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5.1 Introduction

Graphs are a powerful and universal tool widely used in information process-
ing. Numerous methods for graph analysis have been developed. Examples
include the detection of Hamiltonian cycles, shortest paths, vertex color-
ing, graph drawing, and so on [5]. In particular, graph representations are
extremely useful in image processing and understanding, which is the com-
plex process of mapping the initially numeric nature of an image (or images)
into symbolic representations for subsequent semantic interpretation of the
sensed world.

Case-based reasoning (CBR) provides us powerful strategies to fulfill the
high demands on robustness, accuracy, and flexibility of image interpretation
systems [53]. In CBR systems a concept is described by a case base and an
associated similarity measure. Cases can be organized into a flat case base or
in a hierarchical fashion. In a flat organization, we have to calculate similar-
ity between the problem case and each case in memory. It is clear that this
will take a considerable amount of time. To speed up the retrieval process,
a more sophisticated, hierarchical organization of the case base is necessary.
This organization should allow separating the set of similar cases from those
cases not similar to the recent problem at the earliest stage of the retrieval
process. In case base creation, maintenance, and retrieval, a central issue is
that of case (object) similarity. In this chapter we are concerned with struc-
tural case representations [20,54], which are common in computer vision and
image interpretation [6], building design [31], timetabling [19], etc. Given such
representations, we consider the problem of determining the equality or simi-
larity of graphs, which is generally referred to as graph matching.

Standard concepts in exact graph matching include graph isomorphism
and subgraph isomorphism. Two graphs are called isomorphic if they have
identical structure. There exists a subgraph isomorphism between two graphs
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if one graph contains a subgraph that is isomorphic to the other. Subgraph
isomorphism is useful to find out if a given object is part of another object or a
collection of several objects. Although exact graph matching offers a rigorous
way to describe structure equality in mathematical terms, it is generally only
applicable to a restricted set of real-world problems. Inexact, or error-tolerant,
graph matching methods, on the other hand, are able to cope with strong
inner-class distortion, which is often present in real-world applications.

In this chapter we provide an overview of graph matching. We mainly
concentrate on the fundamental concepts and some recent developments. The
reader is referred to the recent survey [23] for a detailed discussion of the
numerous graph matching algorithms and also the vast applications of graph
matching. Other recent collections of papers on graph matching (and mining)
can be found in [18,24,26,29].

5.2 Basic Definitions and Notation

Attributed graphs with an unrestricted label alphabet is one of the most
general ways to define graphs. It turns out that the definition given below is
sufficiently flexible for a large variety of applications.

Definition 1 (Graph). A graph is a 4-tuple g = (V,E, α, β), where

– V is the finite set of vertices
– E ⊆ V × V is the set of edges
– α : V → LV is a function assigning labels to the vertices
– β : E → LE is a function assigning labels to the edges

Edge (u, v) originates at node u and terminates at node v. The label-
ing function can be used to integrate information about nodes and edges
into graphs by assigning attributes from LV and LE to nodes and edges, re-
spectively. Usually, there are no constraints imposed on the label alphabets.
In practical applications, however, label alphabets are often defined as vector
spaces �k of a fixed dimension k or discrete sets of symbols {s1, s2, . . . , sk}.
In principle, nodes and edges may also have other, arbitrarily complex labels.
The notation |g| will be used for the number of nodes of graph g.

The graph definition introduced above includes a number of special cases.
To define undirected graphs, for instance, we require that (v, u) ∈ E for every
edge (u, v) ∈ E such that β(u, v) = β(v, u). In the case of nonattributed
graphs, the label alphabets are defined by LV = LE = {φ}, so that every
node and edge gets assigned the null label φ.

For some applications, it is important to detect whether a smaller graph
is present in a larger graph – for instance, if the larger graph represents an
aggregation of objects and the smaller graph a specific object in the larger
context. This intuitively leads to the formal definition of a subgraph.
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Definition 2 (Subgraph). Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2)
be graphs; g2 is a subgraph of g1, written as g2 ⊆ g1, if

– V2 ⊆ V1

– E2 = E1 ∩ (V2 × V2)
– α1(v) = α2(v) for all v ∈ V2

– β1(e) = β2(e) for all e ∈ E2

Conversely, graph g1 is called a supergraph of g2 if g2 is a subgraph of g1.
Sometimes, the second condition of this definition is replaced by E2 ⊆ E1 ∩
(V2×V2), and a subgraph fulfilling the more stringent condition given above is
called an induced subgraph. The notion of subgraph can be used to approach
more complex problems such as the largest common part of several graphs,
which will be discussed below.

5.3 Exact Graph Matching

In exact graph matching, the objective is to determine whether or not the
structure and labels, or part of the structure, of two graphs are identical.

Definition 3 (Graph isomorphism). Let g1 and g2 be graphs. A graph
isomorphism between g1 and g2 is a bijective mapping f : V1 → V2 such that

– α1(v) = α2(f(v)) for all v ∈ V1

– for any edge e1 = (u, v) ∈ E1 there exists an edge e2 = (f(u), f(v)) ∈ E2

such that β1(e1) = β2(e2), and for any edge e2 = (u, v) ∈ E2 there exists
an edge e1 = (f−1(u), f−1(v)) ∈ E1 such that β1(e1) = β2(e2)

Two graphs g1 and g2 are called isomorphic if there exists a graph isomorphism
between them.

From this definition we conclude that isomorphic graphs are identical in
terms of structure and labels. To establish an isomorphism one has to map
each node from the first graph to a node of the second graph such that the
edge structure is preserved and the node and edge labels are consistent.

The graph isomorphism problem is of considerable practical importance
and also of theoretical interest due to its relationship to the concept of NP-
completeness. Despite intensive research for over three decades [30,55,58] still
no efficient (polynomial-bound) algorithm for graph isomorphism is known.
Neither has the conjecture been proved that no such algorithm can exist.
While it is easy to determine equality of patterns in case of feature vectors
or strings, the same computation is much more complex for graphs. Because
the nodes and edges of a graph cannot be ordered in general, unlike the com-
ponents of a feature vector or the symbols of a string, the problem of graph
equality (graph isomorphism) is computationally very demanding. The most
straightforward approach to checking the isomorphism of two graphs is to tra-
verse a search tree considering all possible node-to-node correspondences [61].
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The expansion of tree branches is continued until the edge structure implied
by the node mapping does not correspond in both graphs. If nodes and edges
are additionally endowed with labels, matching nodes and edges must also
be consistent in terms of their labels. Reaching a leaf node of the search tree
is equivalent to successfully mapping all nodes without violating the struc-
ture and label constraints and is therefore equivalent to having found a graph
isomorphism. In general, the computational complexity of this procedure is
exponential in the number of nodes of either graph.

By imposing certain restrictions on the underlying graphs, however, it is
possible to derive algorithms of polynomial-time complexity. For instance,
Luks [45] described a polynomially bounded method for the isomorphism
detection of graphs with bounded valence. For the special case of trivalent
graph isomorphism, it was shown in [45] that algorithms with a computational
complexity of O(n4) exist. Low-order polynomial-time methods [35, 36, 64]
are also known for planar graphs. Quadratic-time algorithms [37, 38] have
been reported for ordered graphs, in which the edges incident to a vertex are
uniquely ordered. Further special graph classes, for which the isomorphism
problem is solvable in polynomial time, are trees [1], interval graphs [9], permu-
tation graphs [22], chordal (6, 3) graphs [3], graphs with bounded genus [48],
graphs with bounded treewidth [7], graphs with bounded eigenvalue multi-
plicity [2], and rooted directed path graphs [4].

Closely related to graph isomorphism is the problem to detect if a smaller
graph is present in a larger graph. If graph isomorphism is regarded as a for-
mal notion of graph equality, subgraph isomorphism can be seen as subgraph
equality.

Definition 4 (Subgraph isomorphism). Let g1 = (V1, E1, α1, β1) and
g2 = (V2, E2, α2, β2) be graphs. An injective function f : V1 → V2 is called
a subgraph isomorphism from g1 to g2 if there exists a subgraph g ⊆ g2 such
that f is a graph isomorphism between g1 and g.

A subgraph isomorphism exists from g1 to g2 if the larger graph g2 can be
turned into a graph that is isomorphic to the smaller graph g1 by removing
some nodes and edges. Subgraph isomorphism can also be determined with
the procedure outlined above for graph isomorphism [61]. It is known that
subgraph isomorphism belongs to the class of NP-complete problems.

5.4 Inexact Graph Matching

In graph representations of real-world patterns, it is often the case that graphs
from the same class differ in terms of structure and labels. Hence, graph
matching systems need to take structural errors into account. In this section
several variants of realizing this goal are discussed.
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5.4.1 Graph Edit Distance

Graph edit distance offers an intuitive way to integrate error-tolerance into
the graph matching process and is applicable to virtually all types of graphs.
Originally, edit distance has been developed for string matching [62] and a
considerable amount of variants and extensions to the edit distance have been
proposed for strings and graphs. The key idea is to model structural variation
by edit operations reflecting modifications in structure, such as the removal of
a single node or the modification of an attribute attached to an edge. A stan-
dard set of edit operations consists of a node insertion, node deletion, node
substitution, edge insertion, edge deletion, and edge substitution operation.

Definition 5 (Edit path). Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2)
be graphs. Any bijective function f : V̂1 → V̂2, where V̂1 ⊆ V1 and V̂2 ⊆ V2, is
called an edit path from g1 to g2.

We say that node u ∈ V̂1 is substituted by node v ∈ V̂2 if f(u) = v.
If α1(u) = α2(f(u)) then the substitution is called an identical substitution.
Otherwise, it is termed a nonidentical substitution. Furthermore, any node
from V1 − V̂1 is deleted from g1, and any node from V2 − V̂2 inserted in g2

under f . We will use ĝ1 and ĝ2 to denote the subgraphs of g1 and g2 that are
induced by the sets V̂1 and V̂2, respectively.

The mapping f directly implies an edit operation on each node in g1 and
g2, i.e., nodes are substituted, deleted, or inserted as described above. Addi-
tionally, the mapping f indirectly implies edit operations on the edges of g1

and g2. If f(u1) = v1 and f(u2) = v2 and there exist edges (u1, u2) ∈ E1

and (v1, v2) ∈ E2 then edge (u1, u2) is substituted by (v1, v2) under f . If
β1((u1, u2)) = β2((v1, v2)) then the edge substitution is called an identical
substitution. Otherwise, it is termed a nonidentical substitution. If there exists
no edge (u1, u2) ∈ E1, but an edge (v1, v2) ∈ E2, then edge (v1, v2) is inserted.
Similarly, if (u1, u2) ∈ E1 exists but no edge (v1, v2), then (u1, u2) is deleted
under f . If a node u is deleted from g1, then any edge incident to u is deleted,
too. Similarly, if a node u′ is inserted in g2, then any edge incident to u′ is
inserted, too. Obviously, any edit path f can be understood as a set of edit
operations (substitutions, deletions, and insertions of both nodes and edges)
that transform a given graph g1 into another graph g2.

Example 1. A graphical representation of two graphs is given in Fig. 5.1. For
those graphs, we have the following:
LV = {X,Y,Z}; LE = {a, b, c}
V1 = {1, 2, 3}; V2 = {4, 5, 6, 7}
E1 = {(1, 2), (1, 3), (2, 3)}; E2 = {(4, 5), (4, 6), (4, 7), (5, 6), (5, 7)}
α1: 1 �→ X, 2 �→ X, 3 �→ Y
α2: 4 �→ X, 5 �→ X, 6 �→ Y , 7 �→ Z
β1: (1, 2) �→ a, (1, 3) �→ b, (2, 3) �→ b
β2: (4, 5) �→ a, (4, 6) �→ c, (4, 7) �→ b, (5, 6) �→ c, (5, 7) �→ b
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Fig. 5.1. An example of edit paths (see text)

Three examples of edit paths are the following:

– f1 : 1 �→ 4, 2 �→ 5, 3 �→ 7 with V̂1 = {1, 2, 3} and V̂2 = {4, 5, 7}
– f2 : 1 �→ 4, 2 �→ 5, 3 �→ 6 with V̂1 = {1, 2, 3} and V̂2 = {4, 5, 6}
– f3 : 1 �→ 4, 2 �→ 5 with V̂1 = {1, 2} and V̂2 = {4, 5}

Under f1, nodes 1, 2, and 3 are substituted by nodes 4, 5, and 7, respectively.
Consequently, edges (1, 2), (1, 3), and (2, 3) are substituted by (4, 5), (4, 7), and
(5, 7), respectively. The substitution of nodes 1 and 2 by 4 and 5 are identical
substitutions that involve no label change; there are no label changes involved
in the edge substitutions, either. The label Y of node 3 is substituted by Z
of node 7, and node 6 together with its incident edges (4, 6) and (5, 6) are
inserted in g2. There are, of course, many other paths from g1 to g2.

With substitutions, deletions, and insertions for both nodes and edges at
our disposal, any graph can be transformed into any other graph by iteratively
applying edit operations. Consequently, the concept of graph editing can be
used to define a dissimilarity measure on graphs. To quantify how strongly
an edit operation modifies the structure of a graph, it is common to use
an edit cost function that assigns a cost value to each edit operation. An edit
operation associated with a low cost is assumed to only slightly alter the graph
under consideration, while an edit operation with a high cost is assumed to
strongly modify the graph. To obtain a cost function on edit paths, we simply
accumulate individual edit operation costs of the edit path.

Definition 6. The cost of an edit path f : V̂1 → V̂2 from a graph g1 =
(V1, E1, α1, β1) to a graph g2 = (V2, E2, α2, β2) is given by

c(f) =
∑

u∈V̂1
cns(u) +

∑
u∈V1−V̂1

cnd(u) +
∑

u∈V2−V̂2
cni(u)

+
∑

e∈Es
ces(e) +

∑
e∈Ed

ced(e) +
∑

e∈Ei
cei(e),

where

– cns(u) is the cost of substituting node u ∈ V̂1 by f(u) ∈ V̂2

– cnd(u) is the cost of deleting node u ∈ V1 − V̂1 from g1
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– cni(u) is the cost of inserting node u ∈ V2 − V̂2 in g2

– ces(e) is the cost of substituting edge e
– ced(e) is the cost of deleting edge e
– cei(e) is the cost of inserting edge e

and Es, Ed, and Ei are the sets of edges that are substituted, deleted, and
inserted, respectively. All costs are nonnegative real numbers.

Notice that the sets Es, Ed, and Ei are implied by the mapping f . That
is, if edge e = (u1, u2) ∈ E1, f(u1) = v1, f(u2) = v2, and (v1, v2) �∈ E2,
then e ∈ Ed. Similarly, if (u1, u2) �∈ E1, f(u1) = v1, f(u2) = v2, and e =
(v1, v2) ∈ E2, then e ∈ Ei. Likewise, if e1 = (u1, u2) ∈ E1, f(u1) = v1,
f(u2) = v2, and e2 = (v1, v2) ∈ E2, then e1 ∈ Es. Because an edge is deleted
(inserted) whenever one or both of its incident nodes are deleted (inserted),
we furthermore observe that (1) e ∈ Ed if e ∈ (V1 × V1) − (V̂1 × V̂1) and (2)
e ∈ Ei if e ∈ (V2 × V2) − (V̂2 × V̂2).

The problem of measuring the dissimilarity of two graphs is then equivalent
to the problem of finding the edit path that models the structural difference
of two graphs in the least costly way. Consequently, the graph edit distance
of two graphs is defined by the minimum cost edit path from the first to the
second graph.

Definition 7 (Graph edit distance). Let g1 = (V1, E1, α1, β1) and g2 =
(V2, E2, α2, β2) be graphs and let c(f) denote the cost of edit path f . The edit
distance of g1 and g2 can be defined by

d(g1, g2) = min
all edit paths f from g1 to g2

c(f)

If the two graphs under consideration are very similar in terms of structure
and labels, it can be assumed that only minor edit operations are required to
transform the first into the second graph, which results in a low-cost optimal
edit path. In this case, the resulting edit distance will be small. Conversely,
if the two graphs differ significantly, every edit path will necessarily include
strong modifications and hence result in high costs.

In the following it is assumed, for the purpose of simplicity, that the costs
cnd(x), cni(x), and cns(x) do not depend on node x; neither do ced(e), cei(e),
and ces(e) depend on edge e. In other words, cnd(x), cni(x), and cns(x) will be
the same for any node x, and ced(e), cei(e), and ces(e) will be the same for any
edge e. Hence, the notation cnd(x) = cnd, cni(x) = cni, . . . , ces(e) = ces will be
used and a cost function is given by the 6-tuple C = (cnd, cni, cns, ced, cei, ces).
Unless otherwise stated, it is assumed that the cost of an identical node or
edge substitution is zero, while the cost of any other edit operation is greater
than zero.

Example 2. Consider the uniform cost function C = (cnd, cni, cns, ced, cei, ces)
= (1, 1, 1, 1, 1, 1). Then the edit path f1 given in Example 1 has cost c(f1) = 4
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(one node label substitution, one node insertion, and two edge insertions).
It can be easily verified that there is no other edit path from g1 to g2 that has
a smaller cost under C. For example, c(f2) = 5 (two edge label substitutions,
one node insertion, and two edge insertions) and c(f3) = 9 (one node and two
edge deletions, two node and four edge insertions). However, if we change the
cost function and consider C ′ = (1, 1, 3, 1, 1, 1) then c(f1) = 6, c(f2)=5, and
c(f3) = 9. Thus, f1 is no longer optimal under C ′ and it can be easily verified
that f2 has in fact the smallest cost among all possible paths from g1 to g2.
If we consider a third cost function C ′′ = (1, 1, 7, 1, 1, 7) then c(f1) = 10,
c(f2) = 17, and c(f3) = 9. Under this cost function, f3 is optimal.

If a cost function satisfies the conditions of positive definiteness and sym-
metry as well as the triangle inequality at the level of single edit operations,
the resulting edit distance is known to be a metric [10]. This fact legitimates
the use of the term distance in graph edit distance.

In practical applications, graph edit distance is usually accomplished
by means of heuristic A∗-based tree search procedures [10]. Because of the
exponential nature of the problem, such procedures are normally limited to
rather small graphs. Recently, however, several methods to speed up edit dis-
tance computation have been proposed. In [8, 59] the authors proposed to
optimize local rather than global criteria, which results in a suboptimal pro-
cedure. Other suboptimal techniques were introduced in [51, 56]. In Justice
and Hero [42] a linear programming method for computing the edit distance
of graphs with unlabeled edges is proposed. This method can be used to derive
lower and upper edit distance bounds in polynomial time.

5.4.2 Graph Distance Functions Based on mcs

The definition of subgraph isomorphism naturally leads us to the formal def-
inition of the largest common part of two graphs.

Definition 8 (Maximum common subgraph). Let g1 = (V1, E1, α1, β1)
and g2 = (V2, E2, α2, β2) be graphs. A common subgraph of g1 and g2,
cs(g1, g2), is a graph g = (V,E, α, β) such that there exist subgraph isomor-
phisms from g to g1 and from g to g2. We call g a maximum common subgraph
of g1 and g2, mcs(g1, g2), if there exists no other common subgraph of g1 and
g2 that has more nodes than g.

A maximum common subgraph of two graphs represents the maximal part
of both graphs that is identical in terms of structure and labels. Note that,
in general, the maximum common subgraph is not uniquely defined, that is,
there may be more than one common subgraph with a maximal number of
nodes. A standard approach to computing maximum common subgraphs is
based on solving the maximum clique problem in an association graph [44,46].
The association graph of two graphs represents the whole set of possible node-
to-node mappings that preserve the edge structure of both graphs. Finding a
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maximum clique in the association graph, that is, a fully connected maximal
subgraph, is equivalent to finding a maximum common subgraph. In Bunke et
al. [16] the reader can find a comparison of algorithms for maximum common
subgraph computation on randomly connected graphs.

Graph dissimilarity measures can be derived from the maximum common
subgraph of two graphs. Intuitively speaking, the larger a maximum common
subgraph of two graphs is, the more similar are the two graphs. This observa-
tion leads to graph dissimilarity measures that are able to cope with structural
errors. Bunke and Shearer [12] have introduced such a distance measure:

dMCS (g1, g2) = 1 − |mcs(g1 , g2 )|
max{|g1|, |g2|} (5.1)

where | . . . | indicates the size of a graph (usually taken to be the number of
nodes). Note that, whereas the maximum common subgraph of two graphs
is not uniquely defined, the dMCS distance is. If two graphs are isomorphic,
their dMCS distance is 0; if two graphs have no part in common, their dMCS

distance is 1. The dMCS distance accounts for a certain amount of tolerance
towards errors, as two graphs need not be completely identical for a successful
match. However, a small dMCS distance, and hence a high graph similarity,
can only be obtained if large portions of both graphs are isomorphic. It has
been shown that dMCS is a metric and produces a value in [0, 1].

A second distance measure which has been proposed by Wallis et al. [63],
based on the idea of graph union, is

dWGU (g1, g2) = 1 − |mcs(g1 , g2 )|
|g1| + |g2| − |mcs(g1, g2)|

By “graph union” it is meant that the denominator represents the size of
the union of the two graphs in the set-theoretic sense. This distance measure
behaves similarly to dMCS . The motivation of using graph union in the de-
nominator is to allow for changes in the smaller graph to exert some influence
over the distance measure, which does not happen with dMCS . This measure
was also demonstrated to be a metric and creates distance values in [0, 1].

A similar distance measure [11] which is not normalized to the interval
[0, 1] is

dUGU (g1, g2) = |g1| + |g2| − 2 · |mcs(g1, g2)|
Fernandez and Valiente [27] have proposed a distance measure based on both
the maximum common subgraph and the minimum common supergraph

dMMCS (g1, g2) = |MCS(g1, g2)| − |mcs(g1, g2)|
where MCS(g1, g2) is the minimum common supergraph of graphs g1 and g2,
which is the complimentary idea of minimum common subgraph.

Definition 9 (Minimum common supergraph). Let g1 = (V1, E1, α1, β1)
and g2 = (V2, E2, α2, β2) be graphs. A common supergraph of g1 and g2,
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CS(g1, g2), is a graph g = (V,E, α, β) such that there exist subgraph
isomorphisms from g1 to g and from g2 to g. We call g a minimum com-
mon supergraph of g1 and g2, MCS(g1, g2), if there exists no other common
supergraph of g1 and g2 that has less nodes than g.

The concept that drives the distance measure above is that the maximum com-
mon subgraph provides a “lower bound” on the similarity of two graphs, while
the minimum supergraph is an “upper bound.” If two graphs are identical,
then both their maximum common subgraph and minimum common super-
graph are the same as the original graphs and |g1| = |g2| = |MCS(g1, g2)| =
|mcs(g1, g2)|, which leads to dMMCS (g1, g2) = 0. As the graphs become more
dissimilar, the size of the maximum common subgraph decreases, while the size
of the minimum supergraph increases. This in turn leads to increasing values
of dMMCS (g1, g2). For two graphs with no maximum common subgraph, the
distance will become |MCS(g1, g2)| = |g1|+ |g2|. The distance dMMCS (g1, g2)
has also been shown to be a metric, but it does not produce values normalized
to the interval [0, 1], unlike dMCS or dWGU . We can also create a version of
this distance measure which is normalized to [0, 1] as follows:

dMMCSN (g1, g2) = 1 − |mcs(g1, g2)|
|MCS(g1, g2)|

Note that if the conditions holds that |MCS(g1, g2)| = |g1| + |g2| −
|mcs(g1, g2)|, then dUGU and dMMCS are identical. The same is true for dWGU

and dMMCSN .

5.4.3 Relaxation Approaches

We use a matching matrix M to indicate the compatibility of nodes in the
two graphs being matched. If the ith row and jth column element Mij is 1,
then node i in graph g1 is matched with node j in graph g2; otherwise there
is no match and Mij = 0. Constraints can be imposed on M so that each row
has exactly one 1 and no column has more than one 1. Such a representation
and the algorithms applied to it for determining graph matching are straight-
forward; however, they can require generating all the permutations of possible
node matchings over the matrix.

To improve time complexity, we can instead attempt to approximate the
optimal solution by finding good suboptimal solutions. A method that is some-
times used to achieve this for graph matching problems is called relaxation
(or more specifically, discrete relaxation). Put simply, discrete relaxation is a
method of transforming a discrete representation (such as the matrix M used
for graph matching) into a continuous representation. Thus, we can transform
a discrete optimization problem into a continuous one. Compared to the typi-
cal state-space search approaches to graph matching, relaxation is a nonlinear
optimization approach. Gold and Rangdarajan [32] applied relaxation to the
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graph matching problem. They have posed the problem of attributed graph
matching in terms of an optimization problem:

E = −1
2

|V1|∑
a=1

|V2|∑
i=1

|V1|∑
b=1

|V2|∑
j=1

MaiMbj

R∑
r=1

C
(2,r)
aibj + α

|V1|∑
a=1

|V2|∑
i=1

Mai

S∑
r=1

C
(1,s)
ai

Here M is the matching matrix as before, R is the number of edge types,
S is the number of node types, α is a weighting factor, and the C’s are
compatibility measures between the edges of the two graphs. The goal is then
to minimize the objective function given above. In [32] the authors use the
graduated assignment algorithm to find an M which minimizes E.

Medasani et al. [47] gave a procedure based on fuzzy assignments and
relaxation similar to the method just described. The objective function for
this approach is

J(M,C) =
|V1|+1∑

i=1

|V2|+1∑
j=1

M2
ijf(Cij) + η

|V1|+1∑
i=1

|V2|+1∑
j=1

Mij(1 − Mij)

where M is now a fuzzy membership matrix (0 ≤ Mij ≤ 1) that relates the
degree of match between nodes, C is a compatibility matrix between nodes
(rather than edges as above), η is a control parameter, and

f(Cij) = e−βCij

The summations in the objective function are under the constraint that
(i, j) �= (|V1| + 1, |V2| + 1); the extra nodes in the graphs are dummy nodes.
The authors then go on to derive the necessary update equations for M and C
in order to minimize J(M,C) and propose an algorithm which updates these
matrices in an alternating fashion.

5.4.4 Probabilistic Approaches

In this section we summarize the probabilistic approach proposed by Wilson
and Hancock [66]. We attempt to match a data graph gD and a stored model
graph gM , both being attributed graphs. In Wilson and Hancock [66] an at-
tributed graph is defined to be one g = (V,E,A), where A is a set of attributes
associated with each node, A = xy

v, ∀v ∈ V .
The attributes in the data graph are to be matched to those in the model

graph, such that the matched nodes have the same or similar attributes. Edges
may also have associated attributes, but they are not considered in this ap-
proach. Next, we have the concept of super-clique of a node. A super-clique [66]
of a node i in graph g = (V,E,A) is defined as Ci = i∪{j|(j, i) ∈ E}. In other
words, the super-clique of a node i is the set of nodes which contain i and all
nodes connected to it by edges. The goal is then to match all super-cliques in
the data graph with super-cliques in the model graph.
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The set of all possible matches between super-clique Ci in the data graph
gD and super-cliques in the model graph gM is called a dictionary and denoted
Θi. To cope with size differences between the data and model super-cliques
dummy (or null) nodes φ are allowed to be inserted into Sj so that both graphs
have the same number of nodes. The function matching a node in Ci to a node
in S is f : VD → VM ∪ φ. The probability of matching errors (a node in gD is
matched to the wrong node in gM ) is denoted Pe and the probability of struc-
tural errors (a node in gD is matched to a dummy node in gM ) is denoted Pφ.
Given these definitions, some assumptions, and through application of Bayes’
rule and other probability theoretic constructions, Wilson and Hancock arrive
at a mathematical description for the probability of a super-clique matching
between two graphs (denoted Γj for super-clique Cj):

P (Γj) =
KCj

|Θj |
∑

Sj∈Θj

exp{−(keH(Γj , Si) + kφ[ψ(Γj , Si) + Ψ(Γj)])}

where

KCj
= [(1 − Pe)(1 − Pφ)]|Cj |

ke = ln
1 − Pe

Pe

kφ =
(1 − Pe)(1 − Pφ)

Pφ

H(Γj , Si) is the Hamming distance between the super-clique of gD under the
mapping f and the super-clique of gM , ψ(Γj , Si) = |Cj |−|Si| (i.e., the number
of null nodes inserted into Si), and Ψ(Γj) is the number of nodes in Cj which
are mapped onto null nodes in Si. The deviation of P (Γj) is beyond the
scope of this chapter, but the equation contains three parts which are fairly
straightforward. The part associated with KCj

is the probability of no error
occurring. The part associated with ke is concerned with the probability of
matching error occurring. Finally, the part associated with kφ deals with the
probability of structural errors occurring. For an in-depth derivation of these
equations, the reader is referred to [66].

The authors then go on to derive rules which can be applied to update the
matching function f under three different methods (null-labeling, constraint
filtering, and graph edit operations). The methods use update rules of the
form

f(u) = arg max
v∈VM

P (u, v|xD
u , xM

v )
P (u, v)

∑
j∈Cu

P (Γj)

Here P (u, v) indicates the prior probability that node u in gD corresponds to
node v in gM , while the other probability in the numerator is the conditional
a posteriori probability, given the corresponding attributes related with the
nodes.
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An advantage of this framework is that it can be applied in many situa-
tions. For example, an extension of the work [65] deals with multiple graph
matching through computations of fuzzy consistency matrices. Finch et al. [28]
developed an energy function for graph matching based on the probabilistic
framework of this section. A method using this approach for the fitness func-
tion in a genetic search for graph matching is described in [25]. A similar prob-
abilistic framework for hierarchical graphs is given in [67]. Myers et al. [49]
modified the approach described here to include graph edit distance; the new
method achieves better complexity by removing the need to inset null nodes
in the model graph.

5.4.5 Distance Preservation Approach

In [21] Chartrand et al. describe an approach for graph distance calculation
based on preserving the distance between nodes. The idea comes from the fact
that when two graphs are isomorphic, the distance (meaning in this context
the number of edges traversed) between every pair of nodes are identical in
both graphs. Given a graph g = (V,E), the distance between two nodes
x, y ∈ V , denoted dg(x, y), is defined as the minimum number of edges that
need to be traversed when traveling from x to y [21]. Further, the φ-distance
[21] between two graphs g1 an g2, denoted dφ(g1, g2), is defined as

dφ(g1, g2) =
∑

∀x∀y∈V1

|dg1(x, y) − dg2(x, y)|

where φ is a one-to-one mapping (but not necessarily an isomorphism) between
g1 and g2.

If φ is an isomorphism, then dφ(g1, g2) = 0; if g1 and g2 are not isomor-
phic, then dφ(g1, g2) > 0. This leads to a definition of distance between two
graphs as

d(g1, g2) = min
∀φ

dφ(g1, g2)

In [21] the authors also go on to show that we can make some other, less
expensive calculations if the graphs meet certain requirements. For example,
if g1 and g2 are connected graphs with an equal number of nodes, then we
can determine the lower bound on their distance by

d(g1, g2) ≥ |td(g1) − td(g2)|

where
td(g) =

∑
∀u,v∈V

d(u, v)

or, in other words, the sum of distances between all pairs of nodes in graph.
Further theoretical contributions related to this approach can be found in [21].
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5.5 Theoretical Foundations of Graph Matching

The graph distance measure according to (5.1) is based on the maximum
common subgraph of two graphs. Obviously, it can be regarded an alternative
to graph edit distance. Indeed, it was recently shown that there is a direct
relation between graph edit distance and maximum common subgraph in the
sense that graph edit distance and maximum common subgraph computation
are equivalent to each other under a certain cost function [11]. In [11] the
following cost function was considered:

cns(x) =
{

0, if α1(x) = α2(f(x))
∞, otherwise

}
for any x ∈ V̂1,

cnd(x) = 1 for any x ∈ V1 − V̂1,

cni(x) = 1 for any x ∈ V2 − V̂2,

ces(e) =
{

0, if β1((x, y)) = β2((f(x), f(y)))
∞, otherwise

}
for any e = (x, y) ∈ V̂1 × V̂1,

ced(e) = 0 for any e = (x, y) ∈ (V1 × V1) − (V̂1 × V̂1),
cei(e) = 0 for any e = (x, y) ∈ (V2 × V2) − (V̂2 × V̂2).

(5.2)

Under this cost function, any node deletion and insertion has a cost equal to
one. Identical node and edge substitutions have zero cost, while substitutions
involving different labels have infinity cost. The insertion or deletion of an
edge incident to a node that is inserted or deleted, respectively, has no cost.
Intuitively speaking, it is assumed that the cost of a node deletion (insertion)
includes the cost of deleting (inserting) the incident edges. As for any two
graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) there is always an edit
path f with cost c(f) = |V1|+ |V2| (corresponding to the case where all nodes
together with their incident edges are deleted from g1, and all nodes with
their incident edges are inserted in g2), any edit operation with infinity cost
will never need to be considered when looking for an optimal edit path. Thus,
we may think of edit operations with infinity cost as nonadmissible. In other
words, under the given cost function we can restrict our attention on edit paths
involving only insertions, deletions, and identical node and edge substitutions,
but no nonidentical substitutions. For example, for the edit path f3 discussed
in Example 1, we have c(f3) = 3 under the considered cost function. Obviously
both f1 and f2 have infinity cost.

It was shown in [11] that under this cost function the following equation
holds true for any two graphs g1 and g2, and a maximum common subgraph
g of g1 and g2 (this maximum common subgraph may be empty):

d(g1, g2) = |g1| + |g2| − 2|g| (5.3)

Obviously, this equation establishes a relation between the size |g| of the
maximum common subgraph of two graphs g1 and g2, and their edit distance
d(g1, g2). Thus, given one of the two quantities and the size of g1 and g2, we
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can immediately calculate the other. It was furthermore shown in [11] that
the mapping f : V̂1 → V̂2, defining an optimal edit path according to Def.
7, represents a maximum common subgraph of g1 and g2, i.e., f is a graph
isomorphism between ĝ1, the graph induced by V̂1, and ĝ2, the graph induced
by V̂2, and there are no larger subgraphs in g1 and g2, respectively, that are
isomorphic to each other.

This theoretical result has an interesting practical consequence, namely,
any algorithm for graph edit distance computation can be applied for maxi-
mum common subgraph computation if it is run under the cost function given
in (5.2). Conversely, any algorithm that computes the maximum common sub-
graph of two graphs can be used for graph edit distance computation under
cost function (5.2), using (5.3). A similar relation between string edit distance
and longest common subsequence has been known for long [60].

The results derived in [11] were recently shown to hold not only for the
cost function given in (5.2), but for a whole class consisting of infinitely many
cost functions. In [13] cost functions C with cns = ces = 0 for identical
substitutions and

cnd + cni < cns and cnd + cni < ces (5.4)

are considered. (Note that (5.2) is a special case of this class.) It is shown that
for this whole class of cost functions the minimum cost mapping f : V̂1 →
V̂2 represents a maximum common subgraph of g1 and g2 and, conversely,
any maximum common subgraph represents a minimum cost mapping in the
sense of Def. 7. Intuitively speaking, the conditions in (5.4) imply that a
node deletion together with a node insertion will be always preferred over a
node or an edge substitution because of a smaller cost. This means that all
nodes and edges in g1 that cannot be mapped to a node or an edge with an
identical label in g2 will be deleted from g1. Similarly, all nodes and edges in
g2 that are not part of the mapping f (i.e., that do not have a corresponding
node or edge with identical label, respectively) will be inserted. What remains
for the mapping f is exactly the maximum common subgraph of g1 and g2.
An example is the edit path f3 in Example 1. It is optimal under the cost
function C ′′ = (1, 1, 7, 1, 1, 7) as explained in Example 2. As a matter of fact,
f3 corresponds to the maximum common subgraph of g1 and g2 in Fig. 1, and
cost function C ′′ satisfies conditions (5.4).

The equivalence of maximum common subgraph and graph edit distance
computation shown in [13] is based on the assumption cei(e) = ced(e) =
0 for any edge e from (V1 × V1) − (V̂1 × V̂1) and (V2 × V2) − (V̂2 × V̂2),
respectively, see (5.2). Thus, no individual costs for the deletion of edges from
(V1 × V1) − (V̂1 × V̂1) and no individual costs for the insertion of edges in
(V2×V2)−(V̂2× V̂2) are taken into regard. The reason is that these operations
are automatically implied by the deletion of nodes from (V1 − V̂1) and the
insertion of nodes in (V2−V̂2), respectively. Thus, it is assumed that their costs
are included in the costs of the corresponding node deletions and insertions.
In other words, the cost of a node deletion (insertion) includes not only the



164 X. Jiang and H. Bunke

cost of deleting (inserting) a node, but also the deletion (insertion) of the
edges that connect it to the other nodes of the graph. This assumption may
be justified in many applications.

The equivalence of graph edit distance and maximum common subgraph
shown in [13] yields additional insight on the measure dMCS (g1, g2) of (5.1).
Although no explicit costs of graph edit operations are needed to compute
dMCS (g1, g2), there are, nevertheless, costs involved in an implicit manner,
because the quantity |mcs(g1, g2)| in (5.1) is equivalent to the graph edit
distance d(g1, g2) in the sense of (5.3), assuming a cost function satisfying
(5.4). In other words, whenever we compute the maximum common subgraph
of two graphs we may consider this as a graph edit distance computation
under an arbitrary cost function belonging to the class studied in [13]. From
this point of view, the measure defined in (5.1) may be regarded an advantage
over conventional graph edit distance computation because it is robust against
changing the costs of the underlying graph edit operations over a fairly wide
range.

Another important result shown in [13] is the existence of classes of cost
functions that always result in the same optimal mapping f : V̂1 → V̂2 for
any two given graphs g1 and g2. Intuitively speaking, if we consider two cost
functions C and C ′, where C ′ is a scaled version of C, i.e., c′nd = αcnd, c

′
ni =

αcni, . . . , c
′
ei = αcei for some α > 0, then we expect that any edit path f

that is optimal under C is also optimal under C ′ for any two given graphs g1

and g2. Just the absolute cost of the two optimal edit paths would differ by a
factor α. In [13] it was shown that any optimal edit path under a cost function
C is optimal under another cost function C ′ not only if C ′ is a scaled version
of C, but for a much larger class of cost functions C ′. If the conditions

(cni + cnd)/cns = (c′ni + c′nd)/c′ns and (5.5)

ces/cns = c′es/c′ns (5.6)

for cost functions C and C ′ are satisfied then any edit path f is optimal
under C if and only if it is optimal under C ′ for any two given graphs g1 and
g2. Furthermore, there is a relation between the values c(f) obtained under
two different cost functions that is similar to (5.3). Given the edit distance
under cost function C we can analytically compute the edit distance under C ′

using just the parameters of C and C ′ and the size of the two graphs under
consideration. Hence, given an algorithm that was designed for a particular
cost function C, we can use the same algorithm for any other cost function C ′

for which (5.5) and (5.6) are satisfied. The existence of similar classes of cost
functions for string edit distance has been discovered recently Rice et al. [57].

As discussed above, maximum common subgraph computation is a special
case of graph edit distance under a particular class of cost functions. It was
furthermore shown in [13] that also graph isomorphism and subgraph isomor-
phism are special cases of edit paths. If we define cnd = cni = cns = ced =
cei = ces = ∞ then an edit path f between g1 and g2 with c(f) < ∞ exists if
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and only if there exists a graph isomorphism between g1 and g2. Clearly, any
such graph isomorphism f is optimal and c(f) = 0. Similarly, if

cnd = cns = ∞,
0 ≤ cni < ∞,

ces(e) = cei(e) = ced(e) = ∞ if e ∈ V̂1 × V̂1,

ced(e) = 0 if e ∈ (V1 × V1) − (V̂1 × V̂1),
cei(e) = 0 if e ∈ (V2 × V2) − (V̂2 × V̂2),

then an optimal edit path f with c(f) < ∞ between g1 and g2 exists if and
only if there exists a subgraph isomorphism from g1 to g2. Any optimal edit
path f is in fact a subgraph isomorphism and c(f) = (|g2| − |g1|)cni.

5.6 Some Recent Developments

In this section we discuss some of the recent developments, in particular,
automatic learning of graph edit distance, median graph, and weighted mean
of two graphs.

5.6.1 Learning Edit Costs

One of the major difficulties in the application of edit distance in graph match-
ing is the definition of adequate edit costs. The edit costs essentially govern
how the structural matching is performed. For some graph representations, it
may be crucial whether a node is missing or not, while for other representa-
tions, the connecting edges are more important than the nodes. The question
of how to define edit costs can therefore only be addressed in the context of
an application-specific graph representation.

In the case of labels from n-dimensional space of real numbers, a simple
edit cost model that has been used often is based on the distance of labels.
The idea is to assign edit costs to substitutions that are proportional to the
Euclidean distance of the two labels. Substituting an edge by another edge
with the same label therefore does not involve any costs. For nonidentical
labels, the further the two labels differ from each other, the higher will be the
corresponding substitution cost. Insertions and deletions are often assigned
constant costs in this model. The advantage of this simple model is that
only a few parameters are involved and the edit costs are defined in a very
intuitive way. However, it turns out that for some applications this model is
not sufficiently flexible. For instance, it does not take into account that some
label components may be more relevant than others. Also, the absolute values
of the labels are not evaluated, but only the distance of labels, which means
that all regions of the label space are equally weighted in terms of edit costs.

Recently, automatic approaches [50, 52] have been proposed to learn the
edit costs. In [50] an approach based on self-organizing maps (SOM) is pro-
posed. SOMs [43] are two-layer neural networks consisting of an input layer
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and a competitive layer. The role of the input layer is to forward input patterns
to the competitive layer. The competitive neurons are arranged in a homoge-
neous grid structure such that every neuron is connected to its neighbors. The
idea is that the competitive layer reflects the space of input elements, that
is, every competitive neuron corresponds to an element of the input space.
For pattern representations in terms of feature vectors, this is usually accom-
plished by assigning weight vectors of the same dimension as the input space
to neurons. Upon feeding an input pattern into the network, neurons of the
competitive layer compete for the position of the input element. To this end,
the weight of the closest competitive neurons and their neighbors are adapted
so as to shift them towards the position of the input element. The longer this
procedure is carried out, the more the competitive neurons tend to migrate to
areas where many input elements are present. That is, the competitive layer
can be regarded as a model of the pattern space, where the neuronal density
reflects the pattern density. This unsupervised learning procedure is called
self-organization as it does not rely on predefined classes of input elements.

SOMs can be used to model the distribution of edit operations. The idea
is to use a SOM to represent the label space. A sample set of edit opera-
tions is derived from pairs of graphs from the same class in a manner that is
equivalent to the probabilistic model. The self-organization process turns the
initially regular grid of the competitive layer into a deformed grid. From the
deformed grid, we obtain a distance measure for substitution costs and a den-
sity estimation for insertion and deletion costs. In the case of substitutions,
the SOM is trained with pairs of labels, where one label belongs to the source
node (or edge) and one to the target node (or edge). The competitive layer
of the SOM is then adapted so as to draw the two regions corresponding to
the source and the target label closer to each other. The edit cost of node and
edge substitutions is then defined proportional to the distance in the trained
SOM. That is, instead of measuring label distance by the Euclidean distance,
we measure the deformed distance in the corresponding SOM. In the case of
insertions and deletions, the SOM is adapted so as to draw neurons closer to
the inserted or deleted label. The edit cost of insertions and deletions is then
defined according to the competitive neural density at the respective posi-
tion. That is, the more neurons at a certain position in the competitive layer
are, the lower is the respective insertion or deletion cost. The self-organizing
training procedure for substitutions, insertions, and deletions hence results in
lower costs for those pairs of graphs that are in the training set and belong to
the same class.

5.6.2 Median Graph

The concept of median graph does not give us an indication of graph similarity,
but is useful in summarizing a group of graphs. This is among others needed in
applications such as clustering, where we have to represent a group of graphs
by some representative exemplar graph.
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Given a set of graphs S = {g1, g2, . . . , gn} defined over labels from LV and
LE and a distance function d() that measures the dissimilarity of two graphs,
the concept of median graph is given as follows [39]:

Definition 10. Let U be the set of all graphs that can be constructed using
labels from LV and LE. The generalized median graph g and the set median
graph ĝ of S ⊂ U are defined by

g = arg min
g∈U

n∑
i=1

d(g, gi)

and

ĝ = arg min
g∈S

n∑
i=1

d(g, gi)

respectively.

Both the generalized median and the set median graph minimize the sum
of distances to all input graphs and the only difference lies in the graph space
where the median is searched for. The generalized median is the more general
concept and therefore usually a better representation of the given patterns
than the set median. Notice that g is usually not a member of S. In general
several generalized median graphs and several set median graphs may exist.
However, this is usually not a drawback in practice since any such graph may
serve equally well as a representative of the given set.

Conceptually, searching for the set median graph of n input graphs is an
easy task since it suffices to compute 1

2n(n − 1) pairwise graph distances.
Due to the high expense of graph distance computation, however, it is often
desired to determine the set median graph more efficiently than under the
naive approach. Some suggested methods for this purpose can be found in [41].

Determining the generalized median graph is computationally more com-
plex. On the one hand, the computation time is clearly exponential in the
size of the input graphs. On the other hand, it is also exponential in terms
of the number of input graphs. The reason for this behavior is that already
for the special case of strings, the required time is exponential in the number
of input strings [34]. As a consequence, we are generally forced to resort to
approximate solutions that can be found in reasonable time. In [39] a genetic
solution is proposed for this purpose. A comparison of the genetic algorithm
against combinatorial search is described in [14].

When approximative approaches are involved, the question of accuracy of
the approximative generalized median graph g̃ arises. In [40] a lower bound is
proposed to answer this question. An approximate computation method gives
us a solution g̃ such that

SOD(g̃) =
∑
p∈S

d(g̃, p) ≥
∑
p∈S

d(g, p) = SOD(g)
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where SOD stands for sum of distances and g represents the (unknown) true
generalized median graph. The quality of g̃ can be measured by the difference
SOD(g̃)− SOD(g). Since g and SOD(g) are unknown in general, we resort to
a lower bound Γ ≤ SOD(g) and measure the quality of g̃ by SOD(g̃) − Γ .
Note that the relationship

0 ≤ Γ ≤ SOD(g) ≤ SOD(g̃)

holds. Obviously, Γ = 0 is a trivial, and also useless, lower bound. We thus
require Γ to be as close to SOD(g) as possible.

The distance function d(p, q) is assumed to be a metric. The generalized
median graph g is characterized by

minimize SOD(g) = d(g, g1) + d(g, g2) + · · · + d(g, gn) subject to

∀i, j ∈ {1, 2, . . . , n}, i �= j,

⎧⎨
⎩

d(g, gi) + d(g, gj) ≥ d(gi, gj)
d(g, gi) + d(gi, gj) ≥ d(g, gj)
d(g, gj) + d(gi, gj) ≥ d(g, gi)

∀i ∈ {1, 2, . . . , n}, d(g, gi) ≥ 0

Note that the constraints except the last set of inequalities are derived from
the triangular inequality of the metric d(p, q). By defining n variables xi,
i = 1, 2, . . . , n, we replace d(g, gi) by xi and obtain the linear program LP:

minimize x1 + x2 + · · · + xn subject to

∀i, j ∈ {1, 2, . . . , n}, i �= j,

⎧⎨
⎩

xi + xj ≥ d(gi, gj)
xi + d(gi, gj) ≥ xj

xj + d(gi, gj) ≥ xi

∀i ∈ {1, 2, . . . , n}, xi ≥ 0

If we denote the solution of LP by Γ , then the true generalized median g
satisfies Γ ≤ SOD(g), i.e., Γ is a lower bound for SOD(g).

5.6.3 Weighted Mean of Two Graphs

If we consider two points x and y in the k-dimensional real space �k, their
weighted mean can be defined as a point z such that

z = (1 − γ) · x + γ · y, 0 ≤ γ ≤ 1

Clearly, if γ = 1
2 then z is the (normal) mean of x and y. If z is as defined

above, then z − x = γ · (y − x) and y − z = (1 − γ) · (y − x). In other words,
z is a point on the line segment in n dimensions that connects x and y, and
the distance between z and both x and y is controlled via the parameter γ.

Conceptually, the same idea can be easily transformed into other domains,
such as strings [17] and graphs [15]. According to Bunke and Günter [15] the
weighted mean of two graphs g1 and g2 is a graph g such that
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Fig. 5.2. Example of a series of weighted means of two graphs

d(g, g1) = γ · d(g1, g2)

and
d(g, g2) = (1 − γ) · d(g1, g2)

where 0 < γ < 1.
An algorithm for finding the weighted mean of two graphs is given in

[15]. It is an extension of the method for weighted mean of strings [17] and
involves finding a subset of edit operations (given the lowest edit cost between
two graphs) for the given γ in order to determine the weighted mean graph.
Figure 5.2 shows an example of a series of weighted means of two graphs. In
some sense the concept of weighted mean graph gives us a tool of “morphing”
one graph into another graph.

If γ = 0.5, then we obtain the mean of two graphs g1 and g2 [33] and

d(g1, g) = d(g, g2), d(g1, g2) = d(g, g1) + d(g, g2)

holds. In other words, the mean graph g is equidistant from both g1 and g2.
Clearly, the mean will depend on the distance function chosen. There may be
more than one graph satisfying these conditions; it is also possible that no
(exact) mean graph exists for a given pair of graphs.

5.7 Conclusions

Graph matching has successfully been applied to various problems in image
processing and understanding. In the case of exact graph matching, the graph
extraction process is assumed to be structurally flawless, i.e., the conversion of
image data of a single class into graphs always results in identical structures or
substructures. Otherwise, graph isomorphism or subgraph isomorphism detec-
tion are rather unsuitable, which seriously restricts the applicability of graph
isomorphism algorithms. The main advantages of isomorphism algorithms are
their mathematically stringent formulation and the existence of well-known
procedures to derive optimal solutions.

Error-tolerant methods, sometimes also referred to as inexact or error-
correcting methods, are characterized by their ability to cope with errors, or
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noncorresponding parts, in structure and labels of graphs. Hence, in order
for two graphs to be positively matched, they need not be identical at all,
but only similar. The notion of graph similarity depends on the error-tolerant
matching method that is to be applied.

In this chapter we have given an overview of both exact and inexact graph
matching. The emphasis has been the fundamental concepts and the recent
developments concerned with the automatic learning of edit costs, median
graph, and weighted mean of two graphs. Particularly, the concept of inexact
graph matching provides us a means of measuring the similarity of graphs and
thus lays the foundation of using the versatile and flexible tool of graphs in
case-based reasoning in dealing with images.
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