w,B) is a refusal of K.

– deadΣ(K) ⊆ tracesΣ(K) : {w|(w, ∅) ⊆acc(K). These are deadlocks of K
which can only be avoided by environments that avoid w.

When TS on Σ defines the behaviour of K, we sometimes write tracesΣ(TS)
instead of tracesΣ(K), etc.

We define traces to be downwards closed set and thus eliminate the effect of
the application of the maximal progress rules. The maximal progress rule is
useful for effective execution, whereas traces and refusals are used to define the
satisfaction relation. Downwards closing traces normalises the behaviours, but
does not change the properties satisfied by a component as all sequences must
satisfy the property and smaller traces don’t add inconsistencies.

For each trace w, exists a refusal set B if there exist in TS an execution
for w′, w < w′ to a state q in which a subset of B is refused. We consider
traces, acceptance/refusal sets corresponding to an open semantics. E.g. accΣ(K)
contains any action that is accepted in K after w and that may be accepted in
a system containing K. This open semantics is sufficient, as we want to verify
contracts defining an assumption on the context of K, such that we always verify
a closed system in which the open and the closed semantics coincide.

Definition 11 (Deadlock freedom of a specification). Let K be a compo-
nent. Then, K is (locally) deadlock free if dead(K) = ∅ that is, if there are no
deadlocks in TS.

Property 5. Let K be a component as above. Then, we have:

– tracesΣ(K);Σ ∩ tracesΣ(K) ⊆REFΣ(K)
– tracesΣ(K);Σ ⊆ tracesΣ(K)
– the traces, acceptance, refusals of the internal and the external semantics

are the same up to the relabelling (and the abstraction) defined by .

2.2 Comparison and Satisfaction Relations

We define first a comparison relation between behaviours, adequate for the in-
tended property verification, in the sense that smaller models satisfy more prop-
erties and larger properties are satisfied by more models.

More precisely, define a preorder that only compares transition systems with
respect to some given interface. This, because we are interested in the comparison
between components that only differ by their behaviour. Comparing components
by comparing their interfaces is an equally interesting problem but not addressed
in this paper.

10 S. Graf and S. Quinton

Definition 12 (Preorder and equivalence on behaviours). Let K be a
component and (Σ,<,#) its internal or external interaction set. Let TS, TS′ be
transition systems on Σ.

We define the preorder relation � on transition systems with respect to Σ:

– TS �Σ TS′, iff
1. tracesΣ(TS) ⊆ tracesΣ(TS′) and
2. refΣ(TS) ⊇ refΣ(TS′)|tracesΣ(TS) where

refΣ(TS′)|traces(TS) = {(w,B) ∈refΣ(TS′) |w ∈tracesΣ(TS)}
– TS ≈Σ TS′ iff TS �Σ TS′ and TS′ �Σ TS
– The preorder and equivalence on components K and K ′ with interaction set

Σ and behaviour defined by TS, respectively TS′ is straightforward:
K � K ′ iff TS �Σ TS′ and K ≈ K ′ iff TS ≈Σ TS′.

Property 6 (Minimal and Maximal behaviours for an interface). Under the same
conditions as previously, That is the interaction set (Σ,<,#) for one of the
interfaces of a component

– the smallest component, called deadΣ is defined by any transition system TS
which has {ε} as its set of traces and refuses everything after ε. This means
dead is locally deadlocking

– the largest component, called trueΣ is defined by any transition system TS
which has Σ∗ as its set of traces and an epty refusal set. Thus, true has no
local deadlock but if no interaction in Σ is complete, then true may deadlock
in a non cooperative environment

– For K defined by any behaviour TS
• deadΣ � K
• K � trueΣ

The satisfaction relation expresses that a component K with behaviour TSK

has a property expressed by a transition system TS where TSK is defined on
(Σ,<,#) and TS on Σ′ ⊆ Σ.

Definition 13 (Property for an interaction model). Let (Σ,<,#) be an
interaction set and let TS be a transition system on Σ′, a subset of Σ that is
downwards closed in Σ. That is (Σ′, <,#) is a sub interaction set of (Σ,<,#).
Then, TS represents a property for Σ, respectively for a component with an
interface having (Σ,<,#) as its interaction set.

We compare now a behaviour TS defined on Σ with a property for Σ, TS′ on
Σ′. In order to do so, we simply project the traces and refusals of TS on Σ′.

Definition 14 (Projection). Let be (Σ,<,#) an interaction set and (Σ′, <′

,#′) a sub interaction set. We define the projection proj(TS,Σ′) of TS to Σ′,
by

– tracesΣ′(TS) = tracesΣ(TS)|Σ′

– refΣ′(TS) = refΣ(TS)|Σ′

Contracts for BIP: Hierarchical Interaction Models 11

We do not redefine the other semantic sets as they are derived from the set of
traces and refusals.

Definition 15 (Satisfaction relation). Let TS on (Σ,<,#) be the behaviour
of a component K and TSP on (Σ′, <,#) a property P for Σ. Then,

K |= P iff tracesΣ′(TS)) ∩ REFΣ′(TSP) = ∅

That is K |= P if no trace w of K projected to Σ′ may be refused by P .

Definition 16 (Composition of properties). Let TSi be transition systems
on (Σ′

i, <,#) defining properties for (Σi, <,#).

– the product TS1‖CMTS2 obtained by a composition model yielding synchro-
nisation on related actions and interleaving on others (a ∈ Σ1 such that
exists b ∈ Σ2 and a < b or b < a typed sync and a and b are connected by a
connector), where for a < b, the interaction a · b is then mapped by to a
in the external view, such that the product is a transition system on Σ1 ∪Σ2

which is a subinteraction set of Σ. We denote the product TS1 ∧ TS2.
– If TSi are deterministic the product TS1‖CM ′TS2 obtained by a composition

model connecting as for ∧ all related actions by a connector, but where all
individual interactions are considered of type trig, and where a < b, the
interaction a · b is then mapped by to b in the external view. We denote the
product TS1 ∨ TS2.

Notice that constructing TS1∨TS2 yields exactly the external choice TS1�TS2

of CSP [Hoa84] in the case that Σi are unstructured. Here we componentise
properties for composition of properties. For effectively verifying properties we
will also represent the satisfaction relation as a composition with a particular
composition model.

Property 7. Let TS, TS′ be transition systems on (Σ,<,#) defining components
K,K ′ and TSP , TSP ′ on (Σ′, <,#) defining properties P and P ′ for Σ. Then,

– K |= P implies tracesΣ′(TS) ⊆ tracesΣ′(P) and refΣ′(P) ⊆refΣ′(TS), more
precisely, every trace that may be refused by P must be refused by K.

– Call a component K deterministic if for each w ∈tracesΣ(K) , w �∈REFΣ(K),
which means that K has a deterministic transition relation.

If TSP is deterministic, then K |= P if and only if tracesΣ′(TS) ⊆
tracesΣ′(P).

– if P � P ′ and K |= P , then K |= P ′, that is, larger properties are satisfied
by more components.

– if K ′ � K and K |= P , then K ′ |= P ′, that is, smaller components satisfy
more properties, in particular, more deterministic components satisfy more
properties.

– K |= P implies K � P

12 S. Graf and S. Quinton

That is, the satisfaction relation implies trace inclusion in all cases and is iden-
tical to trace inclusion for deterministic specifications and the preorder < on
specifications is adequate for the satisfaction relation.

Now, let TSi, TS′
i on (Σi, <i,#i) define the behaviour of components Ki,K

′
i

with interfaces Inti = (Pi, <i,#i), TSi
P on (Σi

1, <,#) define properties P i for
Σ1. Let CM be a composition model on Inti and P a property on the interaction
set Σ defined by CM . Then,

– if K1 � K ′
1 then K1‖CMK2 � K ′

1‖CMK2, that is, � is preserved by compo-
sition.

– K1 |= P , then K1‖CMK2 |= P where K1‖CMK2 represents the internal view
of the behaviour. On the external view of K1‖CMK2 holds the property P ′

obtained by mapping interactions in Σ onto external ports which is more
abstract.

– K1 |= P 1 and K1 |= P 2 iff K1 |= P 1 ∧ P 2, that is ∧ represents indead
conjunction on properties (for a common trace of P 1 and P 2, P 1 ∧ P 2 may
refuse exactly those traces that may be refused by at least one of P 1 or P 2)

– K1 |= P 1 or K1 |= P 2 iff K1 |= P 1 ∨ P 2, that is, ∨ represents indead
disjunction on properties

2.3 Decomposition and Recomposition of Components

A composition model is not a unique representation for an interaction set. As it
is shown in [BS07], there are generally alternative ways of defining connectors
on a set of ports for obtaining a given product interaction set Σ.

We have defined in addition the ports and connectors also the notion of inter-
action model of BIP, as it is simple and contains enough information for deriving
several useful properties (it defines the semantics). A components may be de-
fined by providing just an interaction model and a behaviour. The ports are only
used for defining the way in which component may be composed.

[BS07] provides the following useful theorem allowing for a component K
which is a composition of components Ki to construct the composition models
allowing to represent K as a composition of one of the components Ki with a
component K ′ grouping all the other subcomponents.

Consequently, this allows us obtaining for any component the composition
model relating Ki to its environment.

Theorem 1 (Decomposition of a connector). Given an arbitrary connector
x and a port p it is always possible to construct a connector x̃ such that x defines
the same interaction model as x̃ and x̃ is of the form (p, con1,conk) and p does
not appear in con2, ...conn.

The same transformation can be done for any set of ports

This allows the decomposition of a global interaction model on an interaction
model of on each of its parts. It yields then a composition model for each part and
a global composition models composing the parts. This is enough for defining in
a closed system the interaction model between any component in the component
hierarchy and “the rest of the system”.

Contracts for BIP: Hierarchical Interaction Models 13

Definition 17 (A component and its environment). Let Int(K) =
(P , <,#) be the external interface of a component K.

Then suppose that the environment is given in the form of a component KE

with interface Int(KE) = (PE , <E,#E) and no internal structure such that
each port in PE is connected to system ports in P via a set of connectors Con
on P ∪ PE, defining the the composition model between K and its environment
KE.

Then, the internal structure of the component SK obtained simply by compos-
ing K with its environment KE according to definition 7 as CMEK = ({K,EK},
(Σ,<,#), Ports ∪ PE ∪ Con).

We can now also define a composition model relating any subcomponent Ki of
K to its environment KE

i which is defined by the peer Kj and KE and the given
composition models.

As the internal structure of K is of the form ({Ki}, CM,,P), where the
internal composition model is CM = ({Inti}, (Σ,<,#),

⋃
i Pi ∪ PCON).

Then, due to the theorem above, for any given i ∈ I one can define a com-
position model CM ′ of the form CM ′ = ({Ki, i ∈ I} ∪ {KE}, (Σ′, <,#),PCM ′)
where

– the set of ports PCM ′ is a set of ports defined by a union of 3 sets of connec-
tors: Pi, CONEi ⊆

⋃
j �=i Pj ∪PE a hierarchical set of connectors connecting

only ports not in Pi, and finally a hierarchical set of connectors CONi−Ei

connecting ports in Portsi with ports in CONEi

– the interaction set Σ′ is obtained according to definition 7 is IS
– the definitions of <′, #′ and are straightforward

We define then an external interface of a component KEi, Int(KEi) = (PEi, <
,#) representing the elements of CONEi used by some connector of CONi−Ei

and < and # are again straightforward.
Then, the component SK can also be defined by composing Ki with its envi-

ronment KEi and the corresponding composition model is defined as CMKi =
({Ki,KEi}, (ΣEi, <Ei,#Ei), Portsi∪PEi∪CONi−Ei) such that ΣEi is obtained
by renaming interactions of Σ in terms of PortsEi.

3 Components Enriched with Contracts and
Compositional Verification

3.1 HRC: Hierarchical Components Enriched with Contracts

First, we introduce the notion of Rich Component (HRC), similar to the one
introduced in [BC07+,BB+07] but adapted to our hierarchical BIP components:
the structure of an HRC K is the structure of a component, enriched with a
composition model with its environment KE as defined in Definition 17 and a
set of contracts.

A contract is a pair of transition systems (A,G), defined on PK , respectively
PE . A expresses an assumption of the behaviour of the environment and G

14 S. Graf and S. Quinton

defines a property that K must — or is assumed to — satisfy under the condition
that the environment behaves according to A.

A rich component has, exactly as a component, a behaviour that is either
explicitly given for a leaf component or implicitly defined by the set of leaf
components. In the context of contract based reasoning, we want to be able
to do some reasoning without having already defined all the leaf components
and/or their behaviour.

Definition 18 (Assumption, Guarantee, Contract). Let be Int = (P , <
,#) an interface. A contract for K is given by a pair (A,G) where A and G are
transition systems with labels in P; A is called the assumption and G is called
the guarantee.

Definition 19 (Rich component (HRC)). A rich component is of the form
(({Ki}, CM,,PK), (PE , CMEK), CONTR) or ((PK , <,#), (PE , CMEK),
CONTR) where

– (PE , CMEK) is a set of ports representing the environment and the compo-
sition model connecting K to its environment as defined in Definition 17; if
K is defined as a part of a larger system then the second construction of this
definition is used, whereas if K is a unique outermost component described,
then CMEK is given.

– {Ki} are HRC and ({Inti}, CM,,P) is defined like an internal interface of
a hierarchical component or alternatively, ((P , <,#), TS) defines an atomic
component without a defined substructure.

– CONTR is a set of contracts of the form (Ai, Gi) where Ai is defined on
PE and Gi is defined on P .

A rich component K is defined by a structure str(K) and by beh(K) defining a
transition system on the external interface (PK , <,#) of K.

Notice that for assume/guarantee reasoning, we are mainly interested in the
structure of the component K, whereas the behaviour of K may not always be
given explicitly.

Given the structure of an HRC K we can now consider the environment KE

of K like any other component. How a valid KE can be constructed is defined
in Section 2.3.

3.2 Compositional Verification of HRC

We need to define a satisfaction relation, defining what it means for a contract
(A,G) to be satisfied by K, and a dominance relation such that (A,G) domi-
nates (A′, G′) if all components satisfying (A′, G′) satisfy also (A,G). We use
the dominance relation for showing that a contract (A,G) associated with a hi-
erarchical component dominates the implicitly defined contract defined by a set
of contracts (Ai, Gi) associated with the subcomponents of K.

Intuitively, K satisfies a contract (A,G) if in the system defined by the envi-
ronment of EK and K, where the environment behaves like A, this guarantees
that K satisfies the property G.

Contracts for BIP: Hierarchical Interaction Models 15

We consider here the case of the satisfaction of a single contract. Multiple
contracts can be validated independently of each other.

Definition 20 (Satisfaction of contracts). Let K be a rich component with
an external interface IntK = (P , <,#) and KE an environment with IntE =
(PE , <,#) and composition model CMEK between K and E and a behaviour
representing a transition system TS on P. Then, K satisfies its contract (A,G),
denoted K |= (A,G) if

SK |= G

For SK defined as the composition via CMEK of the components K and KE

defined by the behaviour A.

According to the satisfaction relation of definition 15, as G is defined as a prop-
erty on the interaction set of K, and the behaviour of SK is of the form A‖CONTS
on the composition of the interaction set of K and EK , A‖CONTS |= G means
that the projection of A‖CONTS onto the interaction set of K satisfies G.

Theorem 2. Let K be a rich component with an external interface IntK =
(P , <,#) and KE an environment with IntE = (PE , <,#) and composition
model CMEK between K and E. Suppose that the transition system TS on P
represents the implementation of K.

If K satisfies its contract (A,G), then

A‖CMEKTS �P A‖CMEK G

In the particular case that G is deterministic, we have for TS = G that
K |= (A,G)

proof sketch: Noting that the behaviour of SK is equal A‖CMEKTS, we can
conclude that if the system defined by A‖CMEKTS satisfies property G then
A‖CMEKTS �IntK G by property 7; together with SK �IntE A which is due to
monotonicity, this allows to derive A‖CMEKTS � A‖CMEKG. Using the prop-
erty saying that G |= G for deterministic G and the fact that A‖TS �IntK G
one obtains the second assertion.

This important property expresses the fact that G defines an upper bound on
all components that satisfy G in any environment satisfying A; and it allows the
use of a simple proof rule for verifying contract dominance.

Definition 21. Let K be a hierarchical rich component with a structure of the
form ((str(Ki), (CM, PK), (PE , CMEK), (A,G)) such that each str(Ki) de-
fines a contract (Ai, Gi). Then (A,G) dominates the set of contracts {(Ai, Gi)}
in the context of K iff

∀i . beh(Ki) |= (Ai, Gi) implies beh(K) |= (A,G)

Remember that the behaviour of K is defined as the composition of the transition
systems defining the behaviour of the Ki according to the composition model
CM and renaming the resulting interactions to port names in P according to .

16 S. Graf and S. Quinton

In [BB+07] an explicit contract (A′, G′) is associated with the set {(Ai, Gi)}
and dominance is then defined as a relationship between the contracts (A′, G′)
and (A,G) which are defined on the same alphabets. There, the semantics is
defined in terms of sets of traces and the contract (A′, G′) is defined using nega-
tions (complements of trace sets); here, we show the soundness of a similar proof
rule, without using negation.

Theorem 3. Let K be a hierarchical rich component with a structure of the form
((str(Ki), (CM, PK), (PE , CMEK), (A,G)) such that str(Ki) has a contract
(Ai, Gi).

Then (A,G) dominates the set of contracts {(Ai, Gi)} in the context of K if
the following conditions hold:

– for the component K obtained by choosing beh(Ki) = Gi, we have K |=
(A,G)

– for all i, the component SK defined as a composition of Ki with KEi obtained
from PEi and Definition 17, and by choosing A for the behaviour of EK and
Gj for the behaviours of the Kj, for j �= i, we have

SK |= Ai

meaning that the assumption Ai is not more restrictive than the one defined
by the environment of Ki as defined by the guarantees of the pairs and the
assumption A of K.

Proof sketch: The fact that the Ki satisfying (Ai, Gi) are smaller than Gi in an
environment granting Ai (Theorem 2), guarantees by the first verification con-
dition that that for Ki having as behaviour the projection of Ai‖Gi as previously
defined, one has K |= (A,G).

The second condition guarantees that the restriction to environments satisfying
Ai can be eliminated as Ai is already guaranteed by A and by Gj; indeed, the sec-
ond item implies that A‖(A1‖G1)p‖...‖(An‖Gn)p is equivalent to A‖G1‖...‖Gn,
where the parallel composition is the one respecting the interaction model and
(Ai‖Gi)p represents the interpretation of the result in the interface of Ki.

4 Handling Verification Conditions Contructively

We have defined a framework for architecture and system modelling based on
the BIP framework and we have adapted it for the use in the context of compo-
sitional verification, where components are annotated with contracts specifying
assumptions on the environment and derived a set of verification conditions for
showing the correctness of a contract hierarchy.

Contracts state properties on a specific component under some condition on
its environment. We have defined verification conditions which are small if each
component has only a small number of subcomponents. In general, this is un-
likel to happen as component must on the other hand be units which are not

Contracts for BIP: Hierarchical Interaction Models 17

too tightly coupled with their environment in order to make compositional ver-
ification feasible.

The verification conditions involve the verification of properties on compo-
sitions of component behaviours. K |= P holds if the traces of K cannot be
refused by P which means that K �|= P if for an appropriate composition model,
the composition K‖P can reach a deadlock state.

Together with the fact that we want to guarantee deadlock freedom of in-
dividual components and globally of the system, this means that methods for
showing absence of deadlock are an important issue.

In [GS03,GG+07] we have started to study specific methods for showing dead-
lock freedom without building products for the BIP framework which are cur-
rently being implemented and experimented.

Even if these methods avoid the exploration of the global state graph, they
are global and they compute approximative results. Combining such methods or
slightly more costly and more precise methods with a compositional approach
will hopefully lead to interesting results.

We have defined components which have in their interface not only the possible
interactions and a set of contracts, but we define a notion of conflict and depen-
dence on the set of ports of the components themselves defining corresponding
properties of the transition system which can be exploited for obtaining efficient
means to explore asynchronous transition systems by using either partial order
reduction or maximal progress rules. We also envisage to use a Petrinet like
representation of asynchronous transition systems, for example UML activity
diagrams to represent concurrency in a more explicit manner.

The abstraction defined by the use of typed connectors is particularly interst-
ing if we succeed to construct on-the-fly reductions of composed behaviours. But
we envisage also an approach based on incremantal contruction and abstraction
as in [GLS96].

References

BB+07. Badouel, E., Benveniste, A., Bozga, M., Caillaud, B., Constant, O., Josko, B.,
Ma, Q., Passerone, R., Skipper, M.: SPEEDS meta-model syntax and draft
semantics. Deliverable D2.1c (February 2007)

BBS06. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems
in BIP. In: 4th IEEE International Conference on Software Engineering and
Formal Methods (SEFM06), Invited talk, September 11-15, 2006, Pune, pp.
3–12 (2006)

BC07+. Bozga, M., Constant, O., Skipper, M., Ma, Q.: SPEEDS meta-model syntax
and static semantics. Deliverable D2.1b (January 2007)

BS07. Bliudze, S., Sifakis, J.: The algebra of connectors structuring interaction in
BIP. Techreport, Verimag (February 2007)

RB+01. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y.,
Poel, M., Zwiers, J.: Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. In: Nr 54 in Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, Cambridge (2001)

18 S. Graf and S. Quinton

GG+07. Gößler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis, J.: An
approach to modeling and verification of component based systems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, Springer, Heidelberg (2007)

GS03. Gößler, G., Sifakis, J.: Component-based construction of deadlock-free sys-
tems. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations
of Software Technology and Theoretical Computer Science. LNCS, vol. 2914,
Springer, Heidelberg (2003)

GS05. Goessler, G., Sifakis, J.: Composition for component-based modeling. Science
of Computer Programming, pp. 161–183 (March 2005)

GLS96. Graf, S., Lüttgen, G., Steffen, B.: Compositional Minimisation of Finite State
Systems using Interface Specifications. In: Formal Aspects of Computation,
vol. 8, Appeared as Passauer Informatik Bericht MIP-9505 (1996)

Hoa84. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Engle-
wood Cliffs (1984)

WN95. Winskel, G., Nielsen, M.: Models for concurrency, vol. 4. Oxford Univ. Press,
Oxford (1995)

Thread–Based Analysis of Sequence Diagrams

Haitao Dan, Robert M. Hierons, and Steve Counsell

School of Information Systems, Computing & Mathematics,
Brunel University,

Uxbridge, Middlesex UB8 3PH, UK
{hai.dan,rob.hierons,steve.counsell}@brunel.ac.uk

Abstract. Sequence Diagrams (SDs) offer an intuitive and visual way of
describing expected behaviour of Object Oriented (OO) software. They
focus on modelling the method calls among participants of a software
system at runtime. This is an essential difference from its ancestor, basic
Message Sequence Charts (bMSCs), which are mainly used to model the
exchange of asynchronous messages. Since method calls are regarded as
synchronous messages in the Unified Modelling Language (UML) Ver-
sion 2.0, synchronous messages play a significantly more important role
in SDs than in bMSCs. However, the effect of this difference has not been
fully explored in previous work on the semantics of SDs. One important
aim of this paper is to identify the differences between SDs and bM-
SCs. We observe that using traditional semantics to interpret SDs may
not interpret SDs correct under certain circumstances. Consequently, we
propose a new method to interpret SDs which uses thread tags to deal
with identified problems.

Keywords: Sequence Diagram, Semantics, Partial Orders, Concurrency,
Object Oriented, Thread tags.

1 Introduction

In the Unified Modelling Language (UML) Version 2.0, a Sequence Diagram
(SD) is a type of Interaction Diagram (ID), as are Communication Diagrams,
Interaction Overview Diagrams and Timing Diagrams [OMG05]. Although an
SD is a second-level modelling language in UML 2.0, it is the most commonly
used type of notation in ID and is regarded as the most popular UML behaviour
modelling language.

In Object Oriented (OO) software, SD-based specifications are usually used to
capture system requirements, model function logic or as automatic test models.
An SD is a versatile tool that can be used in many parts of the OO software
development process; its ancestor, the basic Message Sequence Chart (bMSC),
developed in the early 1990s, was designed for modelling communication systems.
As a consequence of the difference between application domains, minor changes
were introduced into the first version of UML.

Due to their similarity, the semantics developed for bMSC have been naturally
inherited by SD. In particular, those based on partial order theory have been

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 19–34, 2007.
c© IFIP International Federation for Information Processing 2007

20 H. Dan, R.M. Hierons, and S. Counsell

widely adopted in both research and industry, because they are conceptually
straightforward when compared with counterparts such as process algebra based
semantics [MR94]. Henceforth, we use the term ‘traditional semantics’ to refer
to partial order based semantics.

Although the syntax of SDs and bMSCs are almost identical, we argue that
small differences between them may cause significant semantic variations be-
tween the two. That is, traditional semantics may not interpret SDs correctly.
More specifically, SDs are often used to model OO software systems in which
communication is synchronous; bMSCs are normally used in asynchronous mes-
sage based communication systems. To model communication systems, bMSCs
assume that all participants are running concurrently and the messages between
them are always asynchronous. On the other hand, the messages between lifelines
of SDs are likely to be synchronous and there is no longer a one-to-one correspon-
dence between lifelines and threads of control. The differences described above
imply that when traditional semantics are applied on some SDs, it can result in
unintentional semantics. To solve this problem, we propose a new method for
interpreting sequence diagrams.

To find a proper method of interpreting SDs, we first attempt to solve the
problem using only the meta-classes from UML 2.0. We argue that existing
UML meta-classes cannot be used because, unlike bMSCs, lifelines are generally
orthogonal to threads. This implies that a thread may involve multiple lifelines
and a lifeline may involve multiple threads. We thus introduce thread tags into
SDs and provide an informal semantics for interpreting SDs.

In order to simplify the inference process, we only consider the most important
parts of SDs and bMSCs related to our proposed semantics. We assume that a
complete semantics based on our work can then be induced.

1.1 Related Work

When discussing the semantics of SDs, it is worth reviewing previous research
into bMSCs. Mauw and Reniers [MR94] used a process algebra to interpret
the semantics of bMSC and this approach has been adopted as the standard
semantics for bMSC [IT98]; Grabowski et al. [GGR93] proposed petri-net based
semantics for bMSC; Ladkin and Leue [LL93] used Büchi Automata to capture
the meaning of bMSC; Jonsson and Padilla [JP01] used Abstract Execution
Machines to describe bMSC semantics and at the same time, considered inline
expressions and data in bMSCs; Alur et al. [AHP96] were the first to use labelled
partially-ordered structures to formalize bMSCs.

The increased popularity of the UML has led to the semantics of SDs receiving
more attention. In UML 2.0, SDs were significantly revised to allow adequate mod-
elling of complex software system based on the new version of bMSC [OMG05].
Although UML 2.0 tried to provide semantics for every modelling language us-
ing a meta-model [Sel04], SDs have only been assigned a behaviour informal se-
mantics according to traditional bMSC semantics. In [Sto03, HHRS05, CK04],
formal trace based semantics for SDs were provided and [LS06] solved the seman-
tic problem using an automata-theoretic approach. In [GS05], safety and liveness

Thread–Based Analysis of Sequence Diagrams 21

properties were used for distinguishing valid behaviours from invalid. Finally,
Harel and Maoz [HM06] proposed Modal UML Sequence Diagrams (MUSD), an
extension of SDs based on the approach used in Live Sequence Charts (LSCs) to
extend bMSCs [DH01]. These newly developed SD semantics were based on dif-
ferent kinds of bMSC semantics. The bMSC semantics were revised to conform to
the intended semantics of UML 2.0 with added semantics for the new meta-classes
of UML 2.0 (eg., for CombinedFramgment and InteractionOperator).

Previous work has been largely based on bMSC semantics, the core ideas
of which are commonly derived from corresponding bMSC semantics directly.
Although the notation used to describe SDs and bMSCs are almost identical,
the differences between them do affect how the diagrams are interpreted. For
instance, a lifeline in UML 2.0 no longer represents a process. If we still interpret
it as bMSC’s instance, the correct concurrency information will not be deduced
from an SD in certain circumstances. This observation is the motivation for the
work described in this paper.

An interesting variation on mainstream bMSCs are LSCs which use a two-
layer approach to distinguish mandatory and provisional behaviour in scenarios.
Similar to our approach, the semantics of LSCs consider the problem caused by
synchronous method calls. It assumes that a synchronous message is received be-
fore the next event on the instance which sent the message. This simple solution
addressing the additional orders induced by synchronous messages is sufficient
for LSCs, but it may be problematic when applied to SDs, because lifelines of
SDs no longer contain a thread of control.

The remainder of this paper is structured as follows. A comparison between
the SD and bMSC standards is presented and the traditional semantics are
introduced informally in Section 2. In Section 3, some possible problems that
can arise when using the traditional semantics to interpret SD are described. In
Section 4, two unsuccessful solutions that use UML 2.0 meta-classes are analysed.
We argue that there are no meta-classes in UML 2.0 that can achieve correct
semantics for SDs. After the analysis, inference rules for interpreting SD based
on thread tags are proposed in Section 5. Finally, in Section 6, our work is
concluded and potential future directions described.

2 Preliminary

This paper is motivated by the observation that the existing semantics of SDs
have problems when interpreting SDs with synchronous messages. To illustrate
the problems, SD and bMSC standards are first compared to reveal their differ-
ences; second, the traditional semantics of SD are introduced based on bMSC
partial order semantics.

2.1 The Difference Between SD and bMSC

Both SD and bMSC are complicated modelling languages and both standards
use meta-methods to define themselves as hierarchies of meta-classes. We com-
pare the two languages according to the selected constructs of Lifeline (instance

22 H. Dan, R.M. Hierons, and S. Counsell

in bMSC), Message, MessageOccurrenceSpecification (event in bMSC) and Ex-
ecutionSpecification (method and suspension in bMSC)1.

In UML 2.0 meta-models, an SD is decomposed into Lifelines and Messages.
A Lifeline commonly represents an instance of a class or component in an OO
program and it contains different kinds of OccurrenceSpecifications. Occurrence-
Specification is an equivalent concept to event in bMSC. Two main kinds of
OccurrenceSpecification are MessageOccurrenceSpecification and ExecutionSpec-
ification. MessageOccurrenceSpecifications are used to represent sending or re-
ceiving of messages. ExecutionSpecifications are specifications of the execution
of units of behaviours or actions within the Lifeline and always triggered by
Messages.

The sturctures of msc are similar to the structures in an SD meta-model,
although msc is defined using a meta-language. An msc body includes multiple
instances. Each instance has its own thread of control, and each instance has a
list of events which appear along it. message event and method call event are the
two main types of event. A pair of message events or a pair of method call events
are used to represent a message between two instances. A method is a named
unit of behaviour inside an instance. A suspension occurs when a synchronous
method call is sent and lasts until the reply of the call returns.

Although both modelling languages have similar core constructs and each
construct has similar graphical presentations, three underlying differences need
to be addressed.

The first difference is that Lifeline and instance generally represent different
things. instance of bMSC usually represents a process, a network device or a
system. Lifelines in SDs always represent objects or instances of a component.
instance always has its own thread of control (thread)2, but a Lifeline does not.

The second difference is that SD and bMSC’s messages are categorised differ-
ently. In SD, there are three message types: synchCall, asynchCall and
asynchSignal. Generally speaking, synchCall is the more commonly used type of
message modelling synchronous method call between objects. For bMSCs, mes-
sage only refers to asynchronous communication between two instances and is
the most often used type of message in bMSC. In general, the difference is due
to the fact that SDs are used to model communication between objects, while
bMSCs are designed to model message exchange between processes.

The third difference is that SDs and bMSCs use different ways to model the
activity of a Lifeline or an instance. This difference is also due to the fact that
an instance has a thread but Lifeline does not. Since an instance has its thread
of control, if there is a synchronous method call from an instance, the caller
will enter a suspension region where no events occur until the reply of the call
returns. However, SDs do not restrict a Lifeline to map to only one thread of

1 The emphasized words are definitions from the standard. A detailed explanation of
them can be found in UML 2.0 and MSC standards [OMG05, IT98].

2 Here, thread of control represents an abstract notion of control unlike thread or
process in operation system (OS). More specifically, an independent task which is
executed sequentially should be regarded as owning its own thread of control.

Thread–Based Analysis of Sequence Diagrams 23

control. It is possible for ExecutionSpecifications of multiple threads to overlap
in one Lifeline. An example of this is given in Example 9 (Figure 6).

2.2 Traditional Partial Order Semantics

In the UML 2.0, the sequences of MessageOccurrenceSpecification are regarded
as the meanings of SDs. Thus, traditional semantics can be described by two
ordering rules when only considering the meta-classes: Lifeline, Message and
MessageOccurrenceSpecification.

1. MessageOccurrenceSpecifications that appear on the same Lifeline are or-
dered from top to bottom.

2. SendingMessageOccurrenceSpecification always occurs before the correspond-
ing receiving MessageOccurrenceSpecification.

Based on the rules, an informal partial order semantics of SDs can be defined.
It is the transitive closure of the union of the following two orders:

– the union of total orders of MessageOccurrenceSpecifications in each Lifeline;
– the ordering relations between the MessageOccurrenceSpecification pairs of

sending and receiving of the same message;

3 The Effect of Changing from bMSC to SD

In Section 2, we introduced the differences between SD and bMSC and the tradi-
tional semantics for SD. In order to illustrate the effects of the changes, five sim-
ple SD examples are presented. Example 1 in Figure 1 shows that synchronous
messages convey the events3 of one thread to multiple lifelines. Examples 2 and
3 in Figure 2 demonstrate that it is not enough to simply apply traditional se-
mantics for interpreting two kinds of SDs. Examples 4 and 5 in Figure 3 show
what can happen when multiple threads enter the same lifeline in one SD.

Example 1 is an example of an SD where a synchronous message is represented
by a solid line with a filled arrowhead (c1 and c2); an open arrowhead is used to
represent asynchronous messages (m1). The reply to a synchronous message is
represented as a dashed line with an open arrowhead pointing back to the caller
(rc1 and rc2). Each thin rectangle on a lifeline represents an ExecutionSpecifi-
cation defined as “a specification of the execution of a unit of behavior or action
within the Lifeline” and denotes that the lifeline is active. In an OO program,
when the synchronous message is a call to a method of the object represented
by the lifeline, the thin rectangle signifies that the method is on the stack.

According to the UML 2.0 standard, we can interpret Example 1 as a run-
ning method of a:A calling the method c1 in object b:B and b:B sending an
asynchronous message m1 to object d:D. Method c1 returns after m1 has been

3 For the sake of simplicity, we use event to replace the lengthy MessageOccurrence-
Specification.

24 H. Dan, R.M. Hierons, and S. Counsell

Fig. 1. An SD with synchronous messages

sent. Finally, the method in object a:A calls the c2 method in object c:C and
c2 returns.

This scenario means that methods c1 and c2 are successively executed in one
thread, so the events !c1, ?c1, !m1, !rc1, ?rc2, !c2, ?c2, !rc2 and ?rc2 all belong
to one thread but are expanded to three lifelines. Here, the shriek symbol, !,
represents sending and the ? symbol represents receiving (of a call or message).

Example 1 illustrates how synchronous messages expand events of one thread
into different lifelines. As a consequence, a normal lifeline no longer represents
a thread of control.

Applying traditional semantics to this example, the orders of the events are:
!c1 <?c1 <!m1 <!rc1 <?rc1 <!c2 <?c2 <!rc2 <?rc2 and !m1 <?m1 which is
equivalent to our intuitive understanding.

Now we assume that the orders in Example 1 define the traces that we want
to model and give two other examples (Examples 2 and 3) which try to model
the same traces.

Fig. 2. SDs with synchCalls

Example 2 is also a common SD, but the returns of the synchronous calls
are not included. Applying traditional semantics, we get following orders: !c1 <
?c1 <!m1, !c1 <!c2 <?c2 and !m1 <?m1. The relations ?c1 <!c2 and !m1 <
!c2 are missing. However, according to the meaning of execution specification

Thread–Based Analysis of Sequence Diagrams 25

and synchronous call, the two calls from the same execution specification (!c1
and !c2) are still in the same thread, so the missing orders should exist. The
partial order should be !c1 <?c1 <!m1 <!c2 <?c2 and !m1 <?m1 which is the
partial order of Example 1 except with reply events removed. This example shows
that traditional semantics of SD are not enough to interpret SDs if synchronous
messages are included and replies of synchronous calls omitted.

In Example 3, a simplified SD is given. Since execution specification is optional
in SD, software engineers may draw SDs as shown in Example 3 to reflect the
traces in Example 1. Here, it is not easy to induce the desired partial order from
Example 3. Calls c1 and c2 may belong to two different threads, so the events
of c1 and c2 may interleave. As a result, the intended orders may be !c1 <
?c1 <!m1 <?m1 and !c1 <!c2 <?c2, the order produced by applying traditional
semantics. Compared with the partial order of Example 1, it does not include
relations like ?c1 <!c2 and !m1 <!c2.

This example shows that users may draw a diagram based on their own as-
sumption that all the calls are in one thread and are synchronized; the assumed
orders can not subsequently be retrieved from the diagram when it is formally
analyzed.

The first three examples explain how synchronous messages bring the events
of one thread to multiple lifelines, and the problems that may result from this.
In fact, in many cases it can also happen that multiple threads enter one lifeline
in an SD.

Fig. 3. SDs of multiple thread enter one lifeline

An intuitive interpretation of Example 4 shown in Figure 3 is that methods b1
and b2 in object b:B are called by a:A and b:B sequentially from different threads.
This example illustrates that sometimes it is impossible to determine whether
the events on the same lifeline belong to the same thread. Another version of
Example 4 is shown in Example 5 (same figure). It is a similar scenario to
Example 4 except that synchronous calls b1 and b2 are replaced by asynchronous
messages m1 and m2. If Example 5 is a bMSC, it induces a canonical race
condition [AHP96, Mit05]. According to traditional semantics, m1, and m2 can
be sent in either order. There is no way to enforce m1 arriving before m2 without
additional information. If ?m1 and ?m2 belong to one thread and the system is
implemented following Example 5, then a race condition may be introduced into

26 H. Dan, R.M. Hierons, and S. Counsell

the system. However, when checking this diagram in the context of OO software
development, we can not decide whether a race condition applies since ?m1 and
?m2 might not belong to the same thread.

According to these examples, we find that the most problematic issue of in-
terpreting an SD with synchronous messages is how to retain thread information
in SDs when a lifeline does not correspond to a thread of control.

4 Mapping Events to Threads

To correctly interpret an SD, it is necessary to find a way of mapping different
events to existing threads in the SD; we call this Thread Mapping.

To achieve this, two related meta-classes in UML 2.0 are selected. First is
execution specification which can be used for grouping events. The second is
active object which contains information regarding concurrency. The feasibility
of using these meta-classes to do the thread mapping is now analysed.

4.1 Using Execution Specification

Example 2 in Figure 2 shows that using the information contained in execu-
tion specifications may help to handle the thread mapping problem. The events
triggered by synchronous messages can be grouped together by analysing the
connective relations of the execution specifications.

Thread mapping is relatively straightforward for simple diagrams like
Example 1 and Example 2. With execution specifications, we can group events
inductively as follows:

1. Events that appear on the same lifeline are ordered from top to bottom.4

2. A message is always sent before it is received.
3. If there are synchronous messages between two execution specifications a

and b, then a and b are connected.
4. If execution specifications a and b are connected, and b and c are connected,

then a and c are connected.
5. All events on connected execution specifications are grouped into the same

thread.
6. Let us suppose that in an event group, a synchronous message m is sent

from execution specification a to execution specification b, then the events
on b should always be before the next event on a.

Now consider applying the above inference rules to interpret Example 2. From
the diagram, the observed orders are !c1 <?c1 <!m1 <!c2 <?c2 and !m1 <?m1
which is what we want.

Example 6 shown in Figure 4 illustrates a scenario in which a:A is a window
object that can accept inputs from an actor. When an asynchronous message
4 This rule introduces forced orders between events of different threads on the same

Lifeline.

Thread–Based Analysis of Sequence Diagrams 27

arrives, one of the a:A methods is activated. The activated method handles
the message by calling methods of the connected participants. In this case,
the GUI libraries of most programming languages will put the two events on
lifeline a:A in the same thread5 and the desired orders of this diagram are
!c1 <?c1 <!m1 <!c3 <?c3 <!m2 <?m2 and ?m1 <?m2. However, correct thread
information cannot be produced by the rules above and the desired orders can-
not be generated. This is due to the fact that, when applying inference rules 3,
4 and 5 to this diagram, the events will be separated into two event groups. The
orders obtained by applying the inference rules will be !c1 <?c1 <!m1 <?m1,
!c3 <?c3 <!m2 <?m2, !c1 <!c3 and ?m1 <?m2. In this case, desired relations
such as ?c1 <?c3 and ?c1 <!c3 are lost.

Fig. 4. SDs thread mapping problem

Although execution specifications do not always provide enough information
for thread mapping in complicated SDs, these inference rules are still useful
because grouped events belong to the same thread.

To apply these inference rules, one issue has to be clarified. According to UML
2.0, overlapping execution specifications on the same lifeline should always be
represented by overlapping rectangles. However, a number of UML modelling
tools do not follow this definition and this introduces problems in our inference
rules.

There are two circumstances in which overlapping execution specifications
will occur. Firstly, in the case of callback methods and secondly, for concurrent
re-entering methods in the same lifeline.

According to UML 2.0 standard, callback methods should be shown as Ex-
ample 7 in Figure 5. Some UML tools depict the callback method as Example 8
in the same figure and although these tools violate the standard definition, our
inference rules still apply because all events of a callback method belong to the
same thread.
5 For example, two Java GUI libraries, Swing and SWT and Visual C++’s MFC.

28 H. Dan, R.M. Hierons, and S. Counsell

Fig. 5. Callback method

Concurrent re-entering methods of the same lifeline should be shown as Ex-
ample 9 in Figure 6. Some UML tools depict it as in Example 10 in the same
figure. When inference rules 3, 4 and 5 in the previous section are applied to
Example 10, all execution specifications and events in the diagram are grouped
to the same thread. This deduction conflicts with what actually happens, since
b1 and b2 should belong to different threads in such scenarios. If inference rule
6 is applied subsequently to Example 10, the next event of !b2 on lifeline c : C
should follow all events on b : B belonging to the same thread. This means that
there exists an order !4 <!3, thus the events in the diagram may form a circle
following this order, conflicting with the definition of partial order.

Fig. 6. Re-entering methods of the same lifeline

The semantics of execution specification will therefore be damaged if overlap-
ping execution specifications are not depicted strictly according to the UML 2.0
standard; our inference rules do not work in this instance.

4.2 Using Active Object

In the UML standard related to SD, the only concept related to concurrency is
that of active object.

Thread–Based Analysis of Sequence Diagrams 29

A class may be designated as active (i.e., each of its instances having
its own thread of control) or passive (i.e., each of its instances executing
within the context of some other object). [OMG05, p423]

An active object is an object that, as a direct consequence of its cre-
ation, commences to execute its classifier behavior, and does not cease
until either the complete behavior is executed or the object is terminated
by some external object. (This is sometimes referred to as “the object
having its own thread of control.”) [OMG05, p424]

When an instance of a class with isActive property is set to be true, it is an
active object, otherwise it is a passive object.

Fig. 7. An SD with active objects

Let us assume that active objects are represented by some lifelines, and exe-
cution specifications are fully specified; we could then claim that events can be
mapped to threads using the inference rules in Section 4.1. To explain, Example 11
is provided in Figure 7. Active objects are represented by rectangles, each with an
additional vertical bar on either side (eg. a:A and d:D in Example 11). Since active
objects are active from creation to termination, the execution specifications of ac-
tive objects persist from top to bottom of the lifelines in this diagram. We assume
that each active object in the diagram contains a thread. In addition, to simplify
the discussion, some terms representing the execution specifications are added to
the diagram, for example exec1 refers to the execution specification on lifeline a:A.
The detailed inference steps are:

– By applying rule 1, orders ?m0 <!b1 <!c1, ?b1 <!m1 <?b2, ?c1 <!m2 <?c2
and ?m1 <!b2 <?m2 <!c2 are obtained.

– By applying rule 2, orders !b1 <?b1, !m1 <?m1, !b2 <?b2, !c1 <?c1, !m2 <
?m2 and !c2 <?c2 are obtained.

30 H. Dan, R.M. Hierons, and S. Counsell

– By applying inference rule 3, the pairs exec1 and exec3, exec1 and exec5,
exec2 and exec4, exec2 and exec6 are connected respectively.

– By applying rules 4 and 5, exec1, exec3 and exec5 are connected; events
?m0, !b1, ?b1, !m1, !c1, ?c1 and !m2 belong to the thread containing active
object a : A. Similarly, exec2, exec4 and exec6 are connected; events ?m1,
!b2, ?b2, ?m2, !c2 and ?c2 belong to the thread containing active object d : D.

– By applying rule 6, orders ?b1 <!c1, !m1 <!c1 and ?b2 <?m2 are obtained.

After applying these inference steps, the union of all obtained orders are:
?m0 <!b1 <?b1 <!m1 <!c1 <?c1 <!m2, ?m1 <!b2 <?b2 <?m2 <!c2 <?c2,
!m1 <?b2 and !m2 <?c2, as expected.

But in OO software, it is hard to judge whether a lifeline represents an active
object or not, since active object is defined more specifically than lifeline and,
in most situations, they are not equivalent.

The concept of active object originates from research into Concurrent Object
Oriented Programming Language (COOPL) [KL89, Nie93]. Active objects of
COOPL keep both concurrency and OO features, such as encapsulation and
inheritance, together. Consequently, the structure of active objects is generally
more complex than common objects in Object Oriented Programing Language
(OOPL). Mainstream OOPLs such as Java and C++ use a different approach to
realize concurrent computing. They utilize special entities in the language itself
or OS to implement concurrent computing, such as Thread class in Java and
process or thread in Windows OS. Other research has shown how to implement
active objects using normal OOPLs to benefit concurrent programming [CKV98,
LS96]. In [LS96], active object is a behavioral pattern with multiple participants,
such as Proxy, Scheduler, Servant etc. As a result, using a single lifeline to
represent an active object for common OO software is unreasonable.

To summarise, these thread mapping approaches are impossible because the
concurrent information kept by UML 2.0 meta-classes is not sufficient for
doing so.

5 Inference for SDs with Thread Tags

Since there appears to be no canonical way to map events to threads with UML
2.0 meta-classes, we propose a new approach that extends the notation of UML
2.0. The extension should have two functions: firstly, to group all events in one
SD to different threads; secondly, to maintain the temporal order of the events
belonging to one thread. A straightforward solution is provided by using thread
tags to retain the concurrent information of the systems being modelled. Example
12 in Figure 8 shows an SD with extended thread tags. In this approach, an id is
given to every thread in an SD. Each message is tagged with two thread ids, one
for the source thread and one for the target thread. However, when sending and
receiving of a message belong to the same thread, only one thread id is tagged
in the middle of the message instead of two. The ids are then used to classify
events into different threads while the temporal order of the grouped events is
kept by the positions where the events occur.

Thread–Based Analysis of Sequence Diagrams 31

Fig. 8. An SD with thread tags

With a tagged SD, if we only consider the events of synchronous messages,
then the orders of events of a single thread can be easily obtained using the
following inference rules:

1. A message is always sent before it is received.
2. The events should be ordered linearly along the SD.

In the following text, we use <T to represent the orders obtained from thread
tags6 and <L to represent the orders obtained from lifelines7. We observe that
there are differences between <T and <L. Intuitively, <T \ <L represents those
sound orders that are missing when applying traditional partial order semantics.
But it is also worth considering what <L \ <T means.

Fig. 9. What does <L \ <T mean?

Recall Example 4 in Figure 3; if we tag Example 4 with thread id, we get
Example 13 as shown in Figure 9. Applying the rules for ordering events in one
thread, only !b1 <?b1 and !b2 <?b2 are observed. Applying the first inference rule
for inferencing traditional partial order set, we can get one more order relation
6 Orders are obtained by applying the above inference rules to every thread in the SD.
7 Orders are obtained by applying the first inference rule in Subsection 2.2 to the SD.

32 H. Dan, R.M. Hierons, and S. Counsell

?b1 <?b2. Since threads T 1 and T 2 run concurrently, events of T 1 can interleave
with the events of T 2, so ?b1 <?b2 is redundant. It is reasonable to remove the
orders obtained using lifeline information from the partial order set while there
are thread tags in SDs.

Sometimes, forced orders need to be added to the events of different threads.
Example 14 shows a similar scenario to Example 13. The only difference is that
the messages have two different signatures. Intuitively, the traditional seman-
tics of this diagram are meaningful. It describes a scenario that c : C can get
something from b : B only after a : A has added something to b : B.

The dilemma is whether the orders from lifelines should be preserved. If they
are, some redundant orders will be added to the final partial order set when we
represent parallel executions in one SD. If they are removed, extra meta-classes
are needed to maintain the forced orders in the SDs. In fact, there is a meta-
class, GeneralOrdering, used to express the forced order relation between two
events [OMG05, p466]. The notation of GeneralOrdering is shown by a dotted
line connecting the two events and the direction of the relation is given by an
arrowhead placed in the middle of the dotted line. When compared with the first
case which may introduce errors into SDs, we believe that using GeneralOrdering
to maintain the forced orders in the second case is a credible solution.

Moreover, since forced orders are ignored in traditional semantics, we adopted
in the Section 2.2, we will also ignore forced orders in SDs here when interpreting
thread tagged SDs. The inference rules for interpreting tagged SDs can be revised
as follows:

1. A synchronous message is always sent before it is received.
2. The events tagged with the same thread id should be ordered linearly along

the SD even if the events are on different lifelines.

The traditional inference rules only need positional information about events
on each lifeline, but the proposed rules need all event positional information in
one thread. Using the proposed rules, it is easy to infer the exact orders from the
tagged SD even without the execution specifications. For instance, for Example
12 shown in Figure 8, because !c1, ?c1, !m1, !c3, ?c3, !m2 all belong to thread
T1, the orders are !c1 <?c1 <!m1 <!c3 <?c3 <!m2, ?m1 <?m2, !m1 <?m1 and
!m2 <?m2 as desired.

Finally, without considering the forced orders, an informal semantics for SDs
based on partial order theory can be defined as the transitive closure of the union
of the following two orders:

– the union of orders of events belonging to the same thread;
– the ordering relation between the event pairs of sending and receiving of a

message.

6 Conclusion and Future Work

In this paper, some primary differences between SDs and bMSCs were analysed.
Based on these differences, we argued that traditional semantics for SDs had

Thread–Based Analysis of Sequence Diagrams 33

drawbacks when interpreting SDs. Two meta-classes of UML 2.0 were used to
resolve the problems within traditional semantics. However, these meta-classes
cannot maintain concurrency information needed in order to interpret SDs. As
a consequence, an informal semantics for SD with thread tags was proposed.
We believe that intended event sequences can be generated by applying this
semantics to SDs.

An important area of future work is the development of a formal semantics
for SDs with thread tags and then extend it to the Interaction Diagrams (IDs)
of UML 2.0. In addition to developing the semantics of IDs, it would also be
interesting to conduct a formal analysis of IDs based on the developed semantics,
for example, identifying the pathologies of IDs and ID model checking. One of the
problems considered in this paper is caused by the absence of return messages.
An alternative solution may be to infer these missing return messages but the
use of such an approach is a topic for future work.

References

[AHP96] Alur, R., Holzmann, G., Peled, D.: An analyzer for message sequence
charts. Software Concepts and Tools 17(2), 70–77 (1996)

[CK04] Cengarle, M.V., Knapp, A.: UML 2.0 interactions: Semantics and re-
finement. In: Proceedings of the 3rd Intl. Workshop on Critical Systems
Development with UML, pp. 85–99, Lisbon, Portugal, Technische Uni-
versität München (2004)

[CKV98] Caromel, D., Klauser, W., Vayssiere, J.: Towards seamless computing and
metacomputing in Java. Concurrency Practice and Experience 10(11-13),
1043–1061 (1998)

[DH01] Damm, W., Harel, D.: LSCs: breathing life into message sequence charts.
Formal Methods in System Design 19(1), 45–80 (7, 2001)

[GGR93] Grabowski, J., Graubmann, P., Rudolph, E.: Towards a petri net based
semantics definition for message sequence charts. In: Proceedings of
SDL’93 - Using Objects, pp. 179–190, Darmstadt, Germany, North-
Holland (1993)

[GS05] Grosu, R., Smolka, S.A.: Safety-liveness semantics for UML 2.0 sequence
diagrams. In: Proceedings of the Fifth International Conference on Ap-
plication of Concurrency to System Design, pp. 6–14. IEEE Computer
Society Press, Los Alamitos, CA, USA (2005)

[HHRS05] Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal
design with sequence diagrams. Software and Systems Modeling 4(4),
355–357 (2005)

[HM06] Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for
UML sequence diagrams. In: Proceedings of the 2006 International Work-
shop on Scenarios and State Machines: Models, Algorithms, and Tools,
pp. 13–20, Shanghai, China (2006)

[IT98] ITU-T. ITU-T Recommendation Z.120 Annex B: Formal semantics of
message sequence charts (4, 1998)

[JP01] Jonsson, B., Padilla, G.: An execution semantics for MSC-2000. In: Reed,
R., Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 365–378. Springer,
Heidelberg (2001)

34 H. Dan, R.M. Hierons, and S. Counsell

[KL89] Kafura, D.G., Lee, K.H.: Inheritance in actor based concurrent object-
oriented languages. The. Computer Journal 32(4), 297–304 (1989)

[LL93] Ladkin, P.B., Leue, S.: What do message sequence charts mean. In:
Proceedings of the IFIP TC6/WG6.1 Sixth International Conference on
Formal Description Techniques, pp. 301–316, Boston, MA, USA, North-
Holland (1993)

[LS96] Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pat-
tern for concurrent programming. Pattern Languages of Program Design,
pp. 483–499 (1996)

[LS06] Lund, M.S., Stølen, K.: A fully general operational semantics for UML
2.0 sequence diagrams with potential and mandatory choice. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 380–395.
Springer, Heidelberg (2006)

[Mit05] Mitchell, B.: Resolving race conditions in asynchronous partial order sce-
narios. IEEE Transactions on Software Engineering 31(9), 767–784 (2005)

[MR94] Mauw, S., Reniers, M.A.: An algebraic semantics of basic message se-
quence charts. The. Computer Journal 37(4), 269–277 (1994)

[Nie93] Nierstrasz, O.: Regular types for active objects. In: Proceedings of the
Eighth Annual Conference on Object-oriented Programming Systems,
Languages, and Applications, pp. 1–15, Washington, DC, USA (1993)

[OMG05] OMG. Unified Modeling Language: Superstructure (8, 2005)
[Sel04] Selic, B.V.: On the semantic foundations of standard UML 2.0. In:

Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of
Real-Time Systems. LNCS, vol. 3185, pp. 181–199. Springer, Heidelberg
(2004)

[Sto03] Storrle, H.: Semantics of interactions in UML 2.0. In: Proceedings of the
2003 IEEE Symposium on Human Centric Computing Languages and
Environments, pp. 129–136, Los Alamitos, CA, USA (2003)

Recovering Repetitive Sub-functions from

Observations

Guy-Vincent Jourdan1, Hasan Ural1, Shen Wang1, and Hüsnü Yenigün2

1 School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada, K1N 6N5

{gvj,ural,swang010}@site.uottawa.ca
2 Faculty of Engineering and Natural Sciences

Sabancı University
Tuzla, Istanbul, Turkey 34956
yenigun@sabanciuniv.edu

Abstract. This paper proposes an algorithm which, given a set of
observations of an existing concurrent system that has repetitive sub-
functions, constructs a Message Sequence Charts (MSC) graph where
repetitive sub-functions of the concurrent system are identified. This al-
gorithm makes fewer assumptions than previously published work, and
thus requires fewer and easier to generate observations to construct the
MSC-graph. The constructed MSC-graph may then be used as input to
existing synthesis algorithms to recover the design of the existing con-
current system.

1 Introduction

A concurrent system is a system with two or more processes that are commu-
nicating among themselves using message exchanges. Message Sequence Charts
(MSCs) [1,2] provide a visual description of a series of message exchanges among
communicating processes in a concurrent system. MSCs are often used by design-
ers to depict individual intended behaviors of the concurrent system. However,
a collection of such MSCs can only be viewed as providing information on a
representative sample of the intended behavior rather than a design representa-
tion of the system giving a complete description of the system functionality to
be provided [3]. A design representation is useful not only for implementing the
system, but also for maintaining it, for example to detect and eliminate errors, to
adapt it to a different environment, or simply to better understand the system.
It also helps reusing parts of the system in new developments. Unfortunately,
complete, up-to-date designs of evolving existing systems are seldom available.

Consequently, one of the aims of reverse engineering [4,5,6] is to recover the
design of an existing concurrent system through an analysis of its runtime behav-
ior. Such an analysis requires a finite set of observations of the running system.
Each observation is a serialization of the events occurring possibly concurrently

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 35–49, 2007.
c© IFIP International Federation for Information Processing 2007

36 G.-V. Jourdan et al.

during a system run. Due to the possible interleavings of these concurrent events,
there are other serializations for the same run, all of which can be derived from
the given serialization [4]. Each such observation can be seen as a word, which
is made of the events being observed, belonging to the language of the system.
From one word (observation), it is possible to derive other words corresponding
to all remaining interleavings of the concurrent events in that word. If we are
given a set of observations, we can thus infer a set of words as a union of the
subsets of words where each subset corresponds to all possible interleavings of
the events in each of these observations. However, this set is only a representative
subset of the complete language of the system. Our aim is to derive, under some
assumptions, an MSC-graph [7] that represents the complete language of the
system from which a design of the system can be constructed using adaptations
of existing synthesis algorithms [4].

Since many concurrent systems have repetitive sub-functionality, some evi-
dence for such sub-functions should at least be implicitly given in the set of
observations. For a complete and accurate recovery of the design of a concurrent
system, the given set of observations must provide evidence for each repetitive
sub-function and must imply its relative position among other repetitive sub-
functions of the system. This places some constraints on the nature of the obser-
vations which need to be taken into consideration when the set of observations
are formed.

Existing methods to infer repetitive sub-functions require several restrictive
assumptions on the set of observations. For example, the method presented in [8]
requires (among others) the following assumptions:

i. Repetitive sub-functions must be iterated the same number of times in each
observation,

ii. Repetitive sub-functions need to be introduced in a specific order,
iii. The ordering of the sub-functions must be unambiguous,
iv. Each sub-function must be “introduced” individually by an observation that

contains only “known” sub-functions and this new sub-function.

In [9], the authors introduce a new concept, the lattice of repetitive sub-functions,
a structure that provides all possible selections of n repetitive sub-functions.
Using that lattice, they are able to infer the set of repetitive sub-functions of an
application from a set of observations waiving several of the assumptions made
in [8]. In particular, the first three assumptions listed above are waived. However,
the fourth and the strongest assumption is still required by the approach taken
in [9].

In this paper, we eliminate that assumption and provide an algorithm that
is capable of recovering several repetitive sub-functions at once under a new as-
sumption that repetitive sub-functions have a single initiator. We believe this to
be a significant practical improvement over both previous methods [8,9] since it
relieves the user from the requirement of isolating each repetitive sub-function
within its own observation, which could be fairly difficult in practice, and some-
times simply impossible if two or more repetitive sub-functions are tied together
in the design of the system. The new assumption regarding the unique initiator

Recovering Repetitive Sub-functions from Observations 37

to repetitive sub-functions does not seem too constraining, since a repetitive sub-
function is primarily a function and thus is usually initiated by a single process.
In addition, the assumption is introduced for efficiency only and can be waived
at the cost of increased complexity.

The paper is organized as follows: in Section 2, we introduce the concepts
and definitions required. In Section 3, we review and discuss the assumptions
that are made about the system and the observations. The proposed algorithms
are described and analyzed in section 5, and in Section 6 we illustrate our ap-
proach on an example. We conclude in Section 7, where an implementation of
the solution is also described.

2 Preliminaries

In this section, we give the definitions of the concepts and notations required.
To do so, we reuse the notions and notations of [9], adapting them as needed.

Figure 1, left, shows an MSC of three processes exchanging a total of five
messages. The message m1 is sent by the process P2 and received by the process
P3, which is represented by an arrow from P2 to P3 and labeled m1. Each message
exchange is represented by a pair of send and receive events. The local view of
the message exchanges of a process (send and receive events of a process) is a
total order, but the global view is a partial order. A tuple consisting of a local
view for each process of the message exchanges depicted in an MSC uniquely
determines that MSC. Thus, an MSC represents a partial order execution of a
concurrent system which stands for a set of linearizations (total order executions
of the system) determined by considering all possible interleavings of concurrent
message exchanges implied by the partial order. Any of the linearizations of an
MSC uniquely determines the MSC. These two statements above are consequence
of two conditions, the CC1 condition and the non-degeneracy condition given
in [4].

To describe a functionality that is composed of several sub-functionalities, an
MSC-graph (a graph with a source and a sink node where edges are labeled
by MSCs) can be used. An MSC corresponding to the concatenation of MSCs
along a path from the source node to the sink node in an MSC-graph is said to
be in the language of the MSC-graph. In the following, Mk means that M is
repeated k times, and M∗ means any number of repetitions of M . Figure 1, right,
shows an MSC-graph where the MSC Mp is followed by an arbitrary number of
iterations of the MSC M , followed by the MSC Ms, which defines the language
Mp.M

∗.Ms. In this paper we assume that an MSC in the language of an MSC-
graph represents a system functionality from the initial state to the final state,
without going through the initial state again during the execution.

Formal semantics associated with MSCs provides a basis for their analysis
such as detecting timing conflicts and race conditions [10], non–local choices [11],
model checking [12], and checking safe realizability [13,4].

In this paper, we consider the reverse engineering of designs of existing con-
current systems from given sets of observations of their implementations. We

38 G.-V. Jourdan et al.

P1 P2 P3

m1m2
m3

m4

m5

msc M

v0 v vf
Mp Ms

M

Fig. 1. An MSC of three processes (left) and an example MSC-graph (right)

assume that we are given a set Ω of observations, each observation O ∈ Ω being
an arbitrary linearization of an MSC m from a set of MSCs that is not given.
We use m(O) to denote the MSC m uniquely determined by an observation O.
Some of the sub-functions of the system can be repetitive, in which case they
can be called consecutively a different number of times in different runs of the
system. As in [8,9], we assume that a repetitive sub-function does not start (resp.
end) at the initial (resp. final) state, and that every repetitive sub-function of
the system (if any) is represented in the given set of observations at least twice:
once with no occurrence, and once with two or more consecutive occurrences.

A sub-function that is repeated in an observation will create a repeated pat-
tern in the MSC corresponding to that observation. However, a simple pattern
repetition is not enough. In order to deduce the existence of a repetitive sub-
function, we need to have an evidence such as different number of iterations of
the pattern within the same context.

Definition 1. [9] An MSC M is the basic repetitive MSC of MSC M ′ if M ′ =
Mk for some k ≥ 2 and there does not exist a basic repetitive MSC of M .

Consider the visual representation of an MSC M and imagine that we draw a
line through M by crossing each process line exactly once, and without crossing
any message arrows. Such a line divides M into two parts Mp (the part above
the cutting line) and Ms (the part below the cutting line). Mp and Ms can be
shown to be MSCs again. Mp and Ms are what we call a prefix of M and a
suffix of M , respectively. If an MSC M ′ is the concatenation of three non empty
MSCs Mp,Mm and Ms (i.e. M ′ = Mp.Mm.Ms), we say that Mm occurs within
the context Mp–Ms, that is, Mm occurs after Mp and is followed by Ms.

Definition 2. [9] Two MSCs M1 and M2 are said to infer M to be repetitive
within the context Mp–Ms if all the following are satisfied:

1. M does not have a basic repetitive MSC,

Recovering Repetitive Sub-functions from Observations 39

2. M1 = Mp.M
k.Ms for some k ≥ 2, with Mp and Ms non-empty and M2 =

Mp.Ms,
3. M is not a suffix of Mp and M is not a prefix of Ms.

Definition 3. [9] A common prefix (resp. suffix) of two MSCs M1 and M2,
is an MSC M , such that M is a prefix (resp. suffix) of both M1 and M2. The
maximal common prefix (resp. suffix) of M1 and M2 is a common prefix (resp.
suffix) M of M1 and M2 with the largest number of events.

The set of send and receive events in an MSC can be partially ordered according
to causality. We define the causal relationship as follows: two events e1 and e2

of an MSC M are causally related, which we note e1 < e2 if and only if

1. e1 is a send event and e2 is the corresponding receive event, or
2. e1 and e2 are events of the same process and e1 happens before e2 on that

process, or
3. there exists an event e3 in M such that e1 < e3 < e2.

For any send event e, we will define the set Previous(e) of elements, one per
process, that do not happen after e and that are maximal on their process with
that property. More formally:

Definition 4. Let M be an MSC with k processes {p1, p2, . . . , pk}, and let e be a
send event of M . Previous(e) is a set of up to k events such that ∀j ∈ {1, . . . , k},
for all events e′ of pj , e

′ ∈ Previous(e) if and only if e �< e′ and for all events
e′′ �= e′ of pj , e �< e′′ ⇒ e′′ < e′.

A linear extension of the events of an MSC is a total ordering of the events that
respects the (partial) causal ordering:

Definition 5. Let M be an MSC with n events {e1, e2, . . . , en}. A linear exten-
sion of the causal order < of the events of M is a total order <L on the events
of M such that ∀i, j ≤ n, ei < ej ⇒ ei <L ej.

3 Assumptions

As mentioned earlier, previous work [8,9] have been published on the same prob-
lem, [9] making fewer assumptions than [8] about the system being reverse en-
gineered. In this paper, we are waiving one of the strongest assumptions made
in [9], namely assumption 8 below. We in turn make a couple of less restrictive
assumptions for efficiency reasons.

To recap, the most important assumptions made in [8] were the following:

1. There is one observation without any repetitive sub-functions. This observa-
tion is called the initial observation; it will be the shortest of all the provided
observations and every other observation will be made of that initial obser-
vation plus a number of iterations of a number of repetitive sub-functions.

40 G.-V. Jourdan et al.

2. The initial observation, and each repetitive sub-function having nested repet-
itive sub-functions, have a non empty, repetitive sub-function free prefix and
a non empty, repetitive sub-function free suffix.

3. Repetitive sub-functions have no common prefix with the part of the MSC
that starts just after them and no common suffix with the part of the MSC
that leads to them.

4. Repetitive sub-functions starting at the same point do not alternate.
5. Repetitive sub-functions must be iterated the same number of times in each

observation,
6. Repetitive sub-functions need to be introduced in a specific order,
7. The ordering of the sub-functions must be totally unambiguous,
8. Each sub-function must be “introduced” individually with an observation

that contains only “known” sub-functions and this new sub-function.

In [9], the assumptions 5, 6, and 7 are waived, but the strong assumption 8
is kept. In this paper, we waive assumption 8. However, we do introduce the
following two new assumptions:

9. Sub-function have a single initiator. That is, there is always a unique send
event at the beginning of a repetitive sub-function (and this send event is
thus repeated at the beginning of each iteration of the sub-function).

10. Repetitive sub-functions repeat at least twice.

We will see that assumption 9 speeds up our algorithm. This assumption
seems fairly reasonable, since functions have a single starting point.

Assumption 10 is there to avoid a particular case, where a set of repetitive
sub functions “hide” each other, for example an initial observation P.S, and
two other observation P.A.Bk1 .S and P.Ak2 .B.S for k1 > 1 and k2 > 1. The
single occurrence of A in the second observation prevents B to be recognized as
repetitive while the single occurrence of B in the third observation prevents A
to be recognized as repetitive. Note that if a fourth observation allows A or B to
be recognized then the problem disappears, so this assumption can be weakened
to prevent only the problematic pattern. We have used a larger assumption for
the sake of readability.

4 Main Algorithm

The main idea behind our algorithm is the following: at any given time, we
have already built a particular “knowledge” of the system, the initial knowledge
being the initial observation. We gradually enhance this knowledge by uncovering
information about repetitive sub-functions. Given the current knowledge (the
MSC-Graph obtained so far), say current, and an observation, say O, we attempt
to “enhance” our knowledge by identifying in m(O) portions that are coherent
with current (that is, portions that are compliant with what current describes
of the system), while the parts of m(O) that do not match current are made
exclusively of repetitive sub-functions.

Recovering Repetitive Sub-functions from Observations 41

We can sketch the first algorithm as follows: we first identify the longest com-
mon prefix of current and m(O). After that common prefix, if O is not entirely
recognized yet then we must be looking at the beginning of a repetitive sub-
function. That sub-function will iterate a certain number of times, after which
m(O) will either “reconnect” with current where it left off to go into the repeti-
tive sub-function, or will enter into a second repetitive sub-function. In any case,
it will eventually “reconnect” with current (that is, reach Ms of definition refdef-
infer-loop). The strategy is thus to first look for a possible “reconnection” point
between m(O) and current. When such a point is found, we check if the portion
of m(O) that has been skipped is made of one or more repetitive sub-functions.
If that is not the case, we keep looking for another reconnection point further
down in time within m(O). If, on the other hand, what we have are repetitive
sub-functions, then we have to see if we can complete the comparison starting
from that reconnection point (and possibly find a number of additional repeti-
tive sub-functions along the way). The simplest way to achieve this is to make
a recursive call to the same algorithm, starting from that reconnection point.
If the recursive call succeeds in finishing the comparison of current and m(O),
then we are done. If not, then we have to look for another reconnection point
that would be further down in m(O).

The above sketch achieves the expected result, but can be very inefficient when
trying to find the next connection point. Indeed, after identifying the maximum
common prefix of m(O) and current, we know that the next connection point
in m(O) will have to match the next events on each process of current. If these
events are not causally related (that is, these are independent events) then any
combination of matching events on O can potentially be a connection point. If
there are k processes involved and O has p matching events on each process,
each combination of these p matching events is a possible reconnection point,
thus we will have to try up to pk possible connections.

In order to avoid this combinatorial explosion, we can use Assumption 9 stat-
ing that repetitive sub-functions have a single initiator. The algorithm as de-
scribed cannot benefit from such an assumption, since the connection point is
searched at the end of the repetitive sub-function, on which no assumption is
made. It is however possible to reverse the algorithm and go through current
and O from the end to the beginning instead of from the beginning to the end.
When going backward, the very same approach can be followed (find the longest
suffix, then find the previous connection point, make sure that what was skipped
on m(O) is made of basic repetitive sub-functions and recursively call the same
algorithm on the remaining part of current and O), except that with this strat-
egy we know that the next connection point will be in m(O) just before the
beginning of a repetitive sub-function. Since each repetitive sub function has a
single send event as initiator, it means that the only possible connection points
correspond to the set Previous(e) of a send event e, which is the initiator. We
thus simply have to try a number of candidates for connection points which are
bounded by the number of send events in O.

42 G.-V. Jourdan et al.

Algorithm 1 performs the initialization and the loop that will “consume” the
provided observations. The variable current holds the current knowledge of the
system, initialized with the initial observation. The first loop is a phase of pre-
computation on the set of observations: we calculate an ordering of the events
which is compatible with the causal relation, and we pre-compute Previous(e)
for each send event e. Both calculations will be used later in the main algorithm.
Then, the observations are compared with current one after the other, until
they are successfully matched to current by Algorithm 4. It may be necessary
to compare a given observation to current more than once, if the observation
includes nested repetitive sub-functions, since current might not have inferred
the sub-function containing the nested sub-function the first time around.

Algorithm 1. Initialization and Main Loop
1: current = the MSC of the shortest observation (assumption refsec-assumptions)
2: Q = a queue of all other observations
3: KeepGoing=true

{Precomputation on the set of observations}
4: for all observations O ∈ Q do
5: Compute linearExtension(m(O)), a linear extension of the events of the MSC

m(O) induced by O
6: for all send event e in O do
7: Compute Previous(e)
8: end for
9: end for

{Main loop through the observations}
10: while Q �= ∅ AND KeepGoing==true do
11: KeepGoing = false;
12: for all observations O ∈ Q do
13: if InferRepetitive(current, O) then
14: remove O from Q
15: KeepGoing=true
16: end if
17: end for
18: end while

{If Q �= ∅, some observations were not handled}
19: if Q �= ∅ then
20: ERROR: some observations were not processed
21: else
22: SUCCESS: the system has been reversed engineered as current
23: end if

5 Repetitive Sub-function Inference Algorithm

Algorithm 2 given below attempts to trace O in current and to infer new repeti-
tive sub-functions. The call to FindMaximumSuffix traces the maximum possible

Recovering Repetitive Sub-functions from Observations 43

suffix common to current and m(O). The location (starting) of this suffix is
returned in cutCurrent and cutO.

Algorithm 2. BOOLEAN InferRepetitive(IN-OUT current, IN O)
1: FindMaximumSuffix(current,O, cutCurrent, cutO)
2: if both cutCurrent and cutO are at the beginning of their MSC then
3: return true
4: else if one of cutCurrent or cutO is at the beginning of its MSC then
5: return false
6: end if

{A repetitive sub-function might end at cutO}
7: startingCut = cutO
8: while true do
9: FindNextConnectionPoint(cutCurrent, O, startingCut, connectionPoint)

10: if connectionPoint== ∅ then
11: return false
12: end if
13: if IsMadeOfBasicRepetitives (O, connectionPoint , cutO) then
14: if InferRepetitive(current[0,cutCurrent],O[Previous(connectionPoint)])

then
15: modify current to include the newly discovered repetitive sub-function(s)
16: return true
17: end if
18: end if

{What we have found wasn’t good, either because it wasn’t basic repetitive or
because it did not allow us to finish trace O inside current. We keep looping.}

19: startingCut = Previous(connectionPoint)
20: end while

Algorithm 3 implements FindNextConnectionPoint. Due to the assumption
of having a single initiator, we simply have to search backward on linearExten-
sion(m(O)) for a send event e so that Previous(e) matches cutCurrent since all
the events in a repeated MSC are causally dependent on the initiator of this
MSC.

5.1 Finding Basic Repetitive Sub-functions

In Algorithm 2, we extract a segment S of O which is not present in current. We
must now see if this segment is made of one or more repetitive sub-functions.
In [8], BasicRepetitiveMSC(), a linear time algorithm is provided. This algorithm
is used to decide whether or not a given MSC is the concatenation of two or
more basic MSCs. This algorithm is based on the fact that if an MSC is basic
repetitive, then the sequence of labels on each of its processes are also repetitive.
Such a sequence of labels forms a word w, and finding the shortest word w′ such
that w = (w′)k for some k > 0 is a well studied problem for which there are
linear time algorithms [14].

44 G.-V. Jourdan et al.

Algorithm 3. FindNextConnectionPoint(IN cutCurrent, O, startingCut,OUT
connectionPoint)
1: for all send event e ∈ O before startingCut, shifting the current position on lin-

earExtension(m(O)) towards its beginning do
2: if Previous(e) == cutCurrent then
3: connectionPoint = e
4: return
5: end if
6: end for

{Connection point not found}
7: connectionPoint== ∅

Under the present assumptions, the segment S of m(O) can be a concatena-
tion of more than one basic repetitive MSCs, that is, S could be of the form
Mk1

1 Mk2
2 . . .M

kp
p , for p ≥ 1 and k1 ≥ 2, k2 ≥ 2, . . . kp ≥ 2. Therefore, the algo-

rithm BasicRepetitiveMSC() must be adapted to the multiple basic repetitive
case.

Our approach to address this problem is the following: starting from S, we try
to find a single basic repetitive MSC on the longest possible prefix of this segment.
If we do find such a basic repetitive MSC on a prefix P of S, we recursively call our
algorithm on S \ P to find more basic repetitive MSCs in S. Here again, we use
Assumption 9 stating that repetitive sub-functions have a single initiator, which
allows to speed up the search quite dramatically, since it allows one to look only
at the prefixes of S that end at Previous(e) for some send event e.

Algorithm 4. BOOLEAN IsMadeOfBasicRepetitives (IN O, connectionPoint ,
cutO)
1: if BasicRepetitiveMSC(O[connectionPoint, cutO]) then
2: return true
3: end if
4: for all send event e ∈ O between connectionPoint and cutO, moving backward on

linearExtension(m(O)) do
5: if BasicRepetitiveMSC(O[connectionPoint, Previous(e)]) then
6: if IsMadeOfBasicRepetitives(O, e, cutO) then
7: return true
8: end if
9: end if

10: end for
11: return false

5.2 Complexity of the Solution

In this section, we evaluate the complexity of the proposed solution in the worst
case. We must first evaluate Algorithm 4, IsMadeOfBasicRepetitives, which is
called by Algorithm 2, InferRepetitive.

Recovering Repetitive Sub-functions from Observations 45

In the following, we assume that the system being reverse-engineered involves
k independent processes, and that the observations that are provided contain up
to n events. There are up to p observations, and the size of the reconstructed
system is m events. Clearly, m ∈ O(p.n).

Proposition 1. Algorithm IsMadeOfBasicRepetitives can be implemented to
run in O(n3).

Proof. As pointed out in [8], Algorithm BasicRepetitiveMSC can be made to run
in O(n), and this algorithm is called up to n times in the for loop. In addition, one
should note that it is not necessary to recursively call IsMadeOfBasicRepetitives
with the same e − cut argument twice, since it would always return the same
result (and actually return false if it was about to be called a second time, since
the algorithm terminates as soon as one such call returns true). It is thus possible
to record the fact that a particular e−cut was already used and avoid a recursive
call when this is the case. This can be checked in O(n) and will limit the number
of recursive calls to a maximum of n.

We can now evaluate the complexity of Algorithm 2.

Proposition 2. Algorithm InferRepetitive can be implemented to run in O
(n5.mk + k.n2.mk+1).

Proof. Clearly, the algorithm FindNextConnectionPoint can be implemented to
run in O(n). Moreover, the algorithm will exit from the while true loop after at
most n iterations. Proposition 1 tells us that IsMadeOfBasicRepetitives runs in
O(n3), so the only missing information is the number of recursive calls to Infer-
Repetitive. To do so, one should notice that it is not necessary to call InferRepet-
itive twice with the same pair of parameters. The first parameter corresponds
to Previous(e) for some send event e, so the number of possibilities in bounded
by n. The second parameter of InferRepetitive is a cut of current. To represent
the worst case, say that we have m events in each of the k processes in current
and that there are no causal relationships between events belonging to different
processes. In this case, any set of k events, one per process, is a cut, giving mk

choices for the second parameter. Thus there are O(n.mk) possible pairs of pa-
rameters for InferRepetitive. Finding out if a given pair has already been used
can be done in O(n + k.m), so each complete run of one call of InferRepetitive
(excluding recursive calls) can be completed in O(n4 + k.n.m).

Theorem 1. The method proposed in this paper can be made to run in O
(p2.n5.mk + p2.k.n2.mk+1).

Proof. Immediate from propositions 1 and 2.

6 An Example

Let us illustrate our solution on a simple example. Assume that we are observing
a system with three process p1, p2 and p3. We note s.mx,i,j the sending of message

46 G.-V. Jourdan et al.

P1 P2 P3

ma

mb

mc

md

msc MO1

P1 P2 P3

ma

ma

mc

ma

mc

md

mb

md

mb

mb

mc

me

mf

me

mf

md

msc MO2

Fig. 2. MSCs infered by O1 and O2

mx by pi to pj and r.mx,i,j the reception of message mx by pj from pi. We
are provided with the following two observations (omitting on-process ordering
information, which is assumed to be preserved in the provided lists, that is,
events of the same process are listed in the order they occur on that process):

O1 = s.ma,2,1, s.mb,2,3, s.md,2,1, r.ma,2,1, s.mc,1,3, r.md,2,1, r.mb,2,3, r.mc,1,3

and
O2 = s.ma,2,1, s.ma,2,1, s.ma,2,1, r.ma,2,1, r.ma,2,1, s.mc,1,3, r.ma,2,1, r.mc,1,3,

s.mc,1,3, r.mc,1,3, s.md,2,1, s.mb,2,3, s.md,2,1, s.mb,2,3, s.mb,2,3, r.md,2,1, r.mb,2,3,
r.md,2,1, r.mb,2,3, r.mb,2,3, s.mc,1,3, r.mc,1,3, s.me,3,2, s.mf,3,1, s.me,3,2, s.mf,3,1,
r.me,3,2, r.mf,3,1, r.me,3,2, s.md,2,1, r.mf,3,1, r.md,2,1.

These two observations induce the MSCs MO1 and MO2 respectively, as de-
picted in Figure 2. The shortest observation, and thus the initial one, is O1. The
algorithm InferRepetitive(O1, O2) is thus invoked.

The longest common suffix is the single-message MSC M1 = (md,2,1). The
reconnection point on O1 is thus the reception of mc on p3, the sending of mc on
p1 and the sending of mb on p2, which can be found in O2 as Previous(s.me,3,2).
The call to IsMadeOfBasicRepetitives is then made on the segment me,3,2,mf,3,1,
me,3,2,mf,3,1, which infer the two-message MSC M2 = (me,3,2,mf,3,1) to be basic
repetitive.

A recursive call to InferRepetitive is thus made on the MSCs leading up to the
last occurrence of mc,1,3 on both O1 and O2. This time, the maximum common

Recovering Repetitive Sub-functions from Observations 47

P1 P2 P3

md

msc M1

P1 P2 P3

me

mf

msc M2

P1 P2 P3

mb

mc

msc M3

P1 P2 P3

md

mb

msc M4

P1 P2 P3

ma

mc

msc M5

P1 P2 P3

ma

msc M6

v0 v1 v2 v3 vf
M6 ε M3 M1

M5 M4 M2

Fig. 3. Six MSCs obtained when processing MO1 and MO2 , and the final MSC-graph
of the system as reverse engineered

suffix is the two-message MSC M3 = (mb,2,3,mc,1,3), and the reconnection point
is simply s.ma,2,1. It is first found on O2 as Previous(s.mc,1,3), and IsMadeOfBa-
sicRepetitives is then called on the segment mc,1,3,ma,2,1,mc,1,3,md,2,1,mb,2,3,
md,2,1,mb,2,3.

48 G.-V. Jourdan et al.

This call will fail identifying basic repetitive, and thus another connection
point on O2 will be searched for. It is found as Previous(s.ma,2,1), and IsMade-
OfBasicRepetitives is called on the segment ma,2,1,mc,1,3,ma,2,1,mc,1,3,md,2,1,
mb,2,3,md,2,1,mb,2,3, which this time is recognized as the concatenation of the
basic repetitive MSC M5 = (ma,2,1,mc,1,3) followed by the basic repetitive MSC
M4 = (md,2,1,mb,2,3).

A recursive call to InferRepetitive is thus made on what is left of the traces,
namely the first message ma,2,1, which is immediately recognized as the single-
message MSC M6 = {ma,2,1} and the algorithm finishes on a success, with the
system reverse engineered as M6.M

k
5 .Mk

4 .M3.M
k
2 .M1.

Figure 3 shows the six MSCs obtained as well as the final MSC-graph (the
graph as an ε transition between v1 and v2, meaning that nothing happens when
moving from v1 to v2). As expected, both O1 and O2 can be obtained from that
graph: O1 comes from v0.(M6).v1.(ε).v2.(M3).v3.(M1).vf , and O2 comes from
v0.(M6).v1.(M5).v1.(M5).v1.(ε).v2.(M4).v2. (M4) .v2.(M3) .v3.(M2) .v3. (M2). v3.
(M1).vf .

7 Conclusion

We have introduced a reverse-engineering method to infer the presence of repet-
itive sub-functions in an application from which only a set of execution traces
are provided. The method is much less restrictive than the previously published
ones and is therefore much more practical. Our algorithm is capable of identi-
fying repetitive patterns and repetitive sub-patterns (without limitations in the
number of nested levels) that are appearing when comparing different executions
of the same application being reverse-engineered, and build an MSC-graph from
these patterns that “summarize” the knowledge of the design of the application.

The method described in this paper has been implemented in C++. The
resulting tool is a 2000 lines program that takes an arbitrary number of exe-
cution traces and builds the corresponding MSCs and infer the MSC-graph in
accordance to Algorithm 1. In our tests, the application was able to analyze
100 execution traces totaling over 40,000 message exchanges and infer the cor-
responding MSC-graph, uncovering 130 repetitive subfunctions in less than 10
seconds on a MS WindowsTMbased computer with 1 Gigabyte of RAM and a
3.4 GigaHertz Intel Pentium processor.

Details, documentation and source-code download are available at
http://www.site.uottawa.ca/˜ ural/findloop.

Acknowledgments

This work is supported in part by the Natural Science and Engineering Research
Council of Canada under grants RGPIN 976 and RGPIN 312018, CITO/OCE
of the Government of Ontario, and a grant by Sabancı University. The authors
thank the anonymous referees for their valuable comments.

Recovering Repetitive Sub-functions from Observations 49

References

1. ITU Telecommunication Standardization Sector: ITU-T Recommendation Z.120.
Message Sequence Charts (MSC96) (1996)

2. Rudolph, E., Graubmann, P., Gabowski, J.: Tutorial on message sequence charts.
Computer Networks and ISDN Systems–SDL and MSC, vol. 28 (1996)

3. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. In: 9th European Software Engineering Conferece and 9th
ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (ESEC/FSE’01) (2001)

4. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Transactions on Software Engineering 29, 623–633 (2003)

5. Chikofsky, E., Cross, J.: Reverse engineering and design recovery. IEEE Software 7,
13–17 (1990)

6. Lee, D., Sabnani, K.: Reverse engineering of communication protocols. In: IEEE
ICNP’93, pp. 208–216 (1993)

7. Braberman, V., Oliveto, F., Blaunstein, S.: Scenario-based validation and verifica-
tion for real-time software: On run conformance and coverage for msc-graphs. In:
2nd International Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools, ICSE 2003 (2003)

8. Ural, H., Yenigun, H.: Towards design recovery from observations. In: de Frutos-
Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 133–149. Springer,
Heidelberg (2004)

9. Jourdan, G.V., Ural, H., Yenigun, H.: Recovering the lattice of repetitive sub-
functions. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005.
LNCS, vol. 3733, pp. 956–965. Springer, Heidelberg (2005)

10. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts.
Software Concepts and Tools 17, 70–77 (1996)

11. Ben-Abdallah, H., Leue, S.: Syntactic detection of progress divergence and non–
local choice in message sequence charts. In: 2nd TACAS, pp. 259–274 (1997)

12. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: 10th
International Conference on Concurrency Theory, pp. 114–129. Springer Verlag,
Heidelberg (1999)

13. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
22nd International Conference on Software Engineering, pp. 304–313 (2000)

14. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford
(1994)

Specification of Timed EFSM

Fault Models in SDL

S.S. Batth, E.R. Vieira, A. Cavalli, and M.Ü. Uyar

The City College and Graduate Center of the City University of New York,
New York, NY 10016, USA

{batth,umit}@ee-mail.engr.ccny.cuny.edu
Laboratoire SAMOVAR (CNRS) and GET/INT Evry Cedex, France

{elisangela.rodrigues,ana.cavalli}@int-evry.fr

Abstract. In this paper, we apply our timing fault modeling strategy
to writing formal specifications for communication protocols. Using the
formal language of Specification and Description Language (SDL), we
specify the Controller process of rail-road crossing system, a popu-
lar benchmark for real-time systems. Our extended finite state machine
(EFSM) model has the capability of representing a class of timing faults,
which otherwise may not be detected in an IUT. Hit-or-Jump algorithm
is applied to the SDL specification based on our EFSM model to generate
a test sequence that can detect these timing faults. This application of
fault modeling into SDL specification ensures the synchronization among
the timing constraints of different processes, and enables generation of
portable test sequences since they can be easily represented in other for-
mal notations such as TTCN or MSC.

Keywords: Extended Finite State Machines, Timing Fault Models,
SDL, Hit-or-Jump.

1 Introduction

If the inherent timing constraints are not properly specified in a formal speci-
fication of a communication protocol, start and expiration of concurrent timers
may lead to infeasible test sequences, which can generate false results by failing
correct implementations, or worse, passing the faulty ones.

In this paper, we first introduce an extended finite-state machine (EFSM)
model with timer variables based on our earlier work [FUDA03, UWBWF05,
UBWF06a] for the Controller process of the so-called rail-road crossing sys-
tem [ALUR98]. This system has been studied as a benchmark in many real-time
systems [HJL93,HL96,AKLN99,XEN04,CRV05a] . We then augment this timed
EFSM model such that the test sequences generated from the augmented model,
when applied by a tester to an implementation under test (IUT), will detect the
presence of a class of timing faults. In this augmentation, a set of new edges and
states are created in the system model (i.e., the edge conditions and actions use
timing variables as well as the external inputs) such that the resulting model is a

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 50–65, 2007.
c© IFIP International Federation for Information Processing 2007

Specification of Timed EFSM Fault Models in SDL 51

timed EFSM. In addition, a set of special purpose tester timers are implemented
inside the testing system (not in the IUT since the implementation is assumed to
be a black box). Only a small number of new states and edges are introduced by
our augmentation, and hence the overall length of the test sequences generated
from the augmented model, compared to the original system model, does not
increase significantly.

We focus on the incorrect timer setting faults [EDK02, EDKE98, EKD99],
which represent the timers that are incorrectly implemented either too short or
too long in Controller. We then provide a formal specification for this system
in Specification and Description Language (SDL) [ITUZ1], which represents the
fault detection capabilities of the augmented EFSM model. In this SDL specifica-
tion of Controller, a transition of the EFSM fault model that can be triggered
when its time constraint is satisfied is represented by one or more continuous sig-
nal operators. We specify these EFSM timing constraints by using two variable
types in SDL, namely time and duration, which are also used to define the test
purposes. To achieve the synchronization among the timing constraints of dif-
ferent processes, we introduce a process, called Clock, to represent the discrete
passage of time and use the variable now to verify the global instantiation of the
time. The SDL specification can also handle the cases where multiple trains try
to cross at the same time.

A test sequence is generated for this SDL specification using the Hit-or-Jump
[CLRZ99] algorithm. Using the test purposes (also called stop conditions), which
represent the timing constraints of the EFSM timing fault model, Hit-or-Jump
algorithm constructs efficient test sequences while avoiding the state explosion.
In [CRV05a], Hit-or-Jump has been applied to railroad crossing system without
any fault detection capabilities of our EFSM model. In this paper, we generate
the test sequences that are capable of detecting incorrect timer setting faults.

Section 2 of this paper presents an English specification of railroad cross-
ing system. Section 3 introduces the definitions, graph augmentation algorithms
GA-A, GA-B and GA-C, and fault modeling for Controller. The SDL specifi-
cation with timing constraints and test sequence generation using Hit-or-Jump
algorithm are in Section 4. The concluding remarks are presented in Section 5.

2 English Specification for Railroad Crossing System

The railroad crossing system is one of the popular examples for studying timing
constraints in timed FSMs [HJL93,HL94,HL96,AKLN99,ALUR98,XEN04]. It
consists of three main processes: Train, Gate and Controller, all of which must
communicate with one another within certain time constraints. Train process
communicates with Controller by sending the messages called approach, in, out
and exit. The output signal approach must be sent to Controller at least two
minutes before a train is crossing the railroad. When a train is inside (or outside)
the gate, the corresponding output signal in (or out) is generated. Between the
signals approach and exit, there must be a delay of maximum five minutes. When

52 S.S. Batth et al.

Controller receives the input signal approach, it must send the output signal
lower to Gate at most one minute after the receipt of approach. If Controller
receives exit, it must send the output signal raise to Gate with a maximum delay
of one minute.

Gate and Controller communicate through the signals lower, raise, up and
down. The signals lower and raise are inputs to Gate process. If lower is received,
Gate must respond with down output signal, indicating that the gate is closed
and the crossing is safe. The interval between the reception of lower and the
sending of down must be at most one minute. If the input signal raise is received
by Gate, it must send the output signal up at least one minute and at most two
minutes after the receipt of raise.

3 Modeling Timed Extended Finite State Machines

A communication protocol modeled as a finite state machine (FSM) can be
represented by a directed graph G(V,E). Vertex set V represents the nodes and
edge set E represents the edges triggered by events of a system. A protocol
specification may include timing variables and operations based their values. To
represent these timing related variables, we extend FSMs with timing variables.
Our model is complimentary to those presented in timed automata [ALUR98],
and has the advantage that it is specifically designed for test generation without
state explosion [FUDA03].

3.1 Definitions and Notations

Let R denote the set of real, R◦+ the set of the non-negative real, and R∞ =
R◦+ ∪ {−∞,+∞} is the set of non-negative real with elements −∞ and +∞.
Let Z denote the set of integers and Z+ is the set of positive integers. Interval
[α, β] is a subset of R◦+, [α, β] ⊂ R◦+, and δ is an instant of [α, β], δ ∈ [α, β]. α
is the lower bound of δ, Inf(δ) = α; β is the upper bound of δ , Sup(δ) = β.

Definition 1. A timed FSM is an FSM augmented to form an Extended Fi-
nite State Machine (EFSM), represented by directed graph G, denoted by M =
(V,A,O, T , E, v0) where V is a finite set of nodes, v0 ∈ V is the initial node, A
is a finite set of inputs, O is a finite set of outputs, T is a finite set of variables,
and E is a set of edges V ×A×T −→ V ×O×T . Edge ei ∈ E can be represented
by a tuple ei = (vp, vq, ai, oi, Pt(T) = 〈ei〉, Actt (T) = {ei}), where vp ∈ V is a
current node, vq ∈ V is a next node, ai ∈ I is the input that triggers the transi-
tion represented by vp

ei→vq, oi ∈ O is the output from current transition vp
ei→vq,

Pt(T) = 〈ei〉 is the set of possible conditions of timing variables. Actt(T) = {ei}
is the set of possible actions on timing variables.

Definition 2. A timer tmj ∈ TM can be defined with timing variables of
(Tj , Dj, fj) ⊆ T , where TM = {tm1, · · · , tmj , · · · } is a set of N timers,

Specification of Timed EFSM Fault Models in SDL 53

Tj ∈ {0, 1} is a timer running status variable, Dj ∈ R◦+ is a time-characteristic
variable, and fj ∈ R∞ is a time-keeping variable.

• Time Keeping Variables (Dj and fj), where Dj indicates the length of timer
tmj , and fj indicates the time elapsed since tmj started. If tmj has just
started, fj := 0; if tmj is inactive, fj := −∞. Over an edge ei, the value of fj

is increased by the amount of time ci ∈ R◦+ required to completely traverse
the current transition ei, fj := fj + ci. The difference of (Dj − fj) represents
the remaining time until tmj ’s expiry.

• Timer Status Variable (Tj) is a boolean variable, where Tj == 1 (Tj) denotes
timer tmj is active and Tj == 0 (¬Tj) denotes timer tmj is passive (i.e.,
stopped, expired or not started yet).

Definition 3. TMactive ⊆ TM and TMpassive ⊆ TM are sets of timers which
are active and passive, respectively, such that TM = TMactive

⋃
TMpassive.

• For a transition ei = (vp, vq, ai, oi, 〈ei〉, {ei}), a set of passive timers tmj ∈
TMpassive, ∀j ∈ [1, N], can be activated by setting Tj := 1 and fj := 0 in its
edge actions. For all the other active timers tmk ∈ TMactive, ∀k ∈ [1, N], k �=
j, fk is updated by ei’s traversal time. Formally: 〈ei〉 : 〈¬Tj ∧ Tk ∧ (fk < Dk)〉
and {ei} : {Tj := 1; fj := 0;Tk := Tk; fk := fk + ci} ∀k ∈ [1, N], ∀j ∈
[1, N], k �= j.

• For a transition ei = (vp, vq, ai, oi, 〈ei〉, {ei}), an active timer tmj ∈ TMactive,
j ∈ [1, N], can be stopped by setting Tj := 0 and fj := −∞ in its edge
actions. For all the other active timers tmk ∈ TMactive, ∀k ∈ [1, N], k �= j,
fk is updated by ei’s traversal time. Formally: 〈ei〉 : 〈Tj ∧ (fj < Dj) ∧ Tk

∧(fk < Dk)〉 and {ei} : {Tj := 0; fj := −∞; Tk := Tk; fk := fk + ci} ∀k ∈
[1, N], j ∈ [1, N], ∀k �= j.

• An active timer tmj ∈ TMactive is defined as expired or timed out iff fj is
equal or greater than the timer length Dj . Formally: 〈Tj ∧ (fj ≥ Dj)〉 and
{Tj := 0; fj := −∞}.

Definition 4. A transition which becomes feasible when one of the active timers,
with the least remaining time, expires is defined as a timeout transition. In other
words, tmj ∈ TMactive (j ∈ [1, N]), tmk ∈ TMactive (∀k ∈ [1, N], ∀k �= j), and
tmj’s remaining time was the least, then it was tmj that expired and triggers the
timeout edge ei. The edge actions set Tj = 0, fj = −∞, and fk is updated by
ei’s traversal time. Formally: 〈ei〉 : 〈Tj ∧ (fj � Dj) ∧ Tk ∧ (Dj − fj < Dk − fk)〉
and {ei} : {Tj := 0; fj := −∞;Tk := Tk; fk := fk + ci} ∀k ∈ [1, N], ∀k �= j.

Definition 5. A non-timeout transition becomes feasible iff none of the active
timers have expired, or all of the timers are passive. In other words, tmj ∈
TMactive, ∀j ∈ [1, N], and none of these active tmj’s have expired. fj is updated
by ei’s traversal time. Formally: 〈ei〉 : 〈Tj ∧ (fj < Dj)〉 and {ei} : {Tj :=
Tj; fj := fj + ci)} ∀j ∈ [1, N].

54 S.S. Batth et al.

Definition 6. Flow Enforcing Variable (Lp) is an exit condition to leave a state
vp. It is denoted by a boolean variable Lp ∈ {0, 1} ∀vp ∈ V , where Lp == 0 means
none of the transitions is allowed to leave vp, and Lp == 1 means transitions
are allowed to leave vp.

Definition 7. A transition whose action updates Lp from 0 to 1 is defined as an
observer edge. Formally: 〈ep,obs〉 : 〈Lp == 0〉 and {ep,obs} : {Lp := 1} ∀vp ∈ V.

Definition 8. For an active timer, a transition which consumes the pending
timeout is defined as a wait edge. In other words, tmj ∈ TMactive (j ∈ [1, N]),
tmk ∈ TMactive (∀k ∈ [1, N], ∀k �= j) and tmj’s remaining time is the least, then
the wait edge updates fj by tmj’s remaining time Dj − fj. Formally: 〈ep,wait〉 :
〈Tj ∧ (fj < Dj) ∧ Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk)〉 and {ep,wait} : {fj :=
fj + (Dj − fj); fk := fk + (Dj − fj)} ∀k �= j, k ∈ [1, N], ∀vp ∈ V.

Definition 9. A return edge is an edge with no time constraints and actions:〈
eret

p

〉
: 〈1〉 and

{
eret

p

}
: { } ∀vp ∈ V.

Definition 10. During testing an edge ei = (vp, vq, ai, oi, 〈ei〉, {ei}), after input
ai is applied to an IUT, the expected output oi should be generated no later than
a certain θ time units, θ ∈ R◦+, measured by a timer which is a part of the test
harness rather than the IUT.

3.2 Graph Augmentation Algorithm GA-A

To model the original system along with its timed behavior, we introduce a graph
augmentation algorithm, called GA-A [UBWF06a], which is specifically designed
for generating tests for the systems whose timer related variables are linear and
their values implicitly increase with time. To ensure that the timing conditions
and actions of the specification are correctly incorporated into the timed EFSM
model, GA-A generates G′(V ′, E′) by converting self-loops in G to node-to-node
edges, defining an exit condition for all the nodes, and creating a set of new
nodes and edges:

Step (i): If there exists a self loop for vp ∈ V in G, an additional node called
v′p is created in G′, to which all self-loops ep,k ∈ E defined in vp are directed;

Step (ii): All self-loops ep,k ∈ E in G are converted to node-to-node edges
in G′ as ep,k = (vp, v

′
p).

Step (iii): For v′p ∈ V ′ in G′, a return edge eret
p from v′p to vp is created in

G′ as eret
p = (v′p, vp).

Step (iv): An observer node is created in G′, namely vp,wait, which is con-
nected to vp via newly created an observer edge as ep,obs = (vp, vp,wait) , a
wait edge as ep,wait = (vp, vp,wait), and a return edge from observer node as
eret

p,obs = (vp,wait, vp). The role of the observer node vp,wait is to consume pend-
ing timeouts on ep,wait and enable outgoing edges by setting the flow enforcing
variable Lp to 1 on ep,obs. Fig. 1 shows, for node vp, the conversion of self-loops to
node-to-node edges, the creation of the observer node, wait and observer edges.

Specification of Timed EFSM Fault Models in SDL 55

vp

ep,1

ep,3

ep,2

vp
’vp

ep,1

ep,2
ep,3

ep
ret

ep,obs

ep,obs
ret

vp,wait
ep,wait

ej

ei ei

ej

Fig. 1. Modeling self-loops for vp in G into vp, v′
p and vp,wait in G′

The time condition and the action for the wait edge ep,wait are formulated as
〈Lp == 0〉 and {fj := fj + (Dj − fj)}, where Dj − fj is the remaining time of
timer tmj ∈ TMactive to timeout. For the observer edge ep,obs from the original
node vp to the observer node vp,wait in G′, the time condition and the action are
formulated as 〈Lp == 0〉 and {Lp := 1}, respectively. The return edges of eret

p

and eret
p,obs are added by GA-A to G′ are no-cost edges with time condition as: 〈1〉

(i.e., always true with no time constraints imposed) with no actions: { }.
Step (v): The conditions and actions for a timeout edge in G′ are:

• The condition for a timeout self-loop edge in G becomes: 〈Tj ∧ (fj � Dj) ∧
Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk) ∧ (Lp == 0)〉 ∀Tk �= Tj , where the
remaining time for tmj ∈ TMactive is less than that of tmk ∈ TMactive (i.e.,
Dj − fj < Dk − fk) and the flow enforcing variable Lp is zero.

• The condition for a timeout node-to-node edge in G becomes: 〈Tj ∧ (fj �
Dj)∧Tk ∧ (fk < Dk)∧ (Dj − fj < Dk − fk)∧ (Lp == 1)〉 ∀Tk �= Tj, where the
remaining time for tmj ∈ TMactive is less than that of tmk ∈ TMactive (i.e.,
Dj − fj < Dk − fk) and Lp is 1.

• The actions for a timeout edge in G become: {Tj := 0; fj := −∞;Tk :=
Tk; fk := fk+ci;Lp := 0} ∀ tmk �= tmj , where timer tmj ∈ TMpassive becomes
passive and the time keeping variable for tmk ∈ TMactive is incremented by
the edge cost of ci.

These equations imply that before a timeout edge, tmj should be still running,
remaining time should be the least among all other running timers and the flow-
enforcing variable is appropriately set for either a converted (i.e., self-loop edge
in G) or an original (i.e., node to node edge in G) edge in G′.

Step (vi): The conditions and actions for a non-timeout edge in G′ is for-
malized as follows:

• A non-timeout self-loop edge in G becomes: 〈(¬Tj∨(Tj∧(fj < Dj)))∧(Lp ==
0)〉 ∀ tmj ∈ TMactive

• A non-timeout node-to-node edge in G becomes: 〈(¬Tj ∨ (Tj ∧ (fj < Dj))) ∧
(Lp == 1)〉 ∀ tmj ∈ TMactive

• The action for a non-timeout edge in G becomes:

56 S.S. Batth et al.

• {fj := fj + ci; fk := fk + ci;Lp := 0} ∀ tmk �= tmj , tmj ∈ TMactive, tmk ∈
TMactive if edge starts no timers;

• {Tj := 1; fj := 0;Tk := Tk; fk := fk + ci;Lp := 0} ∀ tmk �= tmj if edge
starts timer tmj .

Since both timeout and non-timeout edges disable outgoing edges by setting
Lp := 0 in Steps (v) and (vi) of GA-A, the only edges whose actions will enable
the outgoing edges in G′ are the artificially-created observer edges.

It is proven [UBWF06a] that GA-A terminates with a running time of O(E),
and that the total number of the nodes and edges in G′(V ′, E′) and G(V,E)
have the same order of magnitude.

3.3 Classification of Timing Faults

A class of timing faults in an implementation of a timed system have been defined
in [EDK02,EDKE98,EKD99] as 1-clock timing faults (including 1-clock corner
point and 1-clock interval faults) and incorrect timer length setting faults.

Incorrect Timer Setting Faults occur in an IUT when a timer length is
incorrectly implemented as either too short or too long (i.e., the timer expires
either too early or too late). The definition of incorrect timer setting faults is
based on the following timing requirement:

• Timing Requirement : In a test sequence, edge hk starts timer tmj and
is traversed before ei. Timeout transition ei = (vp, vq, timeout tmj , oi, 〈tj〉 ,
{tj}) triggers exactly in Dj time units, where Dj is the timer length.

• Timing Fault B (TFB): Timeout transition ei triggers in D′
j time units and

output oi is observed and node vq is verified in shorter than the expected time
(i.e., D′

j < Dj).
• Timing Fault C (TFC): Timeout transition ei triggers in D′

j time units and
output oi is observed and node vq is verified in longer than the expected time
(i.e., D′

j > Dj).

In a specification, suppose a timer tmj is defined to be of length Dj to be
started by the actions of edge hk and to expire at edge ei (reachable from hk).
A special purpose timer tms with length Ds = Dj is created in the test harness
by GA-2.B to detect if tmj is set too short as D′

j < Dj :

Step (B.i): Edge conditions and actions for hk are modified such that it
starts a special purpose timer tms.

Step (B.ii): ei’s condition is modified such that it traverses only when both
tms and tmj have expired.

Step (B.iii): All self-loops in vp are represented as node-to-node edges by
the creation of an additional node, called v′p, to which they are directed. A return
edge eret

p (with zero cost) is also created for their return to vp.
Step (B.iv): An observer node vp,wait is appended to node vp via a new

observer edge ep,obs, wait edge ep,wait (with cost cp,wait) and return edge eret
p

(with cost cret
p := 0). The edge condition of ei is modified such that it triggers

only when fs � Ds and tmj expires.

Specification of Timed EFSM Fault Models in SDL 57

As proven in [UBWF06a], GA-2.B terminates with a running time of O(E),
and the order of magnitude of the nodes and edges in G′ and G′′ are the same.
A test sequence generated from G′′ will contain · · · , hk, · · · , ei−1, ep,wait, eret

p ,
ep,obs, eret

p , ei which will not be feasible to traverse if timer tmj expires earlier
than expected. The condition for ep,wait requires that both the timers tmj from
the IUT and tms from the test harness are still running. If tmj times out before
tms, it will create a deadlock at vp (i.e., none of the conditions leaving vp is
valid), which in turn will flag the tester that a timing fault TFB has occurred.

Algorithm GA-2.C [UBWF06a] for TFC , is similar to GA-2.B, with the same
run time complexity and the augmented graph size of G′.

3.4 Timed EFSM Model for Railroad Crossing System

Due to space constraints, we only consider timing fault TFB in the edges of
e2 and e4 in Controller, whose FSM model is given in Fig. 2. The steps for
generating graph G′′ is follows:

Step 1: Obtain graph G from the specification of Controller process. The
directed graph representing Controller is in Fig. 2 with its actions and condi-
tions given in Table 1. Timer tmz can be started either in edge e1 or in e3 with
the timer length of 1 min (i.e., Dz = 1 min).

Step 2: Generate G′ for Controller by applying the graph augmentation
algorithm GA-A to G. The new observer nodes and edges (i.e., s0,wait, e0,wait,
e0,obs, eret

0,obs, s1,wait, e1,wait, e1,obs, eret
1,obs, s2,wait, e2,wait, e2,obs, eret

2,obs, s3,wait,
e3,wait, e3,obs, eret

3,obs) are added to the original nodes of G. The self-loop edge of
e0 is converted to a node-to-node edge by introducing s′0 and eret

0 in G′.
Step 3: Apply the graph augmentation algorithm GA-B to G′ to generate

G′′ for Controller. A special purpose timer, namely tms (with Ds = 1), is
introduced in the tester (not in the IUT) to model the timing constraints over
the edges of e2 and e4. Note that, in G′′, e1 starts both the special purpose timer
tms in the tester and the timer tmz in the IUT; similarly, e3 starts the same two
timers in the tester and the IUT. Graph G′′ is shown in Fig. 3 with its respective
edge conditions and actions given in Table 2.

s0 s1
e0

start tmz

e1

e4 e2

s3 s2e3

start tmz

Fig. 2. Finite state machine for Controller

58 S.S. Batth et al.

Table 1. Original specification of Controller (Fig. 2) and its graph G

Edges English Specification Our EFSM Model G
Timing Timing

Conditions Actions

e0 Idle 〈1〉 { }
e1 Input approach is received 〈(a1 == approach)〉 {Tz := 1; fz := 0}
e2 Output lower is generated at 〈Tz ∧ (fz ≥ Dz)〉 {o2 := lower;

maximum delay of 1 mins after Tz := 0; fz := −∞}
input approach is received

e3 Input exit is received 〈(a3 == exit)〉 {Tz := 1; fz := 0}
e4 Output raise is generated 〈Tz ∧ (fz ≥ Dz)〉 {o4 := raise;

maximum delay of 1 mins Tz := 0; fz := −∞}
after input exit is received

s3,wait s3

s0
’

s0 s1

s2

e4

e1

e2,obs
e2,wait

e3,obs

e0
ret

s2,wait
e3,wait

e0

s0,wait

e0,obs
ret

e0,obs

e0,wait

e1,obs
ret

e1,obs

e1,wait

s1,wait

e2
e3,obs

ret e2,obs
ret

e3

Fig. 3. Augmented Graph G′′ for Controller (Fig. 2) after applying GA-A and GA-B

4 SDL Specification Based on Timed EFSM Model

To specify a set of timed EFSM models in SDL one may either (i) define each
component (e.g., Train, Gate and Controller) as an independent system,
where each exchange messages with the environment, or (ii) define each compo-
nent as a process of the same system. Although both approaches are equivalent,
in this paper we follow the latter approach. Our SDL specification is designed
for testing purposes, where the evolution of time is modeled by the expiration
of the clocks. We introduce a process, called Clock, as a part of the Railroad
system to represent the passage of time. Therefore, our SDL specification for
the railroad crossing system consists of a main Railroad system, which includes
a Railroad Control block (Fig. 4) with four processes, namely Train, Gate,
Controller and Clock.

In our EFSM model, each edge ei is associated with a timing cost ci, repre-
senting the expected time that is required to traverse (or, realize) the edge in
an implementation (see Section 3). The corresponding state transition in SDL

Specification of Timed EFSM Fault Models in SDL 59

Table 2. Augmented edge conditions and actions of graph G′′ (Fig. 3) of Controller

Edges 〈 Edge Conditions 〉 { Edge Actions }
e0 〈¬approach〉 { }

eret
0 〈1〉 { }

e0,obs 〈Lp == 0〉 {Lp := 1}
e0,wait 〈¬approach ∧ Lp == 0〉 {fi := fi + c0,wait}
eret
0,obs 〈1〉 { }
e1 〈approach ∧ Lp == 1〉 {Ts := 1; fs := 0; Lp := 0}

e1,wait 〈Lp == 0〉 {fi := fi + c1,wait}
e1,obs 〈Lp == 0〉 {Lp := 1}
eret
1,obs 〈1〉 { }
e2 〈Ts ∧ (fs ≥ Ds) ∧ (Tztimeout) ∧ Lp == 1〉 {lower; Ts := 0; fs := −∞; Lp := 0}

e2,wait 〈¬exit ∧ Lp == 0〉 {fi := fi + c2,wait}
e2,obs 〈Lp == 0〉 {Lp := 1}
eret
2,obs 〈1〉 { }
e3 〈exit ∧ Lp == 1〉 Ts := 1; fs := 0; Lp := 0}

e3,wait 〈Lp == 0〉 {fi := fi + c3,wait}
e3,obs 〈Lp == 0〉 {Lp := 1}
eret
3,obs 〈1〉 { }
e4 〈Ts ∧ (fs ≥ Ds) ∧ (Tztimeout) ∧ Lp == 1〉 {raise; Ts := 0; fs := −∞; Lp := 0}

specification can be represented as the difference between two internal variables
that are set at the instances of the beginning and end of the transition. This
way, these two variables, one with the clock value at the beginning and the
other one at the end, can be used to approximate the edge traversal time in
SDL, Similarly, the following assumptions are considered to specify a real-time
system in SDL [AKLN99,TMCB03]:

• All un-timed events will take a negligible time to realize;
• Time advances through the expiration of local clocks; if two clocks expire at

the same moment, only one of them is taken into account first;
• As time progresses, time dependent transitions may trigger only if their con-

ditions are satisfied;
• The global clock called now is the only clock which gives the current time.

In this approach, time constraints are represented as continuous signal op-
erators. This construct allows to represent a transition that does not need an
input signal to be fired, but is triggered when the time constraint is satisfied. In
our SDL specification, two variable types are used: a time variable to register
the moment when an event occurs, and a duration variable to represent the
difference between two time variables. For example, in the timing condition of
(f1 − f2 > D2), variables f1 and f2 are of type time, whereas D2 is a duration
variable. Both time and duration variables are also defined in our EFSM model
in Section 3. For example, for the special purpose timer tms in G′′ (Section 3.3),
time keeping variable fs and the timer length Ds are represented as the time
and duration types of variables in our SDL specification, respectively.

60 S.S. Batth et al.

block Rail_Control

Clock

[c]

[c]

[c]

Train

Controller

Gate

[ok, nok]

[approach, exit,
inside, outside]

[down, up]

[lower, raise]

Fig. 4. Rail Control block of SDL specification

Although we did not utilize the local timer construct in SDL to represent
the timer tms, we have instead used the variable now and the process Clock to
model the evolution of time in our SDL specification. Therefore, for Controller,
fs is represented by four time type variables, namely zapproach, zexit, zlower
and zraise. The moment when approach and exit signals are received is repre-
sented by zapproach and zexit, respectively. Similarly, zlower and zraise are
used to capture the moment when lower and raise are sent, respectively. Timer
length Ds is modeled by two duration type variables, namely sent lower delay
and sent raise delay, both equal to 1 min. Table 3 illustrates the relationship
between our SDL specification and the EFSM model based on G′′.

Our SDL specification also allows representation of more than one train trying
to cross at the same time. To model multiple trains, additional variables such as
(ntrains and max trains), and signals (ok and nok) are introduced (in the SDL
specification given in this paper, max trains = 1). Since there are a limited
number of tracks available, variable ntrains counts the number of trains which
have sent approach to Controller. Each approach received from a different train
can be distinguished by Controller because an internal identifier with a distinct
channel is created for each instantiation of the Train process. Therefore, if the
condition of (ntrains <= max trains) is true, Controller sends ok ; otherwise
it sends nok. If Train receives ok from Controller, the train continues its
approach to the railroad crossing. Similarly, if nok is received by Controller,
the train waits until it receives a signal of ok. When one of the Train processes
sends exit, Controller decrements the value of ntrains by one. If the updated
value of ntrains is still greater than zero, Controller sends another ok to one
of the Train processes waiting to approach the railroad crossing; otherwise,
Controller sends raise signal to Gate.

4.1 Application of Hit-or-Jump Algorithm

Hit-or-Jump [CLRZ99] algorithm can be used for embedded testing of complex
communication systems which are modeled as communicating EFSMs. It is a gen-
eralization and unification of exhaustive search and random walks; both of which

Specification of Timed EFSM Fault Models in SDL 61

Process Controller

ntrains:=0

Idle

approach

ntrains:=
ntrains + 1

Ntrains>1

True Else

-

nok ok

zapproach
:= now

Sent_Lower

*
in,down,
out,up,c

-

exit

zexit:=
now

ntrains:=
ntrains - 1

ntrains

=0 >0

Sent_Raise

ok-

dcl sent_lower_delay duration:=1;
dcl sent_lower_delay duration:=1;
dcl zapproach, zexit, zlower,
zraise time;
dcl ntrains integer;

Sent_Raise

Idle

* c

-

now–zexit
sent_raise

_delay

raise

zraise:=
now

Sent_Lower

Idle

* c

-

now–zapproach
sent_lower

_delay

lower

zlower:=
now

Fig. 5. SDL specification of Controller

are special cases of Hit-or-Jump. It efficiently constructs testing sequences with a
high fault coverage, does not suffer from the drawback of state space explosion as
encountered in exhaustive search, and quickly covers the system components un-
der test without being trapped, as experienced by random walks. Furthermore, it
has also been applied to embedded testing of telephone services [CLRZ99], confor-
mance and interoperability testing of web services [CMZ04] and in the domain of
real-time systems [CRV05a,CRV05b]. The strategy used to generate a partial ac-
cessibility graph in Hit-or-Jump is that if a visited node satisfies the test purposes,
it is said that a hit is done; otherwise, the algorithm randomly choses another node
from the neighborhood graph, and moves (jump) to it. Then from this new node,
it continues its search. Parameters required to execute the Hit-or-Jump are:

(i) SDL specification of the IUT (Fig. 5);
(ii) Testpurposesdescribed in several stopconditions,whichare theproperties to

be verified at each node. Each property can be defined in input signals, output
signals,time, and durationvariable types. In our case study, the test purposes
are defined according to the timing fault models of G′′ graph. These are then
modeled for SDL specification and used as stop conditions. Table 4 gives the
details of test purposes for all the processes of the railroad crossing system;

62 S.S. Batth et al.

Table 3. Relationship between SDL Specification (Fig 5) and EFSM Model (Fig 3)
for Controller

Current State Next State Edge Constraint Action
SDL EFSM SDL EFSM Name
Spec. Model Spec. Model

Start Idle s0 ntrains:= 0

Idle s0 Idle s0 (approach?) and (nok !) and
(ntrains > 1) (zapproach:= now)

Idle s0 Sent Lower s1 e1 (approach?) and (ok !) and
(ntrains � 1) (zapproach:= now)

Sent Lower s1 Sent Lower s1,wait e1,wait (∗?) or
(now− zapproach �
sent lower delay)

Sent Lower s1 Idle s2 e2 (now− zapproach � (lower !) and
sent lower delay) (zlower := now)

Idle s2 Idle s2 (exit?) and (ok !) and
(ntrains � 0) (zexit := now)

Idle s2 Sent Raise s3 e3 (exit?) and (zexit := now)
(ntrains � 0)

Sent Raise s3 Sent Raise s3 e3,wait (∗?) or
(now− zexit �

sent raise delay)

Sent Raise s3 Idle s0 e4 (now− zexit ≥ 1) (raise!) and
(zraise := now)

Legend: Input = ?, Output = !, now = Global Clock, ∗ = Any other signal;
Time type variables = zapproach, zexit, zraise, zlower;
Duration type variables = sent lower delay, sent raise delay

Table 4. Test purposes for SDL specification and EFSM model

Process Test Purposes for Test Purposes for
Name EFSM Model SDL Specification

Train Output in is generated in less xinside − xapproach < 2
than 2 minutes after approach

Output exit is generated in more xexit − xapproach > 5
than 5 minutes after approach

Controller Output lower is generated in less zlower − zapproach < 1
than 1 minutes after approach

Output raise is generated in more zraise − zexit > 1
than 1 minutes after exit

Gate Output down is generated in more ydown − ylower > 1
than 1 minutes after lower

Output up is generated in more yup − yraise > 2
than 2 minutes after raise

(iii) A preamble scenario (optional) may be furnished in order to guide the
algorithm to easily and quickly find a sequence which satisfies the stop

Specification of Timed EFSM Fault Models in SDL 63

conditions (test purposes). If no preamble scenario is given, the search
starts from the initial state of all processes;

(iv) The strategy of the search, which can either be a breadth or a depth
search, in order to generate an internal accessibility graph;

(v) A local search parameter (an integer), which defines the space required
for the search before a jump.

The test sequence generated from SDL specification of Controller by apply-
ing Hit-or-Jump is given in Table 5. Note that all un-timed transitions have zero
cost because of the assumption in SDL that these transitions take insignificant
time to run. The cost of the wait edges is expressed in minutes.

Using our SDL specification, Hit-or-Jump generates test sequences with timing
fault detection capabilities. Although, in our case study only timing fault TFB is
considered for Controller, other types of timing faults can also be modeled for
Controller, Train and Gate processes [FUDA03,UWBWF05,UBWF06a]. Hit-
or-Jump can then be used to generate a test sequence which takes into account
all of the timing fault models for three processes. Therefore, the test sequences
can be used both for unit testing of each process, and for verifying the com-
munication among processes during the integration phase. Another advantage is
the flexibility of representing the test sequences in Tree and Tabular Combined
Notation (TTCN) [ETSI] or Message Sequence Chart (MSC) [ITUZ2] notation,
facilitating the portability of the tests.

Table 5. Test sequence generated from SDL specification of Controller

Step No. Current State Next State Cost (Mins.) Inputs Outputs

1 Idle Sent Lower 0 approach

2 Sent Lower Sent Lower 2

3 Sent Lower Sent Lower 0

4 Sent Lower Idle 0 lower

5 Idle Sent Raise 0 exit

6 Sent Raise Sent Raise 2

7 Sent Raise Sent Raise 0

8 Sent Raise Idle 0 raise

5 Conclusions and Future Work

In this paper, we apply our timing fault modeling strategy to writing formal
specifications for communication protocols. As part of this approach, using the
formal language of SDL, we specify the Controller process of rail-road crossing
system, a popular benchmark for real-time systems. The EFSM model has the
capability of representing a class of timing faults, which otherwise may not be
detected in an IUT. We then apply Hit-or-Jump algorithm to the SDL specifi-
cation based on our EFSM model to generate a test sequence that can detect
these timing faults. In addition, including fault modeling into SDL specification

64 S.S. Batth et al.

ensures the synchronization among the timing constraints of different processes,
and enables generation of portable test sequences since they can be easily rep-
resented in other formal languages such as TTCN or MSC.

As an extension of this work, we will consider the EFSM models with fault
detection capabilities for other classes of timing faults, and multiple occurrences
of these faults. This approach of modeling the timing faults of communicating
processes into formal specifications will also applied to generate integration tests.

References

[AKLN99] Ashour, M., Khendek, F., Le-Ngoc, T.: Formal description of real-time
systems using SDL. In: Proc. of the Sixth Int’l. Conf. on Real-Time
Comp. Sys. and Appl (RTCSA’99), Hong-Kong (December 1999)

[ALUR98] Alur, R., Dill, D.: A theory of timed automata. Theoretical Comput.
Sci. 126, 183–235 (1994)

[CLRZ99] Cavalli, A., Lee, D., Rinderknecht, C., Zaidi, F.: Hit-or-jump an algo-
rithm for embedded testing with applications to in services. In: Proc.
of IFIP Int’l. Conf. FORTE/PSTV’99, (October 1999)

[CMZ04] Cavalli, A., Mederreg, A., Zaidi, F.: Application of a Formal Testing
Methodology to Wireless Telephony Networks. Journal of the Brazilian
Comp. Soc. 10(2), 56–68 (2004)

[CRV05a] Cavalli, A., Rodrigues, E.: Vieira. Test Case Generation based on Timed
Constraints. In: IEEE ICESS 2005, Xian, China (December 2005)

[CRV05b] Cavalli, A., Rodrigues, E.: Vieira. A Formal Approach of Interoperabil-
ity Test Cases Generation Applied to Real Time Domain. In: IEEE
I2TS 05, Florianpolis, SC, Brazil (December 2005)

[DU04] Duale, A.Y., Uyar, M.U.: A method enabling feasible conformance test
sequence generation for EFSM models. IEEE Trans. Commun. 53(5),
614–627 (2004)

[EDK02] En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-method: Testing
real-time systems. IEEE Trans. Softw. Eng. 28(11), 1023–1038 (2002)

[EDKE98] En-Nouaary, A., Dssouli, R., Khendek, F., Elqortobi, A.: Timed test
cases generation based on state characterization technique. In: Proc.
IEEE Real-Time Syst. Symp. (RTSS), pp. 220–229, Madrid, Spain
(1998)

[EKD99] En-Nouaary, A., Khendek, F., Dssouli, R.: Fault coverage in testing
real-time systems. In: Proc. IEEE Int’l Conf. Real-Time Comput. Syst.
Appl. (RTCSA), Hong Kong, China (1999)

[ETSI] ETSI. Methods for Testing and Specification (MTS), The Testing and
Test Control Notation version 3, Part 1: TTCN-3 Core Language

[FAUD00] Fecko, M.A., Amer, P.D., Uyar, M.U., Duale, A.Y.: Test generation
in the presence of conflicting timers. In: Proc. IFIP Int’l Conf. Test.
Commun. Syst. (TestCom), pp. 301–320, Ottawa, Canada (2000)

[FUDA03] Fecko, M.A., Uyar, M.U., Duale, A.Y., Amer, P.D.: A technique to gen-
erate feasible tests for communications systems with multiple timers.
IEEE/ACM Trans. Netw. 11(5), 796–809 (2003)

[HJL93] Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G., Benchmark, A.: for Com-
paring Different Approaches for Specifying and Verifying Real-Time
Systems. In: Proc. Tenth Int’l. Workshop on Real-Time Operating Sys.
and Software (May 1993)

Specification of Timed EFSM Fault Models in SDL 65

[HL94] Heitmeyer, C., Lynch, N.: The Generalized Railroad Crossing: A Case
Study in Formal Verification of Real-Time System. In: Proc. of the 15th
IEEE Real-Time Sys. Symp., Puerto Rico (December 1994)

[HL96] Heitmeyer, C., Lynch, N.: Formal Verification of Real-time Systems
Using Timed Automata. In: Heitmeyer, C., Lynch, N. (eds.) Trends in
Formal Methods for Real-Time Computing, pp. 83–106. John Wiley
and Sons, Ltd, Chichester (1996)

[ITUZ1] ITU-T. Rec. Z.100 Specification and Description Language (1980)
[ITUZ2] ITU-T. Rec. Z. 120 Message Sequence Charts, Geneva (1996)
[LRS98] Lanphier, R., Rao, A., Schulzrinne, H.: Real time streaming protocol

(RTSP). RFC 2326, IETF (1998)
[SCFJ96] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A trans-

port protocol for real-time applications. RFC 1889, IETF (1996)
[TMCB03] Teyssie, C., Mmammeri, Z., Carcenac, F., Buniol, F.: Etude Compar-

ative de SDL et UML pour la Modelisation de Systemes Temps Reel.
In: 11th Conf. on Real-Time and Embedded Systems, pp. 75–97, Paris,
Teknea (April 2003)

[UWBWF05] Uyar, M.U., Wang, Y., Batth, S.S., Wise, A., Fecko, M.A.: Timing Fault
Models for Systems with Multiple Timers, IFIP Int’l. Conf. on Testing
of Comm. Systems (TESTCOM), Concordia, Canada (2005)

[UBWF06a] Uyar, M.U., Batth, S.S., Wang, Y., Fecko, M.A.: EFSM graph aug-
mentation algorithms for modeling a class of single timing faults. IEEE
Trans. Comput. (In review 2006)

[UFDA01] Uyar, M.U., Fecko, M.A., Duale, A.Y., Amer, P.D., Sethi, A.S.: A for-
mal approach to development of network protocols: Theory and appli-
cation to a wireless standard. In: Proc. Concordia Prestigious Wksp
Commun. Softw. Eng. (CPWCSE), Montreal, Canada (invited paper)
(2001)

[UZ93] Ural, H., Zhu, K.: Optimal length test sequence generation using dis-
tinguishing sequences. IEEE/ACM Trans. Netw. 1(3), 358–371 (1993)

[XEN04] Xiang, Z., En-Nouaary, A.: Test cases generation for embedded real-
time systems based on test purposes. In: NOTERE’2004, Saidia, Maroc
(Juin 2004)

Coordination Via Types in an Event-Based Framework�

Gianluigi Ferrari1, Roberto Guanciale2, Daniele Strollo1,2, and Emilio Tuosto3

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy
{giangi,strollo}@di.unipi.it

2 Istituto Alti Studi IMT Lucca, Italy
{roberto.guanciale,daniele.strollo}@imtlucca.it

3 Computer Science Department, University of Leicester
et52@mcs.le.ac.uk

Abstract. We propose a novel approach to service choreography through a typed
process calculus that features an event notification paradigm for coordinating dis-
tributed components (e.g., services). Basically, the type system expresses coordi-
nation policies for handling the events spawn in a network so that distributed
components react to events when the type of their public interface is ”compati-
ble” with (the policies expressed by) the types of signals.

Remarkably, the type system can naturally handle multi-party sessions, as
shown in the formalisation of the OpenID protocol which requires multi-party
sessions for handling user identities.

1 Introduction

A well known paradigm for programming/modeling distributed systems is event notifi-
cation (EN, for short), where distributed computational components can act as publish-
ers and/or subscribers. When a component intends to send data to or requests a service
from other components, it issues an event that eventually shall trigger a reaction from
subscribers that previously subscribed for such kind of events. An important character-
istic that discriminates EN systems lays in how the middleware dispatches events. Two
main approaches are possible: topic-based and content-based mechanisms [5,16].

The dispatching mechanism in topic-based (also known as subject-based) EN sys-
tems is simpler than in content-based systems. In topic-based EN systems, events are
categorized into topics which subscribers register to. When an event belonging to a topic
τ is emitted, all the components subscribed for τ will eventually react to the event. No-
tice that publishers and subscribers have to know the topics at hand. In content-based
EN, component decoupling is enforced by allowing subscribers to register for events
satisfying a given property. When an event is emitted the middleware has to dispatch it
to all the subscribers whose property holds on that event (an example of content-based
is SIENA [4]). Notoriously, content-based dispatching mechanisms must be efficient
because notification sets, i.e. the set of subscribers that must be notified for the event,
can be order of magnitude larger than in topic-based EN [6,18]. A main advantage of

� Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA and
by the Italian FIRB Project TOCAI.IT.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 66–80, 2007.
c© IFIP International Federation for Information Processing 2007

Coordination Via Types in an Event-Based Framework 67

content-based EN is that publishers and subscribers do not have to share any a pri-
ori knowledge about the topics. Subscribers use, instead, a language for expressing
properties on events that publishers must simply accomplish with when emitting their
events.A more abstract content-based model is the so called type-based EN [9] where
topics are replaced by types (in a suitable type language). Typed events are also used in
commercial middlewares (see [9] and the references therein).

This paper considers the Signal Calculus (SC) [11], a topic-based EN process calcu-
lus, and recasts it into a type-based framework, the eXtended Signal Calculus (XSC).
The XSC calculus is a “typed version” of SC where events are emitted with types that
coordinate publishers/subscribers interactions. For instance, an XSC publisher can emit
an event with type τ× τ′ that should be received by subscribers that can react to events
of type τ and τ′. XSC types have a twofold role. First, typing allows subscribers to fil-
ter their events of interest (as usual in type-based EN). Second, publishers exploit type
information to specify which (kind of) subscribers should react to events. For instance,
in the previous example, a subscriber that is able to react only to events of type τ will
not be capable of reacting to an event τ× τ′. The way types are used is indeed the main
original contribution of XSC with respect to standard type-based EN systems.

A further advantage of XSC is that types allow us to handle sessions so that a sort
of “virtual communication link” among publishers and subscribers can be established
despite they do not need to know each other’s names. Intuitively, a session identifies the
scope within which an event is significant: partners that are not in this scope cannot react
to events of the session. Furthermore, the session handling mechanisms provided by
XSC can deal with multi-party sessions in a natural way. At the best of our knowledge,
multi-party sessions are ruled out from other approaches. For instance, in [13,3,2] only
two-party sessions are tackled. Indeed, these proposals aim to model the basic use of
sessions as done in many protocols of e.g. the IP-stack (TCP, HTTP, etc.). We argue that
XSC complements these approaches by providing higher-level constructs on sessions
that allow a closer formalization of more abstract protocols where multi-party sessions
are relevant.

To demonstrate the adequacy of our approach, we apply XSC to specify the OpenID
protocol [17], a complex protocol for managing distributed identities whose behavior
requires many parties to participate to the same session. XSC mechanisms have allowed
us to identify and formally specify all the assumptions underlying the definition of the
OpenID protocol. We argue that our approach will make easier to reason and verify
properties of protocols requiring multi-party sessions.

The main effort of this paper is on the formal definition of XSC showing its adequacy
to handle complex coordination policies via typing information. This is part of an ongo-
ing work on the design, implementation and experimental evaluation of a middleware,
called JSCL [11], supporting coordination policies for service-oriented applications.
The distinguished feature of our approach resides in the close interplay between formal
definition and implementation: the implementation of the JSCL middleware is driven
by the formal definition of the (X)SC calculus.

Structure of the paper. Section 2 reviews the basic features of the SC calculus. Section 3
introduces the concept of multi-party sessions on events and shows how it yields a syn-
chronization mechanism. Section 4 introduces XSC types. The operational semantics

68 G. Ferrari et al.

of XSC is presented in Section 5. In Section 6 we specify the OpenID protocol. Finally,
Section 7 gives some concluding remarks.

2 Preliminaries: Signal Calculus

The Signal Calculus (SC) is a process calculus introduced in [11] as a foundational
model of the JSCL (after Java Signal Core Layer) programming middleware, for coordi-
nating distributed components (e.g., web services). SC relies on the EN paradigm where
components, the basic building blocks of SC, interact by issuing/reacting to events. A
component represents a ’simple’ service interacting via asynchronous signal passing.
Each component is identified by a unique name, which, intuitively, can be thought of as
the URI of the published service. The signals exchanged among components are mes-
sages containing information regarding the managed resources and the events raised
during internal computations. Signals are classified by topics; specifically, each compo-
nent specifies (i) the reaction to activate on reception of signals of a certain topic and (ii)
the set of event flows, namely the collection of component names the emitted signals
will be delivered. Hence, while reactions define the interacting behavior of the compo-
nent, flows define the component view of the coordination policies. The SC primitives
allow one to dynamically modify the topology of the coordination policies by adding
new flows and reactions to components.

Standard EN paradigms rely on brokered communication; SC, instead, adopts a non-
brokered notification mechanism where subscription and emission are explicitly tagged
with naming information, e.g. the name of the target components. This avoids any
centralization point by distributing the connection managing to each involved partic-
ipant. Brokered EN paradigms are more appropriate when coordination is handled by
an orchestrator, while non-brokered approaches fit much better when choreography is
adopted. For a detailed comparison among brokered and non-brokered EN see [14].

The adoption of the EN paradigm, for managing coordination policies has two main
advantages. On the one hand, it is a well known programming model and, on the other
hand, it permits the distribution of coordination activities and of the underlying com-
putational infrastructure. This distribution is obtained by decoupling publishers and
subscribers. The intuitive idea is that publishers and subscribers do not rely on any ’a
priori’ knowledge.

The dynamic flavor of the SC calculus permits modeling a wide range of coordi-
nation policies for service-oriented applications (e.g. in [10] the primitives have been
used to deal with dynamic and heterogeneous networks). However, other primitives
providing high-level abstractions for programming are desirable. In particular, in the
current formulation, information associated to signals is not structured and topics can-
not be created dynamically. Furthermore, the notion of session abstraction is missing:
components cannot keep track of concurrent event notifications.

3 Extended Signal Calculus

In this section, we present an extension of the SC calculus, called XSC, that permits
managing of sessions and is also capable of handling structured topics via suitable
types.

Coordination Via Types in an Event-Based Framework 69

3.1 Managing Sessions

The calculus is centered around the notion of component. A component a[B]RF is a ser-
vice identified by a unique name a: the public address of the service. The expression
B describes service internal behavior. Expressions R and F , called reactions and flows,
respectively, have to be thought of as the service interface. We assume a set of topic
names Λ (ranged over by τ), a set of signal variables (ranged over by x) and a set of sig-
nal names (ranged over by s,s1,s2...). Signal names represent data exchanged among
components and should carry additional information even if this feature is not explicitly
modeled. Finally, we assume a set of component names a,b, Hereafter, we adopt the
notation a to denote a set of component names.

The syntax of behaviors is given by the following grammar,

B ::= 0
∣∣ B | B′ ∣∣ !B ∣∣∣∣ s : τ c©τ′.B′ (Signal emission)∣∣ ντ.B′ (Topic creation)∣∣ + x : τ c©λτ′ → B!.B′ (Lambda reaction)∣∣ + x : τ c©τ′ → B!.B′ (Check reaction)∣∣ +"τ � a#.B′ (Flow update)

where the productions in the first row have the usual process algebraic meaning. A sig-
nal emission s : τ c©τ′.B′ describes the emission of the signal s of topic τ over the session
identified by the topic τ′. Topics can be freshly generated using the topic creation prim-
itive. A lambda reaction + x : τ c©λτ′ → B!.B′ installs a “generic reaction” for the topic
τ in the component interface; this reaction handles all signals with topic τ, regardless
of their session. In the reaction behavior B, τ′ and x are bound by the lambda reaction1.
After the installation of a reaction the continuation B′ is executed. Conversely, check
reaction installs a reaction that can handle only signals having the topic τ issued for the
session τ′ and, in this case, only x is bound in the reaction behavior B. A flow update
+"τ � a#.B extends the flow of a component, specifying the set of component names
a to which deliver signals having topic τ. After the installation of a flow, the behavior
B′ is executed.

Reactions and flows syntax have the following syntax:

R ::= 0
∣∣ R|R∣∣ x : τ c©λτ′ → B (Lambda reaction)∣∣ x : τ c©τ′ → B (Check reaction)

F ::= 0
∣∣ F |F∣∣ τ � a (single flow)

where the empty reaction (resp. flow) 0 cannot respond to any signal (resp. cannot emit
a signal for any receiver) and reaction (resp. flow) composition R|R allows a component
to react to (resp. to emit) different kinds of signal. Reactions R1 and R2 are called
subreactions of the reaction composition R1|R2.

Reactions describe how a component reacts upon the reception of a signal. As pointed
out before, a lambda reaction is triggered by signals independently from their session,

1 See Appendix A for a formal definition of free and bound names of the binders of XSC.

70 G. Ferrari et al.

while a check reaction reacts only to signals in the session τ′. Once a reaction to a signal
takes place, the behavior B will be executed in the component in parallel with the exist-
ing behaviors. Flows describe the component view of the choreography: a component
with a single flow τ � a can deliver signals of topic τ to components specified in a.

Networks describe component distribution and carry signals exchanged among com-
ponents. Network syntax is defined as follows:

N ::= /0
∣∣ a[B]RF

∣∣ N||N
∣∣ 〈s : t c©τ@a〉

∣∣ ντ.N

A network can be empty /0, a single component a[B]RF , or the parallel composition of net-
works N||N′. Networks carry signals exchanged among components. The signal emis-
sion spawns into the network, for each target component, an “envelope” 〈s : t c©τ@a〉
containing the signal and the name a of the target component. Finally, the last produc-
tion allows to extend the scope of freshly generated topics over networks.

The structural congruence over reactions, flows and behaviors is the smallest con-
gruence relation that satisfies the commutative monoidal laws for (R, |,0), (F, |,0) and
(B, | ,0). Also, for the structural congruence over behaviors, the following laws hold:

ντ.0 ≡ 0, (ντ.B) | B′ ≡ ντ.(B | B′), if τ /∈ f n(B′)

and, whenever B ≡ B′:

+ x : τ c©λτ′ → B!.B′′ ≡ + x : τ c©λτ′ → B′!.B′′

+ x : τ c©τ′ → B!.B′′ ≡ + x : τ c©τ′ → B′!.B′′

If B ≡ B′, the following rules hold for structural congruence over reactions:

x : τ c©λτ′ → B ≡ x : τ c©λτ′ → B′

x : τ c©τ′ → B ≡ x : τ c©τ′ → B′

Similarly, ≡ is the smallest equivalence relation that respects the commutative monoidal
laws for (N, ||, /0) and the following ones:

a[0]0F ≡ /0, ντ. /0 ≡ /0, (ντ.N)||N′ ≡ ντ.(N||N′), if τ /∈ f n(N′)

F1 ≡ F2 B1 ≡ B2 R1 ≡ R2

a[B1]
R1
F1

≡ a[B2]
R2
F2

,
τ /∈ f n(R)∪ f n(F)∪{a}

a[ντ.B]RF ≡ ντ.a[B]RF
.

To give an intuition of the features and the facilities of XSC, we consider a simple
scenario. The operational semantics will be presented in Section 4.

3.2 Joining Events

Since XSC components are autonomous entities communicating through asynchronous
primitives, it could be useful to introduce a lightweight synchronization mechanism that
allows us to express that a task can be executed whenever other concurrent tasks have
been completed. In this scenario we show how to encode a form of join synchronization
among concurrent tasks.

Coordination Via Types in an Event-Based Framework 71

Fig. 1. An example of synchronization between two components

Figure 1 shows an emitter E , two intermediate components C1 and C2, and the join
service J. The emitter E starts the communications raising two events of different topics
toward C1 and C2 that perform an internal computation and then notify their termination
by issuing an event to the join service. The component J waits that both the intermedi-
ate services have completed their tasks and then executes its internal behavior B. The
signals sent to C1 and C2 are both related to the same session τ that is later used by J to
apply the synchronization on the same workflow. Clearly, the two intermediate services
C1 and C2 can concurrently perform their tasks, while the execution of the service J can
be triggered only after the completion of their execution.

This example can be modeled by the XSC network E||C1||C2||J, where:

E � e[ντ.s : τ1 c©τ.s : τ2 c©τ.0]0τ1�c1|τ2�c2

Ci � ci[0]x:τi c©λτ→x:τi c©τ.0
τi� j , i = 1,2

J � j[0]x:τ1 c©λτ→+ x′ :τ2 c©τ→B!.0
0

The join component has only one active reaction installed for signals having topic τ1.
When the two intermediary services forward their signals, the envelope containing the
τ2 event cannot be consumed by the join, and remains pending over the network. The
reception of the τ1 envelope triggers the activation of the join generic reaction. The
reaction reads the session of the signal τ1 and creates a new specialized reaction for the
signal topic τ2. This reaction can be triggered only by signals that refer to the session
received by the τ1 signal. When such kind of signal is received, the proper behavior B
is executed. Notice that the creation of the specialized reaction for the τ2 implies that a
possible pendent envelope is consumed.

4 Structured Topics

We have described how the session mechanism permits to specify complex coordina-
tion policies by constraining the ways components may react to notification of events.
The basic idea is to control the coordination workflow by exploiting information about
topics and sessions to trigger the execution of the suitable reactions. In this section, we
further develop this idea by introducing some operators on topics that induce an alge-
braic structure on events. We then show how the algebraic structure on events can be
used to have a finer control over the coordination activities of components.

We define the signal topic t as follows:

t ::= ε
∣∣ � ∣∣ τ

∣∣ t × t
∣∣ t + t

72 G. Ferrari et al.

t ′ × t ′′ ≡ t ′′ × t ′

t × t ≡ t
t ′ × (t ′′ × t ′′′) ≡ (t ′ × t ′′)× t ′′′

t ×� ≡ t
t × ε ≡ ε

t ′ + t ′′ ≡ t ′′ + t ′

t + t ≡ t
t ′ +(t ′′ + t ′′′) ≡ (t ′ + t ′′)+ t ′′′

t + ε ≡ t
t +� ≡ �

t × (t ′ + t ′′) ≡ (t × t ′)+(t × t ′′)

Fig. 2. Structural congruence over topics

The constant topics ε and � are used to define the empty and the global event kinds,
respectively. Intuitively, a signal having an empty topic can be consumed by a reaction
having an empty behavior. A signal having a global topic can be handled by any com-
ponent, activating any reaction. Signal topics can be composed using the constructors
× and +. A signal having topic t × t ′ can be consumed only by components that can
handle both event kinds t and t ′. Moreover a signal having topic t + t ′ can be consumed
by any component that can handle event kinds t or t ′. The constructors + and × can be
informally interpreted as logical disjunction and conjunction.

The formal definition of the meaning of structured topics is given algebraically by
introducing a structural congruence over them (see Figure 2). Notice that the × and +
are associative, commutative and idempotent. Also, × distributes over +, moreover, �
and ε are their respective neutral elements. For instance, t×�≡ t and t +ε ≡ t states that
a signal of topic t × � or t + ε activates the same reactions activated by signals having
topic t; similarly t × ε ≡ ε states that a signal of topic t × ε cannot activate any reaction,
while t + � ≡ � states that a signal of topic t + � activates any reaction. Formally, the
algebraic structure over topic takes the form of a C-Semiring [1].

Preorder relation. The binary relation % over topics is the least preorder satisfying
the following axioms:

t % ε, � % t, t % t, t % t × t ′, t + t ′ % t

Intuitively the preorder t1 % t2 formalizes the idea that the topic t1 is less restrictive than
the topic t2. For example, a signal having topic τ1 + τ2 triggers either a reaction for τ1

or one for τ2. Hence, the coordination policy expressed by τ1 +τ2 is less restrictive than
the one expressed by τ1.

The algebraic structure over topics allows us to define the policies to aggregate
events. The XSC syntax of behaviors can be extended to deal with the structure of
topics by simply refining the signal emission primitive as s : t c©τ′.B′, where t repre-
sents the signal topic. We have now to specify the way a component may react upon
the reception of a signal of a certain topic. In other words, a main question, here, is to
understand which reactions a component may dynamically activate to match the policy
specified by the topics of events. In this paper, we will answer this question by intro-
ducing a suitable type system over component reactions. The type system allows us to
precisely identify the set of reactions matching a given event topic.

Conversation types (ranged over by T) classify signals by their topic structures (poli-
cies) and sessions. Their syntax is defined below:

Coordination Via Types in an Event-Based Framework 73

T ::= t c©τ
∣∣ (Session conversation type)

t c©� (Generic conversation type)

A session conversation type t c©τ characterizes signals (of a topic t) within a session
τ. A generic conversation type t c©� captures the notion of signals (of a topic t) not
belonging to a specific session.

Conversation types are equivalent if the structures of their topics and their sessions
are equivalent. Formally, equations in Figure 2 are extended with the following rules:

t ≡ t ′

t c©τ ≡ t ′ c©τ

t ≡ t ′

t c©� ≡ t ′ c©�

Conversation types can be equipped with a subtype relation which will be used to
formalize how signals are consumed by reactions. Namely, if T % T ′ then reactions able
to consume signals with conversation type T ′ can consume signals with conversation
type T as well.

Subtype relation. The subtype relation T % T ′ over conversation types is defined as
the smallest preorder relation that satisfies the following inference rules:

t % t ′
(1)

t c©τ % t ′ c©τ

t % t ′
(2)

t c©τ % t ′ c©�

t % t ′
(3)

t c©� % t ′ c©�

Rules (1) and (3) have a clear interpretation in terms of the preorder over topics. Rule
(2) is controvariant wrt the session part of the conversation type and formalizes the idea
that a lambda reaction can be activated by signals independently by their session.

A reaction type is a (possibly empty) set of conversation types and describes the set
of signals that can be consumed by a reaction.

Reaction typing. A reaction R has reaction type T when & R : T can be inferred from
the following rules:

(1)
& 0 : /0

(2)
& x : τ c©τ′ → B : {τ c©τ′}

(3)
& x : τ c©λτ′ → B : {τ c©�}

& R1 : T1 & R2 : T2
(4)

& R1|R2 : T1 ∪T2

Rules (1 ÷ 4) are quite natural; for instance, rule (3) states that the type of a lambda
reaction x : τ c©λτ′ → B is the singleton {τ c©�}. Reaction types have a natural subtype
relation given by the subset inclusion (T ⊆ T′).

Given a non-empty reaction type T = {τ1 c©r1, . . . ,τn c©rn : ri ∈ Λ∪{�} for i = 1, . . . ,
n}, we let

×T = τ1 × ...× τn, T× = r1 × ...× rn, +T = τ1 + ...+ τn, T+ = r1 + ...+ rn

while ×T = � = T× and +T = ε = T+ if T = /0. The following properties trivially hold.

×T = � ⇔ T = /0 T× = τ ⇒ (T �= /0 ∧ ∀ri.ri ∈ {τ,�})
T+ = ε ⇔ T = /0 T× = � ⇔ (T = /0 ∨ ∀ri.ri = �)
T+ = � ⇔ (T �= /0 ∧ ∃ri.ri = �) T+ = τ ⇔ (T �= /0 ∧ ∀ri.ri = τ)

74 G. Ferrari et al.

After having defined the preorder on topics and the subtype relation for conversation
types, we define a formal mechanism that establishes when a reaction is enabled to
handle a signal reception. This definition is the basic tool that will be exploited at run-
time to activate the reaction matching an event notification.

Reaction enabling. Let T ≡ t c©τ be a conversation type and T a non empty reaction
type. We say that reactions with type T can be activated by signals with conversation
type T, and we write T � T, if the following conditions hold:

1. t % ×T and T× % τ
2. ∀T′ ⊂ T.T′ �≡ /0 =⇒ T′ does not enjoy the Condition 1

Condition 1 expresses that the topic of the signals is less restrictive than the conjunction
of the topics of the reactions (t %× T) and, since T is not empty then it is of the form
{τ1 c©r1, . . . ,τn c©rn : ri ∈ Λ∪{�} for i = 1, . . . ,n}, reactions waiting for a session topic
different from τ cannot be activated because ∀i.ri ≡ τ ∨ ri ≡ �. Condition 2 ensures
that enabled reactions are minimal, namely, that each subreaction (∀T′ ⊂ T) cannot be
activated by signals having signal type T . The following table gives examples where
conditions 1 and 2 hold or not.

Conversation Type t c©τ Reaction Type T t % ×T T× % τ Cond. 2
τ1 + τ2 c©τ {τ1 c©τ} √ √ √

τ1 × τ2 c©τ {τ1 c©τ,τ2 c©�} √ √ √

τ1 × τ2 c©τ {τ1 c©τ} × √ √

τ1 c©τ {τ1 c©τ′} √ × √

τ1 + τ2 c©τ {τ1 c©τ,τ2 c©�} √ √ ×
τ1 × τ2 c©τ {τ1 c©τ,τ2 c©�,τ3 c©�} √ √ ×

Enabled reaction set. Given a reaction R, the set of enabled subreactions by a conver-
sation type t c©τ is defined as Rt c©τ = {R′.R ≡ R′|R′′ ∧ & R′ : T ∧ t c©τ � T}.

Let R1 be x : τ1 c©τ → B1 and R2 be x : τ2 c©λτ′ → B2, examples exploiting the enabled
reaction set are given in Table 1. Notice that in the second row of Table 1 only one

Table 1. Enabled reaction set example

Conversation Type t c©τ Reaction R Rt c©τ
τ1 + τ2 c©τ R1 {R1}
τ1 × τ2 c©τ R1|R2 {R1|R2}
τ1 × τ2 c©τ R1 /0
τ1 + τ2 c©τ R1|R2 {R1,R2}

reaction (R1|R2) is enabled. Upon reception of a signal having conversation type T ,
both subreactions R1 and R2 will be concurrently activated. Also, in the fourth row of
Table 1 two different reactions (R1 and R2) are enabled. Upon the reception of a signal
having conversation type T , only one of them will be activated nondeterministically.

Coordination Via Types in an Event-Based Framework 75

Preferred reactions. Let R be a reaction and t c©τ be a session conversation type. The
set of preferred reactions in R wrt t c©τ is defined as:

Rt c©τ↓ =

⎧⎨⎩R1 ∈ Rt c©τ.& R1 : T1 ⇒∀R2 ∈ Rt c©τ. & R2 : T2 ⇒

⎛⎝ T+
1 ≡ τ
∨

T×
2 % T×

1

⎞⎠⎫⎬⎭
Basically, each reaction R1 ∈ Rt c©τ↓ is composed only by check reactions for the τ
session or, if it is composed only by lambda reactions, then it cannot exists another
subreaction composed by check reactions for τ.

The topic structures can be adopted to model the example described in Section 3.2,
refining the emitter component as E � e[ντ.s : τ1 + τ2 c©τ.0]0τ1�c1|τ2�c2

.

5 Operational Semantics

The operational semantics of XSC is given in the classical reduction style and exploits
the structural congruences defined in Section 3.1. Some auxiliary functions on flows
and reactions are introduced for simplifying the definition of the reduction relation on
networks.

The flow projection, (F)↓t , defined as

(τ � a)↓τ= a (τ � a)↓τ′= (τ � a)↓ε= (0)↓t= /0
(τ � a)↓�= a (F1|F2)↓t= (F1)↓t ∪(F2)↓t

(F)↓t1+t2= (F)↓t1 ∪(F)↓t2 (F)↓t1×t2= (F)↓t1 ∩(F)↓t2

takes a flow and a topic and yields the set of target component names for the topic t.
The reaction projection, (R)↓s:T , defined as

(0)↓s:�= (0,0)
(x : τ′ c©τ′′ → B)↓s:t c©τ= ({s/x}B,0)
(x : τ′ c©λτ′′ → B)↓s:t c©τ= ({s/x,τ/τ′′}B,x : τ′ c©λτ′′ → B)
(R1|R2)↓s:t c©τ= (B′ | B′′,R′|R′′), if (R1)↓s:t c©τ= (B′,R′) and (R2)↓s:t c©τ= (B′′,R′′)

takes a reaction R and a signal s typed by T and returns a pair (B,R′) such that B
is the behavior of R instantiated with s and R′ is the reaction to be installed. Notice
that reaction projection permits to consume check reactions and to maintain lambda
reactions installed. Also, reaction projection is applied, by construction, to reactions
that can consume the signal s. This assumption is guaranteed by the reduction rules
using the type system.

The reduction relation → over networks is defined in Figure 3. Reactions can be
added to a component by executing the behavioral primitives RLambaUpd and RCheck-
Upd. These primitives change the interface of a by appending to the set of installed re-
actions the new one. The only difference between the two primitives regards the kind of
reaction installed. Analogously the FlowUpd updates the flow interface of a component
by appending new target component names. The Emit and RActivation rules define no-
tification dispatching: at emission time, component a spawns into the network a signal
targeted to all the components (ci ∈ b) subscribed for the signal type (according to the

76 G. Ferrari et al.

(RLambaUpd)
a[+ x : τ c©λτ′ → B!.B′ | B′′]RF → a[B′ | B′′]R|x:τ c©λτ′→B

F

(RCheckUpd)
a[+ x : τ c©τ′ → B!.B′ | B′′]RF → a[B′ | B′′]R|x:τ c©τ′→B

F

(FlowUpd)
a[+"τ � b#.B | B′]RF → a[B | B′]RF|τ�b

(F)↓t c©τ= b
(Emit)

a[s : t c©τ.B]RF → a[B]RF ||Σci∈b 〈s : t c©τ@ci〉

R ≡ R′|R0 R′ ∈ Rt c©τ↓ (R′)↓s:t c©τ= (B′,R′′)
(RActivation)

〈s : t c©τ@a〉 ||a[B]RF → a[B|B′]R0|R′′

F

N → N′
(NStep)

N||N1 → N′||N1

Fig. 3. Operational semantics

(F)↓t projection). Once a signal envelop has been spawn into the network the RActiva-
tion rule can be applied to the target component; the application of this rule activates,
non deterministically, a reaction among the ones in the reaction projection R′ ∈ Rt c©τ↓.
Then, the activated reaction is replaced in the interface of a by R′′ reaction obtained by
applying the reaction projection.

6 Federated Identity Example

In order to illustrate the main facilities made available by the XSC calculus, in this sec-
tion we show an example involving multi-party sessions. A typical scenario in which
several agents are involved into the same session is represented by user-centric digital
identity systems. We consider an application of the OpenID protocol, an open frame-
work for distributed identity management. The solution presented can be easy adapted
for similar systems e.g., i-Name [15] and Microsoft CardSpace [7].

The main advantage of the identity management systems is the unique identifica-
tion of the user agent on the network in the same manner an URI uniquely identifies a
website. To reach this goal, these systems define a special kind of services, called iden-
tity providers, that act as intermediate agents among service consumers and providers.
Another key feature offered by OpenID is the decentralization of the authentication
protocol decoupling the service from a particular identity provider.

Hereafter, we denote a service consumer as C, an identity provider as IP and a service
provider as SP. The protocol consists of two phases. In the first phase, C accesses its IP
to be authenticated and to establish a private session. In the second phase C accesses a
service SP specifying its identity and the IP that certifies her/his credentials. Notice that
the actual authentication mechanism is not part of the specification of OpenID, and so it
will not be treated: here we only deal with the message exchanges among the involved
parties.

We start by giving the informal description of the OpenID protocol:

Coordination Via Types in an Event-Based Framework 77

1. C initiates authentication with IP by presenting its credentials.
2. IP verifies user credentials and generates a new session shared with C. The session

will be used to identify C.
3. C initiates authentication by presenting a User-Supplied Identifier to the SP via its

User-Agent.
4. SP establishes an Endpoint URL used by C for authentication.
5. SP redirects the User-Agent of C to IP with an authentication request.
6. IP establishes whether C is authorized to perform authentication and wishes to do

so. The way C authenticates to IP and any authentication policy are out of scope
for OpenID.

7. IP redirects the User-Agent of C back to SP with either an assertion stating that the
authentication is approved or a message that the authentication failed.

8. SP verifies the information received from the IP.

The OpenID protocol can be formally specified as the XSC network C||IP||SP where
C, IP and SP are the components defined in Figure 4. Notice that we omit to model the
data exchanged among components, because we focus on the session exchanges and
message sequences.

C � c[Bc]0Auth�i|Claim�s|Delegate�i

Bc � νr.+ x : AuthOK c©λsip → BAuthOK(sip)!
.credentials : Auth c©r.0

BAuthOK(sip) � νr.+ x : Redirectsp c©λssp → BRedirectsi(sip,ssp)!
.identifier : Claim c©r.0

BRedirectsi(sip,ssp) � + x : Redirectsi c©λs3 → BRedirectis(sip,ssp,s3)!.
x : Delegate c©sip.0

BRedirectis(sip,ssp,s3) � +"ssp � s#.p : ssp c©s3.0

IP � i[0]Rip

AuthOK�c|Redirectip�c|Verified�s

Rip � x : Auth c©λr → BAuth(r)
BAuth(r) � νsip.+ x : Delegate c©sip → BDelegate(sip)!.

x : AuthOK c©sip.0
BDelegate(sip) � νs3.+ x : Verify c©s3 → BVerify!.x : Redirectip c©s3.0
BVerify � x : Verified c©s3.0

SP � s[0]Rsp

Redirectsi�c|Verify�i

Rsp � x : Claim c©λr → BClaim(r)
BClaim(r) � νssp.+ x : ssp c©λs3 → BCheck(s3)!.x : Redirectsi c©ssp.0
BCheck(s3) � + x : Verified c©s3 → BVerified!.x : Verify c©s3.0

Fig. 4. XSC specification of the OpenID protocol

The user sends its credentials to the Identity Provider, rising an Auth event (via the Bc

behavior). Notice that the client creates a new reaction to receive an event corresponding
to the successful authentication (AuthOK) from the identity provider.

78 G. Ferrari et al.

When the identity provider receives an authentication request (Auth event), it gen-
erates a new session (sip). This will be used later to identify the user agent without an
explicit communication of the user credentials. The service provider raises a successful
authentication event (AuthOK), communicating the generated session. Notice that we
assume that the user authentication is always successful, therefore we do not model the
implementation verification of the user credentials. Finally, the identity provider creates
a new reaction to receive a delegation event. This reaction can be activated only for the
generated session. Only the authenticated user owning this session can generate a signal
that can be consumed by this reaction.

When the user has been notified about the successful authentication, by receiving
the session shared with the identity provider (BAuthOK(sip)), it can access to a federated
service. The user communicates the claimed identity (identifier) (and not the whole
credentials) to the service provider rising a Claim event.

When a service provider receives a Claim event, it delegates the authentication of the
identity to the identity provider. This is performed redirecting the client to the identity
provider. Observe that the service provider generates a new session ssp that is commu-
nicated via the redirect request (x : Redirectsi c©ssp.0). The generated session is used
as a new event, the service provider waits this event to perform the authentication. In
OpenID this is implemented through the generation of a user-specific URL.

When the user receives the Claim response and the session shared with the service
provider ssp, it forwards the request to the identity provider, delegating the authentica-
tion to it.

Finally, on reception of a delegate event for the authenticated user (Delegate c©sip),
the identity provider generates a three-party session s3 and requests the user to forward
it to the service provider. The identity provider and the service provider use this session
to verify the user claim. If the verification is successful, the service provider continues
according to BVerified after the reception of the consumer parameter p, i.e., the behavior
representing the service supplied by SP which depends on the provided service and
therefore it is not specified.

7 Concluding Remarks

We introduced a process calculus to handle multi-party sessions and coordination poli-
cies in an event-notification (EN) framework. Our approach is based on type informa-
tion that naturally support and extend typed-based EN systems. We demonstrated the
adequacy of the approach by specifying the OpenID protocol.

As future work we plan to investigate which properties the XSC type system enjoys.
We are also studying different interpretation for the algebraic structure of topics. For
instance, by relaxing the idempotency of × we get a theory which allows one to
count the number of topics, thus leading to a notion of linear types. Finally, the type
system described in this paper yields a constraint semiring structure [1] that has been
successfully exploited to model QoS aspects of distributed systems [8,12]. We argue
that this will allow us to express QoS driven coordination policy within our type system.

Coordination Via Types in an Event-Based Framework 79

We also plan to validate and assess our approach on a variety of languages for pro-
gramming service coordination policies. A step toward this goal would be to encode the
Global Calculus [3] in XSC.

At the implementation level, the JSCL middleware (see Section 2) has already been
extended with some of the new concepts of XSC (e.g., logical ports and signal sessions),
while topic creation and structured topic composition are under development.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-
tion. Journal of the ACM 44(2), 201–236 (1997)

2. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.: SCC: A service centered
calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM. LNCS, vol. 4184, pp. 38–
57. Springer-Verlag, Heidelberg (2006)

3. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming
for web services. In: De Nicola, R. (ed.) Programming Languages and Systems. LNCS,
vol. 4421, pp. 2–17. Springer-Verlag, Heidelberg (2007)

4. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressiveness in an
internet-scale event notification service. In: Annual Symposium on Principles of Distributed
Computing PODC, pp. 219–227 (2000)

5. Carzaniga, A., Wolf, A.L.: Content-based networking: A new communication infrastructure.
In: König-Ries, B., Makki, K., Makki, S.A.M., Pissinou, N., Scheuermann, P. (eds.) IMWS
2001. LNCS, vol. 2538, pp. 59–68. Springer, Heidelberg (2002)

6. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: Proceedings of the
ACM SIGCOMM 2003 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, Karlsruhe, Germany, August 25-29, 2003, pp. 163–
174. ACM Press, New York (2003)

7. Chappell, D.: Introducing windows cardspace. MSDN Library. Available, at
http://msdn2.microsoft.com/en-us/library/aa480189.aspx

8. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A Basic Calculus for
Modelling Service Level Agreements. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINA-
TION 2005. LNCS, vol. 3454, pp. 33–48. Springer, Heidelberg (2005)

9. Eugster, P.T., Guerraoui, R.: Distributed programming with typed events. IEEE Soft-
ware 21(2), 56–64 (2004)

10. Ferrari, G., Guanciale, R., Strollo, D.: Event based service coordination over dynamic and
heterogeneous networks. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 453–458. Springer, Heidelberg (2006)

11. Ferrari, G., Guanciale, R., Strollo, D.: Jscl: A middleware for service coordination. In: Najm,
E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 46–
60. Springer, Heidelberg (2006)

12. Hirsch, D., Tuosto, E.: SHReQ: A Framework for Coordinating Application Level QoS. In:
Bernhard, K.A., Bernhard, B. (eds.) 3rd IEEE International Conference on Software Engi-
neering and Formal Methods, pp. 425–434. IEEE Computer Society, Los Alamitos (2005)

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-
tured communication-based programming. In: Hankin, C. (ed.) ESOP 1998 and ETAPS
1998. LNCS, vol. 1381, pp. 122–141. Springer, Heidelberg (1998)

http://msdn2.microsoft.com/en-us/library/aa480189.aspx

80 G. Ferrari et al.

14. Huang, Y., Gannon, D.: A comparative study of web services-based event notification speci-
fications. In: ICPP Workshops, pp. 7–14. IEEE Computer Society, Los Alamitos (2006)

15. i-name specifications. Available, at http://www.inames.net/developers.html
16. Liu, Y., Plale, B.: Survey of publish subscribe event systems. Technical Report TR574, Com-

puter Science Department, Indiana University (2003)
17. Recordon, D., Fitzpatrick, B.: OpenID Authentication 1.1. Available at

http://openid.net/specs/openid-authentication-1 1.html
18. Tam, D., Azimi, R., Jacobsen, H.-A.: Building content-based publish/subscribe systems with

distributed hash tables. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, In-
formation Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 138–152. Springer,
Heidelberg (2003)

A Free names

We define the free names of our syntactic categories in the usual way:

f n(0) = /0
f n(!B) = f n(B)
f n(+"τ � a#.B′) = {τ,a}∪ f n(B′)
f n(B1 | B2) = f n(B1)∪ f n(B2)
f n(+ x : τ c©τ′ → B!.B′) = f n(B)\ {x}∪{τ,τ′}∪ f n(B′)
f n(+ x : τ c©λτ′ → B!.B′) = f n(B)\ {x,τ′}∪{τ}∪ f n(B′)
f n(s : t c©τ.B′) = f n(B′)∪{s,τ}∪ f n(t)
f n(ντ.B′) = f n(B′)\ {τ}

f n(0) = /0
f n(R1|R2) = f n(R1)∪ f n(R2)
f n(x : τ c©τ′ → B) = f n(B)\ {x}∪{τ,τ′}
f n(x : τ c©λτ′ → B) = f n(B)\ {x,τ′}∪{τ}
f n(0) = /0
f n(F1|F2) = f n(F1)∪ f n(F2)
f n(τ � b) = {τ,b}

f n(/0) = /0
f n(ντ.N) = f n(N)\ {τ}
f n(〈s : t c©τ@a〉) = {s,a,τ}∪ f n(t)
f n(N1||N2) = f n(N1)∪ f n(N2)
f n(a[B]RF) = f n(B)∪ f n(F)∪ f n(R)∪{a}

f n(τ) = {τ}
f n(ε) = f n(�) = /0
f n(t1 c©τ) = f n(t1)∪{τ}
f n(t1 c©�) = f n(t1)
f n(t1 × t2) = f n(t1 + t2) = f n(t1)∪ f n(t2)

http://www.inames.net/developers.html
http://openid.net/specs/openid-authentication-1_1.html

Exploring the Connection of Choreography and

Orchestration with Exception Handling and
Finalization/Compensation�

Yang Hongli, Zhao Xiangpeng, Cai Chao, and Qiu Zongyan

LMAM and Department of Informatics, School of Math.,
Peking University, Beijing 100871, China
{yhl,zxp,caic,qzy}@math.pku.edu.cn

Abstract. Web service choreography describes protocols for multiparty
collaboration, whereas orchestration focuses on single peers. One key
requirement of choreography is to support transactions, which makes ex-
ceptional handling and finalization very important features in modelling
choreography. A projection is a procedure which takes a choreography
and generates a set of processes in the orchestration level. Given a chore-
ography, how to project exceptional handling and finalization constructs
is still an open problem. This paper aims to study exception handling and
transactionality in choreographies from a projection view. We propose
formal languages for both choreography and orchestration with trace
semantics, and a projection based on the relationship between choreog-
raphy and scope rooted in WS-CDL and WS-BPEL respectively.

Keywords: Choreography, Orchestration, Projection, Exception Han-
dling, Finalization, Compensation.

1 Introduction

Web services promise the interoperability of various applications running on
heterogeneous platforms over the Internet. Web service composition refers to
the process of combining web services to provide value-added services, which
has received much interest to support enterprise application integration.

Two levels of view to the composition of web services exist, namely orches-
tration and choreography. The description of the single services, possibly with
cooperation of other services, is called an orchestration. The de facto standard
for orchestration is WS-BPEL [3] (Web Services Business Process Execution
Language) developed by a consortium comprising BEA, IBM, Microsoft etc.
The global view of the interactions are described by the so-called choreography.
WS-CDL(Web Service Choreography Description Language) [2] is a W3C can-
didate recommendation, designed for describing the common and collaborative
observable behavior of multiple services that interact with each other. Another

� Supported by National Natural Science Foundation of China (No. 60573081).

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 81–96, 2007.
c© IFIP International Federation for Information Processing 2007

82 Y. Hongli et al.

notation, SSDL [1], also allows the description of protocols for multiparty collab-
oration using message-oriented programming abstractions. In short, choreogra-
phy describes the system in a global-view manner whereas orchestration focuses
on the peers separately.

Using WS-CDL, a contract contains a “global” definition of the common flow
ordering conditions and constraints of a task, which should be in turn realized
by combination of the several local systems [2]. Once the contract is clearly
defined and jointly agreed to, participants can be built and tested according
to it independently. However, two challenges exist: (1) how to automatically
generate correct local requirements for the roles from the global contract; (2)
how to verify whether a given process can play as a participant whose observable
behavior conforms to the requirement of a given choreography.

Much work has been carried out, while much is still going on in the projection
and conformance validation between choreography and orchestration. Carbone
et al. [11] studied a two-level paradigm for the description of communication be-
haviors, on the global message flows and end-point behavior levels respectively.
Three principles for well-structured global description and a theory for projection
are developed. In [7,8], Busi et al. formalized choreography and orchestration by
using process algebra, where conformance takes the form of a bisimulation-like
relation. By means of automaton, Schifanella et al. [4] defined a conformance
notion which tests whether interoperability is guaranteed. Fu et al. [12] specified
a conversation protocol by a realizable Büchi automaton, and the peer imple-
mentations are synthesized from the protocol via projection. Zhao et al. [17]
proposed a small language as a formal model of the simplified WS-CDL and
projected a given choreography to orchestration views.

One key aspect in composing web services is to support transactions of process
executions. Exception handling and transactionality are important features in
both choreography and orchestration levels. WS-CDL provides finalizer actions
to confirm, cancel or modify the effects of its completed actions. In orchestration
level, if a long-running transaction fails, appropriate compensations are executed
for the completed parts of the transaction, which is supported by WS-BPEL with
its scope-based compensation. Butler et al. integrated the compensation feature
into CSP, and provided both operational semantics and denotational (trace) se-
mantics [9,10]. Bruni et al. presented a hierarchy of transactional calculi with
increasing expressiveness in [6]. Qiu et al. [15] and Pu et al. [14] studied the
semantics of WS-BPEL fault and compensation handling. Li et al. [13] proposed
a language with operational semantics to model exception handling and finaliza-
tion of WS-CDL. To the best of our knowledge, no work is done about modelling
exception handling and transactionality from a projection view, which resolves
how exception handling and finalization in a choreography can be implemented
in orchestration level.

In our previous work [16], we have presented a simplified language for chore-
ography, and a simple process language for participant roles, both with for-
mal syntax and semantics. We discussed the concept of projections, which map
a given choreography to a set of role processes. We defined the concept of

Exploring the Connection of Choreography and Orchestration 83

restricted natural choreography which is easily implementable, and proposed two
structural conditions as a criterion to distinguish the restricted natural chore-
ography. Although useful as a formal investigation of the relationship between
choreography and orchestration, the framework is not powerful enough to spec-
ify real case studies. The main weak point for the expressiveness is the shortage
of mechanism for describing exception handling and transactionality.

This paper aims at extending our framework for both choreography and or-
chestration with structures related to exception handling and transactionality.
The choreography language Chor and orchestration language Role, which are
inspired by WS-CDL and WS-BPEL respectively, are developed with formal
syntax and trace semantics. We present a projection from Chor to Role which
focuses on the relationship between choreography in Chor and scope in Role
rooted in WS-CDL and WS-BPEL respectively. Both the two structures have
actions, exception block, finalizer or compensation action. Because of their sim-
ilarities, our projection will map a choreography in Chor to a scope at each role
process in Role. In the work, we develop a technique for define trace semantics
of the role process language that introduces a stuck notation.

The rest of the paper is organized as follows. We first introduce the syntax
and semantics of Chor with exception handling in Section 2. Then we add the
finalization feature into Chor language in Section 3. Section 4 defines a Role
language with formal syntax and semantics. Section 5 presents the projection
rules with some discussion about the related issue, and Section 6 concludes.

2 The Chor Language with Exception Handling

In this section we develop the language Chor with syntax and trace semantics.

2.1 Syntax

In the definitions below, A and B range over activity declarations; E ranges over
exception blocks; e ranges over exceptions; and n ranges over names. We use X
as a shorthand for list, similarly, for e : A. Given a list l, hd(l) returns the first
element of l, and tl(l) returns the same list with the first element removed.

A choreography is participated by a finite number of roles R1, · · · , Rn. A
choreography specification comprises some choreography declarations CDecl and
a root choreography RC.

CS ::= CDecl, RC

The root choreography is enabled by default, whereas other choreography
are enabled only when they are performed. The root choreography is a tuple,
including an activity A, and an exception block E.

RC ::= [A,E]

A declaration of a non-root choreography with name n takes the form:

CDecl ::= n[A,E]

84 Y. Hongli et al.

Here is the syntax for the activities in Chor.

A ::= skip (no action) | ai (activity)
| c[i,j] (communication) | throw e (throw exception)
| perf n (perform) | A;A (sequence)

| A
i
) A (choice) | A ‖ A (parallel)

Activity skip does nothing. Meta-variable ai denotes a basic activity of role
Ri. The communication from Ri to Rj takes the form of c[i,j], where c is a
channel name. Activity throw e causes an exception e at each role. Activity
perf n performs the declared choreography with name n. The composite activities
considered here include sequential composition, choice, and parallel composition.

Here A
i
) A means that role Ri is the dominant role of the choice. It is used as a

directive in projection to specify that Ri is the “decision maker”, and all other
roles should follow Ri’s decision on which branch to take in this choice. A more
detailed study about the dominant role can be found in [16].

The exception block E is defined as a sequence of e : A, where e is an exception
name, and the activity A is the exception handler for e. We allow ∗ : A as a
special case to define a universal handler in an exception block.

E ::= e : A

A choreography specification is well-formed if all the following conditions hold:

– All non-root choreography names are different from each other.
– In each perform activity perf n, the name n ranges over non-root choreog-

raphy names in the choreography specification.
– All exception names in each exception block are different from each other.

2.2 Semantics

An environment Γ is a map from non-root choreography names to their defi-
nitions with the form [A,E], which can be constructed by parsing the text of
declarations CDecl. We will assume that the execution of a choreography is al-
ways under the corresponding Γ . For convenience, notation n.1, n.2 will be used
to obtain the activity and the exception block of choreography n.

We define the semantics of an activity as a set of traces, and will use r, s,
and t to denote traces. A trace may have a terminal mark at its end, indicating
whether the execution of the activities terminates successfully or not. Mark �
represents a successful termination, and �e represents a termination with excep-
tion e. Concatenation of traces is denoted by juxtaposition. For example, t〈�〉
represents a concatenated trace which terminates successfully. In our semantics,
we always give maximal traces, i.e. each trace has a terminal mark at its end.

Activity skip does nothing and always terminates successfully. Activity throw e
causes exception e. Activity ai always terminates successfully, so does c[i,j].

[[skip]]Γ =̂ {〈�〉} [[ai]]Γ =̂ {〈ai,�〉}
[[throw e]]Γ =̂ {〈�e〉} [[c[i,j]]]Γ =̂ {〈c[i,j],�〉}

Exploring the Connection of Choreography and Orchestration 85

To define the semantics of the perform activity perf n, we need to define the
semantics of executing an exception block under some exception e. We introduce
function hdl (E, e)Γ , which returns a set of traces after handling exception e in
exception block E under environment Γ . If a handler for e, which may take the
form of e : A or ∗ : A, is found in E, then the traces of A are returned. Otherwise,
the exception will be propagated to the immediate enclosing choreography.

hdl (E, e)Γ =̂

⎧⎨⎩ [[A]]Γ if hd(E) = e : A ∨ hd(E) = ∗ : A
hdl (tl(E), e)Γ if hd(E) = e′ : A ∧ e′ �= e
{〈�e〉} if E is empty

Now we define the semantics of the perform activity as:

[[perf n]]Γ =̂ {s〈�〉 | s〈�〉 ∈ [[n.1]]Γ } ∪ {st | s〈�e〉 ∈ [[n.1]]Γ ∧ t ∈ hdl(n.2, e)Γ }

If activity n.1 terminates successfully, so is the perform activity. Otherwise, if
n.1 throws an exception e, the exception handler in n.2 for e is executed, and
the trace t produced by this execution is appended to trace s.

The semantics of choice is defined by set union. Although i does not appear
in the semantics, it is critical in the projection discussed in Section 5.

[[A
i
) B]]Γ =̂ [[A]]Γ ∪ [[B]]Γ

We introduce the sequential and parallel composition of traces, and lift them
to sets of traces, then give semantics of sequential and parallel composition.

s〈�〉; t =̂ st s〈�e〉; t =̂ s〈�e〉
[[A;B]]Γ =̂ {s; t | s ∈ [[A]]Γ ∧ t ∈ [[B]]Γ }

s〈τ〉 ‖ t〈τ ′〉 =̂ {r〈τ ⊕ τ ′〉 | r ∈ interl(s, t)}
[[A ‖ B]]Γ =̂ {r | r ∈ (s ‖ t) ∧ s ∈ [[A]]Γ ∧ t ∈ [[B]]Γ }

Here τ and τ ′ are meta variables over terminal marks {�, �e}. The function
interl(s, t) denotes the set of all interleaving traces of s and t. The definition is
routine and is omitted here. The terminal mark of parallel composition is defined
by operator ⊕, as shown in the table below.

⊕ � �e1

� � �e1

�e2 �e2 �e1
e2

If both branches terminate successfully, so is their parallel composition. When
both branches terminate with some exception(s), then we need to handle the
parallel exceptions by operator �. There are many possible ways to define �. For
example, we can define different priorities for exceptions and return the highest
one; or define a hierarchy of exceptions and return the least upper bound. The
details of handling parallel exceptions are omitted here. If only one branch fails,
we have the exception for the parallel composition. We do not consider the forced
termination problem [3] in this paper.

86 Y. Hongli et al.

Provided the semantics of activities, we can define the semantics of the root
choreography as follows, which is similar with the perform activity:

[[[A,E]]]Γ =̂ {s〈�〉 | s〈�〉 ∈ [[A]]Γ } ∪ {st | s〈�e〉 ∈ [[A]]Γ ∧ t ∈ hdl (E, e)Γ }

Many laws for structural congruence, e.g., associativity and symmetry, hold for
choice and parallel composition. Also, skip is the unit element of the sequential
operator, and throw e the left zero, i.e. throw e;A = throw e. Besides, we can
easily prove that any choreography will always terminate, either successes or
fails with an exception, i.e. any choreography is deadlock-free.

Now we present an example to illustrate the semantics.

Example 1. In the following declaration, notation a1
l , a

1
m and a1

n denote basic
activities at role R1.

m[(a1
l ; throw en), em : a1

m], [perf m, en : a1
n]

Here environment Γ consists of a map from choreography name m to its body, i.e.
Γ = {m ,→ [(a1

l ; throw en), em : a1
m]}. When the root choreography [perf m, en :

a1
n] executes under Γ , choreography m is performed. The activity a1

l is executed
first, and then exception en is thrown. Since en cannot be handled in m, it
is re-thrown to the root choreography, where en is handled by the exception
block. When activity a1

n terminates successfully, the root choreography termi-
nates. Thus, we derive the following semantics:

[[perf m]]Γ = {〈a1
l , �en〉} [[[perf m, en : a1

n]]]Γ = {〈a1
l , a

1
n,�〉}

3 Adding Finalization

In this section, we extend Chor language with constructs for finalization.
The non-root choreography declaration is extended to include a finalizer F ,

with the form:
CDecl ::= n[A,E, F] F ::= A

Unlike the case for exceptions, we do not consider named finalizers, and F is
simply defined as an activity for finalization. However, there is no substantial
difficulty to extend the model to support named finalization.

The syntax of activities is extended with the finalize activity fin n, which
performs the finalizer of the successfully terminated choreography n.

A ::= · · · | fin n | · · ·

After introducing finalization structures, we need to extend the semantics,
since finalizers are dynamically installed during the execution of choreographies.
If the performing of a choreography n terminates successfully, the finalizer of n
will be installed.

In the definitions below, meta-variable ϕ, ψ, χ range over finalization contexts.
A finalization context is a (possibly empty) sequence of finalization closures of

Exploring the Connection of Choreography and Orchestration 87

the form (n : F : ψ), where n is a choreography name, F the finalizer of n, and
ψ the finalization context accumulated during performing choreography n, as n
might perform some other choreographies in its course. Here is an example of a
finalization context: 〈(n1 : F1 : 〈〉), (n2 : F2 : 〈(n3 : F3 : 〈〉)〉)〉.

We express the semantics of an activity as a set of pairs with the form (s, ϕ′),
where s represents a trace of the activity, and ϕ′ represents the new finalization
context after executing the activity. We always assume that the execution of
activity is under some finalization context ϕ and environment Γ (now with
elements of the form n ,→ [A,E, F]). Initially, ϕ is empty.

The basic activities skip, ai, c[i,j] and throw e have no effect on the finalization
context, so the extension is trivial.

[[skip]]ϕΓ =̂ {(〈�〉, ϕ)} [[throw e]]ϕΓ =̂ {(〈�e〉, ϕ)}
[[ai]]ϕΓ =̂ {(〈ai,�〉, ϕ)} [[c[i,j]]]ϕΓ =̂ {(〈c[i,j],�〉, ϕ)}

For the perform activity perf n, if activity n.1 completes successfully, closure
(n : n.3 : ψ) is inserted in front of ϕ, where n.3 is the finalizer of choreography n,
and ψ is the accumulated finalization context during performing choreography
n. If n.1 throws an exception, ϕ remains the same. Symbol “−” means something
that we do not care about.

[[perf n]]ϕΓ =̂ {(s〈�〉, (n : n.3 : ψ)� ϕ) | (s〈�〉, ψ) ∈ [[n.1]]〈〉Γ } ∪
{(st, ϕ) | (s〈�e〉, ψ) ∈ [[n.1]]〈〉Γ ∧ (t,−) ∈ hdl (n.2, e)ψ

Γ }

Here hdl (E, e)ϕ
Γ is an extension of hdl (E, e)Γ . When E is empty, the exception

is rethrown to the performer of current choreography.

hdl (E, e)ϕ
Γ =̂

⎧⎨⎩ [[A]]ϕΓ if hd(E) = e : A ∨ hd(E) = ∗ : A
hdl (tl(E), e)ϕ

Γ if hd(E) = e′ : A ∧ e′ �= e
{(〈�e〉,−)} if E is empty

The semantics of fin n is defined as follows. We assume the execution of a
finalizer does not modify the current finalization context. Function getf (n, ϕ)
gets the finalizer F of choreography n from ϕ by searching through the context.
Similar to the specification of WS-CDL, if no corresponding finalizer found,
nothing happens. If closure (n : F : ψ) is found, we execute F under ψ.

[[fin n]]ϕΓ =̂ {(s, ϕ) | (s,−) ∈ getf (n, ϕ)Γ }

getf (n, ϕ)Γ =̂

⎧⎨⎩
[[skip]]ϕΓ if ϕ = 〈〉
[[F]]ψΓ if hd(ϕ) = (n : F : ψ)
getf (n, tl(ϕ))Γ if hd(ϕ) = (n′ : F : ψ) ∧ n �= n′

For sequential composition, we first execute A under context ϕ. Suppose the
context becomes ψ after the execution; we then execute B under ψ, which results
in context χ. If A ends with an exception execution, then B does not execute.

[[A;B]]ϕΓ =̂ {(st, χ) | (s〈�〉, ψ) ∈ [[A]]ϕΓ ∧ (t, χ) ∈ [[B]]ψΓ } ∪
{(s〈�e〉, ψ) | (s〈�e〉, ψ) ∈ [[A]]ϕΓ }

88 Y. Hongli et al.

For parallel composition, we execute both branches under context ϕ and en-
vironment Γ , and then combine the traces and accumulated finalization closures
interleavingly. Here s ‖ t and interl have the same meaning as in Section 2.2.

[[A ‖ B]]ϕΓ =̂ {(r, χ) | r ∈ (s ‖ t) ∧ χ ∈ (interl(ϕ′, ϕ′′)� ϕ) ∧
(s, ϕ′ � ϕ) ∈ [[A]]ϕΓ ∧ (t, ϕ′′ � ϕ) ∈ [[B]]ϕΓ }

The semantics of choice activity is simple: [[A
i
) B]]ϕΓ =̂ [[A]]ϕΓ ∪ [[B]]ϕΓ .

The semantics for the root choreography is similar to the semantics of the
perform activity:

[[[A,E]]]Γ =̂ {s〈�〉 | (s〈�〉,−) ∈ [[A]]〈〉Γ } ∪
{st | (s〈�e〉, ψ) ∈ [[A]]〈〉Γ ∧ (t,−) ∈ hdl (E, e)ψ

Γ }

We show the use of the finalizer construct with the following example.

Example 2. This example includes three non-root choreographies m, n and p.
Here a1

m and a1
f denote basic activities at role R1; a2

p and a2
f denote basic activ-

ities at role R2. The notation ε denotes that the exception block is empty.

m[a1
m, ε, a1

f] n[perf m, ε, fin m] p [a2
p, ε, a

2
f]

In the root choreography, choreographies n and p are performed in parallel.
Afterwards, exception e is thrown and handled by the root choreography.

[((perf n ‖ perf p); throw e), e : (fin n)]

Initially, choreographies n and p run in parallel with empty finalization context
and environment Γ , which maps the choreography names to bodies of three
non-root choreographies. Before fin n, the finalization context is 〈(n : fin m :
〈(m : a1

f : 〈〉)〉), (p : a2
f : 〈〉)〉, or in the reverse order. Then fin n executes fin m,

which turns to execute activity a1
f . Afterwards, the root choreography terminates

successfully. The two perform activities yield the following traces:

[[perf p]]〈〉Γ = {(〈a2
p,�〉, 〈(p : a2

f : 〈〉)〉)}

[[perf n]]〈〉Γ = {(〈a1
m,�〉, 〈(n : fin m : 〈(m : a1

f : 〈〉)〉)〉)}

The trace set of the root choreography is {〈a1
m, a2

p, a
1
f ,�〉, 〈a2

p, a
1
m, a1

f ,�〉}. 	

4 The Role Language

A choreography describes the interaction among roles from a global view. It is
intended to be implemented by coordination of a set of independent processes.
In order to study the relationship between the globally described choreography
and the coordinative activities of each role, we define a simple Role language
here. The syntax and the trace semantics are defined as follows.

Exploring the Connection of Choreography and Orchestration 89

4.1 Syntax

In the definitions below, P ranges over processes. The syntax of Role is:

P ::= skip (no action) | a (local action)
| c! (send) | c? (receive)
| throw e (throw) | fin n (compensation)
| P ;P (sequence) | P)P (choice)
| P ‖ P (parallel) | n[P,E, F] (scope)
| c1?→P1 [] c2?→P2 (guarded choice)

E ::= e : P F ::= P RP ::= [P,E]

The major difference from Chor is that it takes a local view on communications,
where sending and receiving actions represent roles’ local view of interactions.
We would use the term “communication action” to denote either a sending or a
receiving action. A sending action and a receiving action engage in a handshake
when they have the same channel name and both roles involved are ready to
perform them. Besides, here we use the normal non-deterministic choice, and
introduce the guarded choice.

Another important difference from Chor is that we have scopes embedded in
the processes, with its exception block E, and rename the “finalizer” to “com-
pensation”. These terms follow the WS-BPEL specification. Also, we have role
process RP , which is used to represent independent roles.

The top structure in Role is the task S which is the parallel composition of a
set of role processes on the set of local channels CH.

S ::= CH • (‖i [Pi, Ei])

4.2 Semantics

The trace semantics for Role language can be similarly defined as in Section 3.
We introduce compensation context ϕ, which is a (possibly empty) sequence of
compensation closures of the form (n : F : ψ), where n is a scope name, F is
the compensation block of n, and ψ is a compensation context that accumulates
during performing process n.1.

We express the semantics of a process under some compensation context ϕ as
a set of pairs with the form (s, ϕ′), where s represents a trace of the process, and
ϕ′ represents the new compensation context after executing the process under
ϕ. Initially, ϕ is empty.

The basic processes skip, a and throw e have no effect to the compensation
context, so the semantics is trivial.

[[skip]]ϕ =̂ {(〈�〉, ϕ)} [[a]]ϕ =̂ {(〈a,�〉, ϕ)} [[throw e]]ϕ =̂ {(〈�e〉, ϕ)}

For the scope activity n[P,E, F], if process P completes successfully, 〈n : F :
ψ〉 will be inserted to the front of ϕ. Here ψ is the accumulated compensation

90 Y. Hongli et al.

closures during performing P . If P throws an exception, ϕ remains the same.

[[n[P,E, F]]]ϕ =̂ {(s〈�〉, 〈n : F : ψ〉� ϕ) | (s〈�〉, ψ) ∈ [[P]]〈〉} ∪
{(st, ϕ) | (s〈�e〉, ψ) ∈ [[P]]〈〉 ∧ (t,−) ∈ hdl (E, e)ψ}

The function hdl (E, e)ϕ can be defined similarly as in Section 3.

hdl (E, e)ϕ =̂

⎧⎨⎩
[[P]]ϕ if hd(E) = e : P ∨ hd(E) = ∗ : P
hdl (tl(E), e)ϕ if hd(E) = e′ : P ∧ e′ �= e
{(〈�e〉,−)} if E is empty

The semantics of fin n is also similar:

[[fin n]]ϕ =̂ {(s〈�〉, ϕ) | (s〈�〉,−) ∈ getf (n, ϕ)}

The semantics of choice is simple: [[P1)P2]]ϕ =̂ [[P1]]ϕ ∪ [[P2]]ϕ.
The semantic rules given above do not have much difference from what for

Chor. Now we discuss the more interesting parts related to the communication
and parallel structures. The technique used here is inspired by [5] to define the
traces of parallel processes. Furthermore, the semantics for sequential composi-
tion is redefined, too.

In the forthcoming discussion, α ranges over the local actions and commu-
nications (e.g. c! and c?). The trace terminal marks � and �e are still used.
Additionally, we introduce a new terminal mark δX to represent that the pro-
cess gets stuck and waits to communicate along channels in X , where X is a
power set of communication actions. In general, δX represents the interleaving of
waiting to communicate. For instance, δ{{a?,b?},{c!}} waits for either a? or b?, or
waits for c! interleavingly. For simplification, we will write δ{a?,b?} to represent
δ{{a?,b?}}, and write δa! instead of δ{{a!}}. We use ε for the empty trace, and
write st for the concatenation of t onto s, which is equal to s if s ends with δX .

For the sequential composition of P1 and P2, if P1 ends with either �e or δX

(raising exception or getting stuck), then P2 does not execute.

[[P1;P2]]ϕ =̂ {(st, χ) | (s〈�〉, ψ) ∈ [[P1]]ϕ ∧ (t, χ) ∈ [[P2]]ψ} ∪
{(s〈τ〉, ψ) | (s〈τ〉, ψ) ∈ [[P1]]ϕ ∧ τ ∈ {�e, δX} for some X}

A sending action c! or receiving action c? represents the potential for a process
to perform communication. Action c! may eventually succeed with trace 〈c!,�〉,
which can be reduced to c with a parallel receiving action c?; or fail with trace
〈δc!〉, which means that the sending will never succeed in the future (thus the
process gets stuck). We have similar explanation to the receiving action.

[[c!]]ϕ =̂ {(〈c!,�〉, ϕ), (〈δc!〉, ϕ)} [[c?]]ϕ =̂ {(〈c?,�〉, ϕ), (〈δc?〉, ϕ)}

The semantics of guarded choice is defined as follows, where 〈c1?〉s denotes a
trace composed by concatenation of action c1? and trace s.

[[c1?→P [] c2?→Q]]ϕ =̂ {(〈δ{c1?,c2?}〉, ϕ)} ∪ {(〈c1?〉s, ϕ) | s ∈ [[P]]ϕ} ∪
{(〈c2?〉s, ϕ) | s ∈ [[Q]]ϕ}

Exploring the Connection of Choreography and Orchestration 91

For the semantics of parallel composition of processes, we introduce some
auxiliary definitions in the first. The predicate match(α1, α2, c) indicates whether
α1 and α2 are a pair of matching communication actions on channel c, i.e.

match(α1, α2, c) =̂
{

true if {α1, α2} = {c?, c!}
false otherwise

For the parallel composition of traces, we distinguish two different cases: (1)
at most one trace ends with δX ; (2) both traces end with δX .

For the first case, we define:

s〈τ〉 ‖ t〈τ ′〉 =̂ {r〈τ ⊕ τ ′〉 | r ∈ merge(s, t)}

where τ and τ ′ are meta variables over terminal marks {�, �e, δX}. The terminal
mark of parallel composition is shown in the table below.

⊕ � �e1 δX

� � �e1 δX

�e2 �e2 �e1
e2 �e2

Function merge(s, t) returns the set of all traces formed by merging s and t fairly,
allowing synchronization of matching communications. We let merge(s, ε) =
merge(ε, s) = {s}. When s and t are nonempty, their fair merge is defined in-
ductively, where c in the trace denotes a handshake of c! and c?

merge(〈α1〉s1, 〈α2〉t1) =̂ {〈α1〉r | r ∈ merge(s1, 〈α2〉t1)} ∪
{〈α2〉r | r ∈ merge(〈α1〉s1, t1)} ∪
{〈c〉r | match(α1, α2, c) ∧ r ∈ merge(s1, t1)}

Thus we have 〈c!,�〉 ‖ 〈c?,�〉 = {〈c,�〉, 〈c!, c?,�〉, 〈c?, c!,�〉}, and 〈c!,�〉 ‖
〈δc?〉 = {〈c!, δc?〉}.

For the second case, we define:

s〈δX〉 ‖ t〈δY 〉 =̂

⎧⎨⎩ {} if ∃α ∈
⋃

X, β ∈
⋃

Y, c•
match(α, β, c)

{r〈δX∪Y 〉 | r ∈ merge(s, t)} otherwise

If there exists any matching stuck marks (e.g., δ{{a!},{b?,c?}} and δ{{c!},{d?}} are
matched on channel c), then the set of traces of s ‖ t is empty. This is because
the merge should be fair: if one process has an action c!, another process has a
c?, and neither of them communicate with other processes, then their parallel
composition should not deadlock. In other words, a trace should never end with
δ{{c!},{c?}}. We simply discard such “unfair” traces.

Otherwise, we wait for communication along channels in X ∪ Y . Thus, we
have 〈δa!〉 ‖ 〈δa?〉 = {}, and 〈δa!〉 ‖ 〈δb?〉 = {〈δ{{a!},{b?}}〉}, which denotes the
process waits to communication along the actions a! and b? forever.

The rule for parallel composition of processes is the same as in Section 2.2.

[[P1 ‖ P2]]ϕ =̂ {(r, χ) | r ∈ (s ‖ t) ∧ χ ∈ (interl(ϕ′, ϕ′′)� ϕ) ∧
(s, ϕ′ � ϕ) ∈ [[P1]]ϕ ∧ (t, ϕ′′ � ϕ) ∈ [[P2]]ϕ}

92 Y. Hongli et al.

As an example, we have [[c! ‖ c?]]ϕ = {(〈c,�〉, ϕ), (〈c?, c!,�〉, ϕ), (〈c!, c?,�〉, ϕ),
(〈c!, δc?〉, ϕ), (〈c?, δc!〉, ϕ)}. The trace 〈c,�〉 denotes that the two actions com-
municate with each other. The trace 〈c!, δc?〉 denotes that the sending action
appearing on the left side of the parallel construct will eventually communicate
with some other receiving action (but not the one on the right side), while the
receiving action on the right side has to stuck because it cannot find a matching
action. We define the semantics in this way so that compositionality is achieved
– as an example, please simply consider the semantics of c? ‖ c! ‖ c?

The semantics for a role process is similar to a root choreography:

[[[P,E]]] =̂ {s〈�〉 | (s〈�〉,−) ∈ [[P]]〈〉} ∪
{st | (s〈�e〉, ϕ) ∈ [[P]]〈〉 ∧ (t,−) ∈ hdl (E, e)ϕ}

It is easy to prove that the parallel composition and both forms of choice
satisfies commutativity and associativity in the semantics above.

Finally we define the semantics of a task. We introduce closeCH(T) that
“closes” all channels of CH in trace set T , in the sense that the channels in
CH will not used for communication with outside. To achieve this, we take two
steps: first, we exclude all the traces that include either c! or c?, with them the
result of the filter is empty. Then, we modify the stuck mark of the remaining
traces by removing communications along channels in CH.

closeCH(T) =̂ {close1(t, CH) | t ∈ T ∧ ∀c ∈ CH • t
{c!, c?} = 〈〉}

close1(t, CH) =̂
{

t if t = t′〈�〉 ∨ t = t′〈�e〉
t′〈δX|CH〉 if t = t′〈δX〉

Here we define X | CH =̂ {A | ∃B ∈ X • A = (B \ CH) ∧ A �= ∅}, where B \
CH removes all communications along channels in CH from B. For example,
{{c!}}|{c} = {}, and {{a?, b?}, {c!}}|{b, c} = {{a?}}.

Thus, we have close{c}([[[c!, ε] ‖ [c?, ε]]]) = {〈c,�〉} and close{c}([[[c!, ε] ‖
[skip, ε]]]) = {〈δ{}〉}, which denotes an internal deadlock.

The semantics of a task is simply defined as follows:

[[CH • (‖i [Pi, Ei])]] =̂ closeCH([[‖i [Pi, Ei]]])

Although the semantics seems complicated, we would point out that the com-
plexity is rooted from the basic communication activities that any process alge-
bra has, as discussed in Brookes’s paper [5], rather than the exception handling
and finalization constructs.

5 Projection

A projection is a procedure which takes a choreography specification in Chor
and generates a set of processes in Role, where each process corresponds to a
role in the choreography. No standard projection is defined in WS-CDL. In this
section we give our projection rules, and discuss some issues related.

Exploring the Connection of Choreography and Orchestration 93

π(skip, i) =̂ skip
π(ai, i) =̂ a
π(ai, j) =̂ skip when j �= i

π(c[i,j], i) =̂ c[i,j]!

π(c[i,j], j) =̂ c[i,j]?

π(c[i,j], k) =̂ skip when k �= i ∧ k �= j
π(throw e, i) =̂ throw e
π(perf n, i) =̂ n[π(n.1, i), π(n.2, i), π(n.3, i)]
π(fin n, i) =̂ fin n

π(e : A, i) =̂ e : π(A, i)
π(A1; A2, i) =̂ π(A1, i); π(A2, i)
π(A1 ‖ A2, i) =̂ π(A1, i) ‖ π(A2, i)

π(
i

A1 A2, i) =̂ γ1; π(A1, i) γ2; π(A2, i) where

{
γ1 = ‖j∈1..n∧j �=i c′j !
γ2 = ‖j∈1..n∧j �=i c′′j !

π(
i

A1 A2, j) =̂ c′j?→π(A1, j) [] c′′j ?→π(A2, j) when j �= i

Fig. 1. Endpoint Projection Rules

Firstly, we give a projection rule for the root choreography [A,E], where A
and E are projected to the process and exception block at each role process i.

π([A,E], i) =̂ [π(A, i), π(E, i)]

The project rules for each form of activity is given in Fig. 1. The basic activity
ai generates action a at role Ri, or skip at other roles. The interactive activity
c[i,j] generates sending action c! and receiving action c? at role Ri and Rj respec-
tively. The rule for throw activity throw e is based on an assumption that each
exception occurred in a choreography is global, which causes the same exception
at every role. The activity perf n is projected to each role as a scope with name
n, process π(n.1, i), exception block π(n.2, i), and compensation block π(n.3, i),
where n.1, n.2, and n.3 are the activity, exception block and finalizer of choreog-
raphy n respectively. Note that this rule depends on the corresponding context
Γ . Finalizing fin n generates the same action fin n at each role. Exception block
e : A is simply projected to an exception block e : π(A, i) at role i. The rules for
sequential and parallel compositions are trivial.

The most interesting rules are those for choice structure
i

A1)A2. For each
role Rj (j �= i), we should introduce two fresh channels, namely c′j and c′′j . The

projection of
i

A1)A2 on a role other than Ri takes the form of a guarded choice.
On the other hand, the projection on role Ri is an ordinary choice with each
branch beginning at a set of sending actions. As a result, when the execution of
the roles arrives at their versions of the choice structure, role Ri makes the real
choice, and notifies all the other roles on which branch it selects. Thus, all the
roles will take the same branch in their versions of the choice consistently.

We illustrate a simple example of projection here.

94 Y. Hongli et al.

Example 3. The choreography below involves two roles. After R2 receives a mes-
sage from R1, it may either acknowledge R1 and proceeds, or throw an exception
so that the choreography is interrupted.

C = [c[1,2]; (c[2,1] 2
) throw e), ε]

After projection, we get the following processes (we omit the scope here since
the exception handler is empty):

P1 = c[1,2]!; (c′?→c[2,1]? [] c′′?→throw e) P2 = c[1,2]?; ((c′!; c[2,1]!))(c′′!; throw e))

where c′ and c′′ are the fresh channels introduced in projection. It is not dif-
ficult to verify that [[CH • ([P1, ε] ‖ [P2, ε])]]
 acts(C) = [[C]], where CH =
{c[1,2], c[2,1], c′, c′′}. 	
In the equation above, we use the filter operation
 to restrict a trace (or a
trace set) to mention only actions from a given action set. The notation acts(C)
denotes the set of all activities appearing in choreography C. This extra step
removes the handshake actions of the fresh channels.

Example 4. The choreography C below illustrates concurrent exception:

C = [(a1
1

1
) throw e1) ‖ (a2

2

2
) throw e2), ε]

After projection, we get the following processes:

P1 = ((c′1!; a
1
1))(c′′1 !; throw e1)) ‖ (c′2?→skip [] c′′2?→throw e2)

P2 = (c′1?→skip [] c′′1?→throw e1) ‖ ((c′2!; a
2
2))(c′′2 !; throw e2))

where c′1, c′′1 , c′2 and c′′2 are four fresh channels.
Let CH include all the channel names, we can also verify that [[CH • ([P1, ε] ‖

[P2, ε])]]
 acts(C) = [[C]], with the trace set:

{〈a1
1, a

2
2,�〉, 〈a2

2, a
1
1,�〉, 〈a2

2, �e1〉, 〈a1
1, �e2〉, 〈�e1
e2〉}

Please notice that 〈�e1〉 and 〈�e2〉 are not in the trace set, since we do not have
forced termination.

We hope that the combination of processes can realize the behavior of the chore-
ography. That is, for projection π and choreography C, we hope to prove the
following equation:

[[CH • (π(C, 1) ‖ · · · ‖ π(C, n))]]
 acts(C) = [[C]] (1)

where CH includes all the communication channels defined in the choreography
and the fresh channels added by projection. In the previous examples, we already
see this equation holds.

This equation says that if we “close” the set of traces generated by the parallel
composition of all the role processes wrt the inter-role channels defined in C, and
restrict the activities in each trace to the activity set of C, then the result should
be equal to the set of traces of the choreography from which the role processes
are projected. A formal proof of Equation (1) is an important future work.

Exploring the Connection of Choreography and Orchestration 95

6 Conclusion and Future Work

Web service choreography describes a global-view protocol for collaboration
among multiple roles, while a set of suitable orchestrations can form a imple-
mentation of the protocol. Formal models of choreography and orchestration are
important and useful in exploring the subtle features in languages such as WS-
CDL and WS-BPEL, and the connection between them. In this paper, we con-
tinue the research initiated in [16], with special focus on exception handling and
transactionality. Two languages Chor and Role for choreography and orchestra-
tion respectively are introduced, together with formal semantics. Corresponding
projection rules are provided, too.

The main contributions of this paper are:

1. We present a denotational (trace) semantics for exception handling and fi-
nalization for the choreography language Chor. To the best of our knowledge,
no work has been done in this area.

2. We also present a trace semantics for the role process language Role, where
we introduce a “stuck” notation.

3. We provide a set of projection rules that form a map from the choreogra-
phy language to the role process language. The projection is based on the
similarity of choreography and scope constructs, and naturally projects a
choreography to a scope at each role process. The concept dominant role is
also vital in defining the projection.

The correctness of the projection should be investigated further, in the sense
to ensures that the combination of the set of processes produced does realize
the behavior described by the choreography. For this, we need to formally prove
Equation (1). Additionally, we want also to extend the model to support vari-
ables, states, and contents of exchanged messages.

Acknowledgements. We would like to thank Shengchao Qin for many helpful
comments.

References

1. SOAP service description language. http://ssdl.org
2. Web services choreography description language version 1.0 (2005)

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

3. Business process execution language for web services, version 1.1 (May 2003)
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

4. Baldoni, M., Badoglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying the con-
formance of web services to global interaction protocols: a first step. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) Formal Techniques for Computer Systems and
Business Processes. LNCS, vol. 3670, Springer, Heidelberg (2005)

5. Brookes, S.: Traces, pomsets, fairness and full abstraction for communicating pro-
cesses. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002.
LNCS, vol. 2421, Springer, Heidelberg (2002)

http://ssdl.org
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

96 Y. Hongli et al.

6. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of POPL’05, ACM Press, New York (2005)

7. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Benatallah, B., Casati,
F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, Springer, Heidelberg (2005)

8. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, Springer, Heidelberg (2006)

9. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, Springer, Heidelberg (2005)

10. Butler, M., Ripon, S.: Executable semantics for compensating CSP. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) Formal Techniques for Computer Systems and
Business Processes. LNCS, vol. 3670, Springer, Heidelberg (2005)

11. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.:
A theoretical basis of communication-centred concurrent programming (2006)
http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf

12. Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification
and verification of reactive electronic services. In: Ibarra, O.H., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, Springer, Heidelberg (2003)

13. Li, J., He, J., Pu, G., Zhu, H.: Towards the semantics for web services choreography
description language. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
Springer, Heidelberg (2006)

14. Pu, G., Zhu, H., Qiu, Z., Wang, S., Zhao, X., He, J.: Theoretical foundations of
scope-based compensation flow language for web service. In: Ning, P., Qing, S., Li,
N. (eds.) ICICS 2006. LNCS, vol. 4307, Springer, Heidelberg (2006)

15. Qiu, Z., Wang, S., Pu, G., Zhao, X.: Semantics of BPEL4WS-like fault and com-
pensation handling. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, Springer, Heidelberg (2005)

16. Qiu, Z., Zhao, X., Chao, C., Yang, H.: Towards the theoretical founda-
tion of choreography. Accepted by WWW’07. Available as a tech. report at
http://www.is.pku.edu.cn/∼fmows/

17. Zhao, X., Yang, H., Qiu, Z.: Towards the formal model and verification of web
services choreography description language. In: Bravetti, M., Núñez, M., Zavattaro,
G. (eds.) WS-FM 2006. LNCS, vol. 4184, Springer, Heidelberg (2006)

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf
http://www.is.pku.edu.cn/~fmows/

Towards Modal Logic Formalization of

Role-Based Access Control with Object Classes

Junghwa Chae

École Polytechnique de Montréal
Montréal, Québec, Canada
chae@cse.concordia.ca

Abstract. This paper addresses a variation of the role-based access con-
trol (RBAC) model with a classification mechanism for objects and a no-
tion of class hierarchies. In the proposed model, the authorization tasks
are performed based on the classes instead of the individual objects.
This results in more flexibility in terms of security administrative tasks
such as downgrading or upgrading individual objects and permission as-
signments. A formalization for this model is presented using K45 modal
logic. The prefixed tableaux method is used to reason about the access
control. The required rules for the reasoning process are also presented.
The proposed model is applied, via an example to protect the secrecy of
the information in a typical organization.

Keywords: Role-based access control, object classes, object class hier-
archy, modal logic, tableaux method.

1 Introduction

Role-based access control (RBAC) provides the abstraction mechanism for cat-
egorizing users in roles based on the organizational responsibilities of users
[2,6,8,13]. The role is the association between a set of users and a set of permis-
sions. The role simplifies security management tasks to grant and revoke autho-
rizations to an entire group of subjects at the same time. The defined roles can
also have hierarchical structures for more convenient authority managements.

In our analysis of security, we provide the RBAC model with a classification
mechanism for objects accessed in information systems. Our thesis is that ob-
jects are classified into groups called object classes, and classes can constitute
a systematic structure, known as a hierarchy. Once objects are categorized into
groups, authorization tasks can be executed based on the classes instead of the
individual objects. Semantically or functionally related object classes associate
with each other via inheritance relationships, and objects can be involved in these
hierarchical relationships through the classes in which they are categorized. Ob-
ject class hierarchy is a method to achieve further simplification in the reduction
of security management tasks and administrative costs. It also provides a way
to control the propagation of authorizations and to define boundaries for the

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 97–111, 2007.
c© IFIP International Federation for Information Processing 2007

98 J. Chae

validity of authorization rules. This modification of the RBAC model provides
greater control and flexibility for the security administrative tasks.

Formal methods and reasoning techniques are useful tools for the representa-
tion and decision of access control. In this paper, we present a logical approach
based on a modal logic formalism [1, 5, 9]. There already exists a well under-
stood theory of how modalities interact with propositional logic connectives.
This framework provides a language for expressing properties and relationships
of security policies without considering the specific mechanisms for implement-
ing such policies. The semantics of the policy definitions for security is provided
using Kripke structures [5]. In developing a formalism for the proposed model,
our main contribution is the incorporation of the notion of object classes into
the work done by Abadi [1] and Massacci [9].

There has been much research done on logical frameworks for the reason-
ing of access control models. Woo and Lam [15] proposed a language to model
authorization and control rules. A major issue in their approach was the trade-
off between expressiveness and efficiency. For the logical formalism approach,
Jajodia et al. [7] proposed a logic-based language for specifying authorization
rules. Massacci [9] introduced a logic for reasoning about RBAC, by extending
Abadi et al.’s access control calculus [1]. They used modal logic to model con-
cepts such as users, roles, and delegation. Rabitti et al. [11] presented a model of
authorization for next-generation database systems using the notion of implicit
authorization. They developed an authorization model by including the proper-
ties of a class, class hierarchy, and composite objects. Bertino et al. [3] proposed
a formal framework for reasoning about access control models. They introduced
the concepts that subjects, objects, and privileges can be composed together in
hierarchical structures and authorization can be derived along the hierarchies.
Most existing work on RBAC concentrated on key points such as role hierar-
chies, user and privilege attributions. There has been little work that studied the
role-object relationships and the hierarchy for object classes in RBAC. The idea
of object classification for role-based policies was first introduced by Sandhu and
Samarati [14]. An RBAC model that includes the concept of object classes was
presented by Chae et al. [4] where the formalization was provided by description
logics. In this paper, we use this model together with the calculus developed and
extended by Abadi et al. [1] and Massacci [9] for the formalization. The existing
formalization, which is based on the modal logics, is modified to include the
notions of classification of objects and class hierarchy.

The rest of this paper is organized as follows: We begin with describing the
proposed RBAC model with object classification in Section 2. The language
developed by Abadi and extended by Massacci is reviewed in Section 3. The
syntax required to support the notion of object classes and their hierarchy is
given in the same section. The semantics for the existing and proposed operators
will be discussed in Section 4. Rules for the reasoning process are presented
in Section 5. The application of the proposed model and its formalization is
illustrated within an example in Section 6. We summarize our results in Section 7
and conclude with suggestions for future work.

Towards Modal Logic Formalization of Role-Based Access Control 99

2 Role-Based Access Control

RBAC provides the abstraction of subjects based on the inherent properties of
accesses. The abstraction of subjects organizes users with roles reflecting their
real job functions or their responsibilities. This approach simplifies security man-
agement by breaking user authorizations into two parts: one which assigns users
to roles and one which associates access rights to objects for those roles (see
Fig. 1).

Fig. 1. RBAC model

Analogously, one might expect to achieve further simplification in the secu-
rity management if some abstraction is provided for objects. Objects could be
classified according to their type or to their application area. Grouping objects
into classes closely resembles the mapping of users to roles. Fig. 2 shows the
proposed model, which consists of five entities including a set of objects and a
set of classes. We also added a set of object assignments (OA) that relates each
object to a set of classes. Access authorizations of roles should then be defined
based on the object classes. A role can be given the authorization to access all
objects in a class, instead of giving explicit authorization for each individual
object. Objects that are in the same class can be accessible for users with roles
that have access right to that class. Ultimately, users exercise permissions on
objects via roles to which they are assigned and classes to which the roles have
access. We consider roles and object classes as mediators that let users exercise
permission. The modified model decomposes each permission into an operation
and an object. Therefore, the Permissions entity as depicted in Fig. 1 is removed
and two new components Objects and Classes are added in Fig. 2.

This modification of the RBAC model provides greater control and flexibility
for security administrative tasks. In particular, this approach simplifies and eases
the authorization management ; e.g., in order to add a new object to the system,
the corresponding object assignment assertion should only be included, whereas
in the RBAC model, permission assignment should be explicitly given for each
single role that has the privilege of accessing the new object. Compared to roles,

100 J. Chae

Fig. 2. Proposed modified RBAC model

object classes have a greater potential for simplifying security administration
since the number of objects in many systems is generally much larger than the
number of subjects.

2.1 Role Inheritance

In RBAC, roles are hierarchically organized into a role-subrole relationship that
is called role inheritance. The hierarchy is interpreted using a graph where each
node represents a role and a directed edge between two roles defines the impli-
cation of the authorization. Authorizations are implied along the edges of the
role hierarchy. When role R1 inherits from role R2, denoted by R1 isa R2, every
user U explicitly assigned to R1 is also implicitly associated with R2; likewise,
every permission explicitly associated with role R2 is implicitly associated with
role R1.

The role hierarchy is a partial order relation, which is reflexive, transitive,
and antisymmetric. Inheritance is reflexive because a role inherits its own per-
missions; transitivity is a natural requirement in this context, and antisymmetry
rules out cycles in the role hierarchy; i.e., roles that inherit from one another are
disallowed.

2.2 Class Inheritance

In the proposed model, a set of objects are grouped together for security pur-
poses. Each group is, in general, a set of individual objects, and is referred to
as a class. Objects are associated with certain properties that can be used to
construct groups for the authorization process. Examples of object properties
are security levels, ownerships, classes (as in the object-oriented terminology),
memberships, etc. Once the objects are categorized into finite sets of groups,
authorization tasks can be executed based on the classes instead of individual
objects.

Object classes are also organized into a hierarchical structure, called class in-
heritance (note that the word class here is not used in the sense of object-oriented
programming but represents any named group of objects). The hierarchy can be

Towards Modal Logic Formalization of Role-Based Access Control 101

based on different criteria such as security levels, generalization and specializa-
tion associations, as in object-oriented systems, and so on.

In the role inheritance, the concept of implied authorization is applied. The
idea is to propagate the validity of the authorization rule at some level in a
hierarchy to its descendants [11]. Similarly, the same idea can be applied to
object classes through a hierarchy. Class hierarchies coupled with role hierar-
chies are implemented in the reasoning process. The definition of object classes
and its hierarchical structure provides more reasoning power compared to the
conventional RBAC approach.

We propose the following authorization policies:

– Access to a class implies access to the objects explicitly assigned to that
class;

– The class hierarchy is defined as follows: the relation C1 �p C2 means that all
roles given an access privilege p on class C1 have the same access privilege
on class C2. Therefore, a user U who has a certain access to class C1 is
allowed to exercise the same access on class C2. In general, the direction of
the above inequality relation depends on the type of the operation; e.g., there
may exist another operation denoted by p′ for which the class inheritance
relation between C1 and C2 would change to C2 �p′ C1; for example, read
and write operations in mandatory policies where classes are formed based
on the security level (access classes). In this situation we can replicate each
classes by the number of operations that have different hierarchical relations;
e.g., Cp

1 and Cp′
1 .

3 Language for Access Control

In this paper, we adopted the calculus developed by Abadi [1] et al. to model
access control in distributed systems. We equipped the calculus with proper
notations to describe the proposed concept of object classes and their hierarchy
in the context of modal logic.

The main syntactical components of this logic [1,9,10] are principals, requests
and a set of modal and propositional connectives and operators. Users and roles
are examples of atomic principals. Atomic users are denoted by A and B and
roles by R. Composite principals denoted by P and Q are built by the use of
different connectives such as the conjunction of principals (A & B), users in a
certain role (A as B) and principal on behalf of another principal (A for B). A
complete list of principals in typical distributed information systems is given by
Abadi [1].

The common practice in RBAC is to represent the combination of an opera-
tion over an object as an atomic request or a statement; e.g., read file1. In this
approach, neither the operation nor the object by itself is considered as part of
the model; whereas the combination or the request is considered as a proposi-
tion that can be true or false depending on the state of the system. Composite
requests are then built using propositional logic connectives ∧, ¬, and ⇒. Since
our main objective is to categorize individual objects into object classes and to

102 J. Chae

use the class hierarchy for a reasoning process, following this common practice
would be inappropriate. In the operation-object approach, two statements such
as read file1 and write file1 are considered as two independent propositions φ
and ψ. However, our goal is to be able to separate these propositions into an
operation part plus an object part. This distinction makes it possible to use the
hierarchy associated with objects for reasoning about access control.

Atomic objects and classes are denoted by O and C, respectively. Object
classification is made using the statement O belong C, which closely resembles
Massacci’s user assignments to roles, A has R [9]. belong and has are both modal
operators. The operation over objects, read O or write O, is considered as an
atomic request which is a proposition in the model and can take different truth
values depending on the state of the system. These propositions are constructed
as a combination of an operator (write or read) and an object or a class (O or
C). User assignment statements as well as object classification statements are
also simple propositions. Composite propositions are formed by combining the
simple ones using propositional logic connectives.

In order to access objects in the system or to perform operations, users and
roles (users in roles) make the corresponding requests. The main purpose of the
access control policies is to determine whether these requests should be granted
or not. The requests are made using the modal operator req [9]; e.g., A req φ
where φ is a proposition such as read O. The statement A req φ is considered as
a request or proposition by itself.

Privileges are given to users and roles using the control statement [1]. The
proposition R control φ gives the permission on φ to role R; i.e.,

(R control φ) ∧ (R req φ) ⇒ φ. (1)

Role hierarchies are defined using the isa modal operator; e.g., the statement
R1 isa R2 means that role R1 has at least all of the privileges that are assigned
to R2. Operator % is used to define class hierarchies. The similar statement
C1 % C2 means that all users or roles that are given certain privileges on class
C1 have at least the same privileges on class C2 (permissions given on class C1

are valid for class C2). The role or object class hierarchy statements are also
considered as requests or propositions.

Our objective is to benefit from role and class hierarchies to reason about
access control; e.g., to be able to perform the following operations,

R2 control φ ∧ R1 req φ ∧ R1isa R2 ⇒ φ,

R control (read C1) ∧ R req (read O) ∧ O belongs C2 ∧ C1 % C2 ⇒ read O.

4 Semantics

The semantics are defined using Kripke structures [5]. The syntax of the language
described in the previous section consists of a set of agents (atomic principals),
objects and classes, a set of primitive propositions Φ, atomic requests mainly of
the form read O, and modal as well as propositional connectives and operators

Towards Modal Logic Formalization of Role-Based Access Control 103

to construct primitive propositions from objects and classes or build composite
agents and propositions. A Kripke structure denoted by M for a set of agents
over Φ is a pair (W, I) where W is a set of possible worlds (states) for a typi-
cal information system and I is the interpretation function. What makes each
world distinct from the other is its specific truth values for the set of primitive
propositions. Each agent (principal) A is interpreted as a set of pairs such that
each pair consists of elements of W , i.e., AI ⊆ W × W . Pair (wi, wj) ∈ AI

indicates that state wj is one of the compatible states with state wi for agent A.
The interpretation of a proposition (request) is a set of states where the propo-
sition (request) is true (granted), i.e., φI ⊆ W . Classes are interpreted as set
of worlds in which they are accessible. Objects are uninterpreted entities within
the structure.

4.1 Principals and Hierarchies

The interpretations of a user or a role is given by a set of pairs that define the
compatible worlds (states) for the corresponding role or user; e.g.,

AI = {(wi, wj) , (wi, wk) , (wi, wm) , (wj , wn) , (wj , wm) , (wj , wp) , . . .} , (2)

where wj , wk, wm are among the compatible states with state wi for user A; i.e.,
the state of the system will change from wi into one of the compatible states
according to the requests made by user A in state wi.

For the role hierarchy given by R1 isa R2, since R1 can also act as R2, all
compatible worlds of R2 should also be among the compatible worlds of R1; i.e.,

RI
2 ⊆ RI

1 . (3)

As mentioned in Section 3, role hierarchy statements are considered as requests
or propositions in the system, hence R1 isa R2 will be interpreted as a set of
worlds where Relation (3) is valid:

(R1 isa R2)
I =
{
w| ∀w′ if (w,w′) ∈ RI

2 then (w,w′) ∈ RI
1

}
. (4)

4.2 Object Classes and Hierarchies

Each object class is interpreted as a set of states where it is accessible. As
explained in Section 2, when there are different types of operations in the in-
formation system, we replicate each class by the number of operations, e.g., Cr

and Cw . In this case the interpretation of Cr or Cw indicates the set of worlds
where the class can be read or written, respectively,

Cr[w]I = {wi, wj , wk, . . .} . (5)

The state wi exists in the interpretation of the object class Cr[w] iff the statement
read[write] Cr[w] is valid in this state.

104 J. Chae

As seen in Section 3, the statement C1 % C2 indicates that all permissions
given on class C1 are also valid for class C2. In all states where class C1 is
accessible, class C2 is accessible too. From Relation (5), it follows that all states
in the interpretation of class C1 should exist in the interpretation of class C2;
i.e.,

CI
1 ⊆ CI

2 . (6)

The class hierarchy statement can then be interpreted as,

(C1 % C2)
I =
{
w| if w ∈ CI

1 then w ∈ CI
2

}
. (7)

4.3 Request Operator and Properties

The definition of the request operator req is similar to Fagin et al.’s knowledge
operator [5]. It has two arguments: a principal that makes the request and a
proposition that is requested. A request statement made in state w by principal
A is valid when its propositional argument is true in all compatible states with
w,

(M, w) |= A req φ iff (M, w′) |= φ for all w′ such that (w,w′) ∈ AI . (8)

Compatible states with state w for principal A are defined as a set of states
where all of the requests made by A in w will be granted.

The truth of A req φ does not imply that φ is granted. In fact, the access
control system has the responsibility of verifying whether φ should be granted
whenever A req φ is valid, i.e., the process of verifying if φ is true (granted) starts
after it is proven that the A req φ is true. The distinction between granting
a request and the truth of a request statement is crucial. According to the
definition (8), if φ is invalid in any of the compatible states with w for principal
A, then A is unable to make a valid request in w, i.e., (M, w) �|= A req φ.
Whereas, when φ is true (granted) in all compatible states with w, then the
request statement A req φ is valid in w and the reasoner starts the process of
verifying whether the propositional argument of the request statement should
be granted.

The binary relations formed by the interpretation of users or roles exhibit
certain properties. Relations satisfying K45 properties; i.e., transitive and Eu-
clidean, fit best with the characteristics of access control in information systems.
The Euclidean property requires that for all w1, w2, w3 ∈ W if (w1, w2) ∈ AI

and (w1, w3) ∈ AI , then (w2, w3) ∈ AI . The interpretation relations for princi-
pals should not be reflexive as the reflexivity necessitates that all valid requests
made in state w should be granted in the same state. The transitivity is re-
quired since successive requests can be combined into one composite request.
Similarly, a composite request made in state w can be considered as subsequent
individual requests that necessitates Euclidean property for the binary relations.
Given the definition (8) as well as the transitive and Euclidean binary relations
for users and roles, the request operator holds the following properties in the
Kripke structure M:

Towards Modal Logic Formalization of Role-Based Access Control 105

K & (A req φ ∧ A req (φ ⇒ ψ)) ⇒ & A req ψ;
KG if & φ then & A req φ;
4 & A req φ ⇒ & A req (A req φ);
5 & ¬A req φ ⇒ & A req ¬ (A req φ);
Id & A req (A req φ) ⇒ & A req φ.

K property is the direct consequence of the definition of the request operator. It
is valid whether or not binary relations exhibit transitive or Euclidean property.
K rule indicates that when a user makes a request, it also includes all the logical
consequences of her original request. In knowledge representation, properties 4
and 5 are called positive and negative introspection axioms, respectively. The
former follows from the transitive property of the binary relations and the latter
is the result of both transitive and Euclidean properties. KG is the knowledge
generalization rule that says if φ is granted in all states of structure M, then
A req φ is true everywhere. Id is the result of Euclidean property. Properties Id
and 4 show the idempotence of the req operator, i.e., the following equivalence
relation is valid,

A req (A req φ) ≡ A req φ. (9)

4.4 User Assignment and Object Classification

The interpretation of user assignment statements has operator is given by,

(A has R)I =
{
w| ∀w′ if (w,w′) ∈ RI then (w,w′) ∈ AI} . (10)

The object classification statement O belong C is interpreted as follows:

O belong Cr[w] ⇒ read[write] O ≡ read[write] Cr[w]. (11)

4.5 Read and Write Statements

In Section 3, the read and write operations on objects and classes are constructed
with read and write operators, respectively. From the interpretation of object
classes given in Section 4.2, it follows that the statement read Cr is true in
world w iff w ∈ (Cr)I . Hence read and write statements, only for object classes,
are interpreted below,(

read[write] Cr[w]
)I

=
{
w|w ∈ Cr[w] I

}
. (12)

Object interpretation is the similar to the class interpretation, i.e., it is given
by a set of individual states. However, the interpretation of objects do not re-
main constant even within a single state. Depending on the requests made by
principals to read or write an object in state w, its interpretation changes to
either Cr I or Cw I , respectively. Relation (11) is used to convert read and write
operations on objects to the read and write operations on classes to which they
belong upon the corresponding requests that are made.

106 J. Chae

5 Rules and Reasoning

Although the semantic is given by the Kripke structure, reasoning at the level of
the structure would be inconvenient in access control systems. A set of inference
rules are then introduced. These rules together with the axioms form an axiom
system. Axioms are mainly given by the access control security policy as the
ACL (Access Control List), which consists of the following statements:

– Role hierarchies (RH),
∧

i,j (Ri isa Rj);
– Object class hierarchies (CH),

∧
i,j (Ci % Cj);

– User assignments (UA),
∧

i,j (Ai has Rj);
– Object classifications (OC),

∧
i,j (Oi belong Cj);

– Permission assignments (PA),
∧

i,j,k

(
Pi control Opj Ck

)
;

Opj ∈ {read,write, . . .}.

The proof method is based on Massacci’s prefixed tableaux algorithm [10].
This method is used to test the satisfiability of a proposition. The tableaux
method builds a tree-like model M based on the input proposition and the global
axioms. In tree T , each node is labeled with a proposition and has a prefix that
indicates the current state of the system. Tableaux rules are then repeatedly
applied to nodes in an arbitrary order for as long as possible. A branch B of
tree T is fully expanded when all rules have been applied to the nodes in B.
There exists a clash in B if a proposition and its negation exist in B with the
same prefix. The proposition φ is valid in an axiom system built based on a set
of global axioms G, if all branches of tree T that start with ¬φ lead to clashes.
This indicates that ¬φ is not satisfiable.

The rules for K45 modal logic, users in roles and role hierarchies are due to
Massacci [9] and are shown in Fig. 3. Here, σ is the current state of the system.
σ.A.n and σ.A.m are present and new compatible states with σ according to the
requests of principal A, respectively. Fig. 4 shows the required rules for object
class hierarchies where Opj ∈ {read,write, . . .}.

α :
σ: ϕ ∧ ψ

σ: ϕ σ: ψ
β :

σ: ¬(ϕ ∧ ψ)
σ: ¬ϕ |σ: ¬ψ

dn :
σ: ¬¬ϕ

σ: ϕ K :
σ: A req ϕ

σ.A.n: ϕ

4:
σ: A req ϕ

σ.A.n: A req ϕ 5:
σ.A.n: A req ϕ

σ: A req ϕ π :
σ: ¬(A req ϕ)

σ.A.m: ¬(ϕ)

ur1:
σ: ¬(U as R) req ϕ

σ: ¬(U req (R req ϕ))
ur2:

σ: (U as R) req ϕ
σ: U req (R req ϕ)

IK :
σ: R1 isa R2 σ: R1 req ϕ

σ: R2 req ϕ Iπ :
σ: ¬(R1 isa R2)

σ: R1 req xi σ: ¬(R2 req xi)

Fig. 3. Tableaux rules based on K45 properties, users in roles, and role hierarchy

Towards Modal Logic Formalization of Role-Based Access Control 107

Ci :
σ: Opj Cj

1 σ: Cj
1 � Cj

2

σ: Opj Cj
2

Cii :
σ: ¬Opj Cj

2 σ: Cj
1 � Cj

2

σ: ¬Opj Cj
1

Ck :
σ: A req (Opj O) σ: O belong Cj

σ: A req (Opj Cj)
Ct :

σ: A control (Opj Cj
1) σ: Cj

1 � Cj
2

σ: A control (Opj Cj
2)

Co :
σ: Opj Cj

σ: O belongCj

σ: Opj O
Cn :

σ: ¬Opj Cj
σ: O belongCj

σ: ¬Opj O

Fig. 4. Rules for object classes and hierarchies

6 Example: RBAC Policies with Object Class Hierarchies

In this section, we illustrate a simplified model of a company with marketing and
R&D departments. The model includes six different roles: Administrator, R&D-
manager, R&D-staff, Marketing-manager, Marketing-staff, Customer. The role
hierarchy shown in Fig. 6 is derived based on the lattice L of the access classes
depicted in Fig. 5. Access classes are composed of a set of category and a security
level [12]. In this example the set of categories are subsets of {Marketing, R&D}
and security levels are defined by C (classified) and U (unclassified). We use the
following abbreviation to represent the concept of roles: Admin, RDMag, RDStf,
MktMag, MktStf, Cust. The role hierarchy (RH) is modeled using the following
inclusion axioms:

Admin isa RDMag, Admin isa MktMag, RDMag isa RDStf,
MktMag isa MktStf, RDStf isa Cust, MktStf isa Cust.

Objects are classified into six categories: Company-agenda, Patent, Technical-
report, Contract, Marketing-survey, and General-information. Two object classes
are defined for each category; one for read and the other for write operation.
Object class concepts are defined as: Agendar, Patentr, TechRepr, Contractr,

Fig. 5. Security lattice L

108 J. Chae

MktSurr, Geninfor, Agendaw, Patentw, TechRepw, Contractw, MktSurw,
Geninfow. The classes for read and write are distinguished by superscripts r
and w, respectively. The class hierarchy is shown in Fig. 7. This hierarchy is also
derived from access classes in Fig. 5. The inheritance relations among classes are
given by the following class hierarchy axioms (CH):

Agendar % Patentr, Agendar % Contractr, Patentr % TechRepr,
TechRepr % Geninfor, Contractr % MktSurr, MktSurr % Geninfor,
Geninfow % TechRepw, TechRepw % Patentw, Patentw % Agendaw,
Geninfow % MktSurw, MktSurw % Contractw, Contractw % Agendaw.

Permissions are assigned such that they relate roles and object classes that are

Fig. 6. Role hierarchy Fig. 7. Class hierarchy

located at the same level in the hierarchy; e.g., RDMag can read and write
Patentr and Patentw, respectively. Permission assignment axioms (PA) for all
roles that exist in the model are shown below.

Admin control (read Agendar), Admin control (write Agendaw),
RDMag control (read Contractr), RDMag control (write Contractw),
RDStf control (read TechRepr), RDStf control (write TechRepw),
MktMag control (read Contractr), MktMag control (write Contractw),
MktStf control (read MktSurr), MktMag control (write MktSurw),
Cust control (read Geninfor), Cust control (write Geninfow).

The class hierarchy reduces the number of permission assignment axioms;
e.g., for Admin, it is sufficient to specify the read permission only over the class
Agendar. All read permissions over other classes for Admin can be implied using
the class hierarchy. A similar inference capability based on the role hierarchy
already exists in the RBAC model, e.g., the specification of permissions for RDStf
implicitly gives the same permissions to RDMag. However, the class hierarchy
provides additional axioms that can be used together with the role hierarchy to
enhance the reasoning power.

Towards Modal Logic Formalization of Role-Based Access Control 109

Suppose user Bob who is assigned to role Marketing-manager wishes to read
file f1 that is classified under Marketing-survey, MktSurr. This request is equiv-
alent to the following relation:

Bob req read f1.

We prove that the negation of the propositional argument of the above request,
¬read f1, is not satisfiable in any model that is built based on the global axioms
RH, CH, UA, OC, and PA. The reasoning process (shown in Fig. 8) starts with
the negation statement. The global axioms used in the process of reasoning
are indicated with an italicized font. All branches that are shown here lead to
clashes. Since the negation is not satisfiable; i.e., the relation itself is valid and
Bob’s request should be granted.

σ : ¬read f1

σ : Bob req (read f1) (UR)

σ : Bob has MktMag (UA)

σ : MktMag req (read f1) (IK)

σ : f1 belong MktSurr (OC)

σ : MktMag req (readMktSurr) (Ck)

σ : MktMag control (read Contractr) (PA)

σ : Contractr � MktSurr (OH)

σ : MktMag control (read MktSurr) (Ct)

↙ ↘
σ : ¬MktMag req (readMktSurr) σ : read MktSurr

⊥ σ : read f1
⊥

(Co)

Fig. 8. Proving steps for the request Bob req read f1

7 Conclusion and Future Work

The notion of object classes is appended to RBAC. A method is introduced,
based on the modal logic, to formalize RBAC policies with object classes and to
use object class hierarchies for reasoning about access control.

In our approach, we replicated classes by the number of operations (Cr and
Cw), and interpreted each of them as a set of individual states, Relation (5). This
approach closely resembles the original operation-object (read file1) definition
of permissions in RBAC. Whereas, using the proposed method, one only needs
to replicate object classes rather than all individual objects. This results in a
great simplification for typical information systems where the number of objects
is usually quite large, however they can be categorized into few classes.

110 J. Chae

Not all axioms in the ACL have the same level of importance in an information
system. While user assignment (UA) and object classification (OC) statements
can be specified by local managers, role and object class hierarchies as well as
permission assignments can be considered as the signature of the access con-
trol policies and should be determined by high authority administrators. In the
proposed method, object classification and class hierarchies are specified via dif-
ferent operators belong and %. Operator belong provides a mechanism to easily
downgrade (sanitize) or upgrade a specific object into the appropriate class,
while % provides the hierarchies between classes determined by the security ad-
ministrator.

The use of an expressive logic, such as modal logic, simplifies the application
of different constraints that will be investigated in future work.

Acknowledgments. This research was supported by Institute for Information
Technology Advancement (IITA) & Ministry of Information and Communication
(MIC), Republic of Korea.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Trans. Program. Lang. Syst (USA) 15(4), 706–734
(1993)

2. Barkely, J.F., Cincotta, V., Ferraiolo, D.F., Garrvrilla, S., Kuhn, D.R.: Role based
access control for the world wide web. NIST 20th National Computer Security
Conference, pp. 331–340 (1997)

3. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. ACM Trans. Inf. Syst. Secur (USA) 6(1), 71–127
(2003)

4. Chae, J.H., Shiri, N.: Formalization of RBAC policy with object class hierarchy. In:
Proc. of the 3rd Information Security Practice and Experience Conference (ISPEC)
(2007)

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge, Massachusetts (1995)

6. Ferraiolo, D.F., Barkely, J.F., Kuhn, D.R.: A role based access control model and
reference implementation within a corporate Intranet. ACM Trans. Inf. Syst. Secur
(USA) 1(2), 34–64 (1999)

7. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst (USA) 26(2), 214–260
(2001)

8. Koch, M., Mancini, L.V., Parisi-Presicce, F.: A graph-based formalism for RBAC.
ACM Trans. Inf. Syst. Secur (USA) 5(3), 332–365 (2002)

9. Massacci, F.: Reasoning about security: A logic and a decision method for role-
based access control. In: Nonnengart, A., Kruse, R., Ohlbach, H.J., Gabbay, D.M.
(eds.) FAPR 1997 and ECSQARU 1997. LNCS(LNAI), vol. 1244, pp. 421–435.
Springer, Heidelberg (1997)

10. Massacci, F.: Tableaux methods for access control in distributed systems. In:
Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, p. 246. Springer, Hei-
delberg (1997)

Towards Modal Logic Formalization of Role-Based Access Control 111

11. Rabitti, F., Bertino, E.: A model of authorization for next-generation database
systems. ACM Trans. Database Syst (USA) 16(1), 88–131 (1991)

12. Samarati, P., Vimercati, S.C.: Foundations of Security Analysis and Design: Tuto-
rial Lectures. In: Access Control: Policies, Models, and Mechanisms, pp. 137–196.
Springer, Heidelberg (2001)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

14. Sandhu, R.S., Samarati, P.: Access control: Principles and practice. IEEE Com-
munications Magazine 32(9), 40–48 (1994)

15. Woo, T.Y.C., Lam, S.S.: Authorization in distributed systems: a new approach. J.
Comput. Secur (Netherlands) 2(2-3), 107–136 (1993)

State Isomorphism in Model Programs with Abstract
Data Structures

Margus Veanes1, Juhan Ernits2,�, and Colin Campbell3,��

1 Microsoft Research, Redmond, WA, USA
margus@microsoft.com

2 Inst. of Cybernetics / Dept. of Comp. Sci.,
Tallinn University of Technology, Tallinn, Estonia

juhan@cc.ioc.ee
3 Modeled Computation LLC, Seattle, WA, USA
colin@modeled-computation.com

Abstract. Modeling software features with model programs in C# is a way of
formalizing software requirements that lends itself to automated analysis such
as model-based testing. Unordered structures like sets and maps provide a useful
abstract view of system state within a model program and greatly reduce the num-
ber of states that must be considered during analysis. Similarly, a technique called
linearization reduces the number of states that must be considered by identifying
isomorphic states, or states that are identical except for reserve element choice
(such as the choice of object IDs for instances of classes). Unfortunately, lin-
earization does not work on unordered structures such as sets. The problem turns
into graph isomorphism, for which no polynomial time solution is known. In this
paper we discuss the issue of state isomorphism in the presence of unordered
structures and give a practical approach that overcomes some of the algorithmic
limitations.

1 Introduction

Model programs are a useful formalism for software modeling and design analysis and
are used as the foundation of industrial tools such as Spec Explorer [24]. The expres-
sive power of model programs is due largely to two characteristics. First, one can use
complex data structures, such as sequences, sets, maps and bags, which is sometimes
referred to as having a rich background universe. Second, one can use instances of
classes or elements from user-defined abstract types; we use the word object to mean
either case.

The lack of symmetry checking when program states include both unordered struc-
tures and objects is a serious practical concern for users of tools like Spec Explorer. If
symmetric states are not pruned, the number of states that must be considered during
exploration will often become infeasibly large. This problem is known as state space
explosion. Symmetry reduction is not a universal solution for the state explosion prob-
lem but helps to relieve it in many cases. In this paper we present a symmetry reduction

� This work was done during an internship at Microsoft Research, Redmond, WA, USA.
�� This work was done at Microsoft Research, Redmond, WA, USA.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 112–127, 2007.
c© IFIP International Federation for Information Processing 2007

State Isomorphism in Model Programs with Abstract Data Structures 113

based on state isomorphism for programs that contain both complex data structures and
objects.

Taking into account practical experience with Spec Explorer and user feedback, we
can characterize a typical usage scenario of model programs as a three step process:
describe, analyze and test [14].

Describe: A contract model program is written to capture the intended behavior of
a system or subsystem under consideration. Complex data structures and abstract
elements are utilized to produce a contract, or trace oracle, at the desired level of
abstraction.

Analyze: Zero or more scenario model programs are written to restrict the contract to
relevant or interesting cases. The scenarios are composed with the contract and the
resulting model program is explored to validate the contract. The possible traces
of a composition of model programs is the intersection of possible traces of the
constituent model programs.

Test: The model program, that is, the contract possibly composed with additional sce-
narios, is used to generate test cases or used as a test oracle.

The expressive power of combining abstract, unordered data types with objects is
useful when describing a model but complicates analysis. The core problem is to ef-
ficiently identify “relevant” states during exploration. By a state we mean a collection
of all state variables and their values at a given point along the exploration path. It is
often the case that two states that are isomorphic should be treated as being equivalent.
Isomorphism between states with a rich background universe is well defined. It exists
when there is a one-to-one mapping of objects (within each abstract type) that induces a
structure-preserving mapping between the states [1].1 Informally, two states are isomor-
phic if they differ in choice of object IDs (or elements of the reserve) but are otherwise
structurally identical.

Consider for example a state signature containing two state variables V and E.
(States are introduced in the next section.) The type of V is a set of vertices (distinct val-
ues of an abstract type Vertex) and the type of E is a set of vertex sets. Let v1, v2, v3, v4

be vertices and let S1 be a state where,

V = {v1, v2, v3, v4},
E1 = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}.

Intuitively, the state S1 is an undirected graph that is a circle of four vertices. Let S2 be
a state where V has the same value as in S1 and,

E2 = {{v1, v3}, {v3, v2}, {v2, v4}, {v4, v1}}.

States S1 and S2 are isomorphic because structure is preserved if the reserve element
v2 is swapped with v3. This is an isomorphism that maps v3 to v2, v2 to v3 and every
other vertex to itself. Let S3 be a state where V has the same value as in S1 and,

E3 = {{v1, v2}, {v2, v3}, {v3, v1}, {v4, v1}}.
1 In ASM theory, what we call objects are called reserve elements.

114 M. Veanes, J. Ernits, and C. Campbell

State S3 is not isomorphic to S1, because all vertices in S1 are connected to two vertices
but v4 is only connected to one vertex in S3, i.e., there exists no structure-preserving
mapping from S1 to S3.

The example illustrates the point that state isomorphism is as hard as graph isomor-
phism, when objects and unordered data structures are combined. A customer survey
of Spec Explorer users within Microsoft has shown that this combination occurs often
in practice. It occurs in the standard Spec Explorer example included in the distribution
[21] known as the chat model [24,23], where chat clients are objects and the state has
a state variable that maps receiving clients to sets of sending clients with pending mes-
sages. The state isomorphism problem for reserve elements in unordered structures was
not solved in Spec Explorer and to the best of our knowledge has not been addressed in
other tools used for model based testing or model checking that support unordered data
structures. There are model checkers that support scalar sets [13], which are basically
ranges of integers, but we do not know of instances where such sets can contain objects
with abstract object IDs.

In practical terms this means that users must either use various pruning techniques
that only partially address the problem or extend the model program with custom sce-
nario control that tries to work around the problem by restricting the scope of explo-
ration. The results are not always satisfactory.

The pruning techniques that have been partially helpful in this context are state
grouping [9] and multiple state grouping [4,24]. The grouping techniques have an or-
thogonal usage that is similar to abstraction in model checking, but state isomorphism
is a clearly defined symmetry reduction that is closely related to state symmetry re-
duction in explicit state model checking [18]. In general, it is not possible to write a
grouping expression that maps two states into the same value if and only if the states
are isomorphic; the “only if” part is the problem.

If objects are not used, then state isomorphism reduces to state equality. State equal-
ity can be checked in linear time. This is possible because the internal representation
of all (unordered) data structures can then be ordered in a canonical way. The same ar-
gument is true if objects are used but no unordered data structures are used. Then state
isomorphism reduces to what is called heap canonicalization in the context of model
checking and can be implemented in linear time [12,19].

In this paper we describe a solution for the state isomorphism problem for model
programs with states that have both unordered structures and objects. We do so by
providing a mapping from model program states to rooted labeled directed graphs and
use a graph isomorphism algorithm to solve the state isomorphism problem. The graph
construction and the labeling scheme use techniques from graph partitioning algorithms
and strong hashing algorithms to reduce the need to check isomorphism for states that
are known not to be isomorphic. We also outline a graph isomorphism algorithm that is
customized to the particularities of state graphs. Our algorithm extends a linearization
based symmetry-checking algorithm as in [16,27] with backtracking and is, arguably,
better suited for this application than existing graph isomorphism algorithms.

Before we continue with the main body of the paper, we illustrate why state isomor-
phism checking is useful on a small example, shown in Figure 1, that we use also in
the later sections. Th example is small but typical for similar situations that arise for

State Isomorphism in Model Programs with Abstract Data Structures 115

namespace Triangle
{
[Abstract]
enum Side { S1, S2, S3 }

[Abstract]
enum Color { RED, BLUE }

static class Contract
{

static Map<Side, Color> colorAssignments = Map<Side, Color>.EmptyMap;

static bool AssignColorEnabled(Side s)
{ return !colorAssignments.ContainsKey(s); }

[Action]
static void AssignColor(Side s, Color c)
{ colorAssignments = colorAssignments.Add(s, c); }

}
}

Fig. 1. A model program where a color, either RED or BLUE, is assigned to the sides of a triangle

example in the chat model [23] or when modeling multithreaded applications where
threads are treated as objects [26]. The example is written in C# and uses a model-
ing library and a toolkit called NModel. The formal definition of a model program is
given in Section 2, where it is also explained how the C# code maps to a model pro-
gram. NModel is going to be an open source project that supports the forthcoming text
book [14] that discusses the use of model programs as a practical modeling technique.
All algorithms described in this paper have been implemented in NModel.

Example

Let us look at a simple model program that describes ways to assign colors to the sides
of a triangle. The model program is given in Figure 1. The triangle in the program has
three sides, S1, S2, and S3 and each side can be associated with the color RED or BLUE.
The model program has a single action that assigns a color to one side at a time. There
are (|Color| + 1)|Side| = 27 possible combinations of such assignments, including
intermediate steps where some sides have not been colored yet. There are three sides;
each side has three possible values if you count “no color” as a value.

The state transition graph visualizing all possible transitions and all distinct states
of the triangle program is given in Figure 2. In this case the [Abstract] attributes of
Side and Color have not been taken into account and each combination of Side �→
Color is considered distinct.

2 Definitions

A formal treatment of model programs builds on the ASM theory [11] and can for
example be found in [25]. Here we provide some basic terminology and intuition and
illustrate the main concepts with examples. A state here is a full first-order state, that is
intuitively a mapping from a fixed set of state variables to a fixed universe of values.

116 M. Veanes, J. Ernits, and C. Campbell

0

3 1 62 45

16 262125 15 20 7 10 982217

19 141218 132423 11

Fig. 2. The result of exhaustive exploration of the triangle example in Figure 1. Each combination
of Side �→ Color is considered distinct and thus the blowup of the state space. The numbers
denote exploration sequence of the state space.

States also have a rich background [1] that contains sequences, sets, maps, sets of sets,
maps of sets, etc. We assume here that all state variables are nullary.2 For example, the
model program in Figure 1 has one state variable colorAssignments.

Since states have a rich background universe they are infinite. However, for represen-
tation, we are only interested in the foreground part of a state that is the interpretation
of the state variables. All values have a term representation. Terms that do not include
state variables are called value terms and are defined inductively over a signature of
function symbols. This signature includes constructors for the background elements.3

We identify a state with a conjunction of equalities of the form x = t, where x is a state
variable and t a value term.

The interpretation of a value term is the same in all states. Value terms are not unique
representations of the corresponding values, i.e., value terms that are syntactically dis-
tinct may have the same interpretation. We say value for a value term when it is clear
from the context that the particular term representation is irrelevant.

For example, a set of integers, containing the values 1, 2, and 3 is represented by
the term Set<int>(1,2,3). The term Set<int>(2,1,3) has the same interpreta-
tion. We use a relaxed notation where the arity of function symbols is omitted but is
implicitly part of the symbol. For example Set<int>(1,2) represents a set contain-
ing 1 and 2, so the constructor Set<int> is binary here and ternary in the previous
case. Function symbols are typed. For example, a set containing two sets of strings
Set<string>("a") and Set<string>("b") is represented by the term

Set<Set<string>>(Set<string>("a"),Set<string>("b"))

Model programs typically also have user-defined types that are part of the background.
For example the model program in Figure 1 has the user-defined type Color. This type
has two elements Color.RED and Color.BLUE, respectively. The initial state of this
model program is (represented by the equality)

2 In ASM theory, state variables are called dynamic functions and may have arbitrary arities.
Dynamic functions with positive arities can be encoded as state variables whose values are
maps.

3 In ASM theory, these function symbols are called static, their interpretation is the same in all
states.

State Isomorphism in Model Programs with Abstract Data Structures 117

colorAssignments = Map<Side,Color>.EmptyMap.4

A user-defined type may be annotated as being abstract, e.g., Color in Figure 1
is abstract. Elements of an abstract type are treated as typed reserve elements in the
sense of [11]. Intuitively this means that they are interchangeable elements so that a
particular choice must not affect the behavior of the model program. A valid model
program must not explicitly reference any elements of an abstract type. For example,
even though the Color enumeration type provides an operation to return the string
name of a color value, the model program must not use that operation if color is to be
considered abstract. Abstract types are similar to objects5 that are treated the same way.

An update rule is a collection of (possibly conditional) assignments to state variables.
An update rule p that has formal input parameters x̄ is denoted by p[x̄]. The instantiation
of p[x̄] with concrete input values v̄ of appropriate type, is denoted by p[v̄]. An update
rule p denotes a function [[p]] : State×Valuen → State. Update rules in model programs
are called actions.

A guard ϕ is a state dependent Boolean formula that may contain free logic variables
x̄ = x1, . . . , xn, denoted by ϕ[x̄]; ϕ is closed if it contains no free variables. Given
values v̄ = v1 . . . , vn we write ϕ[v̄] for the replacement of xi in ϕ by vi for 1 ≤ i ≤ n.
A closed formula ϕ has the standard truth interpretation s |= ϕ in a state s. A guarded
update rule is a pair (ϕ, p) containing a guard ϕ[x̄] and an update rule p[x̄]; intuitively
(ϕ, p) limits the execution of p to those states and arguments v̄ where ϕ[v̄] holds. The
guard restricts firing the update rule based on but the update rule itself may contain
conditionals to update the state appropriately.

We use a simplified definition a model program here, by omitting control modes. The
state isomorphism problem is independent of the presence of explicit control modes.
Thus, this simplification does not affect the main topic of this paper.

Definition 1. A model program P has the following components:

– A finite vocabulary X< of state variables
– A finite vocabulary Σ of action symbols
– An initial state s0 given by a conjunction

∧
x∈X x = tx where tx is a value term.

– A reset action symbol Reset ∈ Σ.
– A family (ϕf , pf)f∈Σ of guarded update rules.

• The arity of f is the number of input parameters of pf .
• The arity of Reset is 0 and [[pReset]](s) = s0 for all s |= ϕReset.

An action has the form f(v1, . . . , vn) where f is an n-ary action symbol and each vi is
a value term that matches the required type of the corresponding input parameter of pf .
We say that an action f(v̄) is enabled in a state s if s |= ϕf [v̄]. An action f(v̄) that is
enabled in a state s can be executed or invoked in s and yields the state [[pf]](s, v̄).

The model program in Figure 1 has a single action symbol AssignColor. The guard
of AssignColor is given by the Boolean function AssignColorEnabled which is

4 The namespace Triangle.Contract is implicit here.
5 By “objects” we mean object IDs. Instance fields associated with objects are considered to

be state variables in their own right and not part of any nested structure. In this way, we can
consider only global variables without loss of generality.

118 M. Veanes, J. Ernits, and C. Campbell

associated with AssignColor by naming. The action a =AssignColor(Side.S1,

Color.RED) is enabled in the initial state s0 as AssignColorEnabled(Side.S1)
returns true in s0. The execution of a in s0 yields the state

colorAssignments = Map<Side,Color>(Side.S1 �→ Color.RED).

The unwinding of a model program from its initial state gives rise to a labeled tran-
sition system (LTS). The LTS has the states generated by the unwinding of the model
program as its states and the actions as its labels.

Definition 2. A rooted directed labeled graph, G, is a graph that has a fixed root, has
directed edges, and contains labels of vertices and edges. Such graph can be formally
represented as a triple G = (vr, V, E) where vr ∈ V is the root vertex, V is a set of
vertices v that are pairs v = (id, lv), where id is an identifier uniquely determining a
vertex in a graph and lv is the label of the vertex. E is the set of triples (v1.id, le, v2.id)
where v1 is the start vertex, v2 is the end vertex and le is the edge label.

3 States as Graphs

In this section we present a graph representation of the state of a model program.
The states of a model program can contain object instances and other complex data

structures, thus we do not deal only with primitive types, such as integers and Boolean
values, but also with instances of objects that can be dynamically instantiated and refer
to other instances of objects. The state space of a model program may be infinite, but
concrete states are finite first order structures. We look at the configuration of values
and object instances that have been assigned to the fields of objects and data structures
contained in the program.

A state is defined by an assignment of term representations of values to fields, s =∧
x∈X<

x = tx. There are two kinds of fields in a model program: global fields, like
colorAssignments in the program on Figure 1 and fields of dynamically instantiated
objects. For the sake of brevity, we will look only at states containing global fields.
Assignments to global fields are simple equations x = t. It is important to note that it is
possible to establish a binary relation of total ordering, <, of field names. This can be
achieved by, for example, ordering the field names alphabetically.

Figure 3 outlines the procedure of creating a graph from a state. In general the proce-
dure is straightforward: the function CreateGraph creates the graph by analyzing the
terms corresponding to each state variable x. The analysis of a term, TermToGraph,
adds a field index to value mapping to the label of the parent node, if t denotes a value,
and adds a new node to the graph, if t is an object. A specialized procedure is used
for creating nodes corresponding to built-in abstract data types. In fact, each ADT is
handled in a slightly different way.

A Set becomes a node that has the count of its elements in the label of the incoming
edge. All outgoing edges of a set are given a label with a function symbol 0, denoting
membership in a set. It is possible that the label is extended with more arguments as the
set may contain other sets.

The representation of a bag (or multiset) has a sorted list of element multiplicities on
the incoming label. The label of the edge pointing to each element of a Bag is labeled

State Isomorphism in Model Programs with Abstract Data Structures 119

class State {
Sequence<Pair> X;

}

class G {
Vertex v r = new Vertex();
Set<Vertex> vertices = Set<Vertex>.EmptySet.Add(v r);
Set<Edge> eds = Set<Edge>.EmptySet ;

}

G CreateGraph(State s) {
g=new G();
foreach (x in s.X) g = TermToGraph(t,g.v r, g.SequenceNumber(x), g);
return g;

}

G TermToGraph(Term t, Vertex parent, int fieldIdx, G g) {
if (!isObject(t))
parent.label.Add(new Lbl(fieldIdx,t));

switch(t.functionSymbol) {
case Set:

Vertex setv=g.NewVertex();
g.eds=g.eds.Add(new Edge(parent,new Lbl(fieldIdx,t.argCount),setv));
forall (Term elem in t.arguments)

TermToGraph(elem,setv,0,g);
break;

case Bag:
Vertex bagv=g.NewVertex();
Bag<Pair> bagCounts = Bag<Pair>.EmptyBag;
forall (Pair<Term,Term> (elem,count) in t.GetArgumentsByPair()) {

TermToGraph(elem,setv,count,g);
bagCounts.Add(count);

}
g.eds=g.eds.Add(new Edge(parent,new Lbl(fieldIdx,bagCounts.Sort()),setv));
break;

case Map:
forall (Pair<Term,Term> (key,val) in t.GetArgumentsByPair()) {

Vertex maplet=g.NewVertex();
TermToGraph(key,maplet,0,g);
TermToGraph(val,maplet,1,g);
g.eds=g.eds.Add(new Edge(parent,new Lbl(fieldIdx,t.PairCount()),maplet));

}
break;

default:
if (isObject(t)) {

Vertex newVertex=new Vertex();
g.eds=g.eds.Add(new Edge(parent, new Lbl(fieldIdx),newVertex));
if (arity(t)>0)

forall (Term arg in t.arguments)
TermToGraph(arg,newVertex,sequenceNumber(arg),g);

}
}
return g;

}

Fig. 3. Code for generating a rooted labeled directed graph from a state of a model program

by the corresponding multiplicity. In fact, a Bag is a set of pairs, and using a specialized
representation is an optimization that helps to reduce the number of nodes in the state
graph. A Map is also a Set of pairs but can be converted to a reduced fragment of the
graph.

The labelings of outgoing edges may be unique, as in the case of different field
indices of a structure, or unordered, as in the case of a set.

120 M. Veanes, J. Ernits, and C. Campbell

Thus, it is possible to classify the outgoing edges of a node into ordered and un-
ordered edges. The graph representations of the abstract data structures Set, Bag, and
Map are summarized in Figure 4.

Obj:1 Obj:2 Obj:3

Set:0

in in in

size(3)

Obj:1 Obj:2 Obj:3

Bag:0

in(2)in(1) in(1)

size(2, 1, 1, 2)

Obj:1

Map:0

key

Obj:2

value

Obj:3

Map:1

value key

size(2) size(2)

Set Bag Map

Fig. 4. Graph representations of abstract data types used by model programs. The corre-
sponding term representations are Set(Obj.O1,Obj.O2,Obj.O3), Bag(Obj.O1,2,
Obj.O2,1,Obj.O3,1) and Map(Obj.O1,Obj.O2,Obj.O3,Obj.O2).

There are some graphs representing the states of the triangle example in Figure 5.
The state graphs have been generated using the procedure outlined in Figure 3.

S1

Map:0

key

RED

value

S2

Map:1

valuekey

S3

Map:2

value key

Root:1

cA(3) cA(3) cA(3)

S1

Map:0

key

BLUE

value

REDS2

Map:1

valuekey

S3

Map:2

value key

Root:1

cA(3) cA(3) cA(3)

S1

Map:0

key

RED

value

S2

Map:1

key

BLUE

value

S3

Map:2

value key

Root:1

cA(3) cA(3)cA(3)

State 11 State 12 State 14

Fig. 5. State graphs of states 11, 12, and 14 of the triangle example on Fig. 2 and Fig. 6. State 14
is isomorphic to state 12 but neither 12 nor 14 is isomorphic to 11. The abbreviation cA stands
for colorAssignments and (3) denotes that there are 3 key-value pairs in the map.

State graphs of states of the triangle example denoted by numbers 11, 12, and 14 on
Figure 2 and Figure 6 are given in Figure 5. State 14 is isomorphic to state 12 but neither
12 nor 14 is isomorphic to 11. The abbreviation cA stands for colorAssignments and
(3) denotes that there are 3 key-value pairs in the map.

Figure 6 illustrates the effects of isomorphism-based symmetry reduction applied
to the triangle example studied previously. The state graph on the left shows at which
stages of the search isomorphic states were encountered. The dashed arrows point to
states that are isomorphic to the state the arrow starts from. The graph on the right is
obtained by showing a representative example of a family of isomorphic states.

State Isomorphism in Model Programs with Abstract Data Structures 121

0

5 2 4 6 3

1

8 10

7 9

11 12

13 14

0

1
S3 -> RED

7
S3 -> RED
S2 -> RED

9
S3 -> RED

S2 -> BLUE

12
S3 -> RED
S2 -> RED

S1 -> BLUE

11
S3 -> RED
S2 -> RED
S1 -> RED

a) b)

Fig. 6. State space of the Triangle example from Fig. 1, where exploration of isomorphic states has
been pruned. The dashed lines on (a) exhibit encounters of isomorphic states during exploration.
(b) exhibits the structure of the state graph when isomorphic states are collapsed.

namespace Triangle
{
[Abstract]
enum Color { RED, BLUE }

class Side : LabeledInstance<Side> { public Color color; }

static class Contract
{

static Set<Side> sides = Set<Side>.EmptySet;

[Action]
static void AssignColor([New] Side s, Color c)
{

s.color = c;
sides = sides.Add(s);

}

static void AssignColorEnabled(Side s)
{ return sides.Count < 3; }

}
}

Fig. 7. A version of the triangle model where sides are objects. The AssignColor action is
enabled if not all sides have been colored. The New keyword indicates that the side is a new
object (reserve element).

Field Maps

As mentioned earlier, objects are just abstract ids or reserve elements. So how do we
deal with fields of objects? Fields of objects are represented by state variables, called
field maps, whose values are finite maps from objects of the given type to values of the

122 M. Veanes, J. Ernits, and C. Campbell

given field type.6 From the point of view of this paper, field maps are handled in the
same way as map-valued state variables. A difference compared to map-valued state
variables is that field maps can not be referenced as values inside of a model program,
which can sometimes be used to simplify the graph representation of a state.

In order to illustrate field maps, consider a version of the triangle example, shown
in Figure 7, where sides are instances of a class Side. The fact that sides are reserve
elements is indicated by the base class. This model program has two state variables,
sides and color, where color is a field map. In the initial state, both color and
sides are empty. When a color c is assigned to a side s, the color map gets a new
entry s �→ c.

The presented approach is also extended to states resulting in the composition of
model programs, as presented in [25]. The root of a state of a composition of model
programs becomes a set of two rooted graphs that may share objects.

4 Isomorphism Checking

Unlike arbitrary graphs, state graphs are rooted and encode state information in a way
that partially reflects the underlying static structure of a program. For example, all ob-
jects of a given type have a fixed set of fields that are ordered alphabetically. Several
built-in ordered data types, such as sequences and pairs, also have an order of the ele-
ments contained in them according to their position. Moreover, user-defined types, other
than abstract types, have a fixed alphabetical order of fields. A typical model program
uses both ordered and unordered data structures. As explained above, the resulting state
graph includes both ordered and unordered edges.

Our intent was to devise an algorithm for graph isomorphism that takes advantage
of the ordered edges as much as possible while handling the unordered cases as a last
resort through backtracking. The starting point is that all vertices of the graph have
been given strong labels through object ID-independent hashing7 that already reduces
the possible pairings of vertices dramatically. In the case when all edges are ordered
the algorithm should not do any backtracking at all. The basic idea of the algorithm
is an extension of the linearization algorithm used in Symstra [27] with backtracking.
The algorithm reduces to linearization when the graphs that are being compared are
fully ordered, i.e. have no unordered edges. A small difference compared to Symstra is
that the linearizations are computed and compared simultaneously for the two graphs
as depth first walks, rather than independently and then compared.

Linearization with Backtracking

The following is an abstract description of the algorithm. Given are two state graphs
G1 and G2. The algorithm either fails to produce an isomorphism or returns an isomor-
phism from G1 to G2. The abstract description of the algorithm is non-deterministic. In
the concrete realization of the algorithm the choose operation is implemented through

6 The name of a field map is uniquely determined from the fully qualified name of the class and
the name of the field.

7 The hashing part of the algorithm is outside the scope of this paper.

State Isomorphism in Model Programs with Abstract Data Structures 123

backtracking to the previous backtrack point where more choices were possible. The
details of the particular backtracking mechanism are omitted here.

We say that an edge with label l is an l-edge. The edge labels that originate from
ordered background data structures are called functional. It is known that for all func-
tional edge labels l and for all nodes x, there can be at most one outgoing l-edge from
x. Other edge labels are called relational.

Bucketing: Compute a “bucket map” Bi for all nodes in Gi, for i = 1, 2. Each node n
in Gi with label l is placed in the bucket Bi(l). If either B1 and B2 do not have the
same labels and the sames sizes of corresponding buckets for all labels then fail.
Otherwise execute Extend(∅, r1, r2), where ri is the root of Gi, for i = 1, 2.

Extend(ρ, x1, x2): Given is a partial isomorphism ρ and isomorphism candidates x1

and x2. If x1 and x2 have distinct labels then fail, else if x1 is already mapped to
x2 in ρ the return ρ, else if either x1 is in the domain of ρ or x2 is in the range of ρ
then fail, else let ρ0 = ρ ∪ {x1 ,→ x2} and proceed as follows.

Let l1, . . . , lk be the outgoing edge labels from x1 ordered according to a fixed
label-order.8 For j = 1, . . . , k,

– For i = 1, 2, choose lj-edges (xi, yi) in Gi for some yi.
If Extend(ρj−1, y1, y2) fails then fail, else let ρj = Extend(ρj−1, y1, y2).

Return ρk.

Notice that the algorithm is deterministic and reduces to linearization when all
choices are made from singleton sets. A sufficient (but not necessary) condition for
this to be true is when all edge labels are functional. A heuristic we are using in the
implementation of this algorithm is that all functional edge labels appear before all
relational edge labels in the label-order that is used in the algorithm.

The implementation of the algorithm has also some optimizations when backtrack
points can be skipped, that have been omitted in the above abstract description. One
particular optimization is the following. When there are multiple l-edges outgoing from
a node x for some fixed relational edge label l, but all of the target nodes of those edges
have the same label and degree 1, then an arbitrary but fixed order of the edges can be
chosen that uses the order of the node labels and choice points can be cut. The algorithm
bears certain similarities to the practical graph isomorphism algorithm in [16], by using
a partitioning scheme of nodes that eliminates a lot of the backtracking. The algorithm
has been implemented in NModel.

5 Related Work

Two program states, in the presence of pointers or objects, can be considered equivalent
if the structure of the logical links between data objects is equivalent while the con-
crete physical addresses the pointers point to differ, i.e. when the actual arrangement
of objects in memory is different due to the effects of memory allocation and garbage
collection. This is known as one form of symmetry reduction and has been used in soft-
ware model checking. The principles of such symmetry reductions have been outlined

8 At this point we know that x2 must have the same outgoing edge labels in G2 as x1 has in G1

or else x2 would have a different label than x1.

124 M. Veanes, J. Ernits, and C. Campbell

by Iosif in [12]. One of the key ideas in [12] is to canonicalize the representation of
program heap by ordering the heap graph during a depth first walk. The order of out-
going edges (pointers) from a node (for example an object) is given by a deterministic
ordering by edge labels (field name and order number, for example position in the ar-
ray, in the parent data structure). Lack of such ordering would render state comparison
to an instance of the graph isomorphism problem, which requires exponential time in
the number of nodes in the general case [17]. In [19] Musuvathi and Dill elaborate on
Iosif’s algorithm to allow incremental heap canonicalization, i.e. take into account that
state changes are often small and modify only a small part of the heap, thus it should
not be necessary to traverse the whole heap after each state change.

In addition to dSpin [6] where the above mentioned principles were initially imple-
mented, there are several analysis tools specifically targeted for object-oriented software
that utilize the approach, for example, XRT [10] and Bogor [20].

XRT is a software checker for common intermediate language, CIL. It processes .Net
managed assemblies and provides means for analyzing the processed programs.

Bogor is a customizable software model checking engine that supports constructs
that are characteristic to object-oriented software. Although there is support for using
abstract data types, like sets, the underlying state enumeration and comparison engine
performs heap canonicalization based on an ordering of object IDs based on the previ-
ously mentioned work by Iosif [12].

Korat [3] is a tool for automated test generation based on Java specifications. It also
uses the concept of heap isomorphism to generate heaps that are non-isomorphic.

We have layered ASM semantics on top of the underlying programming environment
and thus the concrete memory locations have been abstracted by interpreting the pro-
gram state in the ASM semantics. But in addition to using the concrete data structures,
we can declare some types to represent instances of abstract objects and there are some
data structures, such as the Set, Map and Bag, that are designed to accommodate such
objects, among others.

Symstra [27] uses a technique that linearizes heaps into integer sequences to reduce
checking heap isomorphism to just comparing the integer sequence equality. It starts
from the root and traverses the heap depth first. It assigns a unique identifier to each
object, keeps this mapping in memory and reuses it for objects that appear in cycles.
It extends the previously mentioned approaches [12,19] in that it also assigns a unique
identifier to each symbolic variable, keeps this mapping in memory and reuses it for
variables that appear several times in the heap.

In [5] a glass box approach of analyzing data structures is presented. The reductions
described therein involve isomorphism-based reductions, but encoding the task requires
manual attribution of the data structures to be analyzed. The approach does not present
a general way how to handle object-oriented programs containing abstract data types.

Spec Explorer [24,21] is a tool for the analysis of model programs written in AsmL
and Spec#. It is possible in some cases to specify symmetry reductions in Spec Explorer
using state groupings but the tool does not have a built-in isomorphic state checking
mechanisms.

Graph isomorphism is a topic that has received scientific attention for decades. Ull-
mann’s (sub)graph isomorphism algorithm [22] is a well known backtracking algorithm

State Isomorphism in Model Programs with Abstract Data Structures 125

which combines a forward looking technique. As the algorithm is relatively straightfor-
ward to implement, we used it as an oracle for testing purposes.

The algorithm described in Section 4 builds on another well known approach also
known as the Nauty algorithm, which uses node labelings and partitioning based on
such labelings [16].

It is known that there exist certain classes of graphs for which there is a polynomial
time algorithm for deciding graph isomorphism. In [15] a method for deciding isomor-
phism of graphs with bounded valence in polynomial time is presented. The reason why
such algorithms are not directly usable in practice is that the polynomial complexity re-
sult contains large constants [8].

There are model checkers, such as for example Murφ [7] and Symmetric Spin [2],
that allow modeling using scalar sets [13]. These sets are similar to the sets described
in the current paper but they do not have support for abstract object IDs. A survey of
symmetry reductions in temporal logic model checking is given in [18].

6 Conclusion

In this paper we showed how state isomorphism for states with both unordered struc-
tures and objects may be understood in the context of model programs. We reviewed
how the concept of background structures and reserve elements can formalize the mean-
ing of isomorphism for program states. We then described how to represent state as a
rooted directed labeled graph so that existing isomorphism algorithms could be applied.
Finally, we showed an isomorphism-checking algorithm that takes advantage of the in-
formation contained in states with elements drawn from a rich background universe.

The techniques in this paper can be applied in a variety of industrially relevant mod-
eling and testing contexts and are motivated by practical concerns that arose from the
industrial use of the Spec Explorer tool in Microsoft.

While this current paper gives a solid notion how program states of object-oriented
programs can be viewed as graphs, it also leads to a number of interesting open prob-
lems. For example, how can one speed up isomorphism checking for the particular
graphs of program states? Would it be useful to describe graph isomorphism as a SAT
problem? How could this be accomplished?

As future work, we plan on showing how hashing techniques can be used to improve
the performance of isomorphism checks for larger numbers of states.

Acknowledgements

We thank Wolfram Schulte for referring us to the Symstra work and Jonathan Jacky
for insightful discussions related to the topics of this paper. Additionally we thank the
anonymous referees, in particular one of them, for very detailed, insightful, and help-
ful comments. Juhan Ernits thanks the Estonian Information Technology Foundation
and the Estonian Doctoral School in Information and Communication Technology for
general support to his PhD studies.

126 M. Veanes, J. Ernits, and C. Campbell

References

1. Blass, A., Gurevich, Y.: Background, reserve, and gandy machines. In: Proceedings of the
14th Annual Conference of the EACSL on Computer Science Logic, London, UK, pp. 1–17.
Springer-Verlag, Heidelberg (2000)

2. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric spin. In: Havelund, K., Penix, J., Visser,
W. (eds.) SPIN Model Checking and Software Verification. LNCS, vol. 1885, pp. 1–19.
Springer, Heidelberg (2000)

3. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java predicates.
SIGSOFT Softw. Eng. Notes 27(4), 123–133 (2002)

4. Campbell, C., Veanes, M.: State exploration with multiple state groupings. In: D. Beauquier,
E. Börger, and A. Slissenko, editors, 12th International Workshop on Abstract State Ma-
chines, ASM’05, pp. 119–130. Laboratory of Algorithms, Complexity and Logic, Créteil,
France (March 2005)

5. Darga, P.T., Boyapati, C.: Efficient software model checking of data structure properties.
In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pp. 363–382. ACM Press, New
York, NY, USA (2006)

6. Demartini, C., Iosif, R., Sisto, R.: dSPIN: A dynamic extension of SPIN. In: Dams, D.R.,
Gerth, R., Leue, S., Massink, M. (eds.) Theoretical and Practical Aspects of SPIN Model
Checking. LNCS, vol. 1680, pp. 261–276. Springer, Heidelberg (1999)

7. Dill, D.L.: The Murphi verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

8. Fortin, S.: The graph isomorphism problem (1996)
9. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from

abstract state machines. In: ISSTA’02. Software Engineering Notes, vol. 27, pp. 112–122.
ACM Press, New York (2002)

10. Grieskamp, W., Tillmann, N., Schulte, W.: XRT — exploring runtime for.Net architecture
and applications. Electr. Notes Theor. Comput. Sci. 144(3), 3–26 (2006)

11. Gurevich, Y.: Specification and Validation Methods. In: Evolving Algebras 1993: Lipari
Guide (chapter), pp. 9–36. Oxford University Press, Oxford (1995)

12. Iosif, R.: Symmetry reductions for model checking of concurrent dynamic software.
STTT 6(4), 302–319 (2004)

13. Ip, C.N., Dil, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9(1-2),
41–75 (1996)

14. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing and Analysis
with C#. Cambridge University Press (Forthcoming 2007)

15. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. Syst. Sci. 25(1), 42–65 (1982)

16. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
17. Messmer, B.T.: Efficient graph matching algorithms (1995)
18. Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking. ACM

Comput. Surv. 38(3), 8 (2006)
19. Musuvathi, M., Dill, D.L.: An incremental heap canonicalization algorithm. In: Godefroid,

P. (ed.) Model Checking Software. LNCS, vol. 3639, Springer, Heidelberg (2005)
20. Robby, M., Dwyer, B., Hatcliff, J.: Domain-specific model checking using the bogor frame-

work. In: ASE ’06: Proceedings of the 21st IEEE International Conference on Automated
Software Engineering (ASE’06), pp. 369–370. IEEE Computer Society, Washington, DC,
USA (2006)

21. SpecExplorer (2006) http://research.microsoft.com/SpecExplorer

http://research.microsoft.com/SpecExplorer

State Isomorphism in Model Programs with Abstract Data Structures 127

22. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)
23. Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Elsevier Science

(2006)
24. Veanes, M., Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.:

Model-based testing of object-oriented reactive systems with Spec Explorer, Tech. Rep.
MSR-TR-2005-59, Microsoft Research. Preliminary version of a book chapter in the forth-
coming text book Formal Methods and Testing (2005)

25. Veanes, M., Campbell, C., Schulte, W.: Composition of model programs. In the current pro-
ceedings (2007)

26. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs.
In: ESEC/FSE-13: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software en-
gineering, pp. 273–282. ACM Press, New York, NY, USA (2005)

27. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

Composition of Model Programs

Margus Veanes1, Colin Campbell2,�, and Wolfram Schulte1

1 Microsoft Research, Redmond, WA
{margus,schulte}@microsoft.com
2 Modeled Computation LLC, Seattle, WA
colin@modeled-computation.com

Abstract. Model programs are a useful formalism for software testing and
design analysis. They are used in industrial tools, such as SpecExplorer, as a com-
pact, expressive and precise way to specify complex behavior. One of the chal-
lenges with model programs has been the difficulty to separate contract modeling
from scenario modeling. It has not been clear how to separate those concerns in a
clean way. In this paper we introduce composition of model programs, motivate
why it is useful to be able to compose model programs, and what composition of
model programs formally means.

1 Introduction

Model programs are a useful formalism for software testing and design analysis. They
are used in industrial tools like SpecExplorer [1] as a compact, expressive and precise
way to specify complex behavior. Model programs are unwound into transition systems
that can be used in model-based testing, for runtime conformance checking of a system
under test, and for design validation [4,15,16,17].

In practice we have observed two distinct uses of model programs. The first use is as
a software contract that encodes the expected behavior of the system under test. Here,
the model program acts as an oracle that predicts system behavior in each possible
context. The unwinding of such a contract model is typically infinite, since for many
systems, such as those that allocate new objects at runtime, there are infinitely many
possible states.

The second use is to define the scenarios to be tested or analyzed. Here, the purpose
of the model program is to produce (when unwound) states and transitions of interest
for a particular test or type of analysis. For example, one might want to direct a test
to consider only certain interleavings of actions instead of all possible interleavings.
Another example would be a model that specifies a finite set of input data to be used as
system inputs.

Current practice tends to combine these two roles within a single model program,
even though it is recognized that cleanly separating these concerns would be much
better engineering practice. In addition, we have observed that as contract models grow,
it would be helpful if they could be divided into submodels of manageable size. Up to
now we have lacked the formal machinery to accomplish this.

� The work in this paper was done at Microsoft Research.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 128–142, 2007.
c© IFIP International Federation for Information Processing 2007

Composition of Model Programs 129

At issue is the separation of design aspects into distinct but related model programs.
If model programs are related exclusively by common action labels, then the desired
system behavior is the intersection of possible traces for each aspect. In classical au-
tomata theory, the technique of achieving intersection of traces is product composition.
We extend this technique here to define parallel composition of model programs.

Not all composition is parallel; sometimes it is useful to think in terms of phases
of system operation. A typical example occurs when there is an initialization phase,
followed by an operational phase with many possible behaviors, followed by a shut-
down phase. We define the serial composition of model programs, which is analogous
to serial composition of finite automata for language concatenation.

The main contribution of the paper is the formalization of the parallel composition
of model programs in a way that builds on the classical theory of LTSs [12]. Our goal
is therefore not to define yet another notion of composition but to show how the com-
position of model programs can be defined in a way that preserves the underlying LTS
semantics.

It is important to note here that the composition of model programs is syntactic.
It is effectively a program transformation that is most interesting when it is formally
grounded in an existing semantics and has useful algebraic properties. This fills an
important semantic gap and makes compositional modeling more practical in tools like
Spec Explorer.

Achieving this goal required us to “rethink” the way actions are treated. Spec Ex-
plorer uses a mixture of a Mealy view and an LTS view that causes a complication in
the definition of conformance. In this paper we adopt a consistent LTS-based view of
action traces. This enables a direct application of the formal LTS based teory of testing
using ioco [3] when the direction (input or output) of actions is specified. A key aspect
of the composition of model programs is that actions are represented by terms that may
include variables and values, and the notion of an action vocabulary is defined using
only the function symbol part of the action. When actions are synchonized, values are
shared through unification and may transfer data from one model program to another.

Model program composition is the cornerstone of the NModel framework that pro-
vides a modeling library for model programs written in C#. NModel is in the process of
becoming an open source project and is the software support for the forthcoming text-
book [11] that discusses the use of model programs as a practical modeling technique.
While this paper provides the foundations of model program composition, the textbook
shows practical techniques and applications, with an emphasis on composition as a
method of layering system behavior into independent features.

The techniques for parallel and serial composition of model programs, as we will see
below, have characteristics that make them appealing for use in the domain of software
testing and design validation. We begin with an example. Then in sections 3 and 4 we
give a formalization.

1.1 Example

Consider three model programs M1, M2 and M3 that specify, respectively, a GUI-based
application, a dialog box used in that application and a test scenario. The state spaces of
the model programs are disjoint but their action signatures have nonempty intersections.

130 M. Veanes, C. Campbell, and W. Schulte

In the presentation that follows we unwind control state but not data state to produce
control graphs in the spirit of Extended Finite State Machines (EFSMs) [13]. Figures 1-
3 show M1, M2 and M3 using this view.

The model program of the GUI-based application is shown in Figure 1. It has three
control states, p1, p2 and p3. Control state p1 is both the initial state (indicated by
the incoming arrow) and an accepting state (indicated by the double circle). The arcs
between control states are labeled by guarded update rules called actions. These actions
contain enabling conditions (prefixed by requires) and updates in curly braces. The
actions include parameters which are substituted by ground values during unwinding.

p1

p2

p3

OpenDocument()
{SystemFont := Font(“Times”, 12); }CloseDocument()

SelectFont Finish(y)
{SystemFont := y; }

SelectFont Start(x)
requires x == SystemFont;

Fig. 1. Application model M1

The data state of M1 contains one state variable, SystemFont.
Runs of a model program begin in the initial control state and end in an accepting

control state. Every step of the run must satisfy the enabling condition of the action that
produced it.

Note that this model program uses an LTS view instead of a Mealy view for the action
that sets the system font. In an LTS view, inputs and outputs appear as separate transi-
tions, possibly breaking a single logical action into two parts. SelectFont Start takes an
input, namely the current system font given by the data state variable SystemFont. The
parameter of SelectFont Finish denotes the output. Since the SelectFont Finish action
has no enabling condition, any font value could be selected.

Model program M2 that describes a font-choosing dialog box is shown in Figure 2.
The action signature of M2 consists of SelectFont Start, SelectFont Finish, OK, Can-

cel, SetFontName and SetFontSize. Notice that this vocabulary has two actions in com-
mon with M1, the application model, as well as four actions that are not shared.

Once started, the dialog box allows the user to set the font size and the font name in
any order and as many times as desired. Depending on whether the user presses OK or
Cancel either the newly selected font or the prior font is included in the exit label.

Model program M3 gives a scenario of interest for testing. It is shown as Figure 3.
The scenario model shows two use cases for the font dialog. There are only two

possible traces for this machine.
As is typical with scenario models, M3 contains no updates to data state. We also

use SetFontSize(10) as a shorthand for SetFontSize(x) requires x == 10. We use the
underscore symbol (“ ”) to indicate an unconstrained parameter that is not used in any
precondition or update.

Composition of Model Programs 131

q1

q2

q3 q4

SelectFont Start(x)
requires ValidFont(x);
{(DialogFont, SavedFont) := (x, x); }

OK()

SelectFont Finish(y)
requires y == DialogFont;

Cancel()

SelectFont Finish(y)
requires y == SavedFont;

SetFontName(y)
{DialogFont.Name := y; }

SetFontSize(z)
{DialogFont.Size := z; }

Fig. 2. Font chooser dialog model M2

r1

r2

r3

r4

r5

r6

SelectFont Start()

SetFontSize(10)

SetFontName(“SansSerif”)

OK()Cancel()

SelectFont Finish()

Fig. 3. Scenario model M3 showing two ways to use the font dialog

Figure 4 shows the parallel composition of M1, M2 and M3. The diagram omits the
state update rules for brevity.

Under parallel composition, model programs will synchronize steps for shared ac-
tions and interleave actions not found in their common signature. The control states of
the composed model program are a subset of the cross product of the control states of
the component models.

The enabling conditions of the transitions are the conjunction of the enabling condi-
tions of the component models. The data updates are the union of the data updates of the
component programs. There can be no conflicting updates because the data signatures
must be disjoint.

An accepting state under parallel composition occurs when all of component control
states are accepting states. This accounts for the fact that the font may only be selected
exactly one time in the composed model program– the scenario model M3 does not
loop, and its initial state is not an accepting state.

132 M. Veanes, C. Campbell, and W. Schulte

〈p1, q1, r1〉

〈p2, q1, r1〉

〈p3, q2, r2〉

〈p3, q2, r3〉

〈p3, q2, r4〉

〈p3, q3, r5〉 〈p3, q4, r5〉

〈p2, q1, r6〉

〈p1, q1, r6〉

OpenDocument()CloseDocument()

SelectFont Start(Font(“Times”, 12))

SetFontSize(10)

SetFontName(“SansSerif”)

OK() Cancel()

SelectFont Finish(Font(“SansSerif”, 10)) SelectFont Finish(Font(“Times”, 12))

CloseDocument()OpenDocument()

Fig. 4. Parallel composition M4 of the application model M1, the font chooser dialog model M2,
and the scenario model M3. Update rules associated with labels are not shown.

2 Basic Definitions

Let Σ be a fixed signature of function symbols. Some function symbols in Σ, denoted
by Σdynamic, may change their interpretation and are called state variables. The remain-
ing set of symbols, denoted by Σstatic, have a fixed interpretation with respect to a given
background theory B. B is identified with its models that are called states. It is assumed
that all states share the same universe V of values. Without loss of generality one may
identify a state with a particular interpretation (value assignment) to all the state vari-
ables. Note that logic variables are distinct from state variables. Logic variables are
needed below to be able to construct nonground action terms.

Example 1. Consider the application model M1 in Figure 1. SystemFont is a nullary
state variable here. V is fixed and includes at least strings, integers, and fonts. A font
can be constructed using the static binary function Font. M1 has a single nullary state
variable SystemFont.

Terms are defined inductively over Σ and a set of logic variables disjoint from Σ. An
equation is an atomic formula t1 == t2 where t1 and t2 are terms and ‘==’ is the
formal equality symbol. Formulas are built up inductively from atomic formulas using
logical connectives and quantifiers.1 A term or a formula e may contain free logic vari-
ables FV(e); e is ground or closed if FV(e) is empty. A substitution is a finite (possibly

1 In general we may also have relation symbols, or Boolean functions, in Σ and form atomic
formulas other than equations.

Composition of Model Programs 133

empty) map from logic variables to terms. Given a substitution θ and an expression e,
eθ denotes the replacement of x in e by θ(x) for each x in FV(e). We say that θ is
grounding for e if eθ is ground. Given a closed formula ϕ and a state S, S |= ϕ is used
to denote that S satisfies ϕ, or ϕ holds or is true in S.2 A closed formula is consistent
if it is true in some state. We write tS for the interpretation of a ground term t in S.
When an n-ary function symbol f is self-interpreting or a free constructor it means that
f(t1, . . . , tn)S = g(u1, . . . , um)S if and only if f and g are the same function symbol
(and thus n = m) and tSi = uS

i for all i.

Example 2. Consider the signature of M1 again and let t = Font(x, y); t is a term with
FV(t) = {x, y}. The substitution θ = {x ,→ “Times”, y ,→ 10} is grounding for t
and tθ is the ground term Font(“Times”, 10) denoting the corresponding font, where
Font is a free constructor. Let S be a state where the value of SystemFont is the Times
font of size 12. Then S |= ¬SystemFont == Font(“Times”, 10) because Font is self-
interpreting and 10 �= 12.

A location is a pair 〈f, (v1, . . . , vn)〉 where f is an n-ary function symbol in Σdynamic

and (v1, . . . , vn) is a sequence of values. An update is an ordered pair denoted by
l ,→ v, where l is a location and v a value. A set U of updates is consistent if there are
no two distinct updates l ,→ v1 and l ,→ v2 in U . Given a state S and a consistent set
U of updates, S � U is the state where, for all f ∈ Σdynamic of arity n ≥ 0 and values
v1, . . . , vn,

fS
U (v1, . . . , vn) =
{

w, if 〈f, (v1, . . . , vn)〉 ,→ w ∈ U ;
fS(v1, . . . , vn), otherwise.

In other words, S � U is the state after applying the updates U to S.
For the purposes of this paper it is enough to assume that all state variables are

nullary, in which case the notions of locations and state variables can be unified.
A program P over Σ when applied to (or executed in) a state S, produces a set of

updates. Often P also depends on formal parameters FV(P) = x1, . . . , xn for some
n ≥ 0. Thus, P denotes a function [[P]] : State × Vn → UpdateSet. It is convenient
to extend the notion of expressions to include programs so that we can talk about free
variables in programs and apply substitutions to them. Given a grounding substitution
θ for P and a data state S, we write [[Pθ]](S) or [[P]](S, θ) for [[P]](S, x1θ

S , . . . , xnθS).

Example 3. Returning to M1 in Figure 1, we have that the transition from p3 to p2 is
associated with the assignment (i.e. a basic program) SystemFont := y, say P , with a
single formal parameter y. Given a substitution θ = {y ,→ t} where t is ground, and
any state S, [[Pθ]](S) = {SystemFont ,→ tS}.

We also use the notion of a labeled transition system or LTS (S,S0,L, T) that has a
nonempty set S of states, a nonempty subset S0 ⊆ S of initial states, a nonempty
set L of labels and a transition relation T ⊆ S × L × S. Here states and labels are
abstract elements but in our use of LTSs the notion of LTS states and first-order states
as introduced above will coincide. A run is a transition sequence (Si, Li, Si+1)i<k , of

2 We have in mind standard Tarski semantics for first order logic.

134 M. Veanes, C. Campbell, and W. Schulte

some (possibly infinite) length k, and if k > 0 then S0 ∈ S0; if k is finite and nonzero
then Sk is called the end-state of the run. An S-run for a given initial state S is a
nonempty run as above where S0 = S. An S-trace of an S-run as above is the label
sequence (Li)i<k of length k. Intuitively, a trace is the sequence of labels of a run; the
states are not part of a trace. A finite run or trace has finite length.

3 Model Programs

A guarded program (over Σ) is a pair [ϕ]/P where ϕ is a formula and P is a program.
Let G be a guarded program [ϕ]/P . Intuitively, G denotes the restriction of [[P]] to those
states and input parameters where ϕ holds. Let FV(G) def= FV(ϕ) ∪ FV(P).

Definition 1. Σaction denotes a fixed subset of the free constructors of Σstatic called ac-
tion symbols. An action term is a term f(t1, . . . , tn) where f is an n-ary action symbol
for some n ≥ 0, and each ti is either a distinct logic variable or a ground term over
Σstatic − Σaction. Given Γ ⊆ Σaction we write A(Γ) for the set of all action terms with
action symbols in Γ . By an action we mean the interpretation of a ground action term.

Notice that the interpretation of a ground action term is the same in all data states.
Notice also that there is essentially no difference between a nullary action symbol and
the corresponding action (term).

Example 4. Consider M1 in Figure 1. There are two nullary action symbols Close-
Document and OpenDocument, and two unary action symbols SelectFont Start and
SelectFont Finish. Font is a free constructor, it is not an action symbol. The terms
SelectFont Start(Font(“Times”, 10)) and SelectFont Start(x) are action terms; the
terms SelectFont Start(SystemFont) and SelectFont Start(Font(“Times”, y)) on the
other hand are not action terms, because in the former SystemFont is not in Σstatic and in
the latter the action parameter Font(“Times”, y) is not a logic variable and not a ground
term.

Definition 2. A model program with explicit control graph M has the following com-
ponents.

1. A signature Σ.
2. An action signature Γ ⊆ Σaction.
3. A finite nonempty set Q of control points.
4. An initial control point qinit ∈ Q.
5. A set of accepting control points Qacc ⊆ Q.
6. A finite control graph δ ⊆ Q × A(Γ) × Q. The elements of δ are called control

transitions.
7. A family R = {rρ}ρ∈δ of guarded programs, where, for all ρ = (q, a, p) ∈ δ,

FV(rρ) ⊆ FV(a); rρ is called the guarded program for ρ.
8. A closed formula ϕentry over Σ called an entry condition.

The guard of the guarded program for a control transition ρ is denoted by ϕρ and the
program is denoted by Pρ. We denote M by the tuple (Σ,Γ,Q, qinit, Qacc, δ, R, ϕentry).

Composition of Model Programs 135

By a model program in this paper we mean a model program with explicit control graph.
A model program can be thought of as a control-flow graph whose edges are anno-

tated by action terms and program segments similar to an EFSM [13].3

We use the special program skip that produces no updates.

Example 5. The model program M1 in Figure 1 has the following components. The
signature is described in Example 1. The action signature is described in Example 4.
The control points are p1, p2 and p3, where p1 is both the initial control point and the
only accepting control point. There are four control transitions in M1. The guard of a
control transition is indicated with the requires keyword or omitted if true. The program
of a control transition is written within braces or omitted if skip. This is the Spec# [16]
syntax of model programs.

A state of M as above is a pair 〈S, q〉 where S is a Σ-state and q ∈ Q. S is called the
data component of S or a data state, whereas q is called the control component of S or
a control state.4 An initial state is a state whose control component is an initial control
point and whose data component satisfies the entry condition. An accepting state is a
state whose control component is an accepting control point.

Definition 3. The labeled transition system underlying M LTS(M) has the actions of
M as its labels. The (initial) states of LTS(M) are the (initial) states for M . There is a
transition (〈S, q〉, b, 〈S′, q′〉) in LTS(M), if there is a control transition ρ = (q, a, q′) in
M and a substitution θ such that:

– b = aθS ,
– S |= ϕρθ,
– [[Pρθ]](S) is consistent and S′ = S � [[Pρθ]](S).

A transition of LTS(M) is called a step of M . Given a state S and an action a, we write
δ(S, a) for the set of all states X such that (S, a,X) is a transition of LTS(M). Given a
state S and a finite sequence (ai)i<k of actions, we let

δ̂(S, (ai)i<k) =
⋃

{δ(X, ak−1) : X ∈ δ̂(S, (ai)i<k−1)},

δ̂(S, ()) = {S}.

Thus, δ̂(S, α) is the set of all end-states of all S-runs whose trace is α. An action
sequence α is an accepting S-trace if δ̂(S, α) contains an accepting state.

Definition 4. Let M be a model program with initial control state q0. An S-run of M
is an 〈S, q0〉-run of LTS(M). An S-trace of M is an 〈S, q0〉-trace of LTS(M). The set
of all S-traces of M is denoted by Traces(S,M). An S-trace α of M is accepting if it
is finite and δ̂(〈S, q0〉, α) contains an accepting state.

3 In general, the control graph of a model program may itself be a control program and the set
of generated control states may be infinite. We do not use this generalization in this paper.

4 Formally, let pc be a fixed nullary function symbol not in Σ and let Σ′ = Σ ∪ {pc}. Then
〈S, q〉 stands for a Σ′-state where pc〈S,q〉 = q and f 〈S,q〉 = fS for all f ∈ Σ.

136 M. Veanes, C. Campbell, and W. Schulte

Example 6. The example shows how traces can depend on the data component of states.
A possible accepting trace of M1 from any initial state is:

OpenDocument,

SelectFont Start(Font(“Times”, 12)),
SelectFont Finish(Font(“SansSerif”, 10)),
SelectFont Start(Font(“SansSerif”, 10)),
SelectFont Finish(Font(“Times”, 10)),
CloseDocument

The argument to SelectFont Start is the current system font recorded in the data state
of M1. When font selection finishes the new font is recorded in the state, i.e., in the
action SelectFont Start(font), the font argument acts like an input argument and in
SelectFont Finish(font) the font argument acts like an output argument of a font se-
lection procedure.

4 Composition of Model Programs

The main operator underlying parallel composition of model programs is the product
of two model programs. We will also use the following action signature extension op-
eration over model programs.

Definition 5. Let M be a model program as above with action signature Γ . Let Γ ′ be
a set of action symbols. We write M+Γ ′

for the model program whose action signa-
ture is extended with Γ ′ and M+Γ ′

has the following additional extensions for each
action symbol f ∈ Γ ′ − Γ , let af denote a fixed action term f(_, . . . ,_) where each
occurrence of _ stands for a fresh logic variable,

– for all control states q, δ is extended with the control transition, (q, af , q),
– for each new control transition (q, af , q), r(q,af ,q) = [true]/skip.

The intuition is that for each new action symbol any corresponding action is enabled
in every state and produces a self-loop in that state. This is also easily seen in the
LTS semantics of M+Γ ′

. This construct is used mainly to interleave actions that are not
shared between two model programs being composed in a product. Notice that an action
does not belong to a model program (or the underlying LTS) if its function symbol is
not in the action signature of the model program.

Example 7. Consider M1 in Figure 1 and let Γ2 be the action signature of the font
chooser dialog model M2 in Figure 2. The only action symbols that M1 and M2 have in
common are SelectFont Start and SelectFont Finish. Thus M+Γ2

1 has for example the
new control transitions (pi, SetFontSize(_), pi) for 1 ≤ i ≤ 3 that are enabled in all
states.

Composition of Model Programs 137

4.1 Product Composition

We first define the product of two model programs that share the same signature and
the same action signature. We then define parallel composition of model programs by
using signature extension and product composition.

Due to the restricted form of action terms, two action terms a1 and a2 unify if and
only if they have the same action symbol of some arity n ≥ 0, and for all i, 1 ≤ i ≤ n,
the i’th argument of a1 and the i’th argument of a2 either denote the same value or at
least one of them is a logic variable. If a1 and a2 unify there is trivially a most general
unifier θ = mgu(a1, a2), i.e., any action that is both an instance of a1 and an instance
of a2 is an instance of a1θ (or a2θ).

We assume that logic variables used in two model programs are distinct so that we do
not need to worry about variable renaming. Given two guarded programs r1 = [ϕ1]/P1

and r2 = [ϕ2]/P2 we write r1 ‖ r2 for the guarded program [ϕ1 ∧ ϕ2]/P1 ‖ P2, where
the parallel composition P1 ‖ P2 produces the union of the updates of P1 and P2, i.e.
[[P1 ‖ P2]](S, θ) = [[P1]](S, θ) ∪ [[P2]](S, θ).

Definition 6. Let Mi = (Σ,Γ,Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi , ϕ

entry
i), for i = 1, 2, be two

model programs. The product of M1 and M2, denoted by M1 × M2, is the model
program

(Σ,Γ,Q1 × Q2, 〈qinit
1 , qinit

2 〉, Qacc
1 × Qacc

2 , δ, {rρ}ρ∈δ), ϕ
entry
1 ∧ ϕentry

2),

where δ and {rρ}ρ∈δ are constructed as follows. For all ρ1 = (q1, a1, p1) ∈ δ1 and
ρ2 = (q2, a2, p2) ∈ δ2 such that θ = mgu(a1, a2) exists,

– ρ = (〈q1, q2〉, a1θ, 〈p1, p2〉) ∈ δ, and
– rρ = rρ1θ ‖ rρ2θ.

If M1 and M2 are model programs with different action signatures Γ1 and Γ2 then
M1 × M2

def= M+Γ2
1 × M+Γ1

2 .

One can show that the product operator is commutative and associative as far as trace
semantics of the final model program is concerned. This is made explicit in the follow-
ing statement.

Proposition 1. Let M1, M2 and M3 be model programs with the same signature and
action signature, and let S be a data state. Then Traces(S,M1×M2) = Traces(S,M2×
M1) and Traces(S,M1 × (M2 × M3)) = Traces(S, (M1 × M2) × M3).

Example 8. The model program M4 in Figure 4 shows the product M1 × M2 × M3.
Let Γi denote the action signature of Mi. In this case Γ2 = Γ3 but Γ1 has the addi-
tional actions for opening and closing a document, and does not include the action for
changing the font name/size and the OK and Cancel actions. If we first construct the
product M2 × M3, we get a specialization M23 of the font chooser dialog model M2

where we first set the font size to be 10 and then set the font name to be SansSerif. The
product M1 × M23, i.e. M4, corresponds intuitively to a hierarchical refinement of M1

with a particular use of the font dialog model as described by M23. The actions that are

138 M. Veanes, C. Campbell, and W. Schulte

specific to the font selection model are considered as self-loops in M1, and conversely,
closing and opening of a document are considered as self-loops in M23. The final prod-
uct M4 is therefore M+Γ2

1 × M+Γ1
23 . As an example of a guarded update program of

M4 consider the control transition

ρ = (〈p2, q1, r1〉, SelectFont Start(Font(“Times”, 12)), 〈p3, q2, r2〉)

If we follow the definitions exactly and do not simplify the formulas and the programs
then the guard associated with ρ is

requires Font(“Times”, 12) == SystemFont
∧ true
∧ ValidFont(Font(“Times”, 12)),

and the program associated with ρ is

skip ‖ ((DialogFont, SavedFont) := (Font(“Times”, 12), Font(“Times”, 12)) ‖ skip) .

4.2 Parallel Composition

When the product composition is used in an unrestricted manner the end result is a new
model program, which from the point of view of trace semantics might be unrelated to
the original model programs. Essentially, this problem occurs if two model programs
can read each others state variables.

Let SV(e) denote the set of all state variables that occur in e, where e is either
an expression, a program or a model program. Given a Σ1-state S and a signature
Σ2 ⊆ Σ1, we write S�Σ2 for the reduct of S to Σ2. An ASM program is “honest” about
its state dependencies in the sense that state variables that are not explicitly mentioned
in the program do not influence its behavior and cannot be updated (e.g. there is no
implicit stack and the programs cannot change the control state). Formally, we use the
following fact:

Lemma 1. Let S be a data state over Σ, let SV ⊆ Σdynamic, and let P be a program
such that SV(P) ⊆ SV. Let Σ′ = Σstatic ∪ SV. Then [[P]](S) = [[P]](S�Σ′).

Definition 7. Let M1 and M2 be model programs with action signatures Γ1 and Γ2,
respectively. M1 and M2 are composable in parallel if they have the same signature but
disjoint state variables, in which case the parallel composition of M1 and M2, denoted
by M1 ‖ M2, is defined as the product M1 × M2.

The following theorem shows that parallel composition of model programs corresponds
to parallel composition of the underlying LTSs. Such composition has the desired
language-theoretic property that the traces produced by the composite model program
are the intersection of the traces produced independently by the composed model
programs.

Theorem 1. Let M1 and M2 be model programs that are composable in parallel and
have the same action signature. Then

Traces(S,M1 ‖ M2) = Traces(S,M1) ∩ Traces(S,M2).

Composition of Model Programs 139

Proof. Let Mi = (Σ,Γ,Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi , ϕ

entry
i), for i = 1, 2, be two model

programs such that SV(M1) ∩ SV(M2) = ∅. Let S be a data state. Let M = M1 ×M2.
We only show that Traces(S,M1 × M2) ⊆ Traces(S,M1)∩ Traces(S,M2). The other
direction is similar by using the same definitions in the opposite direction. Consider a
trace (ai)i<k ∈ Traces(S,M1 × M2). There is a corresponding S-run

(〈Si, 〈qi, pi〉〉, ai, 〈Si+1, 〈qi+1, pi+1〉〉)i<k

where 〈q0, p0〉 is the initial control state of the product model program and S = S0.
Fix an arbitrary step i in the run. The following holds by Definition 3: there is a control
transition ρi = (〈qi, pi〉, ti, 〈qi+1, pi+1〉) in M and a substitution θ such that

– ai = tiθ
Si ,

– Si |= ϕρiθ, and
– [[Pρiθ]](Si) is consistent and Si+1 = Si � [[Pρiθ]](Si).

By Defininition 6, there are control transitions ρ1
i = (qi, t

1
i , qi+1) in M1 and ρ2

i =
(pi, t

2
i , pi+1) in M2 such that

– σ = mgu(t1i , t
2
i) exists and ti = t1i σ,

– ϕρi = ϕρ1
i
σ ∧ ϕρ2

i
σ, and

– Pρi = Pρ1
i
σ ‖ Pρ2

i
σ.

Let Σ1 = Σ−SV(M2) and Σ2 = Σ−SV(M1). Since SV(M1) and SV(M2) are disjoint
and the guards in Mj may only contain state variables from SV(Mj), it follows that
Si�Σ1 |= ϕρ1

i
σθ and Si�Σ2 |= ϕρ2

i
σθ. Also, since [[Pρiθ]](Si) = U1 ∪U2 is consistent,

so are U1 and U2, where U1 = [[Pρ1
i
σθ]](Si) and U2 = [[Pρ2

i
σθ]](Si). By using Lemma 1

and the disjointness of SV(M1) and SV(M2) we know that U1 = [[Pρ1
i
σθ]](Si�Σ1) and

U2 = [[Pρ2
i
σθ]](Si�Σ2). By using Si+1 = Si � U1 ∪ U2, we get that Si+1�Σ1 =

Si�Σ1 � U1 and Si+1�Σ2 = Si�Σ2 � U2.
Since i was chosen freely, we can construct the run

(〈Si�Σ1, qi〉, ai, 〈Si+1�Σ1, qi+1〉)i<k

for M1 and then expand all states in the run to Σ in such a way that the first state is S.
We know also that S |= ϕentry

1 because S |= ϕentry
1 ∧ ϕentry

2 . It follows that (ai)i<k ∈
Traces(S,M1). Symmetrical argument applies to M2.)�
Example 9. Consider M1,M2,M3 from above. The state variables of each Mi are
clearly disjoint; M1 has the single state variable SystemFont, M2 has the state vari-
ables DialogFont and SavedFont, and M3 has no state variables. Thus M4 is a parallel
composition of M+Γ2

1 , M+Γ1
2 and M+Γ1

3 , where Γ1 and Γ2 are as in Example 8.

4.3 Serial Composition

In scenario control it is often useful to compose two model programs serially (i.e. in a
sequence). Intuitively, a serial composition of two model programs M1 and M2 means
that the control flow may transition from an accepting control point of M1 to the ini-
tial control point of M2. Serial composition is therefore not well-defined for model
programs that share control points. Note that, unlike the parallel case, state variable
signatures need not be disjoint in serial composition.

140 M. Veanes, C. Campbell, and W. Schulte

Definition 8. Two model programs M1 and M2 are serially composable if they have
the same action signature and disjoint sets of control points.

The formal definition of serial composition uses a new nullary action symbol τ for the
transition from M1 to M2. The τ transition corresponds to an internal control transition
from any accepting control point of M1 to the initial control point of M2 whose guard
is the entry condition of M2.

Definition 9. Let Mi = (Σ,Γ,Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi , ϕ

entry
i), for i = 1, 2, be two

serially composable model programs and let τ be a fresh action symbol not in Γ . M1

followed by M2 using τ , denoted by M1;τ M2, is the model program

(Σ, {τ} ∪ Γ,Q1 ∪ Q2, q
init
1 , Qacc

2 , δ1 ∪ δ2 ∪ {(q, τ, qinit
2) : q ∈ Qacc

1 }︸ ︷︷ ︸
δ

, {rρ}ρ∈δ, ϕ
entry
1),

where rρ = r1
ρ, if ρ ∈ δ1; rρ = r2

ρ, if ρ ∈ δ2; rρ = [ϕentry
2]/skip, otherwise.

It is easy to see that an S-trace of M1;τ M2 has the form ατβ where α is an accepting
S-trace of M1 and β is an S′-trace of M2 for some S′ ∈ δ̂M1(S, α). Elimination of τ
can be done at the expense of introducing nondeterminism. For parallel composition of
two model programs, τ -actions in each one are always considered as distinct actions and
are interleaved. One could also introduce τ as a special action that is always interleaved
in a parallel composition as is done for example in the definition of LTSs [14].

5 Conclusions and Related Work

There is a tradeoff between how much of the global state should be encoded as control
state and how much should be encoded as data state. In pure abstract state machines,
states are completely encoded as data states, and there is no separate notion of control
state [2,9]. Model programs defined in [16] adopt this view. While this view is more
concise and sufficient for many purposes it forces one to encode the control state as data
state, and this may not be natural from the point of view of control flow as understood
in traditional programming. Not having the distinction between control and data state
makes also the definition of certain forms of composition, such as serial composition,
harder to formalize because data states are shared whereas control states are disjoint in
serial composition.

The approach that we have taken is similar to extended finite state machines (EFSMs)
where a finite part of the state is separated as control state. In general, the control part
does not need to be finite in model programs, but may encorporate the local stack of a
program. Model programs are similar to parameterized EFSMs [13], except that EFSMs
are a generalization of Mealy machines, whereas model programs do not distinguish a
priori between inputs and outputs and incorporate the notion of accepting states like
classical automata. The distinction between inputs and outputs becomes relevant for
defining conformance, but is not relevant for the composition operators discussed in
this paper that are used for scenario control and for composing aspects of a system
model.

Composition of Model Programs 141

An important change from our prior approach of using model programs as a mixed
Mealy and LTS view, taken in SpecExplorer, is the introduction of intermediate control
states between the input part and the output part of an action. In other words, the un-
derlying semantics is given by an LTS. This separation is also used with FSM based
approaches where it is sometimes more convenient to formulate composition using
IOTSs [6]. One of the key reasons for us to separate the inputs from the outputs as sep-
arate actions, rather than using a Mealy view, was to be able to have a simple definition
of conformance relation that allows output nondeterminism when dealing with reactive
systems. This is important for using ioco [3] or refinement of interface automata [5] for
formalizing the confomance relation.

Further differences from EFSMs are that accepting states in model programs are used
for serial composition and for defining validity of traces, and labels are not abstract ele-
ments but structured terms that allow sharing of arbitrary data values through unification.
The trace semantics of model programs is based on the unwinding of model programs
as labeled transition systems [14] where states are considered to be abstract points.

The separation of control state from data state, while allowing communication with
terms that can incorporate data values, is important in the model-based testing appli-
cations of model programs, e.g. for scenario control and visualization of model pro-
grams. The definitions of parallel and serial composition of model programs are related
to similar operations on classical automata (see e.g. [10]). There is a large body of
work using FSMs and variations of LTSs that use the classical parallel composition of
automata where shared actions are synchronized and other actions are interleaved asyn-
chronously. It is important therefore that the semantics of composed model programs is
based on the same notion of composition.

Model programs are also related to symbolic transition systems that have an ex-
plicit notion of data and data-dependent control flow [7]. Model program composition
as defined in this paper is independent of the mechanism of exploration used. Various
approaches, including explicit state exploration as well as exploration with symbolic
labels and states, may be applied. For example, action machines [8] rely on symbolic
techniques. The main difference compared to composition of action machines is that
composition of model programs is syntactic, whereas composition of action machines
is defined in the style of natural semantics using inference rules and symbolic com-
putation that incorporates the notion of computable approximations of subsumption
checking between symbolic states. The computable approximations reflect the power
of the underlying decision procedures that are being used.

More about model-based testing applications and further motivation for the compo-
sition of model programs can be found in [4,8,17,16]. The most recent work related
to model programs where composition is discussed from a practical perspective is the
forthcoming textbook [11].

References

1. Spec Explorer. released (January 2005) URL:
http://research.microsoft.com/specexplorer

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer (2003)

http://research.microsoft.com/specexplorer

142 M. Veanes, C. Campbell, and W. Schulte

3. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:
Summer School MOVEP’2k – Modelling and Verification of Parallel Processes. LNCS,
vol. 2067, pp. 187–193. Springer, Heidelberg (2001)

4. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer (extended abstract). In: Fitzger-
ald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 542–547. Springer,
Heidelberg (2005)

5. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

6. El-Fakih, K., Petrenko, A., Yevtushenko, N.: Fsm test translation through context. In: Uyar,
M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, Springer, Heidel-
berg (2006)

7. Frantzen, L., Tretmans, J., Willemse, T.: A symbolic framework for model-based testing. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) Formal Approaches to Software Testing
and Runtime Verification. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

8. Grieskamp, W., Kicillof, N., Tillmann, N.: Action machines: a framework for encoding and
composing partial behaviors. International Journal on Software and Knowledge Engineer-
ing 16(5), 705–726 (2006)

9. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading (1979)

11. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing and Analysis
with C#. Cambridge University Press (Submitted to publisher) (2007)

12. Keller, R.: Formal verification of parallel programs. Communications of the ACM, pp. 371–
384 (July 1976)

13. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines – a survey.
Proceedings of the IEEE 84(8), 1090–1123 (1996)

14. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms. In: Pro-
ceedings of the sixth annual ACM Symposium on Principles of distributed computing, pp.
137–151. ACM Press, New York (1987)

15. Tretmans, J., Brinksma, E.: TorX: Automated model based testing. In: 1st European Confer-
ence on Model Driven Software Engineering, pp. 31–43, Nuremberg, Germany (December
2003)

16. Veanes, M., Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.:
Model-based testing of object-oriented reactive systems with Spec Explorer, Tech. Rep.
MSR-TR-2005-59, Microsoft Research. (To appear as a book chapter in Formal Methods
and Testing) (2005)

17. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs.
In: ESEC/FSE-13: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software en-
gineering, pp. 273–282. ACM, New York (2005)

New Bisimulation Semantics for

Distributed Systems�

David de Frutos-Escrig, Fernando Rosa-Velardo, and
Carlos Gregorio-Rodŕıguez

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

{defrutos,fernandorosa,cgr}@sip.ucm.es

Abstract. Bisimulation semantics are a very pleasant way to define the
semantics of systems, mainly because the simplicity of their definitions
and their nice coalgebraic properties. However, they also have some dis-
advantages: they are based on a sequential operational semantics defined
by means of an ordinary transition system, and in order to be bisimilar
two systems have to be “too similar”. In this work we will present several
natural proposals to define weaker bisimulation semantics that we think
properly capture the desired behaviour of distributed systems. The main
virtue of all these semantics is that they are real bisimulation semantics,
thus inheriting most of the good properties of bisimulation semantics.
This is so because they can be defined as particular instances of Jacobs
and Hughes’ categorical definition of simulation, which they have already
proved to satisfy all those properties.

1 Introduction

Bisimulation is a usual way to define the semantics of systems. It is defined
starting from an operational semantics that defines the (low level) behaviour
of the system as a labelled transition system (lts) whose states correspond to
the possible internal states of the systems, while the transitions represent the
change of state, observable by means of labels. Bisimulations have many pleasant
theoretical and practical properties that justify its use to define the semantics of
systems. At the theoretical level, bisimulations are the adequate way to define
the behaviour of a system defined by a coalgebra s : X → P(A × X). They
capture the idea that in order to be equivalent, two states must have two sets of
labelled successors that have to be related in both directions: ∀s

a→ s′ ∃t
a→ t′

with (s′, t′) ∈ R and ∀t
a→ t′ ∃s

a→ s′ with (s′, t′) ∈ R.
This only slightly generalizes the isomorphism of transition systems, mainly

by taking into account the idempotent law. This means that the correspondence
relating the a-successors of two related states do not need to be bijective. For in-
stance, the relation R = {(x, y), (x1, y1), (x2, y1), (x3, y2), (x3, y3)} is the smallest
bisimulation relating the two states x and y of the two systems in Fig. 1.
� Work partially supported by the Spanish projects DESAFIOS TIN2006-15660-C02-

02, WEST TIN2006-15578-C02-01 and PROMESAS-CAM S-0505/TIC/0407.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 143–159, 2007.
c© IFIP International Federation for Information Processing 2007

144 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

x

x1 x2 x3

a
a

b
y

y1 y2 y3

a
b

b

Fig. 1. Two bisimilar systems

Besides the simple and easy to manipulate way in which they are defined,
bisimulations and the equivalence relation they induce, bisimilarity, satisfy many
pleasant properties that have been thoroughly studied since they were introduced
by Park [20]. For instance, we can prove that whenever the operational semantics
of a language is defined by a SOS-system [21] of several quite large syntactical
classes, such as the De Simone class [6], then bisimulation equivalence is a con-
gruence with respect to all the syntactical constructors of the language.

At the practical level, bisimilarity is an interesting way to define the equiva-
lence of two systems, since it can be checked by efficient algorithms [8]. When,
instead, we prefer to use symbolic proofs to prove the equivalence between two
systems described by two syntactical terms of a language, we can construct the
corresponding bisimulation relating them by using quite powerful techniques
such as bisimulation up-to [18].

The most important disadvantage of using bisimulation semantics is that
bisimulation equivalence is a too coarse relation: all the extensional semantics
that have been proposed to define the semantics of systems by adding some in-
formation to the quite simple trace semantics, such as the failure semantics or
the readiness semantics, have less discriminatory power than the bisimulation
equivalence, as we can see in the famous Van Glabbeek’s spectrum [27].

Bisimulation is also too powerful with respect to the testing framework. This
is also seen in [27]: copy and “parallel” testing are needed in order to characterize
bisimulation equivalence as a testing equivalence. Besides, in [3] Bloom et al. have
proved that ready simulation equivalence, that is also weaker than bisimilarity,
is the strongest equivalence relation that is preserved by any operator defined by
means of GSOS rules. We can sum up this discussion by saying that bisimulation
equivalence is too fine because it forces the two compared transition systems to
be “too similar”. Our aim in this paper will be to present other bisimulation-like
semantics that generalize the definition of plain bisimulations, by allowing us
to get other equivalences between systems that we will naturally justify when
comparing distributed systems.

Simulations are one of the first natural ways to relax the definition of bisim-
ulation. In the one hand, because its definition is obtained by retaining just one
half of the two symmetric parts of the definition of bisimulation. In this way, we
obtain an order relation, similarity, that also has a coalgebraic definition. How-
ever, mutual simulation, that is again an equivalence relation, is not as powerful
as bisimulation equivalence. We can try to enforce the simulation semantics by
adding some additional constraints, getting for instance the ready simulations

New Bisimulation Semantics for Distributed Systems 145

and the ready simulation equivalence. However, there is not any non-trivial order
relation whose kernel is bisimilarity. Even so, simulations are a reasonable and
useful way to compare two given systems, and also a powerful tool to define
interesting equivalence relations, as ready similarity.

Another way to generalize the concept of bisimulation is by means of its cat-
egorical definition, by allowing any functor F in the definition of the coalgebras
a : X → F (X) and b : Y → F (Y) to be related. Besides the seminal work
on the subject [1], you can look at the wonderful monography [16] to find a
thorough study of the subject. Even if it would be interesting to know all the
technical details, in this paper we mainly pretend to motivate the use of several
bisimulation-like equivalence relations, which can in fact be supported by all that
abstract machinery. Therefore, we are both saying that those semantics can be
formally defined, and have all the pleasant properties of bisimulation semantics;
and we are proving that those general abstract studies have indeed a practical
use, since these new interesting semantics can be obtained as particular instances
of the bisimulation semantics they allow to define.

For instance, we will present “commutative bisimulation”, that checks “from
time to time”, by means of some introduced “checkpoints” that the compared
systems have executed the same actions, but possibly in a different order; and
“action sets bisimulation”, where we also introduce a simple definition of “dis-
tributed transition system”. We also discuss “approximated bisimulation”, where
the compared systems need not to execute exactly the same actions but some
“similar” ones; this includes the notion of amortized bisimulation, where the
costs of the executed actions need to be only similar. All these bisimulation-
like equivalences are weaker than strong bisimulation, so that they diminish the
proof obligations imposed by the ordinary definition of bisimulation.

Although we will recall that categorical definition, and we will show how can
be indeed used to define some of the semantics we propose, in this paper we will
mainly focus on the presentation of these new semantics, leaving the details of
their categorical definition to other more appropriate forum.

It is important to point out that although there were several proposals for
bisimulations for distributed systems in the past, they were in the opposite
direction to our approach, since they tried to capture the differences between
systems induced by facts such as the location where the actions were executed,
and therefore produce semantic equivalences finer than ordinary bisimilarity;
instead, as said before, we are looking for coarser equivalences, which therefore
are more easily accomplished.

The rest of the paper is structured as follows. Section 2 defines the new
bisimulation-like semantics that we propose. Section 3 is a brief survey of abstract
results on categorical bisimulations that can be applied to justify the coalgebraic
character of all the new bisimulation notions that we have introduced. As an il-
lustration of how this can be done we present the details for one of the semantics.
Section 4 discusses some related work, and finally Sect. 5 briefly presents our
conclusions and directions for future work.

146 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

2 Bisimulations for Distributed Systems

We have looked for several directions in which we could relax the definition of
plain bisimulations getting nice weaker semantics which could be still rigorously
presented as coalgebraic semantics, thus preserving their good properties. Next
we present those simplest proposals that, at the same time, seem to be more
promising in practice.

2.1 Commutative Bisimulations

There are several scenarios in which we are not interested in the order in which
the actions are executed, but in the set of actions that is finally executed. If we
only have finite sequential systems to compare, then we could define the trace
semantics as a starting point, by applying the seq-to-multiset operator that
transforms the sequence of executed actions into the corresponding multiset
of actions. However, if we are considering reactive systems that possibly run
forever, we need to consider adequate bisimulation-like versions of that intended
semantics.

As a first proposal in this direction, we present checkpoint commutative bisim-
ulations, that are defined by incorporating into the transition systems that de-
fine the operational semantics of our distributed systems a boolean attribute
checkpoint that signals the times where we have to check for the equality of the
multiset of actions that the systems have executed from their previous check-
points.

We can describe the desired bisimulation equivalence using plain, but accurate
words, as follows: in order to check if two states of two systems are equivalent,
we will play the ordinary bisimulation game, but now we are not forced to
replicate the execution of any action a by executing the same action in the
other process; instead, we remember the multiset of actions executed through
the paired computations until we arrive to a checkpoint. Then, the other process
has to arrive to another checkpoint and the two remembered multisets of actions
should be the same.

To formalize this new class of bisimulations we need to introduce those sets
of remembered actions. This is done by defining our bisimulations not just as
relations on states, but as relations on pairs (s,m) ∈ S×MS(A), where s is a state
and m a multiset of actions. This takes us to the following formal definitions.

Definition 1. (S,A,→, chk) is an lts with checkpoints if (S,A,→) is an ordi-
nary lts and chk : S → {0, 1} is the characteristic function of a set of so called
checkpoints of the system.

Definition 2. A commutative checkpoint bisimulation relating states of an lts
with checkpoints (S,A,→, chk) is a relation R ⊆ (S × MS(A)) × (S × MS(A))
that satisfies:

– (s1,m1)R(s2,m2) ∧ (chk(s1) ∨ chk(s2)) ⇒ chk(s1) ∧ chk(s2) ∧ m1 = m2,
– (s1,m1)R(s2,m2) ∧ s1

a→ s′1 ⇒ ∃s2
b→ s′2 ∧ (s′1,m1 + {a})R(s′2,m2 + {b}),

New Bisimulation Semantics for Distributed Systems 147

c1

s1

c′1

a

b

c2

s2

c′2

b

a

Fig. 2. Checkpoint bisimilar states

– (s1,m1)R(s2,m2) ∧ s2
b→ s′2 ⇒ ∃s1

a→ s′1 ∧ (s′1,m1 + {a})R(s′2,m2 + {b}),

where + represents the union of multisets.

As usual, we say that (s1,m1) and (s2,m2) are checkpoint bisimilar, and we
write (s1,m1) ∼chk (s2,m2), if and only if there exists a commutative checkpoint
bisimulation R such that (s1,m1)R(s2,m2). We simply say that s1 and s2 are
checkpoint bisimilar, and we also write s1 ∼chk s2, if and only if (s1, ∅) ∼chk

(s2, ∅).
First notice that in order to simplify the definition above, we are remembering

the complete multiset of executed actions from the very beginning, and not
only from the last checkpoint. If we prefer to faithfully capture that more local
memory constraint, it is easy to check that changing the second condition in
Def. 2 by the following one

(s1, m2)R(s2, m2)∧s1
a→ s′2 ⇒ ∃s2

b→ s′2∧
{

chk(s1) ⇒ (s′1, {a})R(s′2, {b})
¬ chk(s1) ⇒ (s′1, m1 + {a})R(s′2, m2 + {b})

and similarly for the third condition, we obtain an equivalent definition.
As a first and trivial example, let us consider the lts with checkpoints in

Fig. 2. In it, we denote by c’s the states which are checkpoints. Then, triv-
ially the states c1 and c2 are checkpoint bisimilar. Indeed, the relation R =
{〈(c0, ∅), (c1, ∅)〉, 〈(s1, {a}), (s2, {b})〉, 〈(c′1, {a, b}), (c′2, {a, b})〉} is a checkpoint
bisimulation.

As it has been done many other times in the past, once we have a bisimulation-
like definition of an equivalence relation, we could prove one by one all the
properties of such a relation. However, what we advocate here is the use of the
general results that have been recently developed in a general framework, so that
those properties are obtained just for free, as particular cases of those general
results. We will recall in Sect. 3 some of those general results and the way in
which they can be used to prove that all the bisimulation-like semantics proposed
in this paper have, indeed, a pure coalgebraic flavour.

2.2 Amortized Commutative Bisimulation

One could argue that the use of checkpoints is not very natural, although we
could give some examples where they can be introduced in a quite simple way.
For instance, we could consider the comparison between two search engines that
collect information in the web in two different ways. In this case, the checkpoints

148 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

correspond to the points in which they have completed a search: it is at that
time that we have to compare the results of the search.

However, we could prefer a more “continuous” equivalence where the compar-
ison is done after each step of the bisimulation game, although allowing multiple
steps in order to allow the interleaving of other actions whenever we need to
replicate the execution of a given action. In order to make easier the presenta-
tion of this semantics, we prefer to start in this case by the formal definitions.

Definition 3. Given a transition system (S,A,→), we define the step transition
system induced by it as (S,A∗,⇒), where s

α⇒ s′ with α = a1 . . . an if and only
if

s = s0
a1→ s1 . . . si

ai+1→ si+1 . . . sn−1
an→ sn = s′

Definition 4. An amortized commutative bisimulation relating states of an lts
(S,A,→) is a relation R ⊆ (S × MS(A)) × (S × MS(A)) that satisfies

– (s1,m1)R(s2,m2) ∧ s1
a→ s′1 ⇒ ∃s2

α⇒ s′2 m1 + {a} ⊆ m2 + {α} and
(s′1, ∅)R(s′2,m) with m + m1 + {a} = m2 + {α},

– (s1,m1)R(s2,m2) ∧ s2
a→ s′2 ⇒ ∃s1

α⇒ s′1 m2 + {a} ⊆ m1 + {α} and
(s′1,m)R(s′2, ∅) with m + m2 + {a} = m1 + {α},

where by abuse of notation we take {α} = {a1, . . . , an} if α = a1 . . . an.

In this case we could start by considering only the pairs 〈(s0,m0), (s1,m1)〉 with
m0 = ∅ ∨ m1 = ∅. Then we could see the corresponding set mi �= ∅ as the stock
accumulated by si when comparing it with s1−i.

We could also consider a restricted variant where the size of this stock is
somehow bounded. For instance, given a size bound B we could impose to the
sets mi = ∅, m1−i �= ∅ that |m1−i| ≤ B, in order to define the corresponding
bisimilarity ∼B

acb. The idea is that we cannot execute too many other actions in
advance when simulating the execution of an action a.

If we disregard checkpoints in Fig.2 then states c1 and c2 are amortized bisim-
ilar, since the following relation is an amortized bisimulation.

R = {〈(c1, ∅), (c2, ∅)〉, 〈(s1, ∅), (c′2, {b})〉, 〈(c′1, {a}), (s2, ∅)〉, 〈(c′1, ∅), (c′2, ∅)〉}

2.3 Idempotent Bisimulations

If we assume that the execution of actions should be not only commutative, but
also idempotent, so that after executing once an action a the repeated execution
of that action is of no use but has no negative consequence either, then we are
in a scenario where we should use the powerset constructor P instead of using
multisets. Then we can define an exact ic-bisimulation as follows:

Definition 5. An exact ic-bisimulation relating states of (S,A,→) is a relation
R ⊆ S × S × P(A) that satisfies

New Bisimulation Semantics for Distributed Systems 149

– (s1, s2, P) ∈ R, s1
a→ s′1 ⇒ ∃s2

α⇒ s′2 such that P ∪ {a} = P ∪ {α} and
(s′1, s

′
2, P ∪ {a}) ∈ R

– (s1, s2, P) ∈ R, s2
a→ s′2 ⇒ ∃s1

α⇒ s′1 such that P ∪ {a} = P ∪ {α} and
(s′1, s

′
2, P ∪ {a}) ∈ R.

We define as usual the corresponding bisimilarity notion ∼eic.
Note that in this case we do not need two sets of remembered actions because

the related states have to correspond to the common set of executed actions
P . Instead, we need a perpetuous memory, since we consider that the repeated
execution of an action, from the very beginning, does not have any consequence,
so that it can be replicated by executing any sequence of actions in P ∗. We could
also imagine that once an action has been executed, and therefore included in
the set of executed actions P , from then on the repeated execution of actions in
P behaves as if they had become internal actions, so that we could also say that
our ic-bisimulations is a kind of dynamic weak bisimulation.

Besides, we could define the corresponding amortized ic-bisimulations and
bounded versions of these new bisimilarity notions, where we can also limit the
length of the replicating sequences α. This would be related with efficiency issues,
in which we want to impose the condition that the number of actions executed
by comparable computations of two bisimilar processes will be somehow similar.

Obviously, we can also define checkpoint idempotent bisimulations, although
in this case we should also allow replicating steps α⇒ in the right-hand side of
the defining conditions, since due to the idempotence of actions we could need
to repeat the execution of some actions in order to reach the adequate bisimilar
state, so that the lengths of two equivalent computations could be different.

2.4 Amortized Quantitative Bisimulation

There have recently been two approaches to amortized bisimulation [15, 30],
where the authors had to develop by hand the corresponding theories, in order to
proof the good properties of the new bisimulation notions they introduce. These
amortized notions, besides the replication of the execution of an action, impose
that the total costs of the actions executed by two comparable computations are
somehow similar. Next we present our simple proposal for a symmetric notion
of amortized bisimulation.

Definition 6. A weighted lts is a tuple (S,A,→, w) where (S,A,→) is an lts
and w : {s a→ s′ ∈→} → P(R+).

The function w represents the cost of the execution of a transition. It returns a
set of possible costs, because once we have represented the set of transitions as
a set, and not as a multiset, this is the way we can represent the possibility of
having several ways, with different costs, to execute the same transition.

From now on, we write just s
a→
c

s′ whenever c ∈ w(s a→ s′).

Definition 7. An amortized bisimulation relating states of (S,A,→, w) for the
absolute bound B ∈ R+ is a relation R ⊆ S × S × [−B,B] that satisfies

150 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

– (s1, s2, d) ∈ R ∧ s1
a→
c1

s′1 ⇒ ∃s2
a→
c2

s′2 and (s′1, s
′
2, d − c1 + c2) ∈ R,

– (s1, s2, d) ∈ R ∧ s2
a→
c1

s′2 ⇒ ∃s1
a→
c2

s′1 and (s′1, s
′
2, d − c1 + c2) ∈ R.

We write ∼B
ab for the amortized bisimilarity relation. As for any other relation

expressing an inexact or approximated equivalence, these amortized bisimilarity
relations are not equivalence relations, because we can have P1 ∼B

ab P2 ∼B
ab

P3 but not P1 ∼B
ab P3. Instead, they behave as a distance measure, so that

we have P1 ∼B1
ab P2 ∼B2

ab P3 ⇒ P1 ∼B1+B2
ab P3. Oppositely to what was done

in [15], we have defined a symmetric relation that can be read as “similarly
fast on the large”, and not an order relation “amortized faster”. We could get
an equivalence relation related to the amortized costs by taking ∼ab=

⋃
∼B

ab.
Obviously, this would be the full relation if we just considered finite processes,
but it becomes interesting for infinite behaviours where this coalgebraic notion
accurately reflects the notion of “equal amortized cost”.

We can also define an exact distance relation between processes by taking
dab(P,Q) = min{B | P ∼B

ab Q}, which has all the properties imposed to a
topological distance relation.

Instead of a pure absolute amortized character that imposes the common
bound B, that does not take into account the length of computations, we could
also define a relativized amortized bisimilarity as follows

Definition 8. A relativized amortized bisimulation relating states of (S,A,→,w)
for the margin B ∈ R+ is a relation R ⊆ (S, S, R, N) that satisfies:

– (s1, s2, r, n) ∈ R ⇒ |r| ≤ B · n,
– (s1, s2, r, n) ∈ R ∧ s1

a→
c1

s′1 ⇒ ∃s2
a→
c2

s′2 (s′1, s′2, r − c1 + c2, n + 1) ∈ R,

– (s1, s2, r, n) ∈ R ∧ s2
a→
c2

s′2 ⇒ ∃s1
a→
c1

s′1 (s′1, s
′
2, r − c1 + c2, n + 1) ∈ R.

We write ∼B
ra for the relativized amortized bisimilarity relation.

It is clear that this relativized notion is closer to the simple approximated cost
bisimilarity that just imposed the simulation of the execution of an action with
a given cost by executing the same action with a similar cost.

2.5 Bisimulations with Non-atomic Actions

In order to prepare the field for other more interesting examples, here we discuss
the case in which the transitions are labelled not with a single action but with
a multiset of actions. Then we can replicate the executions of C→ with C ⊆ A by

executing C⇒ with C = C1 · . . . · Ck and C =
k⋃

i=1

Ci, to get a plain non-atomic

actions bisimulation, whose induced bisimilarity relation we denote by ∼naa.
It is immediate to define the corresponding non-atomic actions versions of our
checkpoint, idempotent or amortized quantitative bisimulations.

New Bisimulation Semantics for Distributed Systems 151

2.6 Distributed Bisimulations

Let us now consider the case in which we have distributed systems composed by
agents that execute their actions in parallel. A first simple proposal corresponds
to the case in which any agent is just a state of a common ordinary lts.

Definition 9. A plain distributed bisimulation relating multisets of states of
(S,A,→) is a relation R ⊆ MS(S) × MS(S), that satisfies:

– (M1,M2) ∈ R, {s1
1, . . . , s

1
k} = N1 ⊆ M1 ∧ ∀i ∈ {1, . . . , k} s1

i
ai→ s′1i ⇒

∃N2 = {s2
1, . . . , s

2
k} ⊆ M2, ∀i ∈ {1, . . . , k} s2

i
ai→ s′2i ∧ (M ′

1,M
′
2) ∈ R, where

M ′
j = Mj − Nj + {s′j1 , . . . , s′jk }, ∀j ∈ {1, 2},

– (M1,M2) ∈ R, {s2
1, . . . , s

2
k} = N2 ⊆ M2 ∧ ∀i ∈ {1, . . . , k} s2

i
ai→ s′2i ⇒

∃N1 = {s1
1, . . . , s

1
k} ⊆ M1, ∀i ∈ {1, . . . , k} s1

i
ai→ s′1i ∧ (M ′

1,M
′
2) ∈ R, where

M ′
j = Mj − Nj + {s′j1 , . . . , s′jk }, ∀j ∈ {1, 2}.

We say that two systems given by two multisets of actions M1 and M2 are dis-
tributely bisimilar, and we write M1 ∼d M2, if there exists a distributed bisimu-
lation that contains the pair (M1,M2).

Under this simple definition, it is clear that in order to be distributely bisimilar,
two systems must have the same set of non-completed agents, where we say that
s is a completed agent if there is no transition s

a→ s′. Instead, the defined equiv-
alence already has an interesting parallel character, so that it does not coincide
with the plain bisimulation equivalence that would be obtained by considering
the corresponding interleaving semantics.

There are many ways in which we can get more realistic distributed bisimula-
tion notions by extending or modifying the definition above, either by modifying
the conditions imposed to the bisimulations, or by defining an adequate notion
of distributed transition system.

The first proposal in the first direction is just the combination of the defini-
tions of both distributed and non-atomic actions bisimulation, thus making possi-

ble to replicate the simultaneous execution of s1
i

C1
i→ s′1i with N1 = {s1

1, . . . , s
1
k} ⊆

M1, by means of N2 = {s2
1, . . . , s

2
l } ⊆ M2 with s2

j

C2
j→ s′2j and

k⋃
i=1

C1
i =

l⋃
j=1

C2
j .

We could also remove the partial synchronous character of this definition by
allowing the sequential firing of transitions in the replicating system, thus getting

s2
j

C2
j⇒ s′2j with

k⋃
i=1

C1
i =

l⋃
j=1

C2
j , where by abuse of notation we are identifying the

sequences of multisets C2
j with the multiset composed of its elements.

Obviously, starting from these asynchronous, non-atomic actions, distributed
semantics, we could easily define the corresponding checkpoint idempotent or
amortized quantitative bisimulation.

In the opposite direction, we could define specific notions of distributed lts’s
by incorporating special transitions for the creation of agents, or mechanisms
to synchronize the firing of transitions when needed. We do not need a special

152 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

mechanism for the removal of agents since that can be easily represented by
means of completed states of the system. Just to give a concrete proposal, which
is at the same time flexible and simple, we present the following:

Definition 10. A distributed transition system is a tuple (S,A, ,→) where S is
a set of states, A is a set of actions (possibly somehow structured) and ,→ is
a distributed transition relation, which means ,→⊆ S × A × P(S). A concrete
distributed system based on (S,A, ,→) is just a multiset M ∈ MS(S). We call
each state in M an agent of the system.

In order to impose the adequate synchronization conditions we introduce the
following firing rule for distributed transitions:

Definition 11. We define a synchronized distributed system as a pair
〈(S,A, ,→),Z〉, where (S,A, ,→) is a plain distributed transition system and Z ⊆
MS(A) defines the allowed steps of the computations of the system: given a con-

crete system for it M ∈ MS(S), we say that M
Z
� M ′ is a computation step of

the system if Z = {a1, . . . , an} ∈ Z and there exists N = {s1, . . . , sk} ⊆ M with
si

ai,→ S′
i for all i ∈ {1, . . . , k} and M ′ = M − N +

∑k
i=1 S′

i.

This is indeed quite a general synchronization framework that allows the consid-
eration of autonomous actions that can be executed by a single agent without
having to synchronize ({a} ∈ Z), pairs of synchronizing actions in the CCS style
({a, a} ∈ Z), and general synchronizing steps (Z ∈ Z) as they were introduced in
E-LOTOS [13]. The framework even considers broadcasting scenarios: if a repre-
sents the communication of an action, and a1, . . . , ak represent the reception of
that information by all the “participants” of the system, so that at least one agent
of each participant receives the information, then we can represent this scenario
by having ({a}+

∑k
i=1 ki ·ai) ∈ Z if and only if for all i ∈ {1, . . . , k} ki ≥ 1. We

have used an instance of this synchronization model in our ubiquitous nets [10],
where we have both autonomous transitions and synchronization transitions that
represent the offering and request of services to providers.

3 A Quick Survey on Useful Abstract Bisimulation
Results

As we said in the introduction, one of the main objectives of this introductory
paper is to establish a bridge between the existing theoretical results that could
support our Formal Methods and the concrete application of these results. When-
ever the need for new formal methods is detected in one field, we always start by
developing ad-hoc theories that are as simple as possible, but close enough to the
concrete application that has motivated its introduction. Certainly, these first
steps are usually only partially satisfactory from both points of view: the theories
are not too general, and at the same time they use to be unnecessarily involved
and even clumsy; on the other side, they are only adequate to solve simple cases,
or cover partial aspects of what we want to cope in our applications.

New Bisimulation Semantics for Distributed Systems 153

When a successful, or at least quite promising new theory attracts the at-
tention of both theoreticians and practitioners we hopefully get quite a heap
of nice theoretical results and suggestions for interesting applications. But the
problem appears when both communities separate each other because the theo-
retical studies need quite complicate foundations that produce involved theories
that practitioners cannot understand in detail. In many cases this produces a
negative attitude which, at the end, even considers those theoretical studies as
useless, since they seem unapplicable in practice. On the other side, those nice
theories become even more difficult to be understood because nobody looks for
interesting and simple examples which, besides illustrating them, constitute a
concrete case in which many useful results can be obtained for free, once it is
presented as an instance of the general theory first produced.

The formal theory whose great interest we want to illustrate by the long col-
lection of complex notions of bisimulations for distributed systems presented in
the previous section, is that of categorical bisimulations [1, 23, 16], that provide
a general notion of bisimulation; and categorical simulations [14], that more than
a general notion of simulation provide a relaxation of the notion of bisimulation
that preserves most of its coalgebraic framework, thus maintaining most of its
nice (co)algebraic properties. By lack of space, we cannot give here even their
formal definitions in full detail. You could check (and hopefully read in detail)
the beautiful studies cited above to look for the details.

We can see a functor F : Sets → Sets as a constructor of the “set of successors”
of the states of a class of systems. Besides, we need a natural translation of the
functions relating two sets of states, that preserves composition and identity
functions, that is, ∀ f : X → Y, g : Y → Z, F (g ◦ f) = F (g) ◦ F (f) and
F (IdX) = IdF (X).

For instance, for the notion of commutative checkpoint bisimulation in Sect. 2.1
we would need a functor Fchk(X) = {0, 1}×MS(A)×P(A×X), where roughly
the elements of X correspond to the tuples in {0, 1}× S × MS(A), so that they
keep memory of the multiset of executed actions since the last checkpoint, and
indicate us if that state is a checkpoint or not.

F -coalgebras are just functions α : X −→ FX . Then F -bisimulations can
be characterized by means of spans, using the general categorical definition by
Aczel and Mendler [1]:

X R Y

FX FR FY

r1 r1

c e d
Fr1 Fr2

R is a bisimulation iff it is the carrier of some coalgebra e making the above
diagram commute, where the ri are the projections of R into X and Y .

We can also define them by relation lifting: given R ⊆ X × Y , we take

Rel(F)(R) = {(u, v) ∈ FX × FY | ∃w ∈ F (R) u = Fr1(w) ∧ v = Fr2(w)}

154 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

Then, F -bisimulations are just the support of any Rel(F)-coalgebra.
We will also need the general concept of simulation introduced by Hughes and

Jacobs [14] using orders on functors. Let F : Sets → Sets be a functor. An order
on F is defined by means of a functorial collection of preorders %X⊆ FX ×FX
that must be preserved by renaming: for every f : X −→ Y , if u %X u′ then
Ff(u) %Y Ff(u′).

Given an order % on F , a %-simulation for coalgebras c : X −→ FX and
d : Y −→ FY is a relation R ⊆ X × Y such that

if (x, y) ∈ R then (c(x), d(y)) ∈ Rel(F)�(R),

where Rel(F)�(R) is % ◦Rel(F)(R)◦ %, which can be expanded to

Rel(F)�(R) = {(u, v) | ∃w ∈ F (R). u % Fr1(w) ∧ Fr2(w) % v} .

As we discuss in [12], it could be argued that the class of simulations obtained
in this way is perhaps too broad. For example, we would expect simulations
to be asymmetric order relations. However, equivalence (functorial) relations,
represented by ≡, are a particular class of orders on F , thus generating the
corresponding class of ≡-simulations. As it is the case for ordinary bisimulations,
≡-simulations themselves need not be equivalence relations, but the induced
notion of ≡-similarity clearly is.

Let us briefly explain what is the idea behind this quite nice relaxation of the
notion of F -bisimulation: any F -bisimulation has to satisfy a local coherency con-
dition which roughly says that the successors of two related states (s1, s2) ∈ R
can be paired each other getting the same attributes when comparing informa-
tion not in X , and states also related by R, when we compare elements in X .
The introduction of the order % allows us to change these sets of successors
according to it, before comparing them as indicated above. Obviously, the pos-
sibility of modifying those sets makes it easier to get the needed correspondence
and, therefore, for any order % on F , the corresponding %-similarity relation is
weaker than F -bisimulation. In particular, by means of the adequate orderings,
we will be able to relax the condition imposed by bisimulations: any information
in the successors of two related states not corresponding to the “reached sets”
must be exactly the same.

As a consequence, we cannot define any of our bisimulation notions that need
the use of any kind of memory as plain F -bisimulations. Instead, we can capture
those notions of memory and the necessary comparisons between them by means
of the adequate notion of order on F . Next, we will illustrate all this by means
of our first notion of commutative checkpoint bisimulation. For the functor Fchk

we define the equivalence ≡chk as follows:

– (0,M, T) ≡chk (0,M ′, T ′) ∀M,M ′, T, T ′ with

T = {(ai, si) | i ∈ {1, . . . , k}} ⇔ T ′ = {(a′
i, si) | i ∈ {1, . . . , k}},

– (1,M, T) ≡chk (1,M, T ′) ∀M,T, T ′ with

T = {(ai, si) | i ∈ {1, . . . , k}} ⇔ T ′ = {(a′
i, si) | i ∈ {1, . . . , k}}.

New Bisimulation Semantics for Distributed Systems 155

The idea is that whenever we are in a checkpoint the remembered multiset
of executed actions must be the same, so that ≡chk does not allow to change
them. However, if we are not in a checkpoint, we do not need to compare the
remembered multisets at all. This is why ≡chk allows to change any of the
compared values, thus making it equal to the other in order to satisfy the equality
imposed “in the middle of the condition” defining ≡chk-simulations. Note also
that the actions executed in the transitions need not to be compared, so that we
can always change an action ai by any other a′

i.
In many of the bisimulation notions that we have defined in this paper, we

need to consider transition sequences instead of plain transitions, for instance
when defining our amortized commutative bisimulations. Certainly, all these
equivalence notions could be studied by means of the derived step transition
system α⇒, as it is done when characterizing the ordinary weak bisimulation as
a strong bisimulation on the expanded system ⇒. However, we do not want
to explicitly construct such a tremendous system which, in fact, presents any
computation of the original system as a single transition of the derived step
transition system, thus completely losing the ability of reasoning on the full
behaviour of a system in a local way. In other words, by expanding the original
transition system and then defining bisimulation relations we are apparently still
using a coalgebraic language, but the spirit of coinduction that means getting
global properties by local reasonings has completely disappeared in practice.

There are a few recent works on the categorical definition of weak bisimulation
and step semantics. In particular, a part of the results and techniques used in [26]
can be used to formalize several of the new bisimulation notions introduced in
this paper, following the general ideas sketched in [25]. Another more technical
approach to the subject is that in [22], which needs a more careful study and
more developments in order to find the way of using their ideas easily.

4 (Not so Much) Related Work

Since its official introduction in [18], although we can find some related concepts
in several older works devoted to different subjects, as explained in [24], quite a
number of generalizations of the bisimulation equivalence have been proposed.
However, these generalizations tend to preserve more of the structure of pro-
cesses, thus obtaining even finer equivalences than bisimulation. For instance,
in [5] Castellani et al. define a so called distributed bisimulation that deals
with the distributed nature of processes, by distinguishing between concurrent
processes and nondeterministic but sequential processes. As a consequence, the
processes a|b and ab + ba are not identified by this semantics.

In [4], Boudol et al. follow the same intention, that of defining a notion of
bisimulation that distinguishes between concurrency and sequential non-
determinism. However, unlike in [5], where the authors focus on the distributed
nature of processes, here the authors focus on the atomicity of actions by adding
extra structure in the labels of transitions, which become partially ordered sets.

156 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

•

a

• •

a

Fig. 3. Bisimilar but not FC-bisimilar nets

Again, the resulting bisimulation semantics is stronger than strong bisimulation.
For instance, processes a|b, ab+ba and ab+(a|b)+ba are all distinct with respect
to that semantics.

Another interesting collection of works, that in this case also introduce a gen-
eral categorical approach based on so called open maps, is [17, 9, 19], where
again a stronger semantics based on event structures that capture the causal
relation between actions is studied. History-preserving bisimulation studied by
W.Vogler [28] and Maximality preserving bisimulation [7] are other bisimula-
tion semantics for Petri Nets and related models that are based on the so called
process semantics for them. This kind of semantics became very popular in the
first nineties when action refinement was studied in depth looking for a modular
semantics that would be preserved by the implementation of complex actions
by means of the corresponding processes (see for instance [29]). In the same
direction we can find [2], that presents FC-bisimulation (standing for Fully Con-
current), based on the process semantics of Petri nets, also preserving the level
of concurrency. For instance, the two simple nets in Fig. 3 are strong bisimilar,
but not FC-bisimilar.

However, when we tried to find previous work on weaker bisimulation seman-
tics we have found nearly nothing, out of, of course, anything related with the
classical weak bisimulation. Probably, there is a formal reason why that is the
case: any classical bisimulation equivalence imposes the equality of all the com-
pared information, out of the consideration of the compared states themselves,
and besides, it has to be defined in a local way. Both conditions produce rather
strong equivalences as discussed above.

In order to get weaker equivalences one possibility is to consider adequate
bisimulation up-to relations, as we have successfully done in [11], getting coalge-
braic characterizations of any semantics in Van Glabbeek’s spectrum [27]. The
other possibility is to consider categorical simulations, as we have explored in
this paper. As a matter of fact, there are some connections between these two ap-
proaches, since both relax the proof obligations imposed by the clauses defining
bisimulations, by introducing up-to mechanisms. However, an important differ-
ence is that orders on functors can only be based in local information in the
successors of the compared states, and thus categorial simulations have many
pleasant coalgebraic properties. Instead, in [11] we had to renounce to these pure
local definitions, since we wanted to characterize all the classical extensional se-
mantics, such as failures or trace semantics, that cannot be captured by local
conditions.

New Bisimulation Semantics for Distributed Systems 157

5 Conclusions and Future Work

By means of the new coalgebraic semantics for distributed systems presented in
this paper, we have tried to narrow the gap between theoretical developments
on categorical bisimulations and the applications of coalgebraic techniques to
define and study new interesting semantics for distributed systems. Certainly,
this is just an introductory paper that, however, already shows the applicability
of some recent general results on categorical simulations and categorical weak
bisimulations. These results allow us to guarantee that our new bisimulation-
like semantics are indeed coalgebraically based, so that they have all the good
properties of this kind of semantics, without the need to prove them again,
because they were established and proved once and forever.

There are two directions for further work on the subject: we have to present in
detail the reformulations of our new semantics in the categorical framework. We
have already done it for most of the semantics presented in the paper, either by
directly presenting them as instances of the categorical definition of simulation
or by using a step semantics defined by hand, for the cases in which we need to
consider sequences of transitions in the definitions. As mentioned above, there is
not a general theory for categorical step semantics available yet, and therefore
in this case we need either to wait for those general results or to apply the
particular cases that have already been solved, which fortunately correspond in
particular to the functors defining the kind of transition systems in which we
are interested.

Concerning the applications, we hope to motivate the people working in the
field to consider the new semantics introduced in this paper, looking for those
that could be more useful in practice. Practitioners have always considered bisim-
ulation semantics not so useful because the equivalence it defines is too strong.
By relaxing the conditions to become equivalent, but maintaining the good prop-
erties of coalgebraic semantics, we could obtain new promising semantics, and
then develop for them all the machinery that makes applicable in practice the
bisimulation semantics.

References

[1] Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M.,
Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

[2] Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent bisimulation in Petri
nets. In: Acta Informatica, vol. 28, pp. 231–264. Springer, Heidelberg (1991)

[3] Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of
ACM 42(1), 232–268 (1995)

[4] Boudol, G., Castellani, I.: Concurrency and atomicity. In: Theoretical Computer
Science, vol. 59, pp. 25–84. Elsevier, North-Holland (1988)

[5] Castellani, I., Hennessy, M.: Distributed bisimulations. Journal of the ACM 36(4),
887–911 (1989)

[6] de Simone, R.: Higher-Level Synchronising Devices in Meije-SCCS. In: Theoretical
Computer Science, vol. 37, pp. 245–267. Elsevier, North-Holland (1985)

158 D. de Frutos-Escrig, F. Rosa-Velardo, and C. Gregorio-Rodŕıguez

[7] Devillers, R.R.: Maximality Preserving Bisimulation. In: Theor. Comput. Sci.,
vol. 102(1), pp. 165–183. Elsevier, North-Holland (1992)

[8] Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisim-
ulation equivalence. In: Theoretical Computer Science, vol. 311, pp. 221–256. El-
sevier, North-Holland (2004)

[9] Fiore, M.P., Cattani, G.L., Winskel, G.: Weak Bisimulation and Open Maps. In:
Logic in Computer Science, LICS 1999, pp. 67–76. IEEE Computer Society, Los
Alamitos (1999)

[10] Frutos-Escrig, D., Marroqúın-Alonso, O., Rosa-Velardo, F.: Ubiquitous Systems
and Petri Nets. In: Ubiquitous Web Systems and Intelligence. LNCS, vol. 3841,
Springer, Heidelberg (2005)

[11] Frutos-Escrig, D., Gregorio-Rodŕıguez, C.: Bisimulations Up-to for the Linear
Time Branching Time Spectrum. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 278–292. Springer, Heidelberg (2005)

[12] Frutos-Escrig, D., Palomino, M., Fábregas, I.: Searching for a canonical notion of
simulation (In preparation)

[13] Lucero, G.F., Quemada, J.: Specifying the ODP Trader: An Introduction to
E-LOTOS. In: 10th Int.Conf. on Formal Description Techniques and Protocol
Specification, Testing and Verification, FORTE’97. IFIP Conference Proceedings,
vol. 107, pp. 127–142. Chapman & Hall, Sydney (1998)

[14] Hughes, J., Jacobs, B.: Simulations in coalgebra. Theoretical Computer Sci-
ence 327(1-2), 71–108 (2004)

[15] Kiehn, A., Arun-Kumar, S.: Amortized bisimulations. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005)

[16] Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and obser-
vations. Book in preparation. Available, at
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

[17] Joyal, A., Nielsen, M., Winskel, G.: Bisimulation and open maps. In: Logic in
Computer Science, LICS’93, IEEE Computer Society, Los Alamitos (1993)

[18] Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

[19] Nielsen, M., Winskel, G.: Petri Nets and Bisimulation. Theor. Comput.
Sci. 153(1&2), 211–244 (1996)

[20] Park, D.: Concurrency and automata on infinite sequences. In: 5th GI-Conference
on Theoretical Computer Science, pp. 167–183. Springer, Heidelberg (1981)

[21] Plotkin, G.D.: A structural approach to operational semantics. TR DAIMI FN-19,
Computer Science Dept., Aarhus Univ. (1981)

[22] Rothe, J., Mas̆ulović,D.: A syntactical approach to weak (bi)-simulation for coal-
gebras. In: Coalgebraic Methods in Computer Science, CMCS’02. ENTCS, vol.
65(1) Elsevier (2002)

[23] Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1), 3–80 (2000)

[24] Sangiorgi, D.: Bisimulation and Co-induction: Some Problems. In: Electr. Notes
Theor. Comput. Sci., vol. 162, pp. 311–315. Elsevier, North-Holland (2006)

[25] Sokolova, A.: On compositions and paths for coalgebras. Technical report CSR-
05-26, TU Eindhoven (2005)

[26] Sokolova, A., de Vink, E.P., Woracek, H.: Weak Bisimulation for Action-Type
Coalgebras. In: Category Theory and Computer Science, CTCS’04. ENTCS,
vol. 112, pp. 211–228. Elsevier, North-Holland (2005)

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

New Bisimulation Semantics for Distributed Systems 159

[27] van Glabbeek, R.: The linear time - branching time spectrum I; the semantics of
concrete, sequential processes. In: Handbook of Process Algebra Chapter 1, pp.
3–99. Elsevier, North-Holland (2001)

[28] Vogler, W.: Deciding History Preserving Bisimilarity. In: Leach Albert, J.,
Monien, B., Rodŕıguez-Artalejo, M. (eds.) Automata, Languages and Program-
ming. LNCS, vol. 510, pp. 495–505. Springer, Heidelberg (1991)

[29] Vogler, W.: Bisimulation and Action Refinement. Theor. Comput. Sci. 114(1),
173–200 (1993)

[30] Lüttgen, G., Vogler, W.: Bisimulation on speed: A unified approach. Theor. Com-
put. Sci. 360(1-3), 209–227 (2006)

Event Correlation with Boxed Pomsets

Thomas Gazagnaire1 and Löıc Hélouët2

1 IRISA/ENS Cachan, Campus de Beaulieu, 35042 Rennes Cedex, France
2 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. This paper proposes a diagnosis framework for distributed
systems based on pomset languages. Diagnosis is performed by projecting
these models on a collection of observable labels and then synchronization
with an observation. This paper first proposes a new model called boxed
pomset languages, which extends classical pomset-based languages as
so called High-level Message Sequence Charts. It can describe infinite
scenarios, and has good properties with respect to projections. We then
give a solution for the event correlation problem (knowing whether two
observed alarms are causally related) for pomset languages.

1 Introduction

Communication systems have become more and more complex over the recent
years. Usually, several telecommunication operators share the same physical net-
work to provide services to their clients. In this context, when a breakdown oc-
curs, finding what really happened and who is responsible for it is becoming a
major challenge.

Such kind of telecommunication breakdown happened in France in November
2004. In several towns, the whole telecommunication network was unavailable,
and worse, even emergency numbers were disabled. It took a full day to restore
normal communication. The cause for this trouble was made public much later:
a software error in a voice over IP application had forced several equipments to
switch off, and as a result, the whole network collapsed.

Similarly, the spreading of DSL (still with several operators sharing a common
network) now cause some reliability problems. When a breakdown occurs the
problem may be due to the physical network (at the level of the local hook-up or
at upper levels), to the service provider, or even worse it may be a consequence
of bad interactions between services from several providers. In this situation,
finding the cause of the failure is difficult, and the time to get an explanation
may be several weeks. According to France Telecom,1 several providers did not
develop sufficient tools needed to detect faults in networks. Beyond technical
concerns (repairing the incriminated hardware or replacing software), there are
also economical reasons for diagnosis techniques: one wants to find who is re-
sponsible for a failure of the system - or equivalently what is the root cause of
the failure. In such a situation, the origin of a breakdown becomes as important
as the fault itself.
1 Le monde, 01/08/2007.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 160–176, 2007.
c© IFIP International Federation for Information Processing 2007

Event Correlation with Boxed Pomsets 161

In order to quickly fix problems, almost every part of a modern network
provides data about what it is doing: operating systems log systems and security
events, servers keep records of what they do, applications log errors, warnings
and failures, firewalls and VPN gateways record suspicious traffic, routers and
switches watch packets between network segments,... In a protocol such as Simple
Network Management Protocol (SNMP) [7], these equipments forward alerts to
a central management console. Besides monitoring their own behavior, all these
agents receive and relay messages from other network components, and may in
turn generate new alerts, leading to a propagation of an alarm over the whole
network. A single problem can hence generate overabundant alarms, that are
collected in huge log files. After a breakdown, these logs have to be searched,
but they are often so big that data provided by the network can not be exploited
without dedicated tools. Moreover, monitoring everything in a system is not
possible because sensors cannot be placed everywhere, and thus only a subset of
what occurs in the network is reported in logs. Hence to understand completely
what happened during the failure, one needs to rely on partial observations, but
also on his knowledge of the systems.

In practice, logs are often analyzed and simplified with the help of some simple
rules such as compression (takes multiple occurrences of the same event, exam-
ines them for duplicate information, removes redundancies and reports them as
a single event), counting (reports a specified number of similar events as a sin-
gle one), suppression (associates priorities with alarms and suppresses an alarm
with low priority if an event with higher-priority has occurred), generalization
(generates a log of higher-level events from the initial log) [3], correlation which
establishes “cause and effect” relation between events [12]. All these rules are im-
plemented in expert systems, that read complete logs and output simplified log
files. These summaries are then read by a specialist who tries to find a scenario
for the failure and its root causes.

Additionally, several model-based formal techniques have been proposed re-
cently to diagnose systems. Sampath et al [14] propose a fault detection tech-
nique from finite state machines (FSM), that distinguish safe and faulty states.
Lafortune et al also propose a notion of diagnosability for their model. A system,
described as a FSM, is diagnosable if for a given sequence of observable tran-
sitions, one cannot find two compatible runs of the system such that one that
leads to a safe state, and the other to a faulty state. Jeron et al [10] describe a
similar approach with enhanced fault models. Benveniste et al [2] propose Petri
Nets based diagnosis techniques. They recover complete explanations from an in-
complete observation using a Petri Net model of the monitored system. Hélouët
et al [8] show how to recover explanations of a fault from a partial observation
of a distributed system using High-Level Message Sequence Charts (HMSC) [9].

This paper investigates a model-based diagnosis technique using pomset lan-
guages, that are more powerful than FSM and HMSCs. Roughly speaking, such
languages are automata labeled by partial orders. The major difference with
HMSCs resides in the kind of pomset labeling the automata and in the sequen-
tial composition rule that can be parametrized. Using this model, we provide

162 T. Gazagnaire and L. Hélouët

techniques to retrieve explanations (from a given partial observation o, provide
all explanations; i.e. runs of the model, that are compatible with o) and to per-
form event correlation (infer from a partial ordering of events in an observation
o whether two events should be causally related). More precisely, we show that
deciding whether two observed events are ordered in all runs of a model is CoNP-
complete. When the collection of possible labels is fixed and the observation has
no auto-concurrency, the problem is in NLOGSPACE and we give an effective
algorithm to compute the reconstructed causal order explaining the observation.

This document is organized as follows: Section 2 introduces the basic defi-
nitions of pomset languages and boxed pomset languages that will be used as
models of monitored systems. Section 3 establishes the main properties of these
languages. Section 4 uses these results to solve the event correlation problem.
Section 5 concludes this work and gives some perspectives.

2 Pomsets, Boxed Pomsets, and Pomset Languages

Pomsets are a very natural representation to describe runs of distributed systems.
Furthermore, they avoid the well known state-space explosion problem due to
interleaving. Popular languages based on partial orders such as HMSCs [9] are
now standardized. This section introduces a new pomset language called boxed
pomsets, that has nice properties with respect to projection and embeds the
expressive power of HMSCs. The following definitions are mainly due to Gischer
[6] and were reused later by Pratt [13].

Pomsets. A labeled partial order (or lpo) over a set E with labels Σ is a structure
(E,≤, λ,Σ) where ≤ partially orders E and λ : E → Σ assigns an element of
Σ to each element of E. When needed, we will denote by (Ep,≤p, λp, Σp) the
components of lpo p. Labels in Σ should be considered as types of actions that
can be performed by a system, E as instances of these actions representing events
in a run of a distributed system. The set of all events is denoted by E. A lpo is
auto-concurrent iff one can find two incomparable events e, e′ ∈ E (i.e. e � e′

and e′ � e) such that λ(e) = λ(e′).
A map of lpos (f, t) : (E1,≤1, λ1, Σ1) → (E2,≤2, λ2, Σ2) consists of a mono-

tone map f : (E1,≤1) → (E2,≤2) of partially ordered sets and an alphabet map
t: Σ1 → Σ2 such that for all e in E, λ2(f(e)) = t(λ1(e)). An isomorphism of
lpos is a map (f, t) where f is an isomorphism of partially ordered sets and t is
the identity function.

A pomset is the isomorphism class [E,≤, λ,Σ] of a lpo (E,≤, λ,Σ). More intu-
itively, pomsets pay attention to cardinality , labeling and ordering of events, but
not to their identity. ¿From now on, we consider that the set of events E and its
labeling function λ : E → Σ are fixed. Thus we will denote a pomset p by [Ep,≤p]
instead of [Ep,≤p, λp, Σp], because Σp is a subset of Σ and λp is the restriction of
λ to the domain Ep. We will also denote by P the set of all possible pomsets.

A projection of a pomset p on an observable alphabet Σo is a function πΣo :
P → P which restricts p to observable labels, i.e. πΣo(p) = [Ep ∩ EΣo ,≤p ∩E2

Σo
]

with EΣo = λ−1(Σo).

Event Correlation with Boxed Pomsets 163

Given a predicate ψ which associates a boolean to each pair of Σ2, we can
define the composition of pomsets p1 and p2, denoted by p1 ψ p2, or simply
p1 p2, as an operator that computes the disjoint union of two pomsets and
then adds an ordering between all pairs of events (e, e′) ∈ Ep1 × Ep2 such that
ψ(λ(e), λ(e′)). More formally, we have p1 ψ p2 = (Ep1 �Ep2 , (≤1 � ≤2 � ≤ψ)∗)
where ≤ψ= {(e, e′) ∈ Ep1 × Ep2 | ψ(λ(e), λ(e′))}. This composition is similar
to the local composition of pomsets defined by Pratt [13]. The parameterization
of ψ makes the composition law able to express several classical operators such
as the parallel composition when ψ(a, b) is false for all a, b ∈ Σ, the strong
concatenation, that is sometimes used to compose MSC’s, when ψ(a, b) is true
for all a, b ∈ Σ, and the weak sequential concatenation when Σ is decomposed
into p disjoint sets Σ1, . . . , Σp representing respectively all actions that can be
executed by processes 1, . . . , p and ψ(a, b) holds when ∃i ∈ 1 . . . p such that
a, b ∈ Σi. From now on, when ψ is clear from the context, we will only write
p1 p2 instead of p1 ψ p2. Figure 1 gives an example of pomset composition
and projection. Each event e is represented by a circle labeled by λ(e). As we do
not pay attention to events themselves, they are unnamed. For clarity, we only
show the transitive reduction of the partial orders. Let ψ hold only for pairs
in {(a, a); (c, c); (c, b); (c, d)}. The composition of pomsets p1 and p2 is shown
on Figure 1-a. Added causalities, corresponding to ≤ψ are depicted by dotted
lines. Figure 1-b shows that projections of pomsets composition is, in general,
not equal to composition of pomsets projections. Indeed, for Σo = {a, b}, p4 =
πΣo(p1) πΣo(p2) is not isomorphic to p5 = πΣo(p1 p2).

(a) p3 = p1 p2 (b) p4 �= p5

Fig. 1. Composition of pomsets

Boxed pomsets. In order to manipulate pomsets with projection and compo-
sition more easily, we introduce a new model called boxed pomsets. A port is the
isomorphism class of a subset E of E where each label appears at most once, i.e
for every letter a of Σ, |λ−1(a) ∩ E| ≤ 1.

A partial order ≤ plugs a set of events E1 to another set of events E2 when, for
every label a in Σ, every event of E1 labeled by a precedes any event in E2 labeled
by a. More formally, we note ≤E1�E2= {(e1, e2) ∈ E1 ×E2 | λ(e1) = λ(e2)} and
we say that ≤ plugs E1 to E2 iff ≤E1�E2⊆≤.

164 T. Gazagnaire and L. Hélouët

Definition 1. A boxed pomset is the isomorphism class [E− � E � E+,≤] of
structures (E− � E � E+,≤), where E− and E+ are isomorphic ports called
respectively input port and output port, E is a set of events called inside box,
and ≤⊆ (E− �E)× (E �E+) is a partial order relation. Moreover, ≤ plugs E−

to (E � E+) and (E− � E) to E+.

A boxed pomset b can be seen as an encapsulated pomset, with an access, for
each label, to its maximal and minimal events, through respectively output and
input ports. Events which occur before b will only interact with its input port,
events which occur after b will only interact with its output port. When needed
we will detail the components of boxed pomset b as [E−

b �Eb �E+
b ,≤b]. The set

of all boxed pomsets is denoted by B. Figure 2 show three examples of boxed
pomsets called b1, b2 and b3. They are represented as pomsets in which separate
rectangles distinguish clearly input ports, inside boxes and output ports. Input
ports will always be located above inside boxes, and output ports below. Note
that ports are not real executable events but rather pointers to minimal and
maximal events of a pomset. Hence boxed pomset b3 of Figure 2 and pomset p3

of Figure 1-a have the same meaning.

Fig. 2. Boxed pomsets, where b1 � b2 = b3

Definition 2. A projection of a boxed pomset b on an observable alphabet Σo

is a function π̄Σo : B → B which restricts the inside box of b to events which are
labeled by Σo, with no modification of the input and output ports, i.e. π̄Σo(b) =
[E−

b � (Eb ∩ EΣo) � E+
b ,≤b ∩(E′

Σo
)2] where EΣo = λ−1(Σo) and E′

Σo
= E−

b �
EΣo � E+

b .

Event Correlation with Boxed Pomsets 165

Ports show their usefulness with projections: they are not only labels, but are also
used to memorize causal relations with events that may have occurred before or
after a given pomset, that disappear during projection. We extend composition
over pomsets to composition over boxed pomsets. This composition does not
change the global structure of boxed pomsets: an input port, an inside box, and
an output port. Intuitively, the composition of boxed pomsets b1 and b2, denoted
by b1 �ψ b2 (or simply b1 � b2 when ψ is clear from the context), performs the
composition of intermediate ports (output port of b1 and input port of b2) and
keeps the resulting partial order over elements of inside boxes. Input and output
ports are used to compute new ports that are respectively the minimal and
maximal events of the new object. More formally:

Definition 3. Let bi = [E−
i � Ei � E+

i ,≤i] for i ∈ {1, 2} be two boxed pomsets,
and ψ be a predicate on Σ2. We define the composition of b1 and b2 as b1�ψ b2 =
[E−

1�2 � E1�2 � E+
1�2,≤1�2], where:

– E−
1�2 is a port such that λ(E−

1�2) = λ(E−
1) ∪ λ(E−

2);
– E1�2 is isomorphic to E1 � E2;
– E+

1�2 is a port such that λ(E+
1�2) = λ(E+

1) ∪ λ(E+
2);

– ≤1�2= (≤1 ∪ ≤2 ∪ ≤ψ ∪ ≤E−
1�2�(E−

1
E−
2) ∪ ≤(E+

1
E+
2)�E+

1�2
)∗ ∩ E2 where

E = (E−
1�2 � E1�2 � E+

1�2), and ≤ψ= {(e, e′) ∈ E+
1 × E−

2 | ψ(λ(e), λ(e′))}.

Input and output ports of b1 �ψ b2 contain labels of input and output ports of
b1 and b2, inside box of b1 � b2 is isomorphic to the union of insides boxes of
E1 and E2, and causality relation of b1 � b2 is the union of causality relations

Fig. 3. Projection of boxed pomsets, where b4 b5 = b6

166 T. Gazagnaire and L. Hélouët

of b1 and b2, augmented with the composition of output port of b1 with input
port of b2, projected on events of E−

1�2 � E1�2 � E+
1�2. Moreover, we also en-

sure that ≤1�2 plugs correctly E−
1�2, E1�2 and E+

1�2. Consider again Figure 2,
and let ψ hold only for {(a, a); (c, c); (c, b); (c, d)}. Then, boxed pomset b3 is the
composition of boxed pomsets b1 and b2. Added causalities, corresponding to
≤ψ ∪ ≤E−

1�2�(E−
1
E−

2) ∪ ≤(E+
1
E+

2)�E+
1�2

are symbolized by dotted lines, and
the created ports are symbolized by rectangles located respectively above and
below b4 and b5.

Let us consider the boxed pomsets b4, b5 and b6 of Figure 3 and the examples
of Figure 2. In this figure, b4 = π̄Σo(b1), b5 = π̄Σo(b2) and if we let ψ hold
for {(a, a), (c, c), (c, b), (c, d)}, then we have b6 = b4 � b5. Moreover, we can
remark that b6 = π̄Σo(b3). Section 3 explains more in detail the relations between
pomsets and boxed pomsets, and shows that boxed pomsets have good properties
with respect to projections. Hence, it will be easier to manipulate boxed pomsets
than pomsets. Thus, we define morphisms to translate problems occurring in
pomsets monoid (P,) to problems in boxed pomsets monoid (B,�), which
should be solved more easily.

The boxing operator B : P → B is used to build a boxed pomset B(p) from a
pomset p. The boxed pomset built has an inside box, which corresponds exactly
to p, and input and output ports plugged adequately, i.e. input port is plugged
to inside box and output port, and inside box is plugged to output port. Thus,
B(p) is defined as B(p) = [E− � Ep � E+, (≤p ∪ ≤E−�Ep

∪ ≤Ep�E+)∗] where
E− and E+ are ports such that λ(E−) = λ(Ep) = λ(E+).

The unboxing operator U : B → P is used to extract the inside box from a
boxed pomset: U(b) = [Eb,≤b ∩E2

b]. Let us consider pomset p1 from Figure 1,
and boxed pomset b1 from Figure 2. We have B(p1) = b1, and U(b1) = p1.

Automata and languages. Single finite pomsets are not sufficient to provide
a model for systems that may produce runs of arbitrary size. A good way to
design unbounded behaviors is to use an automaton to compose an arbitrary
number of pomsets, as in HMSCs. We introduce now classical definitions about
automata. For a given set L, a L-automaton A is a tuple (S,→, L, S0, Sf) where
S is a set of states, L a collection of labels, →⊆ S×L×S a transition relation, S0

a set of initial states and Sf a set of final states. A path ρ of A is a succession of

consecutive transitions of A such that ρ = n0
l1→ n1 . . .

lk→ nk and (ni, li+1, ni+1)
are in →. An accepting path is a path starting with an initial state and ending
with a final one. We define α∗(ρ) = l1∗. . .∗lk, the map which assigns to each path
of a L-automaton an element of the monoid (L, ∗). We extend this definition to
L-automaton: L∗(A) is the language of A, i.e. the set of all elements of (L, ∗)
that A generates : L∗(A) = {α∗(ρ) | ρ is an accepting path of A}. When the
composition operator used is not ambiguous, we write α and L instead of α∗
and L∗. For instance, it shall be clear that we use when we manipulate P-
automata, and � when we manipulate B-automata. Figure 4 gives an example
of two L-automata. States are represented by circles, labels by rectangles. Initial
states have an incoming arrow without source and final states have an outgoing

Event Correlation with Boxed Pomsets 167

(a) A1 (b) A2

Fig. 4. Examples of L-automata

arrow without destination. A1 is a P-automaton, as p1 and p2 (from Figure 1-a)
belong to P. A2 is a B-automaton, as b1 and b2 (from Figure 2) belong to B.

We extend operators over P and B to operators over P-automata and B-
automata. From a map f : L1 → L2, we build a new mapping operator Mf :
L1-automata → L2-automata, such that, given A a L1-automaton, Mf (A) is
the L2-automaton where each transition (s, l, s′) ∈→ is replaced by a transition
(s, f(l), s′). In this paper, we will mainly consider MB, MU , MπΣo

and Mπ̄Σo

which are, respectively, the conversion of P-automata to their corresponding B-
automata that replaces pomsets by boxed pomsets in transitions, the conversion
of B-automata to their corresponding P-automata that replaces boxed pomsets
in transitions by unboxed ones, the projection of P-automata, that replaces la-
bels of transitions by projected ones, and the projection of B-automata, that
replaces labels of transitions by projected boxed pomsets. For the examples of
Figure 4 as B(p1) = b1 and B(p2) = b2, we have MB(A1) = A2, and con-
versely A1 = MU (A2). Moreover, we can remark that for any automaton and
a pair of mappings f and g, we have Mf(Mg(A)) = Mfg(A). P-automata and
B-automata can not be considered as new models (they are just standard au-
tomata over peculiar alphabets). However, the composition laws on pomsets and
boxed pomsets gives them more expressive power than simple HMSCs.

Finally, we naturally extend operators over P and B to sets of P and set of B.
For instance, we will write πΣo(L) instead of {πΣo(p) | p ∈ L}.

3 Properties of Boxed Pomsets

This section introduces the main properties of boxed pomsets. First, we introduce
basic properties of the operators defined in Section 2. Then we show several
results on pomset languages and their projections. The nice properties of boxed
pomsets with respect to projection motivate the use of this new model to answer
diagnosis problems, as a natural way to consider partial observation is to work
with projected runs of a model. More especially, Theorem 2, gives an automaton
construction for the projection of any pomset automaton.

Let us first consider basic properties of B and U operators with respect to pro-
jection and composition. We will focus essentially on pomset and boxed pomsets
objects, i.e. we will not consider pomset and boxed pomset languages. Propo-
sition 1 below states that the boxing operation is the inverse relation of the
unboxing one. Note that as the unboxing operation is not injective, the converse
property does not hold.

168 T. Gazagnaire and L. Hélouët

Proposition 1. Let p be a pomset. Then UB(p) = p.

The following proposition shows that boxed pomset projection is a kind of dual
operation of pomset projection, used with unboxing operator.

Proposition 2. Let b be a boxed pomset labeled by Σ, and Σo be a subset of Σ.
Then, πΣoU(b) = Uπ̄Σo(b).

Proposition 3 shows that pomset composition and boxed pomset composition
are also strongly related. Unlike projections, compositions are not compatible
with unboxing operator as in general U(b1) U(b2) is not equal to U(b1 � b2).
Fortunately boxing operation and compositions work well together:

Proposition 3. Let p1 and p2 be two pomsets. Then B(p1p2) = B(p1)�B(p2).

The above propositions give us some basic tools to manipulate pomsets and
boxed pomsets together with projections. Let us now focus on pomset and boxed
pomset languages. It is well known (see for instance Genest et al’s paper [5]) that
pomset languages generated by automata are not stable under projection: given
a P-automaton A, there is, in general, no P-automaton A′ such that L(A′) =
πΣo(L(A)).

Let us now consider the case of boxed pomsets languages. Proposition 4 shows
that the boxed pomset projection is distributive over boxed composition law
�, i.e. the projection of the composition of two boxed pomsets is exactly the
composition of the projection of these boxed pomsets.

Proposition 4. Let b1 and b2 be two boxed pomsets labeled by Σ, and Σo be a
subset of Σ. Then π̄Σo(b1 � b2) = (π̄Σo(b1)) � (π̄Σo(b2))

This result naturally extends to boxed pomset languages: given a B-automaton
A, one can easily find another B-automaton A′ such that the projection of the
boxed pomset language generated by A is exactly the boxed pomset language
generated by A′. Theorem 1 below shows that it is sufficient to take A′ =
Mπ̄Σo

A. Hence, computing A′ can be performed in linear time.

Theorem 1. Let A be a B-automaton whose events are labeled by Σ, and Σo

be a subset of Σ. Then π̄Σo(L(A)) = L(Mπ̄Σo
(A)).

Proof. First, let us take a path ρ in A. Then, we have α(ρ) = b1 � . . .� bn where
bi are labels of transition of A. Thus, using Proposition 4, we have π̄Σo(α(ρ)) =
π̄Σo(b1) � . . . � π̄Σo(bn). Moreover, π̄Σo(b1), . . . , π̄Σo(bn) can be found along a
path of Mπ̄Σo

(A). It means that π̄Σo(L(A)) ⊆ L(Mπ̄Σo
(A)).

Second, let us take a path ρ in Mπ̄Σo
(A). Then, we have α(ρ) = b1 � . . .� bk,

where bi are labels of transition of π̄Σo(A), i.e. bi = π̄Σo(b′i). Thus, using Propo-
sition 4, we have α(ρ) = π̄Σo(b′1 � . . . � b′k). Moreover, b′1, . . . , b

′
k can be found

along a path of A. It means that L(Mπ̄Σo
(A)) ⊆ π̄Σo(L(A)). This concludes the

proof of Theorem 1. 	

Event Correlation with Boxed Pomsets 169

Proposition 5 extends the result of Proposition 3 to languages. More precisely,
it shows that the boxing operator can be applied equivalently to each label of
the initial automaton, or to the resulting language of this automaton.

Proposition 5. Let A be a P-automaton whose events are labeled by Σ, and Σo

a subset of Σ. Then L(MB(A)) = B(L(A)).

The following theorem shows that it is possible to keep an automaton-like repre-
sentation of P-automata projections. The main idea is to consider the dual boxed
pomset automaton projection to do so. Roughly speaking, Theorem 2 says that
the projection of a P-automaton language is the unboxing of the language of the
corresponding B-automaton projection.

Theorem 2. Let A be a P-automaton whose events are labeled by Σ, and Σo be
a subset of Σ. Then πΣo(L(A)) = U(L(Mπ̄ΣoB(A)))

Proof. We will use the above propositions to demonstrate this main result :
πΣo(L(A)) = πΣoUB(L(A)) (Prop. 1) = Uπ̄Σo(B(L(A))) (Prop. 2)

= Uπ̄Σo(L(MB(A))) (Prop. 5) = U(L(Mπ̄ΣoB(A))) (Th. 1) 	

This theorem shows the interest of B-automata, and boxed pomsets. Indeed,
for any P-automaton A, there is in general no P-automaton that can generate
πΣo(L(A)), but the trivial B-automaton Mπ̄ΣoB(A) generates a language equiv-
alent to πΣo(A). It seems more convenient for a designer to define the behaviors
of a system with P-automata, as one does not have to care for ports. On the
other hand, B-automata is a kind of model closed under projection. As trivial
transformations allow to switch from one model to another, the framework for
diagnosis seems rather clear: models of our systems will be P-automata, and
formal manipulations will be performed on B-automata.

4 Event Correlation

P-automata can be used to model distributed system or multi-threaded system,
distributed robotics system, business work-flows,... In this paper, we will focus on
telecommunication networks. These systems are composed of concurrent agents
that react to their environment according to their programmed behavior, and
report a part of the events occurring in their neighborhood. These events cor-
respond to a finite subset of all the possible actions that may happen and form
the finite collection Σ of event labels. Figure 5 shows a typical architecture for
a monitored system. It is very similar to the SNMP architecture: each agent
is equipped with a sensor (represented by a diamond), which sends observable
events it monitors to the centralized log system (represented by a cylinder). Con-
nection between agents are represented by dotted lines. The log system receives
observations and records them in a log file that contains few information about
causalities between recorded events.

Note that monitoring systems can not record everything that occurs in a
network. The first obvious reason is that the size of log files on disk is necessarily

170 T. Gazagnaire and L. Hélouët

Fig. 5. A monitored system

limited, and hence designers have to choose what to record. The second reason
is that some actions that one would like to record are performed by hardware, or
in a part of the network that is not owned by the company which monitors the
network. Hence, only a subset Σo of Σ is observable. Furthermore, one can not
record all causal relations among events: this needs very intrusive tools, usually
based on vector clocks instrumentation [4,11] which impose a time penalty on
communications and again can not be implemented in unobservable places of
the network. Hence, most of the time logs contain incomplete information about
causal relations between recorded events. The log file can then be defined as a
lpo o = (Eo,≤o), where λ(Eo) ⊆ Σo. However, we show in this section how the
lost ordering between events can be reconstructed with a model-based approach.

Within this context, the problems we are interested in are event correlation,
i.e. infer causalities lost by the observation process, and root causes elicitation
for faulty behavior, i.e. exhibit the minimal observed events with respect to the
inferred causal ordering. Note that the log file is in general not sufficient to infer
all lost causal relations among observed events. We propose to use some addi-
tional information on the behavior of the monitored system. This information
is provided by a model given in terms of a P-automaton A. A represents all the
knowledge of experts about the system behaviors, hence L(A) is supposed to
model a significant part of possible runs of the system.

Definition 4 (Explanations). An explanation of an observation given as a
lpo o = (Eo,≤o) is a lpo o′ = (Eo,≤) such that ≤o⊆≤. The set of all explana-
tions of o is denoted by �o�. Moreover, given a P-automaton A the model-based
explanation of o by A with observation labels Σo, is denoted by �o�Σo,A. �o�Σo,A
is the set of explanations whose isomorphism class belong to the projection of
the language generated by A on Σo. More formally, l ∈ �o�Σo,A if and only if l
is an instance of an element of πΣo(L(A)) and l ∈ �o�.

Note that o and its explanations partially orders the same sets of observed events
Eo. Using definition 4, we can formalize the correlation problem as follows:

Event Correlation with Boxed Pomsets 171

Definition 5 (Event Correlation Problem). Let A be a P-automaton whose
events are labeled by Σ, o = (Eo,≤o) be an observation labeled by Σo ⊆ Σ, and
(e1, e2) be a pair of events in E2

o . The Event Correlation Problem for the pair
(e1, e2), is denoted by ECP (Σo,A, o, e1, e2) and can be stated as follows: decide
whether e1 ≤ e2 for every p = (Eo,≤) ∈ �o�Σo,A. We denote by ecpΣo,A,o the
lpo (Eo,≤) where e1 ≤ e2 if and only if ECP (Σo,A, o, e1, e2). The set of root
causes of observation o is denoted by rcΣo,A,o and is the collection of minimal
events with respect to ecpΣo,A,o.

(a) Observation (b) c ∈ �o�

(c) �o�{a,b},A1 = {e1, e2, e3} (d) ecp{a,b},A1,o

Fig. 6. Observations, explanations and correlations

Intuitively, ecpΣo,A,o contains all causal orderings that are certain according to the
explanations of o provided by A. Figure 6 illustrates these definitions. The graphi-
cal representation for lpos is similar to the representation adopted for
pomsets, with the slight difference that we associate an unique number to each
event to differentiate distinct occurrences of the same action. We consider in this
figure that Σ = {a, b, c, d} and Σo = {a, b}. Figure 6-a shows the observation
called o. Figure 6-b shows a possible explanation of o called c. Let us suppose
that the model of the systems behaviors is the P-automaton A1 of Figure 4-a. For
this automaton, c is not a model-based explanation of o, as c does not belong to
πΣo(L(A1)). Lpo’s e1, e2 and e3 in Figure 6-c are possible members of πΣo(L(A))
which embed the ordering given by o. As these different explanations do not agree

172 T. Gazagnaire and L. Hélouët

on the respective ordering of events 3 and 4, 3 and 5, 4 and 5, nor 5 and 6, they
shall not be ordered in ecpΣo,A1,o, as depicted in Figure 6-d. For this case, the root
cause of the observation o is event 1 which is labeled by a.

Theorem 3 shows that the ECP problem is hard, but fortunately, Theorem 4
identifies one case where this problem can be solved in polynomial time. More-
over, the constructive proof leads directly to an effective algorithm.
Theorem 3. Let A be a P-automaton whose events are labeled by Σ, o =
(Eo,≤o) be a lpo labeled by Σo ⊆ Σ and (e, e′) be in E2

o . Then ECP (Σo,A, o, e, e′)
is CoNP-complete.

Proof. We want to show that answering to the following question is NP-complete:
Is there a lpo l = (Eo,≤) ∈ �o�Σo,A such that e �≤ e′ ? This can be proved with
an extension of the proof of Th. 5 in Alur et al’s paper [1]. First, let us show that
ECP is in NP. A solution is a path ρ of A, such that πΣo(α�(ρ)) = [E,≤] is an
isomorphism class that contains an explanation of o with f(e) �≤ f(e′), where f is
the map which assigns each event class of E to its instance in Eo. Let us consider
the B-automaton A′ = Mπ̄ΣoB(A). Theorem 2 says that πΣo(L(A)) = UL(A′).
Thus, ρ is also a path in A′ such that U(α�(ρ)) = [E,≤] is an isomorphism class
that contains an explanation of o with f(e) �≤ f(e′). Let us assume that the size
of ρ is greater than |o||A|Σ|2. Then, as ρ should have at most |o| transitions in
A′ with observable events, we can find a sequence of unobservable transitions in
A′ of size at least |A||Σ|2. That means that an unobservable transition t appears
more than |Σ| times in A′. As, for any boxed pomset bi = [E−

i ∪ E+
i ,≤i] we

have b
|Σ|
i = b

|Σ|+1
i and b1 � b2 = b2 � b1, we can remove some occurrences of t to

build a shorter path ρ′ of size bounded by |o||A||Σ|2. Finally, we found ρ′ in A′,
and thus in A, such that |ρ|′ ≤ |o||A||Σ|2 and ρ′ is a solution. This concludes
the NP part.

Second, let us show that ECP is NP-hard. We provide a reduction from the
NP-complete problem ONE-IN-THREE-3SAT : given a 3-CNF formula φ, is
there a satisfying assignment to the variables such that each clause of φ gets
exactly one literal assigned true ? From a 3-CNF formula φ = C1 ∧ . . . ∧ Cn

over variables x1 . . . xm, we define a P-automaton A whose events are labeled by
Σ = {ai | 1 ≤ i ≤ n} ∪ {bj | 1 ≤ j ≤ m}. A has only one state, which is initial
and final, and has 2m transitions labeled by pxj and px̄j , for 1 ≤ j ≤ m.

Each pxj contains an event bj and an event ai for each clause Ci where variable
xj appears positively. Similarly, each px̄j contains an event bj and an event ai

for each clause Ci where variable xj appears negatively. Now, consider the lpo
o = (Eo, ∅) which contains exactly one event for each possible label, and no
causal ordering among these events, and a predicate ψ that returns false to any
entry in Σ2. Moreover, let us simply call eσ the event of Eo labeled by σ. Thus,
for any σ, σ′ in Σ, deciding not(ECP (Σ,A, o, eσ, eσ′)) is equivalent to knowing
if there exists l = (Eo,≤) ∈ �o�Σo,A such that eσ �≤ eσ′ . As all events of o are
independent, and as labeling is bijective, solving ECP for o means that there
exists a valuation which answers ONE-IN-THREE-3SAT. This concludes the
proof. 	

Event Correlation with Boxed Pomsets 173

Theorem 4. Let A be a P-automaton whose events are labeled by Σ and o =
(Eo,≤o) be a lpo labeled by Σo ⊆ Σ. If o has no auto-concurrency and Σ is
fixed, then for every (e, e′) ∈ E2

o , ECP (Σo,A, o, e, e′) is NLOGSPACE. More
precisely, ECP can be solved in O(|A||o||Σ||Σo|).

Proof. Let us show that the ECP problem can be translated into finding acces-
sible states of an automaton of size O(|A||o||Σ||Σo|). We will use lpos instead of
pomsets when we need to recall the identity of events, which is the case for ECP.
Of course, the operations and mappings defined for pomsets and boxed pomsets
extend to lpos and to boxed lpos.

To complete the proof, we need to define the notion of unfolding for boxes lpos.
The unfolding of a boxed lpo b, denoted by Ub, is a finite boxed lpo automaton,
i.e. an automaton labeled by boxed lpos. Ub = (S,→,B, s0, sf), where:

– S is the set of prefixes of B(l), i.e. the set of boxed lpos {b′ | ∃b′′, b = b′�b′′}.
Note that prefixes depend also on relation ψ used for composition;

– B is a set of boxed lpos that are used by the transition relation;
– s0 = εB is the initial state, and sf = b is the final state;

– s1
b′→ s2 iff s1 � b′ is an explanation of s2, i.e. if they have the same event

set and ≤s2⊆≤s1�b′ .

Fig. 7. Unfolding and synchronization

174 T. Gazagnaire and L. Hélouët

Note that for a boxed lpo in our unfolding, all labels in ports are not useful.
For instance, consider boxed lpo b5 in Figure 7: label d does not have to appear
in the ports of this lpo as it is not connected to an event of the inside box of b5.
Hence, we can define a smaller set of labels B for our unfolding by considering
only boxed lpo b whose ports are defined over labels that are connected to the
inside box of b.

Lemma 1. Let l be a lpo labeled by Σo. Then U(L(UB(l))) = �l�. If l has no
auto-concurrency then the number of states of Ul is bounded by |l||Σ||Σo|.

Proof. (⇒) If l′ ∈ U(L(UB(l))) then there exists b′ = b′1 � . . . � b′k such that
U(b′) = l′. Let us make an induction on k. First, let us assume that k = 1. Then,
as b′ is an explanation of B(l), U(b′) = l′ is an explanation of UB(l) = l (Prop.
1). Let us then have b′1 � . . . � b′k−1 an explanation of bk−1, the state reached
after reading b′1 . . . b′k−1. By definition of UB(l), bk−1 � b′k is an explanation of
bk. Let us remind that we manipulate only boxed lpos with minimal number
of events in ports. Thus Ebk−1 = Eb′1�...�b′

k−1
and ≤bk−1⊆≤b′1�...�b′

k−1
, and we

obtain that b′1 � . . . � b′k is an explanation of bk. (⇐) If l′ ∈ �l� then l′ is an
explanation of l and B(l′) is a possible transition in UB(l) from s0 to sf .

About the complexity statement : If we want to count the number of possible
prefix of a boxed lpo, the simplest way is to consider that each event in output
ports records a prefix of the boxed lpo. Moreover, if b has no auto-concurrency,
it suffices to record only one event for each observable label - corresponding to
the maximal observed event for this label - in order to record a prefix. 	

The product of a boxed lpo automaton A1 and a B-automaton A2, denoted by
A1 ×A2 is the boxed lpo automaton resulting on the cartesian product of states
of these automata and such that (s1, s2)

l→ (s′1, s
′
2) iff s1

l→ s′1 and s2
b→ s′2,

with l an instance of the boxed pomset b.

Lemma 2. Let A be a P-automaton whose events are labeled by Σ and l be a
lpo labeled by Σo ⊆ Σ. Then U(L(UB(l) × Mπ̄ΣoB(A))) = �l�Σo,A. If l has no
auto-concurrency then the number of states is bounded by |A||l||Σ||Σo|.

Proof. l′ ∈ U(L(UB(l) ×Mπ̄ΣoB(A))) is equivalent to l′ ∈ U(L(UB(l))) and l′ is
an instance of an element of U(L(Mπ̄Σo B(A))), using definition of ×. Moreover,
this is also equivalent to l′ ∈ �l� (Lemma 1) and l′ is an instance of an element
of πΣo(L(A)) (Theorem 2). This is also equivalent, by definition, to l′ ∈ �l�Σo,A.
Complexity comes from Lemma 1 and the definition of ×. 	

Corollary 1. Let A be a P-automaton whose events are labeled by Σ and o =
(Eo,≤o) be a lpo labeled by Σo ⊆ Σ.

Then ecpΣo,A,o = (Eo, (
⋂

(Eo,≤l)∈L

≤l)∗), where L = U(L(UB(l)×Mπ̄ΣoB(A))).

The constructive proof of Theorem 4 and its corollary immediately provide an
algorithm to find ecpΣo,A,o for a given observation o and a model A. The first
step is to compute Mπ̄ΣoB(A). The second step is to compute the product of the

Event Correlation with Boxed Pomsets 175

unfolding of B(o) with Mπ̄Σo B(A), and restrict this product to accessible states.
Each accepting path of the product generates an explanation for o, and ecpΣo,A,o

can then be obtained by intersecting the orders given by these explanations.
Figure 7 shows an example of synchronization UB(o)×Mπ̄Σo

(A2), where o is the
lpo of Figure 6-a, and A2 is the automaton of Figure 4-b. States of this product
are boxed lpos which are prefixes of B(o). Path ρ1 = s1

b4→ s2
b5→ s4 corresponds

to e1 (as Uα�(ρ1) = e1), path ρ2 = s1
b4→ s3

b5→ s5 corresponds to e2 and path
ρ2 = s1

b4→ s3
b4→ s6 corresponds to e3, where e1, e2, and e3 are the model-based

explanations of o given in Figure 6-c.
Theorem 4 explicitly rules out observations with autoconcurrency. This re-

striction is only due to complexity reasons, as considering autoconcurrency would
make our algorithm exponential in the size of the observation rather than in the
size of the observed labels. This should not be considered as a severe limita-
tion of the approach, as these requirements are naturally met in an observation
framework where each sensor produces different observed labels (for instance
by tagging an action name with a unique identity), and where local sequential
ordering on each sensor is not lost during communication to the log system.

5 Conclusion

We have shown how to perform event correlation from an observation with a par-
tial order model. This work opens two perspectives. The first one is to distribute
computations as proposed previously [8]. Indeed, we know that the complexity of
correlation is in O(|A||o||Σ||Σo|). We can define distributed monitoring architec-
tures, where local log systems observe only a subset of the network. Within this
kind of architecture, Σo is partitioned into subsets of observable actions. Event
correlation can be performed in parallel by each local log system with lower
complexity. The main challenge is then to combine the local results to obtain a
global view. The second perspective is to look at probabilistic models. So far,
we can only answer whether a causal relation among some events is sure or not.
It may be interesting to have a more qualitative answer, given as a probability.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 797–808. Springer, Heidelberg (2001)

2. Benveniste, A., Fabre, E., Jard, C., Haar, S., Haar, S.: Diagnosis of asynchronous
discrete event systems, a net unfolding approach. IEEE Transactions on Automatic
Control 48(5), 714–727 (2003)

3. Dousson, C., Thang, V.D.: Discovering chronicles with numerical time constraints
from alarm logs for monitoring dynamic systems. In: Proc. of IJCAI’99, pp.
620–626 (1999)

4. Fidge, C.: Logical time in distributed computing systems. IEEE Computer 24(8),
28–33 (1991)

176 T. Gazagnaire and L. Hélouët

5. Genest, B., Hélouët, L., Muscholl, A.: High-level message sequence charts projec-
tion. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp.
308–322. Springer, Heidelberg (2003)

6. Gischer, J.L.: The equational theory of pomsets. TCS 61(2-3), 199–224 (1988)
7. IETF Network Working Group. A simple network management protocol (snmp).

Technical report, IETF (1990)
8. Hélouët, L., Gazagnaire, T., Genest, B.: Diagnosis from scenarios. In: WODES’06

(2006)
9. ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC) (2004)

10. Jéron, T., Marchand, H., Pinchinat, S., Cordier, M.O.: Supervision patterns in
discrete event systems diagnosis. In: WODES’06 (2006)

11. Mattern, F.: Virtual time and global states of distributed systems. In: Workshop
on Parallel and Distributed Algorithms (1989)

12. Nygate, Y.A.: Event correlation using rule and object based techniques. In: Proc.
of the 4th Integrated network Management, pp. 278–289 (1995)

13. Pratt, V.: Modeling concurrency with partial orders. International Journal of Par-
allel Programming 15(1), 33–71 (1986)

14. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.C:
Failure diagnosis using discrete-event models. IEEE Transactions on Control Sys-
tems Technology 4(2), 105–124 (1996)

A Simple Positive Flows Computation

Algorithm for a Large Subclass of Colored Nets

S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

{evangeli,christophe.pajault,peyre}@cnam.fr

Abstract. Positive flows provide very useful informations that can be
used to perform efficient analysis of a model. Although algorithms com-
puting (a generative family of) positive flows in ordinary Petri nets are
well known, computing a generative family of positive flows in colored
net remains an open problem. We propose in this paper a pragmatic ap-
proach that allows us to define an algorithm that computes a generative
family of particular but useful positive flows in a large subclass of colored
nets: the simple well-formed nets.

1 Introduction

One of the principal reasons to use Petri nets to model distributed algorithms
is that one can combine structural techniques (that use only the structure of
the net) with model-checking techniques (that perform exhaustive simulations)
in order to analyze a net and demonstrate properties. Among structural tech-
niques, invariants computation can be viewed as the most fundamental one :
invariants give immediate indication on the behavior of the model (i.e. without
needing to “execute” it) ; invariants are needed to perform structural reductions
(like the implicit place reduction [1], [14], or efficient transitions agglomeration
[10,17]); places or transitions invariants can be used to define/classify kind of
Petri nets with simplified liveness conditions (e.g. flexible manufacturing sys-
tems) [13], and so on. Among invariants, it is well known that positive flows
(flows that use only positive weights) are the most useful ones and give accurate
information on the net. In ordinary Petri nets, invariants are computed with
the Gauss algorithm when no positive constraint is added or with the Farkas
algorithm when a generative family of positive flows is needed (both algorithms
are described in [4]).

However, in many cases one uses colored Petri nets for modeling algorithms.
Indeed, they allow a more concise description of a problem than ordinary Petri
nets. Furthermore, defining parameterized models permits to study a set of so-
lutions with a unique model. So, computing invariants in a colored net is an
interesting challenge. However, these calculus raise new problems : we have to
manipulate color mapping instead of integer values, models may be parameter-
ized and then algorithms must tackle with this additional difficulties. When deal-
ing with flows computation, two main approaches are used : generalizing Gauss

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 177–195, 2007.
c© IFIP International Federation for Information Processing 2007

178 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

algorithm to take into account color mapping (in particular with the use of the
notion of “generalized inverse”) [15], [20], [25], [7]; this first approach permits to
obtain a generative family (for the last citation) but requires to fix parameters
and computed flows are not easily usable. The second approach consists in re-
stricting color nets; this lead to different algorithms that compute parameterized
and useful flows in regular nets [16] or ordered and associative nets [8].

Nevertheless, only one algorithm is known today in the case of colored positive
flows computation [5], and this algorithm works only on very restricted models :
unary regular nets or unary predicate/transitions nets.

We propose in this paper an algorithm that computes particular, but useful,
positive flows in a high level model : the simple well-formed nets. This model is a
restriction of the general well-formed nets [3], but sufficient enough to model Ada
programs [2]. This paper is organized as follow : after some definitions we show, in
section 3, how we can take advantage of both syntactic restrictions used to define
nets and positive flows to obtain a particular “fractal” and “regular” equations
system. Then we propose an algorithm that computes a generative family of
simple positive flows (note that this family does not generate all positive flows).
At last we conclude and propose future possible extensions of this algorithm.

2 Definitions

2.1 Colored Petri Nets

Petri nets form a well known formalism used to express and to analyze concurrent
behaviours [21,23]. However, it is often difficult to model complex problems
because of the “low level” expression power provided by Petri nets. In practice,
one uses colored nets, that are an abbreviation of Petri nets. This abbreviation is
based on the idea to associate to the classical Petri net token a type (also called a
color) that gives it a high level semantic : instead saying “there are three tokens
in place p” one can say for instance “there are the token 1, the token 4 and
the token 13 in place p”. In this way, one can model complex synchronization
schemes involving data carried by processes.

Definition 1 (Multi-sets). A multi-set over a finite and non empty set C is
an application from C to IN. We denote by BagIN(C) (or Bag(C) for short)
the set of multi-sets over C and we represent a multi-set by the formal sum
a =
∑

y∈C a(y).y. If a and b are two multi-sets over C, then a + b is the multi-
set over C defined by a + b =

∑
y∈C(a(y) + b(y)).y and if λ is a natural, then

λ.a is the multi-set over C defined by λ.a =
∑

y∈C(λ.a(x)).x. One say that a is
greater or equal than b, denoted a ≥ b if and only if ∀y ∈ C, a(y) ≥ b(y).

Definition 2. A colored net is a 6-tuple CN = 〈P, T, C, G,W+,W−〉 with :

– P is the non empty and finite set of places
– T is the non empty and finite set of transitions (disjoint with P);
– C is the color mapping from P

⋃
T to ω where ω is a set including the finite

and non empty sets. An item of C(s) is called a color of s and C(s) denotes
the color domain of s.

A Simple Positive Flows Computation Algorithm 179

– G associates each transition t with a boolean application Gt on C(t) called
the guard of t.

– W+ (resp. W−) is the post (resp. pre) incidence mapping that associates to
each transition t and to each place p a color mapping from C(t) to Bag(C(p))
which defines the tokens that are needed, consumed or produced by the firing
of a transition (see def. 3). We note W = W+ − W− (note that W (t, p) is
a mapping from C(t) to BagZZ(C(p))).

We note ε = {•} the color domain reduced to the unique value • (the token);
this allows us to consider ordinary Petri nets as particular colored Petri nets
(the unique and common color domain is ε).

Definition 3 (Marking and Firing rule). A marking is a mapping that as-
sociates to each place p a value in Bag(C(p)). We note m0 the initial marking
of a net.

A transition t is enabled for an instance ct ∈ C(t) from a marking m (denoted
by m[t, ct〉) if

Gt(ct) = True and ∀p ∈ P,m(p) ≥ W−(t, p)(ct)

The firing of t for ct ∈ C(t) from m leads to the marking m′ (m[t, ct〉m′) defined
by

∀p ∈ P,m′(p) = m(p) + W+(t, p)(ct) − W−(t, p)(ct)

A marking m′ is reachable from a marking m if there exists a sequence t1, c1, . . . ,
tk, ck such that m[t1, c1〉m1, m1[t2, c2〉m2, . . . , mk−1[tk, ck〉m′. We denote by
Acc(CN,m0) the set of all reachable markings from m0.

Consider the following colored net that models a solution to the dining philoso-
phers paradigm. In this model, X denotes the identity mapping over the finite set
D and !X denotes the “successor” mapping over D (i.e. the mapping that asso-
ciates to an item x its successor in D that is supposed to be ordered). Semantics
of this model is quite simple : a philosopher x who wants to eat must first take
a chair by firing transition takeChair. Then it has to take in sequence its fork
(transition takeL) and the fork of its right neightbour (transition takeR) to ac-
cess state (place) Eating; the chair is released as soon as a philosopher gets its
two forks (transition takeR). An eating philosopher can go back to the Thinking
state by firing in sequence transitions giveL, giveR and end. Possible concur-
rent defects highlighted by this paradigm are the deadlock and the starvation
problems.

Many analysis techniques have been adapted to colored nets, and in particular,
automatic places invariants computation [19,24,20,25,26,16,7,6]. Indeed, places
invariants give rich informations on the behavior of the model without needing
its execution; their definition and their computation involve only the structure of
the model. Within different places invariants, positive flows are those that give
the most usable information; this can be explained by the fact that the positive
constraint added on weights simplify interpretation of these invariants. We recall
now the definition of these places invariants.

180 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

D = {1..N}

Forks : D<!X>

< X >

< X >

< X >

< X >

< X >

< X >

< X > < X >
Att1 : D

Eating : D

Att2 : D

Chairs : {.}

TakeChairThinking : D

N−1

D.All

D.All

Ending2 : D

< X >

giveL

< X > < X >

Ending1 : DgiveR

end

< X >

< X >

<!X>

< X >

takeL

takeR

Fig. 1. A colored net for the dining philosophers paradigm

Definition 4 (Colored positive flow). Let Cinv be a color domain. A positive
flow F , with color domain Cinv (C(F) = Cinv), is a vector over P , noted as the
formal sum F =

∑
p∈P Fp.p, such that ∀p ∈ P,Fp is a mapping from Bag(C(p))

to Bag(Cinv) and such that ∀t ∈ T ,
∑

p∈P Fp ◦ W (t, p) = 0.1

This definition implies that for any positive flow F , and for any reachable mark-
ing m we have that

∑
p∈P Fp(m(p)) =

∑
p∈P Fp(m0(p)). A flow can then be

interpreted as an equations set linking the marking of a subset of places with
the original marking of these places :

∀m ∈ Acc(CN,m0), ∀c ∈ C(F),
∑
p∈P

∑
cp∈C(p)

[Fp(cp)(c)].m(p)(cp) = cst(∈ IN)

Consider again the model of figure 1. In this net there are at least three
positive flows on the color domain D:

– F1 = 〈X〉.Thinking + 〈X〉.Att1 + 〈X〉.Att2 + 〈X〉.Eating+ 〈X〉.Ending1 +
〈X〉.Ending2

– F2 = 〈!X〉.Forks + 〈!X〉.Att2 + 〈!X〉.Eating + 〈X〉.Eating + 〈X〉.Ending1
– F3 = 〈.〉.Att1 + 〈.〉.Att2 + 〈1〉Chairs

where 〈X〉 denotes the identity mapping over Bag(D), 〈!X〉 denotes the successor
mapping over Bag(D), 〈1〉 denotes the identity mapping over ε, and 〈.〉 the
projection from D to epsilon defined by ∀d ∈ D, .(d) = •. Note that by sake of
simplicity we often do not note 〈1〉.
1 0 denotes here the null mapping from C(t) to Bag(C(F)).

A Simple Positive Flows Computation Algorithm 181

The first one characterizes the sequential structure of philosophers that can
be in one of the six states Thinking, Att1, Att2, Eating, Ending1, Ending2.
Indeed, its interpretation is 2 : ∀m ∈ Acc(CN,m0), ∀x ∈ D,m(Thinking)(x) +
m(Att1)(x)+m(Att2)(x)+m(Eating)(x)+m(Ending1)(x)+m(Ending2)(x) =
1. The second one, F2, tells us that, given x ∈ D, the fork !x is either free (place
Forks is marked with !x) or is either owned by philosopher !x that is in state
Eating or Att2 or is used by philosopher x which is in state Eating or Ending.

At last, F3 highlights that chairs are either free (place Chairs is marked) or
are shared by philosophers that are in state Att1 or Att2. Its interpretation is
∀m ∈ Acc(CN,m0),

∑
x∈C m(Att1)(x)+

∑
x∈C m(Att2)(x)+m(Chairs) = N−1

and, combined with F2, ensures that place Forks cannot become empty and
then, that no deadlock is possible.

As we can note, positive flows give precious information of the behavior of a
model using only its structure.

However, computing positive flows is a difficult task. Up to now, only one
algorithm exists [5] and is restricted to regular net (a sub-class of colored nets)
with an unique color domain. A possible explanation is that most researches
focus on a generative family computation (a family that generate all positive
invariants of the net). This leads to very complex equations systems even if
algorithms are defined on strong restriction of colored nets. We do not propose
here to focus on a generative family but on useful family of positive flows. For
doing this we impose a syntactic restriction on positive flows definition and we
associate this restriction to a similar restriction on colored net definition. We
call this kind of net “Simple Well-Formed nets” and we designed our positive
flow as “simple positive flows”.

2.2 Simple Well-Formed Colored Nets and Simple Positive Flows

Modeling and verification are two strongly linked activities. A formalism has
to define a good compromise between the simplicity provided for modeling and
the richness of possible automatic tools or techniques that can be used to verify
properties on the model.

In the Petri net domain, general formalisms have been proposed (like colored
nets) but most of theoretical analysis results have been obtained on restrictions
of general models. One can cite the regular nets [16], the ordered nets [8], and
a formalism with a same modeling power as colored nets but with syntactic
restrictions, the well-formed nets [3].

We propose here a slight restriction of this last formalism that we named sim-
ple well-formed nets (or SWF nets for short). This formalism remains sufficient
for modeling large and complex problems; in particular we use it to model a
large subset of Ada programs in order to validate them (see for instance models
proposed in [12] or in [11]). As for the original model, we define our formalism
by restricting the possible color mapping and the color domain construction.

Definition 5 (Basic color mapping). Let C be a finite ordered set. The ba-
sic mapping are the identity, denoted by XC , the diffusion (also called global
2 Remember that 〈X〉(c)(c′) = 1 if c = c′ and 〈X〉(c)(c′) = 0 otherwise.

182 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

synchronization), denoted by AllC, the successor, denoted by !XC and all con-
stant mappings, λc

C , c ∈ C. They are defined from C to Bag(C) by : ∀x ∈ C,
XC(x) = x, AllC(x) =

∑
c∈C c, !XC(x) = successor of x in C and λc

C(x) = c.

Remark 1. It is a common usage to use other literals, X,Y, Z, Ph, . . ., to denote
the identity or successor mapping, and when the context is clear, one often omits
the domain on which operates the mapping (X instead of XC). All classes are
considered to be ordered (in a circular way). So each item has a unique successor
in the class (the successor of the last item is the first one). All these mappings
can be extended to mapping from Bag(C) to Bag(C). When C = ε all these
mappings coincide.

Definition 6 (Simple color mappings). Let C be a finite ordered set. A sim-
ple color mapping on C is a mapping from C to Bag(C) if either it’s a constant
mapping or if it can be written as a additive composition α.XC +β.AllC +γ.!XC

with α, β, γ integer values such that β ≥ 0, β + α ≥ 0 and β + γ ≥ 0 (and
β + α + γ ≥ 0 in the very case where |C| = 1).

Remark 2. The constraints on α, β and γ ensure that a color mapping defines a
positive value for each color of C (and then belongs to Bag(C)). When C = ε
all simple color mappings are reduced to a constant mapping (an integer value).

Definition 7 (Simple color functions). Let C = C1 × C2 × . . . × Ck be a
finite product of finite and non empty sets. A mapping f from C To Bag(C)
is a simple color function if it can be written f = 〈f1, f2, . . . , fk〉 with ∀i,
fi a simple color mapping on Ci or an arbitrary unitary3 application from
Ci to Bag(Ci). If 〈c1, . . . , ck〉 ∈ C then f(c) = 〈f1, f2, . . . , fk〉(〈c1, . . . , ck〉)
= 〈f1(c1), f2(c2), . . . , fk(ck)〉.

When useful, we will note 〈f1, f2, . . . , fk〉 as f1.〈f2, . . . , fk〉 and extend by
linearity this notation to weighted sums of tuples.

We are in position to define nets we use to analyze Ada programs in our tool
Quasar.

Definition 8 (SimpleWell-Formednets).Acolored net 〈P, T, C, G,W−,W+〉
is a simple well-formed net if ∀p ∈ P , ∀t ∈ T ,

– W+(t, p) �= 0 or W−(t, p) �= 0 implies that C(t) = C(p) × C′
p (C(t) equals or

includes C(p));
– W+(t, p) and W−(t, p) are a composition of a simple color function over

C(p) with a projection from C(t) to C(p) (when color domain of t is ”larger”
than the color domain of p);

– if W+(t, p) uses a constant mapping on a class Ci then an arc between p and
an other transition cannot use the mapping AllCi.

We say that the net is homogeneous if all color domains are identical (i.e. ∃C1,
. . ., CK such that ∀s ∈ P ∪ T , C(s) = C1 × . . . × Ck), if all guards are always
3 fi is an unitary application if ∀c ∈ Ci, |fi(c)| = 1.

A Simple Positive Flows Computation Algorithm 183

evaluated to True (there is no guards) and if all color mappings are only built
with X, All and !X basic mappings (no constants and no arbitrary mappings
must appear on arcs).

Remark 3. The third point is used to ensure that we can always homogenize a
simple well-formed net; i.e. construct an equivalent model (or that perform a
weak simulation of the original one) but with a unique color domain for each
place and each transition (see subsection 3.5).

SWF nets are a restriction of well-formed nets [3]. In particular, we do not allow
guarded functions or additive composition of different instances of the same color
class (e.g. 〈X〉+ 〈Y 〉 is forbidden). However, the expressiveness provided by this
definition remains sufficient for modeling almost all problems. For instance, as
said previously, we use this formalism to model precisely the behavioral semantics
of Ada programs (with possible dynamics task creation) in order to analyze them.

We give now the definition of positive flows we will compute on SWF nets.
This definition restricts the “functional” structure of the flow to a regular one.

Definition 9 (Simple positive flows). A positive flow F on the color domain
D is said to be a simple positive flow if ∀p ∈ P , C(p) = D×C′

p (C(p) “includes”
D), Fp is a composition of a simple color function over C(p) using no constant
with a projection from D to C(p).

These restrictions are not very severe; indeed, the third last flows, presented with
model of figure 1 are simple positive flows. Furthermore, this definition provides
two advantages :

1. Their definition uses only simple color mapping, and then, these positive
flows can be very easily interpreted or used by specific tools (like structural
reductions): they can characterize critical section (like F3 in the previous
example), they can also characterize process structure (F1) or the way re-
sources are shared (F2);

2. They can be computed in a systematic way as we will see in the next section.

For more clarity, we use in positive flow notation a dot . to highlight the
projection from C(p) to the color domain of the flow. For instance, if the color
domain of a flow is D = C1 × C3 and the color domain of a place involved
in the flow is C = C1 × C2 × C1 × C3, we will note 〈., ., X ′, Z〉 to denote the
composition of the mapping 〈X,Y,X ′, Z〉 with the projection Π from C to D
defined by Π(x, y, x′, z) = (x′, z).

Given an homogeneous SWF net we can construct from its incidence matrix W
the integer matrix Wn1,...,nk , indexed by (T×C1×. . .×Ck) × (P ×C1×. . .×Ck)
and defined by :

Wn1,...,nk(t, c′1, . . . , c
′
k)(p, c1, . . . , ck) = W (t, p)(〈c′1, . . . , c′k〉)(〈c1, . . . , ck〉)

This construction consists only in “unfolding” color mapping that constitutes
coefficients of the matrix W . In the same way, it is possible to “unfold” a positive

184 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

flow F by building the set of integer vectors defined by all possible interpretations
of the colored flow. Indeed, given a positive flow F and an interpretation cinv we
can define the integer vector −→

F cinv indexed by (C1 × . . .×Ck × P) and defined
by : −→

F cinv(c1, . . . , ck, p) = Fp(〈c1, . . . , ck〉)(cinv)

Using these notations we have by definition:

Proposition 1. F is a positive flow if and only if ∀cinv ∈ C, Wn1,...,nk .
−→
F cinv =0.

So, computing positive flows of a homogeneous colored net consists in solving the
system Wn1,...,nk .

−→
F cinv = 0 with, for instance, the Farkas algorithm described

in [4]. However, this raises two main drawbacks :

1. this calculation requires to fix the parameters which is then equivalent to
unfold the net and to compute positive flows in the unfolded net which is a
very inefficient process;

2. as computed flows are integer vectors, it is very difficult to ”recolor” them
in the general case and leads to useless invariants.

We will prove that it is possible to solve this system in a parametric way
without unfolding the net. For doing that we first prove that incidence matrix
can be reordered in a “fractal” form.

3 Simple Positive Flows Computation for SWF Nets

In this section we propose to show how to compute a generative family of simple
positive flows in a SWF net. Note that the computed set generates all simple
positive flows but not all positive flows.

For this purpose, we first suppose that every considered net is homogeneous
(we provide, in the last subsection, the mechanism used to transform a simple
well-formed net into an homogeneous one). We show then that the constraints
on SWF nets mappings and on simple positive flows definitions lead to a system
with a “fractal” form which can be reduce to a set of nonparametric equations.

We adopt the following notations :

– C = C1 × C2 × . . . × Ck denotes the common color domain of places and
transitions;

– n1 = |C1|, n2 = |C2|, . . ., nk = |Ck|,
– Cj =

{
ci
j

}
i=1..nj

;
– ∀p ∈ P, ∀t ∈ T , W (t, p) = 〈w1(t, p), . . . , wk(t, p)〉 with for all i in [1..k],

wi(t, p) = ai(t, p).XCi + bi(t, p).AllCi + di(t, p).!XCi

– we compute positive flow on domain C; so we fix Cinv = C.
– if F =

∑
p Fp.p is a simple positive flow, we note Fp = 〈fp

1 , . . . , fp
k 〉 and

fp
i = αi.Xi + βi.Alli + γi.(!Xi);

– we note E = (lQ+)
P
;

A Simple Positive Flows Computation Algorithm 185

3.1 Reordering Equations

The matrix of an homogeneous SWF net can be defined by a recursive con-
struction, highlighting a ”fractal” form that can be used to define an efficient
algorithm for simple positive flow computation. In this construction, transitions
are organized into lines (corresponding to the equations of the system) and places
into columns (corresponding to the variables of the system). This construction
is based on the notion of block matrix that we recall now.

Definition 10 (Square block matrix). A matrix A = (ai,j) in INK.n×K.m is
an integer square block matrix if each ai,j is a m× n integer matrix or a square
block matrix (in which case, n = k′.n′ and m = k′.m′). We note A(i, j) = ai,j

the item on ith line and jth column.

Definition 11 (Matrix fractal form). A block matrix W =(wi,j) in INK.n×K.m

has a ”Simple Well Formed Net Fractal form” (or has a fractal form for short)
if there exist three matrices A,B,D with the same dimension such that :

1. matrices A,B,D are either three integer matrices or three block matrices
with also a fractal form;

2. items of W satisfy :

∀i, j ∈ 1..K,wi,j =

⎧⎨⎩A + B if i=j
D + B if j=i+1 modulo n
B in other cases

For instance, if A,B,D are three integer matrices with the same dimension then
the following n × n matrix has a fractal form.

W =

⎡⎢⎢⎢⎢⎢⎣
(A + B) (D + B) B . . . B

B (A + B) (D + B) . . . B

.
. . .

.
B . . . B (A + B) (D + B)

(D + B) B . . . B (A + B)

⎤⎥⎥⎥⎥⎥⎦
Consider now an homogeneous SWF net (W is its incidence matrix). Remem-

ber that k denotes the number of classes of the net and then, the number of
different parameters of the system and that W (t, p) = 〈w1(t, p), . . . , wk(t, p)〉
with for all i in [1..k], wi(t, p) = ai(t, p).XCi + bi(t, p).AllCi + di(t, p).!XCi .

Definition 12 (Extracting a fractal form of a homogeneous SWF net)
Given v ∈ [1..k + 1], and three sets IA, IB , ID ⊆ {n1, n2, . . . , nk} we define the
integer or block matrix W IA,IB ,ID

v recursively by :

– if v = k + 1 then W IA,IB ,ID

k+1 = (wt,p) is the T × P integer matrix

wt,p =
∏

i∈IA

ai(t, p).
∏

j∈ID

dj(t, p).
∏

l∈IB

bl(t, p)4

4 In this product we use the convention that a product on the empty set equals 1
(
∏

i∈∅ f(i) = 1).

186 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

– if v ≤ k, then W IA,IB ,ID
v = (wi,j) is the nv × nv square block matrix defined

by

wi,j =

⎡⎢⎣W
IA∪{v},IB ,ID

v+1 + W
IA,IB∪{v},ID

v+1 if i=j
W

IA,IB ,ID∪{v}
v+1 + W

IA,IB∪{v},ID

v+1 if j=i+1 modulo nv

W
IA,IB∪{v},ID

v+1 in other cases

We note W ′ the square block matrix W ∅,∅,∅
1 and when there is no ambiguity,

we note A = W
{1},∅,∅
2 , B = W

∅,{1},∅
2 and D = W

∅,∅,{1}
2 .

Proposition 2. We have the following results :

1. The two matrices W and W ′ are equivalent for defining a SWF homogenous
net; i.e. ∀p ∈ P, ∀t ∈ T , ∀c = 〈c1, . . . , ck〉 ∈ C, ∀c′ = 〈c′1, . . . , c′k〉 ∈ C, we
have W ′(c1, c

′1)(c2, c
′2) . . . (ck, c′k)(t, p) = W (t, p)(c′)(c).

2. The matrix W ′ has a fractal form (as soon as k ≥ 1).

Proof. Point 2 is a direct consequence of the definition of W ∅,∅,∅
1 . For proving point

1, it sufficient to note that W (t, p)(〈c1, . . . , ck〉) = 〈w1(t, p)(c1), . . . , wk(t, p)(ck)〉
and that wi(t, p)(ci)(c′i) = bi(t, p) + δci,c′i .ai(t, p) + δci,!c′i.di(t, p) where δ is the
Kronecker symbol defined by δci,c′i = 0 if ci �= c′i and δci,ci = 1; it comes that

W (t, p)(〈c1, . . . , ck〉)(〈c′1, . . . , c′k〉)=Πi=1..k(bi(t, p)+δci,c′i.ai(t, p)+ δci,!c′i.di(t, p))

Now remark that when cv = c′v we have added v to the set IA, when cv =!c′v we
have added v to the set ID and that we use these sets to compute the integer
values of the latest matrices and we obtain the result. �

If we consider an homogeneous SWF net with two classes (two parameters), the
incidence matrix can be written :

W =

⎡⎢⎢⎢⎢⎢⎣
(A + B) (D + B) B . . . B

B (A + B) (D + B) . . . B

.
. . .

.
B . . . B (A + B) (D + B)

(D + B) B . . . B (A + B)

⎤⎥⎥⎥⎥⎥⎦
with

A = W
{1},∅,∅
2 =

⎡⎢⎢⎢⎢⎢⎣
(AA + AB) (AD + AB) AB . . . AB

AB (AA + AB) (AD + AB) . . . AB

.
. . .

.
AB . . . AB (AA + AB) (AD + AB)

(AD + AB) AB . . . AB (AA + AB)

⎤⎥⎥⎥⎥⎥⎦

B = W
∅,{1},∅
2 =

⎡⎢⎢⎢⎢⎢⎣
(BA + BB) (BD + BB) BB . . . BB

BB (BA + BB) (BD + BB) . . . BB

.
. . .

.
BB . . . BB (BA + BB) (BD + BB)

(BD + BB) BB . . . BB (BA + BB)

⎤⎥⎥⎥⎥⎥⎦

D = W
∅,∅,{1}
2 =

⎡⎢⎢⎢⎢⎢⎣
(DA + DB) (DD + DB) DB . . . DB

DB (DA + DB) (DD + DB) . . . DB

.
. . .

.
DB . . . DB (DA + DB) (DD + DB)

(DD + DB) DB . . . DB (DA + DB)

⎤⎥⎥⎥⎥⎥⎦

A Simple Positive Flows Computation Algorithm 187

and with

– AA(t, p) = a1(t, p).a2(t, p), AB(t, p) = a1(t, p).b2(t, p), AD(t, p) = a1(t, p).d2(t, p)

– BA(t, p) = b1(t, p).a2(t, p), BB(t, p) = b1(t, p).b2(t, p), BD(t, p) = b1(t, p).d2(t, p)

– DA(t, p) = d1(t, p).a2(t, p), DB(t, p) = d1(t, p).b2(t, p), DD(t, p) = d1(t, p).d2(t, p)

3.2 Reordering Solutions and Simplifying Equations

First, note that any simple positive flow F can be written in a unique way as a
sum F<> = 〈X1, X2, . . . , Xk〉f1 + 〈X1, X2, . . . , !Xk〉f2 + 〈X1, X2, . . . , Allk〉f3 +
. . . + 〈All1, All2, . . . , Allk〉f3k with fi integer vectors over P .

Second, remark that the reorganization performed on the incidence matrix can
also be applied to the solutions of the studied system (and we need to do it).

Indeed, a positive flow F (in a functional form) defines for each value cinv ∈ C

a developed vector −→
F cinv in En1×...×nk . Remark also that this vector can be

viewed as a vector of (En2×...×nk)n1 i.e. a vector of size n1 with each component
in En2×...×nk .

−→
F cinv =

⎡⎢⎢⎣
−−→
F [1]cinv

...−−−→
F [n1]cinv

⎤⎥⎥⎦ with ∀i ∈ 1..n1,
−−→
F [i]cinv

(c2, . . . , ck, p) =
−→
F cinv (ci

1, c2, . . . , ck, p)

As we restrict positive flow computation to simple positive flow computation
we can use the particular form of such vector and write them in a ”parametric”
form.

Proposition 3. Given a simple positive flow F and a color interpretation cinv,
then −→

F cinv has a unique decomposition :

−→
F cinv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

FX

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0

F!X

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAll

...
FAll

FAll

FAll

...
FAll

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where FX , F!X and FAll are three En2×...×nk vectors depending on the value of
{αp

i }p for FX , of {γp
i }p for F!X and of {αp

i , γ
p
i , βp

i }p for FAll, and such that if,

cinv = 〈ci
1, c2, . . . , ck〉, then FX is on the ith row and F!X is on the (i + 1)th row.

Proof. Let cinv = 〈c′i1 , c′2, . . . , c
′
k〉 and j, j′ ∈ 1..n1 both distinct of i and i + 1.

Suppose that −→
V is the vector defined by −→

V =
−−→
F [j]cinv

− −−→
F [j′]cinv

. We have

∀p, c2, . . . , ck, −→V (p, c2, . . . , ck) = −→
F cinv(p, cj

1, c2, . . . , ck)−−→
F cinv(p, cj′

1 , c2, . . . , ck).
So, −→V (p, c2, . . . , ck) = Fp(〈cj

1, . . . , ck〉)(cinv)−Fp(〈cj′
1 , . . . , ck〉)(cinv) that can

be written 〈fp
1 (cj

1, c
i
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c

′k)〉 − fp
1 (cj′

1 , ci
1), f

p
2 (c2, c

′2), . . . ,

188 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

fp
k (ck, c

′k). As j and j′ are both distinct of i and i+1 it comes that fp
1 (cj

1, c
i
1)−

fp
1 (cj′

1 , ci
1) = 0 and then −→

V = −→0 . We note FAll the vector
−−→
F [j]cinv

.
Let then −→

VX the vector defined by −→
VX =

−−→
F [i]cinv

−−−→
F [j]cinv

. Using a same argu-
mentation it comes that −→VX(p, c2, . . . , ck)=〈fp

1 (ci
1, c

i
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c

′k)〉
− 〈fp

1 (cj
1, c

i
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c

′k)〉. As fp
1 (ci

1, c
i
1) − fp

1 (cj
1, c

i
1) = αp

i we can
note FX = VX . We can proceed also to the same construction for defining in an
unique way F!X = V!X . �

Now, if we combine the regular fractal form of a SWF homogeneous net with
the particular form of simple positive flows, we can simplify the system that has
to be solved.

Proposition 4. Using previous notations we have that Wn1,...,nk
.
−→
F cinv = 0 iff :

B.FAll = A.F!X = D.FX = A.FX + D.F!X = B.(FX + F!X) + (A + D).FAll = 0

Proof. The system can be written

⎡⎢⎢⎢⎢⎢⎣
(A + B) (D + B) B . . . B

B (A + B) (D + B) . . . B

.
. . .

.
B . . . B (A + B) (D + B)

(D + B) B . . . B (A + B)

⎤⎥⎥⎥⎥⎥⎦.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAll

...
FAll

FX + FAll

F!X + FAll

...
FAll

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Since simple positive flows are defined only with integer vectors (they don’t use
n1 as coefficient) and since a simple positive flow defines solutions for any value
of n1, it comes that B.FAll = 0. If we develop now equations (and using the fact
that B.FAll = 0), we obtain only four distinct equations :

– (A + D).FAll + B.(FX + F!X) = 0;
– (A + B).FX + (B + D).F!X + (A + D).FAll = 0;
– B.FX + (A + B).F!X + (A + D).FAll = 0;
– (B + D).FX + B.F!X + (A + D).FAll = 0.

By subtracting the first one to the others we obtain the result. Now, if FX , FAll

and F!X fulfill the previous equation it is clear that the vector −→
F cinv is solution

of −→F cinv = 0 (whatever the positive value of n1 is). �

3.3 Computing Simple Positive Flow in the Homogenous Case

We are now in position to propose an algorithm for computing simple positive
flow for an homogeneous SWF net. For doing that we need to define two matrices
operators : the first one, the ”stacking” operator define how to stack matrices of
the same dimension. The second one, the ”juxtaposition” operator, define how
to put side by side matrices of the same dimension. These two operators differ
from classical ones in the sense that they keep the fractal structure of matrices
when stacking or juxtaposing them.

A Simple Positive Flows Computation Algorithm 189

Definition 13 (Stacking and juxtaposing matrices). Let W 1 =
[w1

i,j]i∈[1..n],j∈[1..m], . . ., W q = [wq
i,j]i∈[1..n],j∈[1..m] q matrices.

1. If W 1, . . . ,W q are all integer matrices then
– the stacking of W 1, . . . ,W q, noted

[
W 1/ . . . /W q

]
, is the matrix

[si,j]i∈[1..q.n],j∈[1..m] (m columns and q.n lines) with s(q.i)−r,j = wq−r
i,j ,

r ∈ 0..q − 1.
– the juxtaposition of W 1, . . . ,W q, noted

[
W 1| . . . |W q

]
, is the matrix

[si,j]i∈[1..n],j∈[1..q.m] (n lines and q.m columns) with si,(q.j)−r = wq−r
i,j ,

r ∈ 0..q − 1.
2. If W 1, . . . ,W q are all block matrices (their items are others matrices) then

– the stacking of W 1, . . . ,W q, noted
[
W 1/ . . . /W q

]
, is the matrix

[si,j]i,j∈[1..n] recursively defined by si,j =
[
w1

i,j/ . . . /wq
i,j

]
– the juxtaposition of W 1, . . . ,W q, noted

[
W 1| . . . |W q

]
, is the matrix

[si,j]i,j∈[1..n] recursively defined by si,j =
[
w1

i,j | . . . |w
q
i,j

]
Remark 4. As a vector can be seen as a single column matrix, these two operators
can also be applied to vectors.

Proposition 5. If W 1, . . . ,W q are fractal matrices of the same dimension then[
W 1/ . . . /W q

]
and
[
W 1| . . . |W q

]
are also fractal matrices.

Using these operators, we can rewrite previous system.

Proposition 6. Using previous notations, we have that Wn1,...,nk
.
−→
F cinv = 0

iff :[
[0|0|B] / [0|A|0] / [D|0|0] / [A|D|0] / [B|B|A + D]

]
.
[
FX/ F!X/ FAll

]
= 0

Proof. A direct consequence of the operators definition. �

We propose now an algorithm that computes a generative family of simple posi-
tive flows. Input of this algorithm is either an integer matrix and a set Parameters
reduced to the empty set (no parameterized system) or a fractal block matrix
with a set Parameters compatible with W (the size of W has the size n1 × n1

and each items is either an integer matrix or a fractal one with the size n2 × n2

and so on). The output is either a set of integer vectors (when Parameters is
reduced to the empty set) or a set of formal sums F<> = 〈X1, X2, . . . , Xk〉f1 +
〈X1, X2, . . . , !Xk〉f2 + 〈X1, X2, . . . , Allk〉f3 + . . . + 〈All1, All2, . . . , Allk〉f3k with
fi integer vectors over P that generate simple positive flows.

Algorithm 1: Simple Positive Solutions(W, Parameters = {n1, . . . , nk})

If (Parameters = ∅) Then
+ return {X |W.X = 0} – integer vectors computed with the Farkas algo-

rithm
Else

190 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

+ Construct the fractal matrix W ′ defined by5

W ′ =
[
[0|0|B] / [0|A|0] / [D|0|0] / [A|D|0] / [B|B|A + D]

]
+ Compute the set SF of solutions of the system W ′.

[
FX/ F!X/ FAll

]
=

0. with this algorithm : SF := Simple Positive Flows(W’,{n2, . . . , nk})6

+ Return the set of formal sums{
F = XC1 .FX + AllC1 .FAll+!XC1 .F!X ,

[
FX/ F!X/ FAll

]
∈ SF

}
End if;

Proposition 7. The set computed by the previous algorithm defines a generative
family of simple positive flows (of a SWF net).

Proof. By recurrence on the set Parameters :

1. if Parameters = ∅ then the set computed is a generative family since we use
the Farkas algorithm;

2. Suppose that given any fractal matrix W ′ and a compatible set {n2, . . . , nk}
the previous algorithm computes a generative family of simple positive flows.
(a) formal sums computed by the algorithm define simple positive flows of

net defined by W . Indeed, recurrence hypothesis combined with propo-
sition 6 ensure that we effectively compute simple positive flows.

(b) the set is generative. Indeed, let F0 be a simple positive flow. Using
proposition 3, any interpretation −→

F0cinv of F0 can be written with F0X ,
F0All and F0!X as defined in this proposition. Using the proposition 6,
we obtain that W ′.

[
F0X/ F0!X/ F0All

]
= 0. By recurrence hypothesis,

as we compute a generative family of solutions of W ′.
[
FX/ F!X/ FAll

]
=

0 then
[
F0X/ F0!X/ F0All

]
is generated by this set and then all in-

terpretation of F0 is generated by the set computed. So, formal sums
computed by the previous algorithm generate all simple positive flows of
the SWF net defining by the fractal matrix W . �

If we note KP×T the complexity of the Farkas algorithm for a net with P places
and T transitions, then the complexity of the previous algorithm is K3k.P×5k.T

with k the number of classes of the net. However, as matrices built by the algo-
rithm are very sparce, first results we obtained seem to prove that the algorithm
behaves as its complexity was 2k.KP×T which is a good complexity since, even
for very complex models, k remains lower than 5.

3.4 Dealing with Non Homogeneous SWF Nets

Suppose now that the net is not homogeneous. In order to use previous algorithm,
we have to homogenize the net. Two different cases have to be considered :
5 As previously, we note A, B and D the blocks of the fractal matrix W .
6 If k < 2, then {n2, . . . , nk} = ∅.

A Simple Positive Flows Computation Algorithm 191

1) a transition has a color domain larger than its adjacent places (the contrary
is not possible due to the definition of SWF nets); 2) a color mapping use a
constant value or an arbitrary mapping. In order to make homogeneous the
studied net we proceed in two steps :

1. As soon as a constant mapping (of a class C) or an arbitrary mapping
appears on an arc valuation, we replace all mappings on this class by the
mapping AllC ; this replacement leads to a synchronization loosening and
then the obtained net makes a weak simulation of the original one. So, all
computed flows in this net are also flows of the original one 7. Furthermore,
as we forbid the mixing of constant and of the mapping AllC in the simple
well-formed net definition, we have not to fix the parameter size of C (which
would be necessary if we need to homogenize an arc with mapping AllC since
it would be replaced by |C|.AllC).

2. Compute the lowest common multiple (Clcm) of color domain (by extending
classical multiplication and division to product of classes) and extend color
domain of each place (and of each transition) such that their color domain
equals Clcm. Modify also accordingly the original marking. For instance,
the lcm of C1 × C1 × C2, C1 × C2 × C3 and C3 × C3 is C1 × C1 × C2 ×
C3 × C3. Suppress in each flow computed the additive color part. As these
transformations do not modify the behavior of the model it is clear that
computed positive flows by this manner are those of the original model.

For instance, consider the simple well-formed net depicted in Figure 2 that
models an atomic assignment Free := f(Id, X) where f is an arbitry Ada
boolean function and where places Write models a read-write lock.

< 0 > <X>
Write : C_Int Free : C_Bool

<id>

<True><0>
<id>

<1>
V.Call : C_Id

V.Return : C_Id < f(Id, X) >

Fig. 2. A simple net

The first step (constant and arbitrary mapping homogenization) produces the
model depicted in the left of Figure 3.

The lowest common multiple color domain is C Id × C Int × C Bool. After
homogenization of the net we obtain the model depicted in the right of Figure 3.

On can remark that information concerning color domainC Bool have been for-
gotten by the homogenization process (and that the model is quite less readable).

Once homogenization is done, one can compute positive flow : for instance
the sum 〈X,All, All〉.(V.Call + V.Return) defines a simple positive flow of the
7 It is possible to treat cleverly constant mapping.

192 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

C = C_Id x C_Int x C_Bool

Free : CWrite : C
<All, All, All>

<id, All, All>

<All, All, All>

<All, All, All>
<All, All, All>

<id, All, All>

<All, All, All>

<1, All, All>
V.Call : C

V.Return : C

<All> <All>

<All>

Write : C_Int Free : C_Bool

<id>

<All>
<id>

<1>

<All>

V.Call : C_Id

V.Return : C_Id

Fig. 3. The previous net homogenized (step 1 and 2)

latest model. In order to obtain positive flows of the original model it’s suffi-
cient to suppress carefully color part added for homogenization : for the previous
invariant, we obtain the ”correct” positive flow 〈X〉.(V.Call + V.Return).

3.5 Example

Consider again the net of figure 1. Its incidence matrix after homogenization is:

W =

⎛⎜⎜⎜⎜⎜⎝

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs −〈X〉 〈X〉 0 0 0 0 0 −〈All〉
takeL 0 −〈X〉 〈X〉 0 0 0 −〈X〉 0
takeR 0 0 −〈X〉 〈X〉 0 0 −〈!X〉 〈All〉
giveL 0 0 0 −〈X〉 〈X〉 0 〈X〉 0
giveR 0 0 0 0 −〈X〉 〈X〉 〈!X〉 0
end 〈X〉 0 0 0 0 −〈X〉 0 0

⎞⎟⎟⎟⎟⎟⎠

The corresponding matrices A, B and D are :

A =

⎛⎜⎜⎜⎜⎜⎝

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs −1 1 0 0 0 0 0 0
takeL 0 −1 1 0 0 0 −1 0
takeR 0 0 −1 1 0 0 0 0
giveL 0 0 0 −1 1 0 1 0
giveR 0 0 0 0 −1 1 0 0
end 1 0 0 0 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎜⎜⎝

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs 0 0 0 0 0 0 0 −1
takeL 0 0 0 0 0 0 0 0
takeR 0 0 0 0 0 0 0 1
giveL 0 0 0 0 0 0 0 0
giveR 0 0 0 0 0 0 0 0
end 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

D =

⎛⎜⎜⎜⎜⎜⎝

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs 0 0 0 0 0 0 0 0
takeL 0 0 0 0 0 0 0 0
takeR 0 0 0 0 0 0 −1 0
giveL 0 0 0 0 0 0 0 0
giveR 0 0 0 0 0 0 1 0
end 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

A Simple Positive Flows Computation Algorithm 193

Applying algorithm of page 189 leads to 6 flows:

– F1 = 〈X〉.Thinking + 〈X〉.Att1 + 〈X〉.Att2 + 〈X〉.Eating+ 〈X〉.Ending1 +
〈X〉.
Ending2

– F ′
1 = 〈!X〉.Thinking+〈!X〉.Att1+〈!X〉.Att2+〈!X〉.Eating+〈!X〉.Ending1+

〈!X〉.Ending2
– F ′′

1 =〈All〉.Thinkin+〈All〉.Att1+〈All〉.Att2+〈All〉.Eating+〈All〉.Ending1+
〈All〉.Ending2

– F2 = 〈!X〉.Forks + 〈!X〉.Att2 + 〈!X〉.Eating + 〈X〉.Eating + 〈X〉.Ending1
– F3 = 〈All〉.Att1 + 〈All〉.Att2 + 〈X〉Chairs
– F ′

3 = 〈All〉.Att1 + 〈All〉.Att2 + 〈X !〉Chairs

This example emphasizes that, in many cases, our algorithm computes a gen-
erative family of all positive flows. However, it underlines also two difficulties
associated to our method. First we compute useless flows such as F ′

1, F ′′
1 or

F ′
3; indeed, as soon as 〈XC〉.F is a flow 〈X !C〉.F and 〈All〉.F are also two flows

and if 〈XC〉.F + 〈X !C〉.F ′ is a flow then 〈All〉.(F + F ′) is also a flow. Our
first experimentations show that we compute in average one useless flow per
flow and per color domain. As the complexity of the Farkas algorithm depends
principally on the number of solutions, our method behaves as if we compute
positive flows on a net two times bigger than the original one. We are study-
ing algorithm heuristics to solve this slight problem. The second problem is
that, by definition, some positive flows cannot be computed. For instance, a
flow involving three different colors (X , X ! and X !!) or a flow using the car-
dinal of a class as weight (n1.〈X〉.F) are not simple positive flows and thus,
are not computed. If we don’t foresee now a solution to include parameters in
flows definition, we can easily adapt the definition and the associated compu-
tation algorithm of simple positive flows to take into account more complex
flows.

4 Conclusion

We have proposed an algorithm that computes a generative family of particular
but useful positive flows of a slightly restricted subclass of colored nets. This al-
gorithm is being implemented in our tool Helena [9] (http://helena.cnam.fr) and
its distributed version Cyclades [22]. It will be used to enforce structural tech-
niques, such as structural reductions, stubborn sets computation or distributed
partitioning used in these tools to verify concurrent programs in the Quasar
project (http://quasar.cnam.fr).

The way we define our algorithm allows its extension to other kinds of nets
as soon as they provide some regularity. For instance, it can be immediately
adapted to deal with all non guarded mappings used in normalized symmetric
nets definitions[18].

194 S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

References

1. Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1985. LNCS, vol. 222, Springer, Heidelberg (1985)

2. Bruneton, E., Pradat-Peyre, J.F.: Automatic verification of concurrent ada pro-
grams. In: González Harbour, M., la de Puente, J.A. (eds.) Ada-Europe 1999.
LNCS, vol. 1622, pp. 146–157. Springer, Heidelberg (1999)

3. Chiola, C., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed colored
nets and their symbolic reachability graph. In: ICATPN, Paris-France (June 1990)

4. Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets. A comparative
study of algorithms for computation of minimal P-semiflows. Lecture Notes in
Computer Science. Advances in Petri Nets 1990, (NewsletterInfo: 33,390) vol. 483,
pp. 79–112 (1991)

5. Couvreur, J.M., Haddad, S., Peyre, J.F.: Computation of generative families of
positive semi-flows in two types of coloured nets. In: Proceedings of the 12th In-
ternational Conference on Application and Theory of Petri Nets, Gjern, Denmark,
pp. 122–144, NewsletterInfo: 39 (June 1991)

6. Couvreur, J.M., Haddad, S., Peyre, J.F.: Generative families of positive invariants
in coloured nets sub-classes. In: Rozenberg, G. (ed.) Advances in Petri Nets 1993.
LNCS, vol. 674, pp. 51–70. Springer, Heidelberg (1993)

7. Couvreur, J.M.: The general computation of flows for coloured nets. In: proc of
the 11th International Conference on Application and Theory of Petri-Nets, Paris
(June 1990)

8. Couvreur, J.M., Haddad, S.: Towards a general and powerful computation of flows
for parameterized coloured nets. In: 9th European Workshop on Application and
Theory of Petri Nets, vol. II, Venice (Italy) (June 1988)

9. Evangelista, S.: Helena, an efficient high level Petri nets analyser. Technical report,
CEDRIC, CNAM, Paris (2004)

10. Evangelista, S., Haddad, S., Pradat-Peyre, J.F.: New coloured reductions for soft-
ware validation. In: Workshop on Discrete Event Systems (2004)

11. Evangelista, S., Kaiser, C., Pajault, C., Pradat-Peyre, J.F., Rousseau, P.: Dynamic
tasks verification with quasar. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe
2005. LNCS, vol. 3555, Springer, Heidelberg (2005)

12. Evangelista, S., Kaiser, C., Pradat-Peyre, J.F., Rousseau, P.: Quasar: a new tool for
analysing concurrent programs. In: Rosen, J.-P., Strohmeier, A. (eds.) Ada-Europe
2003. LNCS, vol. 2655, Springer, Heidelberg (2003)

13. Ezpeleta, J., Garćıa-Vallés, F., Colom, J.M.: A class of well structured petri nets
for flexible manufacturing systems. In: Desel, J., Silva, M. (eds.) ICATPN 1998.
LNCS, vol. 1420, pp. 64–83. Springer, Heidelberg (1998)

14. Garcia-Valles, F., Colom, J.M.: Implicit places in net systems. In: Proc. 8th Int.
Workshop on Petri Net and Performance Models (PNPM’99), 8-10 October 1999,
Zaragoza, Spain, pp. 104–113 (1999)

15. Genrich, H.J., Lautenbach, K.: S-invariance in predicate/transition nets. In:
Pagnoni, A., Rozenberg, G. (eds.) Informatik-Fachberichte 66: Application and
Theory of Petri Nets — Selected Papers from the Third European Workshop on
Application and Theory of Petri Nets, Varenna, Italy, September 27–30, 1982, pp.
98–111. Springer-Verlag (1983)

16. Haddad, S., Girault, C.: Algebraic structure of flows of a regular coloured net.
In: Rozenberg, G. (ed.) Advances in Petri Nets 1987. NewsletterInfo: 27, LNCS,
vol. 266, pp. 73–88. Springer, Heidelberg (1987)

A Simple Positive Flows Computation Algorithm 195

17. Haddad, S., Pradat-Peyre, J.-F.: New efficient petri nets reductions for parallel
programs verification. Parallel Processing Letters 16(1), 101–116 (2006)

18. Hillah, L., Kordon, F., Petrucci-Dauchy, L., Trèves, N.: Pn standardisation: A
survey. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE
2006. LNCS, vol. 4229, pp. 307–322. Springer, Heidelberg (2006)

19. Jensen, K.: Coloured Petri nets and the invariant method. T.C.S. 14, 317–336
(1981)

20. Memmi, G., Vautherin, J.: Computation of flows for unary-predicates/transition
nets. In: Rozenberg, G. (ed.) Advances in Petri Nets 1984. LNCS, vol. 188, pp.
455–467. Springer, Heidelberg (1985)

21. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the
IEEE 77(4), 39–50 (1989)

22. Pajault, C., Pradat-Peyre, J.F.: Distributed colored petri net model-checking with
cyclades, LNCS vol. 4346. Springer-Verlag, Heidelberg (2006) (To appear 2007)

23. Reisig, W.: EATCS-An Introduction to Petri Nets. Springer-Verlag, Heidelberg
(1983)

24. Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science,
NewsletterInfo: 38,39, vol. 80, pp.1–34 (1991)

25. Silva Suarez, M., Martinez, J., Ladet, P., Alla, H.: Generalized inverses and the
calculation of symbolic invariants for colored petri nets. Technique et Science In-
formatiques, NewsletterInfo: 16,21,22, vol. 4(1), pp.113–126 (1985)

26. Vautherin, J.: Calculation of semi-flows for pr/T-systems. In: Int. Workshop on
Petri Nets and Performance Models, Madison, Wisconsin, NewsletterInfo: 29, pp.
174–183. IEEE Computer Society Press, Washington (1987)

Improvements for the Symbolic Verification of

Timed Automata�

Rongjie Yan1,2, Guangyuan Li1, Wenliang Zhang1,2, and Yunquan Peng1,2

1 State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences,Beijing,100080,China

2 Graduate School of the Chinese Academy of Sciences,Beijing,100039,China
{yrj,ligy}@ios.ac.cn

Abstract. Based on the equivalence relation for location based reach-
ability between continuous and integer semantics of closed timed au-
tomata, Beyer et al. have implemented the verifier Rabbit, with the uni-
form representation of reachable configurations. However, the growth
of maximal constant of clock variables will decline the performance of
Rabbit. The paper proposes an improved symbolic method, using bi-
nary decision diagrams (BDDs) to store the symbolic representation of
discretized states, for the verification of timed systems. Compared with
Rabbit, experiments demonstrate that besides the memory reduction,
our implementation is also less sensitive to the size of clock domain.

Keywords: verification, timed systems, symbolic method, BDD.

1 Introduction

Formal verification is one of the effective methods to ensure the correctness of
real-time systems. Timed automata (TAs) [1] provide a formal framework for
the automatic analysis and verification of real-time systems, and in the past few
years several tools for the model checking of TAs have been developed and used,
including Uppaal [13], Kronos [8], Red [16], Rabbit [6] and FPTA [17], which
have implemented the computation for the set of all reachable configurations
by reachability analysis. However, the exploding increase of time consumption
for the computation and memory consumption for the representation of the
reachable configurations is still a main problem.

Within the model checking community, many works were based on symbolic
representations of the state space. The region equivalence of [1] is the precur-
sor of the symbolic methods in which the state space is covered using regions
with the same integer parts of clock values and the ordering of fractional parts.
Currently, most of real-time verifiers apply abstractions based on zones (the
constraint sets) in order to be coarser. Difference bound matrices (DBMs) [4]
are a common data structure to describe zones. However, this structure cannot

� Supported by 973 Program of China under Grant No. 2002cb312200; and the Na-
tional Natural Science Foundation of China under Grant Nos. 60673051, 60421001.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 196–210, 2007.
c© IFIP International Federation for Information Processing 2007

Improvements for the Symbolic Verification of Timed Automata 197

unify the representation of configurations which consist of locations and clock
valuations.

Besides DBMs, clock difference diagrams (CDDs) [3] and their variants [16,15]
were used to combine the representation of locations and clock valuations in
zones. Their common disadvantage is that the lack of a unique canonical repre-
sentation may hinder the containment relation detection.

The work in [9] introduced the BDD representation of reachable configura-
tions based on the methods of time discretization [10]. The work in [2] proposed
that closed timed automata (CTAs), whose clock constraints only contain ≥,≤
relations, can just consider integer clock valuations for the reachability analysis.
Based on the observation in [2], the work in [5] implemented BDD-based reacha-
bility analysis, which formally defined the integer semantics of closed automata
and proved the equivalence between integer and continuous semantics for loca-
tion based reachability. All these BDD-based verifiers share the same problem
of BDD’s: they are sensitive to the size of clock domain.

Based on the work of [5], we introduce symbolic structures for the repre-
sentation of reachable configurations, in the integer semantics of closed timed
automata, which is similar to the work of [17]. To reduce the memory consump-
tion, BDD is applied to store the reachable symbolic sets. The combination not
only reduces the sensitivity to the scale of clock constants, but also unifies the
representation of locations and clock valuations.

The paper is organized as follows. In section 2, we briefly recall the definition
of TAs, CTAs and their semantics. In section 3, we present the new symbolic
data structures and the reachability analysis algorithm for the integer semantics.
In section 4, we demonstrate the performance of our prototype implementation.
Section 5 concludes and discusses future work.

2 Preliminaries

The section introduces the definition of TAs and their continuous and integer
semantics.

A timed automaton (TA), proposed by Alur and Dill [1], is a finite state
automaton extended with a finite set of real-valued clock variables.

Definition 1. (Syntax of Timed Automata).
Let X be a finite set of clocks, and C(X) be the clock constraint set over X,
given by the syntax:

φ ::= (x ∼ c) | φ1 ∧ φ2 | true

where x ∈ X, ∼∈ {<,≤, >,≥} and c ∈ N+ (N+ is the set of non-negative
integers).

A timed automaton over X is a tuple A = 〈L, l0, Σ,X, I, E〉, where

– L is a finite set of locations, and l0 ∈ L is the initial location,
– I is a mapping that labels each location l ∈ L with some constraint in

C(X),and I(l) is called the invariant of l,

198 R. Yan et al.

– Σ is a finite set of synchronization labels, and
– E ⊆ L × C(X) × Σ × 2X × L is the set of transitions.

A transition (l, g, σ, Y, l′) ∈ E means that one can move from the location l to
l′ through a transition labelled with σ ∈ Σ. Moreover, g the guard must be
satisfied by the current clock values, and all the clocks in Y (Y ⊆ X) are reset
to 0.

Closed timed automata [2] restrict the clock constraints. The restricted con-
straints φ over X is:

φ ::= x ≤ c|x ≥ c|φ1 ∧ φ2,

where x ∈ X , and c ∈ N+.

2.1 Continuous Semantics of TA

In continuous semantics, clock variables have non-negative real valuations. A
clock valuation is a function μ : X ,→ R+, where R+ is the set of non-negative
reals. μX denotes the set of all clock valuations over X . For t ∈ R+, μ+t denotes
the clock valuation such that μ(x + t) = μ(x) + t, for all x ∈ X . For Y ⊆ X ,
μ[Y := 0] denotes the clock valuation such that μ[Y := 0](x) = 0, for all x ∈ Y
and otherwise μ[Y := 0](x) = μ(x). μ satisfies a constraint φ ∈ C(X), denoted
by μ |= φ, if φ evaluates to true under the assignment given by μ.

The continuous semantics of a timed automaton A = 〈L, l0, Σ,X, I, E〉 over
X is defined as a transition system 〈S, s0, Σ ∪ R+,→〉, where S = L × μX ;
s0 = (l0, μ0) is the initial state where μ0(x) = 0 for all x ∈ X ; and the transition
relation → comprises two kinds of moves:

– delay transition: (l, μ) δ−→ (l, μ+ δ), if δ ∈ R+ and μ |= I(l) and μ+ δ |= I(l);
– discrete transition: (l, μ) σ−→ (l′, μ[Y := 0]), if (l, g, σ, Y, l′) ∈ E and μ |= g

and μ[Y := 0] |= I(l′).

Let A be a TA. For a state sk = (l, μ) where l ∈ L, μ ∈ μX . If there is a
finite state sequence such that s0

α0−→ s1
α1−→ · · · αk−1−−−→ sk, then sk is called

reachable and l the reachable location in the continuous semantics of A, where
αi ∈ Σ ∪ R+, 0 ≤ i < k.

2.2 Integer Semantics of TA

The differences between integer and continuous semantics are the definitions of
clock valuations and transition relations. In integer semantics, clock variables
have integer valuations. A clock valuation is a function ν : X ,→ N+, where N+

is the set of non-negative integers. νX denotes the set of all clock valuations
over X .

The integer semantics of a timed automaton [5] A = 〈L, l0, Σ,X, I, E〉 is
defined as a transition system 〈S, s0, Σ∪N+,→I〉, where S = L×νX , s0 = (l0, ν0)
is the initial state where ν0(x) = 0 for all x ∈ X , and the transition relation →I
comprises two kinds of moves:

Improvements for the Symbolic Verification of Timed Automata 199

– delay transition: (l, ν) δ−→ (l, ν ⊕ δ), if δ ∈ N+ and ν |= I(l), ν ⊕ δ |= I(l);
– discrete transition: (l, ν) σ−→ (l′, ν[Y := 0]), if (l, g, σ, Y, l′) ∈ E and ν |= g,

ν[Y := 0] |= I(l′).

where (ν ⊕ δ)(x) = min{ν(x) + δ, cA(x) + 1}, cA(x) is the maximal constant
compared with x in the clock constraints of A.

Let A be a TA. For a state sk = (l, ν) where l ∈ L, ν ∈ νX . If there is a
finite state sequence such that s0

α0−→ s1
α1−→ · · · αk−1−−−→ sk, then sk is called

reachable and l the reachable location in the integer semantics of A, where
αi ∈ Σ ∪ N+, 0 ≤ i < k.

The work in [5] proved the equivalence relation for the set of reachable lo-
cations between integer and continuous semantics of CTAs, which formed the
basis of BDD-based reachability analysis.

3 Reachability Analysis for CTAs

In the integer semantics, the number of reachable configurations and the time
consumption grow greatly with the increasing size of clock domain. Though
BDD can reduce the memory consumption by data sharing, dealing with such
enormous reachable sets will slow down the verification process.

Based on the symbolic representation for integer clock valuations in [17], we
apply the symbolic method to record the reachable configurations of CTAs dur-
ing the verification process. Meanwhile, we use BDD to record the symbolic sets
to increase the data sharing and reduce the memory consumption.

3.1 Delay Sequence

Reachability is one of the most common properties being checked by verifiers.
There are two kinds of search strategies for reachability analysis during state
space exploration: forward and backward search. Currently our tool uses the
forward search technique.

The forward analysis of the reachable configurations starts from the initial
state (l0, v0). Whenever allowed by the invariant of l0, time delays can form the
sequence (l0, v0 ⊕ 0) 1−→ (l0, v0 ⊕ 1) 1−→ · · · , where v0 ⊕ i |= I(l0). For example,
given A = 〈L, l0, Σ,X, I, E〉, let l0 ∈ L be the initial location with the invariant
x ≤ 106, where x ∈ X . Then there may be a sequence: (l0, 0) 1−→ (l0, 1) 1−→ · · · 1−→
(l0, 106). Even with BDD representation for the set of states in this sequence, the
frequent operations with the increasing number of reachable configurations are
burdensome. To relieve this problem, here we introduce a symbolic representation
for this kind of sequence.

Definition 2. (Symbolic Representation of Delay Sequence)
Given location l and clock valuation v, let < l, v > denote the set of states
{(l, v′)|v′ = v ⊕ i, where i ≥ 0, and v′ |= I(l)}. Based on the maximal constant
abstraction, for every x ∈ X, all the clock valuations greater than cA(x)+1 are

200 R. Yan et al.

treated as cA(x) + 1. Therefore, though time can progress infinitely, the number
of states in the delay sequence is finite.

Therefore, a delay sequence (DS) generated by delay transitions from the state
s = (l, v) can be denoted by < l, v >. And the number of states in < l, v > can
be determined by I(l) and clock valuation v.

Let A = 〈L, l0, Σ,X, I, E〉 be a timed automaton. For a state s = (l, v) and a
transition e = (l, g, σ, Y, l′) ∈ E, where l ∈ L and v ∈ νX , post(s, e) denotes the
set of states {< l′, v′ > |if ∃i ∈ N+ such that v ⊕ i |= I(l)∧ g, v′ = v ⊕ i[Y := 0]
and v′ |= I(l′)}.

Given the symbolic representation of DS, the symbolic semantics can be de-
fined as follows.

Definition 3. (Symbolic Semantics)
Let A = 〈L, l0, Σ,X, I, E〉 be a timed automaton. The symbolic semantics of A
is based on the transition system 〈S, s0,�〉, where S = L × νX , s0 =< l0, v0 >,
and � is defined by the following rule:
< l, v >�< l′, v′ >, if there exist a transition (l, g, σ, Y, l′) ∈ E and an i ∈ N+,
such that v ⊕ i |= I(l) ∧ g, v′ = v ⊕ i[Y := 0] and v′ |= I(l′).

Given a time automaton A = 〈L, l0, Σ,X, I, E〉, and a state (l, v). l is reachable in
the integer semantics of A, iff it is reachable in the symbolic semantics 〈S, s0,�〉.

x<=6 y<=5
x<=10

y>=3
x:=0 y:=0

x>=4 y:=0
l1l0

Fig. 1. A simple example

Example 1. The simple timed automaton in Figure 1 is to illustrate the ap-
plication of DS during the reachability analysis. Every state is denoted by
(li, (v(x), v(y))), where (v(x), v(y)) are two clock valuations of the timed
automaton.

One of the runs in the example is: (l0, (0, 0)) 1−→ (l0, (1, 1)) 1−→ (l0, (2, 2)) 1−→
(l0, (3, 3)) 1−→ (l0, (4, 4)) → (l1, (4, 0)) 1−→ (l1, (5, 1)) · · · . We list the unfolded
state space in Figure 2. The state sequence generated from (l0, (0, 0)) by delay
transitions can be represented by < l0, (0, 0) >, and the sequence generated from
(l1, (4, 0)) by delay transitions can be represented by < l1, (4, 0) >. Therefore,
with DS representation, the size of state space can be reduced. Figure 3 shows
the reduced state space.

3.2 Series of Delay Sequences

In a delay sequence, when some states satisfy the guard of a transition, the corre-
sponding discrete transition can be taken, leading to the new states. From these

Improvements for the Symbolic Verification of Timed Automata 201

,(0,0)

,(1,1) ,(2,2) ,(3,3) ,(4,4)

,(5,5)

,(5,1),(8,4)

,(9,5)

,(7,3)
,(6,2)

,(5,0)

,(6,1)

,(7,2),(8,3)

,(9,4)

,(10,5)
,(6,6)

,(6,0)

,(8,2)

,(7,1)
,(9,3)

,(10,4)

,(4,0)

l0

l0

l0l0l0l0

l0
l1

l1

l1
l1

l1

l1

l1

l1

l1 l1

l1

l1

l1
l1

l1

l1 l1

Fig. 2. Unfolded state space of the example

,(4,0) ,(6,0)

,(5,0)

,(0,0)l0

l1

l1l1

Fig. 3. State space represented by DS

new states, the execution of delay or discrete transitions will be continued. For
instance, in the example of Figure 1, some states in delay sequence < l0, (0, 0) >
can trigger the discrete transition from l0 to l1. Then the corresponding suc-
cessor states are (l1, (4, 0)), (l1, (5, 0)), (l1, (6, 0)). After the discrete transition,
only valuations of reset clocks are different from their precursors. If we ignore
the reset clocks, we will find that other clock valuations in these successors still
obey the rule of “⊕” operation.

Then given a state generated by the discrete transition, we can compute all
other new successors from the states in the same delay sequence. Let vr be the
clock valuation after a discrete transition, where Y is the reset clock set. The
clock valuaton of the ith state from vr is vir = vr � i, where (vr � i)(x) ={

vr(x) + i x /∈ Y
0 x ∈ Y

.

Based on this observation, we can define a coarser data structure, which com-
prises more than one DS.

Definition 4. (Series of Delay Sequences)
Let ((l, v), k, Y) be the symbolic representation for the set of states {< l, v′ >
|v′ = v � i, 0 ≤ i < k}. We call this representation the series of delay sequence
(SDS). Let s0 = (l, v) be the so-called start state, then the SDS is denoted by
(s0, k, Y). (s0, k, Y) is denoted by (s0, 1, ∅) if Y = ∅.

202 R. Yan et al.

Then in Example 1, delay sequences < l1, (4, 0) >, < l1, (5, 0) >, < l1, (6, 0) >
computed from < l0, (0, 0) > by the discrete transition can be represented by
((l1, (4, 0)), 3, {y}). The state space is further reduced.

3.3 Reachability Analysis

During the forward search of the reachable configurations in integer semantics,
we use DS to compute the successors and record the set of visited states. Given
a DS t, the process for successor computation from t is: the delay sequence from
t can trigger the discrete transition e when some states in the sequence satisfy
its guard. Then the set of new configurations is computed. In other words, if t
is not in P the set of visited configurations, then by the discrete transition e,
the delay sequence from t can generate the set of configurations T = post(s, e).
And the new successors will be added to the waiting list W for the computation
loop. The verification will stop when W is empty or the property is satisfied.

Because the structure of a DS is similar to that of a discrete state, to save the
memory consumption during the verification process, we use BDD to represent
the set of reachable DSs. The generalized algorithm for reachable analysis is as
follows:

1: Reachability()
2: W = {< l0, v0 >};
3: while W �= ∅ do
4: get s =< l, v > from W ;
5: if s ∈ P then
6: continue
7: end if
8: for all e ∈ {(l, g, σ, Y, l′)} do
9: T = post(s, e);

10: if ∃t ∈ T, t |= φ then
11: return true
12: end if
13: if T � W then
14: W = W ∪ T
15: end if
16: P = P ∪ {s};
17: end for
18: end while
19: return false

3.4 The Application of SDS

Because the result of post(s, e) is a set of interrelated DSs, we can use SDS
to represent the set of DSs. Then W can be organized as the list of SDSs to
reduce the occupied memory during the verification process. Meanwhile, time

Improvements for the Symbolic Verification of Timed Automata 203

consumption for computing new reachable configurations from DSs in the same
SDS can be saved for their interrelation.

To explain how to compute successors for a SDS, we firstly show the corre-
sponding computation for a DS. Then we discuss the relation between two SDSs
with the same locations. Finally we present the SDS-based reachability analysis
algorithm.

3.4.1 Successor Computation for DS
Given a timed automaton A = 〈L, l0, Σ,X, I, E〉, a state (l, v) and
e = (l, g, σ, Z, l′) ∈ E, where l ∈ L and v ∈ νX . To compute the successors,
we need to consider the constraints involving I(l) and g. That is, to trigger the
discrete transition, the states should satisfy the constraint I(l) ∧ g.

For convenience, given a clock valuation v ∈ νX , let θv
X = max{ cA(x) −

v(x)|x ∈ X}. Given a constraint φ, we define

– Xφ is the set of all clock variables occuring in φ.
– φl =

∧
{x ≤ c|x ≤ c is in φ}.

– φg =
∧
{x ≥ c|x ≥ c is in φ}.

– cφ is the maximal constant occuring in φ.
– cφ(x) be the maximal constant compared with x in φ.

In the following computation, for constraint ϕ = I(l) ∧ g, let

m = max{{cϕg(x) − v(x)|x ∈ Xϕg}, 0} (1)

n = min{{cϕl
(x) − v(x)|x ∈ Xϕl

}, θv
X} (2)

Then in the delay sequence < l, v >, set of states {(l, v ⊕ j)|j ∈ [m,n]} can
take the discrete transition e = (l, g, σ, Z, l′).

Example 2. For the timed automaton in Figure 1, given the initial state (l0, (0, 0))
and the discrete transition from l0 to l1. Firstly, θv

X = 10 and ϕ = x ≥ 4 ∧ x ≤ 6.
According to the definition, we get that ϕl = x ≤ 6, cϕl

(x) = 6, ϕg = x ≥ 4, and
cϕg(x) = 4. Then m = 4 and n = 6, the set {(l0, (4, 4)), (l0, (5, 5)), (l0, (6, 6))} in
< l0, (0, 0) > can take the discrete transition from l0 to l1.

Therefore, to get successors from a DS, we have to consider the computation
and judgement between clock valuations and constraints.

3.4.2 Successor Computation for SDS
If all successors of DSs in a SDS can be computed according to the successors of
one DS, the effort can be saved by avoiding the repeated computation between
clock valuations and constraints.

Given a SDS d = ((l, v), k, Y) and e = (l, g, σ, Z, l′), we have observed that
v(x) ⊕ i = v(x) � i for all x ∈ X − Y . So some states in the ith delay sequence
< l, v � i > and the delay sequence < l, v > may have same valuations except
for the clocks in Y .

204 R. Yan et al.

With this observation, we discuss the corresponding process for computing
new configurations. We firstly determine the set of states that can trigger the
discrete transition for the start state (l, v).

For the constraint ϕ and SDS d, let

a1 = max{{cϕg(x) − v(x)|x ∈ Y ∩ Xϕg}, 0} (3)

b1 = min{{cϕl
(x) − v(x)|x ∈ Y ∩ Xϕl

}, θv
Y } (4)

a2 = max{{cϕg(x) − v(x)|x ∈ (X − Y) ∩ Xϕg}, 0} (5)

b2 = min{{cϕl
(x) − v(x)|x ∈ (X − Y) ∩ Xϕl

}, θv
(X−Y)} (6)

Then m = max{a1, a2}, and

n =

⎧⎪⎪⎨⎪⎪⎩
max{b1, b2} if Xϕl

= ∅
b2 if (Xϕl

∩ Y) = ∅
b1 if (Xϕl

∩ X − Y) = ∅
min{b1, b2} if (Xϕl

∩ Y) �= ∅ ∧ (Xϕl
∩ X − Y) �= ∅

.

Set of states {(l, v ⊕ j)|j ∈ [m,n]} in the delay sequence < l, v > can trigger the
discrete transition e = (l, g, σ, Z, l′).

Example 3. Now we use SDS ((l1, (4, 0)), 3, {y}) and the transition from l1 to l0
in Figure 1 as the example. For the start state (l1, (4, 0)) and guard y ≥ 3 in the
transition, we get that ϕ = x ≤ 10∧ y ≤ 5∧ y ≥ 3. According to the Equation 3
∼ 6, a1 = 3, b1 = 5, a2 = 0, and b2 = 6 respectively. Because Xϕl

= {x, y} and
Y = {y}, neither Xϕl

∩ Y nor Xϕl
∩ X − Y is empty. Therefore m = 3, n = 5,

the set of states {(l1, (4, 0) ⊕ j)|j ∈ [3, 5]} in the delay sequence < l1, (4, 0) >
can take the discrete transition.

After the computation for the successors of the start state in SDS, we can get
the set of successors from other DSs in the same SDS according to the feature
of SDS.

For the delay sequence of < l, v � i > where 0 ≤ i < k, m = max{a1, a2 − i},
and

n =

⎧⎪⎪⎨⎪⎪⎩
max{b1, b2} if Xϕl

= ∅
max{b2 − i, 0} if (Xϕl

∩ Y) = ∅
b1 if (Xϕl

∩ X − Y) = ∅
min{b1,max{b2 − i, 0}} if (Xϕl

∩ Y) �= ∅ ∧ (Xϕl
∩ X − Y) �= ∅

,

states that can trigger the discrete transition e are the set {(l, (v � i) ⊕ j)|j ∈
[m,n]}.

Example 4. For SDS ((l1, (4, 0)), 3, {y}), we have obtained that a1 = 3, b1 = 5,
a2 = 0, and b2 = 6. Then

Improvements for the Symbolic Verification of Timed Automata 205

1. For the delay sequence < l1, (4, 0)�1 >, set of states {(l1, (5, 0)⊕j)|j ∈ [3, 5]}
can trigger the discrete transition.

2. For the delay sequence < l1, (4, 0)�2 >, set of states {(l1, (6, 0)⊕j)|j ∈ [3, 4]}
can trigger the discrete transition.

3.4.3 SDS-Based Reachability Analysis
The following is the reachability analysis algorithm by the application of SDS.

1: ReachabilitySDS
2: SDS d′;
3: stack of SDS W ;
4: W.push((l0, v0), 1, ∅);
5: while W �= ∅ do
6: get d = (s0, k, Y) from W ;
7: for all e = (l, g, σ, Y ′, l′) enabled at d do
8: SuccessorN(a1, b1, a2, b2, d, e);
9: for i = 0; i < k; i + + do

10: si = s0 � i;
11: if si ∈ P then
12: continue
13: end if
14: distance = getdistance(i, ϕ, a1, b1, a2, b2);
15: if distance < 0 then
16: break
17: end if
18: s′ = (l′, (si.v ⊕ max{a1, a2 − i})[Y ′ := 0]);
19: d′ = (s′, distance + 1, Y ′);
20: if ∃s ∈ d′, s |= φ then
21: return true
22: end if
23: if d′ /∈ W then
24: W.push(d′)
25: end if
26: P = P ∪ {si};
27: end for
28: end for
29: end while
30: return false

Line 8 SuccessorN computes the related ranges for the start state according
to the certain discrete transition. Line 9-27 compute all the successors of d, and
Line 13 getdistance is to get the number of states in every DS which is capable
of taking the discrete transition (the number of successors for every DS). Then
Line 18, 19 generate a new set of DSs.

206 R. Yan et al.

3.5 Inclusion Relation of SDS

When we get a new set of reachable configurations, we need to judge its rela-
tion with those SDSs in W to avoid the repeated computation and ensure the
termination of checking. The relation between the new set d′ and d ∈ W is:

– equivalence, if their start states, the number of DSs, and the set of reset
clocks are equal, which is a special case of inclusion. Or

– intersection, if two sets of reset clocks are equal, and there exists 0 ≤ i <
k, 0 ≤ j < k′, such that all the valuations of s0 � i and s′0 � j are the same
state. Or

– irrelevance, neither with equivalence nor intersection relation.

The algorithm for judging SDS relations is as follows. The idea of the al-
gorithm is: firstly we should judge whether the differences between two clock
valuations are the same. If some clock differences are different from others, there
is no equivalence or intersection relation. If all clock valuations except for reset
ones have the same difference, two SDSs may intersect, or one is a subset of the
other.

1: SDSRelation(d, d′)
2: select an x which x /∈ Y ∧ s0(x) < cA(x) ∧ s′0(x) < cA(x);
3: diff=s0(x) − s′0(x);
4: for all x ∈ X − Y do
5: if s0(x) − s′0(x) �= diff then
6: return irrelevance
7: end if
8: end for
9: if diff ≤ 0 ∧ diff + k ≥ k′ then

10: return d ⊇ d′

11: else
12: if diff ≥ 0 ∧ diff + k ≤ k′ then
13: return d ⊆ d′

14: end if
15: end if
16: return intersection

4 Experiments

Based on the symbolic data structure, we have implemented a prototype to
support the verification of real-time systems with multi-processes, synchroniza-
tions, and broadcasts. The tool is available at http://lcs.ios.ac.cn/∼ligy/tools/.
We compare the experiment results with those of Rabbit. All experiments were
performed on a 2.6GHz Pentium 4 with 512MB of memory. And experiments
were limited to 30 minutes of CPU time.

Improvements for the Symbolic Verification of Timed Automata 207

x>=b,k!=id

idle

waitingcritical

k:=id,x:=0

x:=0

x>=b,k=id

k=0

k:=0

request
x<=a

Fig. 4. Fischer’s mutual exclusive protocol

x<=x<= x<=

init

cdtransm

cd?

cd?

send

cd?

x:=0

end busy

x:=0

x:=0

x:=0

begin

cd?

init

cd

transm

cd!

send

x:=0

busy

x:=0

x:=0

begin

begin

x>=

x= λ

λ

σ

σ 2σ

Fig. 5. CSMA/CD protocol

We use Fischer’s mutual exclusive protocol(f) [12] (see Figure 4), CSMA/CD
protocol(c) [7] (see Figure 5) and two industrial case studies (Gear Controller [14],
and an Audio/Video Protocol [11]) as the examples. In the following tables, we list
the time consumption(t) in seconds and the number of reachable configurations
(state for Rabbit, and DS for our implementation). BDD is the number of nodes
in the BDD representation for the whole reachable configuration when the ver-
ification finishes, which is in direct proportion to the memory consumption. “-”
indicates that the result is unavailable.

To compare the sensitivity of tools to clock constants, we demonstrate exper-
iment results for different valuations of a and b in Fischer’s mutual exclusive
protocol, λ and σ in CSMA/CD protocol. Here the complete state space was
generated.

As we know, the greater the maximal constant, the more the number of reach-
able configurations will be. Table 1 and 2 list results of Rabbit and our prototype
under different valuations for two protocols. Comparing results in two tables,
the number of reachable configurations in Rabbit and the prototype increases
rapidly, as well as the time consumption. However, w.r.t. the finial number of
BDD nodes and the number of reachable configurations, the increase of our
prototype are quite less than that of Rabbit. For both Fischer’s protocol and
CSMA/CD protocol, our prototype scales better with the growth of constants.

For the industrial examples, the complete state space of Gear Controller
was explored in 177.22 seconds with 64872 BDD nodes recording all the reach-
able configurations; and the complete state space of Audio/Video protocol was

208 R. Yan et al.

Table 1. Rabbit’s results for Fischer’s (f) and CSMA/CD (c)

a=2,b=4 a=4,b=8 a=8,b=16 a=16,b=32
No.

t state BDD t state BDD t state BDD t state BDD

f2 0 193 133 0 467 216 0 1399 374 0 4799 684
f3 0 1893 605 0 7095 1318 0 36939 3385 0 234867 9998
f4 0 17577 1956 0 102291 5531 1 922479 19741 4 1.08322e+07 85485
f5 0 158449 4720 0 1.43358e+06 16218 3 2.2305e+07 75043 29 4.8236e+08 450942
f6 1 1.40518e+06 8751 2 1.97584e+07 34284 8 5.2812e+08 191567 - - -
f7 0 1.23492e+07 13821 2 2.69305e+08 58725 22 1.23136e+10 371250 - - -
f8 1 1.07952e+08 19897 5 3.63936e+09 88780 - - - - - -
f9 1 9.40233e+08 26960 10 4.88237e+10 124248 - - - - - -
f10 2 8.16454e+09 35014 17 6.50652e+11 165133 - - - - - -

λ = 4, σ = 1 λ = 8, σ = 2 λ = 16, σ = 4 λ = 32, σ = 8

c2 0 157 213 0 358 459 0 982 994 1 3118 2195
c3 0 1446 620 0 4609 1614 2 19569 4308 2 105025 12579
c4 2 11225 1237 1 49645 3636 2 325631 11369 10 2.9609e+06 44015
c5 1 84140 2035 1 502835 7792 8 5.02002e+06 32181 - - -
c6 0 594174 2851 3 4.75103e+06 13836 19 7.22529e+07 70441 - - -
c7 1 4.01893e+06 3667 5 4.27544e+07 20989 - - - - - -
c8 2 2.63267e+07 4483 9 3.71571e+08 28482 - - - - - -

Table 2. Our results for Fischer’s (f) and CSMA/CD (c)

a=2,b=4 a=4,b=8 a=8,b=16 a=16,b=32
No.

t DS BDD t DS BDD t DS BDD t DS BDD

f2 0.05 22 62 0.05 22 72 0.05 22 82 0.05 22 92
f3 0.08 107 151 0.16 119 181 0.09 143 211 0.16 191 241
f4 0.14 476 273 0.19 588 333 0.33 812 393 0.80 1260 453
f5 0.44 1970 416 0.78 2620 512 1.95 3920 608 5.97 6520 704
f6 1.97 7679 583 4.13 10717 721 11.63 16793 859 38.59 28945 997
f7 9.95 28551 772 22.13 41123 958 63.48 66267 1144 222.56 116555 1330
f8 43.75 102382 987 102.95 150610 1227 313.00 247066 1467 1063.27 439978 1707
f9 190.83 357176 1222 466.16 533102 1522 1398.83 884954 1822 - - -
f10 932.52 1220153 1481 - 1839819 1847 - 3079151 2213 - - -

λ = 4, σ = 1 λ = 8, σ = 2 λ = 16, σ = 4 λ = 32, σ = 8

c2 0.08 31 86 0.08 46 106 0.09 78 149 0.09 142 226
c3 0.16 202 180 0.17 387 311 0.23 885 551 0.47 2385 2141
c4 0.34 1038 344 0.61 2123 787 2.25 5507 1965 18.06 16643 5730
c5 1.70 4479 619 3.84 9814 1578 31.59 28672 4381 659.59 101732 14177
c6 8.67 17786 910 28.66 41580 2441 455.17 139100 7046 - 634740 23636
c7 37.45 67046 1202 183.61 166701 3308 - - - - - -
c8 179.45 243741 1494 1243.05 641407 4175 - - - - - -

unfolded in 917.67 seconds with 2351 BDD nodes. However, Rabbit failed in the
limited memory. The performance of our prototype is dramatic compared with
Rabbit.

Therefore, our tool’s sensitivity to constant valuations is lower than that of
Rabbit. The reason is that BDD representation for DS is coarser than that for
explicit states in integer semantics.

Improvements for the Symbolic Verification of Timed Automata 209

5 Conclusions and Further Work

In this paper we propose a new symbolic structure for the discrete states in the
integer semantics of closed timed automata for the reachability analysis. Con-
cluded from the experiment results, our structure is better than the pure BDD
representation for explicit configurations w.r.t. the influence of the magnitude
of clock constants. And the memory consumption is greatly reduced, benefited
from the data sharing ability of BDD.

However, the prototype does not use BDD to represent the transition rela-
tions yet, which results in the transformation from DS to BDD frequently. The
transformation and judgement between DS and BDD waste lots of time. So our
time consumption is higher than that of Rabbit. For further work, we need to
investigate the combination of BDD representation for transition relations and
our symbolic data structure to improve the performance of our prototype.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 470–484. Springer, Heidelberg (1998)

3. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Computer Aided Verification,
pp. 341–353 (1999)

4. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
5. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata.

In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343.
Springer, Heidelberg (2001)

6. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-based verification
of real-time systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

7. Beyer, D., Noack, A.: Can decision diagrams overcome state space explosion in
real-time verification? In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003.
LNCS, vol. 2767, pp. 193–208. Springer, Heidelberg (2003)

8. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

9. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data struc-
tures for the verification of timed automata. In: Maler, O. (ed.) Hybrid and Real-
Time Systems, Grenoble, France. LNCS, pp. 346–360. Springer Verlag, Heidelberg
(1997)

10. Gollü, A., Puri, A., Varaiya, P.: Discetization of timed automata. In: Proceedings
of the 33rd IEEE conferene on decision and control, pp. 957–958 (1994)

11. Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modeling and analysis
of an audio/video protocol: An industrial case study using UPPAAL. In: Proc. of
the 18th IEEE Real-Time Systems Symposium, pp. 2–13. IEEE Computer Society
Press, Los Alamitos (1997)

210 R. Yan et al.

12. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1),
1–11 (1987)

13. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

14. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear controller.
In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, pp. 281–297.
Springer, Heidelberg (1998)

15. Møller, J., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision di-
agrams. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 111–125. Springer, Heidelberg (1999)

16. Wang, F.: Efficient verification of timed automata with bdd-like data-structures.
In: VMCAI 2003. Proceedings of the 4th International Conference on Verification,
Model Checking, and Abstract Interpretation, London, UK, pp. 189–205. Springer-
Verlag, Heidelberg (2003)

17. Yan, R., Li, G., Tang, Z.: Symbolic model checking of finite precision timed au-
tomata. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp.
272–287. Springer, Heidelberg (2005)

The DHCP Failover Protocol: A Formal

Perspective

Rui Fan1, Ralph Droms2, Nancy Griffeth3, and Nancy Lynch1

1 MIT CSAIL
2 Cisco Systems

3 Lehman College, CUNY

Abstract. We present a formal specification and analysis of a fault-
tolerant DHCP algorithm, used to automatically configure certain host
parameters in an IP network. Our algorithm uses ideas from an algo-
rithm presented in [5], but is considerably simpler and at the same time
more structured and rigorous. We specify the assumptions and behavior
of our algorithm as traces of Timed Input/Output Automata, and prove
its correctness using this formalism. Our algorithm is based on a com-
position of independent subalgorithms solving variants of the classical
leader election and shared register problems in distributed computing.
The modularity of our algorithm facilitates its understanding and analy-
sis, and can also aid in optimizing the algorithm or proving lower bounds.
Our work demonstrates that formal methods can be feasibly applied to
complex real-world problems to improve and simplify their solutions.

1 Introduction

The Dynamic Host Configuration Protocol (DHCP) [4] is a widely deployed
mechanism allowing devices to automatically obtain a unique IP address and
other configuration information needed for communication on an IP network
such as the Internet. Current implementations of DHCP use a single DHCP
server to assign addresses from a predefined address pool. If the server fails,
then addresses from the pool can no longer be reassigned, and are in effect lost
from the address space. DHCP has recently been supplemented by the DHCP
Failover (DHCPF) protocol [5], which manages an address pool using multiple
servers. DHCPF increases the fault tolerance of DHCP, and also allows greater
performance through load-balancing.

The main difficulty encountered in managing addresses using multiple servers
instead of one is the need to maintain a consistent view across all the servers of
the currently assigned addresses. Most standard database consistency techniques
cannot be used to solve the DHCPF problem because they are too slow. A key
insight of the algorithm described in [5] is to use two mechanisms for assigning
addresses. The first mechanism relies on synchronized clocks ; it is fast, requiring
no communication, but limits how long addresses can be assigned. The second
mechanism is slower, using explicit acknowledgments between the servers, but
avoids the limitations on assignments. This algorithm is currently described in

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 211–226, 2007.
c© IFIP International Federation for Information Processing 2007

212 R. Fan et al.

an Internet Draft that is over 130 pages long. Part of the length of the Draft is
due to the need to deal with many possible types of concurrent server failures.
The algorithm represents different combinations of failures as states of a system,
and defines a large number of transitions between the states as failures occur or
are resolved.

In this paper, we look at the DHCPF problem from a more formal and the-
oretical perspective. First, we extract the essential behavior of the algorithm in
[5] and precisely specify the behavior as traces of a set of interacting Timed I/O
Automata (TIOA) [6]. In this formulation, DHCPF is a kind of timed mutual
exclusion problem. As in mutex, the safety condition requires that any address
is used by at most one client at a time. The liveness condition requires that,
under certain favorable timing conditions that are likely to occur in practice,
any client wanting an IP address is granted one, as long as some addresses are
available.

Our second contribution is to decompose this mutual exclusion problem into
several simpler and independent subproblems, each mimicking a standard prob-
lem in distributed computing. In particular, we view DHCPF as involving the
following two steps. First, for each IP address, we choose a leader server to be
the only server allowed to assign that address. The leader for an address can
change as different servers fail and recover, but we guarantee that there is at
most one leader at a time. Thus, the first part of the problem can be seen as a
multi-shot leader election problem. The second part of the problem consists of
the leader assigning its address in such a way that even if it fails, and a different
server becomes leader, the subsequent leader preserves the safety and liveness
properties on that address. This can be seen as implementing a single-writer,
multi-reader shared register, where the writer can change over time. In partic-
ular, only the current leader of an address is allowed to write assignments for
the address to the register, but any server that takes over for a failed leader can
read the register to ensure it does not double-allocate the address, and also gains
the privilege to write to the register. The main idea that we adopt from [5] is to
write to the register in two ways, either by an implicit, fast write, requiring no
communication but relying on synchronized clocks, or by an explicit, slow write,
using server acknowledgments.

There are several benefits to our formal treatment of DHCPF. First, the
precise specification of DHCPF helps end-users of the service, who may need a
rigorous understanding of the behavior of DHCPF that is difficult to obtain from
the Internet Draft. Second, implementing DHCPF as a composition of smaller
subalgorithms helps to understand and analyze its behavior, and also makes the
algorithm easier to improve or optimize. For example, we can study the effects
of tuning network parameters, such as the amount of clock skew or the bound on
message delay, on the performance of our algorithm by studying their effects on
the individual subalgorithms. We can also isolate the effects of different types of
failures on the algorithm to how they affect the subalgorithms. This isolation is
the main reason that our algorithm is simpler than the algorithm in [5]. Lastly,
our decomposition suggests that it may be possible to prove lower bounds for

The DHCP Failover Protocol: A Formal Perspective 213

the DHCPF problem by proving lower bounds for the subproblems, which seems
to be a considerably easier task.

Our treatment of DHCPF, while formal, was not mechanical. A considerable
effort was involved in distilling the expansive description of DHCPF in the In-
ternet Draft into a more concise formal specification. Nevertheless, parts of our
specification are still more complicated than we would like. A second problem
was finding a modular DHCPF algorithm, by matching parts of the specifica-
tion against self-contained distributed computing problems. Systematizing this
design process, indeed, formalizing the formalization process, would be a fasci-
nating challenge.

The remainder of this paper is organized as follows. In Section 2, we describe the
TIOAmodel. We give an overviewof DHCPF and state the properties it satisfies in
Section 3. We describe a DHCPF algorithm in Section 4, and prove its correctness
and performance properties in Section 5. Finally, we conclude in Section 6.

2 Model and Notation

We model the clients, servers and communication network of our DHCPF algo-
rithm as interacting Timed I/O Automata (TIOA). TIOA allows modeling of
automata with continuous state spaces, whose executions evolve in real time.
Our algorithm does not use the full power of this formalism. In what follows,
we describe the TIOA model only to the extent necessary to understand our
algorithm and its proof. Please see [6] for additional details. Each Timed I/O
automaton has internal state variables, and discrete or continuous actions which
change its state. We call discrete actions simply actions, and we call continuous
actions trajectories. Actions always occur instantly, while a trajectory may have
a positive time duration. As an example, we can model a mobile robot by a
TIOA. The state represents the position of the robot. Trajectories are move-
ments of the robot, and actions are changes in its destination (which we imagine
as involving an instantaneous computations).

Several TIOAs can be composed. Roughly speaking, this forms a new automata
whose state space is a Cartesian product of the state spaces of the constituent
automata, and whose action space is the union of the constituent action spaces.
However, certain states and actions become identified in the composition process;
we describe this in more detail later. An execution is a sequence of the form α =
γ0σ1γ1σ2 . . . γnσn. Here, each γi represents a trajectory, and each σi represents
a (discrete) action. We say a state occurrence (resp., action occurrence) is a
particular instance of a state (resp., action) which occurs in an execution. Note
that this is different from the state or action itself, which can occur multiple
times in an execution. Let α be an execution, and let s, s′ be state occurrences
in α. We write s ≺ s′ if s occurs before s′ in α. We define s � s′ in the obvious
way; we also extend this notation to action occurrences σ, σ′ in α. We write
s′′ ∈ [s, s′] if s′′ is a state occurrence in α, and s � s′′ � s′. Lastly, we say the
time at which a state occurrence s occurs is the sum of the time durations of all
the trajectories before s. We write this as ζ(s).

214 R. Fan et al.

To model the clients in DHCPF, let C be an index set representing an ar-
bitrary set of client processes. We use the notation i, i′, i1, etc. throughout the
paper to denote clients. Similarly, let S be an index set representing server pro-
cesses; we use j, j′, j1, etc. to denote servers. Each server can fail or recover.
When a server fails, it stops performing any actions or trajectories. When it
recovers, all its internal state variables are set to default values, and it begins
executing from its initial state. We do not consider malicious server behaviors.
Let Φ denote an arbitrary set of IP addresses; we write φ ∈ Φ for a particular IP
address. Servers will allocate addresses from Φ to clients. Each client and server
is equipped with a real valued monotonically nondecreasing clock variable, which
intuitively represents that process’s perception of real time1. For the remainder
of this paper, fix an arbitrary Δ ∈ R≥0. We assume the clock of any process
differs from real time by at most Δ. That is, we assume

Assumption 1. Let k ∈ C ∪ S. Then for any state occurrence s in any execu-
tion, we have |s.clockk − ζ(s)| ≤ Δ.

Clients and servers communicate over a point-to-point message passing network.
We assume that the network may lose, duplicate or reorder messages, but does
not generate spurious messages. The network works as follows. Let k, k′ ∈ C ∪S
be any two processes. When k wants to send a message m to k′ during some
action σ, we say that k adds (m, k′) to buffer. If m is not lost by the network,
then after a finite but nondeterministic time representing the message delay, the
action recvk,k′ (m) occurs, causing k′ to receive m; furthermore, k′ knows that k
sent the message. Note that these notational conventions are adopted from [6].
In describing our DHCPF algorithm in Section 4, we assume a network service
exists which implements these communication actions.

3 A Formal Specification of DHCPF

In this section, we formally define the DHCPF problem. In particular, we de-
fine the interface between clients and servers in DHCPF. We also define the
assumptions DHCPF makes about its operating environment. Finally, we define
the properties DHCPF satisfies, given the environmental assumptions, in terms
of the traces of a TIOA. In Section 4, we describe an algorithm satisfying this
specification.

3.1 The DHCPF Interface

Figure 1 shows the client/server interface in DHCPF. It mimics, except for su-
perficial differences, the client/server interface of the non-fault-tolerant DHCP.
This is done to make the use of DHCPF instead of DHCP transparent to clients,
in order to facilitate its deployment.
1 Note that clock evolves according to a trajectory. In fact, clock is the only variable

in our algorithm whose value follows a trajectory; the values of all other variables
only change by (discrete) actions.

The DHCP Failover Protocol: A Formal Perspective 215

We will describe the interface of DHCPF by describing its typical modes of
operation. DHCPF works by leasing IP addresses to clients. That is, a server
tells a client that it can use a certain address up to some lease time, after
which the client is supposed to release the address. There are two main types of
interactions in DHCPF. When a client does not have a lease, it tries to request
a lease. If the client already has a lease, it can try to renew the lease. Each type
of interaction requires sending and receiving multiple messages. It is helpful to
be able to identify all the messages in an interaction. We do this by labeling all
the messages sent during the interaction by an interaction instance κ. Any two
different interactions (even by the same client) are labeled with different κ. This
labeling can be achieved using standard timestamping techniques [7,3]. We let
K denote the set of all interaction instances.

We now describe the interaction for a client i to request a lease. Please also see
Figure 1. Client i first broadcasts a discover message to all the servers, labeled
by some interaction instance κ. A server j that receives the discover message
sends an offer message to i for some address φ ∈ Φ2. Note that j must offer i
an address immediately (if any are available). That is, the DHCP (and hence
DHCPF) specification does not give j time to first communicate with the other
servers to find out the current lease times for all addresses, before deciding what
address to offer to i. It is precisely this need for an immediate response by j
that prevents most database algorithms from being used to implement DHCPF.
i may get offers for several φ’s from different servers. i chooses one such φ as
its preferred IP address, and broadcasts a request to lease that φ until time τ .
Some server then responds to i with an ack message, leasing φ to i until time τ ′,
where τ ′ may be different from the lease time τ which i requested. i is supposed
to release φ when i’s clock variable equals τ ′.

If i already has a lease for φ until time τ ′, then i can try to renew its lease. To
do this, i broadcasts a renew message to all the servers, including in the message
the values of φ, τ ′ and τ , where τ is the new lease time that i wants. The message
is labeled by κ. Some server then responds to i with an ack message extending
i’s lease on φ to time τ ′′, where τ ′′ may be different from i’s desired lease τ .

In this paper, we assume that clients behave correctly. In particular, we assume
that clients follow the order of interaction described above to request or renew
an address. We also assume that clients release an IP address after their lease for
the address expires. In general however, the servers have little means to enforce,
or sometimes to even detect such behaviors. We leave the task of dealing with
faulty clients as interesting future work.

Lastly, for any j ∈ S, we model server j’s (stop) failure and recovery via the
failj and recoverj actions.

3.2 DHCPF Assumptions

In this section, we describe the assumptions that DHCPF makes about its environ-
ment. The safety and liveness properties of DHCPF rely on different assumptions.
2 If all the addresses in Φ are already offered or leased to other clients, then the server

does not send offer.

216 R. Fan et al.

bcasti(〈discover, κ〉) i looks for an IP address; κ is the interaction instance.
recvi,j(〈discover, κ〉) j receives i’s discover message.
sendj,i(〈offer, κ, φ〉) j offers φ to i.
recvj,i(〈offer, κ, φ〉) i receives j’s offer.
bcasti(〈request, κ, φ, τ 〉) i requests φ till time τ .
recvi,j(〈request, κ, φ, τ 〉) j receives i’s lease request.
bcasti(〈renew, κ, φ, τ, τ ′〉) i wants to renew φ till time τ ; τ ′ is i’s last lease time for φ.
recvi,j(〈renew, κ, φ, τ, τ ′〉) j receives i’s renew message.
sendj,i(〈ack, κ, φ, τ 〉) j gives i address φ till time τ .
recvj,i(〈ack, κ, φ, τ 〉) i receives j’s acknowledgment.
failj , recoverj j fails or recovers.

Fig. 1. The DHCPF protocol interface, for i ∈ C, j ∈ S

The DHCPF safety property roughly says that any IP address is leased to at
most one client at a time. To satisfy this property, DHCPF requires a failure de-
tector, which is a service telling every server which other servers have failed. The
DHCPF liveness properties says that when a client requests or tries to renew an
address, it will get an address within a few message round trips’ time, as long
as some addresses are available. This property is only satisfied in “nice” periods
of an execution. These assumptions are described in the proceeding sections.

An effort was made to “minimize” the assumptions that DHCPF relies upon.
Indeed, at an intuitive level, it seems unlikely that any DHCPF algorithm can
work correctly if servers have no idea about each others’ status, if servers con-
tinuously fail and recover, or if the network delays messages for very long times.
Furthermore, we believe that the assumptions we make are sufficiently weak that
they are likely to be satisfied, at least typically, in practice. Finally, while we
do not study questions related to minimality or impossibility in this paper, we
believe that these may be interesting future work.

In the remainder of this section, let α be an arbitrary execution. All state and
action occurrences are assumed to occur in α.

A Failure Detector Service. Recall that each server can fail, and then sub-
sequently recover. We define the following.

Definition 3.1. Let j ∈ S and let s be a state occurrence. We say j is alive in
s if there exists an action occurrence σ = recoverj such that σ ≺ s, and for all
action occurrences σ′ such that σ ≺ σ′ ≺ s, we have σ′ �= failj. If j is not alive
in s, we say j is dead in s.

We assume that all servers are initially alive.

Definition 3.2. Let s and s′ be state occurrences, with s ≺ s′. We let Λ(s, s′) =
{j | (j ∈ S) ∧ (∀s′′ ∈ [s, s′] : j is alive in s′′)} be the set of servers that are alive
throughout the interval [s, s′].

A failure detector service Υ informs each server which other servers are alive
or dead. In practice, Υ might represent a system administrator who manually

The DHCP Failover Protocol: A Formal Perspective 217

informs servers about failures and recoveries. Formally, we assume that for each
j ∈ S, in addition to j’s actions shown in Figure 1, j also has the following two
sets of actions, which we call FD-actions.

1. ∀j′ ∈ S : recvΥ,j(〈dead, j′〉). Υ informs j that j′ is dead.
2. ∀j′ ∈ S : recvΥ,j(〈alive, j′〉). Υ informs j that j′ is alive.

In order to be useful, Υ is required to be accurate and timely. In particular,
let λ be some nonnegative constant. The accuracy property says that if a server
j′ has been alive or dead for λ or more time before the current time, then any
information Υ gives to a server j about j′ is correct. The timeliness property
says that if j is alive for at least λ time, then j will receive failure information
from Υ about every server j′ ∈ S. These are captured in the following definition.

Definition 3.3. Let λ ∈ R≥0. We say a failure detector Υ is λ-perfect if the
following hold for any state occurrences s and s′ such that ζ(s′) − ζ(s) ≥ λ.

1. (Accuracy) Let j, j′ ∈ S, and suppose the action occurrence recvΥ,j(〈dead, j′〉)
(resp., recvΥ,j(〈alive, j′〉)) immediately precedes s′. Then j′ is dead (resp., alive)
in some state during [s, s′].

2. (Timeliness) Suppose j ∈ Λ(s, s′). Then for every j′ ∈ S, either
recvΥ,j(〈fail, j′〉) ∈ [s, s′] or recvΥ,j(〈recover, j′〉) ∈ [s, s′].

In order to guarantee correct behavior, the DHCPF algorithm we describe in
Section 4 requires that a λ-perfect Υ , for some finite λ. In [5], a weaker failure
detector is used which can sometimes give incorrect information. However, in
such cases, the algorithm of [5] can actually allocate the same IP address to
more than one client. We believe that this limitation is inherent. That is, we
believe (though we do not prove) that any fault-tolerant algorithm implementing
a reasonable form of DHCP requires the use of a server failure detector satisfying
similar safety and liveness properties to those we define above. Indeed, failure
detectors are a widely adopted notion in distributed computing, and are provably
necessary to solve many problems, especially agreement problems of the type
similar to DHCPF; see e.g. [1,2].

Stable and Timely Periods. We now describe the assumptions DHCPF
makes in order to satisfy its liveness properties. As mentioned earlier, these prop-
erties only hold during “nice” periods of an execution. A nice period roughly
corresponds to a sufficiently long time interval in which no servers fail or re-
cover, and in which messages are delivered quickly. More precisely, we define the
following.

Definition 3.4. Let λ ∈ R≥0, and let s and s′ be state occurrences with s ≺ s′.
We say that [s, s′] is λ-stable if we have the following

1. There exists j ∈ S such that j is alive in state occurrence s′′, ∀s′′ : ζ(s)−λ ≤
ζ(s′′) ≤ ζ(s′).

2. For all action occurrences σ such that ζ(s) − λ ≤ ζ(σ) ≤ ζ(s′), we have
σ �∈ {fail∗, recover∗}.

218 R. Fan et al.

Thus, [s, s′] is λ-stable if in the entire time duration [ζ(s) − λ, ζ(s′)], no servers
fail or recover, and there is at least one live server.

Definition 3.5. Let s and s′ be state occurrences such that s ≺ s′, and let
λ ∈ R≥0 be such that λ ≤ ζ(s′) − ζ(s). We say [s, s′] is λ-timely if for any
message m, for any k, k′ ∈ C∪S, and for any action occurrence σ adding (m, k′)
to buffer, such that ζ(s) ≤ ζ(σ) ≤ ζ(s′) − λ, there exists action occurrence
σ′ = recvk,k′(m), such that σ ≺ σ′ � s′.

Thus, [s, s′] is λ timely if the interval is at least λ in duration, and any message
sent during the interval at least λ time before s′ is received during [s, s′].

3.3 DHCPF Properties

In this section, we state the properties that DHCPF guarantees, under the as-
sumptions of Section 3.2. We first define the following.

Definition 3.6. Let i ∈ C, φ ∈ Φ, and let s be a state occurrence.

1. We say i owns φ in s if there exists an action occurrence
σ = send∗,i(〈ack, ∗, φ, τ〉) such that σ ≺ s, and ζ(s) ≤ τ + Δ.

2. We let ω(s, φ) = {i | (i ∈ C) ∧ (i owns φ in s)}.

Thus, i owns φ in s if i has been sent an acknowledgment before state s to lease
φ until time τ , and s happens at or before time τ + Δ. Intuitively, the Δ in the
definition is to account for the fact that, when i is given a lease on φ for time τ ,
i may not release φ until real time τ + Δ, due to i’s clock skew.

The following definition describes the properties satisfied by the DHCPF pro-
tocol. The safety property states that at most one client owns any IP address
at a time. The request and renew liveness properties are complicated to state.
But intuitively, they simply say that in nice time periods in which servers do
not fail or recover, messages are delivered quickly, and not all IP addresses have
already been allocated, a client always succeeds in quickly requesting or renew-
ing an address. The liveness properties are described in more detail following
Definition 3.7.

Definition 3.7. Let ν, δ ∈ R≥0. Suppose Υ is a ν-perfect failure detector. Then
an algorithm A satisfies the DHCPF protocol if A’s external actions includes
the actions shown in Figure 1, and for every execution α of A, the following
properties hold.

1. Safety: For any φ ∈ Φ and any state occurrence s, we have |ω(s, φ)| ≤ 1.
2. Request Liveness: Let i ∈ C, κ ∈ K, and let s and s′ be state occurrences,

with s ≺ s′. Let σ = bcasti(〈discover, κ, ∗〉). Let σj = recvj,i(〈discover, κ, ∗, 〉),
∀j ∈ S. Let σφ = send∗,i(〈offer, κ, φ, ∗〉), ∀φ ∈ Φ. Suppose that [s, s′] is (4ν +
4Δ)-stable and δ-timely, and ζ(s′)− ζ(s) ≥ 4δ. Also suppose that σ ∈ [s, s′],
and ζ(σ) ≤ ζ(s′)− 4δ. Then there exists ξ1, ξ2 ∈ R≥0 such that the following
hold.

The DHCP Failover Protocol: A Formal Perspective 219

(a) For every j ∈ Λ(s, s′), we have σj ∈ [s, s′], and ζ(σj) ≤ ζ(σ) + δ. Let sj

be the state occurrence immediately following σj , ∀j ∈ Λ(s, s′).
(b) Either there exists φ ∈ Φ such that σφ ∈ [s, s′] and ζ(σφ) ≤ ζ(σ)+2δ, or

for every φ ∈ Φ, there exists jφ ∈ S such that one of the following holds.

i. Let σ1
φ =sendjφ,∗(〈offer, ∗, φ, ∗, 〉) and σ2

φ = recv∗,jφ
(〈request, ∗, φ, ∗〉).

We have σ1
φ ≺ σjφ

, ζ(σ1
φ) ≥ ζ(σjφ

) − ξ1 − 2Δ, and σ2
φ �≺ σjφ

.
ii. Let σ3

φ = recv∗,∗(〈request, ∗, φ, τφ〉). We have σ3
φ ≺ σjφ

, and ζ(σjφ
) ≤

max(τφ + 3Δ, ζ(σ3
φ) + ξ2 + 3Δ).

iii. Let σ4
φ = recv∗,∗(〈renew, ∗, φ, τ ′

φ, ∗〉). We have σ4
φ ≺ σjφ

, and ζ(σjφ
) ≤

max(τ ′
φ + 3Δ, ζ(σ4

φ) + ξ2 + 3Δ).
(c) Let Φ′ ⊆ Φ, and suppose ∀φ ∈ Φ′ : σφ ∈ [s, s′]. Let

σ′
φ = recv∗,i(ack, κ, φ, ∗〉), ∀φ ∈ Φ. Then there exists φ ∈ Φ′ such that

σ′
φ ∈ [s, s′] and ζ(σ′

φ) ≤ ζ(σ) + 4δ.
3. Renew Liveness: Let i ∈ C, κ ∈ K, τ, τ ′ ∈ R+, φ ∈ Φ, and let s and

s′ be state occurrences with s ≺ s′. Let σ = send∗,i(〈ack, ∗, φ, τ ′〉), σ′ =
bcasti(〈renew, κ, φ, τ, τ ′〉), and σ′′ = recv∗,i(〈ack, κ, φ, ∗〉). Suppose [s, s′] is
(4ν+4Δ)-stable and δ-timely, and ζ(s′)−ζ(s) ≥ 2δ. Also, suppose σ ∈ [s, s′],
with σ ≺ σ′, ζ(σ′) ≤ ζ(s′)− 2δ and ζ(σ′) ≤ τ ′ − δ−Δ. Then σ′′ ∈ [s, s′] and
ζ(σ′′) ≤ ζ(σ′) + 2δ.

We now describe conditions 2 and 3 in more detail. Intuitively, the request
liveness property says that a client that requests an IP address will get one
quickly, unless there is some “excuse” not to give it one. Specifically, let [s, s′]
be an interval that is at least 4δ time long, and is stable and timely. Then if a
client i broadcasts a discover message at time t = ζ(σ), its message is received
by all live servers no later than time t + δ. Condition 2.b states that either i
receives an offer for some IP address φ, or the servers have an excuse not to offer
i any address; conditions 2.b.i− 2.b.iii list various excuses not to offer i address
φ. In condition 2.b.i, φ has recently been offered to some client, but has not been
requested. Thus, φ is reserved for the other client. In 2.b.ii, some client requested
φ for time τφ in action occurrence σ3

φ. The quantity max(τφ+3Δ, ζ(σ3
φ)+ξ2+3Δ)

represents a lease for φ that was potentially given out to that client3. If ζ(σjφ
) ≤

max(τφ + 3Δ, ζ(σ3
φ) + ξ2 + 3Δ), then i’s discover message arrived at server jφ

before the last (potential) lease for φ has expired, which justifies i not being
offered φ. Condition 2.b.iii is similar to 2.b.ii, but deals with a renew on φ by
another client. Lastly, condition 2.c says that if i is offered some IP addresses,
then i will also be given a lease for some such address no later than time t + 4δ.
The renew liveness condition says that in a stable and timely interval, if client
i tries to renew φ sufficiently long before its previous lease τ ′ on φ expires, then
i will be granted a new lease on φ. Finally, note that despite their complicated
statement, the excuses in the liveness property are in some ways inherent to the
DHCPF problem. Nevertheless, it would be desirable to find a more succinct
way of expressing them.
3 The ξ2 and Δ terms represent some “slack” in the estimate for the potential lease.

220 R. Fan et al.

4 A DHCPF Algorithm

In this section, we describe an algorithm satisfying the DHCPF specification in
Definition 3.7. Our algorithm uses ideas described in [5], and also introduces
several new ones. Compared to [5], our algorithm is more structured, and is
considerably simpler to understand and analyze. The algorithm is based on a
decomposition of the DHCPF protocol into two subproblems, with the goal to
base the subproblems on well-studied problems in distributed computing, and to
maximize the amount of “independence” between the subproblems. In the first
problem, we find, for each address φ ∈ Φ, a server which we call the leader for
φ. The leader for φ is the only server that is allowed to lease φ to the clients.
The leader for φ may change during an execution, as servers fail and recover.
However, we will ensure that at all times, there is at most one leader for φ. We
call this the leader election problem. Given a leader for φ, say j ∈ S, the second
problem involves j leasing φ to the clients in a way such that even if j fails,
and another server j′ takes over as leader for φ, the leases given out by j′ for φ
will not conflict with leases given out by j. We call this the lease problem. In
the remainder of this section, we first describe an algorithm to solve the leader
election problem, then give an algorithm which uses the leader election algorithm
to solve the lease problem. Our DHCPF algorithm, satisfying the properties in
Definition 3.7, is the (formal) composition of these two algorithms.

4.1 Leader Election Algorithm

We now present the Elect algorithm for solving the leader election problem. We
first describe the algorithm, then prove the properties it satisfies in Theorems
4.2 and 4.3. For the remainder of this section, fix an arbitrary ν ∈ R≥0. Elect
uses a ν-perfect failure detector Υ . Recall that Δ is a bound on the maximum
clock skew of any server (or client).

The pseudocode for server j running the Elect j algorithm is shown in
Figure 2. For each φ ∈ Φ, let <φ be a total ordering on the set S. If S′ ⊆ S,
then minφ S′ denotes the minimum server in S′, with respect to ordering <φ. The

input recvΥ,j(〈dead, j′〉)
Effect:

live ← live\{j′}
for every φ ∈ Φ do
if ((j = minφ live)∧

(clock ≥ rec-time + 2ν + 2Δ)) then
leader ← leader ∪ {φ}
lead-time[φ] ← clock
lead[φ] ← true

input alivej

Effect:
rec-time ← clock

input recvΥ,j(〈alive, j′〉)
Effect:

live ← live ∪ {j′}
for every φ ∈ Φ do
if (j �= minφ live) then
leader ← leader \ {φ}

output leadj(φ)
Precondition:

lead[φ] = true
Effect:

lead[φ] ← false

Fig. 2. The Electj algorithm, for j ∈ S

The DHCP Failover Protocol: A Formal Perspective 221

idea of Elect is to let the minφ live server be the leader for φ4. Information
about which servers are alive is provided to j by Υ ; j keeps track of the servers
it thinks are alive in the set live, which initially equals S. j keeps track of the
IP addresses for which it is the leader in the set leader5; leader initially equals
∅. lead[φ] is a helper variable to flag when j becomes the leader for φ. When j
recovers from a failure, it stores the time of its recovery in rec-time. Whenever
j receives an alive message about server j′ from Υ , j adds j′ to live. After this,
if for any φ ∈ Φ, j is no longer the minφ live server, it removes φ from leader.
When j receives a dead message for j′ from Υ , j removes j′ from fail. Then,
if j becomes the minφ server for φ, and if j’s current time is sufficiently larger
than j’s last recovery time, j becomes leader for φ, by adding φ to leader. j also
records the time it becomes leader in lead-time[φ].

Correctness of Elect. Before stating the correctness properties Elect satisfies,
we first define the following.

Definition 4.1. Let φ ∈ Φ, and let s be any state occurrence. We say Ω(s, φ) =
{j | (j ∈ S) ∧ (φ ∈ s.leaderj)} is the set of leaders for φ in s.

Recall that for state occurrences s ≺ s′, Λ(s, s′) is the set of servers that are
alive throughout the interval [s, s′], and ζ(s) is the real time at which s occurs..
The following safety property states that for any address φ, there is at most one
server that is the leader for φ at any time. Due to lack of space, we omit the full
proof of the theorem; it appears in the full version of this paper.

Theorem 4.2 (Safety). For any execution α of Elect, any state occurrence s
in α, and any φ ∈ Φ, we have |Ω(s, φ)| ≤ 1.

Proof. The basic idea is that each server waits for a period of time after it
recovers before trying to become leader. During that time, because Υ is timely,
the server will be able to hear about any other live servers which might be
competing to become leader. Thus, all candidates to become leader will know
about each other, and so only the minimum one will be elected leader. 	

The following liveness property says that in any sufficiently stable state occur-
rence, for any φ ∈ Φ, the minφ live server is the leader for φ. The proof appears
in the full paper. The basic idea is that in a stable execution, all the live servers
know about each other, and so the minimum live server is elected leader.

Theorem 4.3 (Liveness). Let α be any execution, and let s be any state oc-
currence such that s is (4ν + 4Δ)-stable. Then for all φ ∈ Φ, we have φ ∈
s.leaderminφ Λ(s,s).

4 Note that the reason we use a (possibly) different ordering <φ for each φ is for load-
balancing. Indeed, we can define a canonical ordering < on S and let the minimum
(w.r.t. <) live server be the leader for every IP address; but this may overload the
minimum live server while the other servers do nothing.

5 Note that j can be the leader for several addresses at the same time.

222 R. Fan et al.

4.2 Lease Algorithm

In this section, we describe the lease algorithm, uncreatively named Lease. Lease
uses Elect ; in particular, every server j ∈ S running Lease needs to know lead-
time[φ]j , for all φ ∈ Φ, and also needs to know leaderj . That is, j needs to know
when it last became the leader for φ (if ever), and what addresses it is leader
for. The Lease algorithm is shown in Figure 3. We first describe the algorithm,
then prove the properties it satisfies in the next section.

Consider any φ ∈ Φ, and suppose j is the current leader for φ. The main thing
Lease needs to ensure is that when j gives out a lease for φ, the other servers
know about this lease in some way, so that if j later fails, the next leader for φ
will not give out a conflicting lease. To let other servers know about its leases, j
gives out two types of leases: an (intuitively, short)Minimum Client Lead Time
(MCLT) lease, and an (intuitively, long) acknowledged lease. For the remainder
of this paper, we fix a constant μ ∈ R+ which we call the MCLT value. Roughly
speaking, when a client i sends j a request message to lease φ until time τ , j first
gives i a lease equal to j’s current clock value plus μ. This is the MCLT lease;
note that it may be less than τ . Immediately after acknowledging the client, j
broadcasts a potlease-write message to all the servers containing φ and τ . When a
server j′ receives this message, it sets potlease[φ]j′ ← τ ; now, j′ knows that some
client has requested a lease of τ on φ. j′ also acknowledges j with a potlease-
write-ack message. When j receives acks about φ and τ from every server in S,
j sets acklease[φ]j ← τ . Now, if i sends a renew message for φ for time τ ′, j
will give i a lease for time τ ; this is an acknowledged lease. Thus intuitively, j
begins by giving i a “temporary” MCLT lease, intended to tide i over while j
negotiates a “real” acknowledged lease for i with the other servers.

We now describe the Lease algorithm for a server j in more detail, keeping in
mind the above schema. In j’s initial state, we set reservedj = ∅, potlease[φ]j =

input leadj(φ)
Effect:

potlease[φ] ← max(lead-time[φ]+
μ + 2Δ, potlease[φ])

input recvi,j(〈discover, κ, τ〉)
Effect:

S ← {φ | (φ ∈ leader) ∧ ((∗, φ, ∗)
∈ reserved)∧
(potlease[φ] + 2Δ < clock)}

if S
= ∅ then
choose φ ∈ S
reserved ← reserved ∪ {(κ, φ, clock)}
add (〈offer, κ, φ, 0〉, i) to buffer

input recvi,j(〈request, κ, φ, τ〉)
Effect:

reserved ← reserved\(κ, ∗, ∗)
if (φ ∈ leader) ∧ (potlease[φ] + 2Δ < clock) then

acklease[φ] ← clock + μ
τ ← max(τ, acklease[φ])
potlease[φ] ← acklease[φ]
add (〈ack, κ, φ, acklease[φ]〉, i) to buffer

for every j′ ∈ S do
add (〈potlease-write, φ, κ, τ〉, j′) to buffer

input recvi,j(〈renew, κ, φ, τ, τ′〉)
Effect:

if (φ ∈ leader) ∧ (τ′ ≥ clock) then
acklease[φ] ← max(clock + μ, acklease[φ])
τ ← max(τ, acklease[φ])
potlease[φ] ← max(acklease[φ], potlease[φ])
add (〈ack, κ, φ, acklease[φ]〉, i) to buffer

for every j′ ∈ S do
add (〈potlease-write, φ, κ, τ〉, j′) to buffer

input recv
j′,j

(〈potlease-write, φ, κ, τ〉)
Effect:

potlease[φ] ← max(τ, potlease[φ])
add (〈potlease-write-ack, φ, κ, τ〉, j′) to buffer

input recv
j′,j

(〈potlease-write-ack, φ, κ, τ〉)
Effect:

write-acks[κ] ← write-acks[κ] ∪ {j′}
if write-acks[κ] = S then

acklease[φ] ← max(τ, acklease[φ])

input cleanupj()
Effect:

S ← {(κ, φ, t) | ((κ, φ, t) ∈ reserved)∧
(t < clock − θ)}

reserved ← reserved \ S

Fig. 3. The Leasej algorithm

The DHCP Failover Protocol: A Formal Perspective 223

acklease[φ]j = 0, ∀φ ∈ Φ, and write-acks[κ]j = ∅, ∀κ ∈ K. To request a lease, a
client i broadcasts a discover message. When j receives this message, it checks
three things. First, j checks that it is the leader for φ, i.e. φ ∈ leaderj . Then j
checks that φ �∈ reservedj ; that is, no other client asked j for φ before i. Lastly,
j checks that potlease[φ]j +2Δ < clockj. potlease[φ]j represents the j’s estimate
of the highest lease which could possibly have been given out for φ, by any server
(e.g., by previous leaders for φ). If potlease[φ]j +2Δ < clockj , then j knows that
any previous leases for φ have definitely expired. If all three conditions hold, then
j sends an offer for φ to i. j also adds i’s interaction instance κ, along with φ
and the current time, to reservedj . Having received offers from possibly multiple
servers, i sends a request message for its preferred address. If j receives a request
message from i for φ with lease time τ , it again checks the above conditions. If
they hold, then j sends i an MCLT lease, i.e., a lease equal to clockj + μ. j also
sends potlease-write for φ and τ to all the servers. If j′ receives j’s potlease-write,
it sets potlease[φ]j′ ← max(τ, potlease[φ]j′), and acknowledges j with potlease-
write-ack. j keeps track of which servers have acknowledged it in write-acks[κ]j .
When write-acks[κ]j = S, j sets acklease[φ]j ← max(τ, acklease[φ]j).

Whenaclient iwhichcurrentlyhasa lease time τ ′ forφasks j to renewφ for time τ ,
j firstchecksthat it is theowner forφ, andthenthatτ ′ ≥ clockj.The lattercondition
checks that the current lease τ ′ has not yet expired, giving i the right to renew φ.
If both conditions hold, j sets acklease[φ]j ← max(clockj + μ, acklease[φ]j), and
sends i a lease for φ until time acklease[φ]j; thus, j gives i an acknowledged lease. j
also broadcasts potlease-write for φ and τ to the other servers.

For the remainder of this paper, fix a constant θ ∈ R+. The cleanupj action
removes addresses from reservedj that were offered at least θ time ago to some
clients, but have not been requested. This is to reclaim addresses offered to
clients that fail (or are slow) after being offered an address.

4.3 The Composed DHCPF Algorithm

We define our DHCPF algorithm to be the formal composition
∏

j Electj×Leasej .
We refer to [6] for a full description of the composition operator ×. Briefly, ×
works by sharing the variables that the composed automata have in common,
and identifying the output actions of one automaton with the input actions of
the same name of another automaton. In our case, this means that for all j ∈ S,
Elect j and Leasej both have access to the variables leaderj , and lead-time[φ]j,
∀φ ∈ Φ. Elect j and Leasej have only one type of action in common, leadj(φ), ∀φ ∈
Φ. By composing the algorithms, the input action leadj(φ) of Leasej is triggered
whenever the output action leadj(φ) of Elect j occurs. Thus, Elect j notifies Leasej

whenever j becomes the leader for φ. We will call
∏

j Electj×Leasej the algorithm
C, for “composed”.

5 Properties of C
In this section, we show that the execution traces of C satisfy the DHCPF specifi-
cation in Definition 3.7. In the remainder of this section, fix α = γ0σ1γ1 . . . σnγn

224 R. Fan et al.

to be an arbitrary execution of C. Define sk to be the state of C immediately
before γk, for k ∈ 0..n. We first consider the safety properties.

5.1 Safety Properties of C
The basic idea for showing that C never allocates the same IP address to more
than one client is to show that the potlease[φ] value of the leader for φ is always
an overestimate of the actual lease given out for φ. For example, suppose the
last lease for φ was given out by server j′ �= j, at real time t. Then, if j′ gave
out an MCLT lease, the value of the lease is approximately t + μ. If j becomes
the leader for φ, at a time t′ > t, its first step is to set its potlease[φ] value to
at least t′ + μ + 2Δ, which overestimates the real lease time. Otherwise, if the
lease given out by j′ was an acknowledged lease, then j received a potlease-write
message for the lease from j′, and thus also set its potlease[φ] value to be at least
the value of j′’s lease. Now, because the leader’s potlease[φ] value is at least as
large as the highest lease given out for φ, and because the leader checks that
the current time on its clock (plus some slack) is larger than potlease[φ] before
giving out a new lease for φ, then φ will never be double allocated. We now state
a series of lemmas to formalize this idea. Due to lack of space, the complete
proofs appear in the full paper. The proof method in most cases is an induction
on the execution length. That is, we show a lemma holds in the initial state of
the execution, and check that every step of the execution preserves the lemma.
The lemmas were chosen so that these checks are typically quite straightforward.
In fact, most of the proofs seem to be checkable by interactive theorem prover
tools.

The first lemma states that potlease[φ]j never decreases during α, for any j
and φ.

Lemma 5.1. Let j ∈ S, φ ∈ Φ, and let s and s′ be state occurrences such that
s ≺ s′. Then s.potlease[φ]j ≤ s′.potlease[φ]j.

We define the following.

Definition 5.2. Let i ∈ C, κ ∈ K, φ ∈ Φ, τ, τ ′ ∈ R≥0, and suppose there exists
an action occurrence σ=bcasti(〈request, κ, φ, τ〉) or σ′=bcasti(〈renew, κ, φ, τ, τ ′〉)
in α. Then we define iκ = i, φκ = φ, and τκ = τ .

Thus, iκ, φκ, and τκ are the client, IP address and desired lease time associated
with a request or renew interaction instance κ. Note that these are well defined
because every interaction in α uses a different κ, so that at most one of σ or
σ′ can occur in α. The following lemma says that given an interaction instance
κ and its associated φκ and τκ, if one server is contained in the write-acks[κ]
variable of another server, then the former server’s potlease[φκ] is at least τκ.

Lemma 5.3. Let κ ∈ K, j, j′ ∈ S, and let s be a state occurrence. Suppose
j ∈ s.write-acks[κ]j′ . Then s.potlease[φκ]j ≥ τκ.

The next lemma compares the values of potlease[φ], acklease[φ] and clock at dif-
ferent servers, for any φ. The basic proof idea is that j can estimate acklease[φ]j′

The DHCP Failover Protocol: A Formal Perspective 225

either through a potlease-write message from j′ when j′ gives out an acknowl-
edged lease, or by adding μ to j’s own clock, when j′ gives out an MCLT lease.
The 2Δ term accounts for the possible skew between j and j′’s clocks.

Lemma 5.4. Let φ ∈ Φ, j, j′ ∈ S, and let s be a state occurrence. Then we have
max(s.potlease[φ]j , s.clockj + μ + 2Δ) ≥ s.acklease[φ]j′ .

The next lemma states that the potlease[φ] value of the leader for φ is at least
as large as any acklease[φ] value. The proof uses Lemma 5.4, the fact that there
is at most one leader for φ at a time (by Theorem 4.2), and the fact that j sets
potlease[φ]j to max(lead-time[φ]j + μ+ 2Δ, potlease[φ]j) upon becoming leader
for φ.

Lemma 5.5. Let φ ∈ Φ, j ∈ S, and let s be a state occurrence. Then if Ω(s, φ) �=
∅, we have s.potlease[φ]Ω(s,φ) ≥ s.acklease[φ]j.

The next lemma states that acklease[φ] never decreases, for any j and φ.

Lemma 5.6. Let j ∈ S, φ ∈ Φ, and let s and s′ be state occurrences such that
s ≺ s′. Then s.acklease[φ]j ≤ s′.acklease[φ]j.

Combining the above lemmas, the following theorem states that at most one
client is assigned any IP address at any time. Intuitively, the theorem holds
because the leader for φ has a good estimate of the maximum possible lease
given out for φ using potlease[φ], and checks that this lease has expired before
giving out a new lease for φ.

Theorem 5.7. Any execution of C satisfies the safety property in Definition 3.7.

5.2 Liveness Properties of C
The next two theorems state that C satisfies the request and renew liveness
conditions of the DHCPF specification. Recall that θ is the amount of time a
server reserves an IP address for a client after receiving its discover message.
Complete proofs appear in the full paper.

Theorem 5.8. Let ξ1 = θ, and ξ2 = μ. Then any execution of C satisfies the
request liveness property in Definition 3.7.

Proof. Despite the complicated statements of the request and renew liveness
properties, it is in fact straightforward to show that C satisfies them. This is
because the properties are basically a list of all the problems which might occur
to prevent liveness. Thus, the liveness proof consists of showing that when all
such problems are ruled out, C is live. 	

Theorem 5.9. Any execution of C satisfies the renew liveness property in Def-
inition 3.7.

Combining Theorems 5.7, 5.8 and 5.9, we have shown that C satisfies all the
properties of a DHCPF protocol.

226 R. Fan et al.

6 Conclusions

In this paper, we presented a formal specification of a fault-tolerant DHCP
algorithm for unique IP address assignment. The algorithm is implemented as a
composition of two algorithms, modeling dynamic versions of the leader election
and shared register problems. This structure facilitated the proof of correctness
of the algorithm. Its simplicity also lends well to practical implementations and
deployment.

There are several directions for extending our work. While we feel that DHCPF
is naturally modeled as a timed mutual exclusion problem, as in our Definition
3.7, there seems to be substantial freedom in choosing the various parameters and
assumptions making up this definition. For example, is a failure detector really
necessary to implement DHCPF? Do we need stable and timely periods to en-
sure liveness? If so, can these periods be made smaller than in our definition? Can
we find other natural ways to characterize liveness properties, perhaps avoiding
the complexity of the request liveness definition? In another vein, having speci-
fied DHCPF in a particular way, is the decomposition of the problem into leader
election and shared register abstractions the best one? For example, does this
decomposition ensure the most independence between the subproblems, so that
each problem can be solved in isolation and later composed? Does decomposing
DHCPF into subproblems lead to a less efficient, if also less complex solution than
solving the problem as a monolithic whole? Some of these questions can be ex-
pressed as formal questions of lower bounds. For others, especially the design is-
sues, we currently lack a proper theory to rigorously address them. We hope that
our abstract model and analysis contributes to understanding these interesting
and important problems.

References

1. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

3. Dolev, D., Shavit, N.: Bounded concurrent time-stamping. SIAM J. Comput. 26(2),
418–455 (1997)

4. Droms, R.: Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard)
Updated by RFCs 3396, 4361 (March 1997)

5. Droms, R., Kinnear, K., Stapp, M., et al.: DHCP Failover Protocol (March 2003)
http://www3.ietf.org/proceedings/03mar/I-D/draft-ietf-dhc-failover-12.

txt

6. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Morgan and Claypool (2005)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

http://www3.ietf.org/proceedings/03mar/I-D/draft-ietf-dhc-failover-12. txt
http://www3.ietf.org/proceedings/03mar/I-D/draft-ietf-dhc-failover-12. txt

Verifying Erlang/OTP Components in μCRL

Qiang Guo

Department of Computer Science,
The University of Sheffield,

Regent Court, 211 Portobello Street, S1 4DP, UK
Q.Guo@dcs.shef.ac.uk

Abstract. Erlang is a concurrent functional programming language
with explicit support for real-time and fault-tolerant distributed systems.
Generic components encapsulated as design patterns are provided by the
Open Telecom Platform (OTP) library. Although Erlang has many high-
level features, verification is still non-trivial. One (existing) approach is
to perform an abstraction of an Erlang program into the process alge-
bra μCRL, upon which standard verification tools can be applied. In
this paper we extend this work and propose a model that supports the
translation of an OTP finite state machine design pattern into a μCRL
specification. Then a standard toolset such as CADP can be applied in
order to check properties that should hold for the system under develop-
ment. Two small examples are presented, which experimentally show how
the proposed model assists in model checking Erlang OTP components
in μCRL.

Keywords: Erlang, OTP, process algebra, μCRL, Verification.

1 Introduction

Model checking [8] has been widely used in system design and verification. The
advantage of using model checking based techniques for system verification is
that, when a fault is detected, model checker can generate a counter example
given as a trace. These traces are useful since they help the system designer to
understand the reasons that cause the occurrence of failures and provide clues
for fixing the problem.

Model checking can be applied in two ways. One way, in combination with
a model checker, is to use a formal specification language such as a process
algebra [15], to obtain a correct specification. The specification is then used to
develop an implementation in a programming language such as Erlang [1]. The
other way uses the program code as a starting point and abstracts it into a
form suitable for use by a model checker, and this requires an interpretation
mechanism to support the translation of the programming language into the
formal specification language used by the model checker.

Recently this second approach has been applied to the verification of Erlang
programs and OTP components [2,3,6,10]. Here the process algebra μCRL [13]
has been used as the formal language upon which verification is carried out. A

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 227–246, 2007.
c© IFIP International Federation for Information Processing 2007

228 Q. Guo

toolset, etomcrl, has been developed to automate the process of translation of an
Erlang program into a μCRL specification. The translation from Erlang to μCRL
is performed in two stages, where in the first, a source to source transformation
is applied, resulting in Erlang code that is optimised for the verification, but has
identical behaviour. Then second, this output is translated to μCRL.

Erlang/OTP software is usually written according to strict design patterns
that make extensive use of software components. Encapsulated in the extensive
OTP library are a variety of design patterns, each of which is intended to solve
a particular class of problem. Solutions to each such problem come in two parts.
The generic part is provided by OTP as a library module and the specific part
is implemented by the programmer in Erlang. Typically these specific callback
functions embody algorithmic features of the system, whilst the generic com-
ponents provide for fault tolerance, fault isolation and so forth. The etomcrl
translation tool currently produces translations of the callback modules of the
OTP generic servers and supervisors.

In addition to generic servers and supervisors, OTP provides further generic
components including finite state machines, event handlers, and applications.
These considerably simplify the building of systems. In this paper we extend the
above approach to develop a model that supports the translation of OTP finite
state machines (FSMs) into μCRL.

To do so, the Erlang state function in the FSM is translated into two parts
in μCRL, one of which defines a μCRL state-process that can be called or syn-
chronized by some other processes, while, the other consists of a series of μCRL
state functions. The set of sequences of actions defined in an Erlang state func-
tion are translated into a set of pre-defined action sets in μCRL, each of which
is uniquely indexed by an integer. A μCRL state-process starts by calling its
μCRL state function. The function returns an index number that determines
which pre-defined action set needs to be performed. we use a simple stack to
simulate the management of FSM states and data. In order to define the correct
translation we use techniques proposed in [16] which are needed to deal with the
presence of overlapping patterns in pattern matching.

The rest of this paper is organized as follows: Section 2 introduces the Erlang
programming language; Section 3 describes the process algebra μCRL; Section 4
reviews the related work for the translation of Erlang programs into μCRL; Sec-
tion 5 investigates the translation of Erlang FSM programs into μCRL; Section
6 evaluates the proposed model with two case studies; conclusions are finally
drawn in Section 7.

2 Erlang and OTP

The programming language Erlang [1] is a concurrent functional programming
language with explicit support for real-time and fault-tolerant distributed sys-
tems. Since being developed, it has been used to implement some substantial
business critical applications such as the Ericsson AXD 301 high capacity ATM
switch [4]. Erlang is available under an Open Source licence from Ericsson, and

Verifying Erlang/OTP Components in μCRL 229

its use has spread to a variety of sectors. Applications include TCP/IP pro-
gramming (HTTP, SSL, Email, Instant messaging, etc), web-servers, databases,
advanced call control services, banking, 3D-modelling.

Erlang is a functional programming language, and as such an Erlang program
consists of a set of modules, each of which define a number of functions. Functions
that are accessible from other modules need to be explicitly declared as export. A
function named f name in the module module and with arity N is often denoted
as module:f name/N.

Erlang is a concurrent programming language, and as such provides a light-
weight process model. Several concurrent processes can run in the same virtual
machine, each of which being called a node. Each process has a unique identifier
to address the process and a message queue to store the incoming messages.
Erlang has an asynchronous communication mechanism where any process can
send (using the ! operator) a message to any other process of which it happens
to know the process identifier. Sending is always possible and non-blocking; the
message arrives in the unbounded mailbox of the specified process. The latter
process can inspect its mailbox by the receive statement. A sequence of patterns
can be specified to read specific messages from the mailbox. When reading a
message, a process is suspended until a matching message arrives or timeout
occurs. A distributed system can be constructed by connecting a number of
virtual machines.

A unique feature of Erlang is the OTP architecture, which is designed to
support the construction of fault-tolerant systems containing soft real-time re-
quirements. Its use has been very successful since Erlang/OTP software is usually
written according to strict design patterns that make extensive use of software
components. Each design patterns solves a particular class of problem, and so-
lutions to each such problem come in two parts: the generic part is provided as
a library module and the specific part is implemented by the programmer. The
specific callback functions implement the necessary algorithm, and fault toler-
ance, fault isolation etc is provided by the generic component. The following
briefly reviews generic servers, supervisors and finite state machines - the three
key components which account for around 80% of OTP compliant code.

Generic servers and supervisors. The Erlang/OTP supports a generic im-
plementation of a server by providing the gen server module which provides a
standard set of interface functions for synchronous and asynchronous communi-
cation, debugging support, error and timeout handling, and other administra-
tive tasks. A generic server is implemented by providing a callback module where
(callback) functions are defined specifying the concrete actions of the server such
as server state handling and response to messages. When a client wants to syn-
chronously communicate with the server, it calls the standard gen server:call
function with a certain message as an argument. If an asynchronous communi-
cation is required, the gen server:cast is invoked where no response is expected
after a request is sent to the server. A terminate function is also defined in
the call back module. This function is called by the server when it is about to
terminate, which allows the server to do any necessary cleaning up.

230 Q. Guo

When developing concurrent and distributed systems, a commonly accepted
assumption is that any Erlang process may unexpectedly terminate due to some
failures. Erlang/OTP supports fault-tolerance by using the supervision tree,
which is a structure where the processes in the internal nodes (supervisors)
monitor the processes in the external leaves (children). A supervisor is a process
that starts a number of child processes, monitors them, handles termination
and stops them on request. The children themselves can also be supervisors,
supervising their children in turn.

Finite state machines. The Erlang/OTP architecture supports the imple-
mentation of finite state machines by providing the gen fsm module, and these
are used extensively in a variety of contexts.

A (deterministic) FSM M can be described as a set of relations of the form
State(S)×Event(E) → (Action(A), State(S)) where S, E and A are finite and
nonempty sets of states, events and actions respectively. If M is in state s ∈ S
and receives event e ∈ E, action a ∈ A is performed, moving M to a state s′ ∈ S.
For an implementation using the gen fsm module, gen fsm is started by calling
start link(Code):

start link(Code) →
gen fsm : start link({local, fsm name},

callback module name,Code, []).

{local, fsm name} implies that the FSM is locally registered as fsm name;
callback module name is the name of the callback module where the callback
functions are located; Code is a term that is passed to the callback function init;
the last argument, [], is a list of options. If the registration succeeds, the new
gen fsm process calls the callback function callback module name:init(Code).
This function is expected to return {ok, StateName, StateData} where
StateName saves the name of initial state and StateData the corresponding
state data.

The state transition rules are written as a number of state functions that
conform to the following convention:

StateName(Event, StateData) →
... code for actions ...;

{next state,StateName′,StateData′,Timer}.
Having performed all pre-defined actions, the state function returns a tu-

ple that contains the name of the next state, StateName′, and an updated
state data, StateData′. StateName′ is updated as the new current state by the
gen fsm module. T imer is an optional element, if it is set to a value, a timer is
instantiated, and a timeout event will be generated when the time-up occurs.

The function send event is defined to trigger a transition. When send event
is executed, the gen fsm module automatically calls the current state function.

Example - a door with code lock. The initial design for a door with a code
lock is illustrated in Figure 1, and consists of two states, locked and open, and a

Verifying Erlang/OTP Components in μCRL 231

Fig. 1. FSM - door with code lock

-module(fsm door). locked({button, Password}, Code) →
-export([start link/1, button/1, init/ 1]). case Password of
-export([locked/2, open/ 2]). Code →

action:do unlock(),
start link(Code) → {next state, open, Code};

gen fsm:start link(local, fsm door, Wrong →
fsm door, Code,[]). action:display message(),

{next state, locked, Code}.
init(Code) →

{ok, locked, Code}. open({button, Password}, Code) →
action:do lock(),

button(Password) → {next state, locked,Code};
gen fsm:send event(fsm door,

{button, Password}).

Fig. 2. The Erlang code for a door with code lock

system code for opening the door. Initially, the door is set to locked while the code
is set to a word. The door switches between states, driven by an external event.

The Erlang/OTP implementation of the system is shown in Figure 2 where
the function button is defined to simulate the receiving of a password. The action
send event triggers a state transition where a state function is executed, in this
example either locked or open. A password generated from an external action
is evaluated, and if the door is in the state locked and the received password is
correct, the door will be opened through action send event. Otherwise, if the
password is not correct, the door remains locked. When the door is in the state
open and action send event is performed, the door will be locked, regardless of
the password received.

3 The Process Algebra μCRL

The process algebra μCRL (micro Common Representation Language) [13] is an
extension of the process algebra ACP [14], where equational abstract data types
have been integrated into the process specification to enable the specification of
both data and process behaviour (in a way similar to LOTOS).

A μCRL specification comprises two parts: the data types and the processes.
Processes are declared using the keyword proc, and contains actions representing

232 Q. Guo

atomic events that can be performed. These actions must be explicitly declared
using the keyword act. Data types used in μCRL are specified as the standard
abstract data types, using sorts, functions and axioms. Sorts are declared using
the keyword sort, functions are declared using the keywords func and map.
Axioms are declared using the keyword rew, referring to the possibility to use
rewriting technology for the evaluation of terms.

A number of process-algebraic operators are defined in μCRL, these being:
sequential composition (·), non-deterministic choice (+), parallelism (‖) and
communication (|), encapsulation (∂), hiding (τ), renaming (ρ) and recursive
declarations. A conditional expression true � condition � false allows data ele-
ments to influence the flow of control in a process, and the operator (

∑
) provides

the possibly infinite choice over some sorts.
In μCRL, parallel processes communicate via the synchronization of actions.

The communication in a process definition is described by its communication
specification, denoted by the keyword comm. This describes which actions may
synchronize on the level of the labels of actions. For example, in comm in|out,
each action in(t1, ..., tk) can communicate with out(t′1, ..., t

′
k) provided k = m

and t1, t′1 denote the same element for i = 1, ..., k.
As an example, consider the specification of a stack in μCRL given in Figure 3.

The stack, initially defined in [3] for coping with side effect functions, defines six ac-
tions, these being rcallvalue,wcallresult, push callstack, rcallresult,wcallvalue
and pop callstack; rcallvalue | wcallresult = push callstack and rcallresult |
wcallvalue = pop callstack. The action rcallvalue pushes a value to stack, while,
the action rcallresult pops up the top value from stack.

sort is empty(push(T1,S1)) = F
TermStack pop(push(T1,S1)) = S1

func top(push(T1,S1)) = T1

empty: → TermStack eq(empty,S2) = is empty(S2)
push: Term # TermStack → eq(push(T1,S1),S2)

TermStack = and(is top(T1,S2),eq(S1,pop(S2)))
map
is top: Term # TermStack → Bool act
is empty: TermStack → Bool rcallvalue,wcallresult,push callstack: Term
pop: TermStack → TermStack rcallresult,wcallvalue,pop callstack: Term
top: TermStack → Term comm
eq: TermStack # TermStack → Bool rcallvalue | wcallresult = push callstack

var rcallresult | wcallvalue = pop callstack
S1, S2: TermStack proc
T1, T2: Term CallStack(S TermStack) =

rew sum(Value:Term,rcallvalue(Value).
is top(T1,empty) = F CallStack(push(Value,S))) +
is top(T1,push(T2,S1))= eq(T1,T2) (delta � is empty(S)� wcallvalue(top(S)).
is empty(empty) = T CallStack(pop(S)))

Fig. 3. The syntax of μCRL stack

Verifying Erlang/OTP Components in μCRL 233

An interleave relation with the process CallStack needs to be defined for
those processes that will exchange data with the stack. To save a V alue, a
process needs to perform wcallresult(V alue) first, which leads to the synchro-
nization between this process and process CallStack. The action sum(V alue :
Term, rcallresult(V alue)) is consequently performed, which pushes the value
into the stack. To read a value, a process needs to perform sum(V alue : Term,
rcallresult(V alue)) where wcallvalue is performed to pop up the top value from
stack and assign it to V alue.

4 Related Work

As discussed in the introduction, Benac Earle et al. [2,3,6,10] have studied the
translation of Erlang programs into μCRL and developed a toolset, etomcrl, for
automating the process of translation.

4.1 Translating Erlang Programs into μCRL

The translation from Erlang to μCRL is performed in two stages. First, a source
to source transformation is applied, resulting in Erlang code that is optimized
for the verification, but has identical behaviour. Second, this code is translated
to μCRL.

The actual translation is quite involved due to particular language features
in Erlang. For example, Erlang makes use of higher-order functions, whereas
μCRL is 1st order; Erlang is dynamically typed, but μCRL is statically typed;
in Erlang communication can take place in a computation, in μCRL it cannot.
However, μCRL is sufficiently close that such a translation is feasible, and model
checking on it computationally tractable even if the translation is involved.

Because Erlang is dynamically typed it is necessary to define in μCRL a data
type Term where all data types defined in Erlang are embedded. The translation
of the Erlang data types to μCRL is then basically a syntactic conversion of
constructors as shown in Figure 4.

sort
Term

func
pid: Natural → Term
int: Natural → Term
nil: → Term
cons: Term # Term → Term
tuplenil: Term → Term
tuple: Term # Term → Term
true: → Term
false: → Term

Fig. 4. The translation scheme for Erlang data types

234 Q. Guo

Atoms in Erlang are translated to μCRL constructors; true and false rep-
resent the Erlang booleans; int is defined for integers; nil for the empty list;
cons for a list with an element (the head) and a rest (the tail); tuplenil for
a tuple with one element; tuple for a tuple with more than one element; and
pid for process identifiers. For example, a list [E1, E2, ..., En] is translated to
μCRL as cons(E1, cons(E2, cons(..., cons(En, nil)))). A tuple {E1, E2, ..., En} is
translated to μCRL as tuple(E1, tuple(E2, ..., tuplenil(En))).

Variables in Erlang are mapped directly to variables in μCRL. Operators
are also translated directly, specified in a μCRL library. For example, A + B
is mapped to mcrl plus(A,B), where mcrl plus(A,B) = int(plus(term to nat(A),
term to nat(B))). Higher-order functions in an Erlang programs are flattened
into first-order alternatives. These first-order alternatives are then translated
into rewrite rules.

Program transformation is defined to cope with side-effect functions. With a
source-to-source transformation, a function with side-effects is either determined
as a pure computation or a call to another function with side-effects. Stacks are
defined in μCRL where push and pop operations are defined as communication
actions. The value of a pure computation is pushed into a stack and is popped
when it is called by the function.

Communication between two Erlang processes, which can be asynchronous,
is translated via defining two process algebra processes, one of which is a buffer,
while the other implements the logic. The synchronous communication is mod-
elled by the synchronizing actions of process algebra. One action pair is defined
to synchronize the sender with the buffer of the receiver, while another action
pair to synchronize the active receive in the logic part with the buffer. In this
way the asynchronous communication and the Erlang message queue is simulated
directly in the μCRL abstraction.

4.2 Overlapping in Pattern Matching

Erlang makes extensive use of pattern matching in its function definitions. The
toolset etomcrl translates pattern matching in a way where overlapping pat-
terns are not considered. This might induce faults in the μCRL specification in
our translation, and we need to use techniques to cope with the occurrence of
overlapping patterns.

In Erlang, evaluation of pattern matching works from top to bottom and from
left to right. When the first pattern is matched, evaluation terminates after the
corresponding clauses are executed. However, the μCRL toolset instantiator does
not evaluate rewriting rules in a fixed order. If there exists overlapping between
patterns, the problem of overlapping in pattern matching occurs, which could
lead to the system being represented by a faulty model.

The problem of overlapping in pattern matching was studied in [16]. An
approach was proposed where an Erlang program with overlapping patterns
is transformed into a counterpart program without overlapping patterns. The
rewriting operation rewrites all pattern matching clauses in the original code
into some calling functions. A calling function is activated by a guard that is

Verifying Erlang/OTP Components in μCRL 235

determined by the function patterns match. Function patterns match takes the
predicate of the pattern matching clauses and one pattern as arguments and is
true iff the predicate matches the pattern.

A data structure called the Structure Splitting Tree (SST) is defined and ap-
plied for pattern evaluation, and its use guarantees that no overlapping patterns
will be introduced to the transformed program. The evaluation of an SST is
equivalent to the searching of nodes in a tree, and thus is of linear complexity.

After an Erlang program has been translated into a μCRL specification, one
can check the system properties by using some existing tools such as CADP [7].
The toolset CADP provides a number of tools for system behaviour checking. It
includes an interactive graphical simulator, a tool for the visualization of labelled
transition systems (LTSs), several tools for computing bisimulations and a model
checker.

Properties one wishes to check with the CADP model checker are formalized
in the regular alternation-free μ-calculus (a fragment of the modal μ-calculus),
a first-order logic with modalities, and least and greatest fixed point operators
[9]. Automation for property checking can be achieved by using the Script Veri-
fication Language (SVL). SVL provides a high-level interface to all CADP tools,
which enables an easy description and execution of complex performance studies.
We very briefly illustrate the approach in Section 6 where a few simple properties
are defined for our running examples.

5 Translating Erlang/OTP FSMs into μCRL

This section investigates the translation of the OTP FSM design pattern into
μCRL.

5.1 Simulating State Management

When translating an Erlang FSM program into μCRL, the first thing one needs
to consider is how to maintain the FSM states and data. In particular, a scheme
needs to be defined to store and update the current state and the state data
in μCRL. Normally a global variable would be used to perform such a task,
however, μCRL does not support the use of global variables. Thus we use a (one
place) stack for simulating the management of states and data as it has well been
defined in μCRL. Alternatively, one might define some other mechanics such as
data buffer for state and datum management.

The translation rules are defined in Figure 5, where three actions, s event,
r event and send event, are defined respectively. A command, generated from
an external action is sent out to some other processes by action s event. This
command is received through action r event and is used for further processing;
s event : r event = send event.

An Erlang FSM state is assigned a μCRL state name (“s ” plus the state
name) and a state process (“fsm ” plus the state name). For example, state
S1 is given a μCRL state name s S1 and a state process fsm S1. The current
state and the state data are coded in a tuple with the form of tuple(state,

236 Q. Guo

act fsm change state =
s event, r event, send event: Term sum(Cmd:Term,

r event(Cmd).read(Cmd))
comm
s event | r event = send event fsm init(S:Term,Data:Term) =

fsm next state(S,Data)
proc
write(Val:Term) = fsm next state(S:Term,Data:Term) =
wcallresult (Val) wcallresult(tuple(S,tuplenil(Data))).

sum(Cmd:Term,r command(Cmd).
read(Cmd:Term)= s event(Cmd).fsm change state)
sum(Val:Term, recallresult(Val).
fsm S1(Cmd,element (2,Val)) fsm S1(Cmd:Term, Data:Term) =

� is s S1(element(1,Val)) � pre defined actions ...
fsm S2(Cmd,element (2,Val)) fsm next state(nex State, new data)

� is s S2(element(1,Val)) �
... fsm Sn(Cmd:Term, Data:Term) =

fsm Sn(Cmd,element(2,Val)) pre defined actions ...
� is s Sn(element(1,Val))� fsm next state(next State,new data)

delta)

Fig. 5. Rules for translating state processes

tuplenil(state data)) and saved in the stack. The stack used for managing states
and data is defined in a way where only one element can be read/written. This
ensures that only one current state is available.

The process write is defined to push the current state and the state data
onto the stack while a process called read is used to pop the current state and
the state data from the stack. The process fsm init(State:Term, Data:Term) is
defined to initially push tuple(Init State, tuplenil(State Data)) onto the stack.
The process fsm next state(State:Term, Data:Term) updates the current state
and the state data in the stack.

The process fsm next state will receive commands through the action r
command. The action r command communicates with the action s command
which is externally performed. When a command is received, the process fsm
state change, guarded by the action s event, is enabled. It passes the command
to the process read where the current state and the state data are read from
stack. The current state determines which state process is about to be activated.

A state process fsm Si starts by calling its μCRL state function Si(Command :
Term, Data : Term). Function Si returns a tuple with the form of tuple
(next state, tuple(new data, tuplenil(index))) where next state shows the next
state; new data the updated state data. The index saves an index number for
the sequence of actions to be selected. Rules for the translation of Erlang state
functions are discussed in Section 5.2.

Having performed all actions, a state process ends up by calling the process
fsm next state(next state, new data), updating the current state and the state
data in stack. The process CommandList(CmdList : Term) is defined to simu-
late the behaviour of the external actions. A list of commands is initialized

Verifying Erlang/OTP Components in μCRL 237

in CmdList, where commands in the list define the logic for verification. The
process fsm next state will synchronize with CommandList through the actions
r command and s command, r command | s command = cmd. Each time,
fsm next state reads the head of CmdList, and communication terminates when
CmdList is empty.

5.2 Translating the State Functions

An Erlang state function may consist a list of branches, each of which defines a
sequence of actions to be performed. A branch is usually guarded by a pattern,
and only when the function arguments match the pattern of its guards, can a
branch be selected for execution. Thus in the door locking example above, the
state function locked defines a number of actions (do unlock, display message)
which are selected depending on the value of the password inputted.

Si(N) →
case N of Si(N) when N is of P1 →
P1 → actions(1);

actions(1); Si(N) when N is of P2 →
P2 → actions(2);

actions(2); ...
... Si(N) when N is of Pn →

Pn → actions(n).
actions(n).

A: Matching. B: Guards.

Fig. 6. Guarded Erlang programs

In general there are two ways in which such pattern matching can be defined,
and Figure 6 illustrates an example where the program in Figure 6-A is writ-
ten using pattern matching, while, in Figure 6-B, with a set of guards. When
N matches Pi, the action sequence action(i) is enabled. In general, overlap-
ping might exist between patterns Pi and Pj , and only the first matched action
sequence action(i) will be performed.

The translation of an Erlang state function into μCRL starts by splitting the
function into two parts, one of which defines a series of μCRL state functions
while the other a set of action sequences. Every set of action sequences is trans-
lated into a pre-defined action set in μCRL. According to the order that pat-
terns and guards occur in the function, the pre-defined action sets are uniquely
indexed with a set of integers. For example, in Figure 6, the set of action se-
quences {actions(1), ..., actions(n)} is indexed with an integer set {1, ..., n}
where integer i identifies the pre-defined action set actions(i).

The selection of a μCRL state function for execution is determined by the
pattern of function arguments. By the end, the function returns a tuple with the
form of tuple(next state, tuple(new data, tuplenil(index))) where next state
returns the next state, new data the updated state data and index the index of
the action sequence that needs to be performed.

238 Q. Guo

To eliminate any potential overlapping between patterns, techniques proposed
in [16] are applied. Specifically, pattern matching clauses in the program are re-
placed by a series of case functions. These case functions are guarded by the
patterns match function that takes the predicate of pattern matching clauses
and one pattern as arguments, then if the predicate matches the pattern, function
patterns match returns true; otherwise, false, and this eliminates the overlapping
between patterns and ensures that the index returned by the μCRL state func-
tion is deterministic and unique. Figure 7 illustrates an example for the state
functions shown in Figure 6.

rew proc
Si(Args) = fsm Si(Cmd:Term,Data:Term) =
Si case 0(patterns match(Args,P1),Args) actions(1).
Si case 0(true,Args) = fsm next state(element(1,Si(Cmd,Data)),

tuple(Sj ,tuple(Data,tuplenil(1))) element(2,Si(Cmd,Data)))
Si case 0(false,Args) = � element(3,Si(Cmd,Data))=1 �

Si case 1(patterns match(Args,P2),Args) (actions(2).
Si case 1(true,Args) = fsm next state(element(1,Si(Cmd,

tuple(Sk,tuple(Data,tuplenil(2))) Data)),element(2,Si(Cmd,Data)))
... � element(3,Si(Cmd,Data))=2 �

Si case (n-1)(true,Args) = ...
tuple(Su,tuple(Data,tuplenil(n-1))) (actions(n).

Si case (n-1)(false,Args) = fsm next state(element(1,Si(Cmd,
Si case n(patterns match(Args,Pn),Args) Data)),element(2,Si(Cmd,Data)))

Si case n(true,Args) = � element(3,Si(Cmd,Data))=n �
tuple(Sv,tuple(Data,tuplenil(n))) delta)...)

Fig. 7. Translation rules for Erlang state function

When the state process fsm Si starts, it first calls the μCRL state function
Si(Cmd,Data). Si returns an index number i that determines which action
sequence action(i) is about to be performed. The process fsm Si ends up by
calling process fsm next state, updating the current state and the state data in
the stack.

6 Case Studies

To illustrate the approach we present two case studies, one of which is a door
with code lock system, while, the other a coffee machine system. As discussed
in Section 2, gen fsm:send event is often called through some external actions.
Therefore, before starting a simulation process, a sequence of actions needs to
be initialized in the process CommandList to simulate the external behaviour.

6.1 A Door with Code Lock

Consider the example given in Section 2. In the simulation, the system code is
set to abc. The function button is defined to input a password.

Verifying Erlang/OTP Components in μCRL 239

Following the rules defined in Section 5, the OTP component is translated
into μCRL, and the resultant μCRL specification is listed in the appendix. A
sequence of external actions [{abb}, {abc}] is initialized in the μCRL specification,
stating that two passwords, abb and abc, are consecutively inputted. The LTSs
derived from CADP are shown in Figure 8 where Figure 8-A lists all actions,
while, Figure 8-B hides the actions push callstack and pop callstack as internal
actions.

Fig. 8. LTSs derived from the door with code lock system

From the LTSs it can be seen that, initially, the system pushes the state
s locked and the code abc onto the stack. This simulates the start link function
in the Erlang program where the initial state and the system code are set to
s locked and abc respectively. When the action send event is performed, the
state s locked, saved in the stack, is read out. The state s locked determines
process fsm locked is about to be activated. This simulates the process that the
current state function is executed when gen fsm : send event is invoked. Since
the first password is not correct, abb �= abc, a warning message is given and
the door remains locked. After abc is received, the door is opened and the state
s open is pushed onto the stack.

We can then use a toolset such as CADP to verifying design properties of the
system. For instance, to check “without receiving a correct password “abc”, the
door cannot be opened”, the property can be formulated as:

[not (“cmd(abc)”)* . “do unlock”] false,

Another property one might wish to check can be formulated as:

<true*. “cmd(abb)” . (“pop calls(tuple(s locked,tuplenil (tuplenil(abc))))”)* .

“warning message”> true,

240 Q. Guo

stating that when an incorrect password “abb” is received and the current state
is s lokced, the action warning message will be fairly performed. Thus once we
have a specification in μCRL, applying model-checking approaches is standard.

However, the example given in this section is simple and the system is compar-
atively easy to be verified. In the next sub-section, a more complicated system
is designed to further evaluate the proposed model.

6.2 Coffee Machine

A coffee machine has three states, these being, selection, payment and remove.
State selection allows a buyer to choose the type of drink, while, state payment
displays the price of a selected drink and requires payment for the drink; after
enough coins being paid, the machine goes to the state remove where the drink
is prepared and the change is returned.

Four types of drink are sold: tea, cappuccino, americano and espresso. A buyer
can select a type of drink at a machine, pays for it and takes a cup after the drink
is ready. A buyer can also cancel the current transaction where the pre-paid coins
will be returned.

Fig. 9. FSM - coffee machine

Figure 9 illustrates the FSM design of the coffee machine. The program ini-
tially sets the current state to selection.

The OTP component is then translated into μCRL, and four actions dis-
play price, pay coin, return coin and remove cup are defined in the μCRL spec-
ification where display price displays the price for a selected drink; pay coin
requires a buyer to pay coins for the drink; return coin returns the change if
more coins have been paid for the drink, or gives back the pre-paid coins if the
transaction is cancelled.

Before verifying the system’s properties, a set of verification tasks is required,
each of which consists of a set of commands to simulates the process on buying
a drink. Two sequences of external actions are constructed. The first simulates
“selecting cappuccino (£5 for a cup), paying £4 and then trying to take the
drink away”, while, the second simulates “selecting tea (£4 for a cup), pay-
ing £5 and then taking the drink away”. The sequences are coded in the lists

Verifying Erlang/OTP Components in μCRL 241

Fig. 10. LTSs derived from the coffee machine system

[{selection, cappuccino, 5}, {pay, 4}, {cup remove}] and [{selection, tea, 4},
{pay, 5}, {cup remove}]. They are then initialized in the process CommandList
respectively.

The LTSs, derived from the CADP, are shown in Figure 10. Figure 10-A shows
that the system initially pushes s selection onto the stack. Once cappuccino is
selected, its price is displayed. When a buyer pays less coins (£4) than the price
(£5), the machine stays in payment, asking for the rest of payment (£1). Figure
10-B shows that, after tea (£4 for a cup) is selected and more coins (£5) are
paid, the machine will prepare the drink and returns the change (£1). When the
drink is taken away, the machine moves back to selection.

System properties can then be verified by the CADP model checker. For ex-
ample, to check the property “After cappuccino is selected, its price will be
displayed.”, the property can be formulated as:

[true*. “cmd(tuple(selection,tuple(cappuccino,tuplenil (5))))” . (not “display price(5)”)*]

<true* . “display price(5)”> true

242 Q. Guo

Similarly, to check the properties “When cappuccino is selected and £4 has been
paid, if the rest of payment £1 is not paid, the drink cannot be taken away.”,
and “When tea is selected and £5 has been paid, before the drink being taken
away, change must be returned.”, we formulated them as (respectively):

[true* . (‘cmd(tuple(selection,tuple(cappuccino,tuplenil (5)))) . *’ and ‘cmd(tuple(pay,

tuplenil(4))). *’). (not “pay coin(1)”)* . “cmd(tuplenil(cup removed))”] false

[true* . (‘cmd(tuple(selection,tuple(tea,tuplenil(4)))) . *’ and ‘cmd(tuple(pay,

tuplenil(5))). *’). (not “return coin(1)”)* . “cmd(tuplenil(cup removed))”] false

We applied the translation approach to a faulty implementation to evaluate
the model’s capability for fault detection. In stead of using payment ≥ price,
the faulty Erlang program implements the logic payment > price for selling a
drink. The faulty Erlang program is then translated into μCRL.

A sequence of actions, [{selection, cappuccino, 5}, {pay, 5}, {cup remove}] is
constructed to simulate the external behaviour of “paying exactly £5 for a cup
of cappuccino (£5 for a cup)”. The LTS derived from the CADP toolset is shown
in Figure 11. It can be seen the machine requires additional £0 for the drink,
even though enough money has been paid.

Fig. 11. LTSs derived from the faulty Erlang program

We then checked the derived model against the property:

[“cmd(tuple(selection,tuple(cappuccino,tuplenil(5))))”* . “cmd(tuple(pay,tuplenil(5)))”* .

(not “remove cup”)*] <true* . “remove cup”> true

stating that, when cappuccino is selected and after £5 has been paid, the drink
will be prepared. Using this property the CADP model checker can correctly
distinguish the correct and faulty implementations based upon the design we
wish to check against.

Verifying Erlang/OTP Components in μCRL 243

7 Conclusions and Future Work

In this paper we have extended work on model checking Erlang in μCRL. The
principal aim of the work is to define rules that will translate Erlang/OTP
programs (assumed to be correctly implemented) into a μCRL specification, and
then to verify properties that the system should hold with standard toolsets such
as CADP. We have extended previous work by investigated the model checking
of Erlang/OTP Finite State Machine components in the process algebra μCRL.
Specifically, a model was proposed to support the translation of an Erlang FSM
design pattern into a μCRL specification, where a stack is defined in μCRL to
simulate the management of the FSM states and the up-to-date state data.

The particular challenge is not the writing of a FSM in a process algebra,
which is, of course, trivial, but the correct translation of how Erlang treats and
defines FSMs, and the parameters with which it can be invoked. Furthermore, the
translation needs to be faithful to the translation of other OTP components, that
is, maintain the same design philosophy, and specifically the level of abstraction
of the mapping from Erlang to μCRL.

Here, the state function defined in the Erlang FSM is translated into two
parts in μCRL, one of which defines a μCRL state-process that can be called
or synchronised by some other μCRL processes, while, the other defines a series
of μCRL state functions determined by the patterns defined in the Erlang state
function. A sequence of actions defined in an Erlang state function and guarded
by a pattern is translated into a pre-defined action set in μCRL indexed with
a unique integer number. A μCRL state-process will receive an index number
from a μCRL state function that determines which pre-defined action set will
be triggered.

Two small examples illustrate the proposed model, one of which looked at a
door with code lock system while the other studied a coffee machine system. Both
systems were modelled by Erlang/OTP gen fsm design pattern first, and then
translated into a μCRL specification. By using a model checker such as CADP,
properties can be verified which represent an abstraction over the original Erlang
code.

The algorithm presented performs an abstraction of the Erlang code, and
is currently being implemented and integrated into the etomcrl toolset so that
complex OTP designs involving generic servers, FSMs etc can be translated.
There are a number of issues that we have not had space to discuss here. One
is correctness of the translation, which is involved as it depends on verification
against a semantics of Erlang. Such issues of correctness of the approach are
discussed in [5]. The other issue is that the model discussed in this paper does
not define rules for the translation of timeout events. However, in some real
applications, timeout events in a FSM play a significant role in the OTP design,
and there are two approaches to extending the work we have presented here.
The first is to use a timed extension to μCRL (which exist, but have limited
tool support), the second is to incorporate explicit tick events in the untimed
μCRL. We have recently experimented successfully with the second approach,
and again the translation produces tractable μCRL specifications.

244 Q. Guo

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) grant EP/C525000/1. We would like to thank the developers
of the tool sets of μCRL and CADP for permitting the use of tools for system
verification. Thanks also go to my supervisor, John Derrick, for his help with
this work.

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

2. Arts, T., Benac, C.: Verifying Erlang code: a resource locker case-study. In: Eriks-
son, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 184–203. Springer,
Heidelberg (2002)

3. Arts, T., Benac Earle, C., Penas, J.J.S.: Translating Erlang to μCRL. In: Pro-
ceedings of the Fourth International Conference on Application of Concurrency to
System Design (ACSD’04), pp. 135–144 (2004)

4. Blau, J., Rooth, J., Axell, J., Hellstrand, F., Buhrgard, M., Westin, T., Wicklund,
G.: AXD 301: A new generation ATM switching system. Computer Networks 31,
559–582 (1999)

5. Benac Earle, C.: Model check the interaction of Erlang components. PhD thesis,
The University of Kent, Canterbury, Department of Computer Science (2006)

6. Fredlund, L.-A., Benac Earle, C., Derrick, J.: Verifying fault-tolerant Erlang pro-
grams. In: Sagonas, K., Armstrong, J. (eds.) 2005, pp. 26–34. ACM Press, New
York (2005)

7. CADP. http://www.inrialpes.fr/vasy/cadp/
8. Clarke, E., Grumberg, O., Long, D.: Model Checking. MIT Press, Cambridge

(1999)
9. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)

10. Benac Earle, C., Fredlund, L.-A.: Verification of Language Based Fault-Tolerance.
In: EUROCAST, pp. 140–149 (2005)

11. Huch, F.: Verification of Erlang programs using abstract interpretation and model
checking. ACM SIGPLAN Notices 34(9), 261–272 (1999)

12. Fredlund, L.-A., Gurov, D., Noll, T., Dam, M., Arts, T., Chugunov, G.: A veri-
fication tool for Erlang. International Journal on Software Tools for Technology
Transfer 4, 405–420 (2003)

13. Groote, J.F., Ponse, A.: The syntax and sematics of μCRL. In: Algebra of Com-
municating Processes 1994, Workshop in Computing, pp. 26–62 (1995)

14. Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. Report
P9008, University of Amsterdam (1990)

15. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

16. Guo, Q., Derrick, J.: Eliminating overlapping of pattern matching when verifying
Erlang programs in μCRL. In: The 12th International Erlang User Conference
(EUC‘06), Stockholm, Sweden (2006)

http://www.inrialpes.fr/vasy/cadp/

Verifying Erlang/OTP Components in μCRL 245

Appendix: The μCRL Specification for Code Lock Door

sort
Term

func
s locked, s open, abc, abb: -> Term

act
s event, r event, send event, s command, r command, cmd: Term
do lock, do unlock, warning message

comm
s event | r event = send event
s command | r command = cmd

map
patterns matching: Term # Term -> Term
locked: Term # Term -> Term
open: Term # Term -> Term
locked case 0 0: Term # Term # Term -> Term
locked case 0 1: Term # Term # Term -> Term

var
Command, LoopData: Term
Pattern1, Pattern2: Term

rew
locked(Command, LoopData) =

locked case 0 0(patterns matching(Command, element(int (1),LoopData)),
Command, LoopData)

locked case 0 0(true, Command, LoopData) =
tuple(s open, tuple(LoopData, tuplenil(tuplenil(int(1)))))

locked case 0 0(false, Command, LoopData) =
locked case 0 1(patterns matching(Command, do not care), Command,

LoopData)
locked case 0 1(true, Command, LoopData) =

tuple(s locked, tuple(LoopData,tuplenil(tuplenil(int(2)))))
open(Command, LoopData) =

tuple(s locked, tuple(LoopData,tuplenil(tuplenil(int(1)))))
patterns matching(Pattern1, Pattern2) = equal (Pattern1,Pattern2)

proc
write(Val:Term) =

wcallresult(Val)

read(Command:Term) =
sum(Val:Term, rcallresult(Val).
(fsm locked(Command,element(int(2),Val))

� is s locked(element(int(1),Val)) �
(fsm open(Command,element(int(2),Val))

�is s open(element(int(1),Val)) � delta)))
fsm locked(Command:Term,LoopData:Term) =

246 Q. Guo

(do unlock.
fsm next state(element(int(1),locked(Command,LoopData)),

element(int(2),locked (Command,LoopData))))
�term to bool(equal(element(int(1),element(int(3),

locked(Command,LoopData))),int(1)))�
(warning message.

fsm next state(element(int (1),locked(Command,LoopData)),
element(int (2),locked(Command,LoopData)))

� term to bool(equal (element(int(1),element(int(3),
locked (Command,LoopData))),int(2)))

� delta)
fsm open(Command:Term,LoopData:Term) =

do lock.
fsm next state(element(int(1),open(Command,LoopData)),

element(int(2),open (Command,LoopData)))
� term to bool(equal(element(int(1),element (int(3),

open(Command,LoopData))),int(1))) � delta
fsm change state =

sum(Command:Term,r event(Command).read(Command))

fsm init(S:Term, LoopData:Term) =
fsm next state(S,LoopData)

fsm next state(S:Term, LoopData:Term) =
wcallresult(tuple(S,tuplenil(LoopData))).
sum(Command:Term, r command(Command).

s event(Command).fsm change state)
fsm command(Command:Term, CmdSet:Term) =

s command(hd(CmdSet)).
fsm command(tl(CmdSet), CmdSet)

� is nil(Command) �
s command(hd(Command)).fsm command(tl(Command),

CmdSet)
init

encap({s command,r command},fsm command(nil,cons(abb, cons(abc,
nil))) ||

hide({push callstack,pop callstack},
encap (rcallvalue,wcallvalue,rcallresult,wcallresult,s event,

r event,
CallStack(empty) || fsm init(s locked, tuplenil(abc))||

fsm change state)))

Formal Analysis of Publish-Subscribe Systems

by Probabilistic Timed Automata

Fei He1, Luciano Baresi2, Carlo Ghezzi2, and Paola Spoletini2

1 Department of Computer Science & Technology, Tsinghua University
Beijing, China, 100084

hef02@mails.tsinghua.edu.cn
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano

Milano, Italy, 20133
{baresi,ghezzi,spoleti}@elet.polimi.it

Abstract. The publish-subscribe architectural style has recently emer-
ged as a promising approach to tackle the dynamism of modern dis-
tributed applications. The correctness of these applications does not only
depend on the behavior of each component in isolation, but the interac-
tions among components and the delivery infrastructure play key roles.
This paper presents the first results on considering the validation of these
applications in a probabilistic setting. We use probabilistic model check-
ing techniques on stochastic models to tackle the uncertainty that is
embedded in these systems. The communication infrastructure (i.e., the
transmission channels and the publish-subscribe middleware) are mod-
eled directly by means of probabilistic timed automata. Application com-
ponents are modeled by using statechart diagrams and then translated
into probabilistic timed automata. The main elements of the approach
are described through an example.

1 Introduction

The publish-subscribe architectural style [1, 2, 3] has recently emerged as a
promising approach to tackle the dynamism and flexibility of modern distributed
applications. Components do not communicate directly, but their interactions
are mediated by a dedicated element called dispatcher. Components dynamically
subscribe to the messages they are interested in, and the dispatcher notifies them
as soon as a message that matches their subscriptions is published by one of the
other components. The dispatcher is the only element that knows how to route
the messages in the system, and thus the sender of a message does not know its
receivers. This peculiarity allows components to join and leave an application
seamlessly without any need to restructure the whole system.

The correctness of these applications does not only depend on the correct
behavior of each component in isolation. We also need the right intertwining
among subscriptions, publications, and notifications, to allow components to
receive the messages they need, and an infrastructure that actually delivers all
the messages exchanged within the system. Therefore, the formal analysis of

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 247–262, 2007.
c© IFIP International Federation for Information Processing 2007

248 F. He et al.

publish and subscribe systems must consider two orthogonal aspects: (a) the
subscriptions and unsubscriptions that can dynamically change the topology
of the system, and its interaction paths, and (b) the underlying infrastructure
that cannot always guarantee that all messages, along with subscriptions and
unsubscriptions, be delivered to all interested parties.

Among the many attempts [4, 5, 6, 7, 8, 9, 10] to model and validate publish-
subscribe systems, model checking has been considered as an attractive
solution. However, all these works assume deterministic systems and neglect
the uncertainty that characterize practical publish-subscribe applications. Differ-
ently from these works, in this paper we do not discuss the fine-grained analysis
of subscriptions and notifications, but we present the first results on extend-
ing these approaches by considering the problem in a probabilistic setting. We
use probabilistic model checking techniques on stochastic models to tackle the
uncertainty that is intrinsic in these systems. Even if we assume that applica-
tion components are correct, stochastic models help us reason on the reliability
of the infrastructure, that is, the probability with which messages can be lost
during the transmission. Moreover, since probabilistic model checking involves
the exhaustive exploration of all possible paths, it can also supply important
information about the model: for example, the optimal size of buffers, average
delays, and so on.

In our approach, we provide independent models for the communication infras-
tructure, which includes the transmission channels and the middleware, and for
application components. The transmission channels provide the mechanisms for
message delivery. The middleware supports subscriptions, unsubscriptions, and
message routing. Both are problem-independent, and their models are reusable in
different systems. Application components are problem-specific and are not usu-
ally reused. In this paper, the communication infrastructure is modeled by means
of probabilistic timed automata directly. Application components are modeled
with statechart diagrams, and we provide some easy clues for translating these
diagrams to probabilistic timed automata. An example helps us validate the ef-
fectiveness of our approach by means of the probabilistic model checker PRISM.

The rest of the paper is organized as follows. Section 2 briefly surveys some
related works. Section 3 introduces an abstract model of publish-subscribe sys-
tems. Section 4 provides some background definitions about probabilistic timed
automata. Section 5 presents our proposal, while Section 6 exemplifies it on a
simple case study. Section 7 concludes this paper.

2 Related Work

This paper builds on the previous efforts of some of the authors [4,5,6] by extend-
ing the formal analysis of publish-subscribe systems in a probabilistic setting.
In [4], application components are modeled as UML statechart diagrams while
the communication infrastructure is supplied as a configurable predefined com-
ponent. UML statechart diagrams are translated into Promela and validated
through the SPIN model checker. While this approach builds on top of an

Formal Analysis of Publish-Subscribe Systems 249

existing model checker, [5, 6] extend the Bogor model checker and the com-
munication mechanisms of publish-subscribe infrastructures are embedded in it.
Some domain-specific knowledge is used to reduce the state space.

In [7,8], the authors present a generic framework for automatically analyzing
publish-subscribe systems and also provide a translation tool to automatically
generate analysis models. Although the ideas presented in these papers are sim-
ilar to those described here, there are some differences. We extend this work by
adding the probabilistic environment and we also allow components to change
their subscriptions at run-time. These proposals are also extended in [9], which
improves the representation of events, event delivery policies, and event-method
bindings. Finally, [10] presents a transformation framework for the approach.

In [11], the authors present a compositional reasoning framework for verifying
publish-subscribe systems. A system specification is decomposed into the prop-
erties of its components, which are then model checked separately under several
environmental assumptions. The main drawback of this approach is the difficulty
in decomposing the specification and providing appropriate assumptions.

3 Abstract Publish-Subscribe Architecture

The common denominator of the many variants proposed for the publish-
subscribe paradigm is the decoupling in time and space of application
components [2, 1, 3].

Fig. 1 illustrates the abstract model of a publish-subscribe infrastructure that
we use for analysis via model checking. It comprises a dispatcher, the compo-
nents, and a number of buffers that describe the transmission channels. Each
buffer buf is characterized by a maximum size, MAX buf ; n buf denotes the
current number of elements stored in buffer buf . All buffers adopt a FIFO policy.

Components send their messages (i.e., publications, subscriptions, and unsub-
scriptions) to the dispatcher, by inserting them into buffer bpi. The message is
tagged with the component that delivered the message. Messages are eventu-
ally transferred into buffer bpo, which models the input buffer to the dispatcher.
Moving a message from bpi to bpo reflects the physical operation of message
transmission. Since the message is tagged with the name of the originating com-
ponent1, it is possible to associate different probabilities with the delivery of
messages from different components to the dispatcher. The messages delivered
from the dispatcher are inserted into buffer bni. Each component Ci has an input
buffer bno[i] in which it receives the notifications. The transfer of a message from
bni to a buffer bno[i] reflects the physical operation of message transmission from
the dispatcher to the notified component. The messages are transferred from bni
into all the buffers of the target components to which it has to be delivered, based
on the routing information stored in the subscription table. Again, a probability
can be associated with the transfer of a message from bni to its target buffer in
order to model unreliable channels.

1 Tags are then removed when the messages are dispatched to their subscribers.

250 F. He et al.

Fig. 1. Publish-subscribe infrastructure

We make the following assumptions, under which systems are analyzed via
model checking: (a) transmission channels preserve the order of messages deliv-
ered through them, (b) messages are dropped in case of buffer overflow, and (c)
transmission channels are unreliable. Messages may be lost during transmission
according to a certain probability, which varies from component to component.
We denote by pi the probability of message loss for the i-th component2. We
also introduce some timed parameters that are relevant to represent time-related
properties of the system: TPL and TPH are the minimal and maximal time de-
lay for the dispatcher to process a message, TDL and TDH are the minimal and
maximal time delay for the dispatcher to process a subscription/unsubscription,
and TRL and TRH are the minimal and maximal transmission delays of a
message through the communication channels.

The thorough analysis of these parameters might lead to the explosion of the
state space. If we consider all the combinations among the possible values for
these parameters, we would easily obtain an unmanageable finite state model.
Some domain-specific abstractions can help us constrain the problem and obtain a
model more suitable for analysis. For example, if we consider an embedded system
whose components are distributed over a local area network, we can easily assume
that TRL = TRH = 0 since transmission delay can be ignored, and thus the
number of possible different states (combination of parameter values) decreases.

4 Probabilistic Timed Automata

Probabilistic timed automata provide a modeling framework for time-related
systems with probability. Our definition is derived from timed automata [12,13],
and we also follow the definitions in [14, 15, 16] with minor modifications.
2 Notice that, since we model subscriptions and messages delivery with different

buffers, our model allows to assign different probabilities to each component de-
pending on the direction of the communication.

Formal Analysis of Publish-Subscribe Systems 251

A finite discrete probability distribution over a set S is a mapping p :
S → [0, 1] such that

∑
s∈S p(s) = 1 and the set {s|s ∈ S and p(s) > 0} is finite.

The set of all finite discrete probability distributions over S is denoted by μ(S).
A Markov decision process is a discrete time stochastic process charac-

terized by a set of states; in each state there are several actions from which
the decision maker can choose. For a state s and an action a, a state transi-
tion function p(s′) determines the transition probabilities to the next state s′. A
Markov decision process can be represented as a tuple (Q,Steps), where Q is a
set of states, and Steps : Q → 2μ(Q) is a function assigning a set of probability
distributions to each state.

A clock is a real-valued variable which increases at a given rate. Let X be a
set of clock variables, ranging over the nonnegative real numbers R+. A valuation
of X assigns a nonnegative real value to every clock in set X . We denote the set
of all clock valuations of X with RX .

A clock constraint is an inequality of the form x ∼ c or xi − xj ∼ c, where ∼
is an operator in {<,≤, >,≥} and c is a nonnegative integer number or infinity.
A clock zone is a convex subset of the valuation space RX described by a
conjunction of constraints. Let Z(X) be the set of all zones of X .

Given a clock zone λ ∈ Z(X) and a valuation v ∈ RX , λ(v) is the boolean
value obtained by replacing each occurrence of a clock x ∈ X with v(x). If
λ(v) = true, we say that v satisfies λ, denoted as v � λ.

Definition 1. Let AP be a fixed, finite set of atomic propositions. A probabilis-
tic timed automaton is a 7-tuple M = (S, S0, L,X, inv, prob, 〈τs〉s∈S), where

– S is a finite set of locations.
– s0 is the initial location.
– L : S → 2AP is a labeling function that associates each location s ∈ S with

the set L(s) of atomic propositions that are valid in s.
– X is a finite set of clocks.
– inv : S → Z(X) is a mapping that associates each location with an invariant

condition.
– prob : S → Pfn(μ(S × 2X)) is a mapping function that associates each

location with a finite and non-empty set of discrete probability distributions
on S × 2X .

– 〈τs〉s∈S is a family of functions where for any s ∈ S, τs : prob(s) → Z(X)
associates each p ∈ prob(s) with an enabling condition.

A state of a probabilistic timed automaton is a pair 〈s, v〉, where s ∈ S, v ∈ RX ,
and v � inv(s). The system starts in location s0, with all clocks initialized to 0.
The values of all the clocks increase uniformly as time passes.

If we assume that the present state is 〈s, v〉, a probabilistic timed automaton
has two basic types of transitions:

– Delay transition: the system can remain in the current location s and lets
time pass, provided that the invariant condition in s can continuously be
satisfied while time passes.

252 F. He et al.

– Action transition: the system can make a discrete transition according to
any probability distribution in Prob(s) whose enabling condition is satisfied
by the current time valuation v.

These concepts are exemplified by the automaton of Fig. 2. It consists of: two
locations s0 and s1, two clocks x0 and x1, and two probabilistic distributions, a
and b, associated with s0 and s1, respectively. The first distribution (a) defines
a discrete transition from s0 to s1 with probability 1. The second distribution
(b) defines a discrete transition from s1 to s0 again with probability 1. s0 is the
initial location, and the automaton starts with state (s0, x0 = 0, x1 = 0). Before
the clock x0 reaches the value 4, the automaton may remain in the location s0

(delay transition). After 2 time units, the enabling condition for the discrete
transition from s0 to s1 is satisfied, and the automaton can either move to the
location s1 (action transition) or remain in location s0 (delay transition).

Fig. 2. An example of probabilistic timed automaton

5 Implementation

In this section, we explain how publish-subscribe systems can be formally spec-
ified and verified by means of probabilistic timed automata.

As discussed earlier, a model for a publish-subscribe system can be separated
into two parts: the reusable part, consisting of the dispatcher and the trans-
mission channels, and the problem-specific components. Following the model
illustrated in Fig. 1, we start the presentation with the probabilistic timed au-
tomata that model the dispatcher and transmission channels, respectively, and
then we continue with the application-specific components.

5.1 Dispatcher

Fig. 3 shows the probabilistic timed automaton that models the dispatcher. The
automaton starts in location 0. The enabling conditions and actions are attached
to the transitions as follows:

cond1 ∧ cond2 ∧ · · · ∧ condm, act1, act2, . . . , actn

The semantics of labels is that if the conjunction of the conditions in the
first part of the label holds, the sequence of actions that follows is performed
atomically before the transition terminates.

The dispatcher monitors the receiving buffer bpo. If it is not empty, the dis-
patcher fetches the first message in the buffer. If the message is a subscription,

Formal Analysis of Publish-Subscribe Systems 253

Fig. 3. Probabilistic timed automaton modeling the dispatcher

the dispatcher moves to location 1 by resetting timer t. The invariant in location
1 means that the dispatcher may process the message for at most TPH time
units. Before t reaches the timeout, the dispatcher leaves location 1 and goes
back to location 0 by either recording this subscription in the table (if the table
is not full), or by dropping this subscription (if the table is full).

If the message is an unsubscription, the dispatcher moves to location 2 by
resetting timer t. Then the dispatcher searches all the entries in the subscription
table and removes those that match this unsubscription. Finally, it returns back
to location 0 after at least a time delay. If the message is a publication, the
dispatcher moves to location 3 by resetting timer t. Note that if the buffer bni is
full, the dispatcher does not transfer the message and moves back to location 0.
Otherwise the dispatcher transfers the message to buffer bni after a time delay.
Operation match, which labels some of the transitions, performs the matching of a
message against a subscription, and evaluates to true if its arguments match. The
function encapsulates the details of the specific linguistic mechanisms supported
by the publish-subscribe middleware to specify the matching. Operation del

removes an element from a buffer (or subscription table).

5.2 Channels

The probabilistic timed automaton of Fig. 4 models the transmission of messages
from components to the dispatcher. It commences in location 0. If buffer bpi is not
empty, the automaton moves to location 1 by resetting timer t. The transitions
exiting location 1 describe the fact that the channel may drop the message if
the receiving buffer is full, or perform the probabilistic transmission otherwise.
The probabilistic transition is drawn in the Fig. 4 as two directed shared edges

254 F. He et al.

connected by an arc. For readability reasons, we only show one example of a
probabilistic transition, although there should be one for each component. The
enabling condition is attached to the arc, and the actions are attached to the
two edges. The message is lost with probability p[i], and the message arrives
at the receiving buffer with probability 1 − p[i]. Notice that the message loss
probability p[i] can be different for different components. Moreover, this model
does not distinguish if transmitted messages are subscriptions, unsubscriptions,
or notifications; the channel only takes care of queueing the messages in the
buffer and then the dispatcher deals with them.

Fig. 4. Probabilistic timed automaton modeling message transmission to the dispatcher

The probabilistic timed automaton of Fig. 5 models the notifications, i.e., the
delivery of messages to the registered components. It starts in location 0 and if
buffer bni is not empty, the channel moves to location 1 by initializing variable j
to 0. The sequence of transitions from location 1 to locations 2 and 3, to end in
location 1, models the notification of a message to a component. The transition
from location 1 to location 2 models the match of the message with the j-th
subscription. Variable tmp1 is used to record the identifier of the component that
delivered the subscription, and variable tmp2 is used to record the number of
elements currently stored in buffer bno[tmp1]. The self-loop transition in location
1 describes the mismatch of the j-th subscription with the message; the value of
j is also incremented by 1.

5.3 Application Components

This section describes how to model application-specific components. The in-
frastructure provides the following operations to the designers of application
components to let them communicate:

– subscribe(pid,t): component pid subscribes to messages that match pattern
t.

– unsubscribe(pid,t): component pid withdraws its former subscriptions that
match pattern t.

Formal Analysis of Publish-Subscribe Systems 255

Fig. 5. Probabilistic timed automaton modeling notification

– publish(k): a component publishes message k.
– consume(k): a component removes message k from its receiving buffer bno.

As defined in Section 3, we assume that operation consume takes at least TCL
and at most TCH time units. Probabilistic timed automata allow us to model
the above operations as shown in Fig. 6. Component designers specify the behav-
ior of components by means of statechart diagrams, and use the above operations
to model the interaction among components. They can then translate the stat-
echart diagrams to probabilistic timed automata according to the translation
rules defined in Fig. 6.

Fig. 6. Probabilistic timed automata modeling communication operations: (a)
subscribe(pid,t), (b) unsubscribe(pid,t), (c) publish(k), and (d) consume(k)

6 Example Application

This section applies our approach to a simple example taken in the domain of
embedded control systems. The example consists of two sensors, a main proces-
sor, and an actuator. The main processor reads the responses from the sensors,

256 F. He et al.

and then feeds the actuator. This system can be implemented by using a publish-
subscribe architecture as shown in Fig. 7.

First, the main processor publishes events to request data from the sensors.
Then, the main processor, which receives responses from the sensors, publishes a
message to feed the actuator3. The sensors take from TSDL to TSDH time units
to give their responses, and the actuator uses from TADL to TADH time units
to be fed. Since the message may be lost during the transmission, we assume an
upper bound TMW for the main processor to wait for data. We start a timer as
soon as the main process begins to work. If a time-out occurs, the main process
terminates and reports a failure.

Fig. 7. Publish-subscribe architecture of the embedded control system

Fig. 8 and Fig. 9 show the statechart diagrams for the sensors and the main
processor, respectively. The statechart diagram for the actuator is not illustrated
here since it is similar to the one for the sensors. The corresponding probabilis-
tic timed automata can be obtained from the statechart diagrams by applying
the translation rules of Fig. 6. For example, the probabilistic timed automaton
obtained from the statechart diagram for sensors is shown in Fig. 10. The prob-
abilistic timed automaton of the main processor can be obtained similarly. In
this example, subscriptions cannot change dynamically (i.e., while the system
executes); they are defined statically. Hence the complete model contains the
above described components and the dispatcher presented in Section 5, where
subscription and unsubscription messages are ignored. Accordingly, the model
in Fig. 4 only handles publication messages.

Fig. 8. Statechart diagram for a sensor

The choice of only considering static subscriptions is not due to limitations
of the proposed approach, but to the nature of the example application, since
embedded systems are often statically configured. However, should we need to
3 Notice that all the messages are mediated through the dispatcher.

Formal Analysis of Publish-Subscribe Systems 257

Fig. 9. Statechart diagram for the main processor

add dynamic subscriptions, the components ought to be modified by adding two
new outgoing transitions from location 0 to model subscription and unsubscrip-
tion requests, respectively. These transitions are taken with a given probability
to simulate the success of these operations and thus how the scenario changes4.
If one of these transitions is taken, the automaton moves to a new location, from
which we model the subscription (or unsubscription) request.

Fig. 10. Probabilistic timed automata for a sensor

6.1 PRISM Model

PRISM [17,18,19] is the model checker we selected to verify our models. PRISM
is a probabilistic model checker developed at the University of Birmingham and is
a tool for the design and analysis of systems that exhibit probabilistic behaviors.
It supports three types of probabilistic models: Discrete-Time Markov Chains
(DTMCs), Markov Decision Process (MDPs), and Continuous-Time Markov
Chains (CTMCs). Models are specified in a simple, high-level modeling language,
which is a variant of the Reactive Modules formalism of Alur and Henzinger [20].
Properties are described by the PRISM property specification language, which is
based on the two probabilistic temporal logics called Probabilistic Computation
Tree Logic (PCTL) [21, 22] and Continuous Stochastic Logic (CSL) [23, 24].

4 Notice that in this example, this probability is 0, since with do not permit dynamic
subscriptions and unsubscriptions and thus the arcs are skipped.

258 F. He et al.

Since we are interested in modeling both probabilistic (unreliable channels
with message loss) and non-deterministic (time delays) behaviors of publish-
subscribe systems, we decided to adopt the MDP formalism, which allows us to
mix the two different types of behaviors. The translation from probabilistic timed
automata to PRISM models is easy. Each automaton in the publish-subscribe
system corresponds to a PRISM module. The buffers and the subscription table
are rendered as global variables. Since all the timers should run at the same rate,
it is required that all the time passing actions be synchronized. For example, the
dispatcher staying in location 1 with time progressing is described in PRISM as:

[time] s_dp=1 & t_dp<TPH -> t_dp’=min(t_dp+1,TPH);

Similarly, sensor 1 staying in location 2 with time progressing can be described
in PRISM as:

[time] s_s1=1 & t_s1<TSDH -> t_s1’=min(t_s1+1,TSDH);

Notice that these two commands are labeled with the same action time to
mean that these two commands need to be synchronized.

PRISM models can be augmented with rewards structures5, which associate
real values with certain states or transitions of the model. With reward struc-
tures, PRISM can be used to reason about the properties related to the expected
values of these rewards. In our model, we assign a reward of 1 to all the transi-
tions labeled with action time. All the others maintain 0 as default value. This
way we can verify the properties related to expected time.

6.2 Experimental Results

This section presents some results obtained by using the PRISM model checker
to verify the example system.

Service provision. The first concern is to understand if the task finishes success-
fully. This means that the automaton of the main processor must end in location
0 without generating a time-out. This can be expressed in PRISM as:

label "succeed" = s_mn=0 & t_mn>0;
Pmax=?[true U "succeed"], Pmin=?[true U "succeed"]

Notice that the probabilities for an MDP can only be computed after nonde-
terminism is resolved. Here we have two types of probabilities: Pmax and Pmin

correspond to the resolutions that all the delays take the minimum or maximum
values. We checked the effect of p0 (message loss probability for the main pro-
cessor) on the two probabilities and Fig. 11 shows the results. Notice that the
two probabilities behave the same way, so we use the term probability in Fig. 11
to refer to both the probabilities. Similar results can be obtained for other mes-
sage loss probabilities. It is easy to understand that probability Pmax (or Pmin)
decreases as the message loss probability increases.
5 Interested readers can refer to [25,26] for a detailed presentation.

Formal Analysis of Publish-Subscribe Systems 259

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro

ba
bi

lit
y

p0

Fig. 11. Effect of p0 on the probability (Pmax, Pmin)

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5

E
xp

ec
te

d
re

w
ar

d

p0

Rmax
Rmin

Fig. 12. The effect of TDL on Rmin

Average time. Our second concern is about the average time the system takes
to complete the task. It can be expressed in PRISM as:

label "terminate" = (s_mn=0 & t_mn>0) | (s_mn=3);
Rmax=?[F "terminate"], Rmin=?[F "terminate"]

where R=? [F prop] is a reward-based property. It accumulates rewards along
each path until prop is satisfied, and then returns the expected value [26].

We have tested the effect of p0 on both Rmax and Rmin. Since we assign a re-
ward of 1 to all the transitions labeled with action time, the values of Rmax and
Rmin just give the average times in the case of maximum and minimum delays, re-
spectively. The results are plotted in Fig. 12 and show that when p0 increases, the
probability of the task to successfully finish decreases, as a result the average time
increases accordingly. Needless to say, the system takes more time if the sub-tasks
fail. There is also an upper bound for the two expected values.

Effect of buffer size. If we consider the probabilities computed in the first exper-
iment, the values of Pmax and Pmin are the same. However, if we reduce the size

260 F. He et al.

of the corresponding buffers, the value of Pmin may become 0. To understand
this result, we need to consider the scenario in which all the sensors send their
responses to the dispatcher at (almost) the same time. If the size of the receiving
buffer is not large enough, or if the dispatcher cannot process existing messages
quickly enough, there is a buffer overflow and the arrival of a new message would
be dropped directly. The same situation can happen to the other buffers. Our ex-
periments show that probabilistic model checking help optimize the appropriate
size of buffers of the system model.

7 Conclusions and Future Work

This paper presented an approach to modeling and validating publish-subscribe
systems by using probabilistic model checking. The infrastructure (transmission
channels, dispatcher) is modeled by probabilistic timed automata. Application-
specific components are modeled by statechart diagrams and then translated
into probabilistic timed automata. The actual validation is carried out by using
the PRISM model checker.

This paper presented some preliminary results we obtained so far, which are
motivating us to keep investigating these ideas. Our long-term goal is to de-
sign an integrated tool-set for the multi-perspective validation of the highly
dynamic software architectures, which are becoming increasingly important and
widespread in practice. Publish-subscribe architecture are a first notable class
of such architectures, on which we initially focused our research.

References

1. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19(3), 332–383
(2001)

2. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

3. Cugola, G., Picco, G.P.: Reds: a reconfigurable dispatching system. In: SEM ’06:
Proceedings of the 6th international workshop on Software engineering and mid-
dleware, pp. 9–16. ACM Press, New York, NY, USA (2006)

4. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish/subscribe architectures. In: Proceedings of the SAVCBS’03 Workshop,
Helsinki, Finland (2003)

5. Baresi, L., Ghezzi, C., Mottola, L.: Towards fine-grained automated verification of
publish-subscribe architectures. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge,
V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 131–135. Springer, Heidelberg
(2006)

6. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-
subscribe architectures. In: (To appear) Proceedings of the 29th International Con-
ference on Software Engineering (ICSE07), Minneapolis (MN, USA) (2007)

Formal Analysis of Publish-Subscribe Systems 261

7. Garlan, D., Khersonsky, S.: Model checking implicit-invocation systems. In: Proc.
of the 10th Int’l Workshop on Software Specification and Design, pp. 23–30 (2000)

8. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Proc. of the 10th Int’l SPIN Workshop on Model Checking of Software (2003)

9. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: FSE (2003)

10. Zhang, H., Bradbury, J.S., Cordy, J.R., Dingel, J.: A transformational framework
for testing and model checking implicit invocation systems. In: Proc. Int. Work.
on Distr. Event-Based Systems (DEBS’04) (2004)

11. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, pp. 221–230. IEEE
Computer Society Press, Los Alamitos (2004)

12. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Pro-
ceedings of Fifth Annual IEEE Symposium on Logic in Computer Science, pp.
414–425 (1990)

13. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

14. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science 282, 101–150 (2002)

15. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for
probabilistic timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004
and FTRTFT 2004. LNCS, vol. 3253, pp. 293–308. Springer, Heidelberg (2004)

16. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. Formal Methods in System De-
sign 29, 33–78 (2006)

17. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer (STTT) 6(2), 128–142 (2004)

18. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the prob-
abilistic model checker PRISM. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 5–31 (2005)

19. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg
(2006)

20. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An. International Journal 15(1), 7–48 (1999)

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

22. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) Foundations of Software Technology and The-
oretical Computer Science. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg
(1995)

23. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
269–276. Springer, Heidelberg (1996)

262 F. He et al.

24. Baier, C., Katoen, J.P., Hermanns, H.: Approximate symbolic model checking of
continuous-time markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR
1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)

25. Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and
expected reward formulae with random time bounds. In: Proc. 2nd Euro-Japanese
Workshop on Stochastic Risk Modelling for Finance, Insurance, Production and
Reliability (2002)

26. Prism user manual, http://www.cs.bham.ac.uk/∼dxp/prism/manual/

http://www.cs.bham.ac.uk/~dxp/prism/manual/

Testing Distributed Systems Through Symbolic

Model Checking

Gabriel Kalyon�, Thierry Massart��, Cédric Meuter,
and Laurent Van Begin���

Université Libre de Bruxelles (U.L.B.),
Boulevard du Triomphe, CP-212, 1050 Bruxelles, Belgium

{gkalyon,tmassart,cmeuter,lvbegin}@ulb.ac.be

Abstract. The observation of a distributed system’s finite execution
can be abstracted as a partial ordered set of events generally called finite
(partial order) trace. In practice, this trace can be obtained through a
standard code instrumentation, which takes advantage of existing com-
munications between processes to partially order events of different pro-
cesses. We show that testing that such a distributed execution satisfies
some global property amounts therefore to model check the correspond-
ing trace. This work can be time consuming; we therefore provide an
efficient symbolic Ctl model-checking algorithm for traces. This method
is based on a symbolic data structure, called Interval Sharing Trees, al-
lowing to efficiently represent and manipulate sets of k-uples of naturals.
Efficient symbolic operations are defined on this data structure in or-
der to deal with all Ctl modalities. We show that in practice this data
structure is well adapted for Ctl model checking of traces.

Keywords: testing, asynchronous distributed systems, global property,
model checking of traces, trace checking.

1 Introduction

A distributed system is typically a set of distributed hardware equipments which
run concurrent processes, communicating through some network. The design of
such system is known to be a difficult task. When the purpose of such a system is
to perform some control of critical equipment like an industrial plant, a plane, or
a satellite, its correctness is extremely important. The designer can ease her work
by various techniques [1, 2, 3] including validation and debugging. In particular,
traditional model-based approaches abstract the action the system can do into
events which change the system’s global state. Validation works therefore on a
labelled directed graph called a Kripke structure which describes the possible

� Supported by the Belgian National Science Foundation (FNRS) under a FRIA
grant.

�� Supported by the Belgian Science Policy IAP-Phase VI: MoVES and Centre Fédéré
en Vérification (FNRS-FRFC n 2.4530.02).

��� Research fellow supported by the Belgian National Science Foundation (FNRS).

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 263–279, 2007.
c© IFIP International Federation for Information Processing 2007

264 G. Kalyon et al.

system’s behaviours. Verification tools (e.g. [4, 5, 6]) can be used to validate parts
of models. For instance, such tools can be used to check that, in the system, every
time the system goes in a state where a condition p holds, it is followed by a
state where q and r holds. p can for instance be an abstraction for some alarm
detected through some given sensor, while q and r, may correspond to, possibly
distributed, values assignment on some actuators.

Unfortunately in practice, even with this abstraction, the state-explosion prob-
lem generally prevents the designer from exhaustively verifying the whole system,
even with efficient exploration techniques such as partial order reduction [7, 8]
or symbolic model checking [9, 10, 11]. In such cases, the designer generally falls
back to testing which cannot guarantee that a system is completely bug-free,
but if achieved on a large number of test-cases (e.g. covering all the functionali-
ties of the system), can give a reasonable confidence that the system is correct.
In this context, a test-case defines the model of the part of the system which
corresponds to a particular execution. Testing may therefore be seen as the val-
idation of this smaller model. To extract this smaller model from a system, the
implementation is instrumented to record only relevant events. A special process,
called the monitor, records this model (the events of the system), that we can
just call execution here, and then checks that it satisfies some desired property.
Notice that an execution can also be extracted from a design model. In partic-
ular scenarios of executions, modelled as MSC (Message Sequence Charts) is a
particular form of such execution and can also be validated. Hence, at both the
design and implementation levels, it is an important activity for which efficient
methods must be provided.

In the centralized case, an execution of the system is a sequence of events.
Determining if such an execution satisfies a property is in general simple. In
the distributed case, if the system to control is slow enough, one can assume
that all processes of the system are synchronized using a global discrete clock.
This so-called synchrony hypothesis allows to see such distributed execution as a
sequence of set of events where all events in a set are seen as simultaneous. This
hypothesis allows a relatively simple validation of such a distributed execution.
Unfortunately, if the system to control is too fast compared to the synchroniza-
tion mechanism offered by the implementation, the synchrony hypothesis cannot
be made and the asynchronism between distributed processes must be taken into
account in the analysis. In this case, the exact order in which two concurrent
events occur in the execution is, in general, not always known or guaranteed. By
taking into account the communications between processes, only a partial order
on the events of the execution can be obtained. In practice, this partial order
relation, often called the happened-before relation [12], can be obtained through
correct code instrumentation using, for instance, vector clocks [12, 13].

Hence in this case, an execution is a partially ordered set of events often called
partial order trace or simply trace. Since the order in which the events of this
(partial order) trace are interleaved is generally relevant to the safety of the sys-
tem, testing that a distributed execution satisfies a global property φ amounts
to verifying that every sequential execution, compatible with the partial order,

Testing Distributed Systems Through Symbolic Model Checking 265

satisfies φ or, in other terms, model checking φ on the corresponding trace. Un-
fortunately, this problem is hard [14], since the number of compatible sequential
executions and the size of the Kripke structure which models an execution may
be exponential in the number of concurrent processes. Therefore, to tackle this
complexity, instead of working on the underlying Kripke structure, efficient tech-
niques have been developed to work directly on the partial order itself, which is,
in general, exponentially more compact. In this line, in [15], A. Sen and Garg
present the temporal logic RCtl (for regular-Ctl), which is a subset of the
branching time temporal logic Ctl [16] and shows that the compact symbolic
data structure called computation slice [17], can be used to efficiently compute
all global states which satisfy a RCtl formula. However, RCtl does not include
such simple Ctl property as AG(p =⇒ AF(q ∧ r)), i.e. every p is eventually
followed by a state where q and r hold true; formula that may be very useful
during validation. In general, a computation slice is too restrictive to represent
any arbitrary set of global states of a finite trace.

This motivates our work; in this paper, we introduce an efficient symbolic
method using Interval Sharing Trees (IST) [18, 19]. This data structure allows
to represent any set of global states of a finite trace. We define how to use IST
to provide a full Ctl model checking of finite traces. We show that intervals of
naturals can be used, in practice, to have a compact representation for sets of
global states of the trace satisfying the desired formula and hence, to provide an
efficient algorithm for Ctl model checking of finite traces. Moreover, we show
that our algorithms perform very well compared to standard symbolic model
checking using BDDs [11] and implemented in the tool NuSMV [6].

This paper is organized as follows. In Sec. 2, we detail related works. In
Sec. 3, we introduce our model for traces and define the Ctl over this model.
In Sec. 4, we explain how sets of configurations can be represented compactly
using intervals and interval sharing trees. In Sec. 5, we show how Ctl model
checking on traces can be solved using this symbolic representation. Next, in
Sec. 6, we experimentally validate our method on various examples compared to
Ctl model-checking with the NuSMV tool. Finally, conclusion and future works
are given in Sec. 7.

2 Related Works

Testing and monitoring the global behaviours of distributed systems can be
categorized in two classes: trace model-checking and global predicate detection.

Trace model checking has been studied mainly theoretically through the defi-
nition of several linear temporal logic for Mazurkiewicz traces. A Mazurkiewicz
trace [20], over an alphabet Σ with a independence relation I, can be defined as a
Σ-labelled partial order set of events with special properties not explained here.
For Mazurkiewicz traces, local [21, 22] and global [23, 24, 25] trace logics have
been defined. However, in our case, the trace1 is an abstraction of a distributed
execution (or of a scenario) and models a set of possible interleavings of events
1 Our trace can be seen as a prime event structure with an empty conflict relation [26].

266 G. Kalyon et al.

the distributed system may have had. Since we do not suppose to have informa-
tion about independence between actions, none of these actions are independent
a priori; testing must then check that all these possible orderings of events are
correct. Since the independence relation is not a data that trace temporal logics
may exploit, we do not use these logics to model-check our executions and stick
to simple sequence (interleaving) semantics.

Global predicate detection initially aims at answering reachability questions,
i.e. does there exist a possible global configuration of the system, that satisfies
a given global predicate φ. Garg and Chase showed in [14] that this problem
is NP-complete for an arbitrary predicate, even when there is no inter-process
communication. Efficient (polynomial) methods have been proposed for vari-
ous classes of predicates, such as stable predicates proposed by Chandy and
Lamport [27], independent predicates by Charron-Bost et al [28], conjunctive
predicates by Garg and Waldecker [29, 30], linear and semi-linear predicates by
Chase and Garg [14], regular predicates by Garg and Mittal [31] and predicates
expressed by a finite automata that can be checked online by Jard et al [32].
Garg and Mittal implicitly use a symbolic data structure called computation
slice, to compute efficiently all global states, compatible with a given execution
satisfying a given regular predicate [17]. This structure in used by A. Sen and
Garg in their work on the temporal logic RCtl [15]. In [33, 34] K. Sen et al. use
an automaton to specify the system’s monitor. The authors provide an explicit
exploration of the state space and to limit this exploration a window is used.
In a previous work [35], we have used this technique to provide an efficient Ltl
tester of distributed executions.

3 Framework

In this section, we detail our framework. We start by formally introducing our
model for traces of distributed systems, i.e. finite partial order trace. Then, we
define the branching time temporal logic Ctl over such finite traces.

Partial Order Trace. Our executions are obtained by a fixed numbers of
concurrent processes, each executing a finite sequence of assignments. Moreover,
due to inter-process communications, other causal dependencies are added. These
communications will usually be done by message passing, but if some processes
are not distributed, can be done by other means such as shared variable. An
execution is modeled as a finite partial order trace, i.e. a finite partially ordered
set of events, where each event belongs to some process and is labeled by the
assignment which took place during this event.

Definition 1 (Partial order trace). A partial order trace of k processes and
over a set of variables V is a tuple T = 〈E,α,�〉 where:

– E = P1 ∪ P2 ∪ ... ∪ Pk is a finite set of events partitioned into k disjoint
non empty subsets Pi, called processes; pid(e) denotes the process of event e
belongs to (pid(e) = i iff e ∈ Pi);

Testing Distributed Systems Through Symbolic Model Checking 267

P1 w:=1 y:=3 x:=0

P2 x:=4 w:=0

Fig. 1. Example of partial order trace

– α : E ,→ V × Q is a labeling function mapping each event to an assignment,
i.e. α(e) = (x, v) associates the assignment x := v to e; if α(e) = (x := v),
var(e) denotes x and val(e) denotes v;

– �⊆ E × E is a partial order relation on E such that ∀e, e′ ∈ E:
(i) pid(e) = pid(e′) ⇒ (e � e′) ∨ (e′ � e)
(ii) var(e) = var(e′) ⇒ (e � e′) ∨ (e′ � e).

Condition (i) on � ensures that all events from the same process are ordered and
condition (ii) enforces that all events assigning the same variable are ordered.
Given an event e ∈ E, we define ↓e = {e′ ∈ E | e′ � e}, the past of e (including
itself), and pos(e) = | ↓ e ∩ Ppid(e)| (where | · | denotes the size of sets), the
position of e in its process. A cut is a subset C ⊆ E such that ∀e ∈ C :↓e ⊆ C.
cuts(T) = {C ⊆ E | ∀e ∈ C : ↓e ⊆ C} is the set of all cuts in T. In the remainder
of this paper, we always consider the set of variables V and the partial order
trace of k processes T = 〈E,α,�〉.

Given a cut C ∈ cuts(T), we define enabled(C) = {e ∈ E \C | (↓e \ {e}) ⊆ C}
the set of events enabled in C. If e is enabled in the cut C, then it can be
fired from C leading to C ∪ {e}, the successor of C for e. Note that if C ∈
cuts(T), so is C ∪ {e} for all e ∈ enabled(C). Given a set of cuts X ⊆ cuts(T),
pre∃(X) = {C ∈ cuts(T) | ∃e ∈ enabled(C) : C ∪ {e} ∈ X} is the set of
existential predecessors of X , i.e. the set of cuts having at least one successor
in X , and pre∀(X) = {C ∈ cuts(T) | ∀e ∈ enabled(C) : C ∪ {e} ∈ X} is the
set of universal predecessors of X , i.e. the set of cuts having all their successors
in X . Additionally, given a sequence of cuts σ = C0, C1, ..., Cn, σi denotes Ci,
the ith element of σ, and |σ| = n denotes the size of σ. A run from a cut
C is a sequence σ ∈ cuts(T)∗ such that (i) σ0 = C, (ii) σ|σ| = E, and (iii)
∀0 ≤ i < |σ| : σi ∈ pre∃({σi+1}), i.e. a sequence of cuts (i) starting in C, (ii)
ending in E, and (iii) σi+1 is a successor of σi for any i. The set of runs starting
in C ∈ cuts(T) is denoted by runs(C). Finally, runs(∅) is the set of runs of the
trace T.

A trace T = 〈E,α,�〉 can be represented using a directed acyclic graph
(E,→) called Hasse diagram. In this graph, there is an edge from event e to
event e′ if and only if they are ordered, i.e. e � e′, and if their order is not
imposed by transitivity, i.e. ¬∃e′′ ∈ E : e ≺ e′′ ≺ e′ where e1 ≺ e2 denotes
e1 � e2 and e1 �= e2. As an example, Fig. 1 depicts such a graph for a partial
order trace with two processes. That trace describes an execution of a distributed
system with two concurrent sub-system. During that execution, the first process
makes three assignments to variables w, y, x and the second one makes two
assignments to x and w. An edge between two events e and e′ in the Hasse graph
such that pid(e) �= pid(e′) models a communication between processes (noted
e →c e′). Communication edges model either message passing between processes

268 G. Kalyon et al.

or the fact that the event e assigns a value to a shared variable used in e′. Note
that v in event x := v can be obtained by evaluating an expression involving
the variable appearing in e. For instance, the arrow between w:=0 and y:=3 in
Fig. 1 can model that value 3 is obtained at run time by evaluating an expression
where w appears and its value is given by the first assignment. In the following,
we always consider that we have the Hasse diagram corresponding to T.

Ctl over Finite Partial Order Trace. A predicate p is a constraint x•c where
c is a rational constant, x ∈ V and where • ∈ {<,≤, >,≥,=, �=}. A formula in the
Ctl logic is built on predicates using classical boolean operators, and temporal
modalities. If p denotes a predicate and φ, φ1, φ2 denote Ctl formulae, then the
set of Ctl formulae is defined as follows:

φ ::= 2 | p | ¬φ | φ1∨φ2 | φ1∧φ2 | EXφ | AXφ | EGφ | AGφ | E[φ1Uφ2] | A[φ1Uφ2]

where A stands for for all runs, E for exists a run, X for next, G for globally and U
for until. Two other temporal modalities, EF and AF, where F stands for finally,
are derived syntactically as follows: EFφ ≡ E[2Uφ] and AFφ ≡ A[2Uφ].

Basic formulae are constraints over one variables in V. Since all assignments
to a particular variable are ordered, each cut C ∈ cuts(T) induces a unique valu-
ation on the variables in V no matter the order in which the events are executed.
Formally, given a cut C, we can define inductively the valuation induced by C,
noted vC , as follows:

– if C = ∅ then ∀x ∈ V, vC(x) = 0,
– if C = C′∪{e} with C′ ∈ cuts(T) then ∀x ∈ V : vC =

{
val(e) if var(e) = x
vC′(x) otherwise

Hence, we forget variables in V and only consider cuts of T when defining
the semantics of Ctl formula. More precisely, the semantics of a Ctl formula
is given by the satisfaction relation |= defined hereafter.

C |= 2
C |= p iff vC(p) is true
C |= ¬φ iff C �|= φ
C |= φ1 ∨ φ2 iff (C |= φ1) ∨ (C |= φ2)
C |= φ1 ∧ φ2 iff (C |= φ1) ∧ (C |= φ2)
C |= EXφ iff ∃e ∈ enabled(C) : C ∪ {e} |= φ
C |= AXφ iff ∀e ∈ enabled(C) : C ∪ {e} |= φ
C |= EGφ iff ∃σ ∈ runs(C), ∀i ∈ [0, |σ|] : σi |= φ
C |= AGφ iff ∀σ ∈ runs(C), ∀i ∈ [0, |σ|] : σi |= φ
C |= E[φ1Uφ2] iff ∃σ ∈ runs(C), ∃i ∈ [0, |σ|] :

(σi |= φ2) ∧ (∀j ∈ [0, i) : σj |= φ1)
C |= A[φ1Uφ2] iff ∀σ ∈ runs(C), ∃i ∈ [0, |σ|] :

(σi |= φ2) ∧ (∀j ∈ [0, i) : σj |= φ1)

Note that according to this semantics, when the execution of T is finished
(when the cut E is reached), for any Ctl formula φ, we have that E �|= EXφ
and E |= AXφ. We note [[φ]] the set {C ∈ cuts(T) | C |= φ} of cuts that satisfy
formula φ.

Testing Distributed Systems Through Symbolic Model Checking 269

4 Symbolic Representation for Sets of Cuts

The number of cuts, i.e. the size of cuts(T), is in general exponential in the
size of T. Hence, efficient representations for large sets of cuts are needed. Our
proposal is based on the following observation: a cut can be represented by a
k-uple −→x of naturals where the ith component of −→x gives the number of events
of the ith process that already occured. For example, if a trace T is composed of
3 processes, the 3-uple 〈1, 2, 0〉 represents the cut where process P0 has executed
its first event, i.e. e ∈ P1 with pos(e) = 1, process P2 has executed its first 2
events, i.e. e1, e2 ∈ P2 with pos(ei) = i (i ∈ {1, 2}), and process P3 has executed
no events. The successor (predecessor) relation between cuts can be lifted to
their vector representation: an event e ∈ Pi is enabled in −→x = 〈x1, . . . , xk〉 if
xpid(e) < pos(e) ∧ ∀e′ ∈↓e \ {e} : pos(e′) ≤ xpid(e) and the successor of −→x for e is
〈x1, . . . , xi + 1, . . . , xk〉. Note that a vector −→x is not necessarily a representation
for a cut. Indeed, if ∃i �= j ∈ [1, k], ∃e ∈ Pi, ∃e′ ∈↓e ∩ Pj : (pos(e) ≤ xi) ∧
(pos(e′) > xj) then −→x does not represent a cut, otherwise it does. Given a subset
X ⊆ Nk, we note sets(X) = {C ⊆ E | ∃−→x ∈ X, ∀1 ≤ i ≤ k : |C ∩ Pi| = xi} the
set of subsets of events represented by the set X . Moreover, −→x ≤ −→x ′ denotes
that ∀i ∈ [1..k] : xi ≤ x′

i which in terms of cuts corresponds to inclusion. In
conclusion, in order to represent sets of cuts, we show how to efficiently represent
large set of tuples of naturals.

Multi-rectangles. A k-multi-rectangle M is a tuple of intervals over natural
values of dimension k. M defines the set of k-uples 〈x1, . . . , xk〉 over naturals such
that ∀1 ≤ i ≤ k : xi is in the interval corresponding to the ith dimension of M .
Assuming that each interval contains n values, M represents a set of nk k-uples.
Hence, it is a compact representation for the set it represents. Moreover, k-multi-
rectangles correspond to a natural class of sets of cuts. Indeed, suppose k = 2 and
the events ei,1, ei,2..., ei,mi of Pi (i ∈ {1, 2}) occurring sequentially without any
restrictions on the events of P3−i and such that ∀j ∈ [1,mi] : pos(ei,j) = j. Then,
the set of cuts where P1 and P2 have executed some of those events corresponds to
the multi-rectangle 〈[1,m1], [1,m2]〉. This multi-rectangle represents succinctly
the result of all possible interleavings of P1, P2. However, due to communications
between processes, sets of cuts are not represented in general by one k-multi-
rectangle, but a set thereof. Hence, to prevent a symbolic state explosion, we use
a data structure, called Interval Sharing Tree (IST), to represent efficiently large
sets of k-multi-rectangles.

Interval Sharing Tree. Interval Sharing Trees [19] is a compact data structure
for representing sets of k-uples. An IST is basically a sharing tree [36], i.e. a di-
rected acyclic graph, where each node is labelled with an interval of integers. Each
path in such a graph represents a k-multi-rectangle. The sharing of common pre-
fixes and suffixes of k-multi rectangles allows to obtain a compact representation
for sets of k-multi-rectangles. Interval sharing tree are defined as follows.

Definition 2 (Interval Sharing Tree (IST)). An interval sharing tree I, is
a labelled directed acyclic graph 〈N, ι, succ〉 where:

270 G. Kalyon et al.

– N = N0 ∪N1 ∪N2 ∪ ...∪Nk ∪Nk+1 is the finite set of nodes, partitioned into
k + 2 disjoint subsets Ni called layers with N0 = {root} and Nk+1 = {end};

– ι : N ,→ Z × Z ∪ {2,⊥} is the labelling function such that ι(n) = 2 (resp.
⊥) if and only if n = root (resp. end);

– succ : N ,→ 2N is the successor function such that:
(i) succ(end) = ∅;
(ii) ∀i ∈ [0, k], ∀n ∈ Ni : succ(ni) ⊆ Ni+1 ∧ succ(ni) �= ∅;
(iii) ∀n ∈ N, ∀n1, n2 ∈ succ(n) : (n1 �= n2) ⇒ (ι(n1) �= ι(n2));
(iv) ∀i ∈ [0, k], ∀n1 �= n2 ∈ Ni : (ι(n1) = ι(n2)) ⇒ (succ(n1) �= succ(n2)).

In other words, an IST is a directed acyclic graph where each nodes are la-
belled with couples of integers except for two special nodes (root and end),
such that (i) the end node has no successors, (ii) all nodes from layer i have
their successors in layer i + 1, (iii) a node cannot have two successors with the
same label, (iv) two nodes with the same label in the same layer do not have
the same successors. For a node n (except root and end), ι(n) is interpreted
as an interval of integers. We note x ∈ ι(n) if an integer value x belongs to
that interval. Figure 2 illustrates some IST. A path of an IST I is a sequence
of node root, n1, n2,, nk, end such that n1 ∈ succ(root), end ∈ succ(nk) and
∀i ∈ [1, k) : ni+1 ∈ succ(ni). A k-uple −→x = 〈x1, x2, ..., xk〉 is accepted by
an IST I if and only if there exists a path root, n1, n2, ..., nk, end in I such
that ∀i ∈ [1, k] : xi ∈ ι(ni). The set of k-uples accepted by I is denoted
by tuple(I) and if tuple(I) ⊆ Nk, then sets(I) = sets(tuple(I)). In practice,
sharing of prefixes (iii) and suffixes (iv) in IST allow a non-negligible memory
saving, which can be exponential in the best cases (there exists IST whose num-
ber of nodes and edges is logarithmic in the number of k-multi rectangles it
represents).

Standard set operations have been defined symbolically over IST’s, namely,
union, noted I1 ∪I2, intersection, noted I1 ∩I2, set difference, noted I1 \I2 and
complementation, noted I. Other operations have been defined like downward
closure, noted ↓I, such that tuple(↓I) = {−→x ∈ Nk | ∃−→x ′ ∈ tuple(I) : −→x ≤ −→x ′},
and shift of a variable, i.e. replace xi by xi + δ for i ∈ [1, k] and δ ∈ Z, noted
I [xi←xi+δ]. Formally, tuple(I [xi←xi+δ]) = {〈x1, ..., xi + δ, ..., xk〉 | −→x ∈ tuple(I)}.
Symbolic algorithm, i.e. algorithms that do not enumerate all the paths of IST,
for those operations have been defined. Since the number of paths is in general
larger than the size of the IST, symbolic algorithms allow efficient manipulation
of k-multi-rectangles sets taking into account their prefix and suffix sharing.
Note that the counter-part of the compactness of IST is that most of their
operations cannot be computed in polynomial time in general. Hence, (most of)
the symbolic algorithms to manipulate IST are exponential in their worst case
(see [18] for more details). However, those algorithms are in general far from
their worst case in practice and IST have been shown to be more efficient than
other known data-structure (to represent subsets of Nk) both in execution time
and memory saving [37].

Testing Distributed Systems Through Symbolic Model Checking 271

5 Using IST for Ctl Model Checking

A basic approach to solve the Ctl model checking problem over partial order
traces consists in flattening the trace by building a graph where nodes are cuts
and edge corresponds to the successor relation and then solve the classical Ctl
model checking on Kripke structures. Unfortunately, that method is not practi-
cable since the resulting graph is in general exponential in the size of the trace.
To overcome that problem, we propose to build [[φ]] without flattening the partial
order trace but working directly on it. Our method builds [[φ]] inductively on the
structure of φ. Since [[φ]] can be large, we use IST to efficiently represent and
manipulate sets of cuts. We now present in details the construction. The proofs
of all lemmata and theorems of this section can be found in [38].

Tautology. If φ ≡ 2, I� is an IST representing all possible cuts of the trace
T. The principle to build I� is to start from the very simple IST I0 where
sets(I0) is the set of cuts if we do not consider communication edges of the
Hasse diagram. Then, we consider communication edges one by one, i.e. we
build the IST I0, I1, I2, . . . where Ii is built from Ii−1 (i > 0) by taking into
account one more communication edge until we have considered all of them. To
take into account a communication edge, we remove from sets(Ii−1) the sets of
events that do not satisfy the definition of cuts because of that edge. Hence,
assuming the Hasse diagram has v communication edges, sets(I0) ⊇ sets(I1) ⊇
. . . ⊇ sets(Iv) = [[2]]. I0 is defined as follows:

– N = {root} ∪ {n1} ∪ {n2} ∪ ... ∪ {nk} ∪ {end}
– ∀i ∈ [1, k] : ι(ni) = [0, |Pi|]
– succ(root) = {n1}, succ(nk) = {end}, and ∀i ∈ [1, k) : succ(ni) = {ni+1},

To take into account a communication e →c e′, we need to remove from sets(Ii)
all the sets of events that do not satisfy the definition of cuts, i.e. the sets that
contain e′ but not e. To achieve that goals, we first build an IST B(e) represent-
ing all the sets of events that do not contain e (and have a vector representa-
tion). In other words, B(e) is the same as I0 except for the layer pid(e) where
ι(npid(e)) = [0, pos(e)−1]. Then, we build an IST A(e′) representing all the sets of
events that contain e′ (having a vector representation), i.e. A(e′) is the same as I0

except for ι(npid(e′)) = [pos(e′), |Ppid(e′)|]. The events to remove from sets(Ii) are
in the intersection of sets(A(e′)) and sets(B(e)). Hence, to remove them we com-
pute Ii = Ii−1 \ (A(e′)∩B(e)). We iterate this construct until all communication
edges are taken into account. Figure 2 illustrates the method by computing the
IST corresponding to the set of cuts satisfying 2 in the trace from Fig. 1.

Lemma 1. Given a trace T = 〈E,α,�〉, we have that sets(I�) = [[2]]

Predicates. If φ ≡ p, where p is a predicate x • c, we proceed as follows.
First, we collect all events that can potentially modify the truth value of p.
Let Ep = {e ∈ E | var(e) = x} be the set of those events. All events in Ep

272 G. Kalyon et al.

�

[0, 3]

[0, 2]

⊥

\ (
�

[0, 3]

[0, 1]

⊥

∩
�

[2, 3]

[0, 2]

⊥

) =

�

[0, 3]

[0, 2]

⊥

\
�

[2, 3]

[0, 1]

⊥

=

�

[0, 1] [2, 3]

[0, 1] [2, 2]

⊥

I0 \ (A(e′) ∩ B(e)) = I0 \ A(e′) ∩ B(e) = I

Fig. 2. Computation of I

assign the same variable, and by condition (ii) of definition 1, they are totally
ordered. Let ρ = e1, e2, ..., em be the linearization of Ep, i.e. ∀i ∈ [1,m] : ei ∈ Ep,
|Ep| = m and ∀i ∈ [1,m) : ei ≺ ei+1. This sequence can be used to determine
slices of T where p is true. Indeed, let s1, s2, ..., s� be the sequence of indices
splitting ρ into ! − 1 contiguous blocks es1 , ..., es2−1, es2 , ..., es3−1, ...,es

, ..., em

such that the value of p remains the same inside each block and changes in the
following block. Formally, this is the sequence satisfying the following constraints
(m = s�+1 − 1):

(i) 1 = s1 < s2 < ... < s�

(ii) ∀i ∈ [1, !], ∀j1, j2 ∈ [si, si+1) : (↓ej1 |= p) ⇐⇒ (↓ej2 |= p)
(iii) ∀i ∈ [1, !) : (↓esi |= p) ⇐⇒ (↓esi+1 �|= p)

Note that, given a block i ∈ [1, !], the value of p in any cuts between esi and
esi+1−1 is determined by esi . This set of cuts can be represented using A(esi) ∩
B(esi+1), as described above. Thus, for all block i ∈ [1, !] such that ↓esi |= p,
we add A(esi) ∩ B(esi+1) to Ip initially empty. Additionally, we must take into
account the cuts at the beginning and at the end of T. If p is satisfied at the
beginning of T (∅ |= p), we must add B(es1) to Ip, and similarly, if p is true at
the end of T (E |= p), we add A(esm) to Ip. Finally, in order to keep only cuts,
we take the intersection with I�.

Lemma 2. Given a trace T = 〈E,α,�〉 and a predicate p, we have that
sets(Ip) = [[p]].

Boolean Operators. In order to deal with boolean operators φ1 ∨ φ2 (resp.
φ1 ∧ φ2, ¬φ1), we can use standard operation on IST [18] and compute Iφ =
Iφ1 ∪ Iφ2 (resp. Iφ = Iφ1 ∩ Iφ2 , Iφ = Iφ1 ∩ I�).

Lemma 3. Given a trace T = 〈E,α,�〉 and Ctl formulae φ, φ1 and φ2, we
have that sets(Iφ1∨φ2) = [[φ1∪φ2]], sets(Iφ1∧φ2) = [[φ1∩φ2]] and sets(I¬φ) = [[¬φ]].

Existential Modalities. The treatment of existential modalities can be com-
puted through the use of the pre∃(·) operator, greatest and least fixed point (as
explained e.g. in [9]):

Testing Distributed Systems Through Symbolic Model Checking 273

[[EXφ]] = pre∃([[φ]])
[[EGφ]] = gfp λX · [[φ]] ∩ pre∃(X)

[[E[φ1Uφ2]]] = lfp λX · [[φ2]] ∪ ([[φ1]] ∩ pre∃(X))

In order to compute ISTs corresponding to those temporal formulae, we only
need an algorithm for computing symbolically the pre∃(·) operation. For that,
we decompose pre∃(·) into a function of pre∃i (·), where pre∃i (X) = {C ∈ cuts(T) |
∃e ∈ enabled(C)∩Pi : C∪{e} ∈ X} denotes the set of existential predecessors of
X only for process Pi. This decomposition is provided by the following lemma.

Lemma 4. Given a trace T = 〈E,α,�〉 and a subset X ⊆ cuts(T), we have
that pre∃(X) =

⋃
i∈[1,k] pre

∃
i (X).

The only remaining step is to characterize symbolically pre∃i (X). This charac-
terization is given by the following lemma.

Lemma 5. Given a trace T = 〈E,α,�〉, and an IST I such that sets(I) ⊆
cuts(T), we have that pre∃i (sets(I)) = sets(I [xi←xi−1] ∩ I�).

Finally, we can define the symbolic existential predecessors on IST.

Definition 3 (Symbolic existential predecessors). Given a trace T =
〈E,α,�〉 and an IST I such that sets(I) ⊆ cuts(T), the symbolic existential
predecessors of I, noted spre∃(I), is defined as follows:

spre∃(I) =
⋃

i∈[1,k]

(
I [xi←xi−1] ∩ I�

)
As a direct consequence of lem. 4 and lem. 5, we get the next theorem.

Theorem 1 (Correctness spre∃(·)). Given a trace T = 〈E,α,�〉, and an IST
I such that sets(I) ⊆ cuts(T), we have that pre∃(sets(I)) = sets(spre∃(I)).

Universal modalities. Universal modalities are treated in a similar way then
existential ones. For these, we can use the following equivalence (taken from
[10, sec. 2.4]):

[[AXφ]] = pre∀([[φ]])
[[AGφ]] = gfp λX · [[φ]] ∩ pre∀(X)

[[A[φ1Uφ2]]] = lfp λX · [[φ2]] ∪ ([[φ1]] ∩ pre∀(X))

Computing ISTs corresponding to universal formulae amounts to defining a sym-
bolical version of the pre∀(·) operator on sets of cuts. The pre∀(·) operation can be
computed through the equivalence pre∀([[φ]]) = [[AXφ]] = [[¬EX¬φ]] = cuts(T) \
pre∃([[¬φ]]). On the other hand, we may compute pre∀(·) in an alternate way,
similarly to what we did for the pre∃(·). We can decompose pre∀(·) as a function
of pre∀i (·), where pre∀i (X) = {C ∈ cuts(T) | ∀e ∈ enabled(C) ∩ Pi : C ∪ {e} ∈ X}
denotes the set of universal predecessors of X only for process Pi. This decom-
position is given by the following lemma.

274 G. Kalyon et al.

Lemma 6. Given a trace T = 〈E,α,�〉, and an subset X ⊆ cuts(T), we have
that pre∀(X) =

⋂
i∈[1,k] pre

∀
i (X).

To compute symbolically pre∀i (·), we need to characterize exactly which cuts are
in pre∀i (X). By definition, pre∀i (X) denotes the set of cuts from which all enabled
events of process Pi lead to a cut in X . pre∀i (X) is composed of two classes of
cuts: (i) blockedi = {C ∈ cuts(T) | enabled(C) ∩ Pi = ∅}, the class of cuts in X
where process Pi is blocked; and (ii) the class of cuts where the next event of Pi

is enabled and leads to a cut in X , i.e. pre∃i (X).

Lemma 7. Given a trace T = 〈E,α,�〉, and an subset X ⊆ cuts(T), we have
that pre∀i (X) = pre∃i (X) ∪ blockedi.

We already have a way to compute pre∃i (X) symbolically (see lem.5). The fol-
lowing lemma characterized blockedi.

Lemma 8. Given a trace T = 〈E,α,�〉 and a process Pi ⊆ E, we have that
C ∈ blockedi holds if and only if ∀e ∈ E∩Pi : (pos(e) = |C∩Pi|+1) =⇒ (∃e′ ∈
E \ C : e′ →c e).

This result can be used to define an IST Iblockedi for blockedi. Indeed, from
Lemma 8, we can see that blockedi is composed of the set of all the cuts includ-
ing all events of Pi and the set of all the cuts where the next event to be triggered
by Pi is waiting for an incoming communication. Therefore, the computation of
Iblockedi starts with an IST IF representing the set of sets C of events where
process Pi has finished its execution, i.e. where |C ∩ Pi| = |Pi|. IF is the same
as I0except for layer i, where ι(ni) = [|Pi|, |Pi|]. Then, for each incoming com-
munication e →c e′ with e′ ∈ Pi, we build an IST where process Pi is ready to
execute e′ and where process Ppid(e) has not executed e yet. This IST is the same
as I0, except for layer i, where ι(ni) = [pos(e′) − 1, pos(e′) − 1] and for layer
pid(e), where ι(npid(e)) = [0, pos(e) − 1]. The IST representing the sets of events
where Pi is blocked is obtained by making the union between IF and all the IST
built for the communication edges. Finally, in order to keep only valid cuts, we
simply take the intersection of the resulting IST with I�. It is then easy to see,
that Iblockedi

contains exactly those cuts satisfying the condition of lem. 8. This
leads us to the following symbolic characterization of pre∀i (·).

Lemma 9. Given a trace T = 〈E,α,�〉, and an IST I such that sets(I) ⊆
cuts(T), we have that pre∀i (sets(I)) = sets((I [xi←xi−1] ∩ I�) ∪ Iblockedi

).

We can now define the symbolic universal predecessors.

Definition 4 (Symbolic universal predecessor). Given a trace T =
〈E,α,�〉 and an IST I such that sets(I) ⊆ cuts(T), the symbolic universal
predecessors of I, noted spre∀(I), is defined as follows:

spre∀(I) =
⋂

i∈[1,k]

(
(I [xi←xi−1] ∩ I�) ∪ Iblockedi

)

Testing Distributed Systems Through Symbolic Model Checking 275

As a direct consequence of lem. 6 and 9, we get the next theorem.

Theorem 2 (Correctness spre∀(·)). Given a trace T = 〈E,α,�〉, and an IST
I such that sets(I) ⊆ cuts(T), we have that pre∀(sets(I)) = sets(spre∀(I))

Note that it is possible to reduce an always until formula to an exist until for-
mulae. However, using this translation might explode the size of the formula,
and is therefore rejected in favor of a fixed point computation using pre∀(·).

Improving the computation of [[EFφ]] and [[AGφ]]. To compute IEFφ, one
can simply use the equivalence [[EFφ]] = [[E[2Uφ]]] = lfp λX ·[[φ]]∪([[2]]∩pre∃(X)),
and compute the fix point using the spre∃(·) operator. But, in this particular case,
since pre∃(X) ⊆ [[2]], this fix point can be reduced to lfp λX · [[φ]] ∪ pre∃(X).
Using IST, we can directly obtain the result of this fix point symbolically, in one
operation using the downward closure. Indeed, we have that IEFφ =↓Iφ ∩ I�.

Lemma 10. Given a trace T = 〈E,α,�〉 of k processes and a Ctl formula φ,
we have that sets(↓Iφ ∩ I�) = [[EFφ]].

Moreover, the quickest way to compute [[AGφ]] is generally through the transla-
tion AGφ ≡ ¬EF¬φ which avoids the fixpoint computation.

6 Experimental Results

In this section, we experimentally validate our method. We compare our sym-
bolic approach using IST with a state-of-the-art symbolic model checking (of the
trace) using the tool NuSMV [6]. We considered several classical academic ex-
amples and compared the running time of our early prototype against NuSMV.
Running time was limited to 10 minutes. This seems to be a reasonable as-
sumption considering that the testing should be achieved on a large number
of traces. On all the examples we considered, memory consumption was not
an issue. The IST manipulated in these examples contains no more than 7000
nodes. Those results are presented in table 1. The first example we considered
was the Peterson mutual exclusion protocol with two processes (Pet), where
communication is done through shared variables. We used a monitor to check
mutual exclusion: AG(ncrit < 2). On this property, we experimented two ways
of computing AG. The first using the downward closure on IST, and the second
using the fixed point on the spre∀(·) operator, as explained in sec. 5. As expected
the downward closure method is quicker (with the fixpoint methods the results
recorded for 2000, 5000 and 15000 events were 1.45 sec, 15.2 sec and 323.59
sec). We therefore decided to keep only the downward closure method for the
remaining experiments. Even on this relatively small example, we can already
see a big difference in running time: NuSMV runs out of time after 2000 events,
whereas out tool can handle 15000 events in the allotted time. We also con-
sidered a generalization of this protocol for n processes (PetN) using the same
mutual exclusion property. We experimented on 2, 5 and 10 processes. Again,
we can see that our approach using IST outperforms the traditional symbolic

276 G. Kalyon et al.

Table 1. Experimental results; ↑↑ indicates (> 10 min.)

Model #proc #events IST NuSMV
(in sec.) (in sec.)

Pet 2 2000 0.46 349.57
2 5000 7.53 ↑↑
2 15000 189.65 ↑↑

PetN 2 2000 0.20 294.46
2 5000 6.44 ↑↑
2 20000 390.90 ↑↑
5 1000 2.04 13.74
5 1500 6.82 ↑↑
5 5000 176.62 ↑↑
10 1500 7.53 150.23
10 2000 27.01 ↑↑
10 5000 147.89 ↑↑

Model #proc #events IST NuSMV
(in sec.) (in sec.)

ABP 2 1000 13.60 297.28
2 2000 27.56 ↑↑
2 5000 257.29 ↑↑

Phil 3 100 0.15 6.36
3 200 1.11 ↑↑
3 2000 366.22 ↑↑
5 100 0.25 ↑↑
5 200 27.05 ↑↑
5 500 125.56 ↑↑
10 100 1.67 ↑↑
10 200 26.94 ↑↑
10 500 ↑↑ ↑↑

approach using BDD. The third model we considered was the alternating-bit
protocol between two process ABP, i.e. a sender and a receiver. This time the
communication is achieved using asynchronous channel. We verified that every
message tagged with a 0 is followed by one with the same tag, which translates
in Ctl as follows: AG((sent msg = 0) =⇒ AF(received msg = 0)). This for-
mula is a bit more complicated. Nonetheless, our method is still scalable up to
5000 events, whereas NuSMV stops after 1000. The last example we considered
was the Dining Philosopher problem (Phil). We considered 3, 5 and 10 philoso-
phers. We verified that whenever philosopher 1 is eating, either he keeps eating
until the end of the trace or his left neighbour cannot eat until he stops. In
Ctl, this property is expressed as AG((state1 = eat) =⇒ (AG(state1 =
eat) || A[(state0 �= eat) U (state1 �= eat)])). We deliberately chose a complex
formula to test the robustness of our approach. On this example, NuSMV can
only handle 3 philosophers with 100 events, with the (too complex) property
in the allotted time whereas we can still manage to terminate the analysis on
some instances of respectable size. This can be explained by the fact that, in this
models, the processes are more independant, thus leading to more interleavings.
For each example, we have computed the size of the lattice of cuts. In the 10
minutes of allotted times, our prototype is capable of handling instances of up
to 1010 cuts, whereas NuSMV stops at 105. This leads us to conclude that our
approach is more scalable for this problem.

7 Conclusion and Future Works

In this paper, we have presented a new symbolic technique for the testing of
distributed systems, that seems to work well in practice. We still need to vali-
date our approach on more realistic examples. For that purpose, our method will
be integrated shortly in our tool TraX and fully interfaced with our distributed

Testing Distributed Systems Through Symbolic Model Checking 277

controllers design environment dSL [1, 2] to allow efficient testing of real indus-
trial distributed controllers. We will also continue to investiguate possible further
improvements of our technique, as the one inspired on the RCtl model check-
ing with computation slicing described in [15]. We also intend to investigate the
use of our method in different frameworks. A first candidate is the validation of
Message Sequence Charts (MSC). We must study how our method can improve
the efficiency of existing MSC validation methods.

Finally, from a theoretical point of view, the exact complexity class of Ctl
over partial order trace is not known. We plan to determine that full Ctl and
some interesting fragments (like RCtl).

References

1. De Wachter, B., Massart, T., Meuter, C.: dSL: An Environment with Automatic
Code Distribution for Industrial Control Systems. In: Papatriantafilou, M., Hunel,
P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 132–145. Springer, Heidelberg (2004)

2. De Wachter, B., Genon, A., Massart, T., Meuter, C.: The Formal Design of Dis-
tributed Controllers with dSL and Spin. Formal Aspects of Computing 17(2), 177–
200 (2005)

3. Massart, T.: A Calculus to Define Correct Tranformations of LOTOS Specifica-
tions. In: FORTE ’91, North-Holland Publishing Co, pp. 281–296 (1992)

4. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Software Eng. 23(5),
279–295 (1997)

5. McMillan, K.: The SMV System. Technical Report CMU-CS-92-131, Carnegie Mel-
lon University (1992)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem. In: Godefroid, P. (ed.) Partial-Order
Methods for the Verification of Concurrent Systems. LNCS, vol. 1032, Springer,
Heidelberg (1996)

8. Valmari, A.: On-the-fly verification with stubborn sets. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(1999)

10. McMillan, K.L.: Symbolic model checking: an approach to the state explosion prob-
lem. Carnegie Mellon University (1992)

11. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

13. Mattern, F.: Virtual time and global states of distributed systems. In: Proc.
Workshop on Parallel and Distributed Algorithms, North-Holland / Elsevier, pp.
215–226 (1989)

278 G. Kalyon et al.

14. Chase, C.M., Garg, V.K.: Detection of global predicates: Techniques and their
limitations. Distributed Computing 11(4), 191–201 (1998)

15. Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs
using computation slicing. In: OPODIS, pp. 171–183 (2003)

16. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, pp. 52–71 (1981)

17. Mittal, N., Garg, V.K.: Computation slicing: Techniques and theory. In: DISC, pp.
78–92 (2001)

18. Ganty, P., Meuter, C., Begin, L.V., Kalyon, G., Raskin, J.F., Delzanno, G.:
Symbolic data structure for sets of k-uples of integers. Technical Report 570,
Département d’Informatique - Université Libre de Bruxelles (2006)

19. Ganty, P.: Algorithmes et structures de données efficaces pour la manipulation
de contraintes sur les intervalles. Master’s thesis, Université Libre de Bruxelles
(2002)

20. Mazurkiewicz, A.W.: Trace theory. In: Advances in Petri Nets, pp. 279–324 (1986)

21. Thiagarajan, P.S.: A trace based extension of linear time temporal logic. In: Abram-
sky, S. (ed.) Proceedings of the Ninth Annual IEEE Symp. on Logic in Computer
Science, LICS 1994, pp. 438–447. IEEE Computer Society Press, Los Alamitos
(1994)

22. Alur, R., Peled, D., Penczek, W.: Model checking of causality properties. In: Pro-
ceedings of the 10th Annual IEEE Symposium on Logic in Computer Science
(LICS’95), San Diego, California, pp. 90–100 (1995)

23. Niebert, P., Peled, D.: Efficient model checking for ltl with partial order snap-
shots. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 272–286. Springer, Heidelberg (2006)

24. Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal
logic for mazurkiewicz traces. Inf. Comput. 179(2), 230–249 (2002)

25. Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz traces. Jour-
nal of Computer and System Sciences 64(2), 396–418 (2002)

26. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part i. Theor. Comput. Sci. 13, 85–108 (1981)

27. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

28. Charron-Bost, B., Delporte-Gallet, C., Fauconnier, H.: Local and temporal predi-
cates in distributed systems. ACM Trans. Program. Lang. Syst., vol. 17(1) (1995)

29. Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst. 5(3), 299–307 (1994)

30. Garg, V.K., Waldecker, B.: Detection of strong unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst. 7(12), 1323–1333 (1996)

31. Garg, V.K., Mittal, N.: On slicing a distributed computation. In: ICDCS, pp. 322–
329 (2001)

32. Jard, C., Jéron, T., Jourdan, G.V., Rampon, J.X.: A general approach to trace-
checking in distributed computing systems. In: ICDCS, pp. 396–403 (1994)

33. Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of mul-
tithreaded programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 123–138. Springer, Heidelberg (2004)

34. Sen, K., Rosu, G., Agha, G.: Detecting errors in multithreaded programs by gen-
eralized predictive analysis of executions. In: Steffen, M., Zavattaro, G. (eds.)
FMOODS 2005. LNCS, vol. 3535, pp. 211–226. Springer, Heidelberg (2005)

Testing Distributed Systems Through Symbolic Model Checking 279

35. Genon, A., Massart, T., Meuter, C.: Monitoring distributed controllers: When an
efficient ltl algorithm on sequences is needed to model-check traces. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 557–572. Springer,
Heidelberg (2006)

36. Zampunieris, D., Le Charlier, B.: Efficient handling of large sets of tuples with
sharing trees. In: Proceedings of the 5th Data Compression Conference (DCC’95),
p. 428. IEEE Computer Society Press, Los Alamitos (1995)

37. Ammirati, P., Delzanno, G., Ganty, P., Geeraerts, G., Raskin, J.F., Van Begin,
L.: Babylon: An integrated toolkit for the specification and verification of param-
eterized systems. In: 2nd workshop on Specification, Analysis and Validation for
Emerging technologies (SAVE02) (2002)

38. Kalyon, G., Massart, T., Meuter, C., Van Begin, L.: Testing Distributed Sys-
tem through Symbolic Model Checking. Technical Report 571, Département
d’Informatique - Université Libre de Bruxelles (2007)

An Incremental and Modular Technique for

Checking LTL\X Properties of Petri Nets

Kais Klai1, Laure Petrucci1, and Michel Reniers2

1 LIPN, CNRS UMR 7030
Université Paris 13

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

{kais.klai,laure.petrucci}@lipn.univ-paris13.fr
2 Design and Analysis of Systems (OAS)

Department of Mathematics and Computer Science
Technical University Eindhoven (TU/e)

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
M.A.Reniers@tue.nl

Abstract. Model-checking is a powerful and widespread technique for
the verification of finite state concurrent systems. However, the main
hindrance for wider application of this technique is the well-known state
explosion problem. Modular verification is a promising natural approach
to tackle this problem. It is based on the ”divide and conquer” principle
and aims at deducing the properties of the system from those of its
components analysed in isolation. Unfortunately, several issues make the
use of modular verification techniques difficult in practice. First, deciding
how to partition the system into components is not trivial and can have a
significant impact on the resources needed for verification. Second, when
model-checking a component in isolation, how should the environment of
this component be described? In this paper, we address these problems
in the framework of model-checking LTL\X action-based properties on
Petri nets. We propose an incremental and modular verification approach
where the system model is partitioned according to the actions occurring
in the property to be verified and where the environment of a component
is taken into account using the linear place invariants of the system.

1 Introduction

Model-checking is a powerful and widespread technique for the verification of
finite state concurrent systems. Given a property and a model of the system,
the model-checker performs an exhaustive exploration of the state space of the
system to check the validity of the property. When the property is proved un-
satisfied by the system, the model-checker supplies a counterexample, i.e., an
execution scenario illustrating the violation of the property. However, the main
hindrance for wider application of the model-checking approach to verify concur-
rent and distributed systems is the well-known state explosion problem. In fact,
the size of the state space of systems grows exponentially with the number of

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 280–295, 2007.
c© IFIP International Federation for Information Processing 2007

An Incremental and Modular Technique for Checking LTL\X Properties 281

their components. Numerous techniques have been proposed to tackle the state
explosion problem in order to get a manageable state space. Among them, on-
the-fly model-checking (e.g., [10,5]) allows for generating only the ”interesting”
part of the model; partial order reduction (e.g., [1,19]) is a reduction technique
exploiting independence of some transitions in the system to discard unnecessary
parts; symbolic model-checking (e.g., [7,9,6]) aims at checking the property on a
compact representation of the system by using BDD (Binary Decision Diagram)
techniques [2]. More related to this paper, modular verification (e.g., [20,3,13,12])
is a promising natural approach which takes advantage of the modular design of
concurrent and distributed systems. Using the ”divide and conquer” principle,
the system is broken down into components and each of these is analysed sepa-
rately. Thus, the verification of the global system is downsized to the analysis of
its individual components. This could reduce dramatically the complexity of the
analysis. However, several issues make using modular verification difficult. First,
deciding how to partition the system into components is not trivial and can have
a significant impact on the resources needed for verification [4]. Second, when
model-checking a component in isolation, a model of the environment interacting
with the component often has to be introduced, so that the component is not
completely free in its interaction with the environment. In [15], Mc Millan calls
this problem the environment problem. Finally, once each component is specified
with the abstraction of its environment, it is of utmost importance to prove that
the decomposition characterises completely the properties of the whole system.

In this paper, we address these problems by supplying some heuristical but
formal solutions. First, the global net N is viewed as the composition of n com-
ponents 〈N1, . . . , Nn〉 where N1 is a subnet containing all the actions occurring
in the property to be checked, and ∀i, j = 1, . . . , n, i �= j, Ni and Nj are two
subnets with disjoint sets of places. The choice of places and transitions within
the components follows a particular scheme (see Section 3). Then, each subnet
Ni is augmented with some additional places in order to abstract the environ-
ment i.e. {Nj | j = 1, . . . , n, j �= i} (see Section 4). The set of the abstraction
places is formally determined by using the linear invariants of the global system.
Based on these decomposition and abstraction steps, our modular verification
approach of a LTL\X formula ϕ on the global net N can be summarised as
follows: We first prove that once ϕ holds in all components (completed by their
environment abstraction) analysed separately, one can check it on a reduced syn-
chronised product of the components built in an incremental way. Then, if ϕ is
unsatisfied by one component, a non-constraining relation is defined as a prop-
erty allowing, when satisfied, to deduce that it is unsatisfied by the global net
as well. The non-constraining relation is asymmetric and should be checked be-
tween two components. Its satisfaction makes the analysis of modules separately
equivalent to a global analysis. In this paper, we present a modular algorithm to
check this relation. When the non-constraining relation is unsatisfied, the parti-
tion 〈N1, . . . , Nn〉 is refined by composing its first elements (N1 and N2) leading
to a smaller partition which will be processed in the same way. In the worst case
the property will be checked on a partition of size 1 (i.e. the whole net).

282 K. Klai, L. Petrucci, and M. Reniers

After recalling basic notions and notations related to Petri nets and the LTL
logic in Section 2, Section 3 presents our decomposition scheme. Based on this
decomposition, Section 4 shows how linear invariants can be used to complete a
module with an abstraction of its environment. Section 5 discusses how a local
counterexample is allowed by the environment of the corresponding component.
This is achieved using the non-constraining relation which is checked in a mod-
ular way. Section 6 is dedicated to our incremental and modular verification
approach. Section 7 is devoted to final discussion and comparison with related
works on modular verification. Finally, concluding remarks and perspectives are
presented in Section 8.

2 Preliminaries and Notations

In this section, we recall some basic notions of Petri net theory and introduce
some notations. We also recall the syntax and semantics of the LTL logic.

Vectors and matrices. Let v be a vector or a matrix, then vT denotes its trans-
pose. So, if v, v′ are two vectors then vT .v′ corresponds to their scalar product.
Let v be a vector of INP . The support of v is ||v|| = {p ∈ P | v(p) > 0}.

Petri nets. A Petri net is a tuple N = 〈P, T, Pre, Post〉 with disjoint sets P and
T of places and transitions, and the backward and forward incidence matrices
Pre : P × T −→ IN and Post : P × T −→ IN. Given a transition t, Pre(t)
and Post(t) denote the t-column of Pre and Post respectively. The preset of a
place p (resp. a transition t) is defined as •p = {t ∈ T |Post(p, t) > 0} (resp.
•t = {p ∈ P |Pre(p, t) > 0}), and its postset as p• = {t ∈ T |Pre(p, t) > 0}
(resp. t• = {p ∈ P |Post(p, t) > 0}). The preset (resp. postset) of a set X of
nodes is given by the union of the presets (resp. postsets) of all nodes in X .
•X• denotes the union of the preset and the postset of X . Given a place p, 1p

denotes the vector of INP where each element is zero except the element indexed
by place p, which has value 1.

A marking of a net is a mapping m : P −→ IN. We call 〈N,m0〉 a net with
initial marking m0. A marking m enables the transition t (m t−→) iff m(p) ≥
Pre(p, t), ∀p ∈ P . In this case the transition can occur, leading to the new
marking m′, given by: m′(p) = m(p) − Pre(p, t) + Post(p, t), ∀p ∈ P . This
occurrence is denoted by m t−→m′. If there exists a chain (m0

t1−→m1 . . . tn−→mn),
denoted by m0

σ−→mn, the sequence σ = t1 . . . tn is also called a computation or
a firing sequence. We denote by T ∗ (resp. T∞) the set of finite (resp. infinite)
sequences of T . T ω = T ∗ ∪ T∞ denotes the set of all sequences of T . The finite
(resp. infinite) language of (N,m0) is the set L∗(〈N,m0〉) = {σ ∈ T ∗ |m0

σ−→}
(resp. L∞(〈N,m0〉) = {σ ∈ T∞ |m0

σ−→}) and Lω(〈N,m0〉) = L∗(〈N,m0〉) ∪
L∞(〈N,m0〉).

Subnets. Let N = 〈P, T, Pre, Post〉 be a Petri net. N ′ = 〈P ′, T ′, P re′, Post′〉 is
a subnet of N induced by (P ′, T ′), P ′ ⊆ P and T ′ ⊆ T , iff ∀(p, t) ∈ P ′ × T ′,
Pre′(p, t) = Pre(p, t) and Post′(p, t) = Post(p, t). If m is a marking of N then its

An Incremental and Modular Technique for Checking LTL\X Properties 283

projection on the places of N ′, denoted by m�P ′ , is defined by m′(p) = m(p), ∀p ∈
P ′. If σ is a computation of N , the projection of σ on a set of transitions X ⊆ T ,
denoted by σ�X , is the sequence obtained by removing from σ all transitions not
in X . The projection function is extended to sets of sequences (i.e., languages)
as follows: ∀Γ ⊆ T ω, Γ�X = {σ�X — σ ∈ Γ}. Given a subnet N ′ of N , we also
use the projection notations to denote by m�N ′ (resp σ�N ′) the restriction of
marking m (resp. sequence σ) to places (resp. transitions) of N ′.

Linear invariants. Let v be a vector of INP , v is a positive linear invariant iff
v.W = 0, where W = Post−Pre. If v is a positive linear invariant and m σ−→m′

is a firing sequence, then vT .m′ = vT .m.

Linear-time Temporal Logic (LTL). LTL formulae are defined by: ϕ ::= a | ¬ϕ
| ϕ ∧ ϕ | G ϕ | F ϕ | ϕ U ϕ | X ϕ, where a is an action label, G, F, U and
X denote the always, eventually, until and next operators respectively. A LTL
formula is generally interpreted over labelled transition systems (e.g. a Petri net
reachability graph). For a detailed description of LTL, refer to [16]. In this paper
we deal with LTL\X (LTL minus the next operator) properties.

3 Decomposition Scheme

In this section, we present a decomposition of a Petri net N according to some
LTL\X formula ϕ and discuss its properties. Before giving a formal definition of
the retained decomposition, we first define a more general decomposition. Here,
we require that the composition of the components using transition fusion results
in the original net, and that the components have no place in common.

Definition 1 (Decomposition). Let N = 〈P, T, Pre, Post〉 and, for 1 ≤ i ≤
n, Ni = 〈Pi, Ti, P rei, Posti〉 be nets. Then 〈N1, . . . , Nn〉 is a decomposition of
N iff the following criteria hold:

– P =
⋃n

i=1 Pi and Pi ∩ Pj = ∅, for 1 ≤ i < j ≤ n;
– T =

⋃n
i=1 Ti;

– ∀i ∈ [1..n], ∀p ∈ Pi, ∀t ∈ Ti : Pre(p, t) = Prei(p, t);
– ∀i ∈ [1..n], ∀p ∈ Pi, ∀t ∈ Ti : Post(p, t) = Posti(p, t);
– ∀i ∈ [1..n], ∀p ∈ Pi,

•p(Ni) = •p(N).

Given a partition 〈N1, . . . , Nn〉 of a given Petri net N and two elements Nk and
Nl of this partition, with k ≤ l, we denote by N(k,l) the subnet obtained by
the composition of all subnets Nk, Nk+1, . . . , Nl. Such a composition leads to a
new partition 〈N1, . . . , N(k,l), . . . , Nn〉 which involves n− l + k components. The
following definition introduces the structure of the subnet N(k,l) for 1 ≤ k ≤ l.

Definition 2. Let 〈N1, . . . , Nn〉 be a decomposition of a netN =〈P, T, Pre, Post〉.
∀1 ≤ k ≤ l ≤ n, N(k,l) = 〈P(k,l), T(k,l), P re(k,l), Post(k,l)〉 is defined as follows:

– P(k,l) =
⋃l

i=k Pi;
– T(k,l) =

⋃l
i=k Ti;

284 K. Klai, L. Petrucci, and M. Reniers

– Pre(k,l)(p, t) = Pre(p, t), for all p ∈ P(k,l) and t ∈ T(k,l);
– Post(k,l)(p, t) = Post(p, t), for all p ∈ P(k,l) and t ∈ T(k,l).

From now on, we denote by 〈N1, I,N2〉 the decomposition of a Petri net N
into two subnets N1 and N2 with disjoint sets of places and that share the set
of interface transitions I. For any subnet N(k,l) of N , the language of N(k,l)

contains the language of N restricted to the transitions of N(k,l):

Proposition 1. Let 〈N1, . . . , Nn〉 be a decomposition of a net N . ∀1 ≤ k ≤ l ≤
n and for all markings m of N :

Lω(〈N(k,l),m�N(k,l)
〉) ⊇ Lω(〈N,m〉)�N(k,l)

Definition 1 allows for many different decompositions of a Petri net into n com-
ponents. In the following, we define a specific decomposition which is guided by
the knowledge of the transitions occurring in the formula ϕ to be checked on N .

Definition 3 (Decomposition according to a formula ϕ)
Let N = 〈P, T, Pre, Post〉 be a Petri net and let ϕ be a LTL\X formula involving
a non-empty subset of transitions Tϕ. Then NTϕ = 〈N1, . . . , Nn〉 is the decom-
position of N according to ϕ iff NTϕ is a decomposition of N such that for all
1 ≤ i < n, the nets Ni = 〈Pi, Ti, P rei, Posti〉 satisfy the following criteria:

– P1 = •Tϕ
• and Pi+1 = •Ti

• \
⋃i

j=1 Pj;
– Ti = •Pi

•.

Tϕ P1 I(1,2) P2 I(2,3) · · · I(n−1,n) Pn In

N1 N2 Nn

Fig. 1. Iterative decomposition scheme

Figure 1 illustrates the decomposition scheme of Definition 3. Note that this
decomposition is such that each component interacts with at most two other ones
(i.e. they are positioned linearly) and that the leftmost component in this scheme
contains the transitions Tϕ that occur in the formula ϕ to be checked. One could
consider the subnet containing Tϕ only as the first leftmost subnet. However,
such a choice would allow all possible sequences on Tϕ (i.e., T ω

ϕ) and hence
needs to be restricted further. This is ensured by completing the subnet with
the places connected to Tϕ in the original net. Then, the transitions connected to
these places are also added so that the subnet obtained still satisfies Definition 1.
Subnets Ni and Ni+1 share a subset of transitions which we call I(i,i+1).

Example 1. Figure 2 illustrates an example of a decomposable Petri net model
of a simplified client-server system. The server switches between states Passive

An Incremental and Modular Technique for Checking LTL\X Properties 285

Try

Retry

Idle

Wserv

Fail

Cons

Send

Ncons

Pos

Active

Wack

Mess

Neg

KO

Off

On

Receive

OK

Passive

Analyse

N1 N2 N3

Fig. 2. A decomposable Petri net

and Active on reception of On and Off signals respectively. The client is initially
Idle. When it wants to send a message, it waits for the server to be active (place
Wserv). Then, it sends its message and waits for an acknowledgement (place
Wack). In case of a positive acknowledgement, it becomes Idle again. Otherwise,
it tries to retransmit the message (place Fail). On reception of a message, the
server analyses it and sends an acknowledgement (place Analyse).

The considered set of transitions Tϕ is {Try,Retry} (the black transitions
in Figure 2). Using these two transitions, one can express several properties
characterising the communication between the client and the server. For instance
the formula G(Retry ⇒ ((¬Retry)UTry)) states that each message sent can be
retransmitted at most once. In this decomposition of the client-server model,
subnet N1 is unbounded since transition Cons can be executed infinitely often,
thus flooding place Idle with tokens. A correct modular approach should analyse
a component of the system completed by an abstraction of its environment. In
the next subsection, we show how to exploit the system invariants in order to
automatically construct such an abstraction.

4 Abstraction of the Environment Using Linear
Invariants

Linear invariants of a Petri net correspond to a safety property of the system
(see e.g. [8,11]). They are computed by finding a generative family of positive
solutions of a linear equation system. Even though the worst case time com-
plexity of this computation is not polynomial, in practice the algorithm behaves
efficiently w.r.t. the reachability graph construction.

Here, we propose to use linear invariants as a witness of the synchronisation
between the two subnets of the net N with decomposition 〈N1, I,N2〉. Let VN

be the set of positive linear invariants of net N ; these are called the global

286 K. Klai, L. Petrucci, and M. Reniers

invariants. With an invariant v ∈ VN , we associate two places a
(v)
1 , a

(v)
2 which

are added to N1 and N2 respectively. The current marking of the added places
summarises the information given by the corresponding positive linear invariant
v. The net obtained by adding an abstraction place for each invariant from a set
V ⊆ VN is called the component subnet for V and denoted from now on by N̂j .

Definition 4 (Component subnet). Let 〈N1, I,N2〉 be a decomposition of a
net N and let V ⊆ VN . The component subnet related to Ni =〈Pi, Ti, P rei, Posti〉
generated from the set of invariants V is N̂i = 〈P̂i, T̂i, P̂ rei, P̂ osti〉 such that:

– T̂i = Ti;
– P̂i = Pi ∪Aj (where i ∈ {1, 2} and j �= i), with Aj = {a(v)

j |v ∈ V } the set of
abstraction places;

– for all p ∈ P̂i and t ∈ T̂i, P̂ rei(p, t) = Pre(t)T .Φ(p) and P̂ osti(p, t) =
Post(t)T .Φ(p), where the mapping Φ from P ∪ A1 ∪ A2 to INP∪A1∪A2 is
defined by Φ(p) = 1p, for p ∈ P , and Φ(a(v)

j) =
∑

p∈Pj
v(p).1p for a

(v)
j ∈ Aj.

The mapping from a global marking to markings of the component subnets is now
defined to determine the initial marking of places representing the invariants.

Definition 5. Let 〈N1, I,N2〉 be the decomposition of a net N and let N̂i (i =
1, 2) be the induced component subnets. For each marking m of N , Φi the pro-
jection mapping on N̂i is defined by: Φi(m)(p) = mT .Φ(p) for all p ∈ P̂i.

For transitions of the component subnet, all computations of the original marked
net are also computations of the component subnet.

Proposition 2. Let 〈N1, TI , N2〉 be a decomposition of a net N . Then, for all
markings m of N , Lω(〈N̂i, Φi(m)〉) ⊇ Lω(〈N,m〉)�N̂i

.

Note that it is also the case that Lω(〈Ni,m�Ni
〉) ⊇ Lω(〈N̂i, Φi(m)〉): the addition

of the places representing the invariant(s) is restricting the computations. The
more invariants, the more precise the approximation of the global net behaviour.

As a consequence of proposition 2, we can use the invariants of the original
net to obtain component subnets that hopefully disallow all counterexamples.
Which set of invariants should be used for constructing the component subnets
is a difficult question which will not be answered in this paper. However, we note
that considering invariants that only have a support in one of the components
is useless since they typically lead to a disconnected place in the other compo-
nent. As a heuristic we propose to use all invariants that have support in both
components, thus providing most information about the environment. Hence, we
compute the component subnets for the decomposition 〈N(1,i), I(i,i+1), N(i+1,n)〉
using all invariants that have support in both N(1,i) and N(i+1,n).

Example 2. The generative family of invariants of the model of Figure 2 is:

1. v = Idle + Fail + Wserv + Wack
2. v′ = Idle + Fail + Wserv + Mess + Analyse + Pos + Neg
3. v′′ = Active + Passive + Analyse

An Incremental and Modular Technique for Checking LTL\X Properties 287

Try

Retry

Idle

Wserv

Fail

Cons

Send

Ncons

a
(v)
2

a
(v′)
2

N1

a
(v)
1

a
(v′)
1

Cons

Send

Ncons

Pos

Active

Wack

Mess

Neg

KO

Off

On

Receive

OK

Passive

Analyse

N(2,3)

Fig. 3. The component subnets N̂1 and N̂(2,3)

The first two invariants cover both subnets while the third one is local to subnet
N(2,3). Figure 3 illustrates the client component subnet obtained by using the
first two invariants. The component subnet corresponding to the server can be
obtained in a similar way. Note that the original client subnet has been enlarged
with abstraction places a

(v)
2 and a

(v′)
2 . Let us explain for instance the underlying

meaning of the abstraction place a
(v′)
2 . Since Φ(a(v′)

2) = 1Mess +1Analyse +1Pos +
1Neg, this place contains the sum of tokens of these four places (i.e., 0). As
Mess is an output place of the transition Send and the three other ones are not,
Post(a(v′)

2 , Send) = 1. The other arcs are obtained in a similar way.

Up to now, we have proposed a decomposition scheme based on the LTL\X for-
mula to be checked and exploited the place invariants in order to abstract the
environment of a given component while keeping some information about the in-
teraction around the interface between two parts of the system. This scheme will
be used in the following to deal with model-checking. Given a component of the
system completed with an abstraction of its environment (a component subnet)
how useful is a separate analysis of this component w.r.t. a global analysis of the
whole net? The next section is devoted to characterising and checking whether
a counterexample found locally in a component is allowed by its environment.

5 Checking the Validity of Local Counterexamples

In order to check the validity of a counterexample found locally for a component,
we introduce a sufficient condition, namely the non-constraining relation.

5.1 The Non-constraining Relation

The non-constraining relation is an asymmetric property to be checked be-
tween two given marked component subnets obtained from a net decomposition:

288 K. Klai, L. Petrucci, and M. Reniers

〈N2,m2〉 does not constrain 〈N1,m1〉 if for any firing sequence enabled from
〈N1,m1〉, there exists a firing sequence enabled from 〈N2,m2〉, both having the
same projection on the shared transitions. Then, we prove that the firing se-
quences enabled in the non-constrained component exactly represent the firing
sequences of the global net, up to the projection on the component transitions.

Definition 6 (Non-constraining relation). Let 〈N1,m1〉 and 〈N2,m2〉 be
two marked nets with disjoint sets of places. Then, 〈N2,m2〉 does not constrain
〈N1,m1〉 iff Lω(〈N1,m1〉)�N2 ⊆ Lω(〈N2,m2〉)�N1 .

Expressed as an inclusion between two projected languages, the non-constraining
relation can be considered as a strong condition characterising a complete free-
ness of the involved component w.r.t. its interface with the environment. A naive
partition of the global net into components makes this relation quite often un-
satisfied. However, using abstraction places, the freeness of a given component
on the interface transitions is reduced and its communication behaviour is finely
approximated. For instance, in Figure 3 both component subnets have the same
projected language on the interface transitions, i.e. Send.(Cons + Ncons)ω.

Proposition 3. Let 〈N1, I,N2〉 be a decomposition of a net N and let m be a
marking of N . If 〈N̂2, Φ2(m)〉 does not constrain 〈N̂1, Φ1(m)〉 then the following
assertion holds: Lω(〈N̂1, Φ1(m)〉) ⊆ Lω(〈N,m〉)�N̂1

.

Note that the non-constraining relation is a sufficient but not necessary condi-
tion for deducing the validity of a counterexample. It ensures that all possible
local counterexamples are valid. This approach could be refined so that each
representative of a set of counterexamples is checked separately.

A direct consequence of Proposition 3 is that, if 〈N̂2, Φ2(m)〉 does not constrain
〈N̂1, Φ1(m)〉, one can deduce that a given LTL\X formula ϕ does not hold in the
global net N as soon as it is proved unsatisfied by 〈N̂1, Φ1(m)〉.

Proposition 4. Let 〈N1, I,N2〉 be a decomposition of a net N and m a marking
of N . Let ϕ be an LTL\X formula such that the involved actions belong to N1. If
〈N̂2, Φ2(m)〉 does not constrain 〈N̂1, Φ1(m)〉 then the following assertion holds:

〈N̂1, Φ1(m)〉 �|= ϕ =⇒ 〈N,m〉 �|= ϕ

The non-constraining relation is defined as an inclusion between languages.
Checking such a property represents the main difficulty of our approach. A
naive test of this relation would result in building the synchronised product of
the reachability graphs of the component subnets, which could drastically limit
the applicability of our method. Thus, the remaining part of this section will be
devoted to reducing the complexity of checking the non-constraining relation.

5.2 Reduction of the Non-constraining Relation Test

Given two nets 〈N1,m1〉 and 〈N2,m2〉 with disjoint sets of places, the idea is
to insert a new net 〈N3,m3〉 in the non-constraining relation checking process

An Incremental and Modular Technique for Checking LTL\X Properties 289

so that the following implication holds: if 〈N2,m2〉 does not constrain 〈N3,m3〉,
then 〈N2,m2〉 does not constrain 〈N1,m1〉.

Obviously, from the point of view of efficiency, this would reduce the com-
plexity of the non-constraining relation check if and only if checking whether
〈N2,m2〉 does not constrain 〈N3,m3〉 is less expensive than checking whether it
does not constrain 〈N1,m1〉. In the following proposition, we first present the
general context of this reduction by giving the minimal conditions for N3 so
that the above implication holds. Then, based on our decomposition scheme, we
define the component subnet that will play the role of N3 and which guarantees
the reduction of the complexity of the non-constraining relation check.

Proposition 5. Let N1, N2 and N3 be nets with sets of transitions T1, T2 and
T3 respectively, such that T1 ∩T2 ⊆ T3. Let m1, m2 and m3 be markings for N1,
N2 and N3, respectively. If Lω(〈N3,m3〉)�N1 ⊇ Lω(〈N1,m1〉)�N3 , then 〈N2,m2〉
is non-constraining for 〈N3,m3〉 ⇒ 〈N2,m2〉 is non-constraining for 〈N1,m1〉.
Now, using the same abstraction principle, one can abstract both component
subnets. This leads to what we call the interface component subnet, which allows
for representing the language of the global net compactly, up to a projection
on the interface. It is obtained by connecting the interface transitions to the
abstraction places of both components. This structure is used in the next section
in order to check efficiently the non-constraining relation.

Definition 7 (Interface component subnet). Let 〈N1, I,N2〉 be the decom-
position of a net N and let N̂i (i = 1, 2) be the induced component subnets for
a set of invariants V ⊆ VN . The interface component subnet related to this
decomposition is Î = 〈P̂ , T̂ , P̂ re, P̂ ost〉 such that, for i, j ∈ {1, 2}, i �= j:

– T̂ = I;
– P̂ = A1 ∪ A2, with Ai = {a(v)

i |v ∈ V } the set of abstraction places of N̂i;
– for all a ∈ Ai and t ∈ T̂ , P̂ re(a, t) = P̂ rej(a, t) and P̂ ost(a, t) = P̂ ostj(a, t).

For a marking m of N , m̂(p) = Φ1(m)(p) + Φ2(m)(p) for all p ∈ P̂ .

Example 3. Figure 4 represents the interface component subnets involved in the
decomposition of the net in Figure 2 associated with their initial markings.

Proposition 6. Let 〈N1, I,N2〉 be a decomposition of a net N . Let N̂i (i = 1, 2)
and Î be the induced (interface) component subnets for a set of invariants V ⊆
VN . Let m be a marking of N . Then: 〈N̂2, Φ2(m)〉 is non-constraining for 〈Î , m̂〉
⇒ 〈N̂2, Φ2(m)〉 is non-constraining for 〈N̂1, Φ1(m)〉.
This proposition is exploited in order to restrain the test of the non-constraining
relation of N̂(i+1,n) w.r.t. N̂(1,i), to a lighter relation between N̂(i+1,n) and the
interface component subnet Î(i,i+1). One can apply the same principle in an
iterative way to deduce the following implication: if N̂(j,n) is non-constraining
for Î(j−1,j) for all i + 1 ≤ j ≤ n, then N̂(i+1,n) is non-constraining for N̂(1,i).

This can drastically reduce the complexity of checking the non-constraining
relation, since it is modularly checked on very small components, one at a time.

290 K. Klai, L. Petrucci, and M. Reniers

a
(v)
1

a
(v′)
1

Cons

Send

Ncons

a
(v)
2

a
(v′)
2

I(1,2)

KO

Off

On

Receive

OK

a
(v′)
2

a
(v′′)
2

a
(v′)
3

a
(v′′)
3

I(2,3)

Fig. 4. The Client-Server interface component subnets

6 An Incremental and Modular Model-Checker

In this section, we use the decomposition and abstraction techniques presented in
the previous sections to give an incremental modular technique for establishing
the validity of a formula ϕ on a net N . Algorithm 1 illustrates the technique. The
net is supposed to be decomposed as described in Definition 3: N = 〈N1, . . . , Nn〉.
The algorithm verifies the validity of formula ϕ on the component subnet N̂(1,j)

starting from j = 1 (first loop). To establish N̂(1,j) |= ϕ, one can use any
standard model checker for LTL\X formulas on Petri nets. In case the formula
ϕ holds in this component subnet (line 4), the validity of ϕ w.r.t. the other
component subnet N(j+1,n) is checked. This is done modularly on N̂i for all
i, j < i ≤ n (lines 6–8). Since the component subnets N̂i do not contain any
transition of Tϕ, N̂i |= ϕ can be established only using reachability, deadlock
and divergence information; for example using symbolic observation graphs as
in [9]. When the property ϕ is proved satisfied by N̂(1,j) and all N̂i (for i > j),
analysed separately, the property is checked on a reduced synchronised product
(lines 9–10) using algorithm 2. This task is discussed and detailed in section 6.1.

If one of the verifications of ϕ fails, the next phase of the algorithm consists in
checking whether the component subnets not involved in the previous verification
process allow the counterexample to occur. This step is ensured by checking the
non-constraining relation between the component in which ϕ is unsatisfied and
these components considered as its environment. Algorithm 3 performs this task
in a modular way, as described in section 6.2.

At this point of the algorithm, we know that the property does not hold ei-
ther in N̂(1,j) nor in N̂k for some j < k ≤ n. In the first case, the environment
is the right-hand side partition 〈N̂j+1, . . . , N̂n〉 and the non-constraining relation
step is invoked once (line 19). While, in the second case, the environment is the

An Incremental and Modular Technique for Checking LTL\X Properties 291

Algorithm 1. Checking ϕ on the components of a decomposition

Require: ϕ, 〈N1, . . . , Nn〉
Ensure: Check ϕ on 〈N1, . . . , Nn〉
1: int i,j;
2: j=1;
3: while j¡n do
4: if N̂1,j satisfies ϕ then
5: i=j+1;
6: while N̂i satisfies ϕ do
7: i=i+1;
8: end while
9: if i ¿ n then

10: Check property ϕ on a
reduced synchronised product

11: else
12: if ¬(〈N̂i−1, . . . , N̂1〉 constrains

Î(i−1,i)) and ¬(〈N̂i+1, . . . , N̂n〉
constrains Î(i,i+1)) then

13: return false; // N �|= ϕ
14: else
15: j=j+1;
16: end if
17: end if
18: else
19: if ¬(〈N̂j+1, . . . , N̂n〉 constrains

Î(j,j+1)) then
20: return false; // N �|= ϕ
21: else
22: j=j+1;
23: end if
24: end if
25: end while
26: return true; // N |= ϕ

left-hand sidepartition 〈N̂1, . . . , N̂i−1〉and the right-hand side one 〈N̂i+1, . . . , N̂n〉,
and both have to be non-constraining for N̂i. Thus the non-constraining relation
is checked at most twice, once for each part of the environment (line 12). If the
non-constraining relation step is successful, the counterexample is allowed by the
corresponding environment and it is also allowed by the net as a whole. Thus, the
invalidity of ϕ can be deduced: N �|= ϕ. If the counterexample turns out not to be
allowed by these component subnets, the verification process is started again, but
a larger component subnet N̂(1,j+1) is then used (lines 15 and 22).

Two parts of algorithm 1 are not described yet: how to check the property on
a reduced synchronised product (line 10) and how to check the non-constraining
relation (lines 12 and 19). This is the issue of the following subsection.

6.1 Checking a Property on a Reduced Synchronised Product

Given a Petri net N and its decomposition in n component subnets 〈N̂1, . . . , N̂n〉,
the fact that an LTL\X property ϕ holds in each component N̂i (for i = 1 . . . n)
is not sufficient to deduce that ϕ holds in N as well. However, it helps to deduce
that the possible invalidity of ϕ in N comes necessarily from the interaction
between the different components. Hence we need to focus on the behaviour of
these components around the interface and abstract the local behaviours since
they have been proved satisfying the property. The symbolic observation graph
(SOG) technique [9] is particularly well-suited for that purpose. Indeed, a SOG
is a graph, built according to a subset of observed actions Obs where nodes
are sets of states connected to one another by unobserved actions and arcs are
exclusively labeled with action from Obs. Checking a LTL\X property on this
graph is equivalent to checking the property over the original reachability graph.

292 K. Klai, L. Petrucci, and M. Reniers

The size of the SOG is as small as the number of actions involved in the formula
to be checked. In general its size is negligible w.r.t. the size of the original graph.

Algorithm 2. Checking ϕ on a reduced synchronised product

Require: 〈N1, . . . , Nn〉, ϕ
Ensure: check ϕ over N = 〈N1, . . . , Nn〉
1: int k;
2: j=2
3: while j¡n do
4: Build SOG, the symbolic

observation graph of N̂(1,j)

5: if SOG �|= ϕ then

6: if ¬(〈N̂j+1, . . . , N̂n〉 constrains

Î(j,j+1)) then
7: return false; // N �|= ϕ
8: end if
9: end if

10: j=j+1
11: end while
12: return true; // N |= ϕ

Algorithm 2 uses this technique in an incremental way to check the property
by exploiting our decomposition and abstraction schemes. Starting from the
first component N̂(1,1), the property is checked iteratively on the SOG of N̂(1,j),
for j = 2, . . . , n, obtained by composing the component subnets N̂(1,j−1) and
N̂j (lines 4–5). The model checking is performed on an incremented component
subnet (line 10) and the associated SOG in two cases: the property holds in all the
previous iterations, the property does not hold and the non-constraining property
is unsatisfied. In the worst case, the property will be checked on the whole net. As
soon as the non-constraining relation is proved satisfied, the algorithm returns
false (the property does not hold in the global net).

6.2 The Non-constraining Checking Algorithm

In [9], the authors propose an algorithm for checking the non-constraining rela-
tion between two subnets based on the synchronisation of their symbolic obser-
vation graphs. Here, we follow the same principle and propose a modular way for
checking such a relation so that the global result is deduced from several tests
performed on reduced subnets. Checking the non-constraining relation between

Algorithm 3. Checking the non-constraining relation

Require: 〈N1, . . . , Nn〉, I
Ensure: check whether〈N1, . . . , Nn〉 is

nont constraining for I
1: int k;
2: I(0,1) = I ;
3: k=n;
4: while k¿1 do
5: if Nk is constraining for Î(k−1,k)

then

6: return false; //the
non-constraining relation is
unsatisfied

7: end if
8: k=k-1;
9: end while

10: return true; //the non-constraining
relation holds

two decomposed Petri nets is, in turn, done iteratively as described in Algo-
rithm 3. The parameters of this step are a partition 〈N1, . . . , Nn〉 and a subnet

An Incremental and Modular Technique for Checking LTL\X Properties 293

I which is supposed to be adjacent to N1. This hypothesis explains the fact
that the partition 〈N̂i−1, . . . , N̂1〉 at line 12 of Algorithm 1 is used instead of
〈N̂1, . . . , N̂i−1〉. Hence, the goal is to check whether the subnet induced by the
partition constrains I. This task is done iteratively (lines 4–9) starting from
the right-hand side of the partition and going left building towards the non-
constraining of I. The correctness of this algorithm follows from Proposition 6.

7 Discussion and Related Work

Several techniques have been proposed to push further the use of modularity
in model-checking concurrent systems. As far as the verification is concerned,
taking benefit from the structural composition of Petri nets is known to be a hard
problem. Mainly, structural approaches aim at preserving some basic properties,
such as liveness and boundedness, by composition of Petri nets (e.g. [12,18,17]).
More general or behavioural approaches like [3,13] deal with the minimisation of
the reachable state space of each module by hiding the internal moves, before the
synchronisation of modules. Reachability analysis has been proved to be effective
on the resulting structure in [14] and the method has been extended to operate
the model-checking of LTL\X formulae. However, experimental results show that
this technique is efficient for some models, but for others the combinatorial
explosion still occurs.

A common limit of existing modular approaches is that the components of the
system are supposed to be known a priori. Even though the decomposition pre-
sented here is rather simple, having an adequate structuration into components
is essential for the applicability of modular verification techniques.

In structural approaches, rather restrictive conditions are forced, thus reduc-
ing drastically the applicability to concrete systems while the synchronised prod-
uct between components state graphs is quite often unavoidable in behavioral
modular approaches.

Regarding the existing modular verification approaches, the contribution of
this paper can be summarised in three points. First, our decomposition scheme
is general and no restriction on the structure of the model is imposed. Second,
we present an original formal way to combine decomposition and invariant-based
abstraction of the system. Finally, we propose a modular algorithm for checking
the equivalence between local and global verification. The approach we present
here improves and generalises the work presented in [12]. The main improvements
can be summarised in the three following points: First, contrary to [12], the
decomposition scheme is not supposed to be known a priori. Indeed, even if
the system can be decomposed intuitively into components, the decomposition
obtained is not guaranteed to be suitable for the model-checking process. In this
paper, we proposed to take advantage of the knowledge of the actions involved
in the property to be verified in order to define a set of possible decompositions
and combine such decompositions with the invariant-based abstraction. Second,
in [12] the class of properties that can be handled by the method is not clearly
identified. The authors speak about infinite observed sequences but it is not easy

294 K. Klai, L. Petrucci, and M. Reniers

to say whether a given property depends on this kind of sequences only. Here,
we extend the approach to LTL\X properties. Finally, we proposed a complete
and self-contained modular verification approach for the LTL\X logic.

8 Conclusion

In this paper we addressed the modular verification of LTL\X properties over
finite systems described as Petri nets. Our algorithm for such a modular verifica-
tion aims at verifying a formula on a part of the system only. To achieve this, a
subnet containing actions occurring in the property is completed by an abstrac-
tion of its environment and incrementally refined by including more and more
details from the original system until the property can be proved either true or
false. We exploit the structure of the system to both decompose the model w.r.t.
the property to be checked and to compute the abstraction of the obtained com-
ponents. The non-constraining relation is used to establish whether or not the
counterexamples that might result from the local verification are globally allowed
by the system. Some of the non-constraining relations that need to be established
can themselves be checked iteratively.A tool implementing these algorithms is
currently under development. It will provide experimental data fro testing on
the efficiency of our algorithm and on some of the heuristics incorporated in
it such as the decision to use all place invariants of the system. An interest-
ing perspective of this work would be the refinement of the non-constraining
relation. In fact, instead of checking the inclusion of two components projected
languages, one could check whether the projection of a specific counterexample
on the interface transitions is allowed by the environment component.

References

1. Bhat, G., Peled, D.: Adding partial orders to linear temporal logic. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp.
119–134. Springer, Heidelberg (1997)

2. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

3. Christensen, S., Petrucci, L.: Søren Christensen and Laure Petrucci. Computer
Journal 43(3), 224–242 (2000)

4. Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for com-
positional verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS
2003. LNCS, vol. 2619, Springer, Heidelberg (2003)

5. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Woodcock,
J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 253–271.
Springer, Heidelberg (1999)

6. Couvreur, J.-M.: A bdd-like implementation of an automata package. In: CIAA
2004. LNCS, vol. 3317, pp. 310–311. Springer, Heidelberg (2004)

7. Geldenhuys, J., Valmari, A.: Techniques for smaller intermediary bdds. In: Larsen,
K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 233–247. Springer,
Heidelberg (2001)

An Incremental and Modular Technique for Checking LTL\X Properties 295

8. Girault, C., Valk, R.: Petri Nets for Systems Engineering — A Guide to Modeling,
Verification, and Applications. Springer, Heidelberg (2003)

9. Haddad, S., Ilié, J.-M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
Springer, Heidelberg (2004)

10. Henzinger, T.A., Kupferman, O., Vardi, M.Y.: A space-efficient on-the-fly algo-
rithm for real-time model checking. In: Sassone, V., Montanari, U. (eds.) CONCUR
1996. LNCS, vol. 1119, pp. 514–529. Springer, Heidelberg (1996)

11. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer, Three Volumes (1997)

12. Klai, K., Haddad, S., Ilié, J.-M.: Modular verification of Petri nets properties: A
structure-based approach. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp.
189–203. Springer, Heidelberg (2005)

13. Lakos, C., Petrucci, L.: Modular analysis of systems composed of semiautonomous
subsystems. In: Int.Conf. on Application of Concurrency to System Design
(ACSD), pp. 185–194. IEEE Comp. Soc. Press, Los Alamitos (2004)

14. Latvala, T., Mäkelä, M.: LTL model-checking for modular Petri nets. In: Cor-
tadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 298–311. Springer,
Heidelberg (2004)

15. McMillan, K.L., Qadeer, S., Saxe, J.B.: Induction in compositional model checking.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 312–327.
Springer, Heidelberg (2000)

16. Pnueli, A.: Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In: Rozenberg, G., de Bakker, J.W., de
Roever, W.-P. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 510–584.
Springer, Heidelberg (1986)

17. Sibertin-Blanc, C.: A client-server protocol for composition of Petri nets. In: Aj-
mone Marsan, M. (ed.) Application and Theory of Petri Nets 1993. LNCS, vol. 691,
Springer, Heidelberg (1993)

18. Souissi, Y., Memmi, G.: Compositions of nets via a communication medium. In:
Rozenberg, G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 457–470.
Springer, Heidelberg (1991)

19. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1(4), 297–322 (1992)

20. Valmari, A.: Composition and abstraction. In: Valmari, A. (ed.) MOVEP. LNCS,
vol. 2067, pp. 58–98. Springer, Heidelberg (2000)

Identifying Acceptable Common Proposals for

Handling Inconsistent Software Requirements

Kedian Mu1 and Zhi Jin2

1 School of Mathematical Sciences
Peking University, Beijing 100871, P.R. China

2 Academy of Mathematics and System Sciences
Chinese Academy of Sciences, Beijing 100080, P.R. China

Abstract. The requirements specifications of complex systems are in-
creasingly developed in a distributed fashion. It makes inconsistency
management necessary during the requirements stage. However, iden-
tifying appropriate inconsistency handling proposals is still an impor-
tant challenge. In particular, for inconsistencies involving many different
stakeholders with different concerns, it is difficult to reach an agreement
on inconsistency handling. To address this, this paper presents a vote-
based approach to choosing acceptable common proposals for handling
inconsistency. This approach focuses on the inconsistency in require-
ments that results from conflicting intentions of stakeholders. Informally
speaking, we consider each distinct stakeholder (or a distributed artifact)
involved in the inconsistency as a voter. Then we transform identifica-
tion of an acceptable common proposal into a problem of combinatorial
vote. Based on each stakeholder’s preferences on the set of proposals, an
acceptable common proposal is identified in an automated way according
to a given social vote rule.

1 Introduction

It is widely recognized that inconsistency management is one of the important
issues in requirements engineering. For any complex software system, the devel-
opment of requirements typically involves many different stakeholders with dif-
ferent concerns. Then the requirements specifications are increasingly developed
in a distributed fashion, Viewpoints-based approaches [1,2,3] being a notable ex-
ample. It makes inconsistency management necessary during the requirements
stage. Generally speaking, inconsistency management may be divided into two
parts, i.e. consistency checking and inconsistency handling. Consistency check-
ing is a pervasive issue in requirements validation and verification. It focuses on
techniques for detecting inconsistencies in a collection of requirements, includ-
ing logic-based approaches [4,5,6] and consistency rule-based approaches [7,8].
In contrast, inconsistency handling focuses on how to identify an appropriate
proposal for handling given inconsistencies and to evaluate the impact it has on
other aspects of requirements stage [7,8].

Identifying appropriate inconsistency handling actions is still a difficult, but
important challenge [5]. Generally, the choice of an inconsistency-handling action

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 296–308, 2007.
c© IFIP International Federation for Information Processing 2007

Identifying Acceptable Common Proposals 297

should depend on the nature and context of these inconsistencies [9,10]. But the
context of the inconsistencies in requirements is always rather complex. Many
factors such as misunderstanding between customers and analysts, inappropriate
statements of requirements, and conflicting intentions of stakeholders can cause
inconsistencies during requirements stage. It is not easy to provide a universal
methodology to handle all the inconsistencies in requirements engineering.

In this paper, we concentrate on a particular kind of inconsistency that re-
sults from conflicting intentions of stakedholers. We would assume that there is
no shortcoming in the ways that developers elicit and restate the requirements.
That is, the inconsistent requirements are correctly elicited, stated, and repre-
sented from the perspective of corresponding stakeholders. There is no cause
other than conflicting intentions of different stakeholders for the inconsistency.
When an inconsistency resulting from conflicting intentions of stakeholders are
detected, the different stakeholders involved in the inconsistency often present
different proposals for handling the inconsistency from their own perspectives.
These proposals reflect different concerns and intentions, and it is difficult to
reach agreement on choice of proposals. Then the final proposal for handling the
inconsistency is often an unsuccessful compromise among these different stake-
holders. However, for this kind of inconsistency handling , there are two key
problems associated with the identification of acceptable common proposals.
One is how to evaluate an individual proposal from the perspective of each dis-
tinct stakeholder. That is, each stakeholder involved in the inconsistency needs
to express his/her preferences on a set of proposals. It will provide a basis for
identifying an acceptable common proposal. Another one is how to identify an
acceptable common proposal from the set of these different proposals. Clearly,
the latter problem is concerned with the mechanism of choosing the proposals
such as negotiation and vote.

To address this, we present a combinatorial vote-based approach to identi-
fying an acceptable common proposal for handling the inconsistency resulting
from conflicting intentions of stakeholders in Viewpoints framework [1] in this
paper. Combinatorial vote is located within the larger class of group decision
making problems. Each one of a set of voters initially expresses his/her pref-
erences on a set of candidates, these preferences are then aggregated so as to
identify an acceptable common candidate in an automated way [11]. Informally
speaking, for the inconsistency resulting from conflicting intentions of viewpoints
(or stakeholders), we transform a set of proposals into a set of candidates with
combinatorial structure. Then we consider each distinct viewpoint (or stake-
holder) as a voter with different preferences on the set of candidates. Then an
acceptable common proposal will be identified according some social vote rules
in an automated way.

The rest of this paper is organized as follows. Section 2 gives some prelimi-
naries about inconsistency handling in Viewpoints framework. Section 3 presents
the combinatorial vote-based approach to identifying an acceptable common pro-
posal for handling inconsistency. Section 4 gives some comparison and discussion
about the vote-based approach. Finally, we conclude this paper in section 5.

298 K. Mu and Z. Jin

2 Preliminaries

2.1 Viewpoints

The Viewpoints approach [1] has been developed to provide a framework in which
the different perspectives and their relationships could be represented and an-
alyzed. Viewpoint-oriented approaches to requirements engineering have been
used for requirements elicitation [2], modeling [3], validation[12], and elabora-
tion [13]. In the Viewpoints framework, a viewpoint is a description of system-to-
be from the perspective of a particular stakeholder, or a group of stakeholders. It
reflects the concerns of a particular stakeholder. The requirements specification
of the system-to-be comprises a structured collection of loosely coupled, locally
managed, distributable viewpoints, with explicit relationships between them to
represent their overlaps [14].

The Viewpoints may allow different viewpoints use different notations and
tools to represent their requirements during the requirements stage. However,
the first order predicate calculus is appealing for formal representation of require-
ments statements since most tools and notations for representing requirements
could be translated into formulas of the first order predicate calculus [5]. That
is, predicate calculus may be considered as a promising tool to represent require-
ments from multiple sources. Moreover, we focus on the inconsistency handling
rather than inconsistency checking in this paper. Then we need not consider rea-
soning with inconsistency in this paper.1 For these reasons, we use the predicate
calculus to illustrate our approach in this paper.

LetL be a first order language and let& be the consequence relation in the predi-
cate calculus. Let α ∈ L be a well-formed formula and Δ ⊆ L a set of formulas inL.
In this paper, we call Δ a set of requirements statements or a partial requirements
specification while each formula α ∈ Δ represents a requirements statement.

As mentioned earlier, in this paper, we are concerned with the problem of
handling inconsistency that involves multiple viewpoints. We would assume that
V = {v1, · · · , vn}(n ≥ 2) is the set of distinct viewpoints. Let Δi be the set of
requirements of viewpoint vi. Then the partial requirements specification is rep-
resented by a n tuple < Δ1, · · · , Δn >. For any Γi ⊆ Δi(1 ≤ i ≤ n), we call

⋃
i

Γi

an integrated requirements collection, which could be viewed as a combination
of requirements of multiple viewpoints. For example Γ1 ∪ Γ2 and Γ1 ∪ Γ3 ∪ Γn

are two integrated requirements collections.
Further, for each i(1 ≤ i ≤ n), Gi denotes the goal of viewpoint vi. Intuitively,

for each i, if the set of requirements Δi is sound with regard to vi, then Δi & Gi.
Generally, we call < G1, · · · , Gn > a goal base.

2.2 Inconsistency in Viewpoints

The term of inconsistency has different definitions in requirements engineer-
ing [6]. In this paper we will be concerned with the logical contradiction: any
1 This assumption is just for convenience. If not, we may use a paraconsistent adap-

tation of predicate calculus, such as Annotated Predicate Calculus [15], to represent
requirements statements [16].

Identifying Acceptable Common Proposals 299

situation in which some fact α and its negation ¬α can be simultaneously derived
from the same requirements collection [4]. Moreover, we focus on the inconsis-
tency arising from multiple viewpoints.

Definition 1 (Inconsistency). Let < Δ1, · · · , Δn > be the requirements speci-
fication comprising n viewpoints. Let Δ be an integrated requirements collection.
If there exists a formula α such that Δ & α and Δ & ¬α, then Δ is inconsistent;
otherwise, Δ is consistent. We abbreviate α ∧ ¬α by ⊥, which we read as “in-

consistency”. Further, if Δ =
k⋃

j=1

Γij (1 ≤ ij ≤ n), then we say that viewpoints

vi1 , · · · , vik
are involved in the inconsistency.

If Δ is inconsistent, then Δ may be partitioned into two collections. One is the
set of requirements statements being free from inconsistency, and another is the
set of requirements statements involved in inconsistency. Actions for handling
inconsistencies are always concerned with the set of requirements statements
involved in inconsistency. Let

INC(Δ) = {Γ ⊆ Δ|Γ & ⊥},
MI(Δ) = {Φ ∈ INC(Δ)|∀Ψ ∈ INC(Δ), Ψ �⊂ Φ},

CORE(Δ) =
⋃

Φ∈MI(Δ)

Φ,

FREE(Δ) = Δ − CORE(Δ).

Essentially, INC(Δ) is the set of inconsistent subsets of Δ; MI(Δ) is the set of
minimal inconsistent subsets of Δ; CORE(Δ) is the union of all minimal subsets
of Δ; and FREE(Δ) is the set of requirements that don’t appear in any minimal
inconsistent subset of Δ, that is, it is a set of requirements statements being free
from inconsistency. In contrast, CORE(Δ) could be considered as a collection of
all the requirements statements involved in inconsistency of Δ. It is this set that
is of concern in the inconsistency handling.

Now we give an example to illustrate these concepts.

Example 1. Consider the following setting in development of residential area
management system, which deals with the maintenance of fixed garages for ve-
hicles. Alice, a manager who is in charge of maintenance, supplies the following
demands:

– The damaged garages should be maintained;
– An individual free garage, Garage 1 is damaged.

Alice’s goal is

– Garage 1 should be maintained.

Bob, a manager who is in charge of distribution of garages, gives the following
demands:

300 K. Mu and Z. Jin

– Each garage on the expiration of utilization should be routinely maintained;
– All the free garages should not be maintained;
– Another individual garage, Garage 2 is on the expiration.

Bob’s goal is

– Garage 2 should be maintained.

Then the requirements of viewpoint vA, denoted ΔA, is

ΔA = { (∀x)(Damaged(x) → Maintain(x)),
Damaged(Garage 1) ∧ Free(Garage 1)}.

The requirements of viewpoint vB, denoted ΔB, is

ΔB = {(∀x)(Expire(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x)),
Expire(Garage 2)}.

The goal base < GA, GB >is

< {Maintain(Garage 1)}, {Maintain(Garage 2)} > .

Let Δ = ΔA ∪ ΔB .We can conclude that

ΔA & GA,

ΔB & GB,

Δ & Maintain(Garage 1) ∧ ¬Maintain(Garage 1).

Then Δ is inconsistent. In this case,

MI(Δ) = {Φ1}
FREE(Δ) = {(∀x)(Expire(x) → Maintain(x)),

Expire(Garage 2)},
CORE(Δ) = Φ1, where

Φ1 = {(∀x)(Damaged(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x)),

Damaged(Garage 1) ∧ Free(Garage 1)}.

As mentioned above, the repair actions should be performed on CORE(Δ). Gen-
erally, just for the simplicity of reasoning, the requirements set Δi contains both
preliminary requirements statements and relevant facts. For example, Damaged
(Garage 1) ∧ Free(Garage 1) and Expire(Garage 2) are facts in ΔA and ΔB ,
respectively. These facts are used to model the certain scenario associated with
each viewpoint’s goal. This paper focuses on how to elect an acceptable common
proposal for modifying the preliminary requirements specification , then we will

Identifying Acceptable Common Proposals 301

view the facts as being correct and not subject to the modification of preliminary
requirements. This will allow us to focus our attention on choice of actions per-
formed for modifying the preliminary requirements. Thus, we are concerned with
proposals for modifying a set of problematical preliminary requirements, denoted
CORE(Δ)P , which is a subset of CORE(Δ). In the example above,

CORE(Δ)P = {(∀x)(Damaged(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x))}.

2.3 Combinatorial Vote

Combinatorial vote has been presented by Lang in [11], where a group of voters
(or agents) is supposed to express their preferences and come to a common deci-
sion concerning a set of non-independent variables to assign. Of course, the set
of candidates X has combinatorial structure [11]. A combinatorial vote problem
consists of two steps:

(1) the voters express their preference on a set of candidates within a fixed
representation language;

(2) one or several optimal candidate(s) is (are) determined automatically, using
a fixed vote rule.

A preference profile consists of a preference structure for each of the voters. A
relational preference structure consists of a binary relationship ≥ on X . A vote
rule V is defined as a function mapping every preference profile P to an elected
candidate, or a subset of candidates. Given a preference profile P and a vote rule
V , the set of elected candidates is denoted by SelectV (P). Scoring rules consists
in translating the preference relation ≥i of voters into scoring function si(x),
such that the score si(x) of a candidate x with respect to voter i is a function of
its position in the relation ≥i. The plurality and the veto rules are appropriate
for combinatorial vote [11]. In this paper, we adopt the plurality rule as the vote
rule to illustrate our approach. Actually, the choice of social vote rules used in
the practice should depend on the specific circumstances.

The plurality rule is the scoring rule obtained by taking si(x) = 1 if and
only if x is non-dominated for ≥i, i.e., iff there is no y such that y >i x.
Selectplurality(P) is the set of candidates maximizing the number of voters for
whom x is non-dominated.

3 Identifying an Acceptable Common Proposal of
Inconsistency Handling

In this section, we will transform the problem of identifying an appropriate pro-
posal for handling inconsistency into combinatorial vote. It consists of four key
steps:

(1) We define a 1-1 mapping from the set of proposals to a set of candidates
that has combinatorial structure;

302 K. Mu and Z. Jin

(2) We transform the evaluation of proposals from the perspective of an in-
dividual viewpoint into a voter’s preference representation on the set of
candidates;

(3) Given a social vote rule, the set of elected candidates is identified
automatically.

(4) The set of elected candidates is transformed into the set of acceptable
common proposals.

3.1 Proposals of Inconsistency Handling

Generally, handling inconsistency in an integrated requirements collection Δ
means that stakeholders or viewpoints involved in the inconsistency are trying
to reach an agreement on the modification of CORE(Δ)P .

Informally, proposal for handling inconsistency should be a series of actions
performed to modify CORE(Δ)P . For each requirements α ∈ CORE(Δ)P , an
individual proposal for handling the inconsistency will delete it from CORE(Δ)P

or retain it.
Now we try to transform the problem of identifying appropriate proposals for

inconsistency handling into a problem of combinatorial vote. Let |CORE(Δ)P |
be the number of requirements in CORE(Δ)P . Suppose that |CORE(Δ)P | = m
and A = {a1, · · · , am} be a set of propositional variables that don’t appear in
Δ. Then we can define a 1-1 mapping f from CORE(Δ)P to A. Further, let Π
be a set of possible proposals for handling the inconsistency in CORE(Δ)P , then
|Π | = 2m.

Definition 2 (Transformation Mapping). LetX={a1,¬a1}×· · ·×{am,¬am}.
Let Π be the set of possible proposals for handling inconsistency. Transformation
mapping t is a 1-1 mapping from Π to X such that for every π ∈ Π, t(π) =
(t1, · · · , tn), where for each i (1 ≤ i ≤ n)

– ti = ai, if π retains requirements f−1(ai) in CORE(Δ)P ;
– ti = ¬ai, if π deletes requirements f−1(ai) from CORE(Δ)P ;

Essentially, by transformation mapping t, we transform the set of possible pro-
posals into a set of candidates with combinatorial structure. Suppose that vi1 , · · · ,
vik

involved in the inconsistency of Δ, the the problem of identifying appropriate
proposal is transformed into the following problem:

– Voters vi1 , · · · , vik
to elect a winner in X .

Since X has combinatorial structure, then the latter is a problem of combinatorial
vote [11]. Now we give an example to illustrate this transformation.

Example 2. Consider Example 1. again. Alice and Bob are involved in the in-
consistency and

CORE(Δ)P = {(∀x)(Damaged(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x))}.

Identifying Acceptable Common Proposals 303

Now we define mapping f from CORE(Δ)P to {a1, a2} as follows:

f((∀x)(Damaged(x) → Maintain(x))) = a1,

f((∀x)(Free(x) → ¬Maintain(x))) = a2.

There are 4 possible proposals for handling inconsistency:

– π1: to delete (∀x)(Damaged(x) → Maintain(x)) from CORE(Δ)P ;
– π2: to delete (∀x)(Free(x) → ¬Maintain(x)) from CORE(Δ)P ;
– π3: to delete all the requirements in CORE(Δ)P ;
– π4: to retain all the requirements in CORE(Δ)P .

Then Π = {π1, π2, π3, π4} and

t(π1) = (¬a1, a2);
t(π2) = (a1,¬a2);

t(π3) = (¬a1,¬a2);
t(π4) = (a1, a2).

Now we transform inconsistency handling problem into a combinatorial vote
problem:

– Two voters (stand for Alice and Bob, respectively) to elect a winner in
{(¬a1, a2), (a1,¬a2), (¬a1,¬a2), (a1, a2)}.

3.2 Voting for a Common Proposal

As mentioned earlier, voters’ preferences on the set of candidates play an impor-
tant role in combinatorial vote. In this paper, for a particular voter, we focus
on the relational preference structure on X . It should be associated with the
viewpoint’s preference on the set of proposals.

Intuitively, the viewpoint’s preferences on the set of proposals are always
associated with the degree of satisfaction of his/her goal by performing each
proposal. For each proposal πi ∈ Π , let πi(Δ) denote the modification of Δ by
performing the proposal πi. Let "Gi

j# denote the number of formulas of goal Gj

that can be derived from πi(Δj) consistently. Then "Gi
j# may be viewed as a

measure of the degree of satisfaction of the goal.

Definition 3 (Preference on Π). Let Π be the set of possible proposals. For
each i (1 ≤ i ≤ n), a binary relationship with regard to viewpoint vi on Π,
denoted ≥i, is defined as follows:

∀ πl, πj ∈ Π,πl ≥i πj if and only if "Gl
i# ≥ "Gj

i #.

Note that πl >i πj if and only if πl ≥i πj and πj �≥i πl.

Definition 4 (Preference on X). Let Π be the set of possible proposals. For
each i (1 ≤ i ≤ n), ≥i is a binary relationship with regard to viewpoint vi on Π.
Let t is a transformation mapping from Π to X . Then ∀ t(πl), t(πj) ∈ X ,

304 K. Mu and Z. Jin

t(πl) ≥i t(πj) if and only if πl ≥i πj .

Now we give an example to illustrate the preferences of voters.

Example 3. Consider the proposals mentioned in Example 2. For viewpoint vA,

"G1
A# = 0;

"G2
A# = 1;

"G3
A# = 0;

"G4
A# = 0.

And for vB ,

"G1
B# = 1;

"G2
B# = 1;

"G3
B# = 1;

"G4
A# = 0.

Then

π2 ≥A π1, π3, π4

π1, π2, π3 ≥B π4.

and

(a1,¬a2)
≥A (¬a1, a2), (¬a1,¬a2), (a1, a2);

(¬a1, a2), (a1,¬a2), (¬a1,¬a2)
≥B (a1, a2).

Note that candidates written on a same line are equally preferred.

In this paper, we adopt the plurality rule as the vote rule. As mentioned ear-
lier, the plurality rule is the scoring rule obtained by taking si(x) = 1 if and
only if x ∈X is non-dominated for ≥i, i.e., iff there is no y such that y >i x.
Given preferences profile P , the set of acceptable common candidates, denoted
Selectplurality(P), is the set of candidates maximizing the number of voters for
whom x is non-dominated.

Example 4. Consider the example above again. In this case, there are two voters
vA and vB . The preference ordering ≥A, and ≥B are:

(a1,¬a2)
≥A (¬a1, a2), (¬a1,¬a2), (a1, a2);

(¬a1, a2), (a1,¬a2), (¬a1,¬a2)
≥B (a1, a2).

Identifying Acceptable Common Proposals 305

The plurality rule is used as the vote rule. Then the scores of candidates are:

sA((¬a1, a2)) = 0;
sA((a1,¬a2)) = 1;

sA((¬a1,¬a2)) = 0;
sA((a1, a2)) = 0;

sB((a1,¬a2)) = 1;
sB((¬a1, a2)) = 1;

sB((¬a1,¬a2)) = 1;
sB((a1, a2)) = 0;

Clearly, Selectplurality(P) = {(a1,¬a2)}. That is, (a1,¬a2) is the winner in X .
Since t−1((a1,¬a2)) = π2, π2 is the acceptable common proposal for handling the
inconsistency in ΔA∪ΔB . Therefore, by voting, (∀x)(Free(x) → ¬Maintain(x))
should be deleted from ΔB for maintaining consistency.

The combinatorial vote-based approach to identifying the acceptable common
proposals presented above may be illustrated as follows:

(Π,≥i)
t−→ (X ,≥i)

plurality rule−→ Seletplurality(≥i, 1 ≤ i ≤ n) t−1

−→
πi(winner).

4 Discussion and Comparison

For the combinatorial vote, the computational complexity of the different prob-
lems obtained from the choice of a given representation language (propositional
logic) and a give vote rule (plurality rule) has been studied by Lang in [11]. How-
ever, there are other vote rules such as the veto rule also appropriate for combi-
natorial vote mentioned in [11]. The veto rule is obtained by letting si(x) = 1
if and only if there is at least a candidate y such that x >i y. If the veto rule is
used as the vote rule in Example 4., then

sA((¬a1, a2)) = 0;
sA((a1,¬a2)) = 1;

sA((¬a1,¬a2)) = 0;
sA((a1, a2)) = 0;

sB((a1,¬a2)) = 1;
sB((¬a1, a2)) = 1;

sB((¬a1,¬a2)) = 1;
sB((a1, a2)) = 0;

And Seletveto(P) = {(a1,¬a2)}. The winner is also (a1,¬a2) under the veto
rule. Of course, it is possible to get the different winners under different vote
rules.

306 K. Mu and Z. Jin

On the other hand, inconsistency handling in requirements engineering is
a rather complex issue. Most works focus on the inconsistencies that result
from misunderstand customer’s demands or incorrect statement of requirements
[17,18,5]. In contrast, the combinatorial vote-based approach is more appropri-
ate to handling inconsistencies that result from conflictive goals or intentions of
stakeholders. This kind of inconsistency handling is always associated with many
social activities such as vote and negotiation. It is not just a technical issue. The
vote-based approach may be viewed as a first attempt to provide appropriate
mechanism for handling inconsistencies result from conflict goals or intentions.

The preferences on the set of possible proposals of each individual viewpoints
play an important role in electing the acceptable common proposals in the vote-
based approach. In this paper, we just use "Gl

i# to evaluate the relative impor-
tance of proposal πl from the perspective of viewpoint vi. However, different
goals (formulas) in Gi may have different relative importance. So the relative
importance of each formula of Gi that can be derived from πl(Δi) should be also
taken into consideration in representing preferences on Π of vi. This would be
a direction of future work.

5 Conclusions

We have presented a combinatorial vote-based approach for identifying the ac-
ceptable common proposals for handling inconsistency in Viewpoints framework.

Identifying appropriate inconsistency handling actions is still a difficult, but
important challenge. The vote-based approach presented in this paper focuses on
the inconsistency that results from conflicting intentions of different stakehold-
ers. The main contribution of this paper is to transform identifying appropriate
proposals for handling inconsistency into a problem of combinatorial vote. It
consists of four key steps:
(1) we define a 1-1 mapping from the set of proposals to a set of candidates that

has combinatorial structure;
(2) we transform the evaluation of proposals from the perspective of an in-

dividual viewpoint into a voter’s preference representation on the set of
candidates;

(3) Given a social vote rule, the set of elected candidates is identified
automatically.

(4) The set of elected candidates is transformed into the set of acceptable
common proposals.

However, inconsistency handling in requirements engineering is a rather com-
plex issue. For the vote-based approach presented in this paper, the choice of
social vote rules used in the combinatorial vote and the approaches to evaluating
each proposal should be considered further in the future work.

Acknowledgements

This work was partly supported by the National Natural Science Fund for Distin-
guished Young Scholars of China under Grant No.60625204, the Key Project of

Identifying Acceptable Common Proposals 307

National Natural Science Foundation of China under Grant No.60496324, the Na-
tional Key Research and Development Program of China under Grant No.
2002CB312004, the National 863 High-tech Project of China under Grant No.
2006AA01Z155, the Knowledge Innovation Program of the Chinese Academy of
Sciences, and the NSFC and the British Royal Society China-UK Joint Project.

References

1. Finkelsetin, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: A Framework for Integrating Multiple Perspectives in System Development.
International Journal of Software Engineering and Knowledge Engineering 2(1),
31–58 (1992)

2. Kotonya, G.I.: Sommerville: Viewpoints for requirements definition. IEE Software
Eng.Journal 7, 375–387 (1992)

3. Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodriguez, S., Silva, A.: A methodolog
ical framework for viewpoint-oriented conceptual modeling. IEEE Trans. Softw.
Eng. 30, 282–294 (2004)

4. Gervasi, V.D.: Zowghi: Reasoning about inconsistencies in natural language re
quirements. ACM Transaction on Software Engineering and Methodologies 14,
277–330 (2005)

5. Hunter, A.B.: Nuseibeh: Managing inconsistent specification. ACM Transactions
on Software Engineering and Methodology 7, 335–367 (1998)

6. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. Information and Software Technology 45,
993–1009 (2003)

7. Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging inconsistency in software
development. IEEE Computer 33, 24–29 (2000)

8. Nuseibeh, B.S., Easterbrook, A.: Russo: Making inconsistency respectable in soft-
ware development. Journal of Systems and Software 58, 171–180 (2001)

9. Gabbay, D., Hunter, A.: Making inconsistency respectable 2:meta-level handling
of inconsistent data. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 129–136. Springer, Heidelberg (1993)

10. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency
handling in multiperspective speci?cations. IEEE Trans. on Software Engineer-
ing 20, 569–578 (1994)

11. Lang, J.: From logical preference representation to combinatorial vote. In: Proceed-
ings of 8th International Conference on Principles of Knowledge Representation
and Reasoning, pp. 277–288. Morgan Kaufmann, San Francisco (2002)

12. Leite, J.P.A.: Freeman: Requirements validation through viewpoint resolution.
IEEE Trans. on Soft. Eng. 17, 1253–1269 (1991)

13. Robinson, W.N.: Integrating multiple specifications using domain goals. In: IWSSD
’89: Proceedings of the 5th international workshop on Software specification and
design, pp. 219–226. ACM Press, New York, NY, USA (1989)

14. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships
are difficult? In: Proceedings of the 25th International Conference on Software
Engineering, pp. 676–681. IEEE Computer Society Press, Los Alamitos (2003)

308 K. Mu and Z. Jin

15. Kifer, M., Lozinskii, E.L.: A logic for reasoning with inconsistency. Journal of
Automated Reasoning 9, 179–215 (1992)

16. Mu, K., Jin, Z., Lu, R.: Inconsistency-based strategy for clarifying vague software
requirements. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809,
pp. 39–48. Springer, Heidelberg (2005)

17. Easterbrook, S., Nuseibeh, B.: Managing inconsistencies in an evolving specifica-
tion. In: Proceedings of the Second International Symposium on Requirements
Engineering (RE95), pp. 48–55 (1995)

18. Easterbrook, S.M., Chechik, A.: framework for multi-valued reasoning over incon-
sistent viewpoints. In: Proceedings of International Conference on Software Engi-
neering (ICSE’01), Toronto, Canada, pp. 411–420 (2001)

Formalization of Network Quality-of-Service

Requirements

Christian Webel and Reinhard Gotzhein

Computer Science Department, University of Kaiserslautern, Kaiserslautern,
Germany

{webel,gotzhein}@informatik.uni-kl.de

Abstract. The provision of network Quality-of-Service (network QoS)
is a major challenge in the development of future communication sys-
tems. Before designing and implementing these systems, the network
QoS requirements are to be specified. Existing approaches to the spe-
cification of network QoS requirements are mainly focused on specific
domains or individual system layers. In this paper, we present a holistic,
comprehensive formalization of network QoS requirements, across layers.
QoS requirements are specified on each layer by defining QoS domain,
consisting of QoS performance, reliability, and guarantee, and QoS scal-
ability, with utility and cost functions. Furthermore, we derive preorders
on multi-dimensional QoS domains, and present criteria to reduce these
domains, leading to a manageable subset of QoS values that is sufficient
for system design and implementation. The relationship between lay-
ers is formalized by two kinds of QoS mappings. QoS domain mappings
associate QoS domains of two abstraction levels. QoS scalability map-
pings associate utility and cost functions of two abstraction levels. We
illustrate our approach by examples from the case study Wireless Video
Transmission.

1 Introduction

One of the major challenges in communication networks is the provision of net-
work quality of service (network QoS). By network QoS, we refer to the degree of
well-definedness and controllability of the behaviour of a communication system
with respect to quantitative parameters [1]. The need for network QoS arises
from the fact that, for state-of-the-art distributed applications, it is essential
that they offer their functionality with specified performance, reliability, and
guarantee. In addition, communication systems and applications have to adapt
to varying traffic and channel quality. The realization of such adaptive behaviour
can in fact be seen as one of the key challenges in the development of commu-
nication systems supporting network quality of service. It requires a cross-layer
approach with suitable abstractions and mappings between resource views of
different layers.

Our current work aims at establishing a holistic engineering approach for com-
munication systems, including network QoS provision. In this context, we are

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 309–324, 2007.
c© IFIP International Federation for Information Processing 2007

310 C. Webel and R. Gotzhein

investigating techniques for the formal specification of QoS requirements on dif-
ferent system levels. Existing techniques are mainly focused on specific domains
or system layers. In this paper, we present a formalization of network QoS re-
quirements across layers. The formal relationship between layers is established
by QoS domain mappings. To formalize scalability, we define utility and cost
functions on each layer, which are used to derive preorders on QoS domains.
Utility and cost functions of different layers are related by QoS scalability map-
pings. To achieve consistency between these functions of different layers, QoS
scalability mappings are derived from QoS domain mappings.

The remaining part of the paper is organized as follows: In Section 2, we
survey related work. In Section 3, we present our formalization and specification
of network QoS requirements. Section 4 describes the different abstraction levels
in communication systems supporting QoS and the mappings between these
levels. Section 5 illustrates the approach by a case study. Last, Section 6 presents
conclusions and future work.

2 Related Work

To cope with various requirements of system designs, user preferences, middle-
ware, hardware, networks, operating systems, and applications, several QoS spec-
ification techniques have been proposed (see [2] for a classification):

– QML (Quality Modelling Language) [3] is focused on the specification of
application layer QoS requirements. QoS requirements of lower layers, QoS
scaling, and QoS mappings are not addressed.

– CQML [4] adopts some of the fundamental concepts of QML, and also ad-
dresses dynamic QoS scaling. As QML, it is focused on the application layer.

– QDL (Quality Description Language) has been proposed as a part of the QuO
(Quality Objects) framework [5] that supports QoS on the CORBA object
layer. With QDL, it is possible to specify QoS requirements on application
layer and on resource layer, and to define QoS scaling.

– The Quality Assurance Language (QuAL) is part of QoSME [6]. With QuAL,
QoS requirements are specified in a process-oriented way. The Quality-of-
Service Architecture (QoS-A) [7] uses a parameter-based specification ap-
proach.

– In [8], an approach for specifying and mapping QoS in distributed multimedia
systems is presented. Based on the specification, fuzzy-control is used for QoS
scaling.

– Formal QoS mappings have not been studied thoroughly so far. Some partial
results can be found in [9] and [10].

In summary, it can be stated that previous formal treatments of QoS address
only some aspects of QoS requirement specification, focusing, for instance, on a
subset of abstraction layers, or leaving out QoS mappings. Our work comprises
the aforementioned issues and therefore provides a holistic, comprehensive for-
malization of network QoS requirements, across layers.

Formalization of Network Quality-of-Service Requirements 311

3 Formalization of Network Quality of Service

The need for formalization of network quality of service arises from the fact that
a precise description of network QoS between service user and service provider
is needed to police, control, and maintain the data flow a user emits to the com-
munication system. Further on, the mechanisms realizing these functionalities
require a precise QoS description. These mechanisms are typically integrated
across layers; therefore, more than one viewpoint on the network QoS require-
ments is needed. To rigorously relate these viewpoints, formal QoS mappings
are to be defined. In this section, we start to formalize network QoS by defining
QoS domain, QoS scalability and QoS specification. The formal definition of QoS
mappings will be addressed in Sect. 4.

3.1 QoS Domain

The QoS domain captures the QoS characteristics of a class of data flows, i.e.
performance, reliability, and guarantee:

Definition 1 (QoS Domain). The QoS domain Q is defined as Q = P×R×G,
where P is the performance domain, R is the reliability domain, and G is the
guarantee domain. q = (p, r, g) denotes an element of Q, called QoS value.

QoS performance describes efficiency aspects characterizing the required amount
of resources and the timeliness of the service (e.g., peak and average throughput,
delay, jitter, burst characteristics). The relevant aspects are included in the QoS
performance domain P , which we formalize as follows:

Definition 2 (QoS Performance). A QoS performance domain P is defined
as P = P1 × . . .×Pn =

∏n
i=1 Pi, where P1, . . . , Pn are performance subdomains.

QoS reliability describes the safety-of-operation aspects characterizing the fault
behaviour (e.g., loss rate and distribution, corruption rate and distribution, error
burstiness). It can significantly impact the overall throughput and functional-
ity on lower system layers, since it requires redundancy (e.g., retransmission,
forward error control). The relevant aspects are included in the QoS reliability
domain R:

Definition 3 (QoS Reliability). The QoS reliability domain R is defined as
R = Loss × Period × Burstiness × Corruption, with Loss = N0, Period = R+,
Burstiness = R+, and Corruption = {r ∈ R | 0 ≤ r < 100}.
Reliability addresses loss corresponding to a layer-specific data unit (e.g. picture
frames or lower system layer PDUs), the period in which data loss occurs, and
the burstiness, i.e. the duration of a successional appearance of data loss. As a
fourth parameter, the permitted corruption rate for a layer specific data unit in
percent is given.

QoS guarantee describes the degree of commitment characterizing the binding
character of the service. Four degrees of commitment are distinguished. Best-
effort denotes the minimal degree, meaning that no guarantees are given. Deter-
ministic refers to the highest degree, meaning that hard guarantees are provided.

312 C. Webel and R. Gotzhein

Statistical expresses that guarantees are given with a specified probability. Fi-
nally, enhanced best-effort denotes better-than-best-effort guarantees: in periods
of sufficient resources, statistical or deterministic guarantees are provided; oth-
erwise, a priority-based best-effort scheme is used. QoS guarantee is formalized
by the QoS guarantee domain:

Definition 4 (QoS Guarantee). The domain of QoS guarantee G is defined
as G = DoC × Stat × Prio, where Stat = {p ∈ R | 0 < p ≤ 1}, Prio = N, and
DoC = {bestEffort , enhancedBestEffort , statistical , deterministic}.

The guarantee consists of a degree of commitment DoC, a corresponding value
Stat in case of statistical guarantees, and a priority. The priority determines the
relative importance between two or more QoS requirements (traffic contracts).

3.2 QoS Scalability

Varying communication resources require adaptive mechanisms to avoid network
overload, and to scale the application service. The QoS scalability S describes
the control aspects characterizing the scope for a dynamic adaptation of the QoS
aspects of a data flow (described by a QoS domain) to a certain granted network
quality of service:

Definition 5 (QoS Scalability). Let Q be a QoS domain. The domain of QoS
scalability S is defined as S = Util × Cost × Up × Down, where Util = {u | u :
Q → [0, 1]}, Cost = {c | c : Q → R+}, and Up,Down ∈ {x ∈ R+ | 0 ≤ x ≤ 1}.

The elements of Util and Cost are called utility functions and cost functions,
respectively. A utility function determines the usefulness of QoS values q ∈ Q.
This information is crucial for upscaling and downscaling, and has to be pro-
vided on all system layers. The utility of QoS values depends on the application
scenario, but not necessarily on the amount of needed resources. The latter is
expressed by the cost function, which can be tailored to the actual resource situ-
ation, associating higher costs with scarcer resources. In other words, given two
QoS values q and q′ with u(q) > u(q′), it is possible that c(q) < c(q′), i.e., q
consumes less resources than q′. We will have to take this into account when
defining QoS scalability mappings (see Sect. 4.3). Related to the utility func-
tion, two values up ∈ Up and down ∈ Down are used to define thresholds for
up- and downscaling, i.e. a scaling is only performed, if the benefit for the user
increases/decreases more than up/down percent.

According to [8], the utility function u can be defined using functions on P ,
R and G:

uP : P → [0, 1], uR : R → [0, 1], uG : G → [0, 1] (1)

A possible definition u for a QoS value q = (p, r, g) is:

u(q) = min{uP (p) · wP , uR(r) · wR, uG(g) · wG} (2)

This definition emphasizes that usually, a minimum benefit of each of the QoS
value constituents is required. Other definitions can be given by introducing

Formalization of Network Quality-of-Service Requirements 313

weights wP , wR, and wG, reflecting the relative importance of performance,
reliability, and guarantee, respectively, in the current application scenario, with
u(q) being the sum of the weighted constituents of q. In both cases, the result
of (2) has to be normalized into the interval [0, 1] (see Definition 5).

The utility function u (the cost function c) induces an equivalence relation ∼u

(∼c) and a preorder �u (�c) on the QoS domain Q:

∼u=DF {(q1, q2) ∈ Q × Q | u(q1) = u(q2)} (3)

�u=DF {(q1, q2) ∈ Q × Q | u(q1) ≤ u(q2)} (4)

In certain scenarios, several QoS values may have the same usefulness according
to the utility function u. For instance, a user may not be able to distinguish
between 25 and 26 picture frames per second, and therefore assigns the same
utility value to both QoS values. For this reason, �u is a preorder on Q in
general. Based on ∼u (∼c), we define u-equivalence (c-equivalence) classes of Q:

[x]u = {q ∈ Q | q ∼u x} (5)

These definitions form the basis for consistency criteria of QoS mappings intro-
duced in Sect. 4.

Apart from defining the utility of QoS values, the actual costs are required
in order to provide the scope for dynamic adaptation. For instance, it is possi-
ble that for QoS values q, q′, and q′′, u(q) > u(q′) > u(q′′), while the costs in
terms of resources are c(q′) > c(q) > c(q′′). Assume that q′′ is currently pro-
vided, and the resource situation improves. In this case, it is certainly better
to directly scale to q, omitting q′. This means that although q′ has a utility
in-between q and q′′, it should not be used. This observation can be exploited
such that for a given utility, the QoS value with minimum cost is selected. For
each u-equivalence class, we keep one representative value with minimum cost
(Step 1). Next, we observe that in general, while the utility increases, the cost
may decrease. Therefore, some u-equivalence classes become obsolete, as it would
be better to skip some QoS values to get even better utility for less cost
(Step 2). These ideas are formalized in the following definitions.

To formalize Step 1 (keeping one representative per u-equivalence class with
minimum cost), we define the reduced QoS domain Qu by selecting the best
element of each u-equivalence class of Q regarding c. Let m be the cardinality
of Q/∼u, the quotient set of Q w.r.t. ∼u, and let [x]iu denote the ith element of
Q/∼u regarding �u (ith u-equivalence class). Then,

Qu = {q1, . . . , qm} ∩ Q
′
, qi = q ∈ [x]iu | ∀y ∈ [x]iu . q �c y, 1 ≤ i ≤ m (6)

Qu contains elements in the specified subset Q
′

of a QoS domain Q (see
Sect. 3.3, (8)) and is totally ordered by �u.

To formalize Step 2 (discarding of QoS values with higher cost, but less
utility), we define the derived QoS domain Qu,c as follows:

Qu,c = {q ∈ Qu | ∀y ∈ Qu . c(q) > c(y) ⇒ u(q) > u(y)} (7)

314 C. Webel and R. Gotzhein

3.3 Specification of Network QoS Requirements

A QoS requirements specification captures the concrete QoS requirements on
one system layer by defining the set of valid QoS domain values and a QoS
scalability value. The specification is used to configure, manage and maintain
QoS mechanisms located on each system layer.

Definition 6 (QoS Requirements Specification). Let Q be a QoS domain
and S be a QoS scalability domain. A QoS requirements specification qosReq is
defined as a triple (qmin , qopt , s), where qmin , qopt ∈ Q and s ∈ S.

The QoS values qmin and qopt specify the set Q
′ ⊆ Q of valid QoS domain values.

To obtain Q
′
from qmin and qopt , the preorder �u induced by the utility function

(see (4)) is applied:

Q
′
= {q ∈ Q | qmin �u q �u qopt} (8)

4 QoS Mappings

So far, we have introduced the formalization and specification of network QoS
requirements. Such requirements can be specified from different viewpoints, on
different levels of abstraction. To relate QoS requirements of different levels,
QoS mappings are needed. The reason for that is that QoS management tasks
are typically embedded in the communications system, prevalent across layers,
hiding complex tasks from the application. This leads to simple QoS specifica-
tions on higher system layers, whereas on lower system layers, the complexity
increases.

In this section, we will start by identifying several levels of abstraction, and
will then formally define mappings between QoS domains and QoS scalability.

4.1 QoS Abstraction Levels

To implement network QoS requirements, QoS mechanisms on several system
layers are needed, each with its own viewpoint describing the data flow traversing
the (communication) system. We call these different viewpoints QoS Abstraction
Levels :

1. User Level: From the user’s point of view, the application is characterized
in terms of scenarios, e.g., surveillance or panorama.

2. Application Level: From the user scenarios, the system developer derives
the network QoS requirements of the application level. QoS parameters are
application-specific, e.g., picture frame rate, or JPEG quality.

3. Communication Level: QoS parameters of the communication level charac-
terize the data flow in terms of, e.g., transmission units, transmission periods,
transmission delay, delay jitter. On this level, the QoS requirements are still
platform-independent.

Formalization of Network Quality-of-Service Requirements 315

user ︷ ︸︸ ︷
scenario = (qmin , qopt , s)

application scenario

informal description of the
user

feedbacku(qcur)

lower layer data units of fixed size

Corresponding System Layer

application layer

middleware layer

hardware layer

application

communication

resources

Levels of Abstraction

user data flow

transmission units

concrete resources

application scenarios

QoS mapping

QoS mapping

higher layer data units of variable size

Q
′

resource

framesopt

Q
′

middleware

framesmin

Q
′

application

bandwidthmin
bandwidthopt

qopt

qcur

qmin

e.g. #frames/sec, ...

e.g. bandwidth, energy, memory, ...

e.g. fps, quality, ...

Fig. 1. Abstraction Levels and QoS Mappings

4. Resource Level: On resource level, the QoS requirements are specified in
terms of concrete hardware parameters, e.g., bandwidth, energy, cpu cycles,
memory. This specification is platform-specific.

The abstraction levels are shown in Fig. 1 (left), and associated with a specific
system layer (middle). Network QoS requirements are specified on all abstrac-
tion layers, expressing the particular viewpoint. To implement the requirements,
these viewpoints have to be related. For instance, QoS performance of the video
application – stated in terms of resolution, JPEG quality, and picture frames
per second – must be related to QoS performance of the communication level
– stated in terms of number of data frames per picture frame and period. We
introduce two kinds of QoS mappings to formalize this relationship, the QoS
domain mapping, and the QoS scalability mapping.

4.2 QoS Domain Mapping

To relate QoS requirements of different abstraction levels, QoS mappings are
needed. In this section, we introduce QoS domain mappings between a higher
layer QoS domain Qh and a lower layer domain Ql. This is illustrated in Fig. 1
(right).

Definition 7 (QoS Domain Mapping). Let Qh, Ql be QoS domains on dif-
ferent system layers. A QoS domain mapping dm : Qh → Ql is a function from
a (higher layer) QoS domain Qh to a (lower layer) QoS domain Ql. The domain
mapping dm may be defined using auxiliary functions as follows:

dmP : Qh → Pl (performance mapping)
dmR : Qh → Rl (reliability mapping)
dmG : Qh → Gl (guarantee mapping)

316 C. Webel and R. Gotzhein

In general, QoS mappings are neither injective nor surjective. This means that
two different QoS values q1, q2 ∈ Qh could be mapped to the same ql ∈ Ql, and
that the values of dm do not span the whole codomain Ql. For these reasons,
the mapping of the scalability requirements specification, especially the util-
ity function, is nontrivial. In the following, we elaborate on the three auxiliary
functions.

QoS Performance Mapping. The QoS performance mapping dmP translates
the performance parameters into each other. The performance parameters are
system layer and hardware dependent, i.e. parameters like the maximum transfer
unit (MTU), the path MTU, or the frame format have to be considered.

Definition 8 (QoS Performance Mapping). Let Ph, Pl be performance do-
mains on different system layers. A QoS performance mapping dmP : Ph → Pl

is a function translating performance values ph ∈ Ph into new values pl ∈ Pl =
Pl1 × · · · ×Pln . To define dmP , auxiliary functions dmPi(ph) = pli , ∀ i ≤ ln can
be used.

QoSReliabiliyMapping. Higher layer transmission units (e.g., picture frames)
can be larger than lower layer units and therefore have to be fragmented and re-
assembled. This, however, complicates the definition of the QoS reliability map-
ping (see [11]). To illustrate this, consider the example in Fig. 2. On application
layer, the variable-size picture frames are fragmented into maximum-size middle-
ware packets. On middleware layer, we assume a loss ratio of 30%. The loss can
be caused by packet loss, corrupted, dropped, or late-delivered PDUs. Further, we
assume that a loss of even one lower layer packet results in the loss of the entire
picture frame. In Figure 2.a, the loss ratio results in a picture frame loss of 33%.
If the loss is uniformly distributed (as shown in Fig. 2.b), the same ratio leads to
a loss on application layer of 100%.

(a) loss burst

(b) uniformly distributed loss

app. layer

mw. layer

app. layer

mw. layer

resulting loss (app)lost pdu (mw)

Fig. 2. Upper layer PDUs vs. lower layer PDUs

Notice that a simple description of the lower layer loss or corruption probabil-
ity is not sufficient for deriving the expected upper layer reliability parameters.

Formalization of Network Quality-of-Service Requirements 317

Moreover, uniformly distributed losses may be more adverse than bursty losses.
To define the QoS reliability mapping, a segmentation model of the user data is
needed. In our case study, this model would introduce probability distributions
of picture frame sizes and resulting probability mass functions of the number
of needed middleware packets. Further, an error models characterizing the loss
and/or corruption process is needed. This error model strongly depends on the
chosen base technology. The definition of segmentation and error model are out
of the scope of this paper. A treatment of these aspects can be found in [11].

QoS Guarantee Mapping. The function dmG maps the guarantees specified
on one system layer to corresponding guarantees on another. Ideally the guar-
antees should stay the same during a mapping process. But in exceptional cases,
e.g., if the underlying base technology does not support required degree of com-
mitment, an upgrade is permitted. For example, a mapping from statistical to
deterministic guarantees is always feasible, whereas a mapping vice versa could
result in a violation of the traffic contract.

4.3 QoS Scalability Mapping

QoS scalability describes the control aspects characterizing the scope for dynamic
adaptation of QoS parameters. To apply scaling on different levels of abstraction,
a QoS scalability mapping is needed. For consistency, this mapping has to ensure
that the utility of QoS values of different abstraction levels that are related by
the QoS domain mapping dm is the same. To enforce this consistency condition,
we will now define a scalability mapping such that, given a utility function
uh, yields the corresponding utility function ul. Next, we will introduce a cost
function that associates costs with QoS values. Based on this cost function, we
will finally arrive at a reduced set of QoS values characterizing the actual scope
for dynamic adaptation.

In the following definition, let Q∗
l = {ql ∈ Ql | ∃ qh ∈ Qh . dm(qh) = ql}

denote the set of mapped QoS values, and let [qh]dm = {x ∈ Qh | x ∼dm qh},
∼dm= {(qh, q

′
h) ∈ Qh × Qh | dm(qh) = dm(q

′
h)}, denote the equivalence classes

containing those QoS values qh that are mapped to the same ql.

Definition 9 (QoS Scalability Mapping). Let Sh, Sl be scalability domains
on different system layers. A QoS scalability mapping is a set of four mapping
functions smUtil , smCost , smUp and smDown , translating the different scalability
domains into each other (see Fig. 3):

smUtil : Utilh → Util l; ∀uh ∈ Utilh . ∀ql ∈ Q∗
l . ul(ql) =DF uh(qh) |

qh ∈ Qh ∧ dm(qh) = ql ∧ ∀x ∈ [qh]dm . uh(qh) ≥ uh(x)
smCost : Cost l → Costh; ∀cl ∈ Cost l . ∀qh ∈ Qh . ch(qh) =DF cl(dm(qh))
smUp : Downh → Upl; ∀x ∈ Uph . smUp(x) =DF x

smDown : Downh → Down l; ∀x ∈ Downh . smDown(x) =DF x

Some explanations are in order. Let qh, q
′
h ∈ Qh, uh(qh) > uh(q

′
h), dm(qh) =

dm(q
′
h). In other words, although the utility of qh is higher than that of q

′
h, they

318 C. Webel and R. Gotzhein

higher layer: Sh = Utilh × Costh × Uph × Downh⏐⏐3smUtil

4⏐⏐smCost

⏐⏐3smUp

⏐⏐3smDown

lower layer: Sl = Util l × Cost l × Upl × Downl

Fig. 3. Scalability mapping

consume the same amount of resources ql = dm(qh). In this case, the utility of
ql is chosen as ul(ql) =DF uh(qh), i.e. the better value. This means, that when
the resources ql are available, they are exploited as best as possible. This idea
is generalized in the definition of the mapping function smUtil, where to each
value of ql ∈ Q∗

l , the maximum utility of all corresponding values qh ∈ Qh is
assigned. Note that costs are mapped from lower to higher system layer and
that the thresholds for upscaling and downscaling remain unmodified by the
QoS scalability mapping.

With the QoS mappings dm, sm and the reduced QoS domain (see (7)), it
is possible to define a scaling function to be used in system design and imple-
mentation. A scaling function scalu,cl

: Ql → Qu,ch ∪ {0} maps a lower layer
QoS values describing the currently granted network QoS to a higher layer cost-
optimal QoS value. The function selects the best possible, i.e. the optimum QoS
value q ∈ Qu,ch regarding the utility function u in compliance with the currently
granted QoS resources qgranted ∈ Ql, if such an element exists, otherwise 0. For
this reason, the cost function cl has to be mapped to a corresponding higher
layer cost function ch in order to properly reduce Q. The scaling function is
defined as follows:

scalu,cl
(qgranted) = maxu{q ∈ Qu,smCost(cl) | cl(dm(q)) ≤ cl(qgranted)} (9)

whereas the maximum operator max f for a given set X defines x as an f -maximal
element of X iff x ∈ X and ∀y ∈ X : (f(x) ≤ f(y) ⇒ x = y), short maxf{X}.
The maximum of an empty set is defined as zero, i.e. maxf∅ = 0.

5 Case Study Wireless V ideo Transmission

We illustrate the formalization of network QoS by the application Wireless Video
Transmission, which is used in our remotely controlled airship [12]. The quality of
video transmission as perceived by the user depends on picture frame resolution,
JPEG compression rate, and picture frame rate. On communication layer, this
translates to the number of messages per picture frame, message rate and delay,
and finally to channel bandwidth and delay.

In this application (see Fig. 4), we distinguish two usage scenarios, surveillance
for movement detection and panorama for landscape recording. Given the QoS
domain Qvideo , the network QoS requirements qosReqsur and qosReqpan are de-
fined by triples, consisting of optimal and minimal QoS values, and a QoS scala-
bility value. From these triples, the subsets surveillance and panorama of Qvideo

are determined, applying the preorder �u induced by the utility function.

Formalization of Network Quality-of-Service Requirements 319

qmin

qopt

Q
′

panoramaQ
′

surveillance �us

QVideo

�us

Fig. 4. QoS Requirements Specification

5.1 QoS Domain

A QoS domain Q is specified by defining concrete subdomains performance P ,
reliability R, and guarantee G. As an example, we define subdomains for the
QoS domain Qvideo , and concrete QoS requirement specifications qosReqsur and
qosReqpan .

The quality of video transmission depends on picture frame resolution, JPEG
compression rate, and picture frame rate. Further QoS parameters are transmis-
sion delay and delay jitter, which we omit in the following. For our case study,
the concrete domains on application layer are P1 = Resolution, P2 = Quality,
P3 = FrameRate, yielding Pvideo .

Pvideo = Resolution × Quality × FrameRate
Resolution = {(320, 240), (480, 360), (640, 480)}

Quality = {25, 50, 75}
FrameRate = {f ∈ N | 1 ≤ f ≤ 25} (10)

Typical element of Pvideo is p = ((resx, resy), qual , fps). An appropriate speci-
fication of the required performance for surveillance purposes is given by

pminSur = ((320, 240), 25, 10), poptSur = ((640, 480), 75, 20) . (11)

The reliability specification identifies concrete values for loss, period, bursti-
ness, and corruption (see Definition 3). For the video transmission, we define
rminSur = roptSur = (3, 1, 2, 0), specifying a permitted data loss of three picture
frames per one second, loss bursts of up to two picture frames, and a corruption
rate of zero percent.

A guarantee specification is given by gminSur = goptSur = (enhancedBestEffort ,
0.8, 8). If due to the current resource situation only priority best-effort guarantees
can be provided, the priority of 8 enables the wireless video transmission to gain
privilege over other applications with lower priorities (< 8). If adequate statistical
guarantees are offered, a minimum of 80 percent is required.

5.2 QoS Scalability

To specify QoS scalability, concrete utility functions uP , uR, uG, cost function
c, and two thresholds up and down are to be defined. Due to limitations of

320 C. Webel and R. Gotzhein

space, we omit the specification of cost functions, which in principle are similar
in style to the utility functions. For the video transmission, we start by defining
auxiliary functions for each performance subdomain, normalizing the utility of
each parameter to a value in [0, 1]:

ures : Resolution → [0, 1], ures(res) = resx−160
480

uqual : Quality → [0, 1], uqual(qual) = qual
75

ufps : FrameRate → [0, 1], ufps(fps) = fps
25 (12)

Next, we define weights reflecting the relative importance of each subdomain
corresponding to the current application scenario. For instance, picture frame
rate is the decisive video parameter in case of surveillance, while resolution and
quality are of particular importance in the panorama scenario. With the weights
ωres = 0.1, ωqual = 0.1, ωfps = 0.8 for surveillance and υres = 0.4, υqual = 0.4,
υfps = 0.2 for panorama, we obtain the following performance utility functions:

uPsur : Pvideo → [0, 1], uPsur = 0.1 · ures + 0.1 · uqual + 0.8 · ufps

uPpan : Pvideo → [0, 1], uPpan = 0.4 · ures + 0.4 · uqual + 0.2 · ufps (13)

Since rmin = ropt and gmin = gopt in both QoS requirement specifications, the
utility subfunctions operating on R and G can be defined as follows:

uG(x) =

{
0 if x < gmin

1 otherwise
, uR(x) =

{
0 if l

p > lmin

pmin
∨ b > bmin ∨ c > cmin

1 otherwise
(14)

uG implies an order on the guarantee domain that can be intuitively given by
arranging the values (1) according to their degree of commitment (bestEffort
to deterministic), then (2) according to the statistical component and last (3)
according to their priority. The parameters l, p, b, and c in the definition of uR

refer to loss, period, burstiness, and corruption, respectively.
Inserting into (2) yields the following utility functions on Qvideo:

usur (q) = min{uPsur (p), uR(r), uG(g)}, upan(q) = min{uPpan (p), uR(r), uG(g)}
(15)

In both cases, downscaling should be performed if the benefit decreases by
10 percent and upscaling should only be done if the benefit increases by 20
resp. 10 percent, leading to the following complete specification of the scalability
requirements:

ssur = (usur , csur , 0.2, 0.1), span = (upan , cpan , 0.1, 0.1) (16)

Based on the utility functions, the QoS values are divided into equivalence
classes. Table 1 lists some uPsur -equivalence classes of Pvideo . In order to minimize
the overall number of classes, the utility has been rounded to two decimal places,
resulting in a reduction from 125 to 44 classes.

In Figure 5, the QoS domain is reduced, applying Steps 1 and 2 as defined
in Sect. 3.2. The utility function usur partitions Qvideo into 45 usur -equivalence

Formalization of Network Quality-of-Service Requirements 321

Table 1. uPsur -equivalence classes of PVideo

utility uPsur -equivalence class

0.1 ((320,240),25,1)
0.13 ((480,360),25,1) ((320,240),25,2) ((320,240),50,1)
.
0.39 ((320,240),25,10) ((640,480),75,6) . . . ((480,360),25,9) ((480,360),50,8)

0.42 ((640,480),25,9) ((480,360),25,10) . . . ((320,240),25,11) ((480,360),75,8)
.
0.84 ((640,480),25,22) ((640,480),75,20) . . . ((480,360),25,23) ((320,240),75,22)
.
1.0 ((640,480),75,25)

classes (rounded to two decimal places). Since the result of uR resp. uG could be
0, the overall number of equivalence classes increases by one (cf. uPsur -equivalence
classes). If all values of the QoS domain Q are arranged along the x-axis, re-
specting the preorder �u, then the resulting graph is a monotonically increasing
step function. In addition, a cost function c is depicted in Fig. 5, describing
the needed resources on lower system layer. Note that the costs basically in-
crease with the utility, however, within a given usur -equivalence class, different
costs may be associated with QoS values having the same utility. The reduced
domain Qu is formed by selecting the cost-optimal QoS values out of each usur -
equivalence class (see Table 2) and intersecting this selection with Q

′
, leading

to Qu = {qu
16, . . . , q

u
39}. Step 2 (cf. (7)) induces a further reduction of the overall

number of QoS values, since for example qu
37 can be omitted due to the higher

cost but less utility compared to qu
38. This leads to Qu,c with a total number of

16 QoS values.

0.0

0.2

0.4

0.6

0.8

1.0

qu
45qopt ∼qu

39qu
32qu

25qmin =qu
16qu

9qu
1

0

400

800

1200

1600

2000

u
ti

li
ty

co
st

(×
1
0
3
)

QoS values qi

[0.39]usur

utility function usur

cost function c

Fig. 5. Reduction of Q

322 C. Webel and R. Gotzhein

Table 2. Cost-optimal QoS values

utility QoS value cost

0.0 qu
1 (((320, 240), 25, 1), rminSur , < gminSur) 7000

0.1 qu
2 (((320, 240), 25, 1), roptSur , goptSur) 7000

0.13 qu
3 (((320, 240), 50, 1), roptSur , goptSur) 11000

.
0.39 qmin = qu

16 (((320, 240), 25, 10), roptSur , goptSur) 70000

0.42 qu
17 (((320, 240), 25, 11), roptSur , goptSur) 77000

.
0.81 qu

37 (((320, 240), 75, 21), roptSur , goptSur) 315000
0.83 qu

38 (((320, 240), 25, 24), roptSur , goptSur) 168000
0.84 qopt ∼ qu

39 (((320, 240), 50, 23), roptSur , goptSur) 253000
.
1.0 qu

45 (((640, 480), 75, 25), roptSur , goptSur) 1125000

5.3 QoS Mapping

The QoS performance mapping from the application layer performance domain
Pvideo to an underlying middleware layer with Pmw = #Frames × Period is
formally defined as follows:

dmP : Pvideo → Pmw

dmP ((resx, resy), fps , quality) = (#frames, period), with

dmP1((resx, resy), fps , quality) = #frames =
⌈

(160·quality+3000)·(resx−160)/160
payload bytes per frame

⌉
dmP2((resx, resy), fps , quality) = period = 1

fps

On application layer, QoS performance is defined by resolution, picture frames
per second, and quality. On middleware layer, we have the number of data frames
required for the transmission of one picture frame, and the period between two
picture frames, i.e. a burst of data frames.

The QoS reliability mapping is to be based on segmentation and error models,
which are outside the scope of this paper, and therefore omitted. For the QoS
guarantee mapping, we assume that the guarantees specified on higher levels
are supported by the base technology, so that the guarantees can be maintained
across layers.

The QoS scalability mapping is universally defined in Definition 9, independent
from application, system, and hardware. Therefore, no specific mapping is needed.

6 Conclusion and Future Work

In this paper, we have presented a holistic, comprehensive formalization of net-
work QoS requirements, across layers. QoS requirements are specified on each
layer by defining a multi-dimensional QoS domain and QoS scalability. Based on

Formalization of Network Quality-of-Service Requirements 323

these definitions, we have derived preorders on multi-dimensional QoS domains,
and have presented criteria to reduce these domains to manageable subsets,
sufficient as a starting point for system design and implementation. To formally
relate layers, we have introduced two kinds of QoS mappings, called QoS domain
mappings and QoS scalability mappings.

All formalizations so far are based on mathematics. For better usability, we
intend to define a formal QoS requirement specification language, with intuitive
keywords and structuring capabilities. This language should be powerful enough
to host the concepts and criteria we have introduced in this paper. Also, the
language should be supported by tools that can, for instance, construct QoS
mappings as far as they have been defined in this work.

Another step is to specify designs that satisfy given QoS requirement speci-
fications. In particular, there is need for defining a network QoS system archi-
tecture, with QoS functionalities such as QoS provision, QoS control, and QoS
management on each abstraction layer. We expect that this requires extensions
to existing design languages such as UML or SDL. Finally, implementations are
to be generated from design models. In our group, we have a complete develop-
ment process and tool chain for model-driven development. It is a challenging
task to extend them to QoS-aware system development.

Acknowledgments. The work presented in this paper was (partially) carried
out in the BelAmI (Bilateral German-Hungarian Research Collaboration on Am-
bient Intelligence Systems) project, funded by German Federal Ministry of Ed-
ucation and Research (BMBF), Fraunhofer-Gesellschaft and the Ministry for
Science, Education, Research and Culture (MWWFK) of Rheinland-Pfalz.

References

1. Schmitt, J.: Heterogeneous Network Quality of Service Systems. Kluwer Academic
Publishers, Boston (2003) ISBN: 07937410X

2. Jin, J., Nahrstedt, K.: QoS Specification Languages for Distributed Multimedia
Applications: A Survey and Taxonomy. IEEE MultiMedia 11(3), 74–87 (2004)

3. Frølund, S., Koistinen, J.: QML: A Language for Quality of Service Specification.
Technical Report HPL-98-10, pp. 63, Software Technology Laboratory, Hewlett-
Packard Company (1998)

4. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, Oslo, Norway (2001)

5. Vanegas, R., Zinky, J.A., Loyall, J.P., Karr, D., Schantz, R.E., Bakken, D.E.: QuO’s
Runtime Support for Quality of Service in Distributed Objects. In: Proceedings of
the IFIP International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware’98), The Lake District, UK, pp. 207–222 (1998)

6. Florissi, P.G.S.: QoSME: QoS Management Environment. PhD thesis, Columbia
University (1996)

7. Campbell, A.T.: A Quality of Service Architecture. PhD thesis, Computing De-
partment, Lancaster University (1996)

8. Koliver, C., Nahrstedt, K., Farines, J.M., Fraga, J.D.S., Sandri, S.A.: Specification,
Mapping and Control for QoS Adaptation. Real.-Time. Systems 23(1-2), 143–174
(2002)

324 C. Webel and R. Gotzhein

9. Huard, J.F., Lazar, A.A.: On QoS Mapping in Multimedia Networks. In: 21th IEEE
Annual International Computer Software and Application Conference (COMP-
SAC’97), IEEE Computer Society Press, Los Alamitos (1997)

10. Fukuda, K., Wakamiya, N., Murata, M., Miyahara, H.: QoS Mapping between
User’s Preference and Bandwidth Control for Video Transport. In: 5th Interna-
tional Workshop on Quality of Service (IWQoS’97), Kluwer Academic Publishers,
Dordrecht (1997)

11. DaSilva, L.A.: QoS Mapping Along the Protocol Stack: Discussion and Preliminary
Results. In: Proceedings of IEEE International Conference on Communications
(ICC’00). vol. 2. New Orleans, LA, pp. 713–717 (2000)

12. Webel, C., Fliege, I., Geraldy, A., Gotzhein, R., Krämer, M., Kuhn, T.: Cross-Layer
Integration in Ad-Hoc Networks with Enhanced Best-Effort Quality-of-Service
Guarantees. In: Proceedings of World Telecommunications Congress (WTC 2006),
Budapest, Hungary (2006)

Robustness in Interaction Systems

Mila Majster-Cederbaum and Moritz Martens

University of Mannheim
Mannheim, Germany

mcb@informatik.uni-mannheim.de

mmartens@informatik.uni-mannheim.de

Abstract. We treat the effect of absence/failure of ports or components
on properties of component-based systems. We do so in the framework
of interaction systems, a formalism for component-based systems that
strictly separates the issues of local behavior and interaction, for which
ideas to establish properties of systems were developed. We propose how
to adapt these ideas to analyze how the properties behave under absence
or failure of certain components or merely some ports of components. We
demonstrate our approach for the properties local and global deadlock-
freedom as well as liveness and local progress.

1 Introduction

Component-based design techniques are an important paradigm for mastering
design complexity and enhancing reusability. In the object-oriented approach
subsystems interact by invoking in their code operations or methods of other
subsystems and hence rely on the availability of these subsystems. In contrast
to this, components are designed independently from their context of use. They
are put together by some kind of gluing mechanism. This view has lead some
authors, e.g. [1,2,3], to consider a component as a black box and to concentrate
on the combination of components using a syntactic interface description of the
components. However, if we want to make assertions about the behavior of a
component system, be it functional, temporal or quantitative, knowledge about
the components has to be provided.

There have been approaches using different techniques to model the behavior
of a component, e.g. Petri-nets [4], process algebra [5,6] or channel-based meth-
ods [7]. Except for model-checking, where the complete global state space has to
be analyzed, there are not many approaches that investigate generic properties
of systems as deadlock-freedom, liveness, etc. In some previous work [5,8] the
question of deadlock-freedom is addressed for special cases.

We build here on interaction systems, a model for component-based systems
that was proposed and discussed by Sifakis et al. in [9,10,11,12] and has been
implemented in the PROMETHEUS [13] as well as the BIP tool [14].

The model strictly separates the description of the components from the way
they are glued together. Each component i has a static description that gives the
information about its interface, which is here modeled by a set Ai of ports. The

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 325–340, 2007.
c© IFIP International Federation for Information Processing 2007

326 M. Majster-Cederbaum and M. Martens

dynamics of a component is given by a transition system where the edges are
labeled with elements from Ai. Components are glued together via connectors.
A connector is a set of ports which contains at most one port for every com-
ponent. The connectors give the information how components cooperate. When
each component is ready to perform its port in a connector c then all ports
in c can be performed conjointly. The same set of components can be glued
together differently (i.e. with other connectors) for different applications. The
behavior of the global system Sys, i.e. the component system, is fully determined
by the static and dynamic description of each component and by the connectors.
The model is suitable to investigate important properties of component-based
systems, as e.g. local/global deadlock-freedom, local progress and liveness. In
[15,16,17] it is shown that deciding deadlock-freedom is PSPACE-hard and de-
ciding liveness is NP-hard for interaction systems. However, as the information
about the individual components is maintained in the model it can be exploited
to develop sufficient conditions for the desired properties that can be tested in
polynomial time [18,19,17]. As violations of safety properties can be expressed
as deadlocks broad classes of properties can be handled in this approach.

Here we deal with the question of robustness in interaction systems in the
following sense. Consider e.g. an interaction system Sys that is deadlock-free,
i.e. the system may proceed in every state. Let us now assume that the system
has been running for a certain amount of time when a subset A′ of the set of all
ports becomes unavailable (out of service). This might be because the ports in
A′ suffer some kind of failure or malfunction but it is also possible to model a
situation where certain ports or components are switched off. Can the system Sys
still proceed in every state? How are other properties affected? Can a component
that could previously make progress in the system still make progress? How do
we know if a component is live in Sys when some ports are out of service, etc?

In a first attempt one might try to solve these problems by simply removing
the ports in A′ from the description of Sys and by then investigating the resulting
construct. However, this is not feasible as will be shown later. What we propose
to do is to adapt the sufficient conditions and derived algorithms for the desired
properties appropriately so that they can be used to answer the questions posed.

Not much work has been done that theoretically investigates the question
what effect the failure/absence of parts of a component system has on interesting
properties of the system. This is also due to the fact that there is not much work
on the theoretical analysis of properties of component-based systems. In [20]
component systems are modeled in a way such that they are fault tolerant to
a certain extent. This is achieved by requesting that local faulty behavior in
a component is detected and handled within the affected component itself. A
particular question concerning the classification of safety and liveness in the
context of failures has been investigated in [21].

The paper is structured as follows. In Sect. 2 we give a summary of the model
of interaction systems. In Sect. 3 we present properties of interaction systems.
In Sect. 4 we explain how the sufficient conditions for a desired property can
be adapted to the situation where A′ is not available. We do so in detail at the

Robustness in Interaction Systems 327

hand of global deadlock-freedom of a system and liveness of a set of components.
Finally we sketch how local progress and local deadlock-freedom can be treated
in a similar way. The paper is summarized by a short conclusion in Sect. 5.

2 Components, Connectors and Interaction Systems

In this section we present the basic definitions for interaction systems that
were first introduced in [9]. An interaction system models the behavior of a
component-based system for a set K of components. It is the superposition of
a static model, called interaction model, that considers a component as a black
box with interface description and specifies the “glue code”, and the dynamic
model, which gives the description of the local behavior of the components. For
every component i ∈ K, a set Ai of actions or ports is specified and constitutes
the interface. Gluing of components is achieved via so-called connectors. A con-
nector c is a finite nonempty set of ports that contains at most one port for
every component in K. It describes a cooperation of those components which
have a port in c. When each component is ready to perform its port in c then
all ports in c can be performed conjointly. A subset of a connector is called an
interaction. We may declare certain interactions to be complete. If an interaction
is declared complete it can be performed independently of the environment. It is
a design decision which interactions are chosen to be complete. Connectors may
be of different sizes and one port may be contained in two or more connectors
of different sizes. Thus the model allows for a very flexible way of gluing and
consequently of cooperation among components.

Definition 1 (Interaction Model). Let K be the set of components and Ai

be a port set for component i ∈ K where any two port sets are disjoint. Ports
are also referred to as actions. A finite nonempty subset c of A =

⋃
i∈K

Ai is called

a connector, if it contains at most one port of each component i ∈ K, that is
|c ∩ Ai| ≤ 1 for all i ∈ K. A connector set is a set C of connectors that covers
all ports and contains only maximal elements:

1.
⋃

c∈C

c = A 2. c ⊆ c′ ⇒ c = c′ for all c, c′ ∈ C.

I (c) denotes the set of all nonempty subsets of connector c and is called the set of
interactions of c and I (C) =

⋃
c∈C

I (c) is the set of interactions of the connector

set C. For component i and interaction α ∈ I (C), we put i (α) = Ai ∩ α. We
say that component i participates in α, if i (α) �= ∅. Let Comp ⊆ I (C). We call

IM := (C,Comp)

an interaction model. The elements of C are also called maximal interactions
and those of Comp are called complete interactions.

If not otherwise stated we always assume that K = {1, . . . , n} for some n ∈ N
or that K is countably infinite. We take up an example from [22].

328 M. Majster-Cederbaum and M. Martens

Example 1. We consider a set of tasks i (i ∈ K = {1, ..., n}) that compete
for some resource in mutual exclusion. Task i is represented by the component
i with port set Ai = {activatei, starti, resumei, preempti, f inishi, reseti}. The
connector set is chosen as Ctasks = {conni

1, connij
2 , connij

3 , conng|i, j ∈ K, i �= j},
where

conni
1 := {activatei}

connij
2 := {preempti, startj}

connij
3 := {resumei, f inishj}

conng := {reset1, . . . , resetn}

and the complete interactions are given by

Comptasks = {{startj} , {finishj} |i, j ∈ K ∧ i �= j} ,

and IMtasks := (Ctasks, Comptasks).

So far we have only described components as black boxes with ports and have
specified the possible structure of cooperation in between them. A further level
of description of a component characterizes its local behavior. Basically this can
be understood as a control of the way in which a component offers its ports.
We assume here that this local behavior of every component i ∈ K is given
by a labeled transition system Ti. From the local transition systems and the
interaction model we obtain the global behavior of the component-based system.

Definition 2 (Interaction System). Let K be a set of components with asso-
ciated port sets {Ai}i∈K and IM = (C,Comp) an interaction model for it. Let
for each component i ∈ K a transition system Ti =

(
Qi, Ai,→i, Q

0
i

)
be given

where →i⊆ Qi × Ai × Qi and Q0
i ⊆ Qi is a non-empty set of initial states. We

write qi
ai→i q′i instead of (qi, ai, q

′
i) ∈→i.

The induced interaction system is given by Sys :=
(
IM, {Ti}i∈K

)
where the

global behavior T =
(
Q,C ∪ Comp,→, Q0

)
is obtained from the local transition

systems of the individual components in a straightforward manner:

1. The global state space Q :=
∏

i∈K Qi is the Cartesian product of the Qi

which we consider to be order independent. We denote states by tuples q :=
(q1, . . . , qj , . . .) and call them (global) states. Elements of Qi are called local
states of component i.

2. Q0 :=
∏

i∈K Q0
i , the Cartesian product of the local initial states. We call the

elements of Q0 (global) initial states.
3. →⊆ Q × (C ∪ Comp) × Q, the labeled transition relation for Sys defined by

∀α ∈ C ∪ Comp ∀q, q′ ∈ Q : q = (q1, . . . , qj , . . .)
α→ q′ =

(
q′1, . . . , q

′
j , . . .
)
⇔

∀i ∈ K : qi
i(α)→i q′i if i participates in α and q′i = qi otherwise.

A state qi ∈ Qi is called complete if there is some interaction α ∈ C ∪ Comp
and some q′i such that qi

α→i q′i. Otherwise it is called incomplete.

Robustness in Interaction Systems 329

Note that a system may proceed in a global state q if qi is complete for some
i ∈ K. The converse does not hold.

Definition 3 (Enabled). Let Sys be an interaction system and let i ∈ K be
a component. For ai ∈ Ai we set en (ai) :=

{
qi ∈ Qi|∃q′i : qi

ai→i q′i
}
. For α ∈

C ∪ Comp we set en (α) :=
{
q ∈ Q|∃q′ : q

α→ q′
}
.

If qi ∈ en(ai) we say that ai is enabled in qi or that qi offers ai and analogously
for q and α. Given a set of components, an interaction model IM = (C,Comp)
and a transition system Ti for each component i the induced interaction system
describes the behavior of the composed system. In particular, in a given global
state q = (q1, . . . , qj, . . .) an interaction α ∈ C ∪ Comp may take place provided
that each component j participating in α offers j(α) in qj .

Example 1 continued. The transition system Ti for task i is given in Fig. 1 where
every local state is a starting state.

inaci

waiti

execi susp
i

activatei

starti

finishi

preempt
i

resumei

reseti

Fig. 1. Transition system of task i

We put Systasks := (IMtasks, {Ti}i∈K).

Remark 1. In what follows, we often mention Sys =
(
IM, {Ti}i∈K

)
. It is under-

stood that IM = (C,Comp) is an interaction model for the set K of components
with port sets Ai and Ti =

(
Qi, Ai,→i, Q

0
i

)
for i ∈ K and T are given as above.

3 Properties of Interaction Systems

Properties of systems have been classified into safety- and liveness-properties in
[23] and have been investigated in various settings, see for example [24,25]. In
Sect. 3.1 we define the properties that we consider here w.r.t. absence/failure of
ports. The properties are local/global deadlock-freedom, local progress of a set
of components and liveness. These properties of interaction systems have been
studied in detail in [22,18,19,17,15]. In Sect. 3.2 we define what we mean by
robustness.

330 M. Majster-Cederbaum and M. Martens

Remark 2. From now on we will assume that the local transition systems have
the property that every local state offers at least one action. We also identify
singleton sets with their element if it is convenient to do so.

3.1 Properties

Definition 4 (Reachable). Let Sys be an interaction system, q ∈ Q. q is
reachable in Sys if there is a sequence q0 α0→ q1 α1→ . . .

αn−1→ q such that q0 ∈ Q0.

First we take up the notion of local and global deadlock-freedom for interaction
systems from [18,22].

Definition 5 (Local/Global Deadlock-Freedom). Let Sys be an interac-
tion system. Sys is called globally deadlock-free if for every reachable state q ∈ Q
there exists α ∈ C ∪ Comp such that q ∈ en (α).

A nonempty set K ′ ⊆ K is in local deadlock in the reachable global state q
if for all i ∈ K ′, ai ∈ Ai, α ∈ C ∪ Comp: (qi ∈ en (ai) ∧ ai ∈ α) implies that
there is some j ∈ K ′ with j(α) �= ∅ ∧ qj /∈ en(j(α)). We say that Sys is locally
deadlock-free if there is no reachable state q for which some subset K ′ ⊆ K is
in local deadlock in q.

A subset K ′ of components is in local deadlock in a reachable global state q if
every component i ∈ K ′ needs for each of the actions enabled in qi the coop-
eration of some component in j ∈ K ′ to proceed which in qj does not offer the
action needed. If K ′ = K we speak of a global deadlock in q. In such a state the
system is not able to proceed. A system that is globally deadlock-free may still
contain local deadlocks. As violations of safety properties can be expressed as
deadlocks, the investigation of deadlock-freedom deserves particular attention.

Definition 6 (Run). Let Sys be a globally deadlock-free interaction system,
q ∈ Q a reachable state. A run of Sys is an infinite sequence σ = q

α0→ q1 α1→ q2 . . .
with ql ∈ Q for all l ∈ N.

Let i ∈ K be a component and let σ be a run of Sys. If there exists l such
that i participates in αl we say that i participates in σ.

The notions of local progress and liveness of a component have been defined for
interaction systems in [22,19].

Definition 7 (Local Progress and Liveness). Let Sys be a globally deadlock-
free interaction system and let K ′ ⊆ K be a nonempty set of components.

1. K ′ can make local progress in Sys if for every reachable state q ∈ Q there ex-
ists a run σ = q

α0→ q1 α1→ . . . starting in q such that some i ∈ K ′ participates
in σ.

2. K ′ is live in Sys if for every run σ of Sys there is some i ∈ K ′ that partic-
ipates in σ.

Robustness in Interaction Systems 331

Example 1 continued. In [22] this example was discussed in detail. In particular
it was shown that Systasks is globally deadlock-free and that every component
can make local progress. It was explained that mutual exclusion is achieved under
a rule of maximal progress defined in [22].

3.2 Robustness of Properties

Let us now assume a situation where a set A′ � A of ports may become un-
available in a running system. This might be because the ports in A′ suffer some
kind of failure or malfunction at a certain point of time but it is also possible
to model a situation where certain actions or components are switched off for
performance reasons for example. We want to formulate what it means that a
property is present when A′ becomes unavailable. For this we partition C∪Comp
to separate those interactions that involve A′ from those that don’t.

Definition 8 (EXCL and WITH). Let Sys be an interaction system as above
and let A′ � A. We define EXCL (A′) := {α ∈ C ∪ Comp|α ∩ A′ = ∅} and
WITH (A′) := {α ∈ C ∪ Comp|α ∩ A′ �= ∅}

EXCL (A′) denotes the set of all maximal and complete interactions that do not
involve any action from A′. Analogously WITH (A′) is the set of all maximal
and complete interactions that involve some action from A′.

We consider each of the above properties separately w.r.t. absence of A′. Note
that it is not possible to just delete the ports of A′ from the interaction-system
and then check if the definition of a certain property is satisfied by the resulting
“system” for two reasons. Firstly, this construct may fail to be an interaction
system according to the definition (see Sect. 4), and secondly, the failure of A′

may occur at a point of a run where actions from A′ may have been previously
executed in this run. We discuss deadlock-freedom in terms of robustness which
means that we consider a system that is deadlock-free and remains so under
failure of A′.

Definition 9 (Robustness of Deadlock-Freedom). Let Sys be a globally
deadlock-free interaction system and let A′ � A be a non-empty subset of ports.
In Sys global deadlock-freedom is robust w.r.t. absence of A′ if for every reachable
state q ∈ Q there exists α ∈ EXCL (A′) with q ∈ en(α).

Let Sys be locally deadlock-free. In Sys local deadlock-freedom is not robust
w.r.t. absence of A′, if there is some reachable state q and K ′ such that for any
i ∈ K ′, for any ai which is enabled in qi and for any α ∈ EXCL (A′) with
ai ∈ α there is some j ∈ K ′ with j(α) �= ∅ and qj /∈ en(j(α)). Otherwise local
deadlock-freedom is said to be robust w.r.t. absence of A′.

Remark 3. In a globally deadlock-free system Sys where K ′ ⊆ K is live it is not
possible that global deadlock-freedom is robust w.r.t. absence of A′ :=

⋃
i∈K′

Ai.

If this was the case it would be possible to construct a run not letting any
component from K ′ participate which is not possible. The converse does not
hold.

332 M. Majster-Cederbaum and M. Martens

We now consider local progress and liveness of a set of components in a system
where global deadlock-freedom is robust w.r.t. absence of A′. First we need to
adapt the notion of a run.

Definition 10 (Run without A′). Let Sys be a globally deadlock-free inter-
action system and A′ � A. Let global deadlock-freedom in Sys be robust with
respect to absence of A′. Let q be a reachable state.

A run without A′ is an infinite sequence σ = q
α0→ q1 α1→ . . . with ql ∈ Q, l ≥ 1,

and αl ∈ EXCL (A′) , l ≥ 0.

In a system where global deadlock-freedom is robust w.r.t. absence of A′ � A
such runs always exist by a simple induction argument.

Definition 11 (Local Progress and Liveness without A′). Let Sys be a
globally deadlock-free interaction system and let A′ � A. Let global deadlock-
freedom in Sys be robust w.r.t. absence of A′ and let K ′ ⊆ K be a nonempty set
of components.

1. K ′ can make local progress without participation of A′ if for every reachable
state q ∈ Q there exists a run without A′ σ = q

α0→ q1 α1→ . . . such that some
i ∈ K ′ participates in σ.

2. K ′ is live without participation of A′ if for every run without A′ σ = q
α0→

q1 α1→ . . . there is some i ∈ K ′ that participates in σ.

Note that, in analogy to deadlock-freedom, we could formulate a notion of ro-
bustness of the property of local progress. In a system where component i can
make local progress we could say that this property is robust w.r.t. absence of
A′ � A if i can make local progress without participation of A′. By contrast it
does not make sense to consider robustness of liveness. If a set K ′ of components
is live in a system, then for every run σ there is a component i ∈ K ′ that partic-
ipates in σ. This is true in particular for all runs without A′. Therefore liveness
of K ′ without A′ follows from liveness of K ′ and robustness of deadlock-freedom
w.r.t. A′. Nonetheless it is interesting to investigate liveness of K ′ without par-
ticipation of A′ � A because it is possible that certain runs in which K ′ does
not participate infinitely many often are no longer present when the ports from
A′ are not available any more.

4 Testing Robustness

From our results about the PSPACE-hardness of deciding deadlock-freedom [16]
and NP-hardness of deciding liveness of a set of components [15,17] it is clear
that deciding robustness of deadlock-freedom w.r.t. A′ � A respectively liveness
without A′ � A is at least as hard. One way to deal with the complexity issue
for properties is to establish conditions that ensure a desired property and can
be tested more easily, see for example [22,18,19,26]. In this paper we want to
explain how one can systematically use such conditions to obtain results in the
case of failure of A′. One could raise the question why we study robustness

Robustness in Interaction Systems 333

instead of applying the definitions and results of [22,18,19] to a suitably modified
“interaction system”. One could try to do so by simply removing the ports in
A′ from the components of the interaction system under consideration. This
approach does not work for two reasons. Firstly, a thus modified construct is in
general no longer an interaction system according to our definition. One of the
problems that arise can be seen as follows. Consider e.g. the removal of a port
aj of component j. It could be the case that every c ∈ C containing ak for some
k ∈ K also contains aj . On removal of aj the connectors containing aj have to
be removed as well. But then the condition in Definition 1 that every port of k is
contained in some connector c ∈ C is violated. This condition is however crucial
in various places and in particular for correctness of the criterion presented in
[22]. Secondly, the failure of A′ may occur at a point of a run such that actions
from A′ may have been previously executed in this run. It would not be possible
to model this situation in a system with alphabet A\A′.

4.1 Robustness of Deadlock-Freedom

Definition 12 (Incomplete States). Let Sys be an interaction system and
let i ∈ K be a component. We denote by inc (i) := {qi ∈ Qi|qi is incomplete} the
set of incomplete states of component i.

We obtain a criterion for robustness of global deadlock-freedom by adapting
the condition of [22] for global deadlock-freedom of an interaction system. This
condition involves a graph GSys. The nonexistence of certain cycles in GSys

guarantees deadlock-freedom. GSys can be built in time polynomial in |C∪Comp|
and the sum of the sizes of the local transition systems for finite interaction
systems.

Definition 13 (Dependency Graph). Let Sys be an interaction system. The
dependency graph for Sys is a labeled directed graph GSys := (K,E) where the
set of nodes is given by the components of Sys, the set of labels is given by
L := L1 ∪ L2 with

L1 := {c ∈ C|�α ∈ Comp : α ⊆ c}
L2 := {(c, α) |c ∈ C,α ∈ Comp such that α ⊆ c ∧ �β ∈ Comp : β � α} ,

and the set of edges E ⊆ V × L × V is defined as follows:

1. For c ∈ L1 : (i, c, j) ∈ E ⇔ j (c) �= ∅ ∧ ∃qi ∈ en (i (c)) ∩ inc (i).
2. For (c, α) ∈ L2 : (i, (c, α) , j) ∈ E ⇔ j (α) �= ∅ ∧ ∃qi ∈ en (i (c)) ∩ inc (i).

Further we define the snapshot of GSys w.r.t. state q = (q1, q2, . . .) as GSys (q) :=
(K,E (q)) where E (q) ⊆ E such that

1. For c ∈ L1 : (i, c, j) ∈ E (q) ⇔ j (c) �= ∅ ∧ qi ∈ en (i (c)) ∩ inc (i).
2. For (c, α) ∈ L2 : (i, (c, α) , j) ∈ E (q) ⇔ j (α) �= ∅ ∧ qi ∈ en (i (c)) ∩ inc (i).

Let Gf = (Kf , Ef) be a subgraph of GSys. Gf is successor-closed if Kf �= ∅ and
for all i ∈ Kf and all edges e = (i, l, j) ∈ E where l ∈ L and j ∈ K we have
e ∈ Ef and j ∈ Kf .

334 M. Majster-Cederbaum and M. Martens

The intuitive meaning of the graph is as follows. An edge (i, c, j) means that i
and j participate in c and that there is an incomplete local state qi ∈ Qi such
i(c) is enabled in qi. This means that there could be a global state where i is
waiting for j due to the connector c.

Example 1 continued. The dependency graph GSystasks
is given in Fig. 2 for

n = 3. For better readability we define lij :=
(
connij

3 , {finishj}
)

where connij
3 =

{resumei, f inishj}. Moreover we omit the label conng. Therefore all edges with-
out label in Fig. 2 carry the label conng.

1 2 3
l32l21

l12 l23

l31

l13

Fig. 2. GSystasks

Next we define predicates that are evaluated on Q.

Definition 14. Let Sys be an interaction system.

1. For e = (i, c, j) we set cond (e) := en (i (c)) ∧ ∃x ∈ c : ¬en (x).
2. For e = (i, (c, α) , j) we set cond (e) := en (i (c)) ∧ ∃x ∈ α : ¬en (x).

3. For a path p = e1, . . . , er in GSys we set cond (p) :=
r∧

l=1

cond (el).

For an edge e = (i, c, j), cond(e) is satisfied in state q = (q1, . . . , qi, . . .) ∈ Q if
i(c) is enabled in qi but c is not enabled in q because at least one component
does not provide the necessary action.

Definition 15. Let Sys be an interaction system.

1. A path p in GSys is called critical if
(
cond (p) ∧

∧
i∈p

inc (i)
)
�≡ false. A path

p in GSys (q) is called critical if
(
cond (p) ∧

∧
i∈p

inc (i)
)
(q) = true. A path

that is not critical is called non-critical.
2. Let p be a critical cycle in a successor-closed subgraph Gf = (Kf , Ef) of

GSys. p is refutable, if, whenever p lies in Gf (q) where qi ∈ inc (i) for all i,
there is a non-critical path p̂ in Gf (q).

A path is critical if there is some q = (q1, . . . , qi, . . .) ∈ Q such that qi is in-
complete for all components i on the path and cond(e) is satisfied in q for every

Robustness in Interaction Systems 335

edge e on the path. If a cycle in GSys is critical it describes a potential circular
waiting relation among components.

Theorem 1. Let Sys be a globally deadlock-free interaction system as above
and let A′ � A be a set of ports. Global deadlock-freedom is robust in Sys w.r.t.
absence of A′ if the following conditions hold.

1. There is no a ∈ A′ such that {a} ∈ C ∪ Comp.
2. GSys contains a finite successor-closed subgraph Gf = (Kf , Ef) such that

(a) For all e = (i, c, j) ∈ Ef we have c ∈ EXCL (A′).
(b) For all e = (i, (c, α) , j) ∈ Ef we have α ∈ EXCL (A′).
(c) Every critical cycle in Gf is refutable.

The proof can be found in the technical report [27]. Basically, if GSys contains
a successor-closed subgraph Gf as above, for every state q ∈ Q this subgraph
yields α ∈ C ∪ Comp that can be executed in q.

Example 1 continued. It is not hard to see that the conditions of Theorem 1
are satisfied for any A′ ⊆ {resume1, . . . , resumen} and robustness of global
deadlock-freedom w.r.t. absence of A′ follows. A situation where resumei fails
for some i can be understood in such a way that the system may function as usual
without this action as long as component i does not allow any other component
to enter the critical region before it has finished its task. In case it performs
a preempti action together with some other component, the component i will
be excluded from any further participation while the global system continues
operating.

4.2 Liveness Without A′

Here we transform the criterion of [19] that ensures liveness of a set of compo-
nents K ′ to handle the case of failure of A′.

We define excl (A′,K ′) the set of maximal and complete interactions that
neither involve any action from A′ nor any component from K ′.

Definition 16. Let K ′ ⊆ K be a subset of components. Let excl (A′,K ′) :=
{α ∈ EXCL (A′) |∀i ∈ K ′ : i (α) = ∅} .

Definition 17. Let Sys be an interaction system as above and let j ∈ K be a
component.

1. We define needj (A′) := {aj ∈ Aj |aj ∈ α ⇒ α ∈ WITH (A′)} the set of ports
of j that only occur in maximal or complete interactions also involving A′.

2. Let Bj ⊆ Aj be a subset of actions of j. Bj is weakly inevitable w.r.t. A′ in
Tj if the following two conditions hold:

(a) There is an infinite path in the transition system obtained by canceling
all transitions in Tj that are labeled with an action from needj (A′).

(b) On every infinite path in the transition system obtained this way only
finitely many transitions labeled with aj ∈ Aj\Bj can be performed before
some action from Bj must be performed.

336 M. Majster-Cederbaum and M. Martens

3. Let Λ ⊆ I (C) be a nonempty set of interactions and let j ∈ K be a compo-
nent. We define Λ [j] := Aj ∩

⋃
α∈Λ

α the set of ports of j that participate in

one of the interactions of Λ.

The set needj (A′) contains exactly those actions of j that can only be performed
in the global system if an action from A′ is also performed at the same time.
Note that it is clear that (A′ ∩ Aj) ⊆ needj (A′). Further a subset of actions of
component j is weakly inevitable w.r.t. A′ in Tj if it is possible in Tj to choose
an infinite path that does not contain a transition labeled with an action from
needj (A′) and if for all such paths there are infinitely many transitions that are
labeled with some action from the set in question. The last part of the definition
introduces a sort of a projection-operator that yields those actions of component
j that participate in one of the interactions in Λ.

In the following we define a graph G := (K,E) for an interaction system with
a finite set K of components and finite port sets which is a modification of the
graph introduced [19] to establish liveness. Informally, an edge e = (i, j) ∈ E
has the meaning that component j can only participate in finitely many global
steps before i has to participate as well.

Definition 18. Let G := (K,E) with E :=
⋃∞

m=0 Em, where:

E0 := {(i, j) |Aj\excl (A′, i) [j] is weakly inevitable w.r.t. A′ in Tj}

En+1 := {(i, j) |Aj\excl (A′, Rn (i)) [j] is weakly inevitable w. r. t. A′ in Tj}
Rn (i) := {j|j is reachable from i in (K,∪n

m=0Em)}

Theorem 2. Let Sys be a globally deadlock-free finite interaction system such
that global deadlock-freedom is robust w.r.t. absence of A′ � A. Let K ′ ⊆ K be a
set of components. K ′ is live without participation of A′ in Sys if all components
i in K\K ′ such that Ti contains an infinite path that is only labeled with actions
that are not in needi (A′) are reachable from K ′ in G. The construction of the
graph and the reachability analysis can be performed in time polynomial in |C ∪
Comp| and the sum of the sizes of the local transition systems.

The proof can be found in the technical report [27].

Example 2. We model a system consisting of a user u, two service components
s1 and s2 and two maintenance components m1 and m2. The local transition
systems of these components are given in Fig. 3. It is understood that the port
sets are given implicitly by the transition systems. The initial states are marked
by ingoing arrows.

The following connector set defines the allowed cooperations:

C :=
{
{internali} , {reqi, servicei} ,

{
mainti,m

i
j

}
|i, j = 1, 2

}
Further we define Comp := ∅. In the global system a state where a global
deadlock occurs cannot be reached. It is clear that global deadlock-freedom is
robust w.r.t. absence of Am2 .

Robustness in Interaction Systems 337

u
0

u
2

u
1

req1 req2

internal2internal1
s
0
1

s
1
1 s

1
2

m
0
1

m
0
2

m
1
1

m
2
1

m
1
2

m
2
2

s
0
2

service1

maint1 maint2

service2

Fig. 3. A system of one user and two servers

Figure 4 depicts part of the graph G for this system. It is clear that the condi-
tion of Theorem 2 is satisfied yielding liveness of m1 without Am2 . This property
guarantees, that after each use a service component will undergo maintenance
even if the second maintenance component fails.

m1 u s1 s2

Fig. 4. G for the user/server example

4.3 Treating Local Progress and Local Deadlock

Here we want to outline the ideas how the criteria for local progress of a com-
ponent [22] and local deadlock-freedom [18] can be adapted such that they can
be used to test whether a component i ∈ K can make local progress without
A′ � A respectively whether local deadlock-freedom is robust w.r.t. absence of
A′ � A.

In [22] a criterion for local progress of a component i was presented. This
criterion is based on the dependency graph from Definition 13. The criterion
demands the existence of a successor-closed subgraph Gf,i as in Theorem 1 such
that i ∈ Gf,i. Moreover every subset of nodes of Gf,i has to be controllable
for the notion of controllability defined for subsets K ′ ⊆ K of components in
[22]. Controllability of K ′ basically ensures that, whenever a global interaction
needs participation of components from K ′, a certain path ending in a state that
provides the needed interaction can be chosen in the subsystem defined by K ′.
This idea can be adapted to test whether a component can make local progress
without A′ � A. Again it must be possible to choose Gf,i such that no label
contains any action from A′. Furthermore the definition of controllability has to
be changed such that the path eventually providing the needed interaction can
be chosen such that it does not involve any port from A′.

Finally we discuss robustness of local deadlock-freedom. We informally explain
how our algorithm from [18] can be adapted such that it can be used to ensure
that local deadlock-freedom is robust with respect to absence of A′ � A.

338 M. Majster-Cederbaum and M. Martens

First we will sketch the idea of the algorithm from [18]: in a first step for
every three-element subset {i, j, k} ⊆ K this algorithm calculates the states qijk

that are reachable in the system consisting of these three components under the
assumption that for every connector the actions belonging to components from
K\ {i, j, k} are always available1. This amounts to an over-approximation of the
projection of the set of the globally reachable states to {i, j, k}. Then for each of
these triple-states the algorithm checks the following necessary condition for a
local deadlock. If there is a global state q and a set D ⊆ K such that D is in local
deadlock in q there must be i, j, k ∈ D with i �= j �= k such that i is blocked by j
and j is blocked by k where a component j blocks a component i in q if i offers
an action that occurs in a maximal or complete interaction c that j participates
in, but j (c) is not enabled in qj . If this condition is violated for every such
subsystem the algorithm affirms local deadlock-freedom. This idea only needs
to be slightly adapted in order to ensure that local deadlock-freedom is robust
w.r.t. absence of A′ � A in a system. The first step of the algorithm is identical
to the original algorithm. This reflects our assumption that A′ may fail at any
point of time which means that to begin with all states that can be reached in
the original system can also be reached in the system where A′ may fail. The
necessary condition for a local deadlock has to be adapted. First it is possible
that because of the absence of A′ there might be a local state qi of component i
for which all actions that are offered in this state only occur in α ∈ WITH (A′).
Such a state should be detected as a locally deadlocked state. The existence of
such a state can be checked by investigating all local transition systems and
the set C ∪ Comp. If no such state exists a local deadlock can only occur if
there is a set D ⊆ K and a reachable state q such that for every component
i ∈ D the fact that ai is enabled in qi and ai ∈ α for α ∈ EXCL (A′) implies
that there is at least one j ∈ D such that j (α) is not enabled in qj . From the
second step of the algorithm it follows that there is at least one such α for every
i ∈ D. Moreover there must be at least one i ∈ D such that ai is enabled in qi

that occurs in α ∈ WITH (A′). If this was not the case then the local deadlock
would have been there before the failure of A′ which is a contradiction to the
assumption. Therefore the necessary condition for a local deadlock amounts to
checking whether there are i, j, k ∈ K and a reachable sub-global state such
that k blocks j and j blocks i (this time only interactions from EXCL (A′) are
considered for possible blockings) and at least one of the three components is
affected by the loss of A′ in the sense described above. If this condition is never
fulfilled the system at hand does not contain any local deadlocks even if the
actions from A′ are not available any more.

5 Conclusion and Future Work

This work investigates a notion of robustness in interaction systems. The contri-
butions are as follows. 1) We presented notions of robustness of global and local
deadlock-freedom w.r.t. failure of a set A′ � A of ports. Further we introduced
1 We can increase accuracy by considering subsystems of fixed size d.

Robustness in Interaction Systems 339

notions of local progress and liveness without participation of a set A′ � A of
ports. 2) We explained how sufficient conditions for desired properties can be
adapted to handle a situation where a set A′ � A of ports becomes unavailable.
We did so in detail for robustness of global deadlock-freedom and for liveness
without A′ � A. 3) We informally explained how a similar adaptation is possible
for local progress and local deadlock-freedom.

Work is in progress towards treating malfunction of components or ports by
introducing probabilities into the framework of interaction systems. In every local
state we assign each enabled action a probability that it might fail such that we
can make statements such as “with probability p no deadlock will arise” about
properties of components. It is clear that this quantitative approach is different
from the approach taken here were we want to make assertive statements about
the properties in situation where services may fail.

References

1. Arbab, F.: Abstract Behavior Types: A Foundation Model for Components and
Their Composition. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-
P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 33–70. Springer, Heidelberg (2002)

2. Chouali, S., Heisel, M., Souquières, J.: Proving Component Interoperability with
B Refinement. In: Proceedings of FACS’05. vol. 160. ENTCS, pp. 157–172 (2006)

3. Moschoyiannis, S., Shields, M.W.: Component-Based Design: Towards Guided
Composition. In: Proceedings of ACSD’03, pp. 122–131. IEEE Computer Society,
Los Alamitos (2003)

4. Bastide, R., Barboni, E.: Software Components: A Formal Semantics Based on
Coloured Petri Nets. In: Proceedings of FACS’05. vol. 160, ENTCS, pp. 57–73
(2006)

5. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

6. Nierstrasz, O., Achermann, F.: A Calculus for Modeling Software Components. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002.
LNCS, vol. 2852, pp. 339–360. Springer, Heidelberg (2003)

7. Broy, M.: Towards a Logical Basis of Software Engineering. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design, IOS. NATO ASI Series, Se-
ries F: Computer and System Sciences, vol. 158, pp. 101–131. Springer, Heidelberg
(1999)

8. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A Compo-
nent Model for Architectural Programming. In: Proceedings of FACS’05. ENTCS,
vol. 160, pp. 75–96. Elsevier, Amsterdam (2006)

9. Gössler, G., Sifakis, J.: Composition for Component-Based Modeling. Sci. Comput.
Program. 55(1-3), 161–183 (2005)

10. Sifakis, J.: A Framework for Component-based Construction, SEFM 2005, pp. 293–
300 (2005)

11. Gössler, G., Sifakis, J.: Component-Based Construction of Deadlock-Free Systems.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations of Soft-
ware Technology and Theoretical Computer Science. LNCS, vol. 2914, pp. 420–433.
Springer, Heidelberg (2003)

340 M. Majster-Cederbaum and M. Martens

12. Gössler, G., Sifakis, J.: Composition for Component-Based Modeling. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS,
vol. 2852, pp. 443–466. Springer, Heidelberg (2002)

13. Gössler, G.: Prometheus — A Compositional Modeling Tool for Real-Time Sys-
tems. In: Proceedings of RT-TOOLS 2001, Technical report 2001-014, Uppsala
University, Department of Information Technology (2001)

14. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-Time Components
in BIP. In: Proceedings of SEFM’06, pp. 3–12. IEEE Computer Society Press, Los
Alamitos (2006)

15. Martens, M., Minnameier, C., Majster-Cederbaum, M.: Deciding Liveness in
Component-Based Systems is NP-hard. Technical report TR-2006-017, Universität
Mannheim (2006)

16. Majster-Cederbaum, M., Minnameier, C.: Deriving Complexity Results for Inter-
action Systems from 1-Safe Petrinets (2007) (Submitted for publication)

17. Majster-Cederbaum, M., Martens, M., Minnameier, C.: Liveness in Interaction
Systems (2007) (Submitted for publication)

18. Majster-Cederbaum, M., Martens, M., Minnameier, C.: A Polynomial-Time-
Checkable Sufficient Condition for Deadlock-freeness of Component Based Sys-
tems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 888–899. Springer, Heidelberg
(2007)

19. Gössler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis, J.: An Ap-
proach to Modelling and Verification of Component Based Systems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 295–308. Springer, Heidelberg (2007)

20. Troubitsyna, E.: Developing Fault-Tolerant Control Systems Composed of Self-
Checking Components in the Action Systems Formalism. In: Van, H.D., Liu, Z.
(eds.) Proceeding of FACS’03, TR 284, UNU/IIST, pp. 167–186 (2003)

21. Charron-Bost, B., Toueg, S., Basu, A.: Revisiting Safety and Liveness in the Con-
text of Failures. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp.
552–565. Springer, Heidelberg (2000)

22. Gössler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis, J.: Ensuring
Properties of Interaction Systems. In: Program Analysis and Compilation. LNCS,
vol. 4444, pp. 201–224. Springer, Heidelberg (2007)

23. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977)

24. Berard, B., et al.: Systems and Software Verification. Springer, Heidelberg (1999)
25. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets. Theoret-

ical Computer Science 147(1-2), 117–136 (1995)
26. Attie, P.C., Chockler, H.: Efficiently Verifiable Conditions for Deadlock-Freedom of

Large Concurrent Programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385,
pp. 465–481. Springer, Heidelberg (2005)

27. Majster-Cederbaum, M., Martens, M.: Robustness in Interaction Systems. Techni-
cal report TR-2007-004, Universität Mannheim (2007)

Transactional Reduction of Component

Compositions

Serge Haddad1 and Pascal Poizat2,3

1 LAMSADE UMR 7024 CNRS, Université Paris Dauphine, France
Serge.Haddad@lamsade.dauphine.fr

2 IBISC FRE 2873 CNRS, Université d’Évry Val d’Essonne, France
3 ARLES Project, INRIA Rocquencourt, France

Pascal.Poizat@inria.fr

Abstract. Behavioural protocols are beneficial to Component-Based
Software Engineering and Service-Oriented Computing as they foster
automatic procedures for discovery, composition, composition correct-
ness checking and adaptation. However, resulting composition models
(e.g., orchestrations or adaptors) often contain redundant or useless parts
yielding the state explosion problem. Mechanisms to reduce the state
space of behavioural composition models are therefore required. While
reduction techniques are numerous, e.g., in the process algebraic frame-
work, none is suited to compositions where provided/required services
correspond to transactions of lower-level individual event based commu-
nications. In this article we address this issue through the definition of
a dedicated model and reduction techniques. They support transactions
and are therefore applicable to service architectures.

1 Introduction

Component-Based Software Engineering (CBSE) postulates that components
should be reusable from their interfaces [27]. Usual Interface Description Lan-
guages (IDL) address composition issues at the signature (operations) level. How-
ever, compositions made up of components compatible at the signature level may
still present problems, such as deadlock, due to incompatible protocols [13]. In
the last years, the need for taking into account protocol descriptions within
component interfaces through the use of Behavioural IDLs has emerged as a so-
lution to this issue. BIDLs yield more precise descriptions of components. They
support component discovery, composability and substitutability checking (see,
e.g., [6,24,3,15]) and, if mismatch is detected, its automatic solving thanks to
adaptor generation (see, e.g., [28,26,18,9,14]). With the emergence of Service
Oriented Architectures (SOA) [22], behavioural techniques are also valuable,
e.g., to discover and compose services [10,4], to verify service orchestrations and
choreographies [25,7,17] or to build adaptors [11]. BIDLs usually rely on Labelled
Transition Systems (LTS), i.e., finite automata-like models where transition la-
bels correspond to the events exchanged between communicating components or

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 341–357, 2007.
c© IFIP International Federation for Information Processing 2007

342 S. Haddad and P. Poizat

services. Several works rather use process algebras such as the π-calculus in or-
der to ensure conciseness of behavioural descriptions, yet verification techniques
rely on the process algebras operational semantics to obtain LTSs.

These behavioural techniques, grounding on operations such as LTS products,
often yield big global (system-level) models for compositions or adaptations, i.e.,
coordinators or adaptors, which also contain redundant or useless parts. This
occurs even when all the basic component models are optimal with respect to
some standard criterium, e.g., their number of states. This problem limits the
applicability of composition and adaptation techniques, especially in domains
where they are to be applied at run-time on low-resources devices, e.g., pervasive
computing or ambient intelligence. Reduction techniques supporting component
and service1 composition and adaptation are therefore required.

Transactions are important in component composition, e.g., for Web Ser-
vices [19]. Here, we address transactions from an applicative point of view: to
ensure a given high-level service (the transaction), components usually proceed
by exchanging several lower-level events. For example, to book a tourism package,
service bookTour, a client should give in sequence elements about the country,
the hotel requirements, and eventually price constraints. At the same time, to
achieve this, the service may itself communicate with external services such as
bookHotel, bookPlane and rentACar. The overall complexity of the bookTour ser-
vice is adequately encapsulated into the (application-level) transaction concept.
Transactions are also important in adaptation where they correspond to long-
run sets of exchanges one wants to ensure using adaptors. Deadlock-freedom
adaptation [14] is closely related to component final states, which in turn enable
the definition of transactions in component protocols. This makes the support
for transaction a mandatory feature of behavioural reduction techniques since
in order to consider behaviours equivalent, and thereafter remove duplicates,
complete transactions should to be taken into account.

Related Work. The usual techniques to deal with complexity problems are
abstraction, on-the-fly, compositional and equivalence techniques. Abstraction,
e.g., [8], is used to achieve behavioural descriptions at a high level, avoiding
details. A problem with abstraction is that it can be difficult to relate abstract
results (e.g., a composition scenario or an adaptor) and lower-level models (e.g.,
a Web Service orchestration in BPEL4WS). On-the-fly techniques, e.g., [20],
compute global LTSs not before but during a given process. Branches can be
discarded if not relevant or not consistent with reference to the process issue.
Compositional techniques rely on the fact that some properties can lift from the
local level (in a component) to the global one (in a composite). However, many
interesting properties such as deadlock freedom are not compositional [2]. Var-
ious equivalences or reductions techniques have been developped in the field of
process algebras and reused afterwards for component models (see, e.g., [24,25]).
They are based on the hiding of internal or synchronized events (using τ tran-
sitions). A first problem is that the ability of two components to synchronize

1 In the sequel, we use component as a general term covering both software components
and services, i.e., mainly an entity to be composed.

Transactional Reduction of Component Compositions 343

is an important element for the usefulness of a composition. Synchronizations
also yield a structuring information supporting the implementation of coordina-
tors or adaptors: to which subcomponent event they do correspond. Hence, they
cannot just be hidden and removed.

Moreover, abstraction, on-the-fly, compositional and reduction techniques do
not support transactions. Action refinement and related equivalences [5] should
do. Yet, action refinement is not suited to component composition or adaptation.
This is first because the relations between two connected components cannot be
always seen as an unidirectional refinement. Moreover, action refinement relates
two components while composition or adaptation may apply on a wider scale.
In [15] an approach based on component interaction automata with generic (over
a set of events) equivalence and substitutability notions is proposed. However, its
absence of specific treatment for component final states may prevent its support
for transactions and deadlock-freedom adaptation.
Contribution. The contributions of this article are twofold. First we propose
a hierarchical component model with behavioural descriptions and expressive
binding mechanisms combining different degrees of synchronization and encap-
sulation. These binding mechanisms enable one to define composition and adap-
tation contracts that would not be expressible in other component models such
as the Fractal ADL [12] or UML 2.0 component diagrams [21] due to consistency
constraints between component interface or port names. Our model supports
open systems and enables one to achieve compositionality (composites are com-
ponents). As discussed in related work, almost all reduction techniques forget
the structure of composites and are thus inappropriate when one does not want
to (or cannot) re-design the subcomponents. So our second contribution are re-
duction techniques which, on the one hand, take into account the transactional
nature of communications between components and, on the other hand, do not
modify the internal behaviour of the subcomponents. As a side effect, they also
enforce deadlock-freedom adaptation between components that was previously
handled by specific algorithms.
Organization. The article is organised as follows. In Section 2, we motivate the
need for specific features in hierarchical component models and we informally
introduce ours. It is then formalized in Section 3. Section 4 defines transaction-
based reductions and corresponding algorithms are given. Finally, we conclude
and present perspectives in Section 5.

2 Informal Presentation of the Model

Behaviours. As advocated in the introduction, component models should take
into account means to define the behavioural interfaces of components through
BIDLs. Let us introduce this part of our model using a simple example. Two
components, an email server (SERVER) and an email composer (GUI) are inter-
acting altogether and with the user. Their behavioural interfaces are described
by LTSs (Fig. 1) where transition labels denote events that take place at the
level of the component, either receptions or emissions. Receptions correspond to

344 S. Haddad and P. Poizat

provided services and emissions to required ones. LTSs can be obtained either
at design-time as a form of behavioural contract for components, but may also
be obtained by reverse engineering code.

tmail?

attach!

end!

end!

compose!

compose!

vmail?

0

3

4

2

1

(a) GUI

textEMail?

video?

send?

send?

body?

body?

videoEMail?

_

V1

V2

T2

T1

text?

close?

close?

(b) SERVER

Fig. 1. Mail System – Components (LTS)

At the composer level, one begins with a user opening a new window for
a simple email (tmail?) or a video email (vmail?), which requires a special au-
thentication not modelled here for conciseness. Afterwards, different user actions
can be performed on the window. To keep concise, we only represent the cor-
responding triggered emissions in GUI. A text input (triggering compose!) is
possibly followed by attachments (triggering attach!) for video email, and the
mail is asked to be send (triggering end!). The server works on a session mode
and allows, again with authentication, two kind of sessions: one dedicated to
emails with text file attachments (textEMail?) and one dedicated to emails with
video attachments (videoEMail?). Content is received using body?, attachments
with either text? or video?, and the sending request with send?. Sessions are
closed with close?. The usual notations are used for initial (black bullet) and
final (hollow circles) states.

Architectural descriptions and hierarchical models. Simple components
may be either the starting point of an architectural design process or the re-
sult of a discovery procedure [4]. In both cases, their composition has then to
be described. This can take different forms, it can be directly given by the de-
signer, or it can be computed from a high-level service or property description
using conversation integration [4], service aggregation [10] or component adap-
tation [14]. However, in both cases, what one ends up with is an architectural
description where correspondences between required and provided services are
given. We advocate that, in order to deal with complexity, a composition model
has to be hierarchical and to yield composites that can be related to components,
and therefore, once defined, be reused in other higher-level composites. UML 2.0
component diagrams and Fractal ADL are such models and we refer to these for
more details on the interests of hierarchical notations.

Expressive inter-component bindings. Even if components are meant to be
reused, one may not expect all the components in an architecture have been

Transactional Reduction of Component Compositions 345

designed to match perfectly, neither at the signature, nor at the behavioural
level [13]. Therefore, it is important to be able to describe composition/
adaptation mapping contracts where correspondences between required and pro-
vided services may not correspond to name identity (e.g., the end! required
service in GUI corresponds to the send? provided service in SERVER), or could
even be non one-to-one mappings (e.g., the services related to the opening and
closing of sessions provided by SERVER have no counterpart in GUI which is not
session-oriented). These are current limitations of the UML 2.0 and Fractal ADL
models which impose restrictions on bindings between components interfaces.

The role of transactions and their support. One may expect from a correct
adaptation of the SERVER and GUI components that, of course they are able to
communicate in spite of their incompatible interfaces, but also that the adaptor
ensures the system eventually ends up in a global state where both SERVER and
GUI are in a stable (final) state, namely , T1 or V1, and 0. We base our approach
on implicit transactions that correspond to this notion, and are sequences of
transitions begining in an initial or a final state and ending in a final state.
Explicit transactions are a complementary approach that could be supported
with additional definitions (sequences of events) to be given for components.
In GUI transactions are the sending of a text email and the sending of a video
email. In SERVER, transactions correspond to the opening and the closing of
sessions, to the creation of a text email and the creation of a video email. LTSs
models provide the support for implicit transactions for free, however, to perform
reduction more elements are to be taken into account.

The reduction of a composition model is a process that results in removing
behaviours from it, mainly removing transitions. One expects from such a pro-
cess that, in every context, replacing a component by one of its reductions can
be achieved without hurt, e.g., without introducing new deadlocks. This corre-
sponds to the substitutability concept, i.e., that all useful behaviours are still
available for further composition. There is therefore a need for means to define
the utility of transitions and sequences of transitions with reference to the avail-
able transactions in components. Reduction is usually enabled in composites by
hiding and then removing synchronized events, we have seen in the introduction
the problems with this. Here for example, this would apply to the synchronizing
between end! and send?. Not only this synchronizing is an important informa-
tion as it ends a global-level transaction (the sending of an email) hence it is a
witness of it, but its removal also makes it impossible to implement it afterwards
as a communication between end! in GUI and send? in SERVER.

Composition = synchronization + encapsulation. Using the basic compo-
nents behavioural models and architectural descriptions one may obtain the be-
haviour of the global system using formal semantics (and hence, tools).
However, as we have seen above, the correspondence between services is often
confused with the encaspulation level of these services, i.e., synchronized corre-
spondences in-between the subcomponents of a composite are internal (hidden)
while ports remaining free may eventually be exported so that the composite in-
terface is defined in terms of its subcomponents ones. This misses distinction in

346 S. Haddad and P. Poizat

nature between synchronization (related to communication) and encapsulation
(related to observability). We advocate that architectural composition should
provide means to describe separately synchronization and encapsulation. We de-
fine binding connectors (or connectors for short) as an architectural level concept
supporting the definition of both synchronization and encapsulation. Synchro-
nization is defined thanks to internal bindings which relate a binding connector
with at least one subcomponent port. Encapsulation is defined thanks to external
bindings which relate a binding connector with at most one port of the compos-
ite. A component port can be either synchronizable, and in such a case it can be
synchronized or not, or observable. Four different encaspulation levels are pos-
sible: inhibition, hiding, observability and synchronizability. Component ports
not bound to some connector are inhibited. Connectors not bound to composite
ports corresponds to the internal level and events which may be removed by
reduction. Connectors bound to synchronizable ports of composites are synchro-
nizable (support for n-ary synchronisation). In between, observability acts as an
intermediate encapsulation level and is used to denote internal, yet useful, infor-
mation for transactions. Binding connectors are a solution to the issues related
to transactions and reductions presented above. They propose a good balance
between the possible hiding of synchronizations (to enable reduction, yet stress-
ing their possible utility thanks to the observability notion) and the possible
retrieval of synchronized events (thanks to the internal bindings information).

Table 1. Architectural Notations

observable synchronizable

not synchronized synchronized

inhibited

a a

not applicable

internal

a a a b

observable

 c

a

 c

a a

 c

b

synchronizable forbidden

 c

a a

 c

b

In Table 1 we present the graphical notation for our architectural concepts.
Binding connectors are denoted with black bullets, observable component ports
with white bullets and synchronizable ports with Ts as in Fractal ADL.

The architecture corresponding to the composition/adaptation contract for
our example is given in Figure 2. Two ports of GUI are connected to the com-
posite synchronizable ports in order to model the possible action of the user

Transactional Reduction of Component Compositions 347

 GUI

 SERVER

 attach!

 end!

 compose!

 vmail?

 tmail?

videoEMail?

text?

video?

send?

body?

close?

textEMail?

 tmail? vmail?

 sendattach

Fig. 2. Mail System – System Architecture

on this component. There are three connectors for internal synchronization be-
tween components: one for the body of emails (compose! with body?), one for
video attachments (attach! with video?) and one for the sending requests (end!
with send?). In order to denote that the two latter ones should not be taken
into account when reducing the composite behaviour (i.e., should not be re-
moved), they are made observable (using respectively observable ports attach
and send in the composite interface). Three ports of SERVER are synchroniz-
able but not synchronized. This means that in the composition corresponding
events may be generated by an adaptor when needed (see [14] for more details
on such adaptation contracts). Yet, they are hidden which means that the cor-
responding events are not observable and may be removed when reduction is
performed. To end, one port of SERVER, namely text? is inhibited (not used in
the composition/adaptation contract).

3 Formalization of the Model

We focus on events triggered by (basic or composite) components. There are two
possible related views of such events: (i) the external view (encapsulation) which
distinguishes events depending on the ability to observe them and to synchro-
nize with them, and (ii) the internal view (synchronization) which additionally
includes in case of a composite event, the activities of subcomponents and syn-
chronizations between them that have produced the external event. The external
view leads to elementary alphabets while the internal view leads to structured
alphabets. Given an event of the latter kind we will obtain an event of the former
one by abstraction. The next definitions formalize these concepts.

Definition 1 (Elementary Alphabet). An elementary alphabet Σ is given by
the partition Σ = Σs �Σo � {τ} where Σs represents the synchronizable events,
Σo represents the observable (and non synchronizable) events and τ represents
an internal action. Furthermore, Σ does not include ⊥ (do-nothing event).

348 S. Haddad and P. Poizat

In the sequel, we use the letter Σ for elementary alphabets.

Example 1. Let us describe the elementary alphabets of our example. The ele-
mentary alphabet of the GUI subcomponent, ΣGUI is defined by Σo

GUI = ∅ and
Σs

GUI = {tmail?, vmail?, compose?, end!, attach!}. The elementary alphabet of the
SERVER subcomponent, ΣSERVER is defined by Σo

SERVER = ∅ and Σs
SERVER =

{videoEMail?, textEMail?, close?, body?, send?, video?, text?}. The elementary al-
phabet of the composite component (i.e., its external view), Σ is defined by
Σs = {tmail?, vmail?} and Σo = {attach, send}.

A structured alphabet is associated with a possibly composite component.

Definition 2 (Structured Alphabet). A structured alphabet A = Σ ×
∏

i∈Id

(Ai ∪ {⊥}) is recursively defined by: Σ an elementary alphabet, Id a (possibly
empty) finite totally ordered set, and Ai a structured alphabet for every i ∈ Id.
To denote an item of A, we use the tuple notation v = v0 : 〈v1, . . . , vn〉 with
Id = {id1, . . . , idn}, v0 ∈ Σ and ∀1 ≤ i ≤ n, vi ∈ Ai ∪ {⊥}.

Id represents the set of subcomponent identifiers and the occurrence of ⊥ in vi,
where v belongs to the structured alphabet, means that subcomponent idi does
not participate to the synchronization denoted by v. Obviously Id is isomorphic
to {1, . . . , n}. However in the component-based framework, component identifiers
are more appropriate. Note that every elementary alphabet can be viewed as a
structured one with Id = ∅. The mapping v ,→ v0 corresponds to the abstraction
related to the external view. Hence, in v = v0 : 〈v1, . . . , vn〉, v0 plays a special
role. We therefore introduce root(v) = v0. Similarly, we note root(A) = Σ. The
alphabets Ai are called subalphabets of A. We denote the empty word by ε.
Let A be a structured alphabet and w ∈ A∗, the observable part of w, denoted
 w! is recursively defined by ε! = ε, ∀a ∈ A, if root(a) = τ then a! = ε else
 a! = root(a) and finally ww′! = w! w′!.

In our framework, component behaviours are described with Labelled Transi-
tion Systems.

Definition 3 (Labelled Transition System). A Labelled Transition System
(LTS) C = 〈A,Q, I, F,→〉 is defined by: A, a structured alphabet, Q, a finite set
of states, I ⊆ Q, the subset of initial states, F ⊆ Q, the subset of final states,
and →⊆ Q×A×Q the transition relation. As usual, (q, a, q′) ∈→ is also denoted
by q

a−→ q′. The observable language of C, L(C), is defined as L(C) = {w | ∃σ =
q0

a1−→ q1 . . .
am−−→ qm s.t. q0 ∈ I, qm ∈ F,w = a1 . . . am!}.

We now introduce mapping vectors and mapping contracts which express com-
ponent bindings in order to build a composite component. Mapping vectors are
items of a specific structured alphabet whose root alphabet Σ corresponds to the
interface of the composite and whose subalphabet indexed by i corresponds to
the interface of component idi which is (generally) different from the alphabet of
this component. A mapping contract is a subset of mapping vectors representing
all the possible “local” or “synchronized” events of the composite.

Transactional Reduction of Component Compositions 349

Definition 4 (Mapping Vectors and Mapping Contracts). Let Id be a set
of component identifiers, S = {Ci}i∈Id be a finite family of LTS, for i ∈ Id, let
Ai denote the alphabet of Ci and let Σ be an alphabet. Then a mapping vector v
relative to S and Σ is an item of the structured alphabet Σ ×

∏
i∈Id (root(Ai)

∪ {⊥}). Furthermore a mapping vector v = v0 : 〈v1, . . . , vn〉 fulfills the following
requirements:
– ∃i �= 0, vi /∈ Σs

i ∪ {⊥} ⇒ v0 /∈ Σs ∧ ∀j /∈ {0, i}, vj =⊥;
– ∃i �= 0, vi = τ ⇒ v0 = τ .
A mapping contract V relative to S and Σ, is a set of mapping vectors such

that every mapping vector v with some vi = τ belongs to V.

The requirements on mapping vectors and mapping contracts are consistent
with our assumptions about the model (Tab. 1). Non synchronizable events of
a subcomponent cannot be synchronized or transformed into a synchronizable
event in the composite and internal events of a subcomponent cannot be made
observable in the composite. The requirement about mapping contracts means
that an internal event in a subcomponent cannot be inhibited in the composite.

The translation from the graphical notation to the formal model is straight-
forward. There is a mapping vector for each binding connector of the graphic,
its root is either given by the composite port bound to this connector when it
is present or τ . Each component of the mapping vector is either given by the
corresponding component port bound to this connector when it is present or ⊥.

Example 2. The mapping contract in Figure 2 is defined by: tmail? : 〈tmail?,⊥〉,
vmail? : 〈vmail?,⊥〉, τ : 〈⊥, videoEMail?〉, τ : 〈⊥, textEMail?〉, τ : 〈⊥, close?〉, τ :
〈compose!, body?〉, send : 〈end!, send?〉, attach : 〈attach!, video?〉 and the vectors
relative to internal events of the subcomponents.

Synchronous product is used to give a formal semantics to composites.

Definition 5 (Synchronized Product of LTS). Let S = {Ci}i∈Id be a finite
family of LTS, Σ be an alphabet and V be a mapping contract relative to S and Σ,
then the synchronized product of S w.r.t. V is the LTS Π(S,V) = 〈A,Q, I, F,→〉
where:

– A = Σ ×
∏

i∈Id(Ai ∪ {⊥}), Q =
∏

i∈Id Qi, I =
∏

i∈Id Ii, F =
∏

i∈Id Fi,

– (q1, . . . , qn)
v0:〈a1,...,an〉−−−−−−−−→ (q′1, . . . , q

′
n) iff ∃v0 : 〈v1, . . . , vn〉 ∈ V and ∀i ∈ Id,

• vi =⊥⇒ ai =⊥ ∧ q′i = qi,
• vi �=⊥⇒ root(ai) = vi ∧ qi

ai−→i q′i.

This semantics is supported by the ETS plugin [23]. It can be obtained in an
on-the-fly way to be more efficient. Thus in practice, we reduce Q to be the set
of reachable states from I.

Example 3. The synchronized product of the GUI LTS and the SERVER one
is described in Figure 3. For sake of readability, for each (structured) event

350 S. Haddad and P. Poizat

(0,_) (0,V1)(0,T1)

(4,V2)(3,V1)(3,_)(4,T2) (3,T1)

(2,T2) (1,T1) (2,V2)(1,V1)(1,_)

vmail?

tmail?

vmail?

tmail?

vmail?

tmail?

send

send

send

send

attach

Fig. 3. Mail System – Resulting Adaptor/Coordinator ([13; 27] LTS)

occurring in this LTS, we have only represented its root and when this root is τ
we have not represented it. For instance, the arc from (2,T2) to (0,T1) should
be labelled send : 〈end!, send?〉 instead of send. The size of this LTS is [13; 27]
where 13 is the number of states and 27 is the number of transitions.

4 Transaction-Based Reductions

The goal of this section is the design of algorithms which reduce the LTSs as-
sociated with compositions. Due to our assumptions about components, two
requirements must be fulfilled by such algorithms: the reduction only proceeds
by transition removals (and as a side effect possibly by state removals) and the
reduction must preserve the capabilities of the composite w.r.t. its transactions.
We introduce first the transaction concept.

Definition 6 (Transactions of an LTS). Let C = 〈A,Q, I, F,→〉 be an LTS, a
transaction tr = (s, w, s′) of C is such that s ∈ I∪F , s′ ∈ F , w ∈ (root(A))∗ and
there exists a witnessing sequence σ = q0

a1−→ q1 . . .
am−−→ qm with s = q0, s′ = qm,

∀0 < i < m, qi /∈ F and a1 . . . am! = w. We denote by Seq(tr) the set of witness-
ing sequences of transaction tr and by L(s, s′) = {w | (s, w, s′) is a transaction},
the language generated by transactions from s to s′.

Example 4. Below, we exhibit the regular expresssions associated with every
transaction language of the Figure 3 LTS:

L((0,), (0,)) = L((0, T1), (0,)) = L((0, V1), (0,)) = {ε}

L((0,), (0, T1)) = L((0, T1), (0, T1)) = L((0, V1), (0, T1)) = tmail? · send + vmail? · send

L((0,), (0, V1)) = L((0, T1), (0, V1)) = L((0, V1), (0, V1)) = tmail? · send + vmail? · attach∗ · send

Since we want to preserve the transaction capabilities, we introduce a specific
notion of simulation between states, where only initial and final states are con-
sidered and the transactions are viewed as atomic transitions.

Transactional Reduction of Component Compositions 351

Algorithm 1. transSimulation
computes the transaction simulation relation between states of C
inputs LTS C = 〈A, Q, I, F,→〉
outputs Relation R ⊆ (I ∪ F) × (I ∪ F)

1: for all (i, j) ∈ (I ∪ F) × (I ∪ F) do R[i, j] := true end for
2: repeat // fixed point algorithm for i � j
3: end := true
4: for all (i, j) ∈ (I ∪ F) × (I ∪ F) s.t. i �= j ∧R[i, j] = true do
5: for all k ∈ F do
6: // is L(i, k) ⊆ ⋃k′ s.t. R[k,k′] L(j, k′)?
7: K′ := {k′ ∈ F |R[k, k′] = true}
8: R[i, j] :=lgInclusion(transLTS(C, i, {k}),transLTS(C, j, K′))
9: end := end ∧R[i, j]

10: end for
11: end for
12: until end
13: return R

Definition 7 (Transaction Simulation Relation between States). Let C
and C′ be two LTS and let R be a relation, R ⊆ (I ∪ F) × (I ′ ∪ F ′). R is a
transaction simulation relation iff for every pair (q1, q

′
1) of R and every trans-

action tr = (q1, w, q2) of C, there is a transaction tr′ = (q′1, w, q′2) of C′ with
(q2, q

′
2) ∈ R.

We define % by %=
⋃
{R |R is a transaction simulation relation}.

In the Figure 3 LTS, any final state simulates the other ones:

∀s, s′ ∈ {(0,), (0,T1), (0,V1)}, s % s′

Based on state simulation, the simulation of an LTS C by an LTS C′ is defined.
We require that every initial state of C is simulated by an initial state of C′.

Definition 8 (Transaction Simulation between LTS). Given two LTS C
and C′, C′ simulates C denoted by C % C′ iff ∀i ∈ I, ∃i′ ∈ I ′, i % i′.

We are now a position to define when an LTS Cred is a reduction of an LTS C:
it is obtained from C by removal of transitions and states and still simulates it.

Definition 9 (Reduction of a LTS). Given two LTS C and Cred, Cred is a
reduction of C iff: Q′ ⊆ Q, I ′ ⊆ I, F ′ ⊆ F , →′⊆→, and C % Cred.

Let us describe the principles of our reduction algorithm for an LTS C:

1. Algorithm 1 computes the simulation relation between initial and final states
of C. It proceeds by iterative refinements of a relation until a fixed point has
been reached. The number of iterations of this algorithm is polynomial w.r.t.
the size of the LTS and every iteration involves a polynomial number of calls
to the language inclusion procedure applied to simple transformations of C.

352 S. Haddad and P. Poizat

Algorithm 2. stateReduction
state-based reduction, constructs reduced LTS C′ from LTS C with C � C′

inputs LTS C = 〈A, Q, I, F,→〉
outputs reduced LTS C′ = 〈A′, Q′, I ′, F ′,→′〉
1: R :=transSimulation(C)
2: heap := getAMaximal(R, I)
3: front := heap
4: repeat
5: extract some s from front
6: candidates := F ∩ reach(transLTS(C, s, F), {s})
7: for all f ∈ candidates \ heap do
8: dom := {f ′ ∈ candidates \ {f} | R(f, f ′)}
9: if lgInclusion(transLTS(C, s, {f}),transLTS(C, s, dom)) then

10: remove f from candidates
11: end if
12: end for
13: front := front ∪ (candidates \ heap)
14: heap := heap ∪ candidates
15: until front = ∅
16: I ′ := I ∩ heap; F ′ := F ∩ heap
17: Q′ := reach(C, I ′) ∩ coreach(C, F ′)
18: I ′ := I ′ ∩ Q′; F ′ := F ′ ∩ Q′; →′:=→ ∩Q′ × A × Q′

19: return 〈A,Q′, I ′, F ′,→′〉

2. Then, based on the simulation relation between states, Algorithm 2 computes
a subset of initial states and a subset of final states such that the LTS,
obtained by deleting the other initial and final states, simulates the original
one.

3. At last Algorithm 3 examines every transition of the step 2 LTS whose label
τ : 〈v1, . . . , vn〉 is such that ∃i, vi ∈ Σs

i and removes it if the resulting LTS
simulates the current one. The condition on labels ensures the approach is
compatible with a grey-box vision of components where components are com-
posed and/or adapted externally without modifying the way they internally
work (i.e., without removing internal or observable events).

The different steps of our reduction involve calls to transLTS. Given an LTS
C, an arbitrary state s of C and a subset of final states S, this function pro-
duces an LTS C′ whose observable language is the set of suffixes of transactions
in C, starting from s and ending in S. After every reduction, we “clean” (in
linear time) the LTS by eliminating the states that are not reachable from the
initial states using the reach function and the ones that cannot reach a final
state using the coreach function. This ensures deadlock-freedom adaptation.
The (observable) language inclusion check between two LTS is performed by the
lgInclusion function. It is the main factor of complexity as language inclusion is

Transactional Reduction of Component Compositions 353

a PSPACE-complete problem. However the design of (empirically) efficient pro-
cedures is still an active topic of research with significant recent advances [16].
The procedure includes some non deterministic features (for instance the exam-
ination order of “τ transitions”). Thus it could be enlarged with heuristics in
order to empirically improve its complexity but this is out of the scope of the
current paper.

Algorithm 1 is based on a standard refinement procedure for checking simula-
tion or bisimulation. Its specific feature is that it checks inclusion of languages
rather than inclusion of set of labels (which entails an increasing of complexity).

Algorithm 2 starts with a maximal set of initial states given by function
getAMaximal (line 2). The heap variable contains the current set of initial and
final states that should be in the reduced LTS whereas the front variable con-
tains the subset of heap whose “future” has not yet been examined. The main
loop (lines 4–15) analyzes the transactions initiated from a state s extracted
from front. In line 6, it computes the final states reached by such a trans-
action and stores them in variable candidates. For every f , candidate not al-
ready present in heap, it looks whether the language of transactions L(s, f)
is included in the union of the languages of transactions L(s, f ′) with f ′ a
candidate simulating f . In the positive case, it removes f from candidates
(lines 7–12). At the end of loop, the remaining candidates not already present
in heap are added to heap and front. For the Figure 3 LTS, the algorithm
starts with front = heap = {(0,)}. During the first loop, candidates is set to
{(0,), (0,T1), (0,V1)}, and then (0,T1) is removed. Therefore, at the beginning
of the second loop, front = {(0,V1)}, heap = {(0,), (0,V1)}. During the second
loop, candidates is set to {(0,), (0,T1), (0,V1)}, again (0,T1) is removed and
at the end of second loop, front = ∅, heap = {(0,), (0,V1)}. The resulting LTS
is represented on the left-hand side of Figure 4.

Algorithm 3 main loop tries to remove (one by one) transitions which are
unobservable at the composite level but are observable at the component level
(lines 2–18). When the state reached s′ from some state s by such a transition is a
final state, then the subset of transaction suffixes that reach s′ from s is reduced
to the singleton {ε}. So, in order to remove the transition, the algorithm checks
whether the empty word may be the suffix of a transaction starting in s, ending
in a final state simulating s′ without using this transition (lines 4–7). Otherwise
it performs a similar test for every final state f reached from s (inner loop 10–15)
comparing the languages of transaction suffixes. Starting from the LTS on the
left-hand side of Figure 4, Algorithm 3 produces the right-hand side LTS. Note
that even for such a small example, the reduction is significant w.r.t. the original
LTS (i.e., the size is approximatively divided by two).

A comparison with the usual reduction techniques (Fig. 5) demonstrates their
inadequacy in our context: they are based on equivalences which are either
too strong – bisimulation treats τs as regular transitions hence only removes
few of them – or too weak – too many τ transitions are removed (e.g., τ :
〈compose!, body?〉 between states (1,V1) and (2,V2)) which makes it impossible

354 S. Haddad and P. Poizat

Algorithm 3. transReduction
transaction reduction, constructs reduced LTS C′ from LTS C with C � C′

inputs LTS C = 〈A, Q, I, F,→〉
outputs reduced LTS C′ = 〈A′, Q′, I ′, F ′,→′〉
1: C′ := C
2: for all t = s

τ :〈v1,...,vn〉−−−−−−−−→ s′ s.t. ∃i, vi ∈ Σs
i do

3: if s′ ∈ F ′ then
4: dom := {f ∈ F ′ | R(s′, f)}; C′′ := C′; →′′:=→′′ \{t}
5: if lgInclusion(emptyWordLTS(),transLTS(C′′ , s, dom)) then
6: →′:=→′ \{t}
7: end if
8: else
9: del :=true

10: for all f ′ ∈ F ′ ∩ reach(transLTS(C′, s, F ′), {s}) do
11: dom := {d ∈ F ′ | R(f ′, d)}; C′′ := C′; →′′:=→′′ \{t}
12: if not lgInclusion(transLTS(C′ , s′, {f ′}),transLTS(C′′ , s, dom)) then
13: del :=false; break
14: end if
15: end for
16: if del then →′:=→′ \{t} endif
17: end if
18: end for
19: Q′ := reach(C′, I ′) ∩ coreach(C′, F ′)
20: I ′ := I ′ ∩ Q′; F ′ := F ′ ∩ Q′; →′:=→ ∩Q′ × A × Q′

21: return C′

afterwards to implement the composition between components. Moreover, acting
only at the composition level, these reduction techniques may make it necessary
to change the subcomponent protocols in order to implement compositions, while
we want to support a non intrusive approach for composition and adaptation.

(0,_) (0,V1)

(4,V2)(3,V1)(3,_)(3,T1)

(1,T1) (2,V2)(1,V1)(1,_)

vmail?

tmail?

vmail?

tmail?

send

send

attach

(0,_) (0,V1)

(4,V2)(3,V1)(3,_)

(2,V2)(1,V1)(1,_)

vmail?

tmail?

vmail?

tmail?

send

send

attach

Fig. 4. Mail System – Reduced Adaptor/Coordinator (left: state reduction, [10; 19]
LTS; right: transition reduction, [8; 11] LTS])

Transactional Reduction of Component Compositions 355

vmail?

tmail?

vmail?

tmail?

vmail?

tmail?

send

send

send

attach

vmail?

tmail?

send

send

attach

vmail?

tmail?

send

send

attach

Fig. 5. Mail System – Reduced Adaptor/Coordinator (left: strong bisimulation reduc-
tion, [12; 26] LTS; center: weak bisimulation or branching reduction, [4; 7] LTS; right:
trace or τ ∗ a reduction, [3; 5] LTS)

5 Conclusion

In order to build efficient composite components, one needs both efficient basic
components (which can be expected from, e.g., Commercial-Off-The-Shelf) and
efficient composition or adaptation techniques. This last constraint is related
to the basic techniques which underpin the composition or adaptation process,
e.g., [10,4,14], but also to efficient reduction procedures for the resulting be-
havioural models. We have addressed this issue with techniques that take into
account the transactional nature of communications between components. Re-
duction is supported by a component model with expressive binding mechanisms
and different levels of synchronization and encapsulation.

A first perspective of this work concerns the integration of our reduction algo-
rithms in a model-based adaptation tool [1] we have developed and assessment
on real size case studies from the pervasive computing area. A second perspective
is to relate our model-based reduction technique with adaptor implementation
issues, mainly taking into account the controllability of events (e.g., viewing
emissions as non controllable events). Other perspectives are related to the en-
hancement of our reduction technique, addressing on-the-fly reduction (reduction
while building the compositions or adaptors) and optimizing algorithms thanks
to recent developments on language inclusion [16].

References

1. Adaptor, January 2007 distribution (LGPL licence) (2007)
http://www.ibisc.univ-evry.fr/Members/Poizat/Adaptor

2. Achermann, F., Nierstrasz, O.: A calculus for reasoning about software composi-
tion. Theoretical Computer Science 331(2–3), 367–396 (2005)

3. Attiogbé, C., André, P., Ardourel, G.: Checking Component Composability. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer,
Heidelberg (2006)

http://www.ibisc.univ-evry.fr/Members/Poizat/Adaptor

356 S. Haddad and P. Poizat

4. Ben Mokhtar, S., Georgantas, N., Issarny, V.: Ad Hoc Composition of User Tasks
in Pervasive Computing Environments. In: Gschwind, T., Aßmann, U., Nierstrasz,
O. (eds.) SC 2005. LNCS, vol. 3628, pp. 31–46. Springer, Heidelberg (2005)

5. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland, Elsevier (2001)

6. Bernardo, M., Inverardi, P. (eds.): SFM 2003. LNCS, vol. 2804. Springer, Heidel-
berg (2003)

7. Betin-Can, A., Bultan, T., Fu, X.: Design for Verification for Asynchronously Com-
municating Web Services. In: International Conference on World Wide Web, pp.
750–759 (2005)

8. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: Checking Memory Safety with
Blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer, Hei-
delberg (2005)

9. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

10. Brogi, A., Corfini, S., Popescu, R.: Composition-Oriented Service Discovery. In:
Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp.
15–30. Springer, Heidelberg (2005)

11. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

12. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Frac-
tal Component Model and Its Support in Java. Software Practice and Experi-
ence 36(11-12), 1257–1284 (2006)

13. Canal, C., Murillo, J.M., Poizat, P.: Software Adaptation. L’Object. Special Is-
sue on Coordination and Adaptation Techniques for Software Entities 12(1), 9–31
(2006)

14. Canal, C., Poizat, P., Salaün, G.: Synchronizing Behavioural Mismatch in Soft-
ware Composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 63–77. Springer, Heidelberg (2006)

15. Cerná, I., Vareková, P., Zimmerova, B.: Component Substitutability via Equivalen-
cies of Component-Interaction Automata. In: International Workshop on Formal
Aspects of Component Software, Elsevier, Amsterdam (2006)

16. De Wulf, M., Doyen, L., Henzinger, T., Raskin, J.-F.: Antichains: A new algorithm
for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

17. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for Model-Based
Verification of Web Service Compositions and Choreography. In: ICSE, pp. 771–
774. ACM Press, New York (2006)

18. Inverardi, P., Tivoli, M.: Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software 65(3), 173–183 (2003)

19. Little, M.: Transactions and Web Services. Communications of the ACM 46(10),
49–54 (2003)

20. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255–281
(2003)

21. Objet Management Group. Unified Modeling Language: Superstructure. version
2.0, formal/05-07-04 (August 2005)

22. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 25–28 (2003)

Transactional Reduction of Component Compositions 357

23. Poizat, P.: Eclipse Transition Systems. French National Network for Telecommu-
nications Research (RNRT) STACS Deliverable (2005)

24. Poizat, P., Royer, J.-C., Salaün, G.: Formal Methods for Component Description,
Coordination and Adaptation. In: International Workshop on Coordination and
Adaptation Techniques for Software Entities at ECOOP, pp. 89–100 (2004)

25. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services
using Process Algebra. International Journal of Business Process Integration and
Management 1(2), 116–128 (2006)

26. Schmidt, H.W., Reussner, R.H.: Generating Adapters for Concurrent Component
Protocol Synchronization. In: FMOODS, pp. 213–229 (2002)

27. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1998)

28. Yellin, D.M., Strom, R.E.: Protocol Specifications and Components Adaptors.
ACM Transactions on Programming Languages and Systems 19(2), 292–333 (1997)

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 358–373, 2007.
© IFIP International Federation for Information Processing 2007

Specifying and Composing Interaction Protocols for
Service-Oriented System Modelling∗

João Abreu1, Laura Bocchi1, José Luiz Fiadeiro1, and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{abreu,bocchi,jose}@mcs.le.ac.uk
2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, Portugal
mal@di.fc.ul.pt

Abstract. We present and discuss a formal, high-level approach to the specifi-
cation and composition of interaction protocols for service-oriented systems.
This work is being developed within the SENSORIA project as part of a lan-
guage and formal framework supporting the modelling of complex services at
the business level, i.e. independent of the underlying platform and the lan-
guages in which services are programmed and deployed. Our approach is based
on a novel language and logic of interactions, and a mathematical semantics of
composition based on graphs. We illustrate our approach using a case study
provided by Telecom Italia, one of our industrial partners in the project.

1 Introduction

SENSORIA – an IST-FET Integrated Project on Software Engineering for Service-
Oriented Overlay Computers – is defining a formal framework for modelling service-
oriented systems in a broad sense that encompasses and generalises the methods and
techniques that are either available or envisioned for Web Services [1], as well as other
platforms such as Grid Computing [9]. One of the strands of the project is the defini-
tion of a reference modelling language – SRML – that can address the higher levels of
abstraction of “business modelling” by providing modelling primitives that are inde-
pendent of the languages and the middleware infrastructure over which services are
programmed. This includes a mathematical semantics that can support different kinds
of analysis and in relation to which techniques for the deployment, publication, discov-
ery and binding of services can be defined and proved to be correct.

In [6], we presented a preliminary account of our approach and the way it relates to
the Service Component Architecture (SCA) [13], namely the notion of module that
we adopt for describing complex services and support service discovery and composi-
tion. An algebraic semantics of SRML modules and module composition can be

∗ This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA:

Software Engineering for Service-Oriented Overlay Computers, and the Marie-Curie TOK-IAP
MTK1-CT-2004-003169 Leg2Net: From Legacy Systems to Services in the Net.

 Specifying and Composing Interaction Protocols 359

found in [7]. In this paper, we report in more detail on one of the key ingredients of
service description and composition: the interaction protocols that are responsible for
interconnecting the different parties that are involved in a composite service. The
challenge here is twofold. On the one hand, to provide a formal model that is rich
enough to capture the characteristics of interactions that are typical of service-oriented
systems. This includes interactions that are ‘conversational’, i.e. that cannot be char-
acterised by a transition involving only initial and final states. On the other hand, to
make the interaction protocols independent of the way the parties involved in them
engage in the interactions, for instance the workflows that determine when the parties
actually interact. This is important for dynamic, run-time service discovery and bind-
ing, and also for reuse.

In Section 2, we discuss and justify the role that, in our approach, we assign to in-
teraction protocols. In Section 3, we present the language that we use for describing
and using interaction protocols in the connectors that establish wires between parties
of a complex service. Finally, in Section 4, we present an algebraic semantics for
interaction protocols. Throughout the paper, we use examples from a case study de-
veloped with Telecom Italia, one of our industrial partners in SENSORIA: the “Call
and Pay Taxi through SMS” scenario.

2 Modelling Complex Services in SRML

From the more abstract point of view of systems modelling, i.e. once we abstract from
the nature of the languages and platforms over which services are deployed, the main
challenge raised by service-oriented systems is in the number of autonomic entities in-
volved and the complexity of the interactions within them. That is, the complexity that
matters is not so much in the “size” of the code through which such entities are pro-
grammed (size is a design time issue) but on the number, intricacy and dynamicity of the
interactions in which they will be involved, what in [4] we have called social complexity.

This is why it is so important to put the notion of interaction at the centre of
research in service-oriented system modelling. This is also why new methods and
formal techniques become necessary. For instance, from an algebraic point of view,
social complexity raises new challenges in that it does not make sense to see service-
oriented systems as being compositions, in an algebraic sense, of simpler components:
there is not a notion of whole to which the parts contribute but, rather, a number of
autonomic entities that interact with each other through “interaction protocols” that
are external to and independent from those entities.

2.1 The Module Structure

In what concerns the definition of a modelling language that can tackle these new
challenges, our approach within SENSORIA is based on a notion of module through
which we specify complex services and break the complexity of running systems by
recognising larger chunks (sub-configurations) that have a meaning in the application
domain, i.e. correspond to “business activities”. This notion of module, which is in-
spired by recent work of Service Component Architecture (SCA) [13], supports the
modelling of composite services as entities whose business logic involves a number
of interactions among more elementary service components as well as the invocation

360 J. Abreu et al.

of services provided by other parties. As in SCA, interactions are supported on the
basis of service interfaces defined in a way that is “independent of the hardware plat-
form, the operating system, hosting middleware and the programming language used
to implement the service”.

In order to illustrate our approach, we are going to use the Call and Pay Taxi ser-
vice scenario used by Telecom Italia, one of the partners of SENSORIA, within its
R&D activities on Parlay X telecommunications web services [1]. This is a complex
service that involves different telecommunication services provided by mobile net-
works and other external parties in order to provide users the ability to call a taxi and
pay for the ride by sending SMS’s to a specified number (4777 in [1]). The business
process enacted by the service consists of the following steps:

• The user sends an SMS to 4777 to ask for a taxi at his/her current location.
• The service retrieves information about the user from User Profiler, and its

location from User Locator Service.
• The service selects a taxi company at the user’s location.
• The service uses a Call Agent to set up a voice call between the user and the

taxi company.
• The service sends the user and taxi driver an SMS with the taxi number and a

“call-code” identifying the transaction.
• After the taxi ride, and in order to authorise the payment, the user sends an

SMS with the information previously received and the amount to be paid.
• The service sends a charging request to a Payment Service.
• The taxi driver and the user receive a notification of the outcome of the pay-

ment via another SMS.

In order to model the Call&PayTaxi service through a module in SRML, we need
to decide which entities of the scenario description are to be represented as internal
components – in the sense that they are deployed when the module is instantiated –
and which correspond to parties that need to be procured externally at run-time, in
which case they are modelled by what we call external interfaces.

The module that we propose has the following structure:

 Specifying and Composing Interaction Protocols 361

2.2 The Provides-Interface

Every service module in SRML has one distinguished external interface, what we call
a provides-interface or EX-P for short. The EX-P declares the interactions and proto-
col that are supported between the service and any service requester. The EX-P of
Call&PayTaxi is declared to be CR of type Customer – a business protocol that con-
sists of a set of interactions and a specification of the dependencies that exist between
them, including the order in which they are expected to occur. This subsumes what, in
[2], are called external specifications i.e., the specification of which message ex-
change sequences are supported by the service, for example expressed in terms of
constraints on the order in which service operations should be invoked.

This is how we specify a business protocol in SRML:

BUSINESS PROTOCOL Customer(myNumber:phoneNum) is

INTERACTIONS

snd callTaxiOUT
rcv callTaxiIN

text:string
snd payTaxiOUT

text:string
rcv payTaxiIN

text:string

BEHAVIOUR

initiallyEnabled callTaxiOUT ?
P_callTaxiOUT ? ensures callTaxiIN !
P_callTaxiIN ! callTaxiIN.text ’NA’ enables payTaxiOUT ?
P_payTaxiOUT ? ensures payTaxiIN !

A business protocol declares the interactions maintained by the service under what
we call an interaction signature (or signature, for short). In the example above, we
use one-way asynchronous interactions that correspond to the SMS’s sent (OUT) and
received (IN) by the customer. Notice that there is no declaration of which compo-
nents inside the service are co-parties in these interactions; co-parties are identified
through wires as discussed below, which also specify the protocol that coordinates the
interaction between the two parties.

One-way interactions may have parameters, which are declared under . In the
example above, these correspond to the text of the SMS. The business protocol itself
has a parameter: myNum of type phoneNum. This parameter is instantiated with the
phone number of the customer when the actual customer is bound to the
Call&PayTaxi service.

Further to a signature, a business specification includes the properties of the conver-
sation that any customer can have with the service. The first property declares that,
initially (i.e. when the service is bound to the customer), the co-party is ready to accept
a call for callTaxiOUT. The second property declares that the fact that the co-party has
received a call for callTaxiOUT ensures that the service will issue a callTaxiIN. The
third property declares that, if the callTaxiIN has been issued with a text other than ‘No
taxi available’, the service is ready to receive a payment payTaxiOUT. Finally, the
fourth property ensures that, having received a payTaxiOUT, the service will issue an

362 J. Abreu et al.

acknowledgment payTaxiIN. The language in which these properties are expressed
uses abbreviations of a temporal logic that we briefly discuss in Section 3.

2.3 Requires-Interfaces

The service provided through CR results from a business process that involves a num-
ber of internal components that may need to invoke external services specified in the
module through what we call requires-interfaces (EX-R’s for short). The discovery
process for any given EX-R takes place at run-time when given declared triggers oc-
cur, and returns a service that implements a module whose EX-P matches the EX-R.
Through the binding mechanisms of the underlying middleware, the components
through which the discovered service is implemented become connected to those of
the client service through the interaction protocols specified in the wires. The system
thus assembled executes according to the orchestration that results from the assembly.

The external parties defined in our example are:

• The user locator LC.
• The call agent CA responsible for establishing phone calls.
• The payment agent PY.
• The taxi driver DR.
• The taxi company TX.

The specification of an EX-R is given by a business protocol much in the same
way as for the provides-interface. As an example, consider the conversation with the
taxi company TX:

BUSINESS PROTOCOL TaxiCo is

INTERACTIONS

r&s contactCompany
userNum:phoneNum, language:lang
taxiNum:reference, callCode:reference,
driverNum:phoneNum

snd requestCall
operatorNum

BEHAVIOUR

initiallyEnabled contactCompany ?
P_contactCompany ? ensures requestCall !

We use a two-way interaction – contactCompany of type r&s – which means that
the taxi company is required to be able to engage in an interaction that is initiated by
the co-party and issues a reply. The parameters of the reply event are declared under

; in our case, they consist of the taxi number, a code, and the phone number of the
driver. The signature of this business protocol also includes a one-way interaction of
type snd: the taxi company is required to request a phone call with the customer.

The properties required of the taxi company are as follows: when bound to the
module, this external service should be ready to accept the event contactCompany ?,
after which it is required to issue a requestCall.

 Specifying and Composing Interaction Protocols 363

2.4 Service Components

A component in SRML corresponds to a resource that is used internally in the sense
that it is not visible to whatever client becomes bound through the EX-P. Such re-
sources are tightly bound inside the implementations of the module; they can be web-
services, Java components, interfaces to databases, legacy systems, and so on.

The internal components that we decided to include are:

• A user profiler PF, which can be seen to correspond to a database of users
owned and managed by the company providing the Call&PayTaxi service.

• The SMS centre SM, which is made available via a fixed phone number –
4777 in the case at hand.

• A component BA of type BookAgent that is responsible for orchestrating the
interactions between all the elements of the module.

• The company selector CS that is used by BA to choose the most suitable taxi
company for a given location and language.

Notice that, in SRML, the orchestration of the module is not necessarily delegated
to a single internal component. The overall workflow of the business process
emerges from the interconnections between the components of the module as captured
through the interaction protocols of the wires that connect them.

Service components are specified through what we call business roles. These in-
clude a signature as for business protocols but, instead of a set of properties, we spec-
ify a transition system that captures the execution pattern of the component; we refer
to this pattern as the orchestration of the component. For instance, consider the busi-
ness role that models the SMS centre:

BUSINESS ROLE SMSCentre(serviceNum:phoneNum) is

INTERACTIONS

snd sendSMS[k:int]
origin:phoneNum, destination:phoneNum, text:string

rcv receiveSMS[k:int]
origin:phoneNum, destination:phoneNum, text:string

snd forwardIN[k:int]
origin:phoneNum, text:string

rcv forwardOUT[k:int]
destination:phoneNum, text:string

ORCHESTRATION

transition inForward
triggeredBy receiveSMS[i] ?
guardedBy receiveSMS[i].destination=serviceNum
sends forwardIN[i] !

forwardIN[i].origin=receiveSMS[i].origin
forwardIN[i].text=receiveSMS[i].text

transition outForward
triggeredBy forwardOUT[i] ?
sends sendSMS[i] !

sendSMS[i].origin=forwardOUT[i].origin
sendSMS[i].destination=serviceNum
sendSMS[i].text=forwardOUT[i].text

364 J. Abreu et al.

In this example, interactions have key-parameters in addition to the normal ones.
This allows us to handle occurrences of multiple interactions of the same type; in this
case, sending and receiving SMS’s. The wires that connect the SMS centre to other
parties are responsible for deciding which key parameter is used for handling the rele-
vant interactions. This is discussed in Section 3.

The business role has itself a parameter – serviceNum of type phoneNum. The idea
is to define not one but a family of business roles, each modelling a component that
operates a particular SMS service. Because SMS centres handle interactions in a way
that is independent of the service number, it makes sense to parameterise their speci-
fication. Such parameters are fixed when we need a specific business role in a
module; for instance, in Call&PayTaxi, we declare SM:SMSCentre(4777), i.e. the
component SM is of type SMSCentre(4777).

Notice that no relative ordering is specified on the transitions; the orchestration of
business roles can be much more complex, precisely to capture the richness of work-
flows that arise in business modelling [6].

3 The Role of Interaction Protocols in SRML

As mentioned several times in the previous section, we rely on what we call wires to
establish and coordinate interactions between parties. More concretely, we have
seen how components and external parties are modelled without any direct reference
to the co-parties involved in the interactions. This is because, on the one hand, we
want the interconnections between components and external parties to be established
at run-time as a result of service discovery and binding and, on the other hand, we
want to promote reuse at design time. Therefore, we treat all names as being local
and rely on explicit name bindings to establish which are the peers involved in each
interaction.

3.1 The Logic of Interactions

Before explaining how wires are specified in SRML, it is important to make a few
remarks about the logic that is being developed for interactions. Our logic is based
on μUCTL, a formalism being developed within SENSORIA for qualitative analysis
[11]. This formalism is based on doubly-labelled transition systems which consist
of:

• a set Q of states;
• an initial state q0;
• a set Act of observable events;

• a transition relation q q' where α is a subset of Act! Act? with
Act!={e! | e Act} and Act?={e? | e Act};

• a labelling function assigning to every atomic proposition p the set of states
in which p is true.

 Specifying and Composing Interaction Protocols 365

By e! we denote the action of the initiating party sending the event e and by e? the
action of its co-party processing it. In SRML, the set Act has more structure in that
the events are generated from asynchronous interactions according to their type as
shown in the figure below. We also allow synchronous interactions but, for simplic-
ity, we do not discuss them in the paper. See [6] instead.

Interactions involve two parties and can be in both directions, i.e. they can be con-
versational. Interactions are described from the point of view of the party in which
they are declared, i.e. “receive” means invocations received by the party and sent by
the co-party, and “send” means invocations made by the party. We distinguish sev-
eral events that can occur during such interactions:

interaction The event of initiating interaction

interaction The reply-event of interaction (r&s and s&r only)

interaction The commit-event of interaction (r&s and s&r only)

interaction The cancel-event of interaction (r&s and s&r only)

interaction The revoke-event of interaction (r&s and s&r only)

The reply, commit, cancel and revoke events capture the conversational aspects of
interactions. They are discussed in more detail in [6] together with the handling of
deadlines, pledges and compensations. Being asynchronous, interactions do not re-
quire the party that initiates an event to block until the co-party receives it. As dis-
cussed in the next sub-section, there is a delay between sending and receiving an
event that depends on the wire that connects the two parties. Notice that by e? we do
not denote the act of receiving but of processing the event. This is because the co-
party may not be in a state in which it can process the event e; if that is the case, e!
occurs but e? does not. For instance, in the orchestration of the SMS centre we speci-
fied that events receiveSMS[i] are only processed when their destination is the
number of the SMS service.

Because interactions are asynchronous, the sender never blocks; however, there is
no guarantee that the co-party will process an event. This is why it is important to
state in the business protocols when the co-party is ready to process the events initi-
ated by the party. For instance, in Customer we declared that the service is ready to
process callTaxiOUT , and that it is ready to process payTaxiOUT after sending
callTaxiIN with a positive reply. If the customer calls these events in other circum-
stances, there is not guarantee that the service will process them.

The logic μUCTL uses the typical minimal fixed point operator based on a strong
next operator [11]. In support of modelling, we tend to use abbreviations, as illus-
trated in the business protocols of Section 2, which can be defined as in [6].

3.2 Connectors

Wires bind the names of the interactions and specify the protocols that coordinate the
interactions between two parties. For instance, this is how we declare the wire CS
that connects the customer CR and the SMS centre SM:

366 J. Abreu et al.

WIRES

CR
Customer(my)

CS SM
SMSCentre(4777)

snd callTaxiOUT S1

SendEmptySMS
(my,4777)

R1

i1

i2

i3

rcv receiveSMS[1]
origin
destination
text

rcv callTaxiIN
text

R1

i1 SendSMS
(my,4777)

S1

i1

i2

i3

snd sendSMS[1]
origin
destination
text

snd payTaxiOUT
text

S1

i1 SendSMS
(my,4777)

R1

i1

i2

i3

rcv receiveSMS[2]
origin
destination
text

rcv payTaxiIN
text

R1

i1 SendSMS
(my,4777)

S1

i1

i2

i3

snd sendSMS[2]
origin
destination
text

Every wire is composed of one or more connectors each of which corresponds to a
row of the table above. In SRML, connectors are specified independently of each
other so as to increase reusability at design time. Every connector consists of an in-
teraction protocol and two bindings. As an example, consider the connector:

CR
Customer(my)

CS SM
SMSCentre(4777)

snd callTaxiOUT S1 SendEmptySMS
(my,4777)

R1

i1

i2

i3

rcv receiveSMS[1]
origin
destination
text

The interaction protocol of this connector is specified as follows:

INTERACTION PROTOCOL SendEmptySMS(cn,sn:phoneNum) is

ROLE A

snd S1

ROLE B

rcv R1

i1:phoneNum
i2:phoneNum
i3:string

COORDINATION

R1 S1

R1.i1=cn
R1.i2=sn
R1.i3=’’

Just like business roles and protocols, an interaction protocol is specified in terms
of a number of interactions. Because interaction protocols establish a relationship
between two parties, the interactions in which they are involved are divided in two
subsets called roles – A and B. The “semantics” of the protocol is provided through a

 Specifying and Composing Interaction Protocols 367

collection of properties – what we call the interaction glue – that establish how the
interactions are coordinated. This may include routing events and transforming sent
data to the format expected by the receiver.

For instance, in the example above, the roles are quite simple: each consists of a
single interaction. The properties established by the glue are as follows:

• The first declares that the interactions declared in both roles are identical, i.e.
that their corresponding events are the same. More precisely, this is an ab-
breviation for R1!≡ S1! ∧ R1?≡ S1?.

• The other three properties identify the parameters of the interaction of role B:
they are all fixed by the parameters of the protocol and the fact that the text
message is empty.

In addition, every wire W has an attribute W.delay that determines the maximum
delay that can take place in the transmission of events between the parties, i.e. be-
tween sending and receiving.

The interaction protocol used in the remaining connectors is quite straightforward:

INTERACTION PROTOCOL SendSMS(cn,sn:phoneNum) is

ROLE A

snd S1

i1:string
ROLE B

rcv R1

i1:phoneNum
i2:phoneNum
i3:string

COORDINATION

R1 S1

R1.i1=cn
R1.i2=sn
R1.i3=S1.i1

That is, the protocol just copies the text of the message.
In a connector, the interaction protocol is bound to the parties via mappings from

its roles to the signatures of the parties, which is indicated in the rows of the table.
The advantage of separating the definition of the interaction protocols from their use
in the wires is that it promotes reuse.

As another example, consider the following connectors that are part of the wire that
connects the booking agent BA and the SMS centre SM:

BA
BookAgent

BM SM
SMSCentre(4777)

snd informCustomer
driverPhone
taxiNum
callCode
location

S1

i1

i2

i3

i4

Internal2SMS

R1

i1

i2

rcv forwardOUT[1]
destination
text

rcv payTaxi
amount
taxiNum
callCode

R2

i1

i2

i3

SMS2Internal
S1

i1

i2

snd forwardIN[2]
origin
text

368 J. Abreu et al.

The first connector concerns the SMS that the booking agent needs to send to the
customer with information about the taxi. According to the business role SMSCentre,
forwardOUT[1] ? triggers sendsSMS[1] ! which we have just seen is the event
callTaxiIN ! of the customer CR. The corresponding business protocol needs to con-
vert the data received from BA into a text message that can then be sent to CR:

INTERACTION PROTOCOL Internal2SMS is

ROLE A

snd S1

i1:phoneNum
i2:reference
i3:string
i4:geoData

ROLE B

rcv R1

i1:phoneNum
i2:string

LOCAL

textify:reference,string,geoData string

COORDINATION

S1 R1

S1.i1=R1.i1

R1.i2=textify(S1.i2,S1.i3,S1.i4)

The conversion is performed by an operation textify that is internal to the interac-
tion protocol in the sense that the implementation of the interaction protocol needs to
provide a method call to an object that can perform the operation.

The other connector performs a dual operation: it forwards the SMS received from
the customer via payTaxiIN ! to the booking agent, for which it needs to parse the
text message received from CR:

INTERACTION PROTOCOL SMS2Internal is

 ROLE A
 snd S1

 i1:phoneNum

 i2:text
 ROLE B
 rcv R1

 i1:moneyValue
 i2:reference
 i3:string

 LOCAL
 parseMV:string→moneyValue
 parseRF:string→reference
 parseST:string→string

 COORDINATION
 S1 ≡ R1
 R1.i1=parseMV(S1.i2)
 R1.i2=parseRF(S1.i2)
 R1.i3=parseSR(S1.i2)

All these examples specify very simple interaction protocols but the formalism is
expressive enough to handle more complex connectors, especially through the use of

 Specifying and Composing Interaction Protocols 369

state variables. This is particularly relevant when we are reusing existing component
to define the module and we need to interconnect them without changing their code.

3.3 Algebraic Semantics of Connectors

An algebraic formalisation of this notion of module and module composition has been
given in [7] from the point of view of a notion of correctness defined based on the
theory of institutions [12]. In this section, we explore the algebraic structure of con-
nectors in more detail and in a more general setting that does not require the level of
detail that we used in [7].

As motivated in Section 2, interactions constitute the core and the unifying element
of the proposed approach to systems modelling: all the models that we work with –
business roles, business protocols and interaction protocols – are based on structures
of interactions. These structures are organised in a category SIGN (of signatures)
whose morphisms capture “part-of” relationships, i.e. a morphism σ:S1→S2 formal-
ises the way a signature (structure of interactions) S1 is part of S2 up to a possible re-
naming of the interactions and corresponding parameters. SIGN can be proved to be
finitely co-complete, which allows us to use colimits to express composition.

The other structure that is important for interaction protocols is that of the glues;
because we are working with an institution [12], glues can themselves be organised in
a category IGLU and a functor sign:IGLU→SIGN returns, for every glue, the struc-
ture of interactions (signature) that are being coordinated by the protocol. As a con-
sequence, a morphism σ:G1→G2 of glues captures the way G1 is a sub-protocol of G2,
again up to a possible renaming of the interactions and corresponding parameters.
That is, σ identifies the glue that, within G2, captures the way G1 coordinates the in-
teractions sign(G1) as a part of sign(G2). IGLU is also a finitely co-complete cate-
gory, meaning that we can use colimits to compose interaction protocols. Basically,
colimits compute unions of specifications. We also know that signIGLU is a functor
that makes IGLU coordinated over SIGN in the sense of [3]. We denote by iglu its
left-adjoint, which returns an “empty” glue, i.e. one that does not introduce any re-
quirements on the way interactions need to be coordinated.

In this formal setting, every interaction protocol P consists of an interaction glue G
and two signature morphisms πA:roleA→signIGLU(G) and πB:roleB→signIGLU(G).
That is, an interaction protocol is a structured co-span in the sense of [8]:

Because a wire interconnects two parties of the module, we need some means of
relating the interaction protocols used by the wire with the specifications (business
roles or protocols) of the parties. The connection for a given party n and interaction
protocol P is characterised by a morphism μn that connects one of the roles (A or B) of
P and the signature sign(n) associated with the node. These morphisms correspond to

370 J. Abreu et al.

the mappings defined by the rows of the tables that define the connector, as discussed
in Section 3.2.

In this formal setting, a connector for a wire n↔m between entities n and m in a
module, is a structure <μn,πA,G,πB,μm> where <πA,G,πB> is an interaction protocol P
and <μn,μm> are the morphisms that connect the roles of P to the entities n and m.
Such a connector defines the following diagram in SIGN:

The interaction protocol <πA,G,πB> corresponds to the shadowed part of the dia-
gram. Given this, we take a module M to consist of:

• A graph, i.e. a set nodes(M) and a set wires(M) of pairs n m of nodes
• A distinguished subset of nodes requires(M) nodes(M).
• At most one distinguished node provides(M) nodes(M)\requires(M).
• A labelling function L such that:

o L (provides(M)) is a business protocol if provides(M) is defined
o L (n) is a business protocol for every n requires(M)
o L (n) is a business role for every other node n nodes(M)
o L (n m) is a connector <μn,πA,G,πB,μm>.

An advantage of this algebraic characterisation is that we can easily explain how
interaction protocols can be composed in support for run-time service discovery and
binding. If we consider two interaction protocols with a common role:

we compute the following pushout in IGLU:

 Specifying and Composing Interaction Protocols 371

We define the composition of <πA,G,πB> and <μB,H,μC> to be <πA;sign(π’B),G+
BH,μC;sign(μ'B)>.

Consider now module composition. A binding between modules Mn and Mk
consists of:

• A node r∈requires(Mn), i.e. one of the requires-interfaces of Mn. Let this
node be labelled with a business protocol Sr.

• A morphism ρ:sign(Sr)→sign(Sp) where Sp is the business protocol of pro-
vides(Mk), i.e. of the provides-interface of Mk, such that all the properties re-
quired by Sr are entailed by those provided by Sr.

The module M that results from this process is defined by composing the wires Wr
and Wk through the morphism ρ. This is achieved through the composition of the
three co-spans that correspond to the interaction protocols of the wires Wr and Wk
and, between them, the “external wire” established by the morphism ρ. Formally,
the glue of this external wire, which is returned by the free functor iglu, is “empty”
in the sense that the protocol reduces to the syntactic binding established by the
morphism.

This composition is defined by the following diagram:

A new connector is defined by the composition of the morphisms that connect the
roles to the new interaction glue:

372 J. Abreu et al.

This connector is now used for the wire that results from the composition:

4 Concluding Remarks and Further Work

In this paper, we presented the approach that we are developing within the
SENSORIA project for modelling complex services. More precisely, we focused on
the way we specify the protocols that are used for coordinating the interactions
among the different parties that compose a service. This includes a logic adapted
from μUCTL, a formalism being developed within SENSORIA for supporting quali-
tative analysis [11]. Our version of the logic uses a richer language of events that
results from a conversation model of interactions: interactions are not specified in
terms of pre and post-conditions but, rather, on properties that concern transactional
behaviour, including pledges, deadlines and compensations. We are currently work-
ing on the axiomatisation of the primitives that capture such properties based on a
semantic domain of doubly-labelled transition systems. We are also investigating
the use of the ‘on the fly’ model checker UMC for supporting verification and vali-
dation [10].

Another important aspect of our model is an algebraic semantics that accounts for
interaction protocols as structured co-spans, the full mathematical characterisation of
which can be found in [8]. In the paper, we illustrated how this semantics provides a
model for the composition of interaction protocols, connectors and wires, which is
required for service discovery and binding.

In this paper, we addressed almost only the functional properties of service behav-
iour. The exception was the delay parameter that is associated with every wire. In
fact, the composition of wires involves non-functional properties: for instance, we
have (Wr+ρWm).delay=Wr.delay+Wm.delay because the external wire corresponding
to ρ has no delay – it just binds names. Other non-functional properties are addressed
in another report [5], including a constraint-based approach to SLAs.

 Specifying and Composing Interaction Protocols 373

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, New York
(2004)

2. Baïna, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service development.
In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 290–306. Springer,
Heidelberg (2004)

3. Fiadeiro, J.L.: Categories for Software Engineering. Springer, New York (2004)
4. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Computer 40(1), 34–39

(2007)
5. Fiadeiro, J.L., Lopes, A., Bocchi, L.: The SENSORIA Reference Modelling Language:

Primitives for Configuration Management (2006) Available from www.sensoria-ist.eu
6. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture.

In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp.
193–213. Springer, Heidelberg (2006)

7. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules.
In: Fiadeiro, J.L., Schobbens, P.Y. (eds.) Algebraic Development Techniques, pp. 37–55.
Springer, Heidelberg (2007)

8. Fiadeiro, J.L., Schmitt, V.: Structured co-spans: an algebra of interaction protocols. In:
CALCO’07. LNCS. Springer, Berlin, Heidelberg, New York (In print 2007)

9. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, San Francisco, CA (2004)

10. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state ma-
chines. In: Second ACIS International Conference on Software Engineering Research,
Management and Applications (SERA2004), pp. 331–338 (2004)

11. Gnesi, S., Mazzanti, F.: A model checking verification environment for UML Statecharts.
In: Proceedings of XLIII Congresso Annuale AICA Comunita’ Virtuale dalla Ricerca
all’Impresa dalla Formazione al Cittadino. University of Udine – AICA (2005) (paper
available from fmt.isti.cnr.it)

12. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and pro-
gramming. Journal ACM 39(1), 95–146 (1992)

13. SCA Consortium (2005) Building Systems using a Service Oriented Architecture. White-
paper available from www-128.ibm.com/developerworks/library/specification/ws-sca/

Author Index

Abreu, João 358

Baresi, Luciano 247
Batth, S.S. 50
Bocchi, Laura 358

Campbell, Colin 112, 128
Cavalli, A. 50
Chae, Junghwa 97
Chao, Cai 81
Counsell, Steve 19

Dan, Haitao 19
Droms, Ralph 211

Ernits, Juhan 112
Evangelista, S. 177

Fan, Rui 211
Ferrari, Gianluigi 66
Fiadeiro, José Luiz 358
Frutos-Escrig, David de 143

Gazagnaire, Thomas 160
Ghezzi, Carlo 247
Gotzhein, Reinhard 309
Graf, Susanne 1
Gregorio-Rodŕıguez, Carlos 143
Griffeth, Nancy 211
Guanciale, Roberto 66
Guo, Qiang 227

Haddad, Serge 341
He, Fei 247
Hélouët, Löıc 160
Hierons, Robert M. 19
Hongli, Yang 81

Jin, Zhi 296
Jourdan, Guy-Vincent 35

Kalyon, Gabriel 263
Klai, Kais 280

Li, Guangyuan 196
Lopes, Antónia 358
Lynch, Nancy 211

Majster-Cederbaum, Mila 325
Martens, Moritz 325
Massart, Thierry 263
Meuter, Cédric 263
Mu, Kedian 296

Pajault, C. 177
Peng, Yunquan 196
Petrucci, Laure 280
Poizat, Pascal 341
Pradat-Peyre, J.F. 177

Quinton, Sophie 1

Reniers, Michel 280
Rosa-Velardo, Fernando 143

Schulte, Wolfram 128
Spoletini, Paola 247
Strollo, Daniele 66

Tuosto, Emilio 66

Ural, Hasan 35
Uyar, M.Ü. 50

Van Begin, Laurent 263
Veanes, Margus 112, 128
Vieira, E.R. 50

Wang, Shen 35
Webel, Christian 309

Xiangpeng, Zhao 81

Yan, Rongjie 196
Yenigün, Hüsnü 35

Zhang, Wenliang 196
Zongyan, Qiu 81

	Title Page
	Preface
	Organization
	Table of Contents
	Contracts for BIP: Hierarchical Interaction Models for Compositional Verification
	Introduction
	Specifications and Their Semantics
	Semantics of Components
	Comparison and Satisfaction Relations
	Decomposition and Recomposition of Compo

	Components Enriched with Contracts and Compositional Verification
	HRC: Hierarchical Components Enriched with Contracts
	Compositional Verification of HRC

	Handling Verification Conditions Contructively
	References

	Thread–Based Analysis of Sequence Diagrams
	Introduction
	Related Work

	Preliminary
	The Difference Between SD and bMSC
	Traditional Partial Order Semantics

	The Effect of Changing from bMSC to SD
	Mapping Events to Threads
	Using Execution Specification
	Using Active Object

	Inference for SDs with Thread Tags
	Conclusion and Future Work
	References

	Recovering Repetitive Sub-functions from Observations
	Introduction
	Preliminaries
	Assumptions
	Main Algorithm
	Repetitive Sub-function Inference Algorithm
	Finding Basic Repetitive Sub-functions
	Complexity of the Solution

	AnExample
	Conclusion
	References

	Specification of Timed EFSM Fault Models in SDL
	Introduction
	English Specification for Railroad Crossing System
	Modeling Timed Extended Finite State Machines
	Definitions and Notations
	Graph Augmentation Algorithm GA-A
	Classification of Timing Faults
	Timed EFSM Model for Railroad Crossing Syste

	SDL Specification Based on Timed EFSM Model
	Application of $Hit-or-Jump$ Algorithm

	Conclusions and Future Work
	References

	Coordination Via Types in an Event-Based Framework
	Introduction
	Preliminaries: Signal Calculus
	Extended Signal Calculus
	Managing Sessions
	Joining Events

	Structured Topics
	Operational Semantics
	Federated Identity Example
	Concluding Remarks
	References

	Exploring the Connection of Choreography and Orchestration with Exception Handling and Finalization/Compensation
	Introduction
	The $Chor$ Language with Exception Handling
	Syntax
	Semantics

	Adding Finalization
	The $Role$ Language
	Syntax
	Semantics

	Projection
	Conclusion and Future Work
	References

	Towards Modal Logic Formalization of Role-Based Access Control with Object Classes
	Introduction
	Role-Based Access Control
	Role Inheritance
	Class Inheritance

	Language for Access Control
	Semantics
	Principals and Hierarchies
	Object Classes and Hierarchies
	Request Operator and Properties
	User Assignment and Object Classification
	Read and Write Statements

	Rules and Reasoning
	Example: RBAC Policies with Object Class Hiera
	Conclusion and Future Work
	References

	State Isomorphism in Model Programs with Abstract Data Structures
	Introduction
	Definitions
	States as Graphs
	Isomorphism Checking
	Related Work
	Conclusion
	References

	Composition of Model Programs
	Introduction
	Example

	Basic Definitions
	Model Programs
	Composition of Model Programs
	Product Composition
	Parallel Composition
	Serial Composition

	Conclusions and RelatedWork
	References

	New Bisimulation Semantics for Distributed Systems
	Introduction
	Bisimulations for Distributed Systems
	Commutative Bisimulations
	Amortized Commutative Bisimulation
	Idempotent Bisimulations
	Amortized Quantitative Bisimulation
	Bisimulations with Non-atomic Actions
	Distributed Bisimulations

	A Quick Survey on Useful Abstract Bisimulation Results
	(Not so Much) Related Work
	Conclusions and Future Work
	References

	Event Correlation with Boxed Pomsets
	Introduction
	Pomsets, Boxed Pomsets, and Pomset Languages
	Properties of Boxed Pomsets
	Event Correlation
	Conclusion
	References

	A Simple Positive Flows Computation Algorithm for a Large Subclass of Colored Nets
	Introduction
	Definitions
	Colored Petri Nets
	Simple Well-Formed Colored Nets and Simple Positive Flows

	Simple Positive Flows Computation for SWF Nets
	Reordering Equations
	Reordering Solutions and Simplifying Equations
	Computing Simple Positive Flow in the Homogenous Case
	Dealing with Non Homogeneous SWF Nets
	Example

	Conclusion
	References

	Improvements for the Symbolic Verification of Timed Automata
	Introduction
	Preliminaries
	Continuous Semantics of TA
	Integer Semantics of TA

	Reachability Analysis for CTAs
	Delay Sequence
	Series of Delay Sequences
	Reachability Analysis
	The Application of SDS
	Inclusion Relation of SDS

	Experiments
	Conclusions and Further Work
	References

	The DHCP Failover Protocol: A Formal Perspective
	Introduction
	Model and Notation
	A Formal Specification of DHCPF
	The DHCPF Interface
	DHCPF Assumptions
	DHCPF Properties

	A DHCPF Algorithm
	Leader Election Algorithm
	Lease Algorithm
	The Composed DHCPF Algorithm

	Properties of C
	Safety Properties of C
	Liveness Properties of C

	Conclusions

	Verifying Erlang/OTP Components in μCRL
	Introduction
	ErlangandOTP
	The Process Algebra μCRL
	Related Work
	Translating Erlang Programs into μCRL
	Overlapping in Pattern Matching

	Translating Erlang/OTP FSMs into μCRL
	Simulating State Management
	Translating the State Functions

	Case Studies
	A Door with Code Lock
	Coffee Machine

	Conclusions and Future Work
	References

	Formal Analysis of Publish-Subscribe Systems by Probabilistic Timed Automata
	Introduction
	Related Work
	Abstract Publish-Subscribe Architecture
	Probabilistic Timed Automata
	Implementation
	Dispatcher
	Channels
	Application Components

	Example Application
	Experimental Results
	PRISM Model

	Conclusions and Future Work
	References

	Testing Distributed Systems Through Symbolic Model Checking
	Introduction
	Related Works
	Framework
	Symbolic Representation for Sets of Cuts
	Using IST for $C\sc{TL}$ Model Checking
	Experimental Results
	Conclusion and Future Works
	References

	An Incremental and Modular Technique for Checking LTL\X Properties of Petri Nets
	Introduction
	Preliminaries and Notations
	Decomposition Scheme
	Abstraction of the Environment Using Linear Invariants
	Checking the Validity of Local Counterexamples
	The Non-constraining Relation
	Reduction of the Non-constraining Relation Test

	An Incremental and Modular Model-Checker
	Checking a Property on a Reduced Synchronised Product
	The Non-constraining Checking Algorithm

	Discussion and Related Work
	Conclusion
	References

	Identifying Acceptable Common Proposals for Handling Inconsistent Software Requirements
	Introduction
	Preliminaries
	Viewpoints
	Inconsistency in Viewpoints
	Combinatorial Vote

	Identifying an Acceptable Common Proposal of Inconsistency Handling
	Proposals of Inconsistency Handling
	Voting for a Common Proposal

	Discussion and Comparison
	Conclusions
	References

	Formalization of Network Quality-of-Service Requirements
	Introduction
	Related Work
	Formalization of Network Quality of Service
	QoS Domain
	QoS Scalability
	Specification of Network QoS Requirements

	QoS Mappings
	QoS Abstraction Levels
	QoS Domain Mapping
	QoS Scalability Mapping

	Case Study $Wireless V ideo Transmission$
	QoS Domain
	QoS Scalability
	QoS Mapping

	Conclusion and Future Work
	References

	Robustness in Interaction Systems
	Introduction
	Components, Connectors and Interaction Systems
	Properties of Interaction Systems
	Properties
	Robustness of Properties

	Testing Robustness
	Robustness of Deadlock-Freedom
	Liveness Without A
	Treating Local Progress and Local Deadlock

	Conclusion and Future Work
	References

	Transactional Reduction of Component Compositions
	Introduction
	Informal Presentation of the Model
	Formalization of the Model
	Transaction-Based Reductions
	Conclusion
	References

	Specifying and Composing Interaction Protocols for Service-Oriented System Modelling
	Introduction
	Modelling Complex Services in SRML
	The Module Structure
	The Provides-Interface
	Requires-Interfaces
	Service Components

	The Role of Interaction Protocols in SRML
	The Logic of Interactions
	Connectors
	Algebraic Semantics of Connectors

	Concluding Remarks and Further Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

