
3

Distance Function Learning for Supervised
Similarity Assessment

A. Bagherjeiran and C.F. Eick

Department of Computer Science
University of Houston
Houston, TX 77204-3010, USA
{abagherj,ceick}@cs.uh.edu

Summary. Assessing the similarity between cases is a prerequisite for many
case-based reasoning tasks. This chapter centers on distance function learning for
supervised similarity assessment. First a framework for supervised similarity assess-
ment is introduced. Second, three supervised distance function learning approaches
from the areas of pattern classification, supervised clustering, and information
retrieval are discussed, and their results for two supervised learning tasks will be
explained and visualized. In each of these different areas, we show how the method
can be applied to areas of case-based reasoning. Finally, a detailed literature survey
will be given.

3.1 Introduction

Case-based reasoning depends heavily on assessing the similarity between
cases. Similarity assessment is the task of determining which cases are similar
to each other and which are dissimilar. In general, defining distance functions
is a difficult and tedious task.

There are several uses of distance functions in case-based reasoning all of
which can benefit from distance function learning. In case-base classification,
cases belonging to the same class should have a lower distance than cases
in different classes. A good distance function is one that leads to a highly
accurate classifier. In case base maintenance, the case base is reorganized into
clusters so that search time is reduced by consulting the cluster’s representa-
tive first. Cases far from the representative of the cluster can be removed to
improve search time. A good distance function is one that leads to tight and
cohesive clusters, effectively organizing the case base. In case-based retrieval,
several cases relevant to a user’s query are returned and users send feedback
to improve retrieval. A good distance function is one that retrieves a variety
of relevant cases for a user’s query. Each of these applications places differ-
ent requirements on the distance function, which makes manually tuning the
distance function difficult.
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Due to the fact that distance functions are difficult to design for different
applications, it is worthwhile to look for approaches that learn distance func-
tions from the case base. In particular this chapter will discuss methods in the
context of classification, where the goal of supervised similarity assessment is
to obtain distance functions that separate cases belonging to different classes
well. Consequently, the scope of the methods discussed in this chapter is lim-
ited to case bases that have class labels. Class labels either represent natural
classes or capture information about the relevancy of a particular case for a
particular use. Different methods are needed for unsupervised learning tasks,
such as clustering. The class labels associated with different cases can be
viewed as feedback that, as we will see, is instrumental for tailoring distance
functions for a particular classification task.

Figure 3.1 illustrates what distance function learning for supervised simi-
larity assessment is trying to accomplish; it depicts the distances of 13 cases,
five of which belong to a class that is identified by a square and eight belong
to a different class that is identified by a circle. When using the initial dis-
tance function dinit we do not observe much clustering with respect to the
two classes. Starting from this distance function, we would like to obtain a
better distance function dgood so that the cases belonging to the same class
are clustered together. In Fig. 3.1 we can identify three clusters with respect
to dgood, two containing only circles and one containing only squares. Why is
it beneficial to find such a distance function dgood? Most importantly, using
the learned distance function in conjunction with a k-nearest neighbor clas-
sifier [10] allows us to obtain a classifier with high predictive accuracy. For
example, if we use a three-nearest neighbor classifier with dgood it will have
100% accuracy with respect to leave-one-out cross-validation, whereas several
cases are misclassified if dinit is used. The second advantage is that looking

b) dgooda) dinit

Fig. 3.1. Objective of supervised distance function learning
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at dgood itself will tell us which features are important for the particular
classification problem.

It is also important to understand that there are no universal distance
functions for a given case base. The usefulness of a distance function is de-
termined in the context of the task it is used for. Consequently, a distance
function that does a good job in separating cancer patients from healthy pa-
tients is unlikely to be useful in separating diabetes patients from healthy
patients.

This chapter surveys how distance function learning is performed in three
separate areas of case-based reasoning: classification, maintenance, and re-
trieval. Section 3.2 reviews basic properties of distance functions and intro-
duces a supervised distance function learning framework. Section 3.3 discusses
the Relief algorithm used in case-based classification [30]. Section 3.4 discusses
the inside–outside weight adjustment algorithm used as a supervised method
for case-base maintenance [17]. Section 3.5 discusses a relevance feedback al-
gorithm used in case-based retrieval [37]. In Sect. 3.6 we show how, on two
example case bases, to visualize a distance function before and after learning.
Section 3.7 surveys recent work in distance function learning. Section 3.8 gives
a brief summary.

3.2 Distance Function Learning Model

A case x consists of a vector of features and a class label (target value).
We refer to x as one case in a space of possible cases X, as x ∈ X and
class(x) as the class to which x belongs.

3.2.1 Distance Functions

In general, the case need not be a vector. We define a distance function over
a set of cases x ∈ X. A distance function d : X × X → R should satisfy the
following two conditions for x, y, z ∈ X:

1. If d(x, y) = 0, then x and y are the same or as similar as possible.
2. If x is closer to y than it is to z, then d(x, y) < d(x, z).

A few more restrictions are required for practical distance functions.

Definition 1. A function d : X × X → R is a metric on the space X if for
all x, y, z ∈ X the following conditions hold :

0 ≤ d(x, y) < ∞

d(x, y) = d(y, x) (3.1)
d(x, y) = 0 ⇐⇒ x = y (3.2)
d(x, z) ≤ d(x, y) + d(x, z) (3.3)
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The pair (X, d) is called a metric space.

Condition (3.2) implies that two cases with distance 0 are equivalent.
Duplicate cases occur in practice and, either because of rounding or pre-
processing, they may have a distance of 0 even if the cases are not the same.
A simple application of the Condition (3.3) is the saying that the shortest
distance between two points is a straight line. This is because the Euclidean
distance is a metric in R

2.

Norms

A metric depends only on the definition of the distance function and not on
the composition of the set. In practice, however, the set X is the vector space
R

n where each x ∈ X is a vector of length n:

x = (x1, . . . , xn)

where xj ∈ R for all 1 ≤ j ≤ n. Each element, xj , in the vector is referred to
as a feature, and the vector x is called the feature vector. Given this vector
definition of a case, we say that a distance function is imposed by a norm
defined over the vector space.

Definition 2. A function ‖·‖ : R
n → R

+
0 is a norm if for all x, y ∈ R

n and
α ∈ R, the following conditions hold :

‖x + y‖ ≤ ‖x‖ + ‖y‖
‖αx‖ = |α| ‖x‖
‖x‖ > 0 for x �= 0

The first condition is known as the triangle inequality. Given a norm ‖·‖ over
R

n, the following distance function is a metric:

d(x, y) = ‖x − y‖

where x, y ∈ R
n.

We define a family of norms and distance functions.

Definition 3. A function ‖·‖p : R
n → R

+
0 is the Lp norm if for all p ∈ R,

p ≥ 1, and x ∈ R
n

‖x‖p =

⎛
⎝ n∑

j=1

|xj |p
⎞
⎠

1/p

For each Lp norm, there is a corresponding Lp distance function metric.
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Definition 4. The function d : R
n × R

n → R
+ is the Lp distance metric

if for all p ∈ R, p ≥ 1, and x, y ∈ R
n

d(x, y) = ‖x − y‖p

where ‖·‖p is the Lp norm.

This family of distance functions is also known as the Minkowski distance.
There are three common p values, which correspond to the following three
distance functions:

L1 Manhattan or city-block distance:

d(x, y) =
n∑

j=1

|xj − yj |

L2 Euclidean distance:

d(x, y) =
√

(x1 − y1)
2 + · · · + (xn − yn)2

L∞ Max distance:

d(x, y) =
n

max
j=1

|xj − yj |

In the remainder of this chapter we consider only the L1 distance because the
notation is simplest and it is faster to compute than L2.

3.2.2 Parameterized Distance Functions

In distance function learning, the objective is to find parameter values for
a parameterized distance function. The most common approach to obtain a
parameterized distance function is feature weighting. Feature weights are the
output of the distance function learning algorithms discussed here. Weighted
distance functions are a subclass of the more general linear distance functions.

Feature weights, one for each attribute, emphasize one subset of features
over the others. For the L1 distance, the weighted version is

dw(x, y) =
n∑

j=1

wj |xj − yj | (3.4)

where x, y, w ∈ R
n. We place a few restrictions on the vector wj for 1 ≤ j ≤ n:

w = (w1, . . . , wn)
wj ≥ 0

n∑
j=1

wj = 1
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These restrictions simplify the programming. In addition, positive weights
maintain the semantics of a distance function since negative weights and dis-
tances have no clear meaning.

Linear distance functions generalize the L2 distance by projecting the orig-
inal distance vector onto a linear basis A:

dA(x, y) = (x − y)T
A (x − y)

where x, y are column vectors and A is an n× n projection matrix. Although
most definitions of linear distance function take the square root of dA(x, y), we
usually ignore the root because it is expensive to compute and does not change
the relative distances. When A is positive semi-definite, the distance dA(x, y) is
a distance metric. When A is the identity matrix (In×n), the distance reduces
to the squared L2 distance as shown:

dI(x, y) = (x − y)T
In×n (x − y)

= (x − y)T (x − y)

=
n∑

j=1

(xj − yj)
2

= ‖x − y‖2

For small- to medium-sized case bases, it is often more efficient to compute
and store the distances between all pairs of cases. This forms a distance matrix
for the case base X and distance function d.

Definition 5. A matrix D ∈ R
m×m is a distance matrix if and only if:

Di,j = d(xi, xj)

for 1 ≤ i, j ≤ m, where d is a distance function, xi, xj ∈ X, and m is the
number of cases in X.

For distance function learning, we often decompose the distance matrix into
the set of matrices Dj for 1 ≤ j ≤ n, storing the distance with respect to the
jth feature. A weighted distance matrix for the L1 distance can be recreated
as D =

∑n
j=1 wjDj for feature weights w. For a metric distance function, D

is a symmetric matrix with zeros along the diagonal.

Examples

Example 1. A distance function without weights is assumed to have weights,
but they are equal and nonzero:
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wj =
1
n

for 1 ≤ j ≤ n.

Example 2. As a linear distance function, a weighted distance function consists
of a diagonal projection matrix W = diag(w):

dW (x, y) = (x − y)T
W (x − y) (3.5)

=
n∑

j=1

wj (x − y)2

where w is a weight vector as we have previously described. Although more
complex, we can obtain a linear form for the L1 distance:

dW (x, y) =
√
|x − y|T W

√
|x − y| (3.6)

=
n∑

j=1

wj |xj − yj |

where
√· denotes the component-wise root. In practice, it is usually more

efficient to use the form in (3.4) or (3.5).

Example 3. A common linear distance function is the Mahalanobis distance.

dΣ(x, y) = (x − y)T
Σ−1 (x − y)

where Σ is the n × n covariance matrix. This is often referred to the Ma-
halanobis distance between x and y. It assumes that x and y are distributed
according to the multivariate normal distribution N(µ,Σ) with mean µ. Since
both vectors are in the same distribution, the effect of the mean cancels are
as shown:

dΣ(x, y) = ((x − µ) − (y − µ))T
Σ−1 ((x − µ) − (y − µ))

= ((x − y − µ + µ))T
Σ−1 ((x − y − µ + µ))

= (x − y)T
Σ−1 (x − y)

3.3 Case-Based Classification

In case-based classification, each case has a class label. The objective of a
classification algorithm is to determine the class for an incoming case. In clas-
sification, an ideal distance function should make cases close to other cases
in the same class, while making them far from cases belonging to a different
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class. Most distance function learning algorithms for classification find pa-
rameters for a parameterized distance function and then apply an existing
distance-based classifier.

A classifier that uses distance functions is the k-nearest neighbor (k-NN)
algorithm [10]. In pattern classification, we consider a case base Y ⊆ X on
which learning is performed. The subset Y is further divided into a training
set Tr ⊂ Y and a testing set Te ⊂ Y such that Tr∪Te = Y and Tr∩Te = ∅.
Given a distance function d and a training set of cases Tr, the 1-NN algorithm
assigns the class label to a new case in the testing set y ∈ Te as follows based
on its nearest neighbor in the training set:

class(y) = class(x�)
x� = arg min

x∈Tr
dw(x, y)

The case x� ∈ Tr is called the nearest neighbor to y with respect to the dis-
tance function d. Despite its simplicity, the k-NN algorithm is usually accurate
and fast for medium-sized training sets.

3.3.1 Feature Evaluation

Two feature evaluation methods are common in the literature. Feature
selection algorithms finds a subset of features that more compactly represent
the case base. Feature evaluation algorithms assigns a score to each feature
that indicates the degree to which it is useful for classification. The higher the
score, the more useful a feature is. Thus, feature selection algorithms are a
specialization of feature evaluation methods, in which the score is either 0 or 1.
In high-dimensional case bases, such as images or signals, feature evaluation
methods are used to remove features that have a low score. This sometimes
improves classification accuracy and reduces computation time.

We use feature evaluation algorithms to compute weights in a distance
function. We make the weights proportional to the score. Let s = (s1, . . . , sn)
be the scores for each of the n features. We compute the weight vector w as

wi =
sj∑n

j=1 sj

where sj ≥ 0 for 1 ≤ j ≤ n.

3.3.2 Relief-F

The Relief algorithm was originally designed as a feature evaluation algorithm,
but it is commonly used to compute weights for distance functions [28]. The
weight of a feature corresponds to how well it separates cases from different
classes while not separating cases from the same class. Weights are updated
for each case in the case base.
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Algorithm 1 Relief-F’s weight-update where class(X) is the set of all classes
in the space X and p(C) is the proportion of cases in the training set that
belong to class C. This update yields a new weight vector, and is repeated
until the weights converge.
Input: Training set Tr , weight vector w, random sample size m.
Output: Updated weight vector w′

1. Select m cases x ∈ T from Tr randomly with uniform probability.
2. w′ = w
3. For 1 ≤ i ≤ m

a) For C ∈ class(X)
MC

i = Closest case to xi in class C using old weights w
b) Hi = M

class(xi)
i

c) For 1 ≤ j ≤ n
Update weight for feature j

w′
j = w′

j − 1

m
(xi,j − Hi,j) +

1

m

∑
C �=class(xi)

p(C)(xi,j − MC
i,j) (3.7)

Algorithm 1 shows the steps in a single iteration of the Relief-F algorithm,
which is an extension of the original Relief algorithm designed to handle mul-
tiple classes [30]. From the training set Tr ⊂ Y , a random sample (T ⊆ Tr)
of size m is selected. The weight of each feature, w′

j , is updated for each case
xi in T . The update considers the nearest neighbor of xi from each class using
the last weight vector, w. The neighbor in the same class as xi, Hi, is called
the hit case. Conversely, the nearest neighbor in each class C �= class(xi),
MC

i , is called a miss case. The update decreases the feature weight to bring
xi closer to the feature value of the hit and increases the weight to move xi

away from the feature value of the misses. This weight update procedure is
repeated for the new weight vector w′ until the weights converge.

Relief does not have an explicit objective function for the weights. Weights
are updated based on their prediction error, which makes this an iterative hill-
climbing approach. By updating weights for individual cases, Relief utilizes
local information. Many other feature evaluation methods consider only global
information such as the information gain (entropy with respect to class) and
the χ2 statistic (variance in the feature values) [16]. Local information is
particularly useful in distance function learning.

Example 4. Consider a set Tr of four cases in two classes completely separable
along the first dimension, which we will call the x-axis. For convenience, the
distance matrix is decomposed:

Dw = w1D1 + w2D2
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where Di is the distance matrix with respect to feature i and w is the weight
vector. Let D1 and D2 be the feature-specific distance matrices for the four
cases:

D1⎡
⎢⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤
⎥⎥⎥⎦

D2⎡
⎢⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎥⎦

Note that in D1, the diagonal consists of 2× 2 blocks of zeros and ones. This
means that along the x-axis, the distance to cases in the same class is zero
and the distance to cases in the other class is 1. Along the x-axis, the cases are
perfectly separated. Along y-axis, they are not separated well. In this case,
the ideal weight vector is (1, 0), which would make the final distance matrix
Dw = D(1,0) = D1.

We perform a single weight update as shown in Algorithm 1, starting with
weights (0.5, 0.5). The incrementally updated weight vector for each case is
shown. We use the training set T = Tr updating for all cases. The indexes
of the nearest hit and miss cases are H = (2, 1, 4, 3) and M = (3, 4, 1, 2),
where Hi denotes the hit for the ith case. The weight vector changes after
considering each case as follows:

Case 1 : 0.714 0.286
Case 2 : 0.959 0.041
Case 3 : 0.999 0.001
Case 4 : 0.999 0.001

The weight obtained after Case 4 is the new weight vector. Performing a
second iteration should result in the same weight vector; thus, the weights
have converged. Note that for the last two updates, the computed weights
were not in [0, 1]. After each update, we normalize the weights to be in [0, 1]
and sum to 1. The learned weights converge to the weights we expected.

3.4 Case Base Maintenance

In case-based reasoning, the case base often contains irrelevant or near-
duplicate cases, which degrades performance. Case base maintenance methods
organize the case base by removing such cases. This is typically accomplished
using clustering, where the case base is partitioned into a set of clusters. Next,
a prototype of each cluster is selected and becomes the representative of the
cluster. Cases that have high distance from the prototype can be removed or
at least assigned a low weight. Distance function learning is often used for
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Clustering X Distance Function d

‘‘Goodness’’ of d

Feedback
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Fig. 3.2. Coevolving clusters and distance functions

case base maintenance. This creates a customized case base for the distance
function.

If the case base has class labels, we seek a distance function such that the
resulting clusters are more pure. Purity is defined as the average fraction of
cases in a cluster that belong to a majority class. When the purity approaches
1.0, all cases in all clusters belong to a single class. The algorithm we discuss
in this section, inside–outside weight updating, relies on two ideas, as depicted
in Fig. 3.2. First, it uses clustering to evaluate the weighted distance function
shown in (3.5). Second, it uses the local information from clusters to update
the weights. We refer to this as a coevolving approach because the clustering
and the distance function are learned together.

After the cases have been clustered, the purity of the obtained clusters is
computed and is used to assess the quality of the current distance function.
Any clustering algorithm can be used for this purpose; however, supervised
clustering algorithms [18] that maximize cluster purity while keeping the num-
ber of clusters low are particularly useful for supervised distance function eval-
uation. More details on how clustering is exactly used for distance function
evaluation are given in [17].

Inside–outside weight updating uses the average distance between the
majority class members 1 of a cluster and the average distance between all
members belonging to a cluster for the purpose of weight adjustment. More
formally, let

dj(x, y) be the distance between x and y with respect to the jth attribute.
wj be the current weight of the jth attribute.
σj be the average normalized distances for the cases that belong to the cluster

with respect to dj .
µj be the average normalized distances for the cases of the cluster that belong

to the majority class with respect to dj .

1 If there is more than one most frequent class for a cluster, one of those classes is
randomly selected to be “the” majority class of the cluster.
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The weights, wj , are adjusted with respect to a particular cluster:

w′
j = wj + αwj(σj − µj) (3.8)

with 0 < α ≤ 1 being the learning rate.
After a clustering2 has been obtained with respect to a distance function

the weights of the distance function are adjusted using Formula (3.8) iterating
over the obtained clusters and the given set of attributes. It should also be
noted that no weight adjustment is performed for clusters that are pure or for
clusters that only contain a single case.

The weight adjustment formula (3.8) gives each cluster the same degree
of importance when modifying the weights. Suppose we had two clusters, one
with 10 majority cases and 5 minority cases and the other with 20 majority
and 10 minority cases, with both clusters having identical average distances
and average majority class distances with respect to a feature, the weight
would have identical increases (decreases) for the two clusters. This somehow
violates common sense; more efforts should be allocated to remove 10 minor-
ity cases from a cluster of size 30 than removing 5 members of a cluster that
only contains 15 cases. Therefore, we add a factor λ to the weight adjustment
heuristic that makes weight adjustment somewhat proportional to the num-
ber of minority cases in a cluster. Our weight adjustment formula therefore
becomes

w′
j = wj + αλwj(σj − µj) (3.9)

with λ being defined as the number of minority cases in the cluster over the
average number of minority cases for all clusters. Because the approach tends
to move majority cases to the center of a cluster and nonmajority cases away
from the center, it is called inside–outside weight updating.

This update rule is similar to that of the Relief algorithm as discussed in
Sect. 3.3. Like this method, Relief updates the weight to bring same-class cases
closer together and different-class cases further apart. Unlike this method,
Relief uses simple nearest-neighbor queries instead of whole-cluster informa-
tion. It does not take advantage of information from both the class labels
or the result of the clustering. For example, (3.7) puts more emphasis on the
cases in the same class compared to different classes. In the context of clusters,
this expression is similar to the µ term from (3.9).

Example 5. Assume we have a cluster that contains six cases numbered 1
through 6 with cases 1, 2, 3 belonging to the majority class. Furthermore, we
assume there are three attributes with three associated weights (w1, w2, w3)
which are assumed to be equal initially (w1 = w2 = w3 = 1

3 ), and the decom-
posed distance matrices D1, D2, and D3 with respect to the three attributes
are given below:

2 Clusters are assumed to be disjoint.
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D1⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 3
0 1 2 3 1

0 1 2 2
0 1 3

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

D2⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 5 1
0 1 1 5 1

0 1 5 5
0 5 1

0 5
0

⎤
⎥⎥⎥⎥⎥⎥⎦

D3⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 3 2 2 3
0 3 2 2 3

0 2 2 2
0 1 3

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

D⎡
⎢⎢⎢⎢⎢⎢⎣

0 1.67 2 2 3.67 2.33
0 1.67 1.67 3.33 1.67

0 1.33 3 3
0 2.33 2.33

0 2.33
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The case distance matrix D is next computed using

D = w1D1 + w2D2 + w3D3

First, the average cluster and average inter-majority case distances for each
attribute have to be computed; we obtain σ1 = 2, µ1 = 1.7; σ2 = 2.6, µ2 = 1;
σ3 = 2.3, µ3 = 2.5. The average distance and the average majority cases
distance within the cluster with respect to d are σ = 2.29, µ = 1.78. Assuming
α = 0.2, we obtain the new weights:

w′ =
(

1
3
,
1
3
,
1
3

)
∗ (1.06, 1.32, 0.953)

= (0.353, 0.440, 0.318)

where ∗ denotes the element-wise multiplication. After the weights have been
adjusted for the cluster, the following new case distance matrix D is obtained:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1.57 1.89 1.92 3.82 2.21
0 1.57 1.60 3.50 1.57

0 1.29 3.19 3.19
0 2.58 2.21

0 2.58
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The average inter-case distances have changed to σ = 2.31, µ = 1.64.
As we can see, the cases belonging to the majority class have moved closer
to each other (the average majority class case distance dropped by 0.14 from
1.78), whereas the average distances of all cases belonging to the cluster in-
creased very slightly, which implies that the distances involving majority cases
(involving cases 1, 2, and 3 in this case) have decreased, as intended.

3.5 Case-Based Retrieval

In case-based retrieval, cases are retrieved and ranked according to their dis-
tance to a query. Unlike classification and maintenance methods, the cases are
assumed not to have a class label. Offline training of a distance function is
therefore not possible. A user’s query, at runtime, partitions the set of cases
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into two classes: relevant and nonrelevant. Distance function learning uses this
feedback to improve the recall and precision of subsequent retrievals. Since a
new distance function is learned for each query, the learning process must be
very fast, even if not very accurate.

Learning a distance function in response to a user’s feedback is known
as relevance feedback. One of the earliest relevance feedback algorithms was
designed for text retrieval [37]. As in other fields, a case t is represented as a
vector of word features:

t = (t1, . . . , tn)

tj ≥ 0

where each tj is the value for the jth word from a set of all n words that occur
in the case base.

Although cases are represented by feature vectors much like the other
fields we have discussed, the values for the features have a special meaning.
This permits several assumptions in these case bases that are otherwise not
justified for the other domains we have considered. The most common form is
the term-frequency inverse case frequency (TFIDF) where each term has the
following form:

ti =

⎧⎨
⎩FREQi

(
1 − log2 DOCFREQ j

log2 m

)
wordj ∈ t

0 wordj /∈ t

where DOCFREQj is the number of cases that contain the jth word, FREQj

is the number of times the jth word occurs in the case t, and m is the number
of cases in the case base [39].

3.5.1 Distance Function Learning

The most common distance function learning algorithm for case-based re-
trieval using relevance feedback relies on some assumptions about relevant
cases and the words they contain. An analysis of the distribution of words in
text cases has shown the following [39]:

1. Relevant cases depend on a small set of relevant words (assumed to be in
the query)

2. Relevant words are rare across all cases (basis for the TFIDF feature
representation)

3. Relevant words are consistent across relevant cases

The most frequent words in a case base tend to be irrelevant to any partic-
ular topic, although most of these are removed during preprocessing. Within
the relatively small set of relevant cases, the cases are relevant because they
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contain these relevant words. As a result, the relevant words are expected to
occur consistently and more frequently in the set of relevant cases. Note that
the query does not always contain all relevant words, as the words may have
synonyms. In this case, the query may miss cases that use different words to
describe the same topic.

Since we assume that relevant cases are characterized by the consistent
presence of relevant words, distance function learning methods weight words
by their consistency within the set of relevant cases. A common measure for
inconsistency is the standard deviation of the word frequencies in the relevant
cases. The weights are inversely proportional to the standard deviation:

wi =
{ 1

σi,r
σi,r �= 0

w0 σi,r = 0

where σi,r is the standard deviation of word i with respect to the relevant
cases r and w0 is a fixed weight when the standard deviation is close to 0.
For words that consistently appear (and do not appear) in the relevant cases,
the standard deviation will be low and their weight will be high. For words
that do not appear consistently, the standard deviation will be high and their
weight will be low.

Despite the apparent simplicity of the weight update strategy, it has been
shown to be effective for text retrieval [8,37,39]. The main reason for its good
performance is that it has access to the relevant cases, rather than having to
predict class labels. In pattern classification and clustering, the relevance of a
new case (class label) is not known at runtime, the classification process is not
interactive. Information retrieval is an interactive process in which the task is
slightly different than classification. Instead of asking “What is the best class
of this case?” the question is “Given the relevant cases, what other cases are
similar to these?” By providing cases of relevant cases interactively, the user
provides significantly more information to the retriever than is available to
the classifier. Since distance functions are individualized and different from
each other, each distance function determines what is relevant for a particular
user but not what is relevant to all users.

Evaluating the performance of these algorithms is difficult in practice.
The retrieval process is evaluated in terms of precision (percent of the re-
turned cases that were relevant) and recall (percent of relevant cases that
were returned). Ideally, both precision and recall should be high. For relevance
feedback algorithms, users are typically not available during experiments.
A common practice is to simulate a user’s feedback by assigning a class label
to each case. Cases in the same class as the query are then considered relevant.

Example 6. Suppose we have a corpus (case base) of five cases with the
following most frequently occurring words:3

3 This example is intended to demonstrate the algorithm and not any political
opinion.



106 A. Bagherjeiran and C.F. Eick

1. George near a bush
2. George Herbert Walker Bush
3. George Clinton
4. The President
5. President Bush

Each case is the set of most frequently occurring words in a text document.
Following the standard text preprocessing procedure, single letter words and
articles (“the,” “a”) are removed and capitalization is ignored. The vector
representation of the case base is

t =

⎡
⎢⎢⎢⎢⎢⎢⎣

bush clinton george herbert near president walker
0.5 0 0.8 0 0.2 0 0
0.6 0 0.6 0.6 0 0 1
0 0.7 0.6 0 0 0 0

0.1 0 0.01 0 0 0.8 0
0.6 0 0.01 0 0 0.9 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The query of “President George W. Bush” results in the vector q:

q = (1, 0, 1, 0, 0, 1, 0)

With equal weights, cases 5, 1, 2, 4, 3 are returned in that order. The user
now selects cases 4 and 5 as relevant. The normalized weight vector is then
w′:

w′ = (0.17, 0.0, 0.0, 0.0, 0.0, 0.83, 0.0)

This assigns the highest weights to “President” and “Bush.” The weight
for “Bush” is less than that for “President” because “Bush” appears incon-
sistently across the relevant cases, in case 5 but not 4. The word “President,”
however, appears in both cases. The same query with the learned weights re-
turns the cases 5, 4, 2, 1, 3 in that order. After relevance feedback, the top
two cases were those marked as relevant.

3.6 Visualizing Proximity of Cases

Because distance functions are embedded in different algorithms (classifica-
tion, clustering, and retrieval), it can be difficult to evaluate the performance
of a distance function learning algorithm. Both to provide an intuitive un-
derstanding of distance functions and as a qualitative evaluation, we discuss
several visualization methods for distance functions. They show how learning
a distance function changes the spatial relationship among the cases, and try
to visualize how good distance functions can be distinguished from bad ones.
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3.6.1 Voronoi Diagrams

A Voronoi diagram partitions cases in a case base into mutually exclusive
regions called Voronoi cells (See [33] for more details). Each cell c contains
exactly one case x from the case base Y ⊆ X. The cell is defined such that
the case x is the nearest case in the case base to all cases in the cell. Cases
along the border are equally distance to the cases in the cells.

The weights change the shape of the cells in the Voronoi diagram.
Figure 3.3 shows two Voronoi diagrams of a case base with two classes. On
the left the cells appear to be wider but compressed vertically. This is because
our original case base is skewed along one dimension. We change the weights
to place more “emphasis” on the x-axis such that its weight is larger than
that of the y-axis. As a result, the cells on the right diagram are stretched
along the vertical dimension and compressed along the horizontal axis. As the
weight for x increases towards 1, the cells become vertical line segments.

3.6.2 Multidimensional Scaling

In the 2D case, we saw that a slight change of the weights significantly changed
the neighborhood of the cases. In the Voronoi diagram, this is easily seen
as changing the shape of the Voronoi cells. In higher dimensions, however,
computing the Voronoi diagram is computationally expensive.

Multidimensional scaling (MDS) (See [6] for more details) finds a
p-dimension representation for n-dimension cases, where 1 ≤ p < n. For
visualization, we assume that p = 2. A key benefit of MDS for visualization
is that it preserves the distance between cases such that

d(φ(x), φ(y)) ≈ d(x, y)

where x, y are cases in the original case base and φ : R
n → R

p projects the
input cases to the lower dimension.

Most MDS algorithm operate only on the distance matrix of the cases.
In classical multidimensional scaling, the projection is a decomposition of the
distance matrix. Since the purpose of distance function learning is to change
the distance function and thus the distance matrix, cases change their spatial
relationship as the weights change. For many MDS algorithms, the change in
position is so drastic that it is hard to compare the two figures before and
after changing the weights.

3.6.3 Distance Matrix Image

Although MDS can give us a nice visualization of the cases in 2D, much visual
information is lost when moving from one set of weights to another. This is
because the cases tend to move in seemingly unpredictable ways. The distance
matrix image does not suffer from these problems. The main disadvantage,
however, is that it can often be hard to see small intensity changes.
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To form the distance matrix image, each entry becomes a block of pixels in
an image. The color of each block is proportional to the distance. A common
color map is a linear gradient from black to white. In this color map, the
brighter the color, the larger the distance. Each row i in the image corresponds
to Di,j for all columns j. As the weights change in the distance function, the
color of the pixels will change.

To facilitate the qualitative meaning of the image, adjacent rows should
correspond to cases in the same class. Grouping by class allows us to observe
changes in the structural properties of the distance function. Blocks along
the diagonal represent the same classes. Off-diagonal blocks represent distance
between pairs of classes, and classes that are well separated will have bright
colors for these blocks. Cohesive classes in which the cases are all close to
each other will have dark colors in the blocks along the diagonal. We typically
assume that classes are cohesive, but this may not be true in general.

3.6.4 Examples of Learned Distance Functions

We show two example case bases before and after changing the weights. For
the 2D case base, we demonstrate all three visualization methods. For the
9D case base, we demonstrate only the last two methods. In both cases, the
objective of learning the objective function is to improve classification perfor-
mance. The objective function should make cases in the same class closer and
cases in different classes further apart.

Example: 2D Random Case Base

Figure 3.3 shows about 20 cases each from two 2D Gaussian distributions with

means µ1 = (0.8, 1), µ2 = (1, 1), and covariance Σ1 = Σ2 =
[

0.006 0
0 0.04

]
.

In Figs. 3.3, 3.4, and 3.5, the weights are

wu = (0.5, 0.5)
wr = (0.7, 0.3)

where wr has unequal weights to simulate learning the distance function.

Voronoi Diagrams

Figure 3.3 shows Voronoi diagrams for the cases with equal and unequal
weights. The diagram with unequal weights has been stretched vertically but
compressed along the horizontal axis. It may be unclear why the cells are
taller when the vertical weight is smaller. This is because a smaller weight
decreases distance along that dimension. As a result, more cases are closer to
the cases in the cells along that dimension. In contrast, horizontal distance
has increased leaving fewer cases close in the cells.



3 Distance Function Learning for Supervised Similarity Assessment 109

0.35 0.4 0.45 0.5 0.55

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Voronoi Diagram with Equal Weights

0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.2

0.25

0.3

0.35

0.4
Voronoi Diagram with Weights (0.7, 0.3)

Fig. 3.3. Voronoi diagrams for (left) equal weights and (right) weights (0.7, 0.3).
The scales are different in the figures because the algorithm that computes the
Voronoi diagram only uses unweighted Euclidean distance

The Voronoi diagram indicates that the distance function meets our
objectives. The separation between µ1 and µ2 is greatest along the horizontal
component because |µ1 − µ2| = (0.2, 0). The weights increase the horizontal
distance causing the means to be further apart. The result is that the distance
function can potentially improve classification performance.

Multidimensional Scaling

Figure 3.4 shows the result of multidimensional scaling with equal weights
and unequal weights. Although the original case base was 2D, with unequal
weights, the position of the cases and thus their distance has changed signifi-
cantly compared to the distance with equal weights.

The figures show that with unequal weights, the grouping of the cases
improves. As a whole, the classes appear to be further separated from each
other in Fig. 3.4 (right). Within each class, the cases appear to be closer
together.

Distance Matrix Image

Figure 3.5 shows the distance matrix image for the cases with equal and un-
equal weights. Since the cases are grouped by class, the lower-left and upper-
right quadrants of the figure denote cases in the same class. With unequal
weights, these regions are generally darker. This means that the distance
between cases in the same class has decreased overall. The lower-right and
upper-left quadrants of the figure denote the distance between cases in dif-
ferent classes. With unequal weights, these quadrants are generally brighter.
This means that the distance between cases in different classes has increased
overall.
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Fig. 3.4. Multidimensional scaling of the 2D case base with (top) equal weights in
the original case base and (bottom) weights (0.7, 0.3)
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Fig. 3.5. Distance matrix images for the 2D case base with (left) equal weights and
(right) weights (0.7, 0.3).

Example: Nine-Dimensional Case Base

With a 2D case base, the Voronoi diagrams were illustrative. Unfortunately,
for more than three dimensions the Voronoi diagram is expensive to compute
and difficult to display. For higher-dimensional case bases we use only the
multidimensional scaling and the distance matrix images.

The case base has nine features with 214 cases from seven classes [4].
We demonstrate the effect of weights with two weight vectors:

wu =
1
9

wr = (0.0646, 0.0936, 0.4283, 0.1275, 0.0466, 0.0340, 0.0826, 0.1121, 0.0109)

where wu consists of uniform weights and wr is the weight vector learned
by Relief-F algorithm [30]. As discussed in Sect. 3.3, Relief is designed to
find weights that increase the distance between cases of different classes and
decrease the distance between cases of the same class.

Multidimensional Scaling

Figure 3.6 shows the multidimensional scaling of the case base with equal
weights and with Relief weights. We see that the Relief algorithm works well
on this case base. Unlike the 2D case, the cases have shifted significantly
with the different weights. In general, the cases are further apart with the
Relief weights because the scale of the figures is different. Cases in the same
class are grouped together, which is desirable in classification problems. The
clusters are better separated from clusters of cases belonging to another class.
In general, the figure shows that cases are more tightly grouped within the
same class and these groups are better separated from each other.

Distance Matrix Image

Figure 3.7 shows images of the distance matrix with equal weights and
Relief weights. These figures show that the Relief weights increase the distance
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Fig. 3.6. Multidimensional scaling of the glass case base with (top) equal weights
and (bottom) Relief weights [30]
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Fig. 3.7. Distance matrix images for the 9D case base with (top) equal weights
and (bottom) Relief weights. The enlarged portions illustrate the difference between
intraclass distances (left) and interclass distances (right)
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between cases of different classes but decrease the distance between cases of
the same class. The enlarged portions of the figure highlight the difference
between the distance functions. With equal weights, the distance between
cases in the same class decreases, causing the image to appear darker. With
Relief weights, the distance between these cases and those of different classes
increases, causing the image to appear brighter. Among the rest of the cases,
the blocks along the diagonal appear darker with Relief weights. This means
that cases in the same class are closer to each other with Relief weights. The
off-diagonal blocks, particularly on the top and right, are brighter with Relief
weights.

The distance matrix images also reveal some distance structure across the
classes. If the classes were separated well, most of the distance matrix would
be brightly colored. Only the regions along the diagonal would be dark. Since
the majority of the distance values are small, this means that the three classes
in the upper-right are, as a whole, very far from the rest of the cases. The
Relief weights clarify this fact.

3.7 Related Work

In this section, we survey other distance function learning work in case-based
reasoning and machine learning. The work is grouped by the method and
objective. Our survey is broad in scope and touches several different fields of
research, each placing different requirements on distance functions. Although
we do not claim that our survey is complete, we hope it serves as a starting
point for newcomers to the field.

3.7.1 Statistical Methods

Statistical methods make use of either simple statistical models or models of
the probability distribution. The model is used to derive weights and usually
depends on distributional assumptions about the case base.

Correlation

The correlation ρ(X,Y ) between two random variables X and Y is defined as

ρ(X,Y ) =
ΣX,Y√
σ2

Xσ2
Y

where σ2 is the variance of each random variable and Σ is the covariance
between the random variables. The correlation has a range of −1≤ρ(X,Y )≤1.
When ρ=1, the variables are said to be positively correlated, which means
that as X increases, Y increases. When ρ = −1, the variables are negatively
correlated, meaning that as X increases, Y increases. In distance function
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learning, we are interested in the magnitude of the correlation, which indicates
the degree to which a feature is correlated (positive or negatively) with the
target value. Both kinds of correlation mean that the feature should have a
high weight.

Correlation is used for both selecting features and assigning weights.
Yu and Liu select features that are highly correlated with the class labels but
not correlated with each other [51]. This reduces redundant features because
features that are highly correlated may be redundant. Doulamis and Doulamis
set feature weights proportional to the correlation between the features val-
ues and a user-defined relevance measures, as in information retrieval [15].
Pan et al. find a highly correlated subset of features of a high-dimensional
projection of the case base [34]. Projecting features into a high-dimensional
space could introduce many irrelevant or redundant features. To eliminate
redundant features, we compute a kernel matrix and perform an eigenvalue
decomposition as in kernel PCA. The k largest eigenvalues correspond to the
most important features. Weights for this subset of features are proportional
to the correlation coefficient with respect to the target.

Variance

As we discussed in Sect. 3.5, many relevance feedback methods use the vari-
ance of features in the case base because it is easy to compute. It is especially
useful in interactive case-based systems, because users can specify which cases
are relevant. Kohlmaier et al. assign weights to a feature based on the degree
to which it increases variance in the computed similarity values [29]. The
variance in the similarity function is a good indicator of different cases. In ad-
dition to providing the single best response, a good case result should return a
variety of different, but related, cases. We consider adding a single feature to
the set of features. If this new feature increases the variance of the similarity
function, it is believed to be a good starting point for obtaining good feedback
from the users. If the variance is low with this feature, most of the cases are
similar based on this feature, so it may not help the user find a good solution.
The variance of similarity values can be used either alone or combined with
weights. Results show that the method performs better than weights alone on
several case-based retrieval tasks [40].

Expectation Maximization

Expectation maximization (EM) approaches iterative solve an optimization
problem where the objective is to maximize the likelihood of the case base
given the new model. In distance function learning, the model is the set of
weights. The likelihood is the probability of finding the existing case base
given the current weights. The EM algorithm has two basic steps. In the
maximization step, we find those weights that best explain the case base.
In the expectation step, we recompute the likelihood function, which changes
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when the weights change. The EM algorithm maximizes weights, computes
the expected case base given the weights, and then repeats until the weights
converge.

These methods are common in classification and clustering. In the max-
imum likelihood approach, we seek a set of weights that best explains the
case base. If we have a set of pair-wise constraints, such as knowing that the
two cases should not be considered similar, we can find weights that maxi-
mize the likelihood of separating cases [50]. Given the weights, we determine
the degree to which the pair-wise constraints are violated and update our
likelihood function. We can again find weights that maximize the likelihood.
Huang et al. apply another EM-type algorithm to find weights that induce
a good clustering, a maximum-likelihood clustering. Each cluster is modeled
by a multivariate Gaussian distribution. Each case has a probability of being
a member of each cluster. The weights are used to compute the membership
probabilities for each case. The EM approach is to obtain a new clustering
given the weights and then find the weights that improve the membership
probabilities [24].

3.7.2 Changing the Set of Features

Often the original set of features is not adequate for the distance function.
We would like to evaluate a feature, indicating its usefulness with respect
to the class labels. When there are many features, some are irrelevant or
redundant. Finding a suitable subset or subspace of the features, these fea-
tures can improve the computational efficiency. When the features do not
adequately express the target value, we can construct new features that are
more expressive.

Feature Evaluation

In Sect. 3.3, we discussed the popular Relief method. Many other feature
evaluation algorithms are commonly used to find weights for distance func-
tions. Most of these were designed, like Relief, for classification problems and
to compare the class distribution considering the different values of nominal
features. Information gain measures the difference in entropy with respect to
the class labels [16]. The case base is split into partitions with respect to a
particular feature such that all cases in the partition have the same value for
the feature. The entropy with respect to the class labels is calculated in each
partition. The information gain is the difference between the initial entropy,
without the partitions, and the average entropy after the partitioning.

As with the Relief algorithm, the output of a feature evaluation method
can be used for weights in a distance function. In classification, the information
gain increases weights for features that are similar to the class label. Features
that are distributed like the class label have high weights as do those features
with many values [14]. Text features, particularly in information retrieval,
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lend themselves to this method. A relevant word would only be in the set of
relevant cases, so we would expect it to have high information gain. If the
word is not relevant the class labels would tend to be distributed similarly in
each split, so the information gain would be small [49].

Extending the concept of feature weights to individual feature values is
also common in case-based reasoning literature. Such a local weight could,
for example, place more emphasis on the difference between the values “red”
and “blue” than on the difference between “red” and “pink”. Nunez et al.
compared several entropy-based weighting methods for local weighting [32].
They showed that the local weight approach can be useful. However, having
more weights to control makes the learning process more difficult. As a result,
more complex search methods such as genetic algorithms have to be used [25].

Decreasing the Number of Features

As we have seen, feature selection seeks an optimal subset of the initial set of
features. In dimension reduction, we also seek a reduced set of features, but
we consider combinations of features. As shown in our visualization cases in
Sect. 3.6, multidimensional scaling can reduce a high-dimensional case base
to a 2D case base that preserves clusters. There are three common methods
for dimension reduction: principal component analysis, linear discriminant
analysis, and multidimensional scaling.

Principal Component Analysis

The principal components of a case base are the directions (linear combination
of features) that indicate the variance in the cases. They are the eigenvectors
of the covariance matrix that correspond to the largest eigenvalues. The prin-
cipal components become the new features. The covariance matrix allows to
calculate the Mahalanobis distance, which projects the cases onto the inverse
of the covariance matrix. The projected cases is “corrected” for the covari-
ance such that an unweighted distance function can be used. The objective of
these distance function learning algorithms is to find the best projection. For
example, the projection should map the cases into well-separated classes [5,19].

Linear Discriminant Analysis

Rather than requiring a distance function to consist of good features, one can
require that it lead to good classification results. Since predicting accuracy
is computationally expensive, an alternative is to maximize the margin of
separation between cases. Since the separation depends on the learned distance
function, the problem is to find a distance that leads to the greatest separation
between cases in different classes. An early algorithm for this purpose is Linear
Discriminant Analysis (LDA). A local approach to LDA finds the discriminant
among a small neighborhood of cases. The linear projection matrix that leads
to the best discriminant is chosen for each case [22].
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Multidimensional Scaling

From a geometric perspective, these covariance approaches reshape the cases
to improve separation. The dimensionality of the projected cases is the same
as the original cases. As we have seen in Figs. 3.4 and 3.6, projecting cases
onto fewer dimensions can yield insight into the distances. Much work has
shown that they are quantitatively effective as well. A desirable property of
multidimensional scaling is that it should preserves distances in the projected
space. Rather than preserving all the original distances, the projection can
increase the distance between cases in different classes, leading to a better
separation of classes in the lower-dimensional space [52].

Other projection methods utilize different aspects of relatedness such as
knowledge of unwanted variance between cases of different classes [23] and the
structure of local neighborhoods [20].

Increasing the Number of Features

Feature Construction

Often the original set of features for a case base are unable to represent the
concept. For example, if the true target value is a nonlinear function of the
features such as x2 + xy, then it would be difficult for any weight vector to
approach the function. A common solution is to construct a new, larger set
of features. The similarity function and weights are then computed in this
high-dimensional feature space. Examples include the set of polynomials of
degree 2, yielding features such as (x1, x2, x

2
1, x

2
2, x1x2). This feature construc-

tion method can introduce significant redundancy among the features. As a
result, dimension reduction methods, like those discussed earlier, can be used.
A specialized version of PCA, called kernel PCA, is ideally suited for this prob-
lem [34]. As the original number of features increases, feature construction like
this tends to be very expensive, as O(n2) features have to be constructed. An-
other technique is to add new, derived features. An example is to find a set
of weights for a subset of features and then use the weighted combination of
feature values as a new feature [36]. The new feature can either replace or
augment the existing set of features. It is particularly useful with image cases,
when the individual low-level features are, by themselves, not good predictors
of the class.

Kernels

In kernel-based machines, cases are represented as a vector of similarity values.
Each case consists of its similarity to all other cases in the case base. A kernel
function k(x1, x2) defines the similarity between two cases x1 and x2. The
kernel matrix is constructed from the original case base as follows. For a case
base of size n, the kernel matrix has dimension n × n. Each entry Ki,j is the
value of the kernel for two cases Ki,j = k(xi, xj). Using the so-called kernel
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trick, any algorithm that operates on case bases with a dot product can be
modified to use a kernel function. This kernelization allows many existing
algorithms to be extended with kernels. Techniques that can be kernelized
are the support vector machines, principal component analysis, and distance
based algorithms [3, 41]. In kernel PCA, we compute a reduced-dimension
version of the kernel matrix. The weights for this new feature vector indicate
which cases contribute most to the overall covariance of the kernel matrix.
As with traditional PCA, the kernel version improves the performance of
algorithms when using the reduced set of features [34].

Recent work has established a relationship between kernels and distance
functions [3, 41]. In particular, the work shows that good distance functions
make for good kernels [3]. As a result, many researchers have applied distance
function learning methods, like those discussed in this chapter, to learn kernel
functions. As in distance function learning, feature evaluation methods like
Relief can be used to find weights for kernel-based machines [9]. Weights can
be learned for a parameterized kernel function in much the same way they
are learned for distance functions [26]. Recent work shows that good distance
function make for good kernels [3].

3.7.3 Extracting Weights from Learned Models

A common approach to assess the importance of features is to apply an
algorithm that generates weights as part of the model. The weights are then
extracted from the model and used as weights for the distance function or to
select features.

Classifiers

A popular classifier that computes weights is the Logistic regression algorithm.
This algorithm assumes that the probability of a case x belonging to a class
y is

Pr(y | x,w) =
1

1 + e−wT x

where w is a vector weight and includes a bias. The algorithm is trained using
a gradient descent approach. The learned weights are then used for feature
selection and weights in a distance function.

Arshadi and Jurisica have applied logistic regression to case-based classi-
fication of microarray cases [1]. Their objective was to select relevant features
from a very high dimensional case base. They combine several classifiers in an
ensemble. The classification approach is to retrieve several cases from the case
base with the learned weights and then compute the majority class label. Their
results show a significant improvement in accuracy. Wilson and Leake use this
method to maintain the case base through clustering [48]. By clustering and
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then learning a set of weights, cases that are very distant from the prototype
of the cluster are removed as irrelevant. Features with low weights are also
removed as irrelevant. Their results showed that this lead to an improvement
of classification accuracy.

Support vector machines also learn weights, classifying cases based on a
separating hyperplane as follows:

f(x) = sign(wT x + b)

where w is a weight vector and b is a bias. The learned hyperplane is typically
one that separates cases into two classes by the largest possible margin. The
decision function f(x) is the distance between a case and the separating hyper-
plane, so this function can itself be used as a distance function. Alternatively,
the weights are extracted and used as weights for a distance function [13].

Relevance Feedback

The relevance feedback methods like those we have previously discussed use
relevant cases as the basis for weights. Their objective is to find weights that
best separate relevant from nonrelevant cases. Applied both in text retrieval
[8, 37, 39] and image retrieval [38], these methods are quite popular. We can
also cluster the cases based on relevance and then find a distance function
that separates the clusters [27]

3.7.4 Local Search Methods

Local search methods are popular for distance function learning. The most
common of these are iterative methods such as hill-climbing. Here, an initial
weight vector is updated until the objective function converges, e.g., to the
peak of a hill in the objective function. Updates are computed either by the
gradient of the objective function or with heuristics. Relief, as we discussed
in Sect. 3.3, is a local search method.

Extensions to Relief

In the Relief algorithm, a weight is the degree to which a single feature can
be used to predict the class label [28]. In practice this technique works well
and has inspired several extensions. The most common extension, Relief-F,
extends Relief from two classes to several classes, which allows for greater
applicability and widespread use [30]. Rather than learning a single weight,
we can find a pair of weights for each class: one for the nearest hit and miss
cases [7]. Although widely used as a batch learning algorithm, a recent itera-
tive version of Relief achieves comparable accuracy as an online learner and
supports removing outliers [45].
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Using Gradients

Gradient-based hill climbing methods, known as gradient descent methods,
are the most common form of hill climbing algorithm. For distance function
learning, these methods define an objective function in terms of weights and
then compute its gradient. A common approach used in case-based retrieval
is to find weights that compute an optimal ranking of the cases. For exam-
ple, given a user’s feedback of known ranks for a set of cases, weights can be
learned that match the ranks. The error function is simply the squared dif-
ference between the known ranks and predicted ranks. This is a continuous,
differentiable function, which lends itself to gradient-based methods [31, 43].
Coyle and Cunningham minimize the difference between a user’s ranking of a
set of retrieved cases versus those computed with uniform weights. The idea
is to make the similarity with weights as different from uniform weights as
possible. By saving these weights for individual users, a customized case base
is created [11]. With a similarly objective function, Shiu et al. incorporate
learned weights as a first step in their case base maintenance process [42].
Tsang et al. find weights that induce a good clustering to edit the case base.
The objective is to improve cluster metrics such as intracluster distance (tight-
ness of the cluster) [46]. The objective function for optimization minimizes the
difference in the objective with learned weights vs. the set of uniform weights.

Nongradient Methods

In Sect. 3.4, we examined a nongradient approach that optimizes class
purity [17]. Here the weights are changed along the single attribute that im-
proves the purity the most. A subspace projection method, like hill climbing,
updates weights along a predefined direction as long as the objective function
improves [21]. This direction typically has components of several features.

3.7.5 Global Search Methods

Local search methods tend to converge to a point, known as a local optima.
This local solution may not be the global, best solution. Global search meth-
ods are intended to find this global solution. Optimization methods are used
when we know that there is only one optimal solution, typically because the
objective function is convex. Most other search methods expand their search
area with randomization.

Optimization

We can pose the distance function learning problem as one of the optimization.
In general, we would like to find feature weights that minimize a global error
function. Peleg and Meir find a subset of features that minimize the expected
generalization error [35]. The objective is to minimize the margin cost for a
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feature. Features that can adequately separate the cases have low margin cost.
Features that are poor separators are not useful for classification. Weinberger
et al. extend the optimization problem in the Relief algorithm. For Relief we
considered the distance between the nearest hit and miss case for each case
in the training set. Keeping the hit and misses fixed during optimization, the
objective is to minimize the distance between cases in the same class and
maximize the distance between cases in different classes [47].

Randomized Search

Genetic algorithms can directly search for weights and can evolve expressions
for the distance function. Stahl and Gabel find weights for specific feature
values. Each individual is a similarity table containing weights for pairs of
feature values. The fitness function is the accuracy of the ranks generated
with the weights [44]. Jarmulak et al. select features by evolving a feature bit
mask. The fitness function is cross-validation accuracy with classification cases
[25]. Using genetic programming, feature indexes and arithmetic operators are
added to a syntax tree forming an arithmetic expression. The fitness of the
expression is its estimated prediction accuracy [12].

Because objective functions over a clustering can be expensive to compute,
we seek search methods that do not evaluate many (very similar) solutions.
We can view the search for weights as a transition from one clustering, induced
by the original weights, to another, induced by the changed weights. If weights
lead to a good cluster, these weights, and those that led to them, form a path
of weights that lead to a good clustering. By remembering this path, consisting
of which choices were good and bad, the search can focus on good paths while
avoiding bad ones. If the path leads to a clustering that has already been seen,
the search can quickly switch to a different path rather than repeating work
already done. Conceptually, this is an application of reinforcement learning
to search, in which the best choices are remembered and reused [2].

3.8 Summary

The objective of distance function learning for supervised similarity assess-
ment is to find a distance function that groups together cases belonging to
the same class, while separating cases of different classes. We introduced a
framework for parameterized distance functions, which depends on a vector
of weights. We then provided detailed descriptions of algorithms used in three
different fields within case-based reasoning: case-based classification, case base
maintenance, and case-based retrieval. We showed how to visualize the dif-
ference between good and bad distance functions for high-dimensional case
bases. Finally, we surveyed recent work in the literature.

Distance function learning is particularly suited to applications with a
large number of dimensions, when it is difficult for us to determine which
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features are the most important. In classification, the Relief algorithm finds
features that separate cases from different classes. In case base maintenance,
the inside–outside weight update concentrates cases of the same class into co-
hesive clusters. In case-based retrieval, relevance feedback adapts the distance
function to a user’s preference at run time.

Distance function learning is a very active research field, and it can ben-
efit from a cross-fertilization of ideas from different fields. The algorithms
discussed in this chapter originated in the fields of machine learning, data
mining, and information retrieval. In the field of machine learning, recent
work has established a relationship between kernels and distance functions.
Distance function learning can be applied to obtain better kernels, and kernel
methods can be used to derive good distance functions. This has been used
in pattern classification. In data mining, distance function learning has found
widespread use when users can specify an objective function to organize infor-
mation. This suggests an interactive approach to unsupervised clustering in
which users can explore a clustering by changing objective functions. In infor-
mation retrieval, distance functions are tailored to individual users and their
queries. As different modalities of information become available in addition to
text (image, video, signals), distance function learning can be used to empha-
size the relevant features with respect to a user’s query. In all of these fields,
distance function learning is the common thread helping us better assess the
similarity between cases.
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32. Héctor Núñez, Miquel Sànchez-Marrè, and Ulises Cortés. Improving similarity
assessment with entropy-based local weighting. In Proc. 5th Int’l Conf. on Case-
Based Reasoning, LNAI 3689, pages 377–391, Trondheim, Norway, June 2003.

33. Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Hoboken,
NJ, 1992.

34. Rong Pan, Qiang Yang, and Lei Li. Case retrieval using nonlinear feature-space
transformation. In Proc. 7th European Conf. on Adv. in Case-Based Reasoning,
LNAI 3155, pages 361–374, Madrid, Spain, September 2004.

35. Dori Peleg and Ron Meir. A feature selection algorithm based on the global
minimization of a generalization error bound. In Lawrence K. Saul, Yair Weiss,
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based vs. similarity-influenced: Attribute selection methods for dialogs tested
on different electronic commerce domains. In Proc. 6th European Conf. on Adv.
in Case-Based Reasoning, LNAI 2416, pages 380–394, Aberdeen, Scotland, UK,
September 2002.

41. Bernhard Schölkopf. The kernel trick for distances. In Todd K. Leen, Thomas G.
Dietterich, and Volker Tresp, editors, Adv. in Neural Information Processing
Systems 13, pages 301–307. MIT Press, 2000.

42. Simon Chi Keung Shiu, Cai Hung Sun, Xi Zhao Wang, and Daniel So Yeung.
Maintaining case-based reasoning systems using fuzzy decision trees. In Proc.
5th European Workshop on Adv. in Case-Based Reasoning, pages 285–296,
Tento, Italy, September 2000.

43. Armin Stahl. Learning feature weights from case order feedback. In Proc. 4th
Int’l Conf. on Case-Based Reasoning, LNAI 2080, pages 502–516, Vancouver,
BC, Canada, July 2001.

44. Armin Stahl and Thomas Gabel. Using evolution programs to learn local simi-
larity measures. In Proc. 5th Int’l Conf. on Case-Based Reasoning, LNAI 3689,
pages 537–551, Trondheim, Norway, June 2003.

45. Yijun Sun and Jian Li. Iterative RELIEF for feature weighting. In Proc. 23rd
Int’l Conf. on Machine Learning, pages 913–920, 2006.

46. Eric C.C. Tsang, Simon C.K. Shiu, X.Z. Wang, and Martin Lam. Clustering
and classification of cases using learned global feature weights. 2001.

47. Kilian Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning
for large margin nearest neighbor classification. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Adv. in Neural Information Processing Systems 18, pages
1473–1480. MIT Press, Cambridge, MA, 2005.

48. D. Wilson and D. Leake. Maintaining case-based reasoners: Dimensions and
directions. Computational Intelligence, 17:196–212, 2001.

49. Nirmalie Wiratunga, Ivan Koychev, and Stewart Massie. Feature selection and
generalisation for retrieval of textual cases. In Proc. 7th European Conf. on Adv.
in Case-Based Reasoning, LNAI 3155, pages 806–820, Madrid, Spain, September
2004.

50. Liu Yang, Rong Jin, Rahul Sukthankar, and Yi Liu. An efficient algorithm
for local distance metric learning. In Proc. 21st Nat’l Conference on Artificial
Intelligence, 2006.

51. Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast
correlation-based filter solution. In Proc. 20th Int’l Conf. on Machine Learning,
pages 856–863, 2003.

52. Zhihua Zhang. Learning metrics via discriminant kernels and multidimensional
scaling: Toward expected euclidean representation. In Proc. 20th Int’l Conf. on
Machine Learning, pages 872–879, 2003.


