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Summary. Case-based reasoning (CBR) methodology stems from research on
building computational memories capable of analogical reasoning, and require for
that purpose specific composition and organization. This main task in CBR has
triggered very significant research work and findings, which are summarized and
analyzed in this article. In particular, since memory structures and organization
rely on declarative knowledge and knowledge representation paradigms, a strong
link is set forth in this article between CBR and data mining for the purpose of
mining for memory structures and organization. Indeed the richness of data min-
ing methods and algorithms applied to CBR memory building, as presented in this
chapter, mirrors the importance of learning memory components and organization
mechanisms such as indexing. The article proceeds through an analysis of this link
between data mining and CBR, then through an historical perspective referring to
the theory of the dynamic memory, and finally develops the two main types of learn-
ing related to CBR memories, namely mining for memory structures and mining for
memory organization.

6.1 Introduction

Case-based reasoning (CBR) systems have tight connections with machine
learning and data mining. They have been tagged by machine learning
researchers as lazy learners because they defer the decision of how to gen-
eralize beyond the training set until a target new case is encountered [37], by
opposition to most other learners, tagged as eager. Even though a large part of
the inductive inferences are definitely performed at Retrieval time in CBR [3],
mostly through sophisticated similarity evaluation, most CBR systems also
perform inductive inferences at Retain time. There is a long tradition within
this research community to study what is a memory and what its components
and organization should be. Indeed CBR methodology focuses more on the
memory part of its intelligent systems [51] than any other artificial intelligence
(AI) methodology, and this often entails learning declarative memory struc-
tures and organization. Therefore this article proposes to focus on studying
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CBR from the memory standpoint more than the inference standpoint, which
opens a different, and complementary, perspective on the lazy/eager learn-
ing comparison. For CBR, this antagonism can be more adequately called
the lazy/eager retrieval dilemma or pondering when it is more appropriate to
learn: at Retrieval time or at Retain time [1]. The lazy learners are also the
eager retrievers, and the eager learners are the lazy retrievers. Both though
are full-fledged CBR systems. More precisely, the approach taken here has an
analogy in the medical domain. Instead of studying the patient – CBR is here
the object of our study – from the physiological standpoint, we will adopt the
anatomical perspective, and attempt to answer this question: what structures
and organization constitute the anatomy of a CBR system memory? We will
see that a variety of data mining tasks and methods are performed in CBR,
and that this richness reinforces the well known fact that CBR systems are
indeed powerful data mining systems. The second section explains the rela-
tionship between CBR and data mining, and the motivation behind mining
in CBR. The third section revisits data mining in early CBR systems. The
fourth section concentrates on mining for memory structures, and the fifth on
mining for memory organization. It is followed by a discussion on CBR and
data mining, and by the conclusion.

6.2 Data Mining and Case-based Reasoning

Data mining is the analysis of observational data sets to find unsuspected
relationships and to summarize the data in novel ways that are both
understandable and useful to the data owner [22]. CBR systems are generally
classified as data mining systems simply because they answer this definition.
From a set of data – called cases in CBR – they perform one of the classical
data mining tasks such as prediction for instance, which gives the case base a
competency beyond what the data provide. In this chapter, we will focus more
on another aspect, namely what data mining tasks and methods are used in
CBR and what is their result in the CBR memory.

First of all, since data mining emerged in the nineties from scaling up
machine learning algorithms to large datasets, let us review what machine
learning authors have been saying about CBR. Machine learning authors
consider case-based reasoning systems as either analogical reasoning sys-
tems [11, 15, 33, 55] or instance based learners [37]. Michalski presents the
analogical inference, at the basis of case-based retrieval, as a dynamic induc-
tion performed during the matching process [33]. Mitchell refers to CBR as a
kind of instance based learner [37]. This author labels these systems as lazy
learners because they defer the decision about how to generalize beyond the
training data until each new query instance is encountered. He also praises
CBR systems for not committing to a global approximation once and for all
during the training phase of machine learning, but for being able to general-
ize specifically for each target case, therefore, to fit its approximation bias, or
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induction bias, to the case at hand. He points here to the drawback of over-
generalization that is well known for eager learners, to which instance-based
learners are exempt [37].

These authors focus their analysis on the inferential aspects of learning in
case-based reasoning [2, 17, 25]. Historically CBR systems have evolved from
the early work of Schank in the theory of the dynamic memory [51], where
this author proposes to design intelligent systems primarily by modeling their
memory. Ever since Schank’s precursory work on natural language under-
standing, one of the main goals of case-based reasoning has been to unify
as much as possible memory and inferences for the performance of intelli-
gent tasks. Therefore, focusing on studying how case-based reasoning systems
learn, or mine, their memory structures and organization can prove at least
as fruitful as studying and classifying them from an inference standpoint.

From a memory standpoint, learning in CBR consists in the creation,
update, and organization of the structures and organization in memory. It is
often referred to as case base maintenance [54, 58]. In the general cycle of
CBR, learning takes place within the general reasoning cycle – see Aamodt
and Plaza [1] for this classical cycle. It completely serves the reasoning, and
therefore one of its characteristics is that it is an incremental type of mining.
It is possible to fix it after a certain point, though, in certain types of applica-
tions, but it is not a tradition in CBR: learning is an emergent behavior from
normal functioning [26]. Ideally, CBR systems start reasoning from an empty
memory, and their reasoning capabilities stem from their progressive learning
from the cases they process. The decision to stop learning because the sys-
tem is judged competent enough is not taken from definitive criteria. It is the
consequence of individual decisions made about each case, to keep it or not in
memory depending upon its potential contribution to the system. Thus often
the decisions about each case, each structure in memory, allow the system to
evolve progressively toward states as different as ongoing learning, in novice
mode, and its termination, in expert mode. If reasoning, and thus learning, are
directed from the memory, learning answers to a process of prediction of the
conditions of cases recall (or retrieval). As the theory of the dynamic memory
showed, recall and learning are closely linked [51]. Learning in case-based rea-
soning answers a disposition of the system to anticipate future situations: the
memory is directed toward the future. The anticipation deals both with avoid-
ing situations having caused a problem, and with reinforcing the performance
in success situations.

More precisely, learning in case-based reasoning takes the following forms:

1. Adding a case to the memory : it is at the heart of CBR systems, tradi-
tionally one of the main phases in the reasoning cycle, and the last one:
Retain [1]. It is the most primitive learning kind, also called learning by
consolidation or rote learning

2. Explaining : the ability of a system to find explanations for its successes
and failures, and by generalization the ability to anticipate
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3. Choosing the indices: it consists in anticipating Retrieval, the first reason-
ing step

4. Learning memory structures: these may be learnt by generalization from
the cases or be provided from the start to hold the indices, for exam-
ple. These learnt memory structures can play additional roles, such as
facilitating the reuse or the retrieval

5. Organizing the memory : the memory comprises a network of cases, given
memory structures, and learnt memory structures, organized in efficient
ways. Flat and hierarchical memories have been traditionally described

6. Refining cases : cases may be updated, refined based upon the CBR result
7. Refining knowledge: the knowledge at the basis of the case-based reasoning

can be refined, such as modifying the similarity measure (weight learning)
or situation assessment refinement

6.3 Data Mining in Early CBR Systems

Roger Schank pioneered the methodology that would become CBR from a
cognitive background [51]. Based on cognitive science research, he proposed
a model of dynamic memory [51] capable of evolving the events it encounters
and of learning both from successes and failures. The theory of the dynamic
memory presents memory structures and organization that were later imple-
mented in some of the first CBR systems. Their principles have been followed
up to current CBR sytems.

6.3.1 The Theory of the Dynamic Memory

Memory structures are of two types, domain dependent and domain indepen-
dent. The domain dependent structures are called scripts, defined as general-
ized standardized episodes. All the other structures are either organizational
structures or generalized structures. The organizational structures are gener-
alized scenes, MOPs (memorization organization packets), and meta-MOPs.
Generalizations of these are, respectively, universal scenes, u-MOPs, and uni-
versal u-MOPs [51] (see Fig. 6.1). The domain independent structures are
TOPs (thematic organization packets).

6.3.2 Generalization Based Memory

The memory of IPP (integrated partial parser) is a generalization-based mem-
ory [27,28]. IPP is a natural language understanding system working from tex-
tual information from news about international terrorism. Text understanding
is presented in [28] as memory directed, but accomplishes a case-based type
of search through the memory for specific events linked with the text in entry,
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Fig. 6.1. The two dimensions of the dynamic memory and its domain dependent
structures

giving it a meaning. IPP is a system implementing closely the theory of the
dynamic memory.

The memory structures are on the one hand the initial structures, and
on the other hand the structures learnt by the system from documents. The
initial structures reproduce the stereotypical aspects of the situations: these
are the S-MOPs (simple MOPs) and the AUs (action units). The S-MOPs
or Simple MOPs describe abstract situations such as acts of extortion and
attack. The AUs or Action Units represent concrete events such as shootings
or hostage liberations. The AUs are components of the S-MOPs. The learnt
structures are the spec-MOPs, containing the traits common to the struc-
tures indexed under them. These common traits are conjunctions of triplets
<attribute1, attribute2, value>, such as, for example:

(TARGET NATION DOMINICAN-REPUBLIC)
(TARGET TYPE GOVERNMENT)
(LOCATION COUNTRY COLUMBIA)
(METHOD AU OCCUPATION). . .

In this last example, the method used is represented by an AU: Occupa-
tion. At the highest level, the memory is a set of S-MOPs, under which are
indexed some spec-MOPs forming a network. Each spec-MOP contains a dis-
crimination network being a set of indexes to the events (AUs and role values
associated with them) close to this spec-MOP. Moreover, these indexes take
as values the differences between the events and the spec-MOP from which
they depend.

The memory is organized as a generalization based memory, which means
that the S-MOPs are the most general structures, and that the degree of
generalization decreases with the deepness from the root of the structures
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traversed in memory following the indexes. Thus the events not having struc-
tures indexed under them are the most specific structures.

Learning in IPP follows the same mechanism as in GBM (generalization-
based memory) [30], which is a concept learning system particularly inter-
esting because it can also be linked, from its methodology, to case-based
reasoning systems. Works by Lebowitz deal with hierarchical clustering as a
way of implementing the theory of the dynamic memory [27]. GBM’s memory
is composed of GEN-NODES (for generalized nodes), also called concepts and
instances. The GEN-NODES, similar to MOPs, are built by factoring com-
mon traits in the form of <attribute, value> pairs of the instances indexed
underneath them. Indexing is similar to that performed in IPP. Attribute
values are qualitative. Moreover a discrimination network, called D-NET, is
associated to each GEN-NODE, like in IPP. The D-NET indexes the in-
stances depending upon it by the traits differing from the norm carried by
the GEN-NODE. Learning in such a system is particularly flexible. Through
the bias of a counter carried by a node, each of these traits can be con-
firmed, by incrementation, or infirmed, by decrementation, during the search
through the memory for a new instance presented to the system. When a
minimum threshold is reached, a system parameter, the trait is removed from
the concept, and the concept is removed when it does not comprise any trait
anymore. Inversely, the system constantly searches for new concepts to create.
The system memory is a dynamic memory containing both instances and con-
cepts. It was used in two systems, UNIMEM [31] and RESEARCHER [29].

Some issues for the system have been the dependency of learnt concepts
upon the order of presentation of the instances. To remedy it, Lebowitz pro-
posed to postpone as much as possible the formation of new concepts [32].
When a new instance cannot be incorporated to a concept, because of a trait
for which the counter is not high, the system prefers to wait before rejecting
this concept that the concept evolution permits to definitively incorporate the
instance or not.

6.4 Mining for Memory Structures

Memory structures in CBR are not only cases. A case is defined as a contex-
tualized piece of knowledge representing an experience that teaches a lesson
fundamental to achieving the goals of a reasoner [26]. For many systems, cases
are represented as truthfully as possible from the application domain. Addi-
tionally, data mining methods have been applied to cases themselves, features,
and generalized cases. These techniques can be applied concurrently to the
same problem or selectively. If the trend is now to use them selectively, prob-
ably in the near future CBR systems will use these methods more and more
concurrently.
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6.4.1 Case Mining

Case mining refers to the process of mining potentially large data sets for
cases [60]. Researchers have often noticed that cases simply do not exist in
electronic format, that databases do not contain well-defined cases, and that
the cases need to be created before CBR can be applied. Another option is
to start CBR with an empty case base. When large databases are available,
preprocessing these to learn cases for future CBR permits to capitalize on
the experience dormant in these databases. Yang and Cheng propose to learn
cases by linking several database tables [60]. Clustering and support vector
machines (SVM) techniques permit to mine for cases in [60].

6.4.2 Feature Mining

Feature mining refers to the process of mining data sets for features. Many
CBR systems select the features for their cases and/or generalize them.
Wiratunga et al. notice that transforming textual documents into cases
requires dimension reduction and/or feature selection [59], and show that
this preprocessing improves the classification in terms of CBR accuracy and
efficiency. These authors induce a kind of decision tree called boosted decision
stumps because they comprise only one level, in order to select features, and
induce rules to generalize the features. In biomedical domains, in particular
when data vary continuously, the need to abstract features from streams of
data is particularly prevalent. Recent, and notable, examples include Montani
et al., who reduce their cases time series dimensions through discrete Fourier
transform [39], approach adopted by other authors for time series [42]. Niloofar
and Jurisica propose an original method for generalizing features. Here the
generalization is an abstraction that reduces the number of features stored in
a case [41]. Applied to the bioinformatics domain of micro arrays, the system
uses both clustering techniques to group the cases into clusters containing
similar cases, and feature selection techniques. The goal in their system is to
abstract cases in a domain where there are many attributes, and few sam-
ples, where the pitfall is the famous “curse of dimensionality.” The clustering
method chosen is spectral clustering and the feature selection technique is
logistic regression. Applying these methods to the case base improved the
case-based reasoning along several dimensions, among which improved accu-
racy, less error, and less undecided cases (those for which there is a tie in the
similarity score) [41].

6.4.3 Generalized Case Mining

Generalized case mining refers to the process of mining databases for general-
ized and/or abstract cases. Generalized cases are named in varied ways, such as
prototypical cases, abstract cases, prototypes, stereotypes, templates, classes,
categories, concepts, and scripts – to name the main ones [36]. Although all
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these terms refer to slightly different concepts, they represent structures that
have been abstracted or generalized from real cases either by the CBR system
or by an expert. When these prototypical cases are provided by a domain
expert, this is a knowledge acquisition task [7, 8]. More frequently they are
learnt from actual cases. In CBR, prototypical cases are often learnt to struc-
ture the memory. Therefore most of the prototypical cases presented here will
also be listed in the section on structured memories.

Many authors mine for prototypes, and simply refer to induction for learn-
ing these. CHROMA [4] uses induction to learn prototypes corresponding to
general cases, which each contain a pair <situation, plan>, where the situa-
tion is an object whose slots have several values possible – values are elements
of a set. Bellazzi et al. organize their memory around prototypes [10]. The
prototypes can either have been acquired from an expert or induced from
a large case base. Schmidt and Gierl point that prototypes are an essen-
tial knowledge structure to fill the gap between general knowledge and cases
in medical domains [53]. The main purpose of this prototype learning step
is to guide the retrieval process and to decrease the amount of storage by
erasing redundant cases. A generalization step becomes necessary to learn the
knowledge contained in stored cases. They use several threshold parameters
to adjust their prototypes, such as the number of cases the prototype is filled
with, and the minimum frequency of each contraindication for the antibiotic
therapy domain [53].

Others specifically refer to generalization, so that their prototypes cor-
respond to generalized cases. An example of system inducing prototypes by
generalization is a computer aided medical diagnosis system interpreting elec-
tromyography for neuropathy diagnosis [34]. The first prototypes are learnt
from the expert by supervised learning, then the prototypes are automatically
updated by the system by generalizing from cases. Prototypes can fusion if
one is more general than the other ones, or new prototypes can be added to
the memory. Malek proposes to use a neural network to learn the prototypes in
memory for a classification task, such as diagnosis [35]. A similar connectionist
approach is proposed by [50]. Portinale and Torasso [47] in ADAPTER orga-
nize their memory through E-MOPs [26] learnt by generalization from cases
for diagnostic problem-solving. E-MOPs carry the common characteristics of
the cases they index, in a discrimination network of features used as indices
to retrieve cases. Mougouie and Bergmann [40] present a method for learning
generalized cases. This method, called the Topkis-Veinott method, provides
a solution to the computation of similarity for generalized cases over an
n-dimensional Real values vector. Maximini et al. [36] have studied the differ-
ent structures induced from cases in CBR systems. They point out that several
different terms exist, such as generalized case, prototype, schema, script, and
abstract case. The same terms do not always correspond to the same type of
entity. They define three types of cases. A point case is what we refer to as a
real case. The values of all its attributes are known. A generalized case is an
arbitrary subspace of the attribute space.
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There are two forms: the attribute independent generalized case, in which
some attributes have been generalized (interval of values) or are unknown,
and the attribute dependent generalized case, which cannot be defined from
independent subsets of their attributes.

Yet other authors refer to abstraction for learning abstract cases. Branting
proposes case abstractions for its memory of route maps [16]. The abstract
cases, which also contain abstract solutions, provide an accurate index to less
abstract cases and solutions. Perner [44] learns prototypes by abstracting cases
as well.

Finally, many authors learn concepts through conceptual clustering.
MNAOMIA [12–14] learns concepts and trends from cases through concep-
tual clustering similar to GBM [30] (see Fig. 6.2). Perner learns a hierarchy
of classes by hierarchical conceptual clustering, where the concepts represent
clusters of prototypes [44].

Dı̀az-Agudo and Gonzàlez-Calero use formal concept analysis (FCA) –
a mathematical method from data analysis – as another induction method
for extracting knowledge from case bases, in the form of concepts [18]. The
concepts learnt comprise some cases, and have both an intent– the set of
attributes shared by these cases represented by a concept. Retrieval step is
a classification in a concept hierarchy, as specified in the FCA methodology,
which provides such algorithms. The concepts can be seen as an alternate
form of indexing structure. The authors point to one notable advantage of
this method, during adaptation. The FCA structure induces dependencies
among the attributes that guide the adaptation process [19].

6.5 Mining for Memory Organization

Efficiency at case retrieval time is conditioned by a judicious memory orga-
nization. Two main classes of memory are presented here: unstructured – or
flat – memories, and structured memories.

6.5.1 Flat Memories

Flat memories are memories in which all cases are organized at the same level.
Retrieval in such memories processes all the cases in memory. Classical nearest
neighbor (NN) retrieval is a method of choice for retrieval in flat memories.
Flat memories can also contain prototypes, but in this case the prototypical
cases do not serve as indexing structures for the cases. They can simply replace
a cluster of similar cases that has been deleted from the case base during case
base maintenance activity. They can also have been acquired from experts.
Flat memories are the memories of predilection of NN retrieval methods [3].

Among these are so called memory-based systems, such as ANON [43].
Although capable of case-based reasoning, they have also their own charac-
teristics. The memory of memory-based systems is completely directed by the
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Fig. 6.2. Conceptual clustering example in MNAOMIA: a new case c6 being CBR
processed creates two new concepts C6 and C7, and concept C3 is abstracted by
losing two features

inferences. Implemented on parallel machines, indexation is replaced by the
attribution of labels to the different cases, corresponding to the traditional in-
dices of case-based reasoning. Feature extraction and the search through the
memory correspond to the same inferences. There is generally a compromise
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between the importance of the inferences during the features extraction to
constitute the indices, and during the search through the memory. Two
approaches are possible: maximizing the inferences during the extraction of
the features to constitute the indices, and maximizing the inferences dur-
ing the search through the memory. The features serving as indices in both
approaches are by the way different: having a semantic connotation in the
former and a syntactic one in the latter. ANON proposes to integrate both by
using first the features with syntactic load to perform a preselection, then the
features with semantic load are extracted on the retained cases, powered by
processors working in parallel. These memories are called active [43] because
they must perform an important inferential effort during the search through
the memory, to compensate for the absence of a learnt structuring.

6.5.2 Structured Memories

Among the different structured organizations, the accumulation of generaliza-
tions or abstractions facilitates the evaluation of the situation and allows a
control of indexation.

Like GBM and related early systems, many CBR memories are organized
hierarchically through generalization or abstraction. SWALE [24, 52] is a
case-based explanation system. An explanation is a causal chain. Its cases are
generalized explanations. When a new case must be integrated to the memory,
it constructs a schema generalized from this case and the retrieved case used
for reasoning. This constructed schema, called an explanation schema, is sim-
ilar to a MOP. The authors refer to a generalization process for learning this
schema. SWALE’s memory is organized hierarchically, and the most abstract
explanation schemas are located near the root, while the least abstract ones
are positioned near the leaves, made up of the explanation cases. CANDIDE [9]
is a system for language acquisition from similar cases. Based on a concep-
tual clustering algorithm [46], its memory is organized in categories, induced
by abstraction of the common elements of two cases. Nevertheless, learning
goes through three phases, the first one being totally supervised (an expert
provides a set of cases and a generalization hierarchy). The second phase
interacts with the expert, helping him by extracting similar memorized cases.
The third phase is then an unsupervised recognition phase. This form of
learning is close to knowledge acquisition. Similarly, AQUA [49] builds cate-
gories by induction. But the traits chosen for the generalization are selected
in function of their pertinence. As previously, pertinence is evaluated by the
construction of a causal explanation. The generalization is constrained by
explanations: it is an explanation based generalization [38], and is a form of
axiomatic learning. Branting’s case abstractions assist case indexing, match-
ing, and adaptation [16]. The abstract solutions contain the most important
aspects of the less abstract solutions. Matching is less expensive because new
cases are compared with the abstract cases, which contain many less features
than the specific cases and also are less numerous. The adaptation effort is
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less costly too because many nonpertinent features need not be adapted. The
system has been applied to route finding. This author evaluates the compara-
tive performance of ground-level CBR, heuristic search (A∗), REFINEMENT
(hierarchical problem solving), and SCBR (Stratified case-based reasoning)
[16]. Like SCBR, REFINEMENT is a form of hierarchical problem solving, in
which a solution at one level of the hierarchy guides the search at a lower
level in the hierarchy. The difference between REFINEMENT and SCBR is
that SCBR starts by matching with the most specific case in the hierarchy,
not systematically the most abstract ones only. The match in this particu-
lar domain is the match between a given abstract start position and a given
abstract goal position. In both methods, the search starts from the root of the
hierarchy and proceeds top-down. SCBR proved to be an improvement over
ground-level CBR and heuristic search in terms of number of levels of ab-
straction, the size of the case library, and the resemblance among cases. SCBR

was also an improvement over REFINEMENT in the same dimensions when
the number of levels in the hierarchy reached at least three [16]. Some hierar-
chies are nonrefinable, which means that a solution may show at an abstract
level, but not be valid at a more specific level. In this type of hierarchy, SCBR

outperforms REFINEMENT particularly in nonrefinable hierarchies.
Structured memories, dynamic, present the advantage of being declarative.

The important learning efforts in declarative learning are materialized in the
structures and the dynamic organization of their memories. Perner learns a
hierarchy of classes by hierarchical conceptual clustering, where the concepts
are clusters of prototypes [44]. She notes the advantages of this method: a
more compact case base, and more robust (error-tolerant). The same author
explains that an important aspect of case base maintenance – beyond the
classic trio addition, removal and revision of cases – is learning the memory
organization as well as the prototypes in memory [45]. Case-based organization
is based on approximate graph subsomption. The nodes in the graph can
be represented by a prototype. MNAOMIA [14] proposes to use incremental
concept learning [20,21], which is a form of hierarchical clustering, to organize
the memory. Concepts are composed of pairs of <attribute, value> common
to all the cases indexed under these concepts. This system integrates highly
data mining with CBR because it reuses the learnt structures to answer higher
level tasks such as generating hypotheses for clinical research (see Fig. 6.3),
as a side effect of CBR for clinical diagnosis and treatment decision support.
Therefore this system illustrates that by learning memory structures in the
form of concepts, the classical CBR classification task improves, and at the
same time the system extracts what it has learnt, thus adding a knowledge
discovery dimension to the classification tasks performed.

Another notable class of systems is composed of those who perform
decision tree induction [48,56] to organize their memory. INRECA [5] project
studied how to integrate CBR and decision tree induction. They propose to
preprocess the case base by an induction tree, namely a decision tree. The sys-
tem is based on similar approach in KATE and PATDEX from the authors.
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Fig. 6.4. Tree memory organization in INRECA using k-d trees

The decision tree partitions the case base around nodes composed of a sin-
gle attribute and two branches per node, splitting the values on each branch
in the median, based on the interquartile distance. Later refined into an IN-
RECA tree [6] (see Fig. 6.4), which is a hybrid between a decision tree and a
k-d tree, this method allows both similarity based retrieval and decision tree
retrieval, is incremental, and speeds up the retrieval. The structures are a set
of classes, each class carrying a rule to determine whether a case belongs to it
or not. Each condition in the rule is sufficient and concerns a single attribute.
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The similarity measure between cases takes into account the classes. Jarmulak
uses a tree induction algorithm to induce the top level of the structure, and a
clustering algorithm to cluster similar cases in the leaves [23]. This system is
applied to imaging for the classification of ultrasonic B-scans.

Another important method is to organize the memory like a hierarchy
of objects, by subsomption. Retrieval is then a classification in a hierarchy
of objects, and functions by substitution of values in slots. CHROMA [4]
uses its prototypes, induced from cases, to organize its memory. The retrieval
step of CBR retrieves relevant prototypes by using subsomption in the object
oriented language NOOS to find the matching prototypes. The prototypes
contain a pair <situation, plan> where the situation is an object. Bellazzi
et al. [10] also show a memory organization around classes of prototypes
in the domain of Diabetes Mellitus. The memory organization is a tree-like
structured taxonomy: each class in the hierarchy is a prototypical descrip-
tion of the set of problems or situations it represents. The leaves in the
taxonomy are basic classes containing a single case in the case library. The
authors stress that in many domains, some knowledge about the structuring
of the domain is available, or can be induced. This is the case in object ori-
ented approaches both for database management and programming languages.
Every knowledge-based methodology derived from frames and semantic nets
rely on that type of knowledge. In such a hierarchy, the retrieval step is two
folded: first a classification in a hierarchy of objects, in this system a Bayesian
classification, followed by a NN technique on the cases in the classes selected by
the first step. This method is called PBR (pivoting based retrieval). An evalu-
ation shows that PBR retrieves cases linearly with the size of the case base,
in comparison with the NN technique, which grows quadratically with the
number of cases [10].

Many systems use personalized memory organizations structured around
several layers or networks. Malek and Rialle in the domain of neuropathy diag-
nosis construct a memory of prototypical cases that is reused in the retrieval
phase. The memory structure has two levels: the upper level contains pro-
totypes, each of them representing a group of cases; the lower level contains
analyzed patient cases organized into groups of similar cases [34]. A small
memory of prototypes learnt by generalization decreases the retrieval time in
comparison with a large memory of cases. Malek uses a neural network to learn
the prototypes in memory for a classification task, such as diagnosis [35]. Here
the memory is organized in three layers: an input layer containing one unit
for each attribute, a hidden layer containing the prototypes, and an output
layer containing one unit for each class.

Another type of memory organization is the formal concept lattice. Dı̀az-
Agudo and Gonzàlez-Calero organize through formal concept analysis (FCA)
the case base around Galois lattices [18]. Retrieval step is a classification in
a concept hierarchy, as specified in the FCA methodology, which provides
such algorithms. The concepts can be seen as an alternate form of indexing
structure.
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Yet other authors take advantage of the B-tree structure implementing
databases. West and McDonald propose a method using database SQL query
language to retrieve cases over a large case base stored in a database [57].
The method makes implicit use of the optimized B-tree structure underlying
the relational databases implementation for fast retrieval, and computes the
similarity measure during retrieval. The look up time for retrieving from a case
library of any size is constant – and low – and the inclusion of the similarity
assessment varies less than linearly [57].

6.6 Discussion

CBR systems make efficient use of most data mining tasks defined for descrip-
tive modeling. We can list among the main ones encountered cluster analy-
sis, rule induction, hierarchical cluster analysis, and decision tree induction.
The motivations for performing an incremental type of data mining during
CBR are several folds, and their efficiency has been measured to validate the
approach. The main motivations are the following:

– Increase efficiency of retrieval mostly, but also of reuse, revise, and
retain steps

– Increase robustness, tolerance to noise
– Increase accuracy of reasoning
– Improve storage needs
– Follow a cognitive model
– Add a synthetic task such as generating new research hypotheses as a

side effect of normal CBR functioning

The memory organization maps directly into the retrieval method used.
For example, object-oriented taxonomies will retrieve cases by subsomption
mechanism and not by NN retrieval as in flat memories. Generalized cases and
the like are used both as indexing structures and organizational structures.
We can see here a direct mapping with the theory of the dynamic memory,
which constantly influences the CBR approach. The general idea is that the
learnt memory structures and organizations condition what inferences will
be performed and how. This is a major difference with database approaches,
which concentrate only on retrieval, and also with data mining approaches,
which concentrate only on the structures learnt, and not on how they will be
used. The ideal CBR memory is one which at the same time speeds up the
retrieval step and improves the accuracy and robustness of the task performed
by the reasoner, and particularly the reuse performed, influencing positively
both the retrieval, the reuse, and the other steps. Researchers do not want to
settle for a faster retrieval at the expense of less accuracy due to an overgene-
ralization. And they succeed at it.
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6.7 Conclusion

Data mining in CBR consists mainly in incremental mining for memory struc-
tures and organization with the goal to improve performance of retrieval,
reuse, revise, and retain steps. Memory structures mining comprises case min-
ing, feature mining, and generalized case mining. CBR memories are rich in
a variety of generalized structures such as concepts, prototypes, and abstract
cases. These structures can be organized in flat memories or in structured
memories, among hierarchies, conceptual hierarchies, decision trees, object-
oriented taxonomies, formal concept lattices, and B-trees. Researchers are
aiming at the ideal memory as described in the theory of the dynamic mem-
ory, which follows a cognitive model, while also improves performance and
accuracy in retrieve, reuse, revise, and retain steps. Many have succeeded in
showing that their memories indeed both decrease retrieval time and increase
accuracy of reasoning. This demanding goal is what motivates the constant
search for novel mining methods specific for CBR, and that cannot be met
by methodologies that simply do not share the same goals. The variety of
approaches as well as the specific and complex purpose lead to thinking that
there is still space for future models and theories of CBR memories.
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