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Summary. In many industrial and medical diagnosis problems it is essential to
investigate time series measurements collected to recognize existing or potential
faults/diseases. Today this is usually done manually by humans. However the lengthy
and complex nature of signals in practice often makes it a tedious and hard task to
analyze and interpret available data properly even by experts with rich experiences.
The incorporation of intelligent data analysis method such as case-based reasoning
is showing strong benefit in offering decision support to technicians and clinicians
for more reliable and efficient judgments.

This chapter addresses a general framework enabling more compact and effi-
cient representation of practical time series cases capturing the most important
characteristics while ignoring irrelevant trivialities. Our aim is to extract a set of
qualitative, interpretable features from original, and usually real-valued time series
data. These features should on one hand convey significant information to human
experts enabling potential discoveries/findings and on the other hand facilitate much
simplified case indexing and similarity matching in case-based reasoning. The road
map to achieve this goal consists of two subsequent stages. In the first stage it is
tasked to transform the time series of real numbers into a symbolic series by tempo-
ral abstraction or symbolic approximation. A few different methods are available at
this stage and they are introduced in this chapter. Then in the second stage we use
knowledge discovery method to identify key sequences from the transformed sym-
bolic series in terms of their cooccurrences with certain classes. Such key sequences
are valuable in providing concise and important features to characterize dynamic
properties of the original time series signals. Four alternative ways to index time
series cases using discovered key sequences are discussed in this chapter.

9.1 Introduction

Case-based reasoning (CBR) [1] has been widely recognized as a powerful
learning methodology for circumstances where generalized domain knowledge
is not available or hard to obtain. Based on the tenet that similar problems
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have similar solutions, CBR attempts to solve new problems by retrieving
previous similar cases for which solutions are already known. Usually condition
parts of cases are represented as vectors of selected attribute values when
making similarity matching between a query case and previous ones in the
case base. Proper case index capturing truly relevant features has shown to
be one of the crucial factors for the success of case retrieval.

Tackling time series cases is attaining increasing importance in applying
case-based reasoning to various real-world problems. As long as processes in
the underlying domain are inherently dynamic, cases should be constructed to
reflect the phenomena that were evolving overtime rather than be depicted as
snapshots at a given time instant. Unlike static cases described by time inde-
pendent attributes, time series cases contain profiles of time-varying variables
wherein pieces of data are associated with a times tamp and are valid only for
a specific interval in the case duration. Temporal aspect of time series data
has to be taken into account in the tasks of case indexing and case retrieval.
Abstraction and representation of temporal knowledge in CBR systems were
discussed in [7, 22,42].

Signal analysis techniques have been applied to extract relevant features
from time series signals such as sequential sensor readings. The most com-
mon methods used in applications are discrete Fourier transform (DFT) and
wavelet analysis, see [9,35,36,51]. Both aims to capture significant characteris-
tics of original signals by providing frequency related information. However, as
noted in [11], such traditional analytical tools are only competent on signals
with relatively simple dynamics, they fail to characterize patterns of more
complex dynamics such as bifurcations and chaotic oscillations.

Another concern with signal analysis is the large number of coefficients
produced during signal transformation such that feature selection is entailed
to reduce the number of inputs to build similarity measures for case match-
ing and retrieval. The issue of dimensionality reduction becomes particularly
critical when measurements are gathered within a very long time span. Longi-
tudinal time series signals are prevalent in circumstances such as patient mon-
itoring for medical health care or condition-based maintenance of industrial
equipments, where subjects monitored are expected to possibly change their
behavior patterns during the long period of observation. Later in Sect. 9.2,
we shall show that, using traditional signal processing methods, it is hard to
acquire a moderate number of features as concise representation of original
signals while retaining their time-varying properties.

This chapter suggests a general framework fostering compact and efficient
representation of lengthy time series cases capturing important temporal
behaviors while ignoring irrelevant trivialities. The aim is to extract a set of
qualitative, interpretable features from original and usually real-valued time
series data. These features should on one hand convey significant information
to human experts enabling potential discoveries/findings and on the other
hand facilitate much simplified case indexing and similarity matching in case-
based reasoning. The road map to achieve this goal consists of two subsequent
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stages. In the first stage the time series of real numbers is transformed into
a symbolic series by temporal abstraction or symbolic approximation. A few
different methods are available to be utilized at this stage. Then, in the sec-
ond stage, we use knowledge discovery method to identify key sequences from
the transformed symbolic series in terms of their cooccurrences with certain
classes. Such key sequences are valuable in providing important features to
characterize dynamic properties of sensor signals, thus leading to concise index
of longitudinal time series as well as reduced input dimensionality of similarity
measures.

The remainder of this chapter is organized as follows. Section 9.2 gives
a brief overview and outlines our general framework to handle longitudinal
time series for efficient and compact case index. Approaches to transforming
series of sensor measurements into symbolic ones are introduced in Sect. 9.3,
followed by a knowledge discovery method presented in Sect. 9.4 to identify
key sequences from symbolic series transformed. Subsequently, in Sect. 9.5, we
discuss the utilities of key sequences discovered in case-based reasoning, e.g.,
case indexing, measures for similarity. Relevance to related works is discussed
in Sect. 9.6. Finally Sect. 9.7 ends this chapter with concluding remarks.

9.2 Classification Based on Sensor Signals

Categories of subjects can be recognized by observing their relevant variables
during their operation. Using sensor technology it is possible to measure the
values of such variables and also record the profiles of their evolution with
the time. We can then process and analyze the collected sensor recordings to
find out hidden symptoms. These symptoms give us basis to reason about the
class the subject belongs to or make prediction about a potential failure, that
it is likely to emerge in the near future. A general road map for this purpose is
illustrated in Fig. 9.1, which includes signal filtering, feature extraction, and
pattern classifier as its functional components.

Signal filtering is used to purify original sensor readings by removing noises
contained in the signals such that more reliable classification results will be

Fig. 9.1. Classification based on sensor signals
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warranted. Usually there are two kinds of noises included in the received
signals; one is measurement noise due to intrinsic imprecision of sensors and
the other is external noise caused by disturbance from surroundings and which
is added to the sensor data recorded. Signal recovery from external background
noise has been achieved by applying signal processing methods like wavelet
analysis and time domain averaging [29,30]. Reduction of measurement errors
is outside the scope of this chapter, but interested readers can refer to sensor
fusion systems in which Bayesian-based filtering approaches such as Kalman
filtering [4] and particle filtering [15] merit to be used to acquire more accurate
estimates of states for subjects.

Feature extraction is purported to identify characteristics of sensor signals
as useful symptoms for further analysis. This stage is crucial in many industrial
and medical domains where the process in consideration is dynamic such that
measured variables generally change with the time. This means that it is
not possible to depict sensor observations with static single values. Instead we
need to identify a collection of features to characterize the evolution of a time-
varying variable. The set of extracted features is desired to have a moderate
size to reduce the input dimensionality for the pattern classifier (Fig. 9.1). On
the other hand, features extracted also ought to be adequate to accommodate
temporal information or transitional patterns of signals to be analyzed.

Regarding pattern classifier a number of methods might be considered.
Expert systems were developed in support of gathering, representing, and uti-
lizing human expert knowledge for problem solving but they suffer from the
knowledge acquisition bottleneck. Regression functions distinguish objects by
defining linear boundaries between classes using a moderate number of at-
tributes as function variables. For problems with nonlinear boundaries artifi-
cial neural networks would be a suitable approach because they are capable
of realizing arbitrary nonlinear mappings between input and output units.
Nevertheless the functions of neural networks are rather like a black box,
they hardly provide any reasons and arguments for decisions recommended
by them. Comparatively, CBR is more transparent by making decisions ac-
cording to similar cases retrieved such that human users are given reference
information to understand, verify, and occasionally also modify the suggested
results. The explanatory issue is quite important in many medical and in-
dustrial applications where AI systems serve as decision support and every
decision made has to be well justified before taking into effect. This motivates
us to adopt the methodology of CBR to classify time series signals and we
narrow down to case-based classifier in the remaining of this chapter.

9.2.1 Conventional Methods for Feature Extraction

As mentioned before, the measurements from a dynamic system constitute
time-varying data streams that are not suitable for immediate usage. Hence
we need to “dig out” representative features hidden in the signals prior to
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classification. The features extracted are delivered to the case-based classifier
as an index of the query case. Currently features extracted with traditional
methods fall into two categories, namely statistical features and frequency-
based features.

Statistical features are extracted from the profile of signal values with
respect to calculated statistics as overall generalization. Typical features of
this kind can be peak value, start time, overshoot, rising time, mean value,
integral, standard deviation, etc. In practice what features to derive for case
indexing is commonly ad hoc and domain dependent. An example of using
statistical features for case-based circuit diagnosis was illustrated in [39].
However extracting statistical features has a weakness of converting dynamic
data streams into static values, thus losing information of temporal relation
between data.

Frequency-based features characterize sensor signals by groups of quanti-
ties related to a diversity of frequencies. As numerous signal transforms are
available to yield frequency spectra, we seem to have more solid basis for
extracting features based on frequency than for deriving features based on
statistics. The two most common signal transform methods to this end are
Fourier transform and wavelet analysis. We shall introduce them briefly in the
following and also indicate their limitations facing longitudinal signals with
substantial variations.

The Discrete Fourier Transform (DFT)

The DFT transforms a series of sampled values from a signal into spectral
information about the signal. Let x∗(t) = x(nT ) = x(n) be a sampled function
taking samples at times t = 0, T, . . . , nT, . . . , (N − 1)T, and T is the
sampling period (the time between two consecutive samples). The components
of DFT for the sampled signal x∗(t) are given by a complex summation [47]
as follows

X(k) =
N−1∑
n=0

x(nT ) exp [−jknT2π/(NT )] =
N−1∑
n=0

x(n) exp [−jknΩ0] (9.1)

where

k = 0, 1, 2, N − 1 and Ω0 = 2π/N

If we substitute exp [−jknΩ0] in (9.1) with Euler identity, the DFT compo-
nents can be equivalently written as

X(k) =
N−1∑
n=0

x(n) cos(knΩ0) − j
N−1∑
n=0

x(n) sin(knΩ0) (9.2)
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Note that X(k) shows the signal characteristics at the frequency k/(N-1)T.
Thus the frequency spacing between two neighboring components in the DFT
spectrum is

∇f =
1

(N − 1)T
Hz (9.3)

In general, the DFT component X(k) is a complex consisting of a real and an
imaginary part. We adopt the magnitude of X(k)

|X(k)| =

√√√√(N−1∑
n=0

x(n) cos(knΩ0)

)2

+

(
N−1∑
n=0

x(n) sin(knΩ0)

)2

(9.4)

as the feature value corresponding to the frequency k/(N-1)T when doing
Fourier transforms for feature extraction.

Two limitations of using DFT for feature extraction have to be pointed out
here. First, it is clear that, for every k = 0, 1, . . . .N− 1, there is a DFT term
X(k) such that the number of features equals the number of sampled data
N. This would lead to an explosion in the number of features extracted when
dealing with longitudinal signals common in practice. The sampling period of
a signal must be kept below an upper bound according the Shanon theorem
in order to avoid distortion of the original signal.

The second limitation with DFT is that the features extracted from the
magnitudes of X(k) cannot guarantee to distinguish different orders of pat-
terns within a signal. To show this point more clearly, let us consider two
sampled signals with six sampling periods as follows:

x∗
1(t) =

[
3, 3, 3,
mode A

| 5, 5, 5
mode B

]

x∗
2(t) =

[
5, 5, 5,
mode B

| 3, 3, 3
mode A

]

Obviously the two signals differ only in the order of appearances of values
(x∗

1 takes the value of 3 in the first three sampling instances followed by 5
later, whereas x∗

2 appears in the opposite order). The DFT terms of these two
signals are calculated according to (9.2) with the results given by

X1(0) = 24, X1(1) = −2.000 + 3.4641j , X1(2) = 0
X1(3) = −2, X1(4) = 0, X1(5) = −2.000 − 3.4641j

X2(0) = 24, X2(1) = 2.000 − 3.4641j , X2(2) = 0
X2(3) = 2, X2(4) = 0, X2(5) = 2.000 + 3.4641j

It is clearly seen from the above that the magnitudes of X1(k) and X2(k)
are identical for any k = 0, 1, 2, . . . , 5. As a consequence the signals x∗

1

and x∗
2 cannot be distinguished by using the features extracted by DFT. This

example, although simple, implies a potential problem for signals with varying
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modes in the whole duration, because temporal information of mode A fol-
lowed by B or mode B followed by A might be completely indifferent to the
DFT features.

Wavelet Transform

Wavelet transform (WT) is a relatively recently introduced signal analysis
method [5, 19], which aims to provide a means of analyzing local behavior of
signals. In this sense it is fundamentally different from global transforms such
as the Fourier transform. The basic principle underlying WT is to represent a
signal, x(t), of interest as a weighted sum of wavelets and scaling function by

x(t) = A1ϕ(t) + A2ψ(t) +
∑

n∈+Z
m∈Z

An,mψ(2−nt − m) (9.5)

where ψ(t) is the mother wavelet function and ϕ(t) denotes the scaling func-
tion. Principally any function with positive and negative areas canceling out
can be adopted as a wavelet. In other words the only condition imposed on a
wavelet function is that it satisfies

∞∫
−∞

ψ(t)dt = 0 (9.6)

In practice a very frequently used wavelet function is the Haar function which
is defined as

ψ(t) =

⎧⎨
⎩

1 if 0 ≤ t < 0.5
−1 if 0.5 ≤ t < 1
0 otherwise

(9.7)

Dilations and translations of the mother wavelet function (9.7) create child
wavelets functions as expressed by

ψs,l(t) = 2−
s
2 ψ(2−st − l) (9.8)

where parameters s and l are integers according to which the mother wavelet
function ψ(t) is scaled and dilated. The child wavelets constitute an ortho-
normal basis of the Haar system. Using this orthonormal basis, time series x
can now be formulated as a linear combination of the Haar wavelets:

x = x0 +
log2 N∑
s=1

N
2s −1∑
l=0

cs,lΨs,l(t) (9.9)

Here N is a power of 2 representing the number of data points in the time
series. By x0 we denote the coarsest approximation of the signal. The coeffi-
cients cs,l are considered as features obtained from wavelet transform. The WT
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features can be derived by a procedure of averaging and differencing applied
on a finite signal, as illustrated in the following example.

Assume a finite time series x = [2, 5, 8, 9, 7, 4, −1, 1]. We now want to
express the signal into the form of (9.9) using Haar basis. This can be achieved
with three steps below.

Step 1: Perform averaging and differencing at the level corresponding to
s = 1 such that

x = [2 + 5, 8 + 9, 7 + 4,−1 + 1, 2 − 5, 8 − 9, 7 − 4,−1 − 1]/√
2 = [7, 17, 11, 0,−3,−1, 3,−2]

√
2

Here we obtain the WT features in the highest frequency subband

WF (1) = [c1,0, c1,1, c1,2, c1,3] = [−3,−1, 3,−2]/
√

2

, which reflects the changing rates of the signal within every two sampling
periods in the time dimension.

Step 2: Perform averaging and differencing at the level corresponding
to s=2 such that

x =
[
7 + 17√

2
,
11 + 0√

2
,
7 − 17√

2
,
11 − 0√

2
,−3,−1, 3,−2

]
/√

2 =
[

24√
2
,

11√
2
,
−10√

2
,

11√
2
, −3,−1, 3,−2

]/√
2

Here we obtain the WT features in the medium frequency subband

WF (2) = [c2,0, c2,1] =
[−10√

2
,

11√
2

]/√
2 = [−5.00, 5.50]

, which reflects the changing rates of the signal within every four sampling
periods in the time dimension.

Step 3: Perform averaging and differencing at the level corresponding to
s=3 such that

x =

[
24 + 11(√

2
)2 ,

24 − 11(√
2
)2 ,

−10√
2

,
11√

2
,−3,−1, 3,−2

]

/√
2 =

[
35
2

,
13
2

,
−10√

2
,

11√
2
,−3,−1, 3,−2

]
/√

2 ≈ [12.4, 4.60,−5.00, 5.50,−2.12,−0.707, 2.12,−1.41]

Here we obtain the WT features in the lowest frequency subband

WF (3) = [c3,0] =
[
13
2

]/√
2 = [4.60]
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, which reflects the changing rate of the signal in the whole duration of eight
sampling periods.

With the above example we understand that the WT coefficients can be
divided into different frequency subbands, each of which reflects how fast the
signal increases or decreases its values in the corresponding frequency. The
total number of coefficients is equal to N/2 + N/4 + Λ + 1 = N − 1, which
is almost the same as the length of the time series N . In order to get a
reduced number of features for case indexing, common practices so far are
to choose a dominant coefficient as representative of the subband [36] or to
derive statistic values from each frequency subband [50]. Such methods work
well with relatively short time series exhibiting simple dynamics. However,
considering that WT coefficients themselves constitute a dynamic time series
in a frequency subband, how to extract complete and compact information to
characterize lengthy, time-varying subbands is still an unresolved issue.

9.2.2 The Proposal of Hybridizing Symbolization
and Knowledge Discovery

As was noted in Sect. 9.2.1, traditional methods for feature extraction suffer
from some drawbacks, such as undesired large number of features as well as
the risk of loss of temporal relationship, when they are applied to complex,
longitudinal series of measurements. The reason for this can be attributed to
the primary representation of time series based on which features are derived.
The data streams utilized are data rich but poor in information content. They
only record measurements at every sampling point whereas contain no gen-
eralized descriptions of how the data in series evolve with the time. Pure
signal processing and mathematical manipulations do not suffice to ensure
the derivation of concise and complete dynamic information from primary
sampling point-based data records.

The solution we propose in this chapter is to convert the sampling point-
based representation of the time series into an interval-based representation.
An interval consists of a set of consecutive sampling points and thus encom-
passes multiple sampling periods in the time dimension. Then data within an
interval have to be generalized and aggregated into one symbolic value; the
symbolization is conducted via discretization of the range for possible values
of the signal. By doing this, the primary time series is now transformed into a
symbolic series associated with intervals. Symbolization of primary numerical
(usually real valued) time series signals brings the following merits:

1. Symbolic series are shorter in length and more intensive in information
content (every symbol is considered as a generalization of the signal
behavior in the associated interval), while much of the important tem-
poral information is still retained.

2. Symbolic series facilitate higher computational efficiency; require less com-
putational resource and memory space.
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3. Symbolic data are more robust, less sensitive to measurement noises, and
also enhance human understanding.

4. With symbolic time series data, it is relatively easier to apply data mining
and knowledge discovery methods, algorithms, and tools to find novel,
interesting knowledge, and patterns [12], which would in turn help better
indexing and characterization of time series cases.

After a numerical signal has been converted into symbolic series, we have to
focus on transitions of symbols in it rather than single symbolic values for
interpreting and characterizing the series. This is supported by the fact that
behaviors in dynamic processes are reflected from transitional patterns over
time and occurrences of certain sequences are believed to be significant ev-
idences to identify properties of sequential records. For instance, in medical
domains, sequence of symptoms of patients are crucial for diagnosis by physi-
cians, and frequently conditional changes with patients are more important
than their static states within single time intervals. Deciding key sequences
for case characterization is domain dependent. We need knowledge acquisition
and discovery to find knowledge about key sequences when it is not known in
advance.

The process of knowledge discovery for key sequences is highlighted in
Fig. 9.2. It first entails converting the original database of numerical time series
into a database of symbolic ones by means of symbolization. Subsequently the
symbolic database with classified series is delivered as input to the knowledge
discovery module, which then searches for qualified sequences in the space of
all possible sequences. All competent sequences are to be picked up into the
library of key sequences as final results.

Once the knowledge about key sequences has been made available, they are
utilized as reference to capture important contents in a time series of query.
This is shown in Fig. 9.3. The symbolic series transformed from the numerical
one is checked thoroughly to detect any occurrences of key sequences stored in

Database of
numerical
time series

Database of
symbolic

time series

Symbolization

Knowledge
Discovery

Space of
all possible
sequences

Library of
key sequences

Fig. 9.2. Knowledge discovery to find key sequences
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Symbolization

Key
Sequence
Detection

Case
Indexing

Library of
key sequences

Numerical
signal

Symbolic
series

Detected
occurrences

Numerical
case index

Fig. 9.3. Detection of key sequences in a time series

the key sequence library. Then the information derived about whether a key
sequence has occurred and with how many times is made use of for building
a numerical case index. This case index is concise since it only considers
appearances of key sequences while ignoring other trivial randomness. Various
ways to construct such case indexes will be addressed with details in Sect. 9.5.

At this point we can summarize the road map of our suggested solution as

Numericaltimeseries −→ Symbolictimeseries −→ Numericalcaseindex

Symbolization is performed as an intermediate stage to create symbolic expres-
sions of cases which are more abstract and information intensive to facilitate
knowledge discovery. Key sequences found by knowledge discovery capture the
most significant transitions in a signal to identify its property. Finally case
indexing in terms of key sequences creates compact descriptions of cases by
quantifying influences of key sequences occurrences into numerical values.

9.3 Transformation into Symbolic Time Series

As noted before, symbolization of original numerical time series is a prestep
for performing knowledge discovery to find key sequences. Fortunately many
previous studies have shown that it is feasible to do so. Various approaches
to making such transformation have been reported in the literature and they
will be briefly outlined in this section.

9.3.1 Defining Symbols

Defining appropriate symbols is the first task to conduct during symbolization
of signals. It involves partitioning the range of possible values of measurements
into a set of regions. Each region corresponds to a specific symbol and each
measurement value is thus uniquely mapped into the symbol of the region
in which it falls in. The number of regions (symbols) reflects the level of
resolution for the information that is retained. A low number of regions implies



258 P. Funk and N. Xiong

coarse discrimination of measurement details yet reduced problem space as
well as improved efficiency in computation. On the other hand, increased
number of regions preserves deeper information details whereas causes higher
sensitivity to measurement noise at the same time. There are hence trade-
offs between different criteria to account for when making decisions about the
number of regions.

After fixing the number of regions, we have to select locations of these
partitions to reach satisfactory results. Sensitivity of the results to the way
of locating regions also has to be evaluated. In [10] authors proposed a the-
oretical approach to choosing optimal locations of partitions for noise-free,
deterministic processes. However, selecting theoretically optimal partitions is
hardly possible for practical sensor measurements. The reason is that the sen-
sor data are expected to be produced from practical, uncertain processes with
hidden dynamics and unknown characteristics of noise, such that a universally
strict optimization method does not exist. In practice problem dependent ad
hoc techniques are widely employed to determine suitable ways to partition
sensor measurements.

In some cases partitioning can be conducted according to the context of
the problem provided that the underlying physics betrays a natural choice for
granulation. This means the situations where systems in consideration involve
dynamics with natural borderlines dividing system states into distinct physical
areas. For example, in neurobiological and chemical systems, there is often an
excitability threshold above which oscillations will be activated [8,24]. Natural
partitioning based on problem context gives a means of accommodating phys-
ical knowledge and makes meaningful results easy for human understanding.

In most of other cases traditional methods are to use data mean, midpoint,
or median, equal-sized regions, or regions with equal probability to divide the
whole range of sensor measurements. In [48] binary symbols corresponding
to regions separated by sample median were adopted for reconstruction of
dynamics of nonlinear models in light of existing heavy noise. Equal-sized
partitions were developed by [18] in dealing with EEG signals. Kim and his
colleagues [27] used combinations of sample mean and standard deviations
to define regions when analyzing heart-rate dynamics. Finally symbols with
equal probability were addressed in [14] by dividing the whole data range into
regions in which observation values have identical likelihood to fall.

9.3.2 Symbolic Approximation

The method of symbolic approximation was proposed in [43] with the aim to
convert a primary real-valued time series into a condensed symbolic sequence
of much shorter length. In doing this the whole duration of the signal is divided
into equally sized intervals, i.e., each interval encompasses the same amount
of sampling periods. The data in each interval is averaged into a mean value,
thus creating a sequence of real numbers summarizing signal behaviors in
consecutive time intervals. We term this sequence as PAA (piecewise aggregate
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approximation) representation of the original signal. Then the PAA sequence
is further transformed into a symbolic form by mapping the real numbers in
it into corresponding symbols.

To be more concrete, PAA is performed to convert a real-valued time series
(primary sensor signal) C = [c1, c2, . . . , cn] into a shorter sequence C̃ =
[c̃1, c̃2, . . . , c̃w] (w < n). The element c̃i in C̃ represents the mean value of
the data collected during the ith interval, thus it is given by

c̃i =
w

n

n
w i∑

j= n
w (i−1)+1

cj (9.10)

where w is the total number of time intervals. PAA creates a substantial
data reduction by aggregating signal values within intervals into single values.
The PAA sequence, as an intermediate representation, is visualized in Fig. 9.4
where the original signal is approximated by pieces of horizontal segments
reflecting the signal’s average levels during respective time intervals.

After the PAA sequence C̃ is obtained, it has to be transformed into a
symbolic sequence Ĉ = [ĉ1, ĉ2, . . . , ĉw] via symbolization. This entails dis-
cretization of the range of signal values into a set of nonoverlapping regions.
According to [43] it is desirable to define regions (symbols) with equiproba-
bility [3, 31]. The equal probability of symbols demands that the ordered list
of breakpoints B = β1, β2, . . . , βr−1 separating regions be defined in such a
way that

∫ βi+1

βi

p(x)dx =
1
r

(9.11)

β0 = −∞, βr = ∞

holds for any i ∈ {0, 1, . . . , r − 1}, where r is the number of symbols and by
p(x) we denote the probability density function of measured values.

Fig. 9.4. PPA sequence approximating an original signal [43]
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Table 9.1. The breakpoints when measurements subject to Gaussian distribution
N(0,1)

Symbol
number

β1 β2 β3 β4 β5 β6 β7 β8 β9

3 −0.43 0.43

4 −0.67 0 0.67

5 −0.84 −0.25 0.25 0.84

6 −0.97 −0.43 0 0.43 0.97

7 −1.07 −0.57 −0.18 0.18 0.57 1.07

8 −1.15 −0.67 −0.32 0 0.32 0.67 1.15

9 −1.22 −0.76 −0.43 −0.14 0.14 0.43 0.76 1.22

10 −1.28 −0.84 −0.52 −0.25 0 0.25 0.52 0.84 1.28

Specifically, for sensor measurements subject to the Gaussian distribution
N(0,1), the values of these breakpoints are given in Table 9.1 where the number
of symbols ranges from 3 to 10.

Once the breakpoints for separation of regions are fixed, the symbolic
sequence Ĉ = [ĉ1, ĉ2, . . . , ĉw] can be obtained from the intermediate PAA
sequence C̃ = [c̃1, c̃2, . . . , c̃w] by using the following rule:

ĉi = alphaj iff βj−1 ≤ ci ≤ βj (9.12)

where alphaj denotes the symbol assigned to the jth region bounded by βj−1

and βj.

9.3.3 Temporal Abstraction

Temporal abstraction is an artificial intelligence technique first proposed
by [45] to solve data interpretation tasks. The goal is to derive high level
generalization from time-stamped representations of time series to evolve to-
ward interval-based representations. Basically this is achieved by aggregating
adjacent events exhibiting a common behavior overtime into a generalized
concept. Through temporal abstraction, large amounts of temporal data in
primary, longitudinal signals can be compressed into compact, abstract, and
more meaningful descriptions in the form of series of symbolic values.

Basic temporal abstraction seems sufficient to derive symbolic time se-
ries data in the context of this chapter. The ontology for basic temporal ab-
straction is depicted in Fig. 9.5 which includes state abstraction and trend
abstraction. The former focuses on the measured values themselves to extract
intervals associated to qualitative concepts such as low, normal, and high,
while the latter considers differences between two neighboring records to de-
tect specific patterns like increase, decrease, and stationarity in the series. If
differences between consecutive measurements are treated as data for a new
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Fig. 9.5. Ontology of basic temporal abstraction

series, trend abstraction is equivalent to applying state abstraction to the
secondary series of differences derived from the original series of measured
values.

The regions associated with qualitative concepts are to be defined before-
hand through discretization of the range of measured values for state abstrac-
tion or the range of difference values for trend abstraction. The essential thing
to do in abstraction is merging adjacent entities falling in the same region into
a cluster and summarizing behaviors in this cluster with a concept (symbol)
corresponding to the region. Then, arranging concepts of clusters according to
the order of their appearances produces a required symbolic series. This new
series is compact, abstract, and contains more meaningful information than
the primary one.

Temporal abstraction was applied successfully to intelligent analysis of lon-
gitudinal data series gathered from monitoring of chronic patients, as reported
in [6]. This work, for instance, analyzed and abstracted body temperature pro-
files in terms of the concepts of low, normal, high, and very high. At the same
time the trend for temperature changes were identified as stationarity, in-
crease, or decrease. A simple example given in [6] to illustrate abstractions of
body temperatures is shown in Fig. 9.6.

9.3.4 Phase-Based Pattern Identification

In some cases a longitudinal signal consists of a series of phases and every
phase has its physical significance to identify its property (pattern) alone.
This motivates us to divide the whole signal profile into pieces of subsignals
and each of which corresponds to a phase. Since subsignals are assumed to
be relatively short and simple, conventional signal processing methods like
Fourier or wavelet transforms can be applied to them for extracting features
and classifying their patterns. Further, arranging patterns of subsignals in
order of their appearances creates a symbolic series as compact and abstract
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Fig. 9.6. A simple example for temporal abstractions on body temperatures [6]

representation for the overall signal. Each symbol in this series signifies the
pattern of a subsignal corresponding to a phase. We refer the method stated
above as phase-based pattern identification.

This method is used in one of our AI projects related to stress medi-
cine [35], where RSA signals obtained from patients are employed to classify
their stress levels. A patient is usually tested through a series of 40–80 breath-
ing cycles (including inhalation and exhalation). Every respiration cycle lasts
on average 5–15 s and corresponds to either a normal breathing pattern or
one of the dysfunctional patterns. The patterns of breathing (also called RSA
patterns) are identified from RSA measurements in the respective respiration
periods. Further patterns from consecutive breathing cycles constitute a sym-
bolic time series, which is to be investigated to find information reflecting
stress levels of patients.

An overview of the stress medicine project is depicted in Fig. 9.7. First
the RSA signal measured during the whole test period is decomposed into a
collection of subsignals. By subsignal i in Fig. 9.7 we denote the phase of the
signal recorded for the ith breathing cycle. Each subsignal i is delivered to
the block “signal classifier,” where wavelet analysis and CBR are applied to
decide upon its pattern [35]. The identified patterns are then composed into
a symbolic series in terms of their appearance order for classifying categories
concerning stress levels.
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Fig. 9.7. An overview of the stress medicine project

9.4 Knowledge Discovery on Symbolic Time Series
Representations

Once a numerical signal has been converted into a symbolic series, it is cru-
cial to get awareness of which parts in the series make sense while others are
ignorable. This entails discovering knowledge about key sequences for an un-
derlying domain. Key sequences help better interpret and characterize time
series at hand to capture real nature of dynamic systems

Indeed the value of knowledge about key sequences has been made ob-
vious in many application scenarios. For instance, in health monitoring of
engineering equipments, original sensor readings can be converted into dis-
crete symbols [41], and some critical changes in series of measurements like
swell, sag, impulsive transients, might be signs indicating a present or poten-
tial anomaly. In telecommunications, useful information can be obtained from
sequences of alarms produced by switches for analysis and prediction of net-
work faults. In defense, sequences of deployments/actions of enemies would
possibly betray their tactical intentions. Finally, in a medical scenario, a data
sequence of symptoms exhibited on a patient may help to forecast a disease
that follows the emerging symptoms.

9.4.1 Problem Statements

To clearly present the proposed knowledge discovery approach, we now give
descriptions of the various terms and concepts that are related. We start
from formal definitions of symbolic time series, sequences, and time series
databases, and then we precisely formulate the problem this section aims to
tackle.
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Definition 1. A symbolic time series is a series of symbols signifying events
that occurred sequentially overtime, X = [x(1), x(2), . . . , x(i), . . . , x(w)], where
i indexes an time segment corresponding to symbolic value x(i).

In a general sense, a symbolic series in Definition 1 can be either a conver-
sion from a numerical signal or a recording of discrete events that happened
sequentially in nature. In the remaining of this chapter we refer time series to
only symbolic ones given no special notes.

Moreover, every time series has an inherent class. The previous time series
data are assumed to have been classified and they are stored in a database
together with their associated classes to facilitate data mining. A definition
of time series database in the context of classification is given as follows:

Definition 2. A time series database is a set of pairs {(Xi, Zi)}K
i=1, where

Xi denotes a time series, Zi the class assigned to Xi, and K is the number
of time series cases in the database.

With a time series database at hand, the data mining process involves
analyzing sequences that are included in the database. A sequence of a time
series is formally described in Definition 3.

Definition 3. A sequence S of a time series X = [x(1), x(2), . . . , x(w)] is a
list consisting of elements taken from contiguous positions of X, i.e., S =
[x(k), x(k + 1) , . . . , x(k + m − 1)] with m ≤ w and 1 ≤ k ≤ w − m + 1.

Usually there is a very large amount of sequences included in the time
series database. But only a part of them that carry useful information for
estimating classes are in line with our interest. Such sequences are referred to
as indicative sequences and defined in the following:

Definition 4. A sequence is regarded as indicative given a time series data-
base provided that:

(1) It appears in a sufficient amount of time series profiles of the database
(2) The discriminating power of it, assessed upon the database, is above a

specified threshold

A measure for discriminating power together with the arguments that lie
behind this definition will be elaborated in Sect. 9.4.2. The intuitive explana-
tion is that an indicative sequence is such a one that, on one hand, appears
frequently in the database, and on the other hand, exhibits high cooccurrence
with a certain class.

Obviously, if a sequence is indicative, another sequence that contains it as
subsequence may also be indicative for predicting the class. However, if these
both are indicative of the same class, the second sequence is considered as re-
dundant with respect to the first one because it conveys no more information.
Redundant sequences can be easily recognized by checking possible inclusion
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between sequences encountered. The goal here is to find sequences that are
not only indicative but also nonredundant and independent of each other.

Having given necessary notions and clarifications we can now formally
define our problem to be addressed as follows:

Given a time series database consisting of time series profiles and asso-
ciated classes, find a set of indicative sequences {S1 , S2 , . . . , Sp} that satisfy
the following two criteria:

(1) For any i, j ∈ {1 , 2 , . . . , p} neither Si ⊆ Sj nor Sj ⊆ Si if Si and Sj are
indicative of a same class

(2) For any sequence S that is indicative, S ∈ {S1 , S2 , . . . , Sp} if S is not
redundant with respect to Sj for any j ∈ {1, 2, . . . , p}
The first criterion above requests compactness of the set of sequences

{S1 , S2 , . . . , Sp} in the sense that no sequence in it is redundant by hav-
ing a subsequence indicative of the same class as it. A sequence that is both
indicative and nonredundant is called a key sequence. The second criterion
further requires that no single key sequence shall be lost, which signifies a
demand for completeness of the set of key sequences to be discovered.

9.4.2 Evaluation of Single Sequences

This section aims to evaluate individual sequences to decide whether one
sequence can be regarded as indicative. The main thread is to assess the dis-
criminating power of sequences in terms of their cooccurrence relationship
with possible time series classes. In addition we also illustrate the importance
of sequence appearing frequencies in the case base for ensuring reliable assess-
ments of the discriminating power.

We assume that given a sequence S there are a set of probable consequent
classes {C1, C2, . . . , Ck}. The strength of the cooccurrence between sequence
S and class Ci(i = 1 . . . k) can be measured by the probability, p(Ci|S), of
Ci conditioned upon S. Sequence S is considered as discriminative in pre-
dicting outcomes as long as it has a strong cooccurrence with either of the
possible classes. The discriminating power of S is defined as the maximum of
the strengths of its relations with probable consequent classes. Formally this
definition of discriminating power PD is expressed as:

PD(S) = max
i=1...k

P (Ci|S) (9.13)

In addition we say that the class yielding the maximum strength of the
cooccurrences, i.e., C = arg

i=1...k
max P (Ci|S), is the class that sequence S is

indicative of.
The conditional probabilities in (9.13) can be derived according to the

Bayesian theorem as:

P (Ci|S) =
P (S|Ci)P (Ci)

P (S)
(9.14)
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As the probability P (S) is generally obtainable by

P (S) = P (S|Ci)P (Ci) + P (S|Ci)P (Ci) (9.15)

(9.14) for conditional probability assessment can be rewritten as

P (Ci|S) =
P (S|Ci)P (Ci)

P (S|Ci)P (Ci) + P (S|Ci)P (Ci)
(9.16)

Our aim here is to yield the conditional probability P (Ci|S) in terms of (9.16).
As P (Ci) is a priori probability of occurrence of Ci which can be acquired from
domain knowledge or approximated by experiences with randomly selected
samples, the only things that remain to be resolved are the probabilities of S
in (time series) cases having class Ci and in cases not belonging to class Ci,
respectively. Fortunately such probability values can be easily estimated by
resorting to the given case base. For instance we use the appearance frequency
of sequence S in class Ci cases as an approximation of P (S|Ci), thus we
have:

P (S|Ci) ≈ N(Ci,S)
N(Ci)

(9.17)

where N(Ci) denotes the number of cases having class Ci in the case base
and N(Ci, S) is the number of cases having both class Ci and sequence S.
Likewise the probability P (S|Ci) is approximated by

P (S|Ci) ≈ N(Ci,S)

N(Ci)
(9.18)

with N(Ci) denoting the number of cases not having class Ci and N(Ci, S)
being the number of cases containing sequence S but not belonging to
class Ci.

The denominator in (9.16) has to stay enough above zero to enable
reliable probability assessment using the estimates in (9.17) and (9.18). Hence
it is crucial to acquire an adequate amount of time series cases containing
S in the case base. The more such cases available the more reliably the
probability assessment could be derived. For this reason we refer the quan-
tity N(S) = N(Ci, S) + N(Ci, S) as evaluation base of sequence S in this
chapter.

At this point we realize that two requirements have to be satisfied for be-
lieving a sequence to be indicative of a certain class. Firstly the sequence has
to possess an adequate evaluation base by appearing in a sufficient amount
of time series cases. Obviously a sequence that occurred randomly in few oc-
casions is not convincing and can hardly be deemed significant. Secondly, the
conditional probability of that class under the sequence must be dominatingly
high, signifying a strong discriminating power. These explain why indicative
sequence is defined by the demands on its appearance frequency and discrim-
inating power in Definition 4.
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In real applications two minimum thresholds need to be specified for the
evaluation base and discriminating power, respectively, to judge sequences as
indicative or not. The values of these thresholds are domain dependent and
are to be decided by human experts in the related area. The threshold for
discriminating power may reflect the minimum probability value that suffices
to predict a potential outcome in a specific scenario. The threshold for the
evaluation base indicates the minimum amount of samples required to fairly
approximate the conditional probabilities of interest. This threshold value can
be estimated in terms of the distribution of cases in classes in the case library
as well as their prior probabilities. It is shown in the following.

Let δ > 0 be the smallest distance for the denominator in (9.16) to remain
sufficiently away from zero, we demand

N(Ci, S)
N(Ci)

P (Ci) +
N(Ci, S)
N(Ci)

P (Ci) ≥ δ (9.19)

Further the above relation has to hold for every class Ci to ensure reliable
assessments of conditional probabilities for all the classes given sequence S.
Next the lower bound for the left side of inequality (9.19) is yielded by

N(Ci, S)
N(Ci)

P (C) +
N(Ci, S)
N(Ci)

P (Ci) ≥ N(Ci, S)P (Ci) + N(Ci, S)P (Ci)
max[N(Ci), N(Ci)]

≥ [N(Ci, S) + N(Ci, S)] • min[P (Ci), P (Ci)]
max[N(Ci), N(Ci)]

=
min[P (Ci), P (Ci)]
max[N(Ci), N(Ci)]

N(S)

(9.20)

Since this lower bound not being less than δ is a sufficient condition for sat-
isfaction of inequality (9.19), we simply impose constraints on the evaluation
base N(S) as given by

N(S) ≥ max[N(Ci), N(Ci)]
min[P (Ci), P (Ci)]

• δ ∀i (9.21)

Herewith it is clearly seen that the threshold value for the evaluation base can
be defined as the minimum number of N(S) that satisfies all the constraints
in (9.21) for every class Ci. Finally only those sequences that pass thresholds
for both discriminating power and evaluation base are evaluated as indicative
ones.

9.4.3 Searching for Key Sequences

With the evaluation of sequences being established, we now turn to exploration
of qualified sequences in the problem space. The goal is to locate all key
sequences that are nonredundant and indicative. We first detail a sequence
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Fig. 9.8. The state space for sequences with three symbols

search algorithm for this purpose in this section and then we demonstrate
simulation results on a synthetic case base with the proposed algorithm in
Sect. 9.4.4

Discovery of key sequences can be considered as a search problem in a
state space in which each state represents a sequence of symbols. Connection
between two states signifies an operator between them for transition, i.e.,
addition or removal of a single symbol in time sequences. The state space for
a scenario with three symbols a, b, c is illustrated in Fig. 9.8, where an arc
connects two states if one can be created by extending the sequence of the
other with a following symbol.

A systematic exploration in the state space is entailed for finding a com-
plete set of key sequences. We start from a null sequence and generate new
sequences by adding a single symbol to parent nodes for expansion. The child
sequences are evaluated according to evaluation bases and discriminating pow-
ers. The results of evaluation determine the way to treat each child node in
one of the following three situations:

(a) If the evaluation base of the sequence is under a threshold required for con-
veying reliable probability assessment, terminate expansion at this node.
The reason is that the child nodes will have even smaller evaluation bases
by appearing in fewer cases than their parent node.

(b) If the evaluation base and discriminating power are both above their re-
spective thresholds, do the redundancy checking for the sequence against
the list of key sequences already identified. The sequence is redundant if
at least one known key sequence constitutes its subsequence while both
remaining indicative of the same consequent. Otherwise the sequence is
considered nonredundant and hence is stored into the list of key sequences
together with the consequent it indicates. After that this node is further
expanded with the hope of finding, among its children, qualified sequences
that might be indicative of other consequents.
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(c) If the evaluation base is above its threshold whereas the discriminating
power still not reaching the threshold, continue to expand this node with
the hope of finding qualified sequences among its children.

The expansion of nonterminate nodes is proceeded in a level-by-level fashion.
A level in the search space consists of nodes for sequences of the same length
and only when all nodes at a current level have been visited does the algorithm
move on to the next level of sequences having one more symbol. This order of
treating nodes is very beneficial for redundancy checking because a redundant
sequence will always be encountered later than its subsequences including the
key one(s) during the search procedure.

From a general structure, the proposed sequence search algorithm is a
little similar to the traditional breadth-first procedure. However, there are still
substantial differences between both. The features distinguishing our search
algorithm are (1) it does not attempt to expand every node encountered and
criteria are established to decide whether exploration needs to be proceeded
at any given state and (2) it presumes multiple goals in the search space and
thus the search procedure is not terminated when a single key sequence is
found. Instead the search continues on other prospective nodes until none of
the nodes in the latest level needs to be expanded. A formal description of
the proposed search algorithm is given as follows:

Algorithm for finding a complete set of key sequences

1. Initialize the Open list with an empty sequence.
2. Initialize the Key List to be an empty list.
3. Remove the most left node t from the Open list.
4. Generate all child nodes of t
5. For each child node, C(t), of the parent node t

a) Evaluate C(t) according to its discriminating power and evalua-
tion base;

b) If the evaluation base and discriminating power are both above their
respective thresholds, do the redundancy checking for C(t) against the
sequences in the Key list. Store C(t) into the Key list if it is judged
as not redundant. Finally put C(t) on the right of the Open list.

c) If the evaluation base of C(t) is above its threshold but the discrimi-
nating power is not satisfying, put C(t) on the right of the Open list.

6. If the Open list is not empty go to step 3, otherwise return the Key list
and terminate the search.

Finally it bears mentioning that finding key sequences in our context differs
from those [2, 13, 46] in the literature of sequence mining. Usually the goal
in sequence mining is merely to find all legal sequential patterns with their
frequencies of appearances above a user-specified threshold. Here we have
to consider the cause-outcome effect for classification purpose. Only those
nonredundant sequences that are not only frequent but also possess strong
discriminating power will be selected as the results of search.
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Table 9.2. Sequences discovered on a synthetic case base

Sequence
discovered

Discriminating power% Evaluation base Dominating
consequent

[a d c] 76.70 103 Class 1
[b c a] 78.22 101 Class 1
[d e b] 73.39 124 Class 2
[e a e] 83.18 107 Class 3

9.4.4 Simulation Results

To verify the feasibility of the mechanism addressed above we now present the
simulation results on a synthetic case base. A case in this case base is depicted
by a time series of 20 symbols and one diagnosis class as the outcome. A
symbol in a time series belongs to {a, b, c, d, e} and a diagnosis class is either
1, 2, or 3. The four key sequences assumed are [a d c], [b c a], [d e b], and [e a e].
The first two sequences were supposed to have strong cooccurrences with class
1 and the third and fourth exhibit strong cooccurrences with classes 2 and 3,
respectively. Each time series in the case base was created in such a way that
both sequences [a d c] and [b c a] had a chance of 80% of being reproduced
once in the time series cases of class 1 while sequences [d e b] and [e a e] were
added into class 2 and class 3 cases, respectively, with a probability of 90%.
After stochastic reproduction of these key sequences, the remaining symbols
in the time series of all cases were generated randomly. The whole case base
consists of 100 instances for each class. Presuming such time series cases to
be randomly selected samples from a certain domain, a priori probability of
each class is believed to be one-third.

The sequence search algorithm was applied to this case base to find key
sequences and potential cooccurrences hidden in the data. The threshold for
the discriminating power was set at 70% to ensure an adequate strength of the
relationships discovered. We also specified 50 as the threshold of the evaluation
base for reliable assessment of probabilities. The sequences found in our test
are shown in Table 9.2 below.

As seen from Table 9.2 we detected all the four key sequences previously
assumed. They were recognized to potentially cause the respective consequents
with the probabilities ranging from 73.39 to 83.18%. These relationships with
a degree of uncertainty are due to the many randomly generated symbols
in the case base such that any sequence of symbols is more or less probable
to appear in time series of any class. But such nondeterministic property is
prevalent in many real-world domains.

9.5 Utility of Key Sequences in Case-Based Classification

The key sequences discovered help us better focus on the most important
dynamic patterns while ignoring trivial randomness in examining a time se-
ries. They are treated as significant features in capturing dynamic system
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behaviors. Rather than enumerating what happened in every consecutive time
segment, we can now more concisely represent a time series case in terms of
occurrences of key sequences in it. Let {S1 , S2 , . . . , Sp} be the set of key
sequences. We have to search for every Si(i = 1 . . . P ) in a time series X to
detect all possible appearances. Then case index for X can be established ac-
cording to the results of key sequence detection. In the following four alternate
ways to index X based on key sequences are suggested.

9.5.1 Naive Case Index

A naive means of indexing a time series case X is to depict it by a vector of
binary numbers each of which corresponds to a key sequence. A number in
the vector is unity if the corresponding sequence is detected in X and zero
otherwise. This means that, by the naive method, the index of X is given by

Id1(X | S1, . . . , SP ) = [b1, b2, . . . , bP ] (9.22)

where

bi =
{

1 if Si is subsequence of X
0 otherwise

(9.23)

This index has the merit of imposing low demand in computation. It also en-
ables the similarity between two cases to be calculated as the proportion of the
positions where their indexing vectors have identical values. Suppose two time
series cases X1 and X2 which are indexed by binary vectors [b11 , . . . , b1P ] and
[b21 , . . . , b2P ], respectively, the similarity between them is simply defined as

Sim1(X1, X2) = 1 − 1
P

∑P

j=1
|bij − b2j | (9.24)

9.5.2 Case Index Using Sequence Appearance Numbers

With a binary structure the case index in Sect. 9.5.1 carries a little limited
content and would be usable only in relatively simple circumstances. A main
reason is that the index cannot reflect how many times a key sequence has
appeared in a series of consideration. To incorporate that information, an
alternate way is to directly employ the numbers of appearances of single key
sequences in describing time series cases. By doing this we acquire the second
method of indexing time series X by an integer vector as

Id2(X | S1, . . . , SP ) = [f1, f2, . . . , fP ] (9.25)

where fi denotes the number of occurrences of sequence Si in series X.
Further, considering the case index in (9.25) as a state vector, we use

the cosine matching function [44] as the similarity measure between two time
series cases X1 and X2. Thus we have
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Sim2(X1, X2) =

∑P
j=1 f1jf2j√∑P

j=1 f2
1j

√∑P
j=1 f2

2j

(9.26)

with f1j, f2j denoting the numbers of occurrences of key sequence Sj in X1

and X2, respectively.

9.5.3 Case Index in Terms of Discriminating Power

Although the case index in (9.25) can distinguish two cases having a same key
sequence but with different numbers of appearances, it still might not be an
optimal representation to capture the exact nature of the problem. Recall that
the value of a key sequence is conveying a degree of confidence in the sense
of discriminating power for predicting a potential consequent, a time series
X would be more precisely characterized by the discriminating powers of the
appearances of single key sequences. Intuitively two times of occurrences of
a key sequence would give a stronger discriminating power than occurring
just once, but not twice in the quantity of the strength. From view of this we
suggest indexing X as a vector of real numbers, representing discriminating
powers for the appearances of single key sequences, as follows:

Id3(X | S1, . . . , SP ) = [g1, g2, . . . , gP ] (9.27)

with

gi =
{

DP (fi ∗ Si) if fi ≥ 1
0 if fi = 0 (9.28)

By DP (fi ∗Si) we denote the discriminating power by sequence Si appearing
fi times in X.

Let C be the class that the key sequence Si is indicative of. We define
the discriminating power DP (fi ∗ Si) as the probability for class C given fi

appearances of sequence Si. This probability can be obtained by applying the
Bayes theorem in a sequential procedure. Assuming a two class problem with-
out loss of generality, this procedure is depicted here by a series of equations
as follows:

P (C
∣∣Si) =

P (Si|C)P (C)
P (Si|C)P (C) + P (Si|C)P (C)

(9.29)

P (C|2 ∗ Si) =
P (Si|C)P (C

∣∣Si)
P (Si|C)P (C

∣∣Si) + P (Si|C)P (C
∣∣Si)

(9.30)

P (C|t ∗ Si) =
P (Si|C)P (C|(t − 1) ∗ Si)

P (Si|C)P (C|(t − 1) ∗ Si) + P (Si|C)P
(
C|(t − 1) ∗ Si

) (9.31)
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DP (fi ∗ Si) = P (C|fi ∗ Si) =
P (Si|C)P (C|(fi − 1) ∗ Si)

P (Si|C)P (C|(fi − 1) ∗ Si) + P (Si|C)P
(
C|(fi − 1) ∗ Si

)
(9.32)

where the probabilities P (Si|C) and P (Si|C) can be estimated according to
(9.17) and (9.18), respectively. The probability updated in (9.29) represents
the probability for class C given one appearance of Si, which is further up-
dated in (9.30) by the second appearance of Si producing a higher probability
considering both occurrences. Generally, the probability P (C|t∗Si) is yielded
by updating the prior probability P (C|(t − 1) ∗ Si) with one more occurrence
of Si in (9.31). Finally we obtain the ultimate probability assessment incor-
porating all appearances, i.e., the required discriminating power, by (9.32).

We now give a concrete example to illustrate how a case index can be
built in terms of occurrences of key sequences. Suppose a two class situation
in which three key sequences S1, S2, and S3 are discovered. Sequence S1

appears twice in time series X and S2 appears once while S3 is not detected.
S1 and S2 are both indicative of a certain class C. The a priori probability
for class C is 50% and the probabilities of sequences S1, S2 in situations of
class C and its complementary are shown below:

P (S1 |C ) = 0.56 P (S1

∣∣C ) = 0.24

P (S2 |C ) = 0.80 P (S2

∣∣C ) = 0.40

With all the information assumed above, the discriminating powers for the
appearances of S1 and S2 are calculated in the following:

1. Calculate the probability for C with the first appearance of S1 by

P (C |S1) =
P (S1 |C)P (C)

P (S1 |C)P (C) + P (S1

∣∣C)P (C)
=

0.56 · 0.5

0.56 · 0.5 + 0.24 · 0.5
= 0.70

2. Refine the probability P (C|S1) with the second appearance of S1, pro-
ducing the discriminating power for the appearances of S1

DP (2 ∗ S1) = P (C |2 ∗ S1) =
P (S1 |C)P (C |S1 )

P (S1 |C)P (C |S1 ) + P (S1

∣∣C)P (C |S1 )

=
0.56 · 0.70

0.56 · 0.70 + 0.24 · 0.30
= 0.8448

It is clearly seen here that the power of discrimination is increased from
0.70 to 0.8448 due to the key sequence occurring for the second time.

3. Derive the discriminating power for the occurrence of S2 by calculating
the conditional probability for C upon S2 as

DP (1 ∗ S2) = P (C |S2) =
P (S2 |C)P (C)

P (S2 |C)P (C) + P (S2

∣∣C)P (C)

=
0.80 · 0.50

0.80 · 0.50 + 0.40 · 0.50
= 0.6667
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Moreover, because S3 is not detected in X, there is no discriminating
power for it. Hence we construct the index for this time series case as:

Id3(X |S1 , S2, S3) = [0.8448, 0.6667, 0]

Finally, with this case indexing scheme, we use the cosine function again as
the similarity measure for case retrieval. So the similarity between two time
series X1 and X2 is given by

Sim3(X1, X2) =

∑P
j=1 g1jg2j√∑P

j=1 g2
1j

√∑P
j=1 g2

2j

(9.33)

where g1j and g2j denote the jth elements in the case indexes (9.27) for X1

and X2, respectively.

9.5.4 Case Indexing with Key Sequence Union

In Sect. 9.5.3 cases are indexed according to the discriminating powers of oc-
currences of single key sequences. Such work could be extended by regarding
the key sequences that are indicative of a common class as a collective union.
This view motivates us to group occurrences of key sequences in time series
X into a set of clusters. For every class Ci there is a cluster Vi corresponding
to it. Vi is a collection of events for occurrences of those key sequences that
are indicative of class Ci. The discriminating power of cluster Vi is defined as
the probability of class Ci in light of the events included in the cluster. Hence
we write

DP (Vi) =
{

P (Ci |{ej |ej ∈ Vi } ) if Vi �= Ø
0 if Vi = Ø (9.34)

Further, the discriminating powers of clusters of events representing key se-
quences occurrences are utilized to index a time series case. Hence the index
for time series X is given by

Id4(X | S1, . . . , SP ) = [DP (V1), DP (V2), . . . , DP (VK)] (9.35)

where K denotes the number of classes of interest.
It is clear that the case index in the form of (9.35) is highly concise. It

reduces the length of index vector to the number of classes. This is achieved
by calculating the discriminating power for a union of key sequences that are
consistent. Consequently every component in the vector of (9.35) contains rich
information by fusion of occurrences from multiple key sequences. This pro-
posed case index is valuable for further dimensionality reduction particularly
under the circumstances when the number of key sequences discovered is still
quite large.

Let Vi = {e1, e2,Λ, eT } be a cluster of events of key sequences occurrences
corresponding to class Ci. We now want to obtain the discriminating power of
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cluster Vi by calculating the conditional probability P (Ci|e1, e2,Λ, eT ). This
probability is yielded by exploiting the events ej as evidences for probability
updating in separate steps. At every step we use a single event to revise prior
probabilities according to the Bayes theorem and these updated probability
estimates are then propagated as prior beliefs to the next step. The procedure
of probability updating using events in cluster Vi is depicted by a series of
equations as follows:

P (Ci|e1) =
P (e1|Ci)P (Ci)

P (e1|Ci)P (Ci) + P (e1|Ci)P (Ci)
(9.36)

P (Ci|e1, e2) =
P (e2|Ci)P (Ci |e1 )

P (e2|Ci)P (Ci |e1 ) + P (e2|Ci)P (Ci |e1 )
(9.37)

P (Ci|e1, . . . , ei) =
P (ei|Ci)P (Ci |e1 , . . . , ei−1)

P (ei|Ci)P (Ci |e1, . . . , ei−1) + P (ei|Ci)P (Ci |e1, . . . ei )
(9.38)

p(Ci|e1, . . . , eT ) =
P (eT |Ci)P (Ci |e1 , . . . , eT−1)

P (eT |Ci)P (Ci |e1, . . . , eT−1)+ P (eT |Ci)P (Ci |e1, . . . eT−1 )
(9.39)

where the probabilities P (ei|Ci) and P (ei|Ci) for i ∈ {1, . . . , T} can be esti-
mated according to (9.17) and (9.18), respectively, as ei is considered as the
occurrence of a sequence. The probability updated in (9.36) represents the
probability for class Ci given event e1, which is further updated in (9.37) by
event e2 producing a more refined belief considering both e1 and e2. Gener-
ally the probability P (C|e1, . . . , ei) is yielded by updating the prior probability
P (C|e1, . . . , ei−1) with a new event ei in (9.38). Finally we obtain the ultimate
probability assessment incorporating all available events in (9.39).

At this stage one may question the order in which single events from a
cluster are used to refine probability assessments. This seems a fundamen-
tal issue and involves allocation of events to different steps of a sequential
procedure. Fortunately our study has clarified that the order of events used
in probability updating is completely indifferent. The final probability value
remains constant as long as each piece of event is assigned to a distinct step.
The claims as such are formally based on the following theorems.

Lemma 1. Let {e1, . . . , eT } be a cluster of events representing appearances of
certain key sequences in a time series X. The probability for class C given the
cluster is not affected if two adjacent events exchange their positions in the
order of events used for probability refinements. This means that the relation
P (C|e1, . . . ei, ei+1, . . . , eT } = P (C|e1, . . . ei+1, ei, . . . , eT } holds for i ∈ {1, . . .
T − 1}.
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Proof. For proof of the lemma with the statement that P (C|e1, . . . , ei−1, ei,
ei+1, . . . , eT } = P (C|e1, . . . , ei−1, ei+1, ei, . . . , eT }, we only need to establish
the relation for P (C|e1, . . . , ei−1, ei, ei+1} = P (C|e1, . . . , ei−1, ei+1, ei), which
is equivalent to the lemma.

We start to consider the probability P (C|e1, . . . ei, ei+1} which is acquired
by updating the prior belief P (C|e1, . . . , ei) with a new evidence ei+1, hence
it can be written as

P (C|e1, . . . , ei, ei+1) =
P (ei+1|C)P (C|e1, . . . , ei)

P (ei+1|C)P (C|e1, . . . , ei) + P (ei+1|C)P (C|e1, . . . , ei)
(9.40)

Further the probability P (C|e1, . . . , ei) is formulated by taking P (C|e1, . . . , ei−1)
as its prior estimate such that

P (C|e1, . . . , ei) =
P (ei|C)P (C|e1, . . . , ei−1)

P (ei|e1, . . . , ei−1)
(9.41)

Likewise we obtain

P (C|e1, . . . , ei) =
P (ei|C)P (C|e1, . . . , ei−1)

P (ei|e1, . . . , ei−1)
(9.42)

Combining (9.41) and (9.42) into (9.40) gives rise to a transformed formula-
tion as

P (C|e1, . . . , ei, ei+1)

=
P (ei+1|C)P (ei|C)P (C|e1, . . . , ei−1)

P (ei+1|C)P (ei|C)P (C|e1, . . . , ei−1) + P (ei+1|C)P (ei|C)P (C|e1, . . . , ei−1)
(9.43)

Next we express the conditional probabilities P (ei+1|C), P (ei+1|C), P (ei|C),
P (ei|C) with their Bayes forms by

P (ei+1|C) =
P (C|ei+1)P (ei+1)

P (C)
(9.44)

P (ei+1|C) =
P (C|ei+1)P (ei+1)

P (C)
(9.45)

P (ei|C) =
P (C|ei)P (ei)

P (C)
(9.46)

P (ei|C) =
P (C|ei)P (ei)

P (C)
(9.47)

where P(C) and P (C) denote the initial probability estimates for class C
and its complementary without any events about key sequences appearances.
Using the Bayes forms from (9.44) to (9.47), (9.43) is finally rewritten as
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P (C|e1, . . . , ei, ei+1)

=
P 2(C)P (C|ei+1)|P (C|ei)P (C|e1, . . . , ei−1)

P 2(C)P (C|ei+1)|P (C|ei)P (C|e1, . . . , ei−1) + P 2(C)P (C|ei+1)|P (C|ei)P (C|e1, . . . , ei−1)

(9.48)

Clearly we see from (9.48) that the order between ei and ei+1 has no effect at
all on the probability P (C|e1, . . . , ei, ei+1) assessed. It follows that

P (C|e1, . . . , ei−1, ei, ei+1) = P (C|e1, . . . , ei−1, ei+1, ei) (9.49)

and here from the lemma is proved.
With the lemma justified by the proof above, we further contemplate the

implication of it. This leads to a corollary presented below. ��
Corollary 1. Let {e1, . . . , eT } be a cluster of events representing appearances
of certain key sequences in a time series X. The probability for X in class C
given the cluster is independent of the order according to which single events
e1, e2,..., eT , are used in probability refinements.

The proof of Corollary 1 is obvious. According to the lemma, an element
in a given order of events can be moved to an arbitrary position by repeat-
edly exchanging its position with an adjacent one while not affecting the final
probability assessments. As this can be done to every piece of event, we enable
transitions to any orders of events without altering the estimated value of the
probability.

This corollary is important in providing theoretic arguments allowing for
an arbitrary order of sequences to be used in probability fusion based on the
Bayes theorem. The connotation is that when a key sequence occurred in the
time series does not matter for the case index. Instead only the numbers of
appearances of key sequences affect the likelihoods of classes given respective
occurrence clusters, which are included as components in the case index vector.

Now let us study an illustrative example to better understand how the above
sequential procedure works in derivation of required probabilities using clusters
of events as evidences. Consider a time series X with two probable classes.
Suppose that four key sequences S1, S2, S3, and S4 are detected in X, and
S1, S2 are indicative of class C while S3 and S4 are indicative of the comple-
mentary of C. The a priori probability of class C is 50%, and the probabilities
of sequences S1, S2, S3, and S4 in situations of class C and its complementary
are shown below:

P (S1|C) = 0.56
P (S2|C) = 0.80
P (S3|C) = 0.35
P (S4|C) = 0.18

P (S1|C) = 0.24
P (S2|C) = 0.40
P (S3|C̃) = 0.62
P (S4|C̃) = 0.30

Further we assume that sequence S1 appears twice in X and S2, S3, S4 appear
once, hence the clusters of key sequence occurrences for X are notated as
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V1(X) = {S1, S1, S2} and V2(X) = {S3, S4}. With these three occurrences
detected, the probability of class C is yielded in the following three steps:

Step A1: Update the a priori probability P (C) with the first appearance of
S1 by

P (C|S1) =
P (S1|C)P (C)

P (S1|C)P (C) + P (S1|C)P (C)
=

0.56 · 0.5
0.56 · 0.5 + 0.24 · 0.5

= 0.70

Step A2: Refine the probability updated in step A1 with the second appearance
of S1, thus we have

P (C|S1, S1) =
P (S1|C)P (C|S1)

P (S1|C)P (C|S1) + P (S1|C)P (C|S1)

=
0.56 · 0.70

0.56 · 0.70 + 0.24 · 0.30
= 0.8448

Step A3: Refine the probability updated in step A2 with the occurrence of S2,
and we acquire the final probability assessment taking into account all events by

P (C|S1, S1, S2) =
P (S2|C)P (C|S1, S1)

P (S2|C)P (C|S1, S1) + P (S2|C)P (C|S1, S1)

=
0.80 · 0.8448

0.80 · 0.8448 + 0.40 · 0.1552
= 0.9159

Likewise we calculate the probability P (C|S3, S4) with two steps as follows:
Step B1: Update the prior probability P (C) with occurrence of S3

P (C|S3) =
P (S3|C)P (C)

P (S3|C)P (C) + P (S3|C)P (C)
=

0.62 · 0.5
0.35 · 0.5 + 0.62 · 0.5

= 0.6392

Step B2: Refine the probability updated in step B1 with appearance of S4

P (C|S3, S4) =
P (S4|C)P (C|S3)

P (S4|C)P (C|S3) + P (S4|C)P (C|S3))

=
0.30 · 0.6392

0.18 · 0.3608 + 0.30 · 0.6392
= 0.7470

Finally, with the required probabilities at hand, we can establish the case index
for the time series X as follows

Id4(X|S1, S2, S3, S4) = [DP (V1), DP (V2)]
=
[
P (C|S1, S1, S2), P (C|S3, S4)

]
= [0.9159, 0.7470]

For similarity assessment, we first calculate the dissimilarity between two time
series X1 and X2 as the average of the differences in discriminating powers
over all key sequences clusters
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Dis4(X1, X2) =
1
K

∑K

j=1
|DP (V1j) − DP (V2j)| (9.50)

where V1j and V2j denote the jth clusters of key sequences corresponding to
class Cj, for X1 and X2, respectively. Since the concept of dissimilarity is
opposite to that of similarity, the degree of similarity between X1 and X2 is
simply defined as unity subtracted by the dissimilarity value

Sim4(X1, X2) = 1 − Dis4(X1, X2) (9.51)

9.6 Relation to Relevant Works

Representation and retrieval of sequential sensor measurements as time series
cases have received increasing research efforts during the recent years. The
primary idea is to convert time-varying profiles into somehow simplified and
shorter vectors that still preserve distances between original signals. Fourier
transform and wavelet transform are two commonly used methods for such
a conversion, and their usages for retrieving similar cases to support clinical
decisions and industrial diagnoses have been shown in [33,35,36], respectively.

A more general framework for tackling cases in time dependent domain
was proposed by [34], in which temporal knowledge embedded in cases are rep-
resented at two levels: case level and history level. The case level is tasked to
depict single cases with features varying within case durations, while consecu-
tion of cases occurrences have to be captured in the history level to reflect the
evolution of the system as a whole. It was also recommended by the authors
that, at both of the two levels, the methodology of temporal abstraction [6,45]
could be exploited to derive series of qualitative states or behaviors, which fa-
cilitate easy interpretation as well as pattern matching for case retrieval.

This chapter would be a valuable supplementary to the framework by
Montani and Portinale in the sense that our key sequence discovery approach
can be beneficially applied to the series of symbols abstracted from origi-
nal numerical time series. The point of departure is that, in many practical
circumstances, significant transitional patterns in history are more worthy
of attentions than the states or behaviors themselves associated with sin-
gle episodes. It follows that the key sequences discovered will offer us useful
knowledge to focus on what are really important in case characterization.
Moreover, as the number of key sequences is usually is much smaller than the
number of elements in the series, indexing cases in terms of key sequences
exhibits a further dimensionality reduction from series obtained via temporal
abstraction.

It is worthy noting that the knowledge discovery treated here distinguishes
itself from traditional learning included in a CBR cycle. The retain step in
CBR typically stores a new case in the library or modifies some existing cases
and may contain a number of substeps [1]. Learning therein is therefore case
specific with knowledge stemming directly from newly solved cases. Contrarily,



280 P. Funk and N. Xiong

in our approach, learning is treated as a background task separated from the
retain step and the whole case library is the input to the knowledge discov-
ery process. Some relevant works combining knowledge discovery and CBR
systems include: genetic-based knowledge acquisition for case indexing and
matching [23], incremental learning to organize a case base [38], exploitation
of background knowledge in text classification [53], and analysis of pros and
cons for explanations in CBR systems [32].

Finding sequential patterns was widely addressed in the literature of se-
quence mining [2,13,46], where the goal was merely to find all legal sequential
patterns with adequate frequencies of appearances. Identifying key sequences
in our context differs from those in sequence mining in that we have to consider
the cause-outcome effect for classification purpose. Only those nonredundant
sequences that are not only frequent but also indicative in predicting outcomes
will be selected.

Finally, time series data mining have gained increasing attention recently.
Three embedding methods were proposed by [16] to transform time series
data into a vector space for classification purpose. Keogh and his colleagues
addressed the issue of dimensionality reduction for indexing large time series
databases [25] and also for fast search in these databases [26]. In [52] a family
of three unsupervised methods was suggested to identify optimal and valid
features given multivariate time series data. Similarity mining in time series
was tackled by [21] and various methods for efficient retrieval of similar time
sequences were discussed in [9, 17, 37, 51]. Algorithms for mining association
rules were handled in [28,40,49] to model and predict time series behaviors in
dynamic systems, and the application of association mining to disclose stock
prices relations in time series was presented in [20].

9.7 Conclusion

This chapter suggests a novel hybrid methodology combining data symbol-
ization and knowledge discovery for analysis and interpretation of complex,
longitudinal signals prevalent in medical and industrial domains. Data symbol-
ization is tasked to transform primary numerical (usually real valued) series of
measurements into shorter, more abstract series of symbolic data. The process
of knowledge discovery is then applied to the case base of converted symbolic
series to find key sequences, which would in turn help better characterizing
and indexing primary numerical sensor signals into a concise case structure.

The knowledge discovery approach proposed utilizes the whole case li-
brary as available resources and is able to find from the problem space all
qualified sequences that are nonredundant and indicative. An indicative se-
quence exhibits a high cooccurrence with a certain class and is hence valuable
in offering discriminative strength for prediction and classification. A sequence
that is both indicative and nonredundant is termed as a key sequence.
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It is shown that the key sequences discovered are highly usable to charac-
terize time series cases in case-based reasoning. The idea is to transform an
original (lengthy) time series into a more concise case structure in terms of
the occurrences of key sequences detected. Four alternate ways to develop case
indexes based on knowledge about key sequences are suggested. The perfor-
mance and applicability of these four case indexing methods are being tested
in practical case studies related to our medical and industrial projects.
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