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Summary. Inducing similarity measures for the case based reasoning scheme
through separable data transformations is considered in this chapter. Particular
attention is paid to linear transformations of multidimensional data on visualising
planes. Separable linear transformations are based both on solutions of eignevalue
problems used in the principal componet analysis or in the discriminant analysis as
well as on minimization of the convex and piecewise linear (CPL) criterion func-
tions. The perceptron and the differential criterion functions belong among others
to the CPL family. Such functions give possibility for flexible and efficient designing
separable transformations of data sets.

4.1 Introduction

Decision support systems are often based on the case based reasoning (CBR)
method [1]. An essential part of the CBR scheme is a search for such records
in a database which are most similar to the case actually analysed [1]. Such a
paradigm is also used in the nearest neighbours (K-NN) technique developed
in the framework of the pattern recognition [2,3]. One of the central problems
during implementation of the CBR or the K-NN scheme is the choice of a
similarity measure or the distance function between the database records [4].
The quality of the decision support rules can be improved by adjusting the
similarity measures or adequately tailoring the distance functions [5].

Here, we analyse possibilities of applying linear transformations of refer-
ence data sets for inducing similarity measures and diagnosis support rules
from the learning sets. Particular attention is paid to linear transformations
of multidimensional data on visualising planes. Designing linear transforma-
tion scheme that results from separability postulates is considered [5, 6]. The

∗This work was partially supported by the grant W/WI/1/2005 from the
Bialystok University of Technology, the KBN grant 3T11F01130 and by the grant
16/St/2007 from the Institute of Biocybernetics and Biomedical Engineering PAS.

L. Bobrowski and M. Topczewska: Induction of Similarity Measures for Case Based Reason-

ing Through Separable Data Transformations, Studies in Computational Intelligence (SCI) 73,

127–148 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



128 L. Bobrowski and M. Topczewska

separability postulates are reinforced through minimization of the convex and
piecewise linear (CPL) criterion functions. The basis exchange algorithms,
similar to linear programming, allow one to find a minimum of the CPL cri-
terion functions efficiently, even in the case of large, multidimensional data
sets [7].

4.2 Separabilty of Reference Sets

Let us assume that object descriptions stored in a database are represented
as the so called feature vectors x = [x1, . . . . . . , xn]T, or as points in the
n-dimensional feature space F [n] [3]. The components xi of vectors x are
numerical results of various examinations of a given object. The feature vec-
tors x can be of the mixed, qualitative–quantitative type because their com-
ponents can be both real numbers (xi ∈ R) as well as binary ones (xi ∈ {0, 1}).

We assume that a database contains descriptions of m objects xj(k)
(j = 1, . . . . . . , m) labelled in accordance with their class (category) ωk(k =
1, . . . , K ′). The labelling of the feature vectors should be done in accor-
dance with an additional knowledge about particular decision support prob-
lem. For example, a clinical database contains the descriptions of m patients
xj(k)(j = 1, . . . . . . , m) labelled in accordance with their clinical diagnosis ωk.
The reference (learning) set Ck contains mk labelled feature vectors xj(k)
(precedents) related to the kth class ωk.

Ck = {xj(k)} (j ∈ Ik) (4.1)

where Ik is the set of indices j of mk feature vectors xj(k) belonging to the
class ωk.

Definition 1. The learning sets Ck (4.1) are separable in the feature space
F [n] if they are disjoined in this space. It means that each of the feature vectors
xj belongs to only one set Ck:

(∀xj(k) ∈ Ck) and (∀xj′(k′) ∈ Ck′ , k �= k′) xj′(k′) �= xj(k) (4.2)

In accordance with Definition 1, the feature vectors xj(k) and xj′(k′) from
different reference sets Ck and Ck′ cannot be equal.

We are also considering separation of the sets Ck (4.1) by the hyperplanes
H(wk, θk) in the feature space F [n]

H(wk, θk) =
{
x : wT

k x = θk

}
(4.3)

where wk = [wk1, . . . .,wkn]T ∈ Rn is the weight vector, θk ∈ R1 is the thresh-
old, and (wk)Tx is the inner product.

The feature vector x is situated on the positive side of the hyperplane
H(wl, θl) if and only if (wk)Tx > θl. Similarly, the vector x is situated on the
negative side of H(w1, θ1) if and only if (wk)Tx < θ1.
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Definition 2. The reference sets are linearly separable if each of the sets Ck

(4.1) can be fully separated from the sum of the remaining sets Ck′ by some
hyperplane H(wk′θk) (4.4):

(∀k ∈ {1, . . . , K ′}) (∃wk, θk) (∀xj(k) ∈ Ck) wT
k xj(k) > θk

and (∀xj′(k′) ∈ Ck′) wT
k xj′(k′) > θk (4.4)

In accordance with the relation (4.4), all the vectors xj(k) belonging to the
learning set Ck are situated on the positive side of the hyperplane H(wk, θk)
(4.2) and all the feature vectors xj′(k′) from the remaining sets Ck′ are situated
on the negative side of this hyperplane.

It can be proved that the sets Ck (4.1) are linearly separable if all the
feature vectors xj(k) are linearly independent (sufficient condition).

4.3 Distance Functions Induced by Linear
Transformations of the Feature Space F [n]

The nearest neighbours decision support rules are based on the distances
δ(x0,xj(k)) between the feature vector x0 of a new object and the labelled
vectors xj(k) from the reference sets Ck (4.1) [2]. Let us assume for a moment
that m labelled feature vectors xj(k) (4.1) are ranked {xj(1), xj(2), . . . ,xj(n)}
in respect to the distances δ(x0,xj(k)) between the vectors x0 and xj(k):

(∀i ∈ {1, . . . , m − 1) δ(x0,xj(i)) ≤ δ(x0,xj(i+1)) (4.5)

Let us define the reference ball Bx(x0,K) which is centred in x0 and contains
K first vectors xj(i)(k):

Bx(x0,K) = {xj(k) : δ(x0,xj(i)) ≤ δ(x0,xj(K))} (4.6)

In accordance with the K-nearest neighbours (K-NN) classification rule, the
object x0 is allocated into this class ωk (k = 1, . . . ..,K′) where most of the
labelled feature vectors xj(k) from the ball Bx(x0,K) (10) belong [2]:

if (∀l ∈ {1, . . . , K ′}) nk ≥ nl then x0 ∈ ωk (4.7)

where nk is the number of the vectors xj(k) from the set Ck (4.1) contained
in the ball Bx(x0,K) (6).

The decision rule similar to (4.11) is applied also in the case based rea-
soning scheme. It is assumed in this case that the reference ball Bx(x0,K)
contains such vectors xj(i)(k) which are most similar to the vector x0.

The Euclidean distance δE(x0,xj(i)) between the feature vectors x0 and
xj(i) is commonly used in the case based reasoning or in the nearest neighbours
classification rule (8):

δE
2(x0,xj(i)) = (x0 − xj(i))T(x0 − xj(i)) (4.8)
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A quality of the decision rule (4.11) based on the Euclidean distance δE

(x0, xj(i)) can be improved in some cases through modification of the dis-
tance function through transformations of the feature space F [n].

The Mahalanobis distance function δM(x0,xj) in the feature space X is
defined on the basis of the covariance matrix Σ [4]

δM
2(x0,xj(i)) = (x0 − xj(i))TΣ−1(x0 − xj(i)) (4.9)

The Mahalanobis distance function δM
2(x0,xj(i)) takes into account the lin-

ear dependencies in the pairs of the features xk and x1. When the covari-
ance matrix Σ is equal to the unit matrix In, then the Mahalanobis distance
δM

2(x0,xj(i)) is reduced to the Euclidean distance δM
2(x0,xj(i))) (8).

Let us consider the linear transformations of the feature vectors xj(k).
Such transformations can be represented in the matrix form given below:

yj(k) = W Txj(k) (j = 1, . . . ..,m) (4.10)

where W = [w1, w2, . . . . . . , wn′ ] is the matrix of dimension (n × n′) with
1 ≤ n′ ≤ n.

The relation (4.10) allows one to generate the transformed learning sets
C′

k, where
C′

k = {yj(k)} (j ∈ Ik) (4.11)

Let us define the induced distance function δI(x0, xj(i)) between the feature
vectors x0 and xj(i) as the Euclidean distance function δE(y0, yj(i)) (4.8)
between adequate points y0 and yj(i) transformed in accordance with (4.10).

δI
2(x0,xj(i)) = δE

2(y0,yj(i)) = (y0 − yj(i))T(y0 − yj(i))

= (x0 − xj(k))TWW T(x0 − xj(k)) (4.12)

The induced ball BI(x0,K) can be defined by using the distance function
δI(x0,xj(i)) (4.12).

BI(x0,K) = {xj(k) : δE
2(y0,yj(i)) ≤ δE

2(y0,yj(K))}
= {xj(k) : δI

2(x0,xj(i)) ≤ δI
2(x0,xj(K))} (4.13)

where points xj(i) are ranked {xj(1), xj(2), . . . . . . .., xj(n)}(4.5) in accordance
with the induced distance function δI(x0, xj(i)) (4.12).

The induced ball By(x0,K) contains such K feature vectors xj(k)
which are the most similar to x0 in accordance with the distance function
δI(y0, yj(i)) (4.11).

The case based reasoning (CBR) or the nearest neighbours decision rules
(4.7) can be based on the induced ball BI(x0,K) (4.13):

If most of the labelled vectors xj(k) from the induced ball BI(x0,K)
belongs to the class ωk, then the object represented by x0 should be

assigned to this class.
(4.14)
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The performance of the above decision (classification) rule can be optimised
through a special choice of the vectors wi (i = 1, . . . .., n′) in the transforma-
tion (4.10). A basic measure of the classification rule performance is the error
rate – the fraction of new objects that are assigned to the wrong category [3].

4.4 Whitening of Reference Sets

An important role in classification is played by such linear transformations
(4.9), which reduce correlation of the learning sets Ck (4.1) [2]. Such transfor-
mations can be built on the basis of the eigenvectors ki and the eigenvalues
λi of the covariance matrix Σ. Let us take into consideration the covariance
matrix Σk estimated on the set Ck (4.1)

Σk =
∑
j∈Ik

(xj(k)-µk) (xj(k)-µk)
T

/(mk − 1) (4.15)

where µk is the mean vector in the set Ck

µk = Σ xj(k)/mk

j ∈ Ik
(4.16)

The eigenvalue problem with the covariance matrix Σk is formulated as the
search for the eigenvectors ki and the eigenvalues λi of the covariance matrix
Σk. The eigenvectors ki and the eigenvalues λi fulfil the below equation

Σk ki = λi ki (4.17)

with an additional condition of the unit length

ki
Tki = 1 (4.18)

The eigenvectors ki and kk corresponding to different eigenvalues λi and
λk (λi �= λk) are orthogonal

ki
Tkk = 0 (4.19)

Let us assume that the linear transformations (4.10) is defined by n′ (1 ≤
n′ ≤ n) orthogonal eigenvectors ki with positive eigenvalues λi (λi > 0).
Typically, the eigenvectors ki and the greatest eigenvalues λi are taken into
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consideration. We are considering the linear transformation (4.10) with the
columns of the matrix W formed by the vectors ki/(λi)1/2

W k = [k1/(λ1)1/2, . . . . . . . . . ,kn′/(λn′)1/2] (4.20)

The transformed vectors yj(k) (4.9) form the set C′
k (4.11) with the mean vec-

tors µk′ (4.16). The correlation matrix Σk
′ (15) are defined on the transformed

vectors yj(k) (9) from one set C′
k (4.11)

Σk
′ = Σ(yj(k) − µk

′)(yj(k) − µk
′)T/(mk − 1)

= W T Σ(
j ∈ Ik

xj(k) − µk)
j ∈ Ik

(xj(k) − µk)
TW /(mk − 1) (4.21)

= W TΣkW = In′×n′

where In′×n′ is the unit matrix of the dimension (n′ × n′).
It could be seen that the decision rule (4.13) with the Euclidean distance

δE(y0,yj(i)) (4.8) in the transformed space is equivalent to the decision rule
(4.7) with the Mahalanobis distance functions δM

2(x0,xj(i)) (4.9) in the fea-
ture space F [n], where the points y0 and yj(i) are obtained through the trans-
formation (4.10) with (4.20) of the points x0 and xj(i), adequately.

In accordance with the equation (4.20), the transformation (4.10) decor-
relates the set C′

k (4.11). The classification rule (4.14) based on the ball
BI(x0,K) (4.13) which is induced by the transformation (4.10) gives the possi-
bility to decrease the error rate [5]. Results of some experiments which support
this statement are described in a farther part of the presented chapter. In these
experiments the induced ball BI(x0,K) (13) has been defined on the basis of
the Euclidean distance function δE

2(y0,yj(i)) (4.8) in the transformed space.
Generally, the decision rule (4.7) with the Euclidean distance δE

2(y0,yj(i))
(4.8) can be matched in the best manner to data sets C′

k (4.11) with the unit
correlation matrix Σk

′.

Example 1. The numerical experiment has been performed on two-dimensional
data sets Ck and C′

k (points on the plane). Data were generated from nor-
mal distributions with different covariance matrices and had different mean
vectors. They belonged to three overlapping classes. The correlation coeffi-
cients were accordingly ρ1 = −0.9, ρ2 = 0.2 and ρ3 = −0.6. There were 30
objects in every class. To check the differences between classification quality
using whitening process the original data had been transformed. First trans-
formation was the whitening based on the transformation matrix built using
covariance matrix of the first class, analogically – on the second and on the
third class covariance matrix. The last transformation has been performed
using transformation matrix built using pooled estimate of the common co-
variance matrix (Fig. 4.1).

The results of classification errors for K-NN rule for the number of neigh-
bours from K = 1 to K = 10 are shown in Table 4.1.
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Fig. 4.1. Plots of transformed data (a) based on Σ1, (b) based on Σ2, (c) based on
Σ3 and (d) based on ΣW

The mean value of the classification error for original data using K-NN
rule was 43%. Adapting decorrelations we have achieved 33% as a mean of
error Σ1, 39% (mean of error Σ2), 35% (mean of error Σ3) and 35% (mean of
error ΣW). We can observe in the above results that the decorrelation of the
learning sets Ck can improve the K-NN rule based on the Euclidean distance
δE(x0,xj). The decorrelation of the learning sets Ck has entailed including
the Mahalonobis distance δM (x0,xj) from these sets. With such interpreta-
tion, we can claim that the replacement of the Euclidean distance δE(x0,xj)
by Mahalonobis distance δM(x0,xj) can lead to the improvement of the K-NN
or the CBR rule. In the case of more than two classes using transformations
based on single class Ck is preferred, because of the effect of conjoin different
covariance matrices into one pooled estimate of the common covariance ma-
trix. In our example the best classification quality we achieved for transformed
data with transformation matrix built using covariance matrix for the second
class Σ2 (77%).
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Table 4.1. Comparison of the classification error for K-NN classifiers (K =
1, 2, . . . , 10) for correlated learning sets Ck (error nd) and decorrelated sets C′

k

(error Σ1 – decorrelation based on the covariance matrix of the C1 set, error Σ2 –
decorrelation based on the covariance matrix of the C2 set, error Σ3 – decorrelation
based on the covariance matrix of the C3 set, error ΣW – decorrelation based on the
pooled estimate of the common covariance matrix)

Decorrelation
K Error nd Error Σ1 Error Σ2 Error Σ3 Error ΣW

1 0.4111 0.4667 0.5667 0.5222 0.5222
2 0.2444 0.2556 0.3444 0.3 0.3111
3 0.4 0.4 0.5333 0.4667 0.4778
4 0.3667 0.2 0.3667 0.2667 0.2667
5 0.5 0.3889 0.4444 0.4222 0.4222
6 0.3889 0.3111 0.3 0.2556 0.2
7 0.4444 0.3778 0.3889 0.3778 0.3444
8 0.4556 0.2778 0.2556 0.3111 0.2889
9 0.5111 0.4222 0.4 0.3444 0.3333
10 0.5333 0.2889 0.3111 0.2444 0.3111

4.5 Perceptron Criterion Functions (CPL)

The perceptron criterion function Φ(w, θ) originated from neural networks the-
ory [3,9]. Ψ(w, θ) is the convex and piecewise linear (CPL) criterion function.
The designing transformation (4.10) can be based on the minimisation of the
perceptron criterion function [6].

It is convenient to define the perceptron criterion function Φ(w, θ) by using
the positive G+ and the negative G− sets of the feature vectors xj (1).

G+ = {xj} (j ∈ J+) and G− = {xj} (j ∈J−) (4.22)

Each element xj of the set G+ defines the positive penalty function υj
+(w, θ)

. . .. . . . . . 1 − wTxj + θ i f wTxj − θ ≤ 1 (4.23)
ϕj

+(w, θ) =
0 i f wTxj − θ > 1

Similarly, each element xj of the set Gl
− defines the negative penalty function

υj
−(w, θ)

1 + wTxj − θ i f wTxj − θ ≥ −1 (4.24)
υj

−(w, θ) =
0 i f wTxj − θ < −1

where w = [w1, . . . .,wn]T ∈ Rn is the weight vector and θk ∈ R1 is the
threshold.
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Both the penalty functions υj
+(w, θ) and υj

−(w, θ) are convex and piece-
wise linear. The penalty function υj

+(w, θ) is aimed at placing the vector
xj(xj ∈ G+) on the positive side of the hyperplane H(w, θ) (4.3). Similarly,
the function υj

−(w, θ) should insert the vector xj(xj ∈ G−) on the negative
side of this hyperplane.

The perceptron criterion function Φ(w, θ) is determined by the sets G+

and G− is the weighted sum of the penalty functions υj
+(w, θ) and υj

−(w, θ)

Φ(w, θ) = Σ αj
+ϕj

+(w, θ) + Σ αj
−ϕj

−(w, θ) (4.25)
j ∈ J+ j ∈ J−

where αj
+ (αj

+ > 0) and αj
−(αj

− > 0) are positive parameters (prices).

Φ∗ = Φ(w∗, θ∗) = min
w,θ

Φ(w, θ) ≥ 0 (4.26)

The basis exchange algorithms which are similar to the linear programming
allow one to find the minimum of the criterion function Φ(w, θ) efficiently
even in the case of large, multidimensional data sets G+ and G− (4.22) [7].

It has been proved that the minimum value Φ∗ of the perceptron criterion
function Φ(w, θ) (4.25) is equal to zero (Φ∗ = 0) if and only if the positive
G+ and the negative G− sets (4.22) are linearly separable (4.4). In this case,
all elements xj of the set G+ (4.22) are located on the positive side of the
hyperplane H(w∗, θ∗) (4.3) and all elements xj of the set G− are located on
the negative side:

(∀xj ∈ G+)(w∗)Txj > θ∗l
and (∀xj′ ∈ G−)(w∗)Txj′ < θ∗l (4.27)

If the sets G+ and G− (4.22) are not linearly separable (4.4), then the above
relation is fulfilled not by all but by a majority of the elements xj of these sets.

Minimization of the function Φ(w, θ) (4.25) allows one to find optimal
parameters (w∗, θ∗) which can define the hyperplane H(w∗, θ∗) (4.3), which
separates relatively well two sets G+ and G− (4.22). The vector w1

∗ can be
used also as one of the columns of the transformation matrix W (4.10).

4.6 Four-Fields Diagnostic Maps of the System Hepar

The computer system Hepar aggregates the clinical database with tools for
data exploration and diagnosis support [8]. The database of the system Hepar
contains hepathological data. An essential part of the system is data visual-
isation module. For the purpose of data visualisation there are used linear
transformations from multidimensional feature space F [n] on a plane. Such
transformations allow for inducing the distance function δI

2(x0,xj(i)) (4.12)
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based both on the Euclidean distance δE
2(y0,yj(i)) (4.8) as well as on a sub-

jective measures of similarity.
The parameters w∗ and θ∗ determining minimum (4.26) of the criterion

function Ψ(w, θ) (4.25) can be also used in definition of the affine transfor-
mation of the feature vectors x on a line (4.9):

y = (w∗)Tx − θ∗ (4.28)

where w = [w1, . . . . . . .,wn]T is the parameter vector which determines direc-
tion of the line.

Such transformations have been applied in the system Hepar for defini-
tion of the visualising planes. This system allows for designing pairs of special
visualizing transformations (4.28), which result in the so called diagnostic
maps. Two linearly independent transformations (4.28) give possibility to pro-
duce such a visualizing plane (diagnostic map), which relatively well separates
four groups of patients. The diagnostic maps are used for inducing the sim-
ilarity measure between feature vector of a new patient x0 and the vectors
xj(k) from the reference sets Ck (4.1).

The affine transformation of the feature vectors xj (4.1) on a plane can be
represented in a below manner

yj = [yj1, yj2]T = [(wl
∗)Txj − θ1

∗, (w2
∗)Txj−θ2

∗]T (4.29)

where wi
∗ = [wi1, . . . . . . .,win]T (i = 1, 2) are the parameter vectors that span

a plane.
The scatterplots or, in other words, the maps of data can be generated

as a result of visualisation of the transformed points yj(k). If the vectors wi

are orthogonal ((w1
∗)T w2 = 0) and have the unit length ((w1

∗)T w1
∗ =

(w2
∗)T w2

∗ = 0) then the transformations (4.2) describes the projection of
the feature vectors xj(k) on the visualizing plane P (w1

∗, w2
∗; θ∗)

P (w1,w2; θ) = {x : x = α1w1 + α2w2 + θ, where αi ∈ R1} (4.30)

where θi = [θ1, θ2]T

Example 2. Let us consider this example in order to explain the basic princi-
ples of the diagnostic map designing in the framework of the system Hepar.
We have taken into consideration four learning sets Ck (4.1) extracted from
the Hepar database [8]

C9–Hepatitis chronica activa –91 patients
C13–Steatosis hepatis –67 patients
C15–Hiperbilirubinemia functionalis –56 patients
C22–Cirrhosis hepatis billiaris primaria –272 patients

(4.31)

Patients from these sets Ck have been described by the feature vectors xj(k)
of dimensionality n equal to 106. The components xi of the vectors xj(k)
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were numerical results of various diagnostic examinations of a given patient.
Numerical results of both laboratory tests (xi ∈ R) as well as patients symp-
toms (xi ∈ {0, 1}) have been taken as features xi.

The maps can reflect an actual diagnostic hypothesis of a medical doctor
(an user). The user declares which classes ωk should be located into particular
quarters of the map and which features (tests) xi are to be used in the visual-
izing transformation or, in other words, used for hypothesis examination. The
above map (Fig. 4.2) resulted from the affine transformation (4.29) of the 106 –
dimensional feature vectors xj(k) on a visualizing plane.

The affine transformation (4.29) of the feature vectors xj on a visualising
plane is determined by two pairs of parameters (w1

∗, θ1
∗) and (w2

∗, θ2
∗).

These parameters have been induced from the sets (4.30) through minimisa-
tion of two perceptron criterion functions Φ1(w, θ) and Φ2(w, θ) (4.25). Each
function Φk(w, θ) was defined by their own pair of the sets Gk

+ and Gk
−

(22), where

G1
+ = C13 ∪ C15 and G1

− = C9 ∪ C22 (4.32)
G2

+ = C9 ∪ C13 and G2
− = C15 ∪ C22 (4.33)

If each pair of the sets Gk
+ and Gk

− (k = 1, 2) is linearly separable (4.4), then
the transformation (4.29) based on the above sets assures the exact placements
of the learning sets Ck (4.30) in an adequate quarter of the diagnostic map
(Fig. 4.2).

The transformation (4.29) defines the coordinates yj(k) = [yj1(k), yj2(k)]
on the map of particular feature vectors xj(k). The vector of x0 of a new
patient can be located on the map as y0 by using the transformation (4.29).
As a result, the system can be used in the diagnosis support in accordance
with the CNR or the K-NN schemes (4.7), which are based on the Euclidean
distances δE(y0,yj[k]) (4.8) between the transformed vectors y0 and yj[k]. It
has been demonstrated experimentally that despite the significant reduction
of the problem dimensionality (from n = 106 to n′ = 2), the replacement of
the distances δE(x0,xj[k]) by the distances δE(y0,yj[k]) induced through a
diagnostic map gives possibility to reduce the error rate of the classification
rules [8, 9].

4.7 Fisher Linear Discriminant and Principal
Components

Let us consider further linear transformations (4.10) of data sets Ck (4.1)
from n-dimensional feature space F [n] onto line. Such problem is analysed
in the discriminant analysis. Discriminant analysis seeks direction w that are
efficient in separation on a line of two data sets C1 and C2 (4.1).

y = (w)Tx (4.34)
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Fig. 4.2. The diagnostic map with the following structure: C9, the upper-left quarter;
C13, the upper-right quarter; C15, the lower-right quarter; C22, the lower-left quarter

The direction vectors w which are used in the discriminant analysis have the
unit length

wTw = 1 (4.35)

The linear transformation (4.34) with an additional condition (4.33) describes
the projection yj = (w)T xj of the corresponding vectors xj onto a line in the
direction of w.

A fundamental role in the discriminant analysis is played by the Fisher’s
criterion function J(w).

J(w) = |µ1(w) − µ2(w)|/(s1(w)2 + s2(w)2) (4.36)

where |µ1(w)−µ2(w)| is the distance between the projected mean vectors µ1

and µ2 (4.16)
|µ1(w) − µ2(w)| = |wT(µ1 − µ2)| (4.37)

and sk(w)2 (k = 1, 2) is the within-class scatter (a measure of variance) of
the projected points yj from the set Ck.

sk(w)2 = Σ(yj(k) − µk(w))2

j ∈ Ik (4.38)

The below optimization problem is based on the Fisher’s criterion function
J(w).
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J(w∗) = max
w

J(w) (4.39)

In accordance with the Fisher’s criterion, the vector w∗ that constitutes max-
imum of the function J(w) (4.30) determines the best discriminant line. The
optimal vector w∗ determines large distance between the projected means
µ1 and µ2 (4.31) relatively to some measure of the variance of the projected
points yj.

The criterion function J(w) can be represented in a matrix form. Let us
define for this purpose the scatter matrices Sk(k = 1, 2) and SW

Sk =
∑
j∈Ik

(xj(k) − µk)(xj(k) − µk)
T (4.40)

and
SW = S1 + S2 (4.41)

SW is called the within-class scatter matrix. The scatter sk(w)2 (4.38) can be
expressed as

sk(w)2 =
∑
j∈Ik

(wTxj(k)−wTµk)
2 = ΣwT(xj(k)−µk)(xj(k)−µk)

T w = wTSkw

(4.42)
thus

s1(w)2 + s2(w)2 = wTSWw (4.43)

Similarly,

(µ1(w)− µ2(w))2 = (wTµ1 −wTµ2)
2 = wT(µ1 − µ2)(µ1 − µ2)

Tw = wTSBw
(4.44)

where
SB = (µ1 − µ2)(µ1 − µ2)

T (4.45)

SB is called as the between-class scatter matrix.
The criterion function J(w) (4.36) can be written as

J(w) = wTSBw/wTSWw (4.46)

The vector w∗ that maximizes J(w) must satisfy a generalized eigenvalue
problem for some constant λ

SBw = λSW w (4.47)

The vector wF that maximizes J(w) is known as

wF = SW
−1(µ1 − µ2) (4.48)

Fisher’s linear discriminant y = (wF)Tx (4.34), which is determined by the
optimal vector wF, yields the maximum ratio of the between-class scatter
matrix to the within-class scatter on the projecting line.
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In the case of the probabilistic normal model, when the conditional densi-
ties f(x/ω1) and f(x/ω2) are multivariate normal distributions N(µ1, Σ) and
N(µ2, Σ) with the same covariance matrix Σ, then the optimal (Bayesian)
decision boundary is the hyperplane H(wB, θB) (4.3), where

(wB)Tx = θB (4.49)

and wB is determined by an equation similar to (4.48)

wB = Σ−1(µ1 − µ2) (4.50)

In this case, the optimal decision rule has the following form

if wB
Tx > θB then x should be allocated into the class ω1 (4.51)

if wB
Tx < θB then x should be allocated into the class ω2

The above considerations have been related to discrimination between only
two classes (K ′ = 2). When the number of classes c is greater than 2 (K ′ > 2),
then the generalization of Fisher’s linear discrimination involves K ′− 1 linear
discriminant functions [3]. In this case, it is designed projection (4.10) from
n-dimensional space to a (K ′ − 1)-dimensional space.

Discriminant analysis seeks a projection that best separates data in a last
squares sense. In contrast, principal component analysis (PCA) or Karhunen-
Loeve transform seeks a projection that best represents data in a last squares
sense. PCA deals with dimensionality reduction through such linear transfor-
mations (4.10) from n-dimensional space to a n′ - dimensional space which
preserve variability in data as much as possible.

Principal component analysis is based on n′ linear transformations yi =
(ki)Tx that are defined by the eigenvectors ki = [ki1, ki2, . . . . . . .., kin]T of
the covariance matrix Σk (4.15).

yi = (ki)Tx =ki1x1+ki2 x2 + . . . . . . . . . .. + kinxn (4.52)

The covariance matrix Σk (4.15) of dimensionality n×n can have up to n nor-
malised (4.18) eigenvectors ki with positive eigenvalues λi. The eigenvectors
ki are ranked in accordance with the eigenvalues λi.

k1, .k2, . . . . . . . . . . . . ,kn (4.53)

where
λ1 ≥ λ2 ≥ . . . . . . . . . . . . ≥ λn > 0

The first principal component y1 = (k1)T x is defined by the eigenvector k1

with the largest eigenvalue λ1. The second principal component y1 = (k1)T x
is defined by the second eigenvector k2 and so on. Principal components are de-
fined by n′ eigenvectors ki (1 ≤ n′ ≤ n) with the largest eigenvalues λi. Often,
there are just a few large eigenvalues λi and it can be assumed that remaining
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n − n′ dimensions contain noise. Considerable dimensionality reduction can
be achieved in such case through linear transformation of data.

The variance σi
2 of the ith principal component yi = (ki)Tx can be esti-

mated in the following manner (4.15 and 4.38)

σi
2 =

∑
j∈Ik

(yj(k) − µk)
2/(mk − 1) =

∑
j∈Ik

((ki)T(yj(k) − µk)
2/(mk − 1) (4.54)

=
∑
j∈Ik

((ki)T(yj(k) − µk)(yj(k) − µk)
Tki/(mk − 1) = (ki)TΣkki = λi

As it results from the above relation, the first principal component y1 =
(k1)T x has the largest variance σ1

2, and (4.53)

σ1 ≥ σ2 ≥ . . . . . . . . . ≥ σn > 0 (4.55)

Example 3. Two eigenvectors ki and ki′ with eigenvalues λi and λi′ of the kth
covariance matrix Σk (4.15) can be used in the below visualising transforma-
tion (4.20 and 4.29), the data map determined by the kth set Ck (4.1).

y = [y1, y2]T = [(ki/(λi)1/2)T(x − µk), (ki′/(λi′)1/2)T(x − µk)]
T (4.56)

where µk is the mean vector (4.15) of the set Ck (4.1).

In accordance with the relation (4.55), all feature vectors xj(k) (4.1) are
transformed into the points yj(k) on the visualising plane Pk(k1,k2;0) (4.30)
determined by the kth set Ck (4.1).

The mean value µ′
k (4.16) of the transformed points yj(k) from the set Ck

(4.1) is equal to zero.

µ′k =
∑
j∈Ik

yj(k)/mk = [0, 0]T = 0 (4.57)

The covariance matrix Σ′
k (4.15) of the transformed points yj(k) from the set

Ck (4.1) is equal the unit matrix I2×2.

Σ′
k =

∑
j∈Ik

(yj(k) − µ′
k)(yj(k) − µ′

k)
T/(mk − 1)

=
∑
j∈Ik

yj(k)yj(k)T/(mk − 1) = (W ′
k)TΣkW ′

k = I2x2 (4.58)

where Σk is the covariance matrix (4.15) and the matrix W ′
k has the following

form (4.20)
W ′

k = [ki/(λi)1/2,ki′/(λi′)1/2] (4.59)

As it results from the relation (4.50) the transformed features y1 and y2 (where
y = [y1, y2]T (4.48)) are uncorrelated. Each of these features yi has the mean
value equal to zero and the variance equal to one in the set Ck (4.1).
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In accordance with the considerations given in the Example 1 it should
be profitable to use the visualizing transformation (4.48) and the diagnostic
map for an inducing of similarity measure for the CBR or K-NN decision rules
(4.7) with the Euclidean distance δE

2(y0,yj(i)) (4.8).
For this purpose, the decisionic rule (4.7) can be modified in the following

manner.

if (∀l ∈ {1, . . . , K ′})nk(k) ≥ nl(k) then x0 ∈ ωk (4.60)

where nl(k) is the number of the vectors yj(l) from the set Cl (4.1) contained
in the ball Bk(y0,K), and

Bk(y0,K) = {yj : δ(y0,yj(i)) ≤ δ(y0,yj(K))} (4.61)

where points yj(i) are ranked {yj(1), yj(2), . . . . . . .., yj(n)} (4.5) in accor-
dance with the Euclidean distance function δE(y0,yj(i)) (4.8) on the plane
Pk (k1,k2;0) (4.30) determined by the kth set Ck (4.1).

The visualizing plane Pk (k1,k2;0) (4.30) design in the above manner can
be called as the one-field diagnostic map. Each of the maps Pk (k1,k2;0) is
centered on one of reference sets Ck (4.1).

4.8 Dipolar Separability Postulates

The linear transformations (4.10) can be defined on a variety of principles.
Let us use for this purpose the concept of the mixed and clear dipoles formed
by the feature vectors xj(k) (4.1) [6].

Definition 3. A pair of the feature vectors (xj(k),xj′(k′)) (xj(k) �= xj′(k′),
j′ > j) constitutes a mixed dipole if and only if the vectors xj(k) and xj′(k′)
belong to different classes ωk (k �= k′). Similarly, a pair of different feature
vectors from the same class ωk constitutes a clear dipole (xj(k),xj′(k)).

The dipoles {xj(k), xj′(k′)} of the length δx(j, j′) are transformed by
(4.10) into the dipoles {yj(k), yj′(k′)} – the pairs of the points yj(k) and
yj′(k) situated in the Euclidean distance δy(j, j′), where

δx
2(j, j′) = (xj(k) − xj′(k′))T(xj(k) − xj′(k′) (4.62)

δy
2(j, j′) = (yj(k) − yj′(k′))T(yj(k) − yj′(k′)) (4.63)

= (xj(k) − xj′(k′))TWW T(xj(k) − xj′(k′))

We are interested in designing such transformations (4.10) which fulfil the
following separability inequalities:

(∀(j, j′) ∈ Ic) δy
2(j, j′) ≤ ρc

2(j, j′) (4.64)

(∀(j, j′) ∈ Im) δy
2(j, j′) ≥ ρm

2(j, j′) (4.65)
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where Ic and Im are the so called control sets (the sets of indices (j, j′) of
selected clear and mixed dipoles adequately, ρc(j, j

′) and ρm(j, j′) are non-
negative parameters (margins).

Separability postulate. The linear transformation (4.10) should shorten
the clear dipoles {xj(k), xj′(k)} from the control set Ic to the length δy

2(j, j′)
less than ρc(j, j

′) (4.64) and lengthen the mixed dipoles {xj(k), xj′(k′)} from
the control set Im to the length δy

2(j, j′) more than ρm(j, j′) (4.65).
The above separability postulate is aimed at designing such linear trans-

formations (4.10) which enhance differences between categories ωk. This pos-
tulate can be treated as an alternative which is complementary to the Fisher’s
criterion (4.39) used in discriminant analysis [3].

In the case of a linear transformation on the ith line y = (wi)Tx, the
separability inequalities (4.64) and (4.65) can be represented as the following
sets of inequalities (i = 1, 2, . . . . . . , n′, with 1 ≤ n′ ≤ n):

(∀(j, j′) ∈ Ici) − ρci(j, j′) < (wi)T(xj′(k) − xj(k)) < ρci(j, j′) (4.66)
(∀(j, j′) ∈ Imi

+) (wi)T (xj′(k) − xj(k′)) > ρmi(j, j′) (4.67)
(∀(j, j′) ∈ Imi

−) (wi)T(xj′(k) − xj(k′)) < −ρmi(j, j′) (4.68)

where Imi
+ and Imi

− are disjoined subsets of the control set Imi (Imi
+∩Imi

− =
Ø and Imi

+ ∪ Imi
− = Imi) of the mixed dipoles {xj(k),xj′(k′)}, ρci

(j, j′) and
ρmi

(j, j′) are the clear and the mixed margins defined on the ith line.
Remark 1: If two orthonormal vectors w1 and w2 (wi

Twi = 1, wi
Twk =

0) fulfil the inequalities (separability postulate, (4.67), and (4.68)), then
the inequalities (4.64) and (4.65) with the below parameters ρc

2(j, j′) and
ρm

2(j, j′) are also fulfilled

(∀(j, j′) ∈ Ic) ρc
2(j, j′) = ρc1

2(j, j′) + ρc2
2(j, j′) (4.69)

(∀(j, j′) ∈ Im) ρm
2(j, j′) = ρm1

2(j, j′) + ρm2
2(j, j′) (4.70)

4.9 Reinforcement of the Separability Postulates
Through the Differential Criterion Function

The differential criterion function Ψ(w) similar to the perceptron function
Φ(w, θ) (25) can be used for the purpose of finding such vector of parame-
ters wi, which fulfil in a best manner (fully or partly) the inequalities (4.64–
4.67) [6, 9]. The criterion functions Ψ(w) is a positive combination of the
penalty functions πjj′

+(w), πjj′
−(w) and πjj′

0(w) defined on the differential
vectors rjj′ :

(∀(j, j′) ∈ Ic ∪ Im)rjj′ = xj′ − xj (4.71)

where xj(k) �= xj′(k′) and j′ > j.
The CPL penalty functions πjj′

+(w), πjj′
−(w) and πjj′

0(w) is defined in
a similar manner to υj

+(w, θ) (4.23) and υj
−(w, θ) (4.24)
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(∀(j, j′) ∈ Im
+) (4.72)

ρm(j, j′) − wTrjj′ if wTrjj′ ≤ ρm(j, j′)
ψjj′

+(w) =
0 if wTrjj′ > ρm(j, j′)

where ρm(j, j′) = ρmi
(j, j′) (4.67). The penalty functions πjj′

+(w) are aimed
at reinforcement the inequalities (4.67).

(∀(j, j′) ∈ Im
−) (4.73)

ρmi(j, j
′) + wTrjj′ if wTrjj′ ≥ −ρm(j, j′)

ψjj′
−(w) =

0 if wTrjj′ < −ρm(j, j′)

The penalty functions πjj′
−(w) are aimed at reinforcement the inequali-

ties (4.68).

(∀(j, j′) ∈ Ic) (4.74)
−ρc(j, j

′) − wTrjj′ if wTrjj′ ≥ −ρc(j, j
′)

ψjj′0(w) = 0 if − ρc(j, j
′) < wTrjj′ < ρc(j, j

′)
−ρc(j, j

′) + wTrjj′ if wTrjj′ ≥ ρc(j, j′)

where ρc(j, j
′) = ρci

(j, j′) (separability postulate). The penalty functions
πjj′

0(w) are aimed at reinforcement the inequalities (separability postulate).
The criterion function Ψ(w) is the weighted sum of the above penalty

functions

Ψ(w) = Σγjj′ψjj′
+(w) + Σγjj′ψjj′

−(w) + Σγjj′ψjj′0(w)

(j, j′)∈ Im+ (j, j′)∈ Im
− (j, j′) ∈ Ic (4.75)

where γjj′ (γjj′ > 0) are positive parameters (prices) related to particular
dipoles (xj(k),xj′(k′)).

The criterion function Ψ(w) belongs to the family of the convex and piece-
wise linear (CPL) criterion functions.

The function Ψ(w) (4.72) can be specified as the criterion function Ψi(wi)
linked to the ith axis (i = 1, . . . ., n′) of the transformed space. The speci-
fication of the criterion function Ψi(wi) to the ith axis is done through an
adequate choice of the function parameters. The sets of dipoles Ici (separabil-
ity postulate), Imi

+ (4.67) and Imi
− (4.68) and the sets of margins ρci(j, j

′)
(4.64) and ρmi

(j, j′) ((4.65), separability postulate) can be specified in a dif-
ferent manner for particular axis.

Minimization of the function Ψi(w) allows one to find the parameters
vector wi

∗, which defines (4.6) the ith column of the transformation matrix
W (4.10) or the ith axis of the (i = 1, . . . ., n′) of the transformed space.

Ψi
∗ = Ψi(wi

∗) = min
w

Ψi(w) ≥ 0 (4.76)
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The transformation (4.10) defined by the optimal vectors wi
∗ (4.76) will be

called as the dipolar one. The basis exchange algorithms allow to find the
minimal value Ψi

∗ of the criterion function Ψi(w) in an efficient manner [5].
It can be proved that the minimal value Ψi

∗ is equal to zero (Ψi
∗ = 0) if and

only if all the inequalities (separability postulate, (4.67), and (4.68)) can be
fulfilled on some line y = (w)Tx. In this case, all the inequalities (separability
postulate, (4.67), and (4.68)) are fulfilled on the optimal line y = (wi

∗)Tx.

Example 4. Let us examine such dipolar transformation (4.10) of the fea-
ture vectors xj(k) on the visualising plane (n′ = 2), which fulfil both the
inequalities (4.64) and (4.65) or the separability postulate. There is a struc-
tural difference between the separability inequalities (4.64) and (4.65). All
the inequalities (4.64) should be realised by both the axes w1

∗ and w2
∗ of

the visualising plane. Realisation of each inequality (4.65) by only one axis
w1

∗ or w2
∗ is sufficient for fulfilling of the separability postulate. In other

words, if the length δy(j, j′) (4.64) of the mixed dipole (xj(k),xj′(k′)} along
one axis wi

∗ is greater than ρm(j, j′), then the length of this dipole on the
plane is also greater then ρm(j, j′). The length δy(j, j′) of the mixed dipole
{xj(k),xj′(k′)} along the ith axis is greater then ρm(j, j′) (4.65) if and only if
one of the inequalities (4.67) or (4.68) is fulfilled by the optimal vector wi

∗. In
a consequence, the indices (j, j′) of such mixed dipoles which are sufficiently
long on the first axis w1

∗ cannot be considered on the second axis w2
∗. In a

result, the indices (j, j′) from the set Im could be divided along two axis of the
visualising plane. Such division reduces the sets Im1 and Im2 of mixed dipoles
{xj(k),xj′(k′)} considered on particular axis and, in result, increases chance
for fulfilling all the inequalities (separability postulate, (4.67), and (4.68)) on
the optimal line y = (wi

∗)Tx.

To realise the inequality (4.64) for the clear dipole {xj(k),xj′(k)}((j, j′) ∈
Ic), both the axes w1

∗ and w2
∗ of the visualising plane should produce small

enough lengths |((wi
∗)T(xj′(k)−xj(k))| (separability postulate). If the vectors

w1
∗ and w2

∗ are orthogonal and the first vector w1
∗ produces the length

|(w1
∗)T(xj′(k)−xj(k))| ≤ ρc

2(j, j′), then the second vector w2
∗ should fulfill

the below condition (4.64)

|(w2
∗)T(xj′(k) − xj(k))| ≤ ρc

2(j, j′) − |(w1
∗)T(x′

j(k) − xj(k))| (4.77)

To fulfill the separability postulate, the second vector w2
∗ should produce

such length |(w2
∗)T(xj′(k) − xj(k))|, which is small enough in accordance

with (4.77).
The linear transformations (4.10) based on the dipolar model can be used

in designing diagnostic maps. Such maps give possibility to enhance clusters of
points yj(k) on the visualizing plane. The number L of clusters (fields) on the
diagnostic map can be equal or greater than the number K of the classes ωk.
The number L of clusters on the diagnostic map can be equal to the number
of classes K, if all the feature vectors xj(k) from each set Ck (4.1) are used in
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producing clear dipoles {xj(k),xj′(k)}. It means that the set Ick (separability
postulate) contains all clear dipoles based on the set Ck (4.1).

Ick = {(j, j′) : (j′ > j) ∧ (xj(k) ∈ Ck) ∧ (xj′(k) ∈ Ck)} (4.78)

and
Ic = Ic1 ∪ . . .. . .. ∪ Ick (4.79)

In this case, the dipolar transformation similarly as the Fishers one is aimed at
focussing all the transformed points xj (k) from each set Ck (class ωk) into one
cluster on the map under condition of preserving the classes ωk separability.

In some cases, given set Ck has its own internal structure and it could
be profitable to enhance such structure by dividing this set into more than
one cluster. For this purpose, the set Ick (4.78) can be modified in a below
manner:

Ick = {(j, j′) : (j′ > j)∧(xj(k) ∈ Ck)∧(xj′(k) ∈ Ck)∧(δx(j, j′) ≤ ρ0)} (4.80)

where δx(j, j′) is the dipol length (4.62) and ρ0 is a ‘small’ parameter.
As it results from the relation (4.80), the set Ick contains the indices (j, j′)

of only such clear dipoles {xj (k),xj′(k)} which are ‘short’.

4.10 CPL Criterion Functions with Feature Costs

Data sets Ck (4.1) used in decision support systems are often multidimen-
sional. Many features (attributes) xi are used for description of particular
objects xj(k). A large part of these features xi can be unimportant or redun-
dant in decision support rules. Such features should be removed in accordance
with one of feature selection procedures.

The feature selection procedure can be based on the CPL criterion func-
tions with feature costs. Let us introduce for this purpose the modified percep-
tron criterion function Φ(w, θ) (4.25) and the modified differential criterion
function Ψ(w) (4.75). The modified perceptron function Φλ

′(w, θ) can have
the following form:

Φλ′(w, θ) = Φ(w, θ) + λΣγiφi(w, θ)
i ∈ {0, 1, . . .., n} (4.81)

= Σαjϕj
+(w, θ) + Σαjϕj

−(w, θ) + λ(Σγi|wi| + γ0

j ∈ J+ j ∈ J− i ∈ {1, . . .., n}
where αj ≥ 0, λ ≥ 0, γi > 0, w = [w1, . . . .,wn]T is the weight vector,
the function Φ(w, θ) is defined by the formula (4.25), and the cost functions
φi(w, θ) are equal to modulus |wi| of particular weights wi.

Minimization of the CPL criterion function Φλ
′(w, θ) (4.81) allows to find

the optimal parameters w∗ and θ∗.
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Φ∗
λ = Φ′

λ(w
∗, θ∗) = min

w,θ
Φ′

λ(w, θ) ≥ 0 (4.82)

Minimum of the function Φλ
′(w, θ) (4.81) can be found by using the basis

exchange alghorithm.
It can be shown that in the case of linearly separable (4.4) sets G+ and

G− (4.22), the minimal value Φλ
∗ of the criterion function Φλ

′(w, θ) (4.81)
with sufficient small value of the parameter λ(0 < λ < λg) is equal to

Φ∗
λ = Φ′

λ(w
∗, θ∗) = λ(Σ γi|w∗

i | + γ0|θ|) > 0 (4.83)

and (4.25)
Φ(w∗, θ∗) = 0 (4.84)

The optimal parameters w∗ and θ∗ give a balance between an increasing ten-
dency resulting from the penalty functions υj

+(w, θ) (4.23) and υj
−(w, θ)

(4.24) and decreasing tendency resulting from the cost functions φi(w, θ)
(4.81). An influence of the cost functions φi(w, θ) (4.81) decreases with the
value of the parameter λ.

The feature selection rules can be based on the optimal parameters w∗ =
[w1

∗, . . . .,wn
∗]T (4.82):

if w∗
i = 0 then theith feature xi can be neglected , (4.85)

or/

if |wi
∗| < ε then theithfeature xi can be neglected , (4.86)

where ϖ is a small parameter.
The differential criterion function Ψ(w) (4.75) can be also modified by

adding the cost functions φi(w, θ) in a manner similar to (4.81). The fea-
ture selection rules similar to (4.85) and (4.86) can be based on the modified
differential function Ψ(w) (4.75).

4.11 Concluding Remarks

Similarity measures for the case based reasoning scheme of decision support
can be induced through separable data transformations. In particular, lin-
ear transformations of data sets corresponding to particular categories allow
to reduce dimensionality of the data sets under the condition of preserving
the categories separability. Separable linear transformations can be designed
both through solutions of eignevalue problems used in the principal componet
analysis or in the discriminant analysis [4] as well as through minimization
of the convex and piecewise linear (CPL) criterion functions [9]. The percep-
tron and the differential criterion functions belong, among others, to the CPL
family.
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Functions from the CPL family give possibility for flexible modelling and
solving many problems of exploratory data analysis [9]. In particular, the
feature selection problem can be solved through minimization of the CPL
criterion functions. The basis exchange algorithms, which are similar to the
linear programming, allow one to find the minimum of the CPL criterion
functions efficiently even in the case of large, multidimensional data sets [7].
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