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Summary. This chapter is concentrated with the performance characterization of
a case-based reasoning (CBR) system. Based on the match score and nonmatch
score computed from the cases in the case library, we develop a statistical model
for prediction. We estimate the size of a subset of cases, called gallery size, that
can generate the optimal error estimate and its confidence on a large population
(relative to the size of the gallery). The statistical model is based on a generalized
two-dimensional prediction model that combines a hypergeometric probability dis-
tribution model with a binomial model explicitly and considers the data distortion
problem in large populations. Learning is incorporated in the prediction process
in order to find the optimal small gallery size and to improve the prediction per-
formance. During the prediction, the expectation–maximization (EM) algorithm is
used to learn the match score and the nonmatch score distributions that are rep-
resented as mixture of Gaussians. By learning, the optimal size of small gallery is
determined and at the same time the upper bound and the lower bound for the
prediction on large populations are obtained. Results are shown using a real-world
database with the increasing size of the case library.

7.1 Introduction

Case-based approaches are characterized by how the learner represents what
it has learned so far, as well as the analogical methods which are used to
transfer the learned experience [1]. In CBR, “past” experiences are stored in
memory as cases and are used to solve a new problem case. Given a problem
to be solved, the case-based method retrieves from the memory the solution
to a similar problem encountered in the past, adapts the previous solution to
the current problem, and stores the new problem-solution packet as another
case in the memory. The major concerns with CBR are the selection of the
indexing scheme to organize cases in the memory, the method for choosing
the most relevant cases at reasoning time, the adaptation heuristics to modify
pervious cases to fit the current problem, and maintenance of the case library.
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An important problem for a CBR system is the prediction of its performance
as the case library grows. In this chapter, we present a statistical model for
performance characterization.

Recognition/classification systems can classify images, signals, or other
types of measurements into a number of classes. In a simplistic way, we can
view a CBR system as a model-based recognition/classification system [2, 3],
which stores a set of models in its case library and classifies the incom-
ing cases by performing match with the database models. In this process,
the case library will be continuously growing as more cases/models become
part of the case base. It is like an incremental learning system for object
recognition, which not only involves traditional recognition/classification of
complete/occluded objects but also new model acquisition and refinement of
existing model [3, 4]. This chapter provides a method for the life-time prob-
lem [5] of a CBR system. We define the following terms in the concept of
CBR: gallery/training set, probe/testing set, populations, algorithm/system,
data, recognition/classification.

We define the following terms in the context of CBR: The gallery set and
the probe set are the training set and the testing set, respectively. The algo-
rithm/system is the set of recognition/classification programs. The population
is the data that the system under consideration may encounter in its lifetime.

Since the recognition performance of an algorithm/system is usually based
on limited data, it is difficult to estimate this performance for additional data:
the limited test data may, after all, not accurately represent a larger popu-
lation. Before we can evaluate and predict the performance of a recognition
algorithm/system on large populations, we need to answer some fundamental
questions. When we use a small gallery to estimate the algorithm/system per-
formance on large populations how can we find the optimal size of the small
gallery and how accurate is the estimation? Since the prediction is based on
the selected recognition algorithm/system, we can give the confidence inter-
val for the performance estimation on a large population [6]. The confidence
interval can describe the uncertainty associated with the estimation. This gives
an interval within which the true algorithm/system performance for the large
population is expected to fall, along with the probability that it is expected
to fall there [7].

Given limited data we can use the Bayesian parameter estimation or
nonparametric estimation methods to estimate the data distribution. The
expectation–maximization (EM) algorithm, one of the parameter estimation
methods, assumes that the underlying distribution is known. It is an iterative
method to estimate the mixture parameters by maximum likelihood tech-
niques. The parzen window and the K-nearest-neighbor are nonparametric
estimation methods that are used to estimate the data distribution in case
the underlying distribution is unknown. These two methods converge the dis-
tribution to the unknown distribution. The parzen window method estimates
the density, while the K-nearest-neighbor method determines the K closest
neighbors [8].



7 Statistical Model for Performance Prediction in Case-Based Reasoning 197

In this chapter, we use a generalized prediction model that combines a
hypergeometric probability distribution model with a binomial model. This
prediction model takes into account distortion that may occur in large popula-
tions. It also provides performance measurements as a function of rank, large
population size, number of distorted images, and similarity score (match and
nonmatch score) distributions. While we use the EM algorithm to estimate
the match score and the nonmatch score distributions, we introduce learning
to feed back similarity scores (match scores and nonmatch scores) to increase
the small gallery size. In this way, we can find the optimal size of the small
gallery to predict the large population performance. Meanwhile, we provide
the upper and the lower bounds for the prediction performance of a large pop-
ulation. In this chapter, we use two different statistical methods – Chernoff’s
inequality and Chebychev’s inequality – to obtain the relationship between
the small gallery size and the confidence interval given a margin of error.
The small gallery size for prediction that we get from the learning process is
smaller than the size determined by statistical methods.

The paper is organized as follows. Related work and contributions are pre-
sented in Sect. 7.2. The details of the technical approach are given in Sect. 7.3.
It includes the integrated model, the procedure of learning for similarity score
distributions in the prediction, and the statistical methods to find the opti-
mal sample size. Experimental results are shown in Sect. 7.4. The integrated
model with learning is tested on the NIST-4 fingerprint database. Conclusions
are given in Sect. 7.5.

7.2 Related Work and Contributions

7.2.1 Related Work

Until now the prediction models are mostly based on the feature space or sim-
ilarity scores [9]. The statistical approaches are used by many researchers to
estimate the recognition system performance. Wayman [10] and Daugman [11]
develop a binomial model that uses the nonmatch score distribution. This
model underestimates recognition performance for large populations. Phillips
et al. [12] develop a moment model, which uses both the match score and
the nonmatch score distributions. Since all the similarity scores are sampled
independently, the probability of error is increased and the prediction results
underestimate the identification performance. Wang and Bhanu [9] present a
binomial model to predict the large fingerprint database recognition perfor-
mance based on a small gallery. They present their early work on a generalized
two-dimensional model, which integrates a hypergeometric probability distri-
bution explicitly with a binomial distribution [13]. This work considers the
distortion caused by sensor noise, feature uncertainty, feature occlusion, and
feature clutter. However, there is no learning to determine the optimal small
gallery size and the bounds on performance. Johnson et al. [14] improve the
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moment model by using a multiple nonmatch score set. They average match
scores on the whole gallery. For each match score they count the number of
times that a nonmatch score is larger than the match score, leading to an
error. In this chapter, they assume that the distribution of the match score
is uniform. Grother and Phillips [15] introduce the joint density function of
the match score and the nonmatch score to estimate both the open-set and
the closed-set identification performance. The closed-set identification is the
identification for which all potential users are enrolled in the system. The
open-set identification is the identification for which some potential users are
not enrolled in the system. Since the joint density is generally impractical to
estimate, they assume that the match score and nonmatch score are indepen-
dent and their distributions are the same for large populations. They use the
Monte Carlo sampling method to linearly interpolate the match score and the
nonmatch score look-up tables.

Providing the upper and lower bounds for the prediction performance is
another important topic in the recognition performance prediction. Linden-
baum [16] proposes a probabilistic method to derive bounds on the number of
features required to achieve recognition with a certain degree of confidence.
This method considered object similarity, bounded uncertainty, and occlusion.
A similar approach presented in [17] can be used to analyze object recognition
with uncertainty, similarity, and clutter. Boshra and Bhanu [18, 19] present
a method to predict upper and lower bounds on the performance prediction.
They predict performance by considering feature uncertainty, occlusion, clut-
ter, and similarity simultaneously. In their method performance is predicted
in two steps: compute the similarity between each pair of models; use the sim-
ilarity information along with the statistical model to determine upper and
lower bounds for the object recognition performance. Guyon et al. [1] propose
guaranteed estimators to determine the test size for the independent identical
distribution recognition error and the correlated recognition error, along with
the assumption of the underlying probability distribution.

7.2.2 Contributions

In this chapter we address the problems associated with the prediction of
performance on large populations and optimal small gallery size. The specific
contributions are the following:

1. We use a generalized prediction model that combines a hypergeometric
probability distribution model explicitly with a binomial model which
takes into account distortions that may occur in large populations. Our
distortion model includes feature uncertainty, feature occlusion, and fea-
ture clutter. In the prediction model, we use the EM algorithm to estimate
similarity score (match score and nonmatch score) distributions and find
the number of components of the distributions automatically.
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2. We find the optimal size of a small gallery by an iterative learning
process [20]. We use the Chernoff inequality and the Chebychev inequality
to determine the small gallery size in theory which is related to the margin
of error and the confidence interval. We find the upper bound and a good
lower bound for predicting recognition performance on a large population.

3. The results are shown on a large data set (NIST-4) of fingerprint im-
ages [21]. We show the prediction results with the increasing size of the
database.

7.3 Technical Approach

We are given two sets of data: a gallery set and a probe set. The gallery is a set
of models saved in the database. The probe is a set of queries for the database.
A large population is the unknown data set whose recognition performance
needs to be estimated. Based on the given gallery and probe set we would like
to estimate the recognition performance on large populations.

7.3.1 Methodology for Determining the Small Gallery Size

Figure 7.1 provides the detailed diagram for the implementation of our pro-
posed approach to get the optimal small gallery size. For a given recognition
system whose database size or the number of classes is N , we randomly pick
n images from the database N to be our small gallery. By an authentica-
tion process, we can get a set of match scores and nonmatch scores for this
small gallery. Then, we use the EM algorithm [8] to estimate distributions
of the match score and the nonmatch score. Assume that the match score
and nonmatch score distributions are Gaussian mixtures. Let ms(x) repre-
sents the match score distribution and ns(x) represents the nonmatch score
distribution. We have

ms(x) =
m∑

i=1

αimsi(x) (7.1)

and

ns(x) =
n∑

j=1

βjnsj(x) (7.2)

where m and n are the number of components, αi and βj are the component

proportions,
m∑

i=1

αi = 1, and
n∑

j=1

βj = 1. We have msi ∼ N(µsi, σ
2
si), nsj ∼

N(µnj , σ
2
nj), where µs, µn, σ2

s , and σ2
n are the mean and variance for the

match score distribution and the nonmatch score distribution, respectively.
Based on these distributions, we use our prediction model, which com-

bines a hypergeometric probability distribution model with a binomial model
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Fig. 7.1. Conceptual prediction model

to estimate the recognition system performance for a large population N1,
a subset of database N (N1 < N). We assume the prediction performance on
N1 is p̂. From the recognition system we can obtain the match score and the
nonmatch score for N1. Then, compute the actual recognition performance p
for N1. ẽ is the error between the predicted performance and the actual per-
formance, ẽ = |p̂ − p|. The margin of error e is the maximum specified error
acceptable by the recognition system. If ẽ is larger than the margin of error
e then we increase the small gallery size n and feed back match scores and
nonmatch scores to the EM algorithm to estimate the similarity score distri-
butions again. Otherwise, we increase N1, the size of the large population,
and repeat this process until the N1 has increased to N . We use the Chernoff
and Chebychev inequalities to find the relationship between the small gallery
size and the prediction confidence interval given a margin of error. The small
gallery size which we get from the inequalities is used to validate the learned
optimal small gallery size. We will explain each part of the diagram in detail
in this section.
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7.3.2 Prediction Model

Usually a recognition system consists of three stages: image acquisition, fea-
ture extraction, and matching. Distortion often occurs in these stages and
is caused by sensor noise, feature uncertainty, feature occlusion, and feature
clutter. The effects of sensor and image noise are reflected in the feature
uncertainty. Our two-dimensional prediction model considers the distortion
problem which conforms to reality. Assume we have two kinds of different
quality biometric images, group #1 and group #2. Group #1 is a set of bio-
metric images without distortion. Group #2 is a set of biometric images with
distortion. Let the size of these two groups be n1 pairs and n2 pairs, respec-
tively. We randomly pick n pairs of images from group #1 and group #2 to
be our small gallery. Then, the number of pairs of distorted images y which
are chosen from group #2 follow the hypergeometric distribution

f(y) =
Cn1

n−yCn2
y

Cn1+n2
n

(7.3)

where n1 + n2 is the total number of images in these two groups and n− y is
the number of images chosen from group #1.

These n pairs of images are our small gallery. We split them into the
gallery and the probe set. For each image in the probe set, we compute the
match score and the nonmatch score with images in the gallery. Then, we
have one match score and n − 1 nonmatch scores for this image. We assume
that the match score and the nonmatch score are independent. With all these
similarity scores we can use the EM algorithm to estimate the match score
and the nonmatch score distributions.

From the above discussion, we know that the match score and nonmatch
score distributions depend not only on the similarity scores but also on the
number of images with distortion. Let ms(x|y) and ns(x|y) represent the dis-
tributions of match scores and nonmatch scores given the number of distorted
images. If the similarity score is higher then the object are more similar. The
error occurs when a given match score is smaller than the nonmatch score
corresponding to the same image. For a given number of distorted images,
the probability that the nonmatch score is greater than or equal to the match
score x is NS(x), where

NS(x) =
∫ ∞

x

n∑
y=0

ns(t|y)f(y)dt (7.4)

Thus, the probability that the nonmatch score is smaller than the match score
is 1 − NS(x).

If the size of the large population is N , then for the jth image we can have
one match score and N − 1 nonmatch scores. We rank the match score and
the nonmatch score in the descending order. For a given number of images
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with distortion, the probability that the match score x is at rank r is given
by the binomial probability distribution

CN−1
r−1 (1 − NS(x))N−r(NS(x))r−1 (7.5)

Integrating over all the match scores, for a given number of images with
distortion, the probability that the match score is at rank r can be written as∫ ∞

−∞
CN−1

r−1 (1 − NS(x))N−r(NS(x))r−1ms(x|y)dx (7.6)

By summing over the images chosen from group #2, the probability that the
match score is at rank r can be written as∫ ∞

−∞
CN−1

r−1 (1 − NS(x))N−r(NS(x))r−1
n∑

y=0

ms(x|y)f(y)dx (7.7)

In theory, a match score can be any value within (−∞,∞). The probability
that the match score is within rank r is

P (N, r) =
r∑

i=1

∫ ∞

−∞
CN−1

i−1 (1 − NS(x))N−i(NS(x))i−1
n∑

y=0

ms(x|y)f(y)dx

(7.8)
Given that the correct match takes place above a threshold t, the probability
that the match score is within rank r becomes

P (N, r, t) =
r∑

i=1

∫ ∞

t

CN−1
i−1 (1 − NS(x))N−i(NS(x))i−1

n∑
y=0

ms(x|y)f(y)dx

(7.9)
When rank r = 1 the prediction model with threshold t becomes

P (N, 1, t) =
∫ ∞

t

(1 − NS(x))N−1
n∑

y=0

ms(x|y)f(y)dx (7.10)

In this model, we make two assumptions: match scores and nonmatch scores
are independent and large populations have distortion with model of feature
uncertainty, occlusion, and clutter. We use a small gallery to estimate distri-
butions of ms(x|y) and ns(x|y).

7.3.3 Estimation of The Small Gallery Size Based
on Statistical Inequalities

In the following, we discuss the relationship between the prediction confidence
interval and the size of the small gallery which could be used to validate the
optimal small gallery size that we obtain by the learning process. We use lim-
ited data to estimate a large population recognition performance. Therefore,
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the prediction value may or may not be very accurate. This question can be
mathematically expressed as

P{|(p − p̂)| > e} ≤ (1 − α) (7.11)

where p̂ is the predicted performance for the recognition system which can
be obtained from our prediction model, p is the actual performance of the
recognition system, e is the margin of error for the system, and α is the
confidence interval. Then, inequality (7.9) can be written as

P{p > p̂ + e} ≤ (1 − α) (7.12)

or
P{p < p̂ − e} ≤ (1 − α) (7.13)

Here, we consider inequality (7.12) since inequality (7.13) can be solved by
the same procedure as inequality (7.12).

We assume that a recognition system recognizes (authentication) individ-
uals with the probability P{Xi = 1} = p and P{Xi = 0} = 1 − p, where
Xi = 1 means an individual with a given object Xi is recognized correctly,
Xi = 0 means the opposite, 0 ≤ p ≤ 1. According to the Chernoff inequal-
ity [22], let X1, X2, . . . , Xn be independent random variables. We define the
random variable

X =
1
n

n∑
i=1

Xi (7.14)

For any t ≥ 0 we have

P{X ≥ E(X) +
t

n
} ≤ e−

2t2
n (7.15)

where E(X) is the mean of X. Comparing with inequality (7.12), we can get

1 − α = e−
2t2
n (7.16)

So,

t =

√
−n ln(1 − α)

2
(7.17)

Thus, equation (7.15) becomes

P{X ≥ E(X) +

√
− ln(1 − α)

2n
} ≤ 1 − α (7.18)

From inequality (7.12), we know that

e =

√
− ln(1 − α)

2n
(7.19)
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Thus, we get

n = − ln(1 − α)
2e2

(7.20)

Equation (7.20) is the relationship between the small gallery size and the
confidence interval under the given margin of error for the system with the
underlying distribution.

In the above we assume that a recognition system can recognize object
with a certain distribution. If we do not know the underlying distribution of
the recognition system, then we can use the Chebychev inequality [22] which
is distribution independent. Assume X1, X2, . . . , Xn are independent random
variables. We define X as

X =
1
n

n∑
i=1

Xi (7.21)

For any ε ≥ 0, we have

P{|X − E(X)| ≥ ε} ≤ σ2

nε2
(7.22)

where σ2 is the variance of X. Comparing with (7.12), we have

1 − α =
σ2

nε2
(7.23)

From the above equation, we obtain

ε =
σ√

n(1 − α)
(7.24)

From (7.22), (7.23), and (7.24) we have

P{X ≥ E(X) +
σ√

2n(1 − α)
} ≤ (1 − α) (7.25)

Then
e =

σ√
2n(1 − α)

(7.26)

So we have,

n =
σ2

2(1 − α)e2
(7.27)

From equation (7.27), we obtain the relationship between the small gallery
size and the confidence interval under the given margin of error for the system
without the assumption of the underlying distribution. It is known that the
Chernoff inequality is much tighter than the Chebychev inequality and the
Chebychev inequality is distribution independent.

In the above we provide a statistical estimation of the small gallery size.
Meanwhile, in our approach presented in Sect. 7.3.1, we learn the similarity
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score distribution to find the optimal size of the small gallery. The small
gallery size which we get from the statistics can be used as a guide for learning.
Under the assumptions that the randomly chosen small galleries can represent
the distributions of similarity scores for other galleries of the same size, we
use different small galleries with the learned optimal size to predict large
population performance. We randomly choose several small galleries of the
optimal size to predict the large population performance. Then, we obtain
the maximum and minimum prediction performance on the large population.
In this way, we can provide the upper bound and the good lower bound for
performance prediction on large populations.

7.4 Experimental Results

In all the experiments, we use fingerprints from the NIST Special Database 4
(NIST-4). It consists of 2,000 pairs of fingerprints. Each of the fingerprints is
labeled with an ID number preceded by an “f” or an “s,” which represents
different impressions of the same fingerprint. The images are collected by
scanning inked fingerprints from paper. The resolution of the fingerprint image
is 500 DPI and the size of the image is 480 × 512 pixels.

7.4.1 Prediction Model

Distorted Data

Since large populations will have distortions which may not be presented in the
small gallery, we simulate the distortion in our prediction model to estimate
the recognition performance based on small galleries. The minutiae features
used for the fingerprint recognition can be expressed as f = (x, y, c, d), where
x and y are the locations of a minutiae, c is the class of the minutiae which
represents whether the minutiae is endpoint (0) or bifurcation (1), and d is the
direction of the minutiae. We define the amount of the minutiae distortion for
a fingerprint as g%. In this chapter, we choose g = 5%. Assume the number
of minutiae is numj . Usually one pair of fingerprints has a different number
of minutiae so j = 1, 2, . . . , 4000. We apply the distortion model [13] to these
2,000 pairs of fingerprints as follows:

(a) Uncertainty : Uniformly choose U = 5% × numj minutiae features out of
numj features and replace each fi = (x, y, c, d) with f ′

i chosen uniformly
from the set {(x′, y′, c′, d′)}, where (x′, y′) ∈ 4NEIGHBOR(x, y), c′ =
1 − c, d′ = d ± 3◦, i = 1, 2, . . . , U .

(b) Occlusion: Uniformly choose O = 5% × numj minutiae features out of
numj features and remove these minutiae.
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(c) Clutter : Add C = 5% × numj additional minutiae, where each minutiae
is generated by picking a feature uniformly at random from the clutter
region. Here we choose the clutter region as CR = {(x, y, c, d), 50 ≤ x ≤
450, 60 ≤ y ≤ 480, c = {0, 1, 2, 3, 4}, 10◦ ≤ d ≤ 350◦}.

In our experiments we use the uniform distribution as the uncertainty PDF
and the clutter PDF. The number of features with uncertainty, occlusion, and
clutter is the same. We use the algorithm provided in [23] to extract minutiae
and algorithm [21] for matching.

Verification

We use the algorithm provided in [23] to extract minutiae. Suppose there are
M and Q minutiae in the gallery and query fingerprints, respectively. ∆m

and ∆q are potential corresponding triangles. We assume F (s, θ, tx, ty) is the
transformation between the query and gallery fingerprints, where s is a scale
parameter, θ is a rotation parameter, tx and ty are translation parameters.
If these parameters are within limits [21], then we apply this transformation
as the transformation between potential corresponding triangles ∆m and ∆q.
The details of how to estimate the transformation parameters are explained
in [21]. Based on the transformation F (s, θ, tx, ty), we compute the distance
d by using equation (7.28),

d =
arg min

i

{∣∣∣∣F̂
([

xj,1

xj,2

])
−
[

yi,1

yi,2

]∣∣∣∣
}

(7.28)

where (xj,1, xj,2) and (yi,1, yi,2) are two sets of minutiae in the gallery and
query fingerprints, j = 1, 2, . . . M and i = 1, 2, . . . Q. If d is smaller than a
threshold, then we can say that (xj,1, xj,2) and (yi,1, yi,2) are the correspond-
ing points. If the number of corresponding points is greater than a thresh-
old [21], then we define ∆m and ∆q as the corresponding triangles between
the template and the query fingerprints. The final match score is the number
of corresponding triangles between the query and template fingerprints.

Prediction Results

We randomly choose 50 pairs of fingerprints from two kinds of fingerprint pairs
(with and without distortion) as our small gallery following a hypergeometric
distribution. For this small gallery, we get 50 match scores and 2,450 nonmatch
scores. After we obtain these similarity scores we use the EM algorithm to
estimate the match score distribution and the nonmatch score distribution.
The EM algorithm can find the number of components automatically [24] and
for each component the EM algorithm finds its mean, variance, and weight. In
this chapter, the similarity scores are the number of matched triangles between
two fingerprints, the match scores are positive integers and the nonmatch
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Fig. 7.2. Absolute error between the prediction and the actual performance when
the small gallery size is 50

scores are close to 0. By applying the prediction model, we can estimate
the fingerprints recognition performance on 2,000 pairs of fingerprints based
on these 50 pairs of fingerprints. We repeat the experiment seven times and
average the results to obtain the prediction performance which is shown in
Fig. 7.2. Here, we choose the subset size N1 = 100 and the margin of error
e = 0.06. From this curve, we can see that for the large population size 100
the error between the prediction performance and the actual performance is
0.137, which is larger than the margin of error.

Now, we apply learning to the prediction process. We increase the small
gallery size to n = 100. We feed back the match score and the nonmatch score
from the randomly selected 100 pairs of fingerprint and repeat this process
seven times. When the large population size is 100, the absolute error between
the prediction performance and the actual performance is 0.135, which is
greater than the margin of error 0.06. So, we increase the small gallery size to
n = 200 and repeat the same process seven times. The absolute error is 0.09
when the large population size is 100. Then, we increase the small gallery size
to n = 300 and repeat the same process seven times. The absolute error is
0.042 when the large population size is 100. We increase the large population
size in steps of 100 until the large population size N = 2, 000. For these
three small galleries, most of the nonmatch scores are 0. Table 7.1 shows the



208 B. Bhanu and R. Wang

Table 7.1. Match score distributions estimated by the EM algorithm

Size Component # Mean Variance Weight

100 2 17.152658 334.452802 0.535764
299.015489 55459.580193 0.450296

200 5 57.348298 1026.825771 0.160830
3.615611 20.189071 0.362406

585.278037 66686.529667 0.151087
206.327514 7334.980411 0.191394
27.106400 131.423073 0.133465

300 4 3.581775 21.569950 0.395165
420.142835 64933.952657 0.236481
35.420091 423.267100 0.228275

143.774430 3016.000039 0.139634

Fig. 7.3. Match score distributions for different small gallery sizes

estimation of the match score distributions with different small gallery sizes.
The distributions are represented by the Gaussian mixture model. For each
component we have its mean, covariance, and weight. Figure 7.3 shows the
match score distribution curves on different small gallery sizes. For each small
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Fig. 7.4. Absolute error between the predicted and actual performance for different
small gallery sizes

gallery size we provide two figures with different range of match score (X-axis)
so that the distribution can be more closely examined. Figure 7.4 shows the
absolute error between the prediction and the actual performance decreases
when the gallery size increases. When the small gallery size is n = 300, the
absolute error for the large population is smaller than the margin of error
0.06. At this point we can stop learning the small gallery size.

We use different small galleries with the learned optimal size to predict
large population performance. Then, we select the maximum and the min-
imum prediction performance as our upper bound and lower bound for the
performance prediction on the large population. Figure 7.5 gives the upper
bound and lower bound on the prediction of large population performance
when the small gallery size n = 300. Since we have 2,000 pairs of finger-
prints, the actual recognition performance for the distorted images is shown
in Fig. 7.5. Beyond this population size we can give the bounds for the pre-
diction. From Fig. 7.5 it can be seen that the actual performance is within
the upper bound and lower bound except when the population size is very
small. Our experiments show that when the small gallery size is n = 300 the
prediction error is less than 0.05.
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Fig. 7.5. The upper bound and lower bound on the large population when the small
gallery size is 300. Note that the upper bound and lower bound are within 5%.

Table 7.2. Values of the confidence interval, the margin of error, and the small
gallery size for Chernoff inequality and Chebychev inequality (σ2 = 1)

1 − α 0.05 0.05 0.1 0.1 0.15 0.15
e 0.06 0.04 0.06 0.04 0.06 0.04
n(Chernoff) 417 937 320 720 264 593
n(Chebychev) 2,778 6,250 1,389 3,125 926 2,083

7.4.2 Estimation of The Small Gallery Size Based
on Statistical Inequalities

Table 7.2 shows different small gallery sizes given different confidence intervals
and margins of error for Chernoff inequality and Chebychev inequality (σ2 =
1). From the table we ascertain that the Chernoff inequality is much tighter
than the Chebychev inequality. We compare our learning small gallery size
with the Chernoff inequality. When the confidence interval α = 95% and
margin of error e = 0.06 then the small gallery size n = 417. From our
experiment for the same margin of error the small gallery size is 300 and the
confidence interval is α = 95%. Note that statistical methods give us a loose
estimate of the small gallery size. Based on our recognition system we find a
more accurate small gallery size by learning.
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7.5 Conclusions

We focused on the problem of performance characterization of a simplified
CBR system. In particular, we addressed the following questions: what is the
optimal size of the small gallery that can give good error estimation and what
is the confidence in the estimation? We use a generalized prediction model that
combines a hypergeometric probability distribution model with a binomial
model, taking into account distortion in large populations. We incorporate
learning in the prediction process to find the optimal small gallery size and
provide the upper and lower bounds for the performance prediction on large
populations. The Chernoff inequality and the Chebychev inequality are used
as a guide to obtain the small gallery size and the confidence interval given a
margin of error. Experimental results show that the small gallery size obtained
from the statistical methods are loose compared to the size provided by the
proposed learning method. We believe that the methodology and results of
this research will be useful for a wide range of applications of CBR in signal
processing, image processing, computer vision, and pattern recognition.
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