
10

Prototypes and Case-Based Reasoning
for Medical Applications

R. Schmidt, T. Waligora, and O. Vorobieva

Institut für Medizinische Informatik und Biometrie, Universität Rostock

Summary. Already in the early stages of case-based reasoning (CBR) prototypes
were considered as an interesting technique to structure the case base and to fill
the knowledge gap between single cases and general knowledge. Unfortunately, later
on prototypes never became a hot topic within the CBR community. However, for
medical applications they have been used rather regularly, because they correspond
to the reasoning of doctors in a natural way. In this chapter, we illustrate the role of
prototypes by application programs, which cover all typical medical tasks: diagnosis,
therapy, and course analysis.

10.1 Introduction

Cases are the most specialised form of knowledge representation. The knowl-
edge of physicians consists of general knowledge they have read in medical
books and of their experiences in form of cases they have treated themselves
or colleagues have told them about. Not all cases are of the same impor-
tance. Some are typical while others are rather exceptional, e.g. a paediatri-
cian does not remember all his patients with measles, but maybe those with
serious complications or those where his measles diagnosis was surprisingly
wrong. Doctors consider differences between their current patient and typical
or known exceptional cases.

We believe that medical case-based reasoning (CBR) systems should take
the reasoning of doctors into account [1]. Such systems should not only consist
of general medical domain knowledge plus a flat case base, but the case base
should be structured by typical case generalisations called prototypes [2].

Though the use of prototypes had been early introduced in the CBR com-
munity [3,4], their use is still rather seldom. Later on it fell into oblivion and
was brought up again by Bergman in form of generalised cases [5], which are
similar but not identical with the idea of prototypes. While generalised cases
are general or abstract in contrast to concrete cases, prototypes contain the
typical features of a set of cases.

R. Schmidt et al.: Prototypes and Case-Based Reasoning for Medical Applications, Studies in

Computational Intelligence (SCI) 73, 285–317 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

286 R. Schmidt et al.

However, since doctors reason with typical cases anyway, in medical CBR
systems prototypes are a rather common knowledge form, they are used in a
variety of applications, e.g. for diabetes [6], for eating disorders [7], and for
pulmonology [8]. Prototypical images that can be transformed after certain
image processing steps in prototypes are used for the diagnosis of medical
images [9].

A prototype is generalised from a set of single cases. The cases in this set
are very similar to each other or they belong in some other specific way to-
gether and form a sort of class. For example, in a diagnostic system all patients
that are diagnosed as measles patient might be grouped together. Usually,
prototypes have the same structure as cases but have less and more general
features, namely just the typical ones. Sometimes prototypes are defined by
medical experts, sometimes they can be found in literature (e.g. the typical
symptoms for measles), and sometimes they are computed.

The use of case-oriented generalised knowledge presents the opportunity
to structure case bases. Cases can be clustered into groups, prototypical dis-
eases, or schema. Clancey [10] distinguishes between prototypes that represent
specific expressions of diseases or therapies and schema that contain essen-
tial features of diseases or therapies. As Selz [11] characterises a schema as a
description of an entity where at least one part remains vague, the distinc-
tion between prototypes and schema seems to be fluid. We only use the term
prototype and refer to a hierarchy of prototypes where the most general pro-
totypes that contain the most common features are situated on top and the
most specific ones are placed at the bottom.

This notion of prototypes differs from the usual notion of classes and clus-
ters [12] in many ways. Prototypes are not the result of a classification process.
Whether a case belongs to a prototype is determined by its features or defined
by an expert. There may be a hierarchy of prototypes but there are not rela-
tions (similarity, is–a and so on), and the set of cases belonging to a prototype
is not represented by its most representative case but by the prototype.

The main purpose of such generalised knowledge is to guide the retrieval
and sometimes to decrease the amount of storage by erasing redundant cases.
In domains with rather weak domain theories another advantage of case-
oriented techniques is their ability to learn from cases. Only gathering new
cases may improve the systems ability to find suitable similar cases for current
problems, but it does not elicit the intrinsic knowledge of the stored cases. To
learn the knowledge contained in cases a generalisation process is necessary.
Generally speaking, prototypes fill the knowledge gap between the specificity
of single cases and abstract knowledge usually expressed as rules.

In this chapter we present systems we developed during the last 10 years
and focus on the role of prototypes within them. We start with a prototype-
based system for diagnosis of dysmorphic syndromes. Subsequently we present
a system for course analysis and prognosis of the kidney function and finally

10 Prototypes and Case-Based Reasoning for Medical Applications 287

we present two therapeutic systems, namely one for antibiotic therapy advice
and ISOR, a system that deals with therapeutic problems in the endocrine
domain.

10.2 Prototype-Based Diagnosis of Dysmorphic
Syndromes

In this application, retrieval does not search for former single cases but only for
prototypes. Each prototype represents and characterises one specific diagnosis.
We assume that this idea is rather typical for diagnostic tasks, because it
seems to be reasonable to search for a general description of a disease instead
of searching for single patients.

When a child is born with dysmorphic features or with multiple congenital
malformations or if mental retardation is observed at a later stage, finding the
correct diagnosis is extremely important. Knowledge of the nature and the
etiology of the disease enables the pediatrician to predict the patient’s future
course. So, an initial goal for medical specialists is to diagnose a patient to
a recognised syndrome. Genetic counselling and a course of treatments may
then be established.

A dysmorphic syndrome describes a morphological disorder and it is char-
acterised by a combination of various symptoms, which form a pattern of
morphologic defects. An example is Down syndrome which can be described
in terms of characteristic clinical and radiographic manifestations such as
mental retardation, sloping forehead, a flat nose, short broad hands, and gen-
erally dwarfed physique [13]. The main problems of diagnosing dysmorphic
syndromes are as follows [14]:

– More than 200 syndromes are known
– Many cases remain undiagnosed with respect to known syndromes
– Usually many symptoms are used to describe a case (between 40 and 130)
– Every dysmorphic syndrome is characterised by nearly as many symptoms

Furthermore, knowledge about dysmorphic disorders is continuously modified,
new cases are observed that cannot be diagnosed (it exists even a journal that
only publishes reports of newly observed interesting cases [15]), and some-
times even new syndromes are discovered. Usually, even experts of paediatric
genetics only see a small count of dysmorphic syndromes during their lifetime.

So, we have developed a diagnostic system that uses a large case base.
Starting point to build the case base was a large case collection of the paedi-
atric genetics of the University of Munich, which consists of nearly 2,000 cases
and 229 prototypes. A prototype (prototypical case) represents a dysmor-
phic syndrome by its typical symptoms. Most of the dysmorphic syndromes
are already known and have been defined in literature. And nearly one-third

288 R. Schmidt et al.

of the prototypes were determined by semiautomatic knowledge acquisition,
where an expert selected cases that should belong to same syndrome and
subsequently a prototype, characterised by the most frequent symptoms of
his cases, was generated. To this database we have added rare dysmorphic
syndromes, namely from “clinical dysmorphology” [15] and from the London
dysmorphic database [16].

10.2.1 Diagnostic Systems for Dysmorphic Syndromes

Systems to support diagnosis of dysmorphic syndromes have already been
developed in the early 1980s. The simple ones perform just information re-
trieval for rare syndromes, namely the London dysmorphic database [16],
where syndromes are described by symptoms, and the Australian POSSUM,
where syndromes are visualised [17]. Diagnosis by classification is done in a
system developed by Wiener and Anneren [18]. They use more than 200 syn-
dromes as database and apply Bayesian probability to determine the most
probable syndromes. Another diagnostic system, which uses data from the
London dysmorphic database was developed by Evans [19]. Though he claims
to apply CBR, in fact it is again just a classification, this time performed by
Tversky’s measure of dissimilarity [20]. The most interesting aspect of his ap-
proach is the use of weights for the symptoms. That means the symptoms are
categorised in three groups – independent of the specific syndromes, instead
only according to their intensity of expressing retardation or malformation.
However, Evans admits that even features, that are usually unimportant or
occur in very many syndromes sometimes play a vital role for discrimination
between specific syndromes.

10.2.2 Prototypicality Measures

In CBR usually cases are represented as attribute-value pairs. In medicine,
especially in diagnostic applications, this is not always the case, instead often
a list of symptoms describes a patient’s disease. Sometimes these lists can be
very long, and often their lengths are not fixed but vary with the patient.
For dysmorphic syndromes usually between 40 and 130 symptoms are used to
characterise a patient.

Furthermore, for dysmorphic syndromes it is unreasonable to search for
single similar patients (and of course none of the systems mentioned above
does so) but for more general prototypes that contain the typical features of a
syndrome. To determine the most similar prototype for a given query patient
instead of a similarity measure a prototypicality measure is required. One
speciality is that for prototypes the list of symptoms is usually much shorter
than for single cases.

The result should not be just the one and only most similar prototype,
but a list of them – sorted according to their similarity. So, the usual CBR

10 Prototypes and Case-Based Reasoning for Medical Applications 289

retrieval methods like indexing or nearest neighbour search are inappropriate.
Instead, rather old measures for dissimilarities between concepts [20, 21] are
applied.

Since our system is still in the evaluation phase, the user has three choices
for a prototypicality measure. As humans look upon cases as more typical for
a query case as more features they have in common [21], distances between
prototypes and cases usually mainly consider the shared features. The first,
rather simple measure (10.1) just counts the number of matching symptoms
of the query patient (X) and a prototype (Y) and normalises the result by
dividing it by the number of symptoms characterising the syndrome. This nor-
malisation is done, because the lengths of the lists of symptoms of the various
prototypes vary very much. It is performed by the two other measures too.

The following equations are general (as they were originally proposed) at
the point that a general function “f” is used, which usually means a sum that
can be weighted. In general these functions “f” can be weighted differently.
However, since we do not use any weights at all, in our application “f” means
simply a sum.

D(X,Y) =
f(X + Y)

f(Y)
(10.1)

The second measure (10.2) was developed by Tversky [20]. It is a measure of
dissimilarity for concepts. In contrast to the first measure, additionally two
numbers are subtracted from the number of matching symptoms. Firstly, the
number of symptoms that are observed for the patient but are not used to
characterise the prototype (X−Y), and secondly the number of symptoms used
for the prototype but are not observed for the patient (X− Y) is subtracted.

D(X,Y) =
f(X + Y) − f(X − Y) − f(Y − X)

f(Y)
(10.2)

The third prototypicality measure (10.3) was proposed by Rosch and Mervis
[21]. It differs from Tversky’s measure only in one point: the factor X–Y is
not considered:

D(X,Y) =
f(X + Y) − f(Y − X)

f(Y)
(10.3)

10.2.3 Our System

Our system consists of four steps (Fig. 10.1). At first the user has to select
the symptoms that characterise a new patient. This selection is a long and
very time consuming process, because we consider more than 800 symptoms.
However, diagnosis of dysmorphic syndromes is not a task where the result
is very urgent, but it usually requires thorough reasoning and subsequently
a long-term therapy has to be started. Secondly, the user can select one of
the prototypicality measures explained in Sect. 10.6. In routine use, this step
shall be dropped and the measure with best evaluation results shall be used
automatically.

290 R. Schmidt et al.

Data Input

Selection of a
Prototypicality Measure

Search for
Similar Prototypes

Application of
Adaptation Rules

Display of most
SIMILAR Syndromes

Display of most
PROBABLE Syndromes

Fig. 10.1. Steps to diagnose dysmorphic syndromes

Fig. 10.2. Top part of the listed prototypes after applying a prototypicality measure

In the third step to diagnose dysmorphoic syndromes, the chosen measure
is sequentially applied on all prototypes (syndromes). Since the syndrome with
maximal similarity is not always the right diagnosis, the 20 syndromes with
best similarities are listed in a menu (Fig. 10.2).

In the fourth and final step, the user can optionally choose to apply adap-
tation rules on the syndromes. These rules state that specific combinations of
symptoms favour or disfavour specific dysmorphic syndromes. Unfortunately,
the acquisition of these adaptation rules is very difficult, because they cannot
be found in textbooks but have to be defined by experts of paediatric genet-
ics. So far, we have got only 18 of them and so far, it is not possible that a
syndrome can be favoured by one adaptation rule and disfavoured by another
one at the same time. When we, hopefully, acquire more rules such a situation
should in principle be possible but would indicate some sort of inconsistency
of the rule set.

How shall the adaptation rules alter the results? Our first idea was that the
adaptation rules should increase or decrease the similarity scores for favoured
and disfavoured syndromes. But the question is how. Of course no medical
expert can determine values to manipulate the similarities by adaptation
rules and any general value for favoured or disfavoured syndromes would be

10 Prototypes and Case-Based Reasoning for Medical Applications 291

Fig. 10.3. Top part of the listed prototypes after additionally applying adaptation
rules

arbitrary. So, instead the result after applying adaptation rules is a menu that
contains up to three lists (Fig. 10.3).

On top the favoured syndromes are depicted, then those neither favoured
nor disfavoured, and at the bottom the disfavoured ones. Additionally, the
user can get information about the specific rules that have been applied on a
particular syndrome.

In the example presented in Figs. 10.2 and 10.3, the correct diagnosis is
Lenz syndrome. The computation of the prototypicality measure of Rosch and
Mervis provided Lenz syndrome as the most similar but one syndrome (here
Tversky’s measure provides a similar result, only the differences between the
similarities are smaller). After application of adaptation rules, the ranking
is not obvious. Two syndromes have been favoured, the more similar one is
the right one. However, Dubowitz syndrome is favoured too (by a completely
different rule), because a specific combination of symptoms makes it probable,
while other observed symptoms indicate a rather low similarity.

10.2.4 Results

Cases are difficult to diagnose when patients suffer from a very rare dymorphic
syndrome for which neither detailed information can be found in literature
nor many cases are stored in our case base. This makes evaluation difficult.
If test cases are randomly chosen, frequently observed cases resp. syndromes
are frequently selected and the results will probably be fine, because these
syndromes are well known. However, the main idea of the system is to support
diagnosis of rare syndromes. So, we have chosen our test cases randomly but
under the condition that every syndrome can be chosen only once. For 100
cases we have compared the results obtained by both prototypicality measures
(Table 10.1).

The results may seem to be rather poor. However, diagnosis of dysmorphic
syndromes is very difficult and usually needs further investigation, because
often a couple of syndromes are very similar. The first step is to provide the

292 R. Schmidt et al.

Table 10.1. Comparison of prototypicality measures

Right Syndrome Rosch and Mervis Tversky

on Top 29 40
among top 3 57 57
among top 10 76 69

Table 10.2. Results after applying adaptation rules

Right syndrome Rosch and Mervis Tversky

on Top 32 42
among top 3 59 59
among top 10 77 71

Table 10.3. Results after applying some more adaptation rules

Right Syndrome Rosch and Mervis Tversky

on Top 36 44
among top 3 65 64
among top 10 77 73

doctor with information about probable syndromes, so that he gets an idea
which further investigations are appropriate. That means, the right diagnose
among the three most probable syndromes is already a good result.

Obviously, the measure of Tversky provides better results, especially when
the right syndrome should be on top of the list of probable syndromes. When
it should be only among the first three of this list, both measures provide
equal results.

Adaptation Rules

Since the acquisition of adaptation rules is a very difficult and time consuming
process, the number of acquired rules is rather limited, namely at first just ten
rules. Furthermore, again holds: The better a syndrome is known, the easier
adaptation rules can be generated. So, the improvement mainly depends on
the question how many syndromes involved by adaptation rules are among the
test set. In our experiment this was the case only for five syndromes. Since
some had been already diagnosed correctly without adaptation, there was just
a small improvement (Table 10.2).

Some More Adaptation Rules

Later on we acquired eight further adaptation rules and repeated the tests
with the same test cases. The new adaptation rules again improved the results
(Table 10.3). It is obvious that with the number of acquired adaptation rules

10 Prototypes and Case-Based Reasoning for Medical Applications 293

the quality of the program increases too. Unfortunately, the acquisition of
these rules is very difficult and especially for very rare syndromes probably
nearly impossible.

10.3 Time Course Prognosis

In this section we present a method for prognosis of temporal courses based
on multiparametric numeric values for organ functions.

Since traditional time series techniques [22] work well with known periodic-
ity, but do not fit in domains characterised by possibilities of abrupt changes,
much research has been performed in the field of medical temporal course
analysis. However, the methods developed so far either require a complete
domain theory or well-known standards (e.g. course pattern or periodicity).

An ability of RÉSUMÉ [23] is the abstraction of many parameters into
one single parameter and to analyse courses of this abstracted parameter.
However, interpretation of these courses requires complete domain knowledge.
Haimowitz and Kohane [24] compare many parameters of current courses with
well-known standards (trend templates). In VIE-VENT [25] both ideas are
combined: Courses of single quantitative measured parameters are abstracted
into qualitative course descriptions that are matched with well-known stan-
dards.

When we started building a system for course analysis and prediction of
the kidney function, we were confronted with a domain where the domain
theory is extremely incomplete and no standards were known. So we had to
design our own method. For temporal courses, our general idea is to search
with CBR retrieval methods [8, 9] for former patients with similar courses
and to consider their course continuations as possible prognosis for a query
patient.

To make CBR applicable an appropriate case representation has to be
found. Usually, a list of attribute-value pairs that contains all case attributes
is sufficient. However, for multiparametric time courses the choice of suitable
attributes is not obvious. Firstly, not complete courses (they may differ in
their length, they may go much further back than it is relevant for the current
situation), but only patients’ current developments of a certain length should
be compared with parts of former patients’ courses, which should have about
the same length. Secondly, each course consists of a sequence of measured or
calculated parameter sets. It cannot be assumed that all parameters are of
the same importance, especially the more recent parameter sets are usually
more important than older ones.

And even the importance of parameters within the same set may extremely
differ. One idea is to look for appropriate weightings for the parameters. How-
ever, hundreds of parameters might be involved, much domain knowledge may
be required, and weights can be very subjective. Furthermore, it seems to be

294 R. Schmidt et al.

impossible to visualise a sequence of parameter sets in such a way that a user
can rapidly discern the important characteristics.

In the kidney function domain, we chose a different alternative. With the
help of medical experts we defined kidney function states based on the most
important parameters and subsequently we abstracted each daily parameter
set into such a function state. So, courses are represented as a sequence of
function states.

10.3.1 Prognostic Model

We propose a prognostic model for multiparametric time courses that com-
bines two abstraction steps with CBR (Fig. 10.4).

The first step is a state abstraction from a set of parameter values to a
single function state. Therefore few requirements have to be met. Meaningful
states to describe the parameter sets and a hierarchy of these states must
exist. Furthermore, knowledge to define the states must be available. These
definitions may consist of obligatory or optional conditions on the parameter
values. Of course, all obligatory conditions should be met, while for the op-
tional ones some alternatives exist how to determine the appropriate state.
One simple idea is to count the met conditions. Additionally, the quality of
meeting graduated conditions may be considered (e.g. fuzzy methods may be
applied).

The second abstraction means to describe a course of states. An often-
realised idea is to use different trend descriptions for different periods of time,
e.g. short-term or long-term trend descriptions etc. (e.g. [25]).

Measured and Calculated Parameters

Course of Kidney Function States

Trend Descriptions

Similar Courses serve as Prognoses

State Abstraction

Time Abstraction

CBR - Retrieval

Fig. 10.4. Prognostic model for time course

10 Prototypes and Case-Based Reasoning for Medical Applications 295

The lengths of each trend description can be fixed or they may depend on
concrete values (e.g. successive equivalent states may be concatenated).

However the trend descriptions may be defined, they can be expressed
by four parameters: the length, the first and last state, and an assessment.
The lengths and the assessments of the descriptions can vary with domain-
dependent demands, while the state definitions and their hierarchy are domain
dependent anyway.

The third step means CBR retrieval. Since especially for large case bases a
sequential search for similar cases is too time consuming, a few nonsequential
retrieval algorithms have been developed in the CBR community. Most of the
retrieval algorithms can handle various sorts of attributes, but usually they
only work well for those sorts of attributes or problems they have been devel-
oped for. So, the choice of the retrieval algorithm should mainly depend on
the sort of values of case attributes and sometimes additionally on application
characteristics.

The question arises: Of which sort are the four parameters that describe a
trend? The states are obviously nominal valued ordered according to their
hierarchy. The assessments should have ordered nominal values too, e.g.
steady, decreasing etc. Only the lengths should have numeric values. If the time
points of the parameter measurements are few integers, they can be treated as
ordered nominal values. The proposed retrieval algorithms for ordered nominal
valued attributes are CBR-Retrieval-Nets [26], which are based on Spreading
Activation [28]. So, if all four parameters have ordered nominal values, the
choice of the retrieval algorithm should obviously be CBR-Retrieval-Nets.

However, we made some assumptions that may not necessarily be met
in every domain. For example, the lengths may not be transformable into
nominal values, the trend assessments may not be just simple nominal values,
but more sophisticated descriptions, and there are of course alternatives to
describe trends, e.g. even a computed real value might somehow express a
trend.

10.3.2 Kidney Function Courses

Up to 60% of the body mass of an adult person consists of water. The elec-
trolytes dissolved in body water are of great importance for an adequate cell
function. The human body tends to balance the fluid and electrolyte situation.
But intensive care patients are often no longer able to maintain adequate fluid
and electrolyte balances themselves due to impaired organ functions, e.g. renal
failure, or medical treatment, e.g. parenteral nutrition of mechanically venti-
lated patients. Therefore physicians need objective criteria for the monitoring
of fluid and electrolyte balances and for choosing therapeutic interventions as
necessary.

At our ICU, physicians daily get a printed renal report from the moni-
toring system NIMON [29] which consists of 13 measured and 33 calculated
parameters of those patients where renal function monitoring is applied. For

296 R. Schmidt et al.

example, the urine osmolality and the plasma osmolality are measured pa-
rameters that are used to calculate the osmolar clearance and the osmolar
excretion. The interpretation of all reported parameters is quite complex and
needs special knowledge of the renal physiology.

The aim of our knowledge-based system ICONS is to give an automatic
interpretation of the renal state to elicit impairments of the kidney function
on time and to give early warnings against forthcoming kidney failures. That
means, we need a time course analysis of many parameters without any well-
defined standards.

However, in the domain of fluid and electrolyte balance, neither a pro-
totypical approach in ICU settings is known nor exists complete knowledge
about the kidney function. Especially, knowledge about the behaviour of the
various parameters on time is yet incomplete. So, we combined the idea of
RÉSUMÉ [23] to abstract many parameters into one single parameter with
the idea of Haimowitz and Kohane [24] to compare many parameters of cur-
rent courses with well-known standards. Since well-known standards were not
available, we used former similar cases instead.

The method in ICONS corresponds to the general method proposed above
and shown in Fig. 10.4.

State Abstraction

For the data abstraction we use states of the renal function, which determine
states of increasing severity beginning with a normal renal function and ending
with a renal failure. Based on the kidney function states (e.g. in Fig. 10.5 a
reduced kidney function), characterised by obligatory and optional conditions
for selected renal parameters, we first check the obligatory conditions. For
each state that satisfies the obligatory conditions we calculate a similarity

Reduced Kidney Function

Obligatory Condtion: c_kreat40 - 80

Optional Conditions:

Retention Rates: p_kreat_se <2
p_urea_se < 150

Tubular Function: u_osmol320 – 600
u_p_osmol 1.1–1.8
u_kreat 10 – 40
u_p_kreat 20–50

Urine Volume: urine volume 0.7–3.0
osmol_ex 800–3000

Fig. 10.5. Definition of the reduced kidney function state. Abbreviations: c, clear-
ance; p, plasma; u, urine; kreat, kreatinin; osmol, osmolality; se, serum; ex, excretion

10 Prototypes and Case-Based Reasoning for Medical Applications 297

value concerning the optional conditions. We use a variation of Tversky’s [20]
measure of dissimilarity between concepts. Only if two or more states are
under consideration, ICONS presents them to the user sorted according to
their similarity values together with information about the satisfied and not
satisfied optional conditions.

The user can accept or reject a presented state. When a suggested state has
been rejected, ICONS selects another one. Finally, we determine the central
state of occasionally more than one states the user has accepted. This central
state is the closest one towards a kidney failure. Our intention is to find the
state indicating the most profound impairment of the kidney function.

Temporal Abstraction

First, we have fixed five assessment definitions for the transition of the kidney
function state of one day to the state of the, respectively, next day. These
assessment definitions are related to the grade of renal impairment:

steady. both states have the same severity value.
increasing. exactly one severity step in the direction towards a normal func-

tion.
sharply increasing. at least two severity steps in the direction towards a

normal function.
decreasing. exactly one severity step in the direction towards a kidney failure.
sharply decreasing. at least two severity steps in the direction towards a

kidney failure.

These assessment definitions are used to determine the state transitions from
one qualitative value to another. Based on these state transitions, we gener-
ate three trend descriptions. Two trend descriptions especially consider the
current state transitions.

short-term trend:= current state transition; Abbreviation: T1
medium-term trend:= looks recursively back from the current

state transition to the one before and
unites them if they are both of the same
direction or one of them has a “steady”
assessment;
Abbreviation: T2

long-term trend:= characterises the considered course of at
most seven days; Abbreviation: T3

For the long-term trend description we additionally introduced four new
assessment definitions. If none of the five former assessments fits the com-
plete considered course, we attempt to fit one of these four definitions in the
following order:

alternating. at least two up and two down transitions and all local minima
are equal.

oscillating. at least two up and two down transitions.

298 R. Schmidt et al.

fluctuating. the distance of the highest to the lowest severity state value is
greater than 1.

nearly steady. the distance of the highest to the lowest severity state value
equals one.

Only if there are several courses with the same trend descriptions, we use
a minor fourth trend description T4 to find the most similar among them. We
assess the considered course by adding up the state transition values inversely
weighted by the distances to the current day. Together with the current kid-
ney function state these four trend descriptions form a course depiction, that
abstracts the sequence of the kidney function states.

Looking back from a time point t, these four trend descriptions form a
pattern of the immediate course history of the kidney function considering
qualitative and quantitative assessments.

Why These Four Trend Descriptions?

There are domain specific reasons for defining the short-, medium-, and long-
term trend descriptions T1, T2, and T3. If physicians evaluate courses of the
kidney function, they consider at most one week prior to the current date.
Earlier renal function states are irrelevant for the current situation of a pa-
tient. Most relevant information is derived from the current function state, the
current development and sometimes a current development within a slightly
longer time period. That means, very long-term trends are of no interest in
this domain. In fact, very often only the current state transition or short
continuous developments are crucial.

The short-term trend description T1 expresses the current development.
For longer time periods, we have defined the medium- and long-term trend
descriptions T2 and T3, because there are two different phenomena to discover
and for each, a special technique is needed. T2 can be used for detecting
a continuous trend independent of its length, because equal or steady state
transitions are united recursively beginning with the current one. As the long-
term trend description T3 describes a well-defined time period, it is especially
useful for detecting fluctuating trends.

Since every abstraction loses some specific information, information about
the daily kidney function states is lost in the second abstraction step. The
course description contains only information about the current and the start
states of the three trend descriptions. The intermediate states are abstracted
into trend description assessments.

Example. The following kidney function states may be observed in this
temporal sequence (Fig. 10.6):

selective tubular damage, reduced kidney function, reduced kidney function,
selective tubular damage, reduced kidney function, reduced kidney function,
sharply reduced kidney function

10 Prototypes and Case-Based Reasoning for Medical Applications 299

Current Case

.......

..............

Presentation: Sorted According Activation Values

Projectionpart - n.......

Search for a
Prototype

Spreading
Activation

Sufficient
Similarity

Fine Selection

Similar Course - n

Projectionpart - 1 Projectionpart - 9

Similar Course - 1 Similar Course - 9

Fig. 10.6. Comparative presentation of a current and a similar course

So we get these six state transitions:
decreasing, steady, increasing, decreasing, steady, decreasing
with these trend descriptions:

current state: sharply reduced kidney function
T1: decreasing, reduced kidney function, one transition
T2: decreasing, selective tubular damage, three transitions
T3: fluctuating, selective tubular damage, six transitions
T4: 1.23

In this example, the short-term trend description T1 assesses the current state
transition as “decreasing” from a “reduced kidney function” to a “sharply
reduced kidney function.” Since the medium-term trend description T2 accu-
mulates steady state transitions, T2 determines a “decrease” in the last four
days from a “selective tubular damage” to a “sharply reduced kidney func-
tion.” The long-term trend description T3 assesses the entire course of seven
days as “fluctuating,” because there is only one increasing state transition
and the difference between the severity values of a “selective tubular damage”
and a “sharply reduced kidney function” equals two.

300 R. Schmidt et al.

Retrieval

We use the parameters of the four trend descriptions and the current kidney
function state to search for similar courses. As the aim is to develop an early
warning system, we need a prognosis. For this reason and to avoid a sequential
runtime search along the entire cases, we store a course of the previous seven
days and a maximal projection of three days for each day a patient spent on
the intensive care unit.

Since there are many different possible continuations for the same previous
course, it is necessary to search for similar courses and for different projections.
Therefore, we divided the search space into nine parts corresponding to the
possible continuation directions. Each direction forms an own part of the
search space. During the retrieval these parts are searched separately and
each part may provide at most one similar case. The similar cases of these
parts together are presented in the order of their computed similarity values.

Before the main retrieval, we search for a prototypical case (see Sect. 10.3.3)
that matches most of the trend descriptions. Below this prototype the main
retrieval starts (Fig. 10.7). It consists of two steps for each part. First we
search with an activation algorithm concerning qualitative features.

Subsequently, we check the retrieved cases with a similarity criterion [27]
that looks for sufficient similarity, because even the most similar course may
differ from the current one significantly. This may happen at the beginning of
the use of ICONS, when there are only a few cases known to ICONS, or when
the query course is rather exceptional.

If two or more courses are selected in the same projection part, we use
the sequential similarity measure of TSCALE [30], which goes back to Tver-
sky [20], concerning the quantitative features in a second step.

Continuation of the example. For the example above, the following similar
course (Fig. 10.6) with these transitions is retrieved:

decreasing, increasing, decreasing, steady, steady, decreasing
with these trend descriptions:

current state: sharply reduced kidney function
T1: decreasing, reduced kidney function, one transition
T2: decreasing, selective tubular damage, four transitions
T3: fluctuating, selective tubular damage, six transitions
T4: 1.17

In the lower part of each course the (abbreviated) kidney function states
are depicted. The upper part of each course shows the deduced trend descrip-
tions.

T1 describes a “decrease” from a “reduced kidney function” and T2 de-
scribes a “decrease” from a “selective tubular damage” to a “sharply reduced
kidney function” in the last five days. T3 assesses the considered course as
“fluctuating.” For T4, a slightly lower value in comparison to the current

10 Prototypes and Case-Based Reasoning for Medical Applications 301

Fig. 10.7. The retrieval procedure

course has been calculated, because the change from a “selective tubular dam-
age” to a “reduced kidney function” state occurs earlier.

After another day with a “sharply reduced kidney function” the patient
belonging to the similar course had a kidney failure. The physician may notice
this as a warning and it is up to him to interpret it.

This former course was retrieved, because especially the features with the
highest weights (the current state and all assessments) equal the features of
the query course. As there is no significant difference between both courses,
there is no reason for the sufficient similarity criterion to reject this similar
course.

10.3.3 Learning a Tree of Prototypes

Prognosis of multiparametric courses of the kidney function for ICU patients is
a domain without a medical theory. Moreover, we cannot expect such a theory

302 R. Schmidt et al.

Fig. 10.8. Prototype architecture for the trend descriptions T1, T2, and T3

to be formulated in the near future. So we attempt to learn prototypical course
pattern. Therefore, knowledge on this domain is stored as a tree of generalised
cases (prototypes) with three levels and a root node (Fig. 10.8).

Except for the root, where all not yet clustered courses are stored, each
level corresponds to one of the trend descriptions T1, T2, or T3. As soon as
enough courses that share another trend description are stored at a prototype,
a new prototype with this trend is created. At a prototype at level 1, we cluster
courses that share T1, at level 2, courses that share T1 and T2 and at level
3, courses that share all three trend descriptions T3.

We can do this, because regarding their importance, the short-, medium-,
and long-term trend descriptions T1, T2, and T3 refer to hierarchically related
time periods. T1 is more important than T2 and T3, and so forth.

We start the retrieval with a search for a prototype that has most of the
trend descriptions in common with the query course. The search begins at
the root node with a check for a prototype with the same short-term trend
description T1. If such a prototype can be found, the search goes on below this
prototype for a prototype that has the same trend descriptions T1 and T2,
and so forth. If no prototype with a further trend in common can be found,
we search for a course at the last accepted prototype.

If no prototype exists that has the same T1 as the query course, we search
at the root node, where links to all courses in the case base exist.

Continuation of the example. In the example above, we can create just
one prototype at level 1, because at the second level the query course and the

10 Prototypes and Case-Based Reasoning for Medical Applications 303

similar one, called “similar-1” differ in their length. Although the long-term
trend description T3 is equal for both courses, we cannot create a prototype
at level 3 because of the strictly hierarchical organisation of the prototype
tree. However, learning a prototypical description “fluctuating in seven days
from a selective tubular damage to sharply reduced kidney function” which
does not consider any more similarities or deviations within this time period
would be too general and therefore too impracticable.

Assuming we find another similar course, called “similar-2”, for the current
case of the example above with the following kidney function states:

reduced kidney function, reduced kidney function, selective tubular damage,
selective tubular damage, reduced kidney function, reduced kidney function,
sharply reduced kidney function with these trend descriptions:

current state: sharply reduced kidney function
T1: decreasing, reduced kidney function, one transition
T2: decreasing, selective tubular damage, four transitions
T3: oscillating, reduced kidney function, six transitions
T4: 1.33

The current query course, “similar-1”, and “similar-2” will be clustered at
level 1 to prototype T1-a, defined by T1 as “decreasing, reduced kidney func-
tion, one transition”. Afterwards at level 2 the current course and “similar-2”
will be clustered to a prototype T1-a + T2-a, defined by T1 as “decreasing,
reduced kidney function, one transition” plus by T2 as “decreasing, selective
tubular damage, four transitions.” The attempt to create another prototype
at level 3 fails, because the trend descriptions T3 have different assessments
and different start states. The result, a tree of prototypes learned from the
three courses is shown in Fig. 10.9.

10.3.4 Retrieval Experiments

Since we wished to be convinced that CBR-Retrieval-Nets really are the appro-
priate retrieval algorithm for our prognostic model, we compared them with
an indexing algorithm, which had been developed for nonordered nominal val-
ues [31]. The results of this comparison are as follows: The indexing algorithm
works faster (Table 10.4), but provides worse results, because stored cases get
only activation values for attribute values that exactly match the query case
values. The CBR-Retrieval-Nets additionally send smaller activation values
to cases with attribute values similar to query case values. Hence, courses can
be determined to be similar which have attribute values that slightly deviate
from the query case values.

Since one idea of using prototypes is to speed up the retrieval by structur-
ing the case base, we additionally compared both algorithms with and without
using prototypes. To decide when a prototype should be generated, a thresh-
old parameter is required. We set this parameter to the value of 2, which

304 R. Schmidt et al.

Prototype
T1-a

Prototype
T1-a
 + T2-a

Root

Courses:

- similar-1
- similar-2
- current

Courses:

- similar-1
- similar-2
- current

Courses:

- similar-2
- current

Fig. 10.9. Generated prototype tree from three example courses

Table 10.4. Retrieval times (in seconds) for the retrieval algorithms “CBR-
Retrieval-Nets” and “indexing” with and without using prototypes

Courses Retrieval nets Retrieval nets,
Use of prototypes

Indexing Indexing, use
of prototypes

No. 1 0.163 0.163 0.155 0.155
No. 2 0.284 0.281 0.214 0.218
No. 3 0.316 0.366 0.165 0.213
No. 4 0.455 0.513 0.404 0.452
No. 5 0.514 0.544 0.428 0.506
No. 6 1.328 0.759 0.600 0.717
No. 7 0.649 0.401 0.246 0.347
No. 8 0.685 0.642 0.376 0.469
No. 9 0.550 0.617 0.444 0.551
No. 10 0.386 0.476 0.257 0.394
No. 11 0.537 0.553 0.234 0.367
No. 12 1.396 0.870 0.743 0.890
No. 13 0.577 0.607 0.244 0.332
No. 14 0.518 0.425 0.340 0.494

means, that already two cases with the same trend description are sufficient
to generate a prototype. Hence many prototypes were generated.

At first glance the results (Table 10.4) are not very encouraging for using
prototypes. However, for the CBR-Retrieval-Nets the time differences between

10 Prototypes and Case-Based Reasoning for Medical Applications 305

with and without prototypes are very small except for those two courses where
the retrieval worked noticeably slower (No.6 and No.12): Here, using proto-
types reduces the retrieval by at least a third.

However, so far the determination of the appropriate prototype occurred
by sequentially matching the trend description parameters. So, most of the
time gained by reducing the number of cases worth to consider is used up
to determine the appropriate prototype. This indicates that not only the re-
trieval algorithm for cases, but also the determination of appropriate proto-
types should be organised in a nonsequential way.

10.4 Antibiotics Therapy Advice

We developed an antibiotics therapy advice system called ICONS for patients
in an intensive care unit who have caught an infection as additional compli-
cation. To speed up the process of finding suitable therapy recommendations,
we applied CBR techniques. As information about antibiotics therapy changes
in time, new cases are incrementally incorporated into the case base and out-
dated ones are updated or erased.

10.4.1 Antibiotics Therapy

Severe bacterial infections are still a life-threatening complication in intensive
care medicine, correlating with a high mortality [32]. Identification of bacter-
ial pathogens is often difficult. It usually requires at least 24 hours to identify
the pathogen that is responsible for an infection and at least another 24 hours
to find out which antibiotics have therapeutic effects against the identified
pathogen. In order not to endanger the patient, physicians sometimes have to
start an antimicrobial therapy before the responsible pathogen and its sensi-
tivities are determined. This sort of antibiotic therapy is called “calculated,”
in contrast to a “selective” therapy, which is used when microbiological re-
sults are already available. For an adequate calculated antibiotic therapy, it
is essential to access information about the expected pathogen spectrum and
its expected susceptibility, existing contraindications, and the side effects of
antibiotics.

The main task of our adviser is to present suitable calculated antibiotics
therapy advice for intensive care patients who have caught a bacterial infec-
tion as an additional complication. Since, for such critical patients, physicians
cannot wait for the laboratory results, we use an expected pathogen spec-
trum based on medical background knowledge. Each recommended antibi-
otics therapy should completely cover this spectrum. Furthermore, as advice
is needed very quickly we speed up the process of computing recommended
antibiotic therapies by using CBR methods (the right path in Fig. 10.10). This
means that we search for a previous similar patient and transfer the therapies

306 R. Schmidt et al.

Expected Pathogen Spectrum

First List of Antibiotics

Second List of Antibiotics

Third List of Antibiotics

Combination Rules
and Resistences

Therapy Advice

Adaptation

Dosage

Group of Patients +
Affected Organ

Sensivity Relation

Constraints:
Sphere of Activity
Contraindications

Retrieval of a Similar Case

Physician’s Decision

Current Case

Results of the
Laboratory

Antibiogram
Identification of
the Pathogens

Knowledge Base

Fig. 10.10. Program flow in ICONS

suggested for his situation to the current patient. These previous therapies
are then adapted to take account of any differences between the situations of
the previous and current patients.

10.4.2 Strategy for Selecting Recommended Antibiotic Therapies

As ICONS is not a diagnostic system, we do not attempt to deduce evi-
dence for diagnoses based on symptoms, frequencies, or probabilities, but in-
stead pursue a strategy that can be characterised as follows: find all possible
solutions, and subsequently reduce them using the patient’s contraindications

10 Prototypes and Case-Based Reasoning for Medical Applications 307

and the requirement to completely cover the calculated pathogen spectrum
(establish-refine strategy).

Firstly, we distinguish between different groups of patients (infection ac-
quired in or outside the ward, respectively, the hospital; immunocompromised
patients). An initial list of antibiotics is generated by a susceptibility relation,
which for each group of pathogens provides all antibiotics that usually have
therapeutic effects. This list contains all antibiotics that cover at least a part
of the potential pathogen spectrum. We obtain a second list of antibiotics by
reducing the first one through applying two constraints: the patient’s con-
traindications and the desired sphere of activity. Using the antibiotics on this
second list, we try to find antibiotics that cover the whole pathogen spectrum
individually.

Except for some community-acquired infections, monotherapies have to
be combined with antibiotics that have synergistic or additive effects. If no
adequate single therapy can be found, we use combination rules to generate
combinations of antibiotics. Each possible combination must be tested for the
ability to cover the expected spectrum completely.

10.4.3 Case-Based Reasoning

In this application, the main argument for using CBR methods is to speed up
the process of finding adequate therapies. We shorten the strategy described
above for selecting recommended antibiotic therapies by searching for a similar
case, retrieving its suggested therapies, and by adapting them according to
the contraindications of the current patient.

The retrieval consists of three steps. Firstly we select the part of the case
base in which all cases share the following two attributes with the current
patient: the group of patients, and the infected organ system. This means a
selection of the appropriate prototype tree. Subsequently, we apply the tree-
hash retrieval algorithm of Stottler, Henke, and King [33] for nominal valued
contraindications and the similarity measure of Tversky [20] for the few inte-
ger valued contraindications. Furthermore, we use an adaptability criterion,
because not every case is adaptable [34]. The attributes used for the retrieval
are the contraindications, which work as constraints on the set of possible
antibiotics. It is therefore obvious that we should use only former cases whose
contraindications are shared by the current patient. To guarantee this condi-
tion the adaptability criterion has to be checked during retrieval.

In ICONS three different sorts of adaptations occur: A CBR adaptation
to obtain sets of calculated advisable therapies for current patients, an adap-
tation of chosen therapies according to laboratory findings, and a periodical
update of laboratory information (resistance situation, frequently observed
pathogens).

Each contraindication restricts the set of advisable therapies. During the
retrieval we require that the retrieved case does not have any additional
contraindications besides those of the current case. Otherwise the solution

308 R. Schmidt et al.

set for the current case would be inadmissibly reduced by the additional con-
traindications of a previous case.

Because of this criterion, the adaptation of a previous similar case is rather
simple. It is simply a matter of transferring the set of advisable therapies and
if necessary of reducing this set according to the additional contraindications
of the current case.

10.4.4 Prototypes

Since in an incrementally working system the number of cases increases con-
tinuously, storing each case would slow down the retrieval time and exceed
any space limitations. We therefore decided to structure the case base by pro-
totypes and to store only those cases that differ significantly from their proto-
type. Like for diagnosis (see Sect. 10.2), we create prototypes that include the
most frequent features of the corresponding cases. In diagnostic applications,
prototypes correspond to typical diseases or diagnoses. So, for antibiotic ther-
apies, prototypes are expected to correspond to typical antibiotic treatments
associated with typical clinical features of patients. However, as the attributes
are contraindications that are responsible not for the generation, but for the
restriction of the solution set, this is only partly true.

We investigated the growth of a hierarchical prototype structure built
up from a randomly ordered stream of cases. The results are presented and
discussed in Sect. 10.4.5.

Selection of a Prototype Tree

In ICONS there is not just one prototype tree, but a forest of trees, which
are all independent from each other. A specific tree can be generated for each
affected organ system combined with each group of patients. So, for nearly 20
organ systems and five patient groups there are nearly 100 possible prototype
trees. We generate them dynamically only when required. For example a tree
for “community-acquired kidney infections” will be generated as soon as the
first data input occurs from a patient who has a kidney infection which he
has acquired outside the hospital.

Since all cases within the same prototype tree belong to the same group
of patients, and the same organ system is affected, it follows that the same
expected pathogen spectrum deduced from background knowledge has to be
covered. Cases within the same prototype tree are only discriminated from
each other by their contraindications. These are allergies against specific an-
tibiotics, reduced organ functions (kidney and liver), specific diagnoses (e.g.
CNS disease), special blood diseases, pregnancy, and the patient’s age.

Generating Prototypes

The aim of our concept of prototypical cases is to structure the case base, to
keep the prototypes always up to date, and to erase redundant cases. As the

10 Prototypes and Case-Based Reasoning for Medical Applications 309

prototypes are generated incrementally and as they should always contain the
typical features of their cases, we use two threshold parameters:

(1) The parameter “minimum frequency” determines how (relatively) often a
contraindication has to occur in the set of cases to be incorporated into
the prototype.

(2) The parameter “number of cases” determines the required number of cases
that are necessary to fill a prototype or to create an alternative prototype.
The lower this threshold the more prototypes are created and the fewer
cases are stored.

First, all cases are stored below the prototype they belong to. If the threshold
“number of cases” is reached after storing a new case below a prototype, the
prototype will be “filled”. At this point, every contraindication that occurs in
the prototype’s cases at least as often as the “minimum frequency” thresh-
old will be included into the prototype. Subsequently, the “filled” prototype
can be treated like a case. The same holds for prototypes as for cases: Each
contraindication restricts the set of advisable therapies. The contraindications
of a prototype are those that occur most often within its cases. So from the
viewpoint of frequency they are the typical ones. Those cases that have no
additional contraindications in comparison with their prototypes are erased.

When new cases are added later on to an already filled prototype, the ob-
served frequencies may change and consequently the contraindications of the
prototype may have to be recomputed. If the contraindications of a prototype
change, the suggested antibiotic therapies have to be recomputed, too. In ad-
dition, all cases must be inspected again to determine whether they need to
be stored.

We create an “alternative” prototype below an already existing prototype
if for the latter enough cases exist (which means the threshold “number of
cases” is reached) that have at least one contraindication in common, which
the already existing prototype does not include. We generate the alterna-
tive prototype using those cases that share at least one contraindication not
included in the existing prototype. We place this new prototype in the hier-
archy directly below the already existing prototype. Alternative prototypes
differ from their superior prototypes by their contraindications and therefore
also by their sets of advisable antibiotic therapies.

10.4.5 Experimental Results with Prototype Generation Strategies

The general idea of our concept is to keep the prototypes always up to date.
They should contain the typical features of their cases. We have tested two
contrasting policies for deleting redundant cases and a strategy of keeping
all cases. Our evaluation had two aims. First, we wished to find a strategy
that best fits the two contrasting aims of finding many adaptable cases or
prototypes and requiring little memory. Secondly, we wished to find good
settings for the threshold parameters.

310 R. Schmidt et al.

Normally, cases without additional features in comparison to their pro-
totype are redundant, because they do not contain any additional informa-
tion [31]. However, in our application the attributes are contraindications,
which are not used to generate a solution, but to restrict a solution set. This
means they are applied as constraints. A case with fewer contraindications
than its prototype has a greater chance of being adaptable to a query case,
because only a case without additional contraindications in comparison to the
query case is adaptable.

We have therefore tested two opposing strategies: firstly, deleting cases
without additional attributes, and secondly, deleting only cases with addi-
tional attributes. Additionally, we have tested a strategy without deleting
any cases at all.

The memory size without any stored cases is about 2.248 MB for all three
strategies. The argument about the memory might seem to be unreasonable,
because the differences between the strategies are only about 40 KB for 75
test cases. However, we performed our tests in just one of about 100 possible
parallel sets. 75 cases in each set might lead to differences of up to 4 MB.
This leads to the question of whether our system should require about 12 or
about 16 MB memory. Certainly, problems should not occur until the number
of cases per set exceeds 75.

Without generating any prototypes at all, for 51 of the 75 test cases a
similar adaptable case can be found. As prototypes are treated like cases, this
number can be exceeded.

Strategy A: Deleting Cases Without Additional Attributes

We have tested the strategies with 75 cases, which were incrementally incor-
porated into the system. For strategy A, we varied the threshold parameter
“number of cases,” which indicates how many cases are necessary to generate
a prototype. The second threshold parameter “relative frequency” was set to
33%, which means that a contraindication is incorporated into a prototype if
at least a third of its cases have this contraindication.

The results (Table 10.5) can be summarised as follows: The more cases
necessary to generate a prototype (this is achieved by increasing the value
“number of cases”) the higher the number of stored cases and the higher the
number of retrieved adaptable cases. After a while there is only little to be
gained by increasing this threshold parameter any further (fourth setting). A
surprise is the big increase in the number of retrieved adaptable cases in the
second setting compared with the first one. This cannot be simply explained
by the four additionally stored cases, but by the following two phenomena.
Firstly, those cases that have no additional information (contraindications) in
comparison to their prototype are deleted. This means that the deleted cases
would be more likely to be adaptable to future queries.

Secondly, under the second setting the prototypes are generated later and
consequently cases are deleted later as well.

10 Prototypes and Case-Based Reasoning for Medical Applications 311

Table 10.5. Test results for strategy A

1. Setting
number of
cases = 2

2. Setting
number of
cases = 3

3. Setting
number of
cases = 4

4. Setting
number of
cases = 5

memory size in Mbytes in Mbytes in Mbytes in Mbytes
after 75 cases 2.392 2.390 2.401 2.402
number of prototypes 9 7 8 8
number of stored cases 53 57 62 63
number of deleted cases 22 18 13 12
number of adaptations 12 26 31 31

Table 10.6. Test results for strategy B

1. Parameter setting:
relative frequency = 33 %

2. Parameter setting
relative frequency = 25 %

memory size
after 75 cases 2.373 MB 2.368 MB
number of generated
prototypes

9 6

number of stored cases 20 25
number of deleted cases 55 50
number of adaptations 14 14

One aim of using prototypes is the hope of reducing the memory size.
For strategy A this benefit does not occur, because the storage requirement
for prototypes is bigger than for cases. This is because prototypes contain
some additional information: The intersection of advisable therapies for their
cases (cases only contain additional specific therapy suggestions), observed
frequencies of contraindications of their cases, etc.

Strategy B: Deleting Cases with Additional Attributes

Our aim with strategy B was to keep in the case base those cases that have
a higher chance to be adaptable. These are cases with few contraindications.
We therefore adapted a strategy opposite to strategy A, namely deleting cases
with additional information (contraindications) to their prototype. As many
cases are deleted, we set the threshold parameter “number of cases” to the
value two. Here, we varied the second parameter “relative frequency,” which
determines the frequency with which contraindications have to be observed
among the cases to be incorporated into a prototype.

The difference between the results for the two settings for strategy B is
rather small (Table 10.6). With a smaller relative frequency (second setting)
more contraindications are incorporated into the prototypes. So, fewer stored
cases have additional contraindications in comparison to their prototypes and

312 R. Schmidt et al.

consequently fewer cases are deleted. Furthermore, fewer prototypes are gene-
rated, because the prototypes cover more cases. The memory size is nearly
the same and the number of retrieved adaptable cases is exactly the same for
both settings.

In comparison to strategy A, it is noticeable that about the same number
of prototypes have been generated, but much more cases have been deleted.
Though those cases which have a bigger chance to be adaptable remain in
the case base, the number of retrieved adaptable cases slightly increases in
comparison to the first setting of strategy A, but the number is not as high
as in the other settings of strategy A.

So, the strategy of keeping those cases that are easily adaptable results in
such a small case base that only few adaptable cases can be retrieved.

Strategy C: All Cases Remain in the Case Base

For strategy C no cases are deleted at all. We have evaluated the same thresh-
old parameter settings as for strategy A. It can be seen that many more adapt-
able cases can be retrieved in comparison to the corresponding settings of
strategy C, while the memory requirement increases only slightly (Table 10.7).

Since two cases are sufficient to generate a prototype in the first setting,
many prototypes are created and the memory requirement increases corre-
spondingly. It is a little surprising that fewer adaptable cases are retrieved,
but this is because a hierarchy with three levels of prototypes has been gen-
erated, and since the prototypes are treated as cases, the right prototype on
each level has to be determined to be the most similar case.

Really surprising is the big increase of retrieved adaptable cases in the
third setting. There are two possible explanations. Firstly, as the number
of generated prototypes decreases, the prototype hierarchy is simpler and
it is easier to find the appropriate case. Secondly, and probably the main
reason, the number of cases which are necessary to generate a prototype is
higher (= 4), so that more cases are considered when a generated prototype
is filled, and consequently fewer contraindications are incorporated into the
prototype. This means the prototypes themselves become more adaptable.

Table 10.7. Test results for strategy C

1. Setting
number of
cases = 2

2. Setting
number of
cases = 3

3. Setting
number of
cases = 4

4. Setting
number of
cases = 4

memory size in Mbytes in Mbytes in Mbytes in Mbytes
after 75 cases 2.439 2.426 2.421 2.419
number of prototypes 19 10 8 7
number of stored cases 75 75 75 75
number of deleted cases 0 0 0 0
number of adaptations 29 32 52 51

10 Prototypes and Case-Based Reasoning for Medical Applications 313

However, when the number of generated prototypes decreases, there are fewer
cases available to be used for adaptation (fourth setting).

Summary of the Evaluation Results for the Prototype Strategies

Keeping all cases in the case base increases the memory requirement, but
increases the number of retrieved adaptable cases dramatically. Considering
the number of retrieved adaptable cases, strategy A provides results that are
nearly as good as for strategy C, but the achieved reduction is rather small.
Keeping more adaptable cases (strategy B) results in a small case base, but
only few adaptable cases can be found.

Too many prototypes should be avoided, because a complex hierarchy
results in difficulties in finding the desired case. This means the threshold
parameter “number of cases” should not be set too low.

The most preferable setting is the third one of strategy C. If the mem-
ory limitations become a real problem, strategies that delete redundant cases
should be considered. Every stored case increases the memory requirement of
our system by approximately 1.7 KB. This might lead to performance prob-
lems for much bigger case bases, keeping in mind that our test set of 75 cases
covers just one out of a set of more than 80 medical areas.

The best settings, whether all cases are retained (strategy C) or cases
without additional information (strategy A) are deleted, are those where the
threshold parameter “number of cases” is set sufficiently high. It leads to more
retrieved adaptable cases.

10.5 ISOR

ISOR is a CBR system for long-term therapy support in the endocrine domain
[35]. It performs typical therapeutic tasks, such as computing initial therapies,
initial dose recommendations, and dose updates. Apart from these tasks ISOR
deals especially with situations where therapies become ineffective. Causes for
inefficacy have to be found and better therapy recommendations should be
computed. In addition to the typical CBR knowledge, namely former already
solved cases, ISOR uses further knowledge forms, especially medical histories
of query patients themselves and prototypical cases (prototypes).

ISOR uses prototypes in two ways, namely in form of guidelines for dose
calculations and as generalised solutions for therapy inefficacy.

10.5.1 Computing Initial Doses: Guidelines as Prototypes

For hypothyroidism only one drug exists, namely Levothyroxine. The problem
is to calculate effective initial doses (Fig. 10.11). Firstly, a couple of prototypes
exist. These are recommendations that have been defined by expert commis-
sions [36]. Though we are not sure whether they are officially accepted, we call

314 R. Schmidt et al.

Fig. 10.11. Determination of an initial Levothyroxine dose

them guidelines. The assignment of a patient to a fitting guideline is obvious
because of the way the guidelines have been defined. With the help of these
guidelines a range for good doses can be calculated.

To compute a dose with best expected impact, we retrieve similar cases
whose initial doses are within the calculated ranges. Since cases are described
by few attributes and since our case base is rather small, we use Tversky’s
sequential measure of dissimilarity [20]. On the basis of those retrieved cases
that had best therapy results an average initial therapy is calculated. Best
therapy results can be determined by values of a blood test after two weeks of
treatment with the initial dose. The opposite idea to consider cases with bad
therapy results does not work here, because bad results can also be caused by
various other reasons.

10.5.2 Generalised Solutions for Therapy Inefficacy

When long-term therapies become inefficient, ISOR searches for reasons and
attempts to find better therapies. Solutions are reasons for inefficacy. Gen-
eral solutions like “irregular intake” or “changes of hormonal situation” are
used as prototypes on a first level. On a second level these prototypes are
more specific. All prototypes are described by three main attributes (problem

10 Prototypes and Case-Based Reasoning for Medical Applications 315

code, diagnosis, and therapy) and some additional attributes like age, sex,
prescribed drug etc. All prototypes have been defined by medical experts.

At first the retrieval searches among the prototypes on the top level and
checks which solution might be probable for the query patient. Subsequently
prototypes on lower level are considered and finally the single cases, which
belong to the retrieved prototype.

10.6 Summary: The Role of Prototypes

The presented systems have one thing in common that distinguishes them
from most CBR systems: They use prototypes as a form of knowledge repre-
sentation that fills the gap between specific cases and general rules. The main
purpose of such generalised knowledge is to structure the case base, to guide
the retrieval process, and sometimes to decrease the amount of storage by
erasing redundant cases.

In domains with rather weak domain theories another advantage of case-
oriented techniques is their ability to learn from cases. Only gathering new
cases may improve the system’s ability to find suitable similar cases for current
problems, but it does not elicit the intrinsic knowledge of the stored cases. To
learn the knowledge contained in cases a generalisation process is necessary. In
our early warning system concerning the kidney function, apart from guiding
the retrieval and structuring the case base prototypes mainly serve to learn
typical course pattern, because just the relevant kidney parameters are known
but no knowledge about their temporal course behaviour exists.

For diagnosis of dysmophic syndromes prototypes correspond directly to
the physician’s sense of prototypes. As comparisons with single cases are un-
able to identify typical features, in this application the use of prototypes is
not only sensible, but even necessary.

In ISOR, the prototypes for dose calculation are guidelines and the pro-
totypes for therapy inefficacy are similar to those for diagnosis of dysmorphic
syndromes. The main difference is that in ISOR all prototypes are defined by
medical experts.

Summarising our experiences we would like to make quite clear that the
role of prototypes depends on the application and the task. For medical di-
agnoses they even seem to be necessary because of their correspondence to
medical prototypes which guide the physicians diagnoses. In domains with
very poor domain theories they may help to learn general knowledge.

References

1. Strube G, Janetzko D (1990) Episodisches Wissen und fallbasiertes Schließen:
Aufgaben für die Wissensdiagnostik und die Wissenspsychologie. Schweizerische
Zeitschrift für Psychologie 49 (4): 211–221

316 R. Schmidt et al.

2. Swanson DB, Feltovich PJ, Johnson PE (1977) Psychological Analysis of Physi-
cian Expertise: Implications for Design of Decision Support Systems. In: Shires
DB, Wolf H (eds.): Proceedings of MEDINFO 77, North-Holland, Amsterdam,
pp 161–164

3. Schank RC (1982) Dynamic Memory: a theory of learning in computer and
people. Cambridge University Press, New York

4. Bareiss R (1989) Exemplar-based knowledge acquisition. Academic Press,
San Diego

5. Maximini K., Maximini R., Bergmann R.(2003) An Investigation of Generalized
Cases. In: Asley, K.D., Bridge, D.G. (eds.): Proc ICCBR 2003, Springer, Berlin
Heidelberg New York, pp 261–275

6. Bellazzi R, Montani S, Portinale l (1998) Retrieval in a prototype-based case
library: a case study in diabetes therapy revision. In: Smyth B, Cunningham P
(eds) Proc European Workshop on Case-Based Reasoning. Springer-Verlag,
Berlin Heidelberg New York, pp 64–75

7. Bichindaritz I (1995) Case-based reasoning adaptive to several cognitive tasks.
In: Aamodt A, Veloso M (eds) Case-Based Reasoning Research and Develop-
ment, Proceedings International Conference on Case-Based Reasoning, ICCBR-
95, Springer-Verlag, Berlin Heidelberg New York, pp 391–400

8. Turner R (1988) Organizing and Using Schematic Knowledge for Medical Diag-
nosis. In: Kolodner J (ed) Proceedings of a Workshop on Case-Based Reasoning,
Florida, pp 435–446

9. Perner P (2006): A Comparative Study of Catalogue-Based Classification. In:
Roth-Berghofer TR et al (eds.): Proc ECCBR, Springer Berlin 301–308

10. Clancey WJ (1985) Heuristic Classification. Artificial Intelligence 27: 289–350
11. Selz O (1913) Über die Gesetze des geordneten Denkverlaufs. Stuttgart
12. Perner P (2004) Are case-based reasoning and dissimilarity-based classification

two sides of the same coin?, Journal Engineering Applications of Artificial In-
telligence, 15/2: 205–216

13. Taybi H, Lachman RS (1990) Radiology of Syndromes, Metabolic Disorders,
and Skeletal Dysplasia. Year Book Medical Publishers, Chicago

14. Gierl L, Stengel-Rutkowski S (1994) Integrating Consultation and Semi-
automatic Knowledge Acquisition in a Prototype-based Architecture: Experi-
ences with Dysmorphic Syndromes. Artificial Intelligence in Medicine 6: 29–49

15. Clinical Dysmorphology. www.clindysmorphol.com
16. Winter RM, Baraitser M, Douglas JM (1984) A computerised data base for

the diagnosis of rare dysmorphic syndromes. Journal of medical genetics 21 (2):
121–123

17. Stromme P (1991) The diagnosis of syndromes by use of a dysmorphology data-
base. Acta Paeditr Scand 80 (1): 106–109

18. Weiner F, Anneren G (1989) PC-based system for classifying dysmorphic
syndromes in children. Computer Methods and Programs in Biomedicine 28
111–117

19. Evans CD (1995) A case-based assistant for diagnosis and analysis of dysmorphic
syndromes. International Journal of Medical Informatics 20: 121–131

20. Tversky A (1977) Features of Similarity. Psychological Review 84 (4): 327–352
21. Rosch E, Mervis CB (1975) Family Resemblance: Studies in the Internal Struc-

tures of Categories. Cognitive Psychology 7: 573–605

10 Prototypes and Case-Based Reasoning for Medical Applications 317

22. Robeson SM, Steyn, DG (1990) Evaluation and comparison of statistical forecast
models for daily maximum ozone concentrations. Atmospheric Environment 24
B (2): 303–312

23. Shahar Y (1999) Timing is Everything: Temporal Reasoning and Temporal Data
Maintenance in Medicine. In: Horn W, Shahar Y, Lindberg G, Andreassen S,
Wyatt J (eds) Proceedings of AIMDM’99, Springer-Verlag, Berlin Heidelberg
New York, 30–46

24. Haimowitz IJ, Kohane IS (1993) Automated trend detection with alternate tem-
poral hypotheses. In: Proceedings of the 13th International Joint Conference on
Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, pp 146–151

25. Miksch S, Horn W, Popow C, Paky F (1995) Therapy planning using qualitative
trend descriptions. In: Barahona P, Stefanelli M, Wyatt J (eds) Proc AIME’95,
Springer-Verlag, Berlin Heidelberg New York, pp 197–208

26. Lenz M, Auriol E, Manago M (1998) Diagnosis and decision support. In: Lenz
M, Bartsch-Spörl B, Burkhard H-D, Wess S (eds) Case-Based Reasoning Tech-
nology, From Foundations to Applications., Springer-Verlag, Berlin Heidelberg
New York, pp 51–90

27. Smyth B, Keane MT (1998) Adaptation-Guided Retrieval: Questioning the Sim-
ilarity Assumption in Reasoning. Artificial Intelligence 102: 249–293

28. Anderson JR (1989) A theory of the origins of human knowledge. Artificial
Intelligence 40, Special Volume on Machine Learning, pp 313–351

29. Wenkebach U, Pollwein B, Finsterer U (1992) Visualization of large datasets in
intensive care. Proc Annu Symp Comput Appl Med Care, pp 18–22

30. DeSarbo WS et al. (1992) TSCALE: A new multidemensional scaling procedure
based on Tversky’s contrast model. Psychometrika 57: 43–69

31. Kolodner J (1993) Case-based reasoning. Morgan Kaufmann Publishers,
San Mateo

32. Bueno-Cavanillas A et al. (1994) Influence of nosocomial infection on mortality
rate in an intensive care unit. Crit Care Med 22: 55–60

33. Stottler RH, Henke AL, King JA (1989) Rapid retrieval algorithms for Case-
Based Reasoning. In: Proceedings of International Joint Conference on Artificial
Intelligence, 233–237

34. Smyth B, Keane MT (1993) Retrieving adaptable cases: the role of adaptation
knowledge in case retrieval. In: Richter MM et al. (eds) Proceedings of 1st
European Workshop on Case-Based Reasoning, pp 76–81

35. Schmidt R, Vorobieva O (2006) Case-Based Reasoning Investigation of Therapy
Inefficacy. Knowledge-Based Systems 19 (5): 333–340

36. Working group for paediatric endocrinology of the German society for
endocrinology and of the German society for children and youth medicine
(1998) 1–15

