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Preface

This book is the first edited book that deals with the special topic of signals
and images within case-based reasoning (CBR).

Signal-interpreting systems are becoming increasingly popular in medical,
industrial, ecological, biotechnological and many other applications. Existing
statistical and knowledge-based techniques lack robustness, accuracy, and flex-
ibility. New strategies are needed that can adapt to changing environmental
conditions, signal variation, user needs and process requirements. Introducing
CBR strategies into signal-interpreting systems can satisfy these requirements.
CBR can be used to control the signal-processing process in all phases of a
signal-interpreting system to derive information of the highest possible qual-
ity. Beyond this CBR offers different learning capabilities, for all phases of a
signal-interpreting system, that satisfy different needs during the development
process of a signal-interpreting system.

In the outline of this book we summarize under the term “signal” signals
of 1-dimensional, 2-dimensional or 3-dimensional nature.

The unique data and the necessary computation techniques require extra-
ordinary case representations, similarity measures and CBR strategies to be
utilised.

Signal interpretation (1D, 2D, or 3D signal interpretation) is the process of
mapping the numerical representation of a signal into logical representations
suitable for signal descriptions. A signal-interpreting system must be able to
extract symbolic features from the raw data e.g., the image (e.g., irregular
structure inside the nodule, area of calcification, and sharp margin). This is
a complex process; the signal passes through several general processing steps
before the final symbolic description is obtained.

The structure of the book is divided into a theoretical part and into an
application-oriented part.

The first chapter gives an introduction to case-based reasoning and des-
cribes the special problems associated with signal-interpreting systems and
why CBR is especially appropriate to solve the well-known bottleneck when
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developing signal-interpreting systems. At the end of this chapter an outlook
to new developments is given.

The chapter is followed by a chapter on similarity. This chapter gives a
fresh view to similarity and describes how important the concept of simi-
larity is for many application including information retrieval, pattern recog-
nition, computer vision and technical diagnosis. It reviews similarity under
the aspects of using similarity for reasoning and explains the advantages of
the different properties of the different similarity measures. While doing that
it also takes into account the different possible data representations and the
requirements following from that to the similarity measures.

Although similarity is a widely used concept in human reasoning it is often
not clear how to assess the similarity. Therefore learning of similarity is imp-
ortant aspect to achieve the expected performance of a system. Chapters 3
and 4 describe two different methods for learning the similarity. While Chap. 3
describes a new approach for learning the weight of the attributes in Chap. 4
induction of similarity is proposed.

Structural similarity is an important concept in computer vision and
design. A lot of effort has been put into the development of different struc-
tural similarity measures and into the development of computational efficient
algorithm. Chapter 5 reviews structural similarity measures and gives a clas-
sification of the different measures.

Memory organization plays an important role in CBR. Different memory
structure have been developed that help to organize a large case base so that
a case can be efficiently retrieved from the case base. Chapter 6 gives an
excellent overview and classification about what has been achieved so far.

Performance evaluation also under sparse data set is another important
aspect. A method for performance evaluation that bridges between CBR and
statistics is given in Chap. 7

In the second part of the book special signal-related applications are des-
cribed and how subtasks of a CBR system such as retrieval, image segmenta-
tion or memory organization are solved for this kind of applications.

Chapter 8 describes an agent-based approach for environmental moni-
toring. The interpretation of 1-dimensional medical signals is described in
Chap. 9. The application of prototypical cases for medical diagnosis is des-
cribed in Chap. 10. The use of the case-based reasoning process for building
the model of a watershed-based image segmentation system is described in
Chap. 11. The last three chapters deal with the different aspects of image
retrieval that is one subtask of CBR. Methods for image retrieval of bio-
medical images are described in Chap. 12. Chapter 12.8 faces on the special
problems when dealing with different multimedia sources and Chap. 14 uses a
dissimilarity-based representation for the retrieval.

The book is made for scientist and computer science experts from industry,
medicine, and biotechnology who like to work on the special topics of CBR
for signals and images. Although CBR is often not a standard lecture at
universities we hope we can inspire PhD students to deal with this topic.
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The hope is that in the next edition of that book we will see more inspiring
work dealing with the challenging topic of CBR.

The main conferences on CBR are the International Conference on Case-
Based Reasoning, ICCBR and the European Conference on Case-Based Rea-
soning, ECCBR. Special emphasis on CBR for signals and images is given
at the International Conference on Machine Learning and Data Mining in
Pattern Recognition, MLDM and the Industrial Conference on Data Mining
ICDM-Leipzig. We are curious to see what new ideas you can present for CBR
on signals and image. Looking forward to welcome you at one of our next event.

Leipzig, April 2007 Petra Perner
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Introduction to Case-Based Reasoning
for Signals and Images

P. Perner

Institute of Computer Vision and Applied Computer Sciences Leipzig,
Arno-Nitzsche-Str. 43, 04277 Leipzig, Germany

Summary. Case-based reasoning (CBR) is used when generalized knowledge is
lacking. The method works on a set of cases formerly processed and stored in the
case base. A new case is interpreted based on its similarity to cases in the case
base. The closest case with its associated result is selected and presented as output
of the system. Signal-interpreting systems for 1-d, 2-d, or 3-dimensional signals are
becoming increasingly popular in medical and industrial applications. New strategies
are necessary that can adapt to changing environmental conditions, user needs, and
process requirements. Introducing CBR strategies into signal-interpreting systems
can satisfy these requirements. We describe in this chapter the basics of CBR and
review what has been done so far in the field of signal-interpreting systems.

1.1 Introduction

Signal-interpreting systems for 1-d, 2-d, or 3-dimensional signals are becoming
increasingly popular in medical and industrial applications. The existing sta-
tistically and knowledge-based techniques lack robustness, accuracy, and flex-
ibility. New strategies are necessary that can adapt to changing environmental
conditions, user needs, and process requirements. Introducing case-based rea-
soning (CBR) [1–3] strategies into signal-interpreting systems can satisfy these
requirements. CBR provides a flexible and powerful method for controlling the
signal-processing process in all phases of a signal-interpreting system to derive
information of the highest possible quality. Beyond this CBR offers different
learning capabilities, for all phases of a signal-interpreting system, that sat-
isfy different needs during the development process of a signal-interpreting
system. Therefore, they are especially appropriate for signal interpretation.

Although all this has been demonstrated in various applications [4–10,
47, 52–54, 60, 68], case-based signal-interpreting systems are still not well
established in the computer-vision and pattern-recognition community. One
reason might be that CBR is not very well known within this community.
Also, some relevant activities have been shied away from developing large
complex systems in favor of developing special algorithms for well-constrained

P. Perner: Introduction to Case-Based Reasoning for Signals and Images, Studies in Compu-

tational Intelligence (SCI) 73, 1–24 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 P. Perner

tasks (e.g., texture, motion, or shape recognition). A recent overview about
case-based signal-interpreting system can be found in [68].

In this chapter, we will show that a CBR framework can be used to over-
come the modeling burden usually associated with the development of image-
interpretation systems.

We seek to increase attention for this area and the special needs that signal
processing tasks require.

In Sect. 1.2 we describe the CBR. Section 1.3 explains the developmental
burden relating to signal-interpreting systems. The process model of CBR is
explained in Sect. 1.4. In Sect. 1.5 we explain the knowledge containers of a
CBR system. Design considerations of a CBR system are given in Sect. 1.6.
The formal case description is explained in Sect. 1.7. The cognitive and the
mathematical aspect of similarity are described in Sect. 1.8. The overview of
methods for organization of a case base is given in Sect. 1.9. The different
learning methods in a CBR system are described in Sect. 1.10. We give an
outlook on further developments of CBR based signal-interpreting systems in
Sect. 1.11 and, finally, we summarize the chapter in Sect. 1.12.

1.2 Case-Based Reasoning

Rule-based systems or decision trees are difficult to utilize in domains where
generalized knowledge is lacking. However, often there is a need for a predic-
tion system, even though there is not enough generalized knowledge. Such a
system should (a) solve problems, using the already stored knowledge and (b)
capture new knowledge, making it immediately available for solving the next
problem. To accomplish these tasks, CBR is useful. CBR explicitly uses past
cases from the domain expert’s successful or failing experience.

Therefore, CBR can be seen as a method for problem solution, and also as a
method to capture new experience. It can be seen as a learning and knowledge-
discovery approach, since it can capture from new experience some general
knowledge, such as case classes, prototypes, and some higher-level concepts.

To point out the differences between a CBR learning system and a sym-
bolic learning system, which represents a learned concept explicitly, e.g., by
formulas, rules, or decision trees, we follow the notion of Wess et al., [11]:
“A CBR system describes a concept C implicitly by a pair (CB, sim). The
relationship between the case base CB and the measure sim used for classifi-
cation may be characterized by the equation:

Concept = Case Base + Measure of Similarity

This equation indicates in analogy to arithmetic that it is possible to
represent a given concept C in multiple ways, i.e., there exist many pairs
C = (CB1, sim1), (CB2, sim2), . . . , (CBi, simi) for the same concept C. Fur-
thermore, the equation gives a hint how a case-based learner can improve
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its classification ability. There are three possibilities to improve a case-based
system. The system can

1. Store new cases in the case base CB
2. Change the measure of similarity sim
3. Change CB and sim

During the learning phase a case-based system gets a sequence of cases
X1 , X2 , . . . , Xi with Xi = (xi, class (xi)) and builds a sequence of pairs
(CB1 , sim1 ), (CB2 , sim2 ), . . . , (CBi, simi) with CBi ⊆ {X1, X2, . . . , Xi}.
The aim is to get in the limit a pair (CBn, simn) that needs no further change,
i.e., ∃n ∀m ≥ n (CBn, simn) = (CBm, simm), because it is a correct classifier
for the target concept C”.

1.3 Development Concerns for Signal-Interpreting
Systems

Several factors influence the quality of the final result of a signal-interpreting
system, including environmental conditions, the selected signal acquisition
device, noise, number of observations from the task domain, and the chosen
part of the task domain. Often these cannot all be accounted for during sys-
tem development, and many of them will only be discovered during system
execution. Furthermore, the task domain cannot even be guaranteed to be
limited. For example, in defect classification for industrial tasks, new defects
may occur because the manufacturing tool that had been used for a long
period suddenly causes scratches on the surface of the manufactured part. In
optical character recognition, imaging defects (e.g., heavy print, light print, or
stray marks) can occur and influence the recognition results. Rice et al. [12]
attempted to systematically overview the factors that influence the result of
an optical character-recognition system, and how different systems respond
to them. However, it is not yet possible to observe all real-world influences,
or provide a sufficiently large sample set for system development and testing.

A robust signal-interpreting system must be able to deal with such
influences. It must have intelligent strategies on all levels of a signal-
interpreting system that can adapt the processing components to these new
requirements. A strategy that seems to satisfy these requirements could be
CBR. CBR does not rely on a well-formulated domain theory, which is, as we
have seen, often difficult to acquire.

This suggests that we must consider different aspects during system devel-
opment that are frequently studied CBR issues. Because we expect that users
will discover new aspects of the environment and the objects during system
usage, an automatic signal-interpreting system should be able to incrementally
update the system’s model, as illustrated in Fig. 1.1. This requires knowledge
maintenance and learning. The designated lifetime of a case [66] also plays
an important role. Other aspects are concerned with system competence. The
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Fig. 1.1. Model development process

range of target problems, which a given system or algorithm can solve, is
often not quite clear to the developer of the signal-interpreting system. Often
researchers present to the community a new algorithm that can, for example,
recognize the shape of an object in a particular signal and then claim that
they have developed a model. Unfortunately, all too often another researcher
inputs a different signal to the same algorithm and finds that it fails. Did
the first researcher develop a model or did he/she instead develop a function?
Testing and evaluation of algorithms and systems is an important problem
in computer vision [13], as is designing the algorithm’s control structure, so
that it fits best to the current problem. CBR strategies can help to solve this
problem in signal-interpreting systems.

1.4 The Process Model of CBR

1.4.1 The CBR Reasoning Process

At the highest level of generality, a general CBR cycle may be described by
four tasks [1]: Retrieve the most similar case or cases, reuse the information
and knowledge in that case to solve the problem, revise the proposed solution,
and retain the parts of this experience likely to be useful for future problem
solving (Fig. 1.2).

The four tasks each involve a number of more specific subtasks.
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Fig. 1.2. Case-based reasoning process

The current problem is described by some keywords, attributes or any
abstraction that allow describing the basic properties of a case. In pattern
recognition and signal interpretation this can be attributes describing the
basic properties of an object/signal or an attributed graph describing a scene.
Based on this case description a set of close cases is retrieved from the case
base (retrieve task).

The closest case is evaluated and the solutions associated to the closest
case are given as output to the user.

The problem solution associated to the current case is applied to the cur-
rent problem and the result of the test is observed and evaluated by a teacher
(revise task). When the user is not satisfied with the result, or no similar case
could be found in the case base, then case-base maintenance (retain tasks)
starts. The revise and retain task can be viewed as a supervised learning task,
which is necessary for improving the performance of the system.

Retrieval can be based on an index. The index can be a structure, such
as for example a classifier, or any hierarchical organization of the case base.
This index is built and updated during the retain task.

1.4.2 CBR Maintenance

CBR maintenance (see Fig. 1.3) will operate on new cases as well as on cases
already stored in the case base.

If a new case has to be stored into the case base, it means that there is no
similar case in the case base. The system has recognized a gap in the case base.
A new case has to be incorporated into the case base, in order to close this
gap. From the new case a predetermined case description has to be extracted,
which should be formatted into the predefined case format. Afterwards, the
case can be stored into the case base.
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Fig. 1.3. CBR maintenance

Selective case registration means that no redundant cases will be stored
into the case base and that the case will be stored at the right place, depending
on the chosen organization of the case base. Similar cases will be grouped
together or generalized by a case that applies to a wider range of problems.
Generalization and selective case registration ensure that the case base will
not grow too large and that the system can find similar cases fast.

It might also happen that too many cases not applicable to the current
problem would be retrieved from the case base. Then it might be wise to
rethink the case description, or to adapt the similarity measure. For the case
description, more distinguishing attributes should be found that allow to filter
out cases that do not apply to the current problem. The weights in the similar-
ity measure might be updated, in order to retrieve only a small set of similar
cases.

CBR maintenance is a complex process and works for all knowledge con-
tainers (vocabulary, similarity, retrieval, case base) [14] of a CBR system.
Consequently, architectures and systems have been developed that support
this process [15–17].

1.5 Knowledge Containers in a CBR System

The notion of knowledge containers has been introduced by Richter [14]. It
gives a helpful explanation model or view on CBR systems. A CBR system
has four knowledge containers which are:
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1. The underlying vocabulary (or features)
2. The similarity measure
3. The solution transformation (adaptation knowledge)
4. The cases

The first three represent compiled knowledge, since this knowledge is more
stable. A raw description of a situation has to be transformed into the case de-
scription, based on the selected vocabulary and the underlying domain knowl-
edge (see Fig. 1.3).

The cases are interpreted knowledge. As a consequence, newly added cases
can be used directly. This enables a CBR system to deal with dynamic knowl-
edge.

In addition, knowledge can be shifted from one container to another. For
instance, in the beginning a simple vocabulary, a rough similarity measure,
and no knowledge on solution transformations are used [2]. However, after
a large number of cases have been collected, over time, the vocabulary can
be refined and the similarity measure defined in higher accordance with the
underlying domain. In addition, it may be possible to reduce the number
of cases, because the improved knowledge within the other containers now
enables the CBR system to better differentiate between the available cases.

1.6 Design Consideration

The main problems concerned with the development of a CBR system are:

1. What is the right case description?
2. What is an appropriate similarity measure for the problem?
3. How to organize a large number of cases for efficient retrieval?
4. How to acquire and to refine a new case for entry in the case base?
5. How to generalize specific cases to a case that is applicable to a wide range

of situations?

1.7 Case Description

There are different opinions about the formal description of a case. Each sys-
tem utilizes a different representation of a case. Formally, we like to understand
the following definition for a case:

Definition 1. A case C is a triple (P ;E;L) with a problem description P ;
an explanation of the solution E and a problem solution L.

For signal-related tasks we have two main different types of information
that make up a case consisting of signal-related information and a nonsignal-
related information. Signal-related information could be the 1D, 2D, or 3D
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signals of the desired application. Nonsignal-related information could be in-
formation about the signal acquisition, such as the type and parameters of
the sensor, and information about the objects or the illumination of the scene.
Which type of information should be taken into consideration for the inter-
pretation of the signal depends on the type of application. In the case of the
medical CT image segmentation described in [6], we used patient-specific para-
meters, such as age and sex, slice thickness and number of slices. Jarmulak [4]
took into consideration the type of sensor for the railway-inspection applica-
tion. Based on this information, the system controls the type of case base that
the system is using during reasoning.

How the 2D or 3D image matrix is represented depends on the purpose,
and rarely on the developer’s point of view. In principle it is possible to repre-
sent an image by one of various abstraction levels. An image may be described
by the pixel matrix itself or by parts of this matrix (pixel-based representa-
tion). It may be described by the objects contained in the image and their
features (feature-based representation). Furthermore, it may be described by
a more complex model of the image scene, composed of objects and their fea-
tures, as well as of the spatial relation between the objects (attributed graph
representation or semantic networks).

Jarmulak [4] has solved this problem by a four-level hierarchy for a case
and different case bases for different sensor types. At the lowest level of the
hierarchy are stored the objects described by features, such as their location,
orientation, and type (line, parabola, or noise) parameters. The next level
consists of objects of the same channel within the same subcluster. In the
following level the subcluster is stored and at the highest level the whole
image scene is stored. This representation allows him to match the cases on
different granularity levels. Since the whole scene may have distortions caused
by noise and imprecise measurements, he can reduce the influence of noise by
retrieving cases on these different levels.

Grimnes and Aamodt [5] developed a model-based image-interpreting
system for the interpretation of abdominal CT images. The image con-
tent is represented by a semantic network, where concepts can be general,
special cases, or heuristic rules. Not well-understood parts of the model are
expressed by cases and can be revised during the usage of the system by the
learning component. The combination of the partially well-understood model
with cases helps them to overcome the usual burden of modeling. The
learning component is based on failure-driven learning and case integration.
Nonimage information is also stored such as sex, age, earlier diagnosis, social
condition, etc.

Micarelli et al. [7] have also calculated image properties from their images
and stored them into the case base. They use the Wavelet transform, since it
is scale-independent.

In all this work, CBR is only used for the high-level unit. We have studied
different approaches for the different processing stages of an image interpreta-
tion system. For the image-segmentation unit [6] we studied two approaches:
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(1) a pixel-based approach and (2) a feature-based approach that described
the statistical properties of an image. Our results show that the pixel-based
approach can give better results for the purpose of image segmentation. For
the high-level approach of an ultra-sonic image interpretation system, we used
a graph-based representation [18].

However, if we do not store the image matrix itself as a case, but store
the representation of a higher-level abstraction instead, we will lose some
information. An abstraction means that we have to make a decision between
necessary and unnecessary details of an image. It might happen that, not
having seen all the objects at the same time, we might think that one detail is
of no interest, since our decision is only based on a limited number of objects.
This can cause problems later on. Therefore, keeping the images themselves
is always preferable, but needs a lot of storage capacity. The different possible
types of representation require different types of similarity measures.

1.8 Similarity Relation

An important point in CBR is the determination of similarity between case
A and case B. We need an evaluation function that gives us a measure for
similarity between two cases. This evaluation function reduces each case from
its case description to a numerical similarity measure sim. These similarity
measures show the relation to other cases in the case base.

The concept of similarity is important for many tasks; therefore, we will
briefly review the cognitive aspect of similarity, the basic properties of simi-
larity, and the design criteria for similarity.

1.8.1 Formalization of Similarity

The problem with similarity is that it has no meaning, unless one specifies the
kind of similarity. Smith [19] distinguishes five different kinds of similarity:

1. Overall similarity
2. Similarity
3. Identity
4. Partial similarity
5. Partial identity

Overall similarity is a global relation that includes all other similarity rela-
tions. All colloquial similarity statements are subsumed here.

Similarity and identity are relations that consider all the properties of the
objects at once and where no single part is left unconsidered. A red ball and
a red ball are similar, a red ball and a red car are dissimilar. The holistic
relation’s similarity and identity are different in the degree of the similarity.
Identity describes objects that are not significantly different. All red balls are
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identical and, therefore, they are also similar. Similarity contains identity and
is a more general concept.

Partial similarity and partial identity compare the significant parts of
objects. One aspect or attribute can be marked. Partial similarity and partial
identity are different with respect to the degree of similarity. A red ball and
a pink cube are partially similar, but a red ball and a red cube are partially
identical.

The described similarity relations are in connection in many respects. Iden-
tity and similarity are unspecified relations between objects. Partial identity
and similarity are relations between single properties of objects. Identity and
similarity are equivalence relations, this means they are reflexive, symmetri-
cal, and transitive. For partial identity and similarity, these relations do not
hold. From identity follows similarity and partial identity. From that follows
partial similarity and general similarity.

It seems advisable to require from a similarity measure the reflexivity,
which means an object is similar to itself. Symmetry should be another prop-
erty of similarity. However, Bayer et al. show that these properties are not
bound to belong to similarity in colloquial use. Let us consider the statements
“A is similar to B” or “A is the same as B.” We notice that these statements
are directed and that the roles of A and B cannot be exchanged. People say:
“A circle is like an ellipse.” but not “An ellipse is like a circle.” or “The
son looks like the father.” but not “The father looks like to the son.”
Therefore, symmetry is not necessarily a basic property of similarity. However,
in the above examples it can be useful to define the similarity relation to be
symmetrical. The transitivity relation also must not necessarily hold. Let us
consider the block world: a red ball and a red cube might be similar; a red cube
and a blue square are similar; but a red ball and a blue square are dissimilar.
However, a concrete similarity relation might be transitive.

Similarity and identity are two concepts that strongly depend on the
context.

The context defines the essential attributes of the objects that are taken
into consideration when similarity is determined. An object “red ball” may
be similar to an object “red chair” because of the color “red”. However the
objects “ball” and “chair” are dissimilar. These attributes may be relevant,
depending on whether they are given priority or saliency in the considered
problem.

1.8.2 General Remarks on Similarity

This little example shows that the calculation of similarity between the at-
tributes must be meaningful. It makes no sense to compare two attributes
that do not make a contribution to the considered similarity. That brings us
to the vocabulary or feature-elicitation problem.
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The homogeneity of the data matrix must be assumed. Attributes should
have equal scale level. Metrical attributes should have a similar variance.
Attribute weighting is only possible if the class structure will not be blurred.

Observations containing mixed data types, such as numerical and
categorical attributes, require special distance measure.

1.8.3 Properties of a Distance Measure

A distance d(x, y) between two vectors x and y is a function for which the
following condition can be required:

d(x, y) ≥ 0 (Nonnegativity)

d(x, x) = 0 (Identity, Reflexivity)

d(x, y) = 0 if and only if x = y (Identity of Indiscernibles,

Strong Reflexivity)

d(x, y) = d(y, x) (Symmetry)

We call the distance d(x, y) a metric if the triangle inequality holds:

d(x, y) ≤ d(x, z) + d(z, y) (subadditivity / triangle inequality).

If we require the following condition, then we call d(x, y) an ultra metric:

d(x, y) ≤ max {d(x, z), d(z, y)} .

1.8.4 Distance Measures for Metrical Data

A well-known distance measure is the Minkowski metric:

d
(p)
ii =

⎡
⎣ J∑

j=1

|xij − xi‘j |p
⎤
⎦

1/p

The choice of the parameter p depends on the importance we give to the
differences in the summation.

If we choose p = 2, then we give special emphasis to big differences in the
observations. The measure is invariant to translations and orthogonal linear
transformations (rotation and reflection). It is called Euclidean distance:

dii =

√√√√ J∑
j=1

|xij − xi‘j |2
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If we choose p = 1, the measure gets insensitive to outliers, since big
and small differences are equally treated. This measure is also called the
City-Block Metric:

dii =
J∑

j=1

|xij − xi‘j |

If we choose p = ∞, we obtain the so called Max Norm:

dii = max
j

|xij − xi′j |

This measure is useful if only the maximal distance between two variables
among a set of variables is of importance, whereas the other distances do not
contribute to the overall similarity.

The disadvantange of the measures described above is that these measures
require the stastical independence of the attributes. Each attribute is consid-
ered to be independent and isolated. A high correlation between attributes can
be considered as a multiple measurement of an attribute. This means that the
measures described above give this feature more weight than an uncorrelated
attribute. The Mahalanobis distance:

d2
i′ = (xi − xi′)S−1(xi − xi′)

takes into account the covariance matrix of the attributes.

1.8.5 Using Numerical Distance Measures for Categorical Data

Categorical attributes require special similarity measures. Otherwise the sym-
bolical representation has to mapped to a numerical scale. Let us suppose that
we have an attribute color with green, red, and blue as attribute values. Let us
suppose further that we have an observation 1 with red color and an observa-
tion 2 also with red color, then the two observations are identical. Therefore,
the distance gets zero. Suppose now, we have an observation 3 with green
color and we want to compare it to the observation 2 with red color. The
two attribute values are different; therefore, the distance gets the value one.
If we want to express the degree of dissimilarity, we have to assign levels of
dissimilarity to all the different combinations between the attribute values.

If a ∈ A is an attribute and Wa ⊆ W is the set of all attribute values,
which can be assigned to a, then we can determine for each attribute a a
mapping:

distancea : Wa → [0, 1].

The normalization to a real interval is not absolutely necessary, but advanta-
geous for the comparison of attribute assignments.
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For example, let a be an attribute a=spatial relationship and

Wa = {behind right, behind left, in front right, . . . }.
Then we could define:

distancea(behind right, behind right) = 0
distancea(behind right, in front right) = 0.25
distancea(behind right, behind left) = 0.75.

Based on such distance measure for attributes, we can define different
variants of distance measure as mapping:

distance : B2 → R+

(R+
. . . set of positive real numbers) in the following way:

distance(x,y) = 1/D
∑
a∈D

distancea(x(a), y(a))

with D = domain (x) ∩ domain(y).

1.8.6 Distance Measure for Nominal Data

For nominal attributes special distance coefficients have been designed. The
basis for the calculation of these distance coefficients is a contingency table,
see Table 1.1. The value N00 in this table is the frequency of observation
pairs (i, j) that do not share the property, neither in the one observation nor
in the other. The value N01 is the frequency of observation pairs, where one
observation has the property and the other does not have this property.

Given that, we can define different distance coefficients for nominal data:

dii = 1 − (N11 + N00)/(N11 + N00 + 2(N10 + N01)

Whereas the similarity is increased by the value of N00 and the value of N11 ,
the noncorrespondence N10 and N01 gets double weight.

dii = 1 − N11/(N11 + N10 + N01)

The nonexistence of a property N00 is not considered in the Jaccard coeffi-
cient.

Table 1.1. Contigency table

Status of the
observation i

Status of the observation j′

0 1

0 N00 N01

1 N10 N11
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1.8.7 Contrast Rule

This measure has been developed by Tversky [20]. It describes the similarity
between a prototype A and a new example B as:

S(A,B) =
|Di|

α |Di| + β |Ei| + χ |Fi| α = 1, β, χ = 0.5

with Di being the features that are common to both A and B; Ei the features
that belong to A but not to B; and Fi the features that belong to A, but not
to B.

1.8.8 Similarity Measures for Images

Images can be rotated, translated, different in scale, or may be different in
contrast and energy, but they might be considered as similar. In contrast to
this two images may be dissimilar, since the object in one image is rotated by
180◦. The concept of invariance in image interpretation is closely related to
that of similarity. A good similarity measure should take this into considera-
tion.

The classical similarity measures do not allow this. Usually the images
or the features have to be preprocessed in order to be adapted to the scale,
orientation, or shift. This process is a further processing step that is expensive
and needs some a priori information, which is not always given. Filters, such
as matched filters, linear filters, Fourier or Wavelet filters, are especially useful
for invariance under translation and rotation, which has also been shown by
Micarelli et al. [7]. There has been a lot of work done to develop such filters for
image interpretation in the past. The best way to achieve scale invariance from
an image is by means of invariant moments, which can also be invariant under
rotation and other distortions. Some additional invariance can be obtained by
normalization (reduces the influence of energy).

Depending on the image representation (see Fig. 1.4), we can divide
similarity measures into:

1. Pixel (iconic)-matrix based similarity measures
2. Feature-based similarity measures (numerical or symbolical or mixed type)
3. Structural similarity measures [21–27,57,67].

Since a CBR image interpretation system has also to take into account
nonimage information, such as information about the environment or the ob-
jects, etc., we need similarity measures that can combine nonimage and image
information. We have shown a first approach to this in [6].

To better understand the concept of similarity, systematic studies on
the different kinds of image similarity have to be done. Zamperoni and
Starovoitov [21] studied how pixel-matrix based similarity measures behave
under different real world influences, such as translation, noise (spikes, salt,
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Fig. 1.4. Image representations and similarity measure

and pepper noise), different contrast, and so on. Image feature-based simi-
larity measures have been studied from a broader perspective by Santini and
Jain [22]. Those are the only important works that we are aware of. Other-
wise, at every new conference on pattern recognition [28–33], new similarity
measures are proposed for specific purposes and the different kinds of image
representation, but a more methodological work is missing.

1.9 Organization of a Case Base

Cases can be organized into a flat case base or in a hierarchical fashion. In
a flat organization we have to calculate the similarity between the problem
case and each case in memory. It is clear that this will take time, especially if
the case base is very large. Systems with a flat case-base organization usually
run on a parallel machine, to perform retrieval in a reasonable time, and do
not allow the case base to grow over a predefined limit. Maintenance is done
by partitioning the case base into case clusters and by controlling the number
and size of these clusters [34].

To speed up the retrieval process, a more sophisticated organization of the
case base is necessary. This organization should allow separating the set of
similar cases from those cases that are not similar to the actual problem at
the earliest stage of the retrieval process. Therefore, we need to find a relation
p that allows us to order our case base:

Definition. A binary relation p on a set CB is called a partial order on CB,
if it is reflexive, antisymmetric, and transitive. In this case the pair 〈CB, p〉
is called a partially ordered set or poset.

The relation can be chosen depending on the application. One common
approach is to order the case-base based on the similarity value. The set of
cases can be reduced by the similarity measure to a set of similarity values.
The relation p over these similarity values gives us a partial order over these
cases. The derived hierarchy consists of nodes and edges. Each node in this
hierarchy contains a set of cases that do not exceed a specified similarity
value. The edges show the similarity relation between the nodes. The relation
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between two successor nodes can be expressed as follows: Let z be a node and
x and y two successor nodes of z; then x subsumes z and y subsumes z. By
tracing down the hierarchy, the space gets smaller and smaller, until finally
a node will not have any successor. This node will contain a set of close
cases. Among these cases is to be found the closest case to the query case.
Although we still have to carry out matching, the number of matches will have
decreased through the hierarchical ordering. The nodes can be represented by
the prototypes of the set of cases assigned to the node. When classifying a
query through the hierarchy, the query is only matched with the prototype.
Depending on the outcome of the matching process, the query branches right
or left of the node.

Such a kind of hierarchy can be created by hierarchical or conceptual
clustering [35, 49], k–d trees [36] or a decision tree [37]. There are also set-
membership-based organizations known, such as semantic nets [5], relational
structure [63], and object-oriented representations [38].

1.10 Learning in a CBR System

CBR management is closely related to learning [62]. It aims to improve the
performance of the system.

Let X be a set of cases collected in a case base CB. The relation between
each case in the case base can be expressed by the similarity value sim. The
case base can be partitioned into n case classes C : CB =

⋃n
i=1 Ci such that

the intracase class similarity is high and the intercase class similarity is low.
The set of cases in each class Ci can be represented by a representative who
generally describes the cluster i. This representative can be the prototype, the
mediod, or an a-priori selected case, whereas the prototype implies that the
representative is the mean of the cluster that can easily be calculated from
numerical data. The mediod is the case whose sum of all distances to all other
cases in a cluster is minimal. The relation between the different case classes Cn

can be expressed by higher-order constructs expressed e.g., as super-classes
that gives us a hierarchical structure over the case base.

There are different learning strategies that can take place in a CBR system:

1. Learning takes place when a new case x has to be stored into the case
base such that: CBn+1 = CBn ∪ {x}. That means that the case base is
incrementally updated according to the new case.

2. It may incrementally learn the case classes and/or the prototypes repre-
senting the class [35,39–41].

3. The relationship between the different cases or case classes may be up-
dated according the new case classes [35].

4. The system may learn the similarity measure [42–44].
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1.10.1 Learning New Cases and Forgetting Old Cases

Learning new cases means just adding cases into the case base upon some
notification. Closely related to case adding is case deletion or forgetting
cases [45], which have shown low utility. This should control the size of the case
base. There are approaches that keep the size of the case base constant and
delete cases that have not shown good utility within a fixed time window [46].
The failure rate is used as utility criterion. Given a period of observation of N
cases, if the CBR component exhibits M failures in such a period, we define
the failure rate f as f = M/N . Other approaches try to estimate the “cov-
erage” of each case in memory and by using this estimate to guide the case
memory revision process [47].

The adaptability to the dynamics of the changing environment that re-
quires storing new cases in spite of the case base limit is addressed in [34].
Based on intraclass similarity it is decided whether a case is to be removed
from a cluster stored into it.

1.10.2 Learning of Prototypes

Learning of prototypes has been described in [39] for a flat organization of a
case base and for a hierarchical representation of a case base in [35]. The pro-
totype or the representative of a case class is the most general representation
of a case class. A class of cases is a set of cases sharing similar properties.
The set of cases does not exceed a boundary for the intraclass dissimilarity.
Cases that are on the boundary of this hyperball have a maximal dissimilarity
value. A prototype can be selected a priori by the domain user. This approach
is preferable when the domain expert knows for sure the properties of the pro-
totype. The prototype can be calculated by averaging over all cases in a case
class or the median of the cases is chosen. If only a few cases are available in a
class and subsequently new cases are stored in the class, then it is preferable
to incrementally update the prototype according to the new cases.

Learning the concept and representatives by fuzzy clustering and relevance
feedback has been described in [58]. Learning prototypes for graph-based rep-
resentation has been described in [65].

1.10.3 Learning of Higher-Order Constructs

The ordering of the different case classes gives an understanding of how these
case classes are related to each other. For two case classes, which are connected
by an edge, similarity relation holds. Case classes that are located at a higher
position in the hierarchy, apply to a wider range of problems than those located
near the leaves of the hierarchy. By learning how these case classes are related
to each other, higher-order constructs are learnt [35].
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1.10.4 Learning of Similarity

By introducing feature weights, we can put special emphasis on some features
for the similarity calculation. It is possible to introduce local and global feature
weights. A feature weight for a specific attribute is called local feature weight.
A feature weight that averages over all local feature weights for a case is called
global feature weight. This can improve the accuracy of the CBR system. By
updating these feature weights, we can learn similarity [43, 44]. An approach
using clustering to supervise learning the distance function has been described
in [55]. Improving the similarity by linear feature transformation is described
in [56].

1.11 Outlook

New work is being done into the direction of case mining. The scope of case
mining is to search a large case base for relevant data and summarize these
data into a more abstract representation, such as prototypes or concepts. An
approach for literature mining has been proposed in [49]. Mining case classes
and learning prototypes for 2D shapes has been proposed based on conceptual
clustering in [64].

The feature selection problem for CBR systems has been studied in [69].
Signal-interpreting systems require special graphical user support to man-

age the case description and case base. The work of O’Sullivan et al. [58] has
dealt with this problem.

Other problems go along with the evaluation and the lifecycle [66] of a case-
based signal-interpreting system for which special architectures are required.

The main problem with image analysis by itself is that a person is often not
able to sufficiently describe the image content. Unfortunately, for most image
retrieval systems it is hard to narrow down the subset of retrieved images to
the most relevant ones, unless the image is represented in a content-rich, high-
level representation, which is only possible in a domain-specific environment.
Associated free text documents with images would enable the construction of
an ontology, which could be used to describe high-level features. In general,
a system that can retrieve documents based on textual features, as well as
on features obtained from the image content, could significantly improve its
performance and user-friendliness. To develop retrieval methods based on con-
versational CBR (CCBR) for images seems to be a challenging topic to make
an image-retrieval system more applicable. The CCBR should guide the user
through visual content, based on a flexible interactive conversational strat-
egy [72]. Based on the feedback from the user, the flexible dialogue strategy
can narrow down the retrieval path to the desired group of documents, based
on the image content.

In CCBR, a query describing a target problem is incrementally, and of-
ten incompletely, elicited in an interactive dialogue with the user [70, 71].
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Alternatively, these dialogues are often initiated when the user provides a
free-text description of the problem (or query), which may be incrementally
extended. On each cycle of the problem-solving process, the user is shown
the cases that are most similar to the current query and invited to select
from a list of questions, ranked in order of expected usefulness for solving the
problem, or presented a number of possible solutions, upon which to make
recommendations. Unless terminated by the user, the dialogue continues until
some predefined termination criteria are satisfied. Throughout this process
the system highlights any cases whose descriptions, up to this point, have an
above-threshold similarity to the query, and the user can select any of the
displayed case solutions. Upon termination, some CCBR systems present the
solution of the currently most similar case as the proposed solution to the
target query. Much of the research has focused on CCBR as an approach
to interactive problem solving in domains, such as fault diagnosis, help-desk
support, and product recommendation. The usage of CCBR for multimodal
retrieval has not been intensively studied. The only contribution to this area
is that of case knowledge acquisition and performance improvement, solely in
the area of CCBR for image retrieval [73].

1.12 Conclusion

We surveyed special topics associated with a case-based signal-interpreting
system. From our point of view, case-based signal interpretation differs in
many aspects from other CBR applications that require further investigation.
First, more systematic work on special similarity measures is needed that
investigates the measures under different influences that may occur. Next,
case representations are required for all the different abstraction levels of an
image. Finally, the maintenance and learning strategies must be defined, so
that they can help to improve the system performance and discover the range
of target problems that the system can solve.

In this chapter are described special topics for similarity assessment, mem-
ory organization, similarity learning, and applications of CBR.
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Summary. In this chapter, we analyze and discuss the concept of similarity. Simi-
larity plays an important role in many computer applications. These are often tasks
that have either no precise input description or where the solution can only be ap-
proximated. We consider two main methodologies, case-based reasoning (CBR) and
pattern recognition (PR). The specific tasks we deal with are mainly classification,
diagnosis, image understanding, and information retrieval. The way similarity en-
ters such scenarios is quite diverse and therefore we will present a relatively broad
investigation of similarity relations and measures. When solving a task, similarity is
not the only concept that is used; therefore, the overall process and its methods have
to be considered. That means, besides the syntax of similarity concepts we discuss
also the meaning and the semantics. For this, the semantics is ultimately reduced
to utility.

In order to solve problems some knowledge is necessary. This knowledge has
different sources and can be used in different ways. Therefore, we put some emphasis
on the question what kind of knowledge is needed, what is contained in a measure
and how is it entered into a system. This is quite different in CBR and PR. Here we
make use of the concept of knowledge containers and of the local–global principle.

For illustration, we also present many examples of problems, measures, and
application types. Because of the diverging terminology we are also heading toward
a unified view on the subject.

2.1 Introduction and History

Similarity research, often in the form of its dual distances, is an established
area in mathematics, for example, in topology and approximation theory. This
is somewhat different in computer science and in computer applications. In
computer science, approximation is often used in a nonsystematic and ad-hoc
manner. In this context, the essential concept of similarity occurs in many
forms, interpretations, and many applications.

The concept of similarity has many owners and appears in many shapes.
Despite the differences, they all have in common, similarity is used for com-
paring two (or more) objects, two situations, two problems, etc. for various
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reasons. There is always some purpose for such a comparison, because a sub-
sequent action is taken and ultimately a certain problem has to be solved.
For that reason, the two objects to be compared play different roles. The first
object is under actual consideration and is called the problem object. The
second object is already known and stored; often it is called a prototype or a
case.

Similarity is used indirectly in the problem solving process. Prominent
indirect uses are analogy-based methods, case-based reasoning (CBR), and
pattern recognition (PR). These are related to each other and there is no
clear boundary between analogy and the other methods. Here we adopt the
view that analogy relates objects across domains, while CBR and PR use
similarity within some domain.

A basic difference to analogy is that in CBR often (but not always) objects
described in the same description language and in the same terminology are
considered, while in analogy completely different theories can be considered.
These theories are compared in the structural mapping theory (SMT), see [1].
Historically, analogy was already used by Leibniz [2]. In CBR, early work
adopted this view and was presented in [3] and [4].

Similarity is always used for describing something like “closely related.”
The dual notion is dissimilar or distant for describing “far away.” These are
not crisp notions; they have a number of possible degrees. In addition, these
concepts do not have an universal definition like equality but rather very
different interpretations. In our examples we will frequently switch between
the concepts of similarity and distance.

CBR is a very general way for solving problems by making use of previous
experiences. These experiences are recorded in a database called case base.
The underlying idea of employing similarity for reusing previous experiences
was quite näıvely formulated in the

CBR – Paradigm: If two problems are similar then they have similar
solutions.

CBR has as a basic assumption that experiences are available. Under this
condition, CBR can be applied to almost all types of applications. Often one
has very many experiences stored and an essential aspect is to find useful
experiences rapidly (the retrieval problem). Later on we will describe some
extensions of CBR that make use of the similarity techniques and do not
need experiences.

In Databases, similarity is related to search, too, and there is some rela-
tion to CBR. Mostly, in databases exact match is required. Similarity measures
play a role in some special databases like spatial or geo-databases.

Pattern Recognition is also a very general problem and methodology
area that studies the operation and design of systems that recognize patterns
in data. Because such patterns are not always identical, the concept of simi-
larity often plays a crucial role.

Both, CBR and PR are methodologies that have developed powerful tech-
niques. In the remaining applications we consider some problem types in these
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areas. They often use of these methodologies in a different way. Many varia-
tions and new methods have been developed.

In Classification and Cluster Analysis, similarity is used for classifying
objects: Similar objects belong to the same class or cluster and dissimilar
objects belong to different ones.

Diagnosis is an extension of classification: One does not only want to
know to which class an object belongs, but one also wants to design a subse-
quent therapy or a repair.

In Image Interpretation images are interpreted with respect to their
meaning and they are compared. For example, an actual medical image and a
certain nonpathological one are compared; the similarity between these images
is used to tell whether the actual image contains a pathology or not. Image
identification falls into this area too.

There are other application areas in which similarity plays a role but we
will not investigate them in detail, see Sect. 2.11.

In Cognitive and Social Psychology, similarity played a role in con-
nection with memory since about 1920 when the schema theory came up. It
was used, for example, to describe recognizing earlier structures in the mem-
ory, see [5]. Important is that similarity is something subjective. It refers to
how closely attitudes, values, interests, and personality match between peo-
ple. There are different kinds of psychological models of similarity and four
very prominent ones are geometric, featural, alignment-based, and transfor-
mational.

In Engineering Disciplines, in particular in mechanical engineering,
similarity reasoning is considered as a methodology, see [6]. It is mainly used
in connection with analogy. There are two main considerations:

1. The first one considers physical processes with respect to similarity under
the assumption that the participating magnitudes are the same.

2. The second one considers physical processes under the assumption that the
describing differential equations are the same or closely related, while the
participating magnitudes can be different.

The latter two applications are very much of historical interest because they
show that similarity was already a research topic many decades ago. However,
we will not investigate them here furthermore.

The aspects have been refined in many ways and some will be discussed
below. We do not intend to introduce the reader into the different application
and mathematical areas; in fact we assume some familiarities with them. We
only will point out what role is played by similarity.

We regard similarity as a concept in some more general problem solving
process and, therefore, we are interested in which way similarity makes use of
problem solving knowledge.

One of our purposes is to relate the different appearances and uses of
similarity to each other. Therefore, we identify several underlying general
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principles and show their different instantiations. For this we use two abstract
principles: The local–global principle and the knowledge containers.

The most important aspect is related to knowledge. Without knowledge
one cannot solve problems. The question is how and where knowledge is rep-
resented and used. It can be represented in the similarity concept or measure,
but it can also be represented at other places. The representation of knowledge
will distinguish, for instance, CBR and Pattern Recognition.

2.2 Mathematical and Computational Models

Besides the aspects from psychology, design and art, computer science is in-
terested to make use of similarity in computational models. The goal is aimed
at a computer-supported problem solving environment. Here we encounter a
confrontation between expressive power and efficiency. The more knowledge
a similarity concept can carry, the less efficient its computational processing
usually will be.

In this section, we first present principal aspects, and in the next sections
examples will be shown.

2.2.1 Relations vs. Functions

In order to understand the scope of the computational models it is helpful
to think of two origins of the similarity concept (later on we show other
influences), as shown in Fig. 2.1

From both ancestors the similarity concept has inherited not only proper-
ties of intuitive character but, in addition, certain precise notions, axioms,
and techniques for applications. In the past, both have rarely been dis-
cussed together. For investigating similarity, this view is appropriate, however.
From fuzzy sets similarity inherits its vague character and from metrics the
aspects of being close together. A short summary of axiomatic properties gives
Table 2.1.

In the transitivity axiom, min can be replaced by any other t-norm. Often
transitivity is seen as a counterpart of the triangle inequality. But these con-
cepts are not logically equivalent. In fact, first it has to be made clear what
equivalence should mean precisely in an abstract way.

These axioms have been questioned and will be discussed below.

Fuzzy Equality Metrics

Similarity

Fig. 2.1. Ancestors of similarity
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Table 2.1. Possible axioms

Fuzzy equality Metric

Reflexivity E(x, x) = 1 d(x, x) = 0
Symmetry E(x, y) = E(y, x) d(x, y) = d(y, x)
Transitivity E(x, y) ≥ sup ?

{(inf (E(x, z), E(z, y))|}
Triangle inequality ? d(x, y) ≤ d(x.z) + d(z, y)
Substitution axiom (s(a) = t(a) ∧ a = b) → (s(a) = t(b)) ?

Basically, there are two ways to represent similarity in computational
models:

(a) As a relation
(b) As a function

(a) Relational models:
There are three kinds of relational models:

(i) A binary similarity predicate:
SIM(x,y) ⇔ “x and y are similar”

(ii) A binary dissimilarity predicate:
DISSIM(x,y) ⇔ “x and y are dissimilar”

(iii) Similarity as a partial order relation:
R(x,y,z) ⇔ “x is at least as similar to y as x to z”
For simplicity, we assume that all elements are taken from the same
underlying set. Obviously, the similarity and the dissimilarity predicate
are definable from each other. To view similarity as a binary predicate
looks, however, too simple in order to grasp the intuition. On the other
hand, if similarity is the basis of a binary decision, this view is essential.
The step to obtain a binary predicate from a more complex as introduced
below can be regarded as a defuzzification step.
The predicate in (iii) is more powerful in expressiveness, because different
degrees of similarity can be distinguished. A generalization of (iii) is

(iv) S(x,y,u,v) ⇔ “x is at least as similar to y as u is to v.”

This allows to define R as R(x,y,z):↔ S(x,y,x,z).
Most important, with relation R one can define the nearest neighbor

concept:
For some fixed x each y that satisfies R(x,y,z) for all z is called a nearest

neighbor of x.
Notation: NN(x,y). This means NN is a relation and the nearest neighbor

is not necessarily uniquely defined; there may be several such (equally similar)
elements.

A slight extension is to look at the first k nearest neighbors what is denoted
as the k-NN methods.

In applications, the nearest-neighbor relation often is the most important
one. The reason is that closer has in general the meaning of better; a nearest



30 M.M. Richter

neighbor is the best. We will discuss this in the section on semantics. The
computation of the nearest neighbor is known as the retrieval problem and it
is a big problem area in its own. We will not discuss this in detail, however,
and remark only that similarity computation should be efficient.

There are several possible properties (“axioms”) that the relation S can
enjoy:

For all x,y,z,u,v,s,t holds:

(1) Reflexivity:

S(x, x, u, v) : Every object is at least as similar to itself as two other
arbitrary objects could be to each other.

(2) Symmetry:

S(x, y, u, v) ↔ S(y, x, u, v) ↔ S(x, y, v, u)

(3) Transitivity:

S(x, y, u, v) ∧ S(u, v, s, t) → S(x, y, s, t)

These axioms are intuitively plausible but we will question them later on.

(b) Functional Models

Similarity functions (“measures”) are used to refine the relational approaches
by assigning a degree of similarity to two objects. They are defined on or-
dered pairs:

sim : U × U → [0, 1].

This notion can be extended to relate elements of different sets to each other:

sim : U × V → [0, 1].

Hence, similarity functions can be considered as fuzzy sets of ordered pairs.
From fuzzy equality similarity functions have inherited four possible axioms:

(1) sim(x, x) = 1 (reflexivity)
(2) sim(x, x) = sim(y, y) (constancy of self-similarity)
(3) sim(x, y) = sim(y, x) (symmetry)
(4) sim(x, y) ≥ sup {(inf(sim(x,z), sim(z,x))}

The requirement that similarity functions are bounded to [0,1] is some kind
of restriction. It may lead to difficulties and may be given up.

Similarity measures have besides the ordinal information also a quantita-
tive statement about the degree of similarity, as illustrated in Fig. 2.2.
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Fig. 2.2. Degrees of dissimilarity

The dual concepts for similarity measures are distance functions that are
supposed to represent dissimilarity.

d : U × V → [0, 1].

Often the range of distance functions is not bounded.
For pseudo-metrics besides reflexivity and symmetry, an additional axiom

is common:

(5) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
For metrics the reflexivity is sharpened to

(6) d(x, y) = 0 ↔ x = y.

One often encounters the problem that there are very many nearest neighbors
(or almost nearest neighbors) to some object that are not close to each other.
The selection principle is aimed at determining a maximal set of objects that
are dissimilar to each other with a minimum degree of dissimilarity (diversity
problem), see [7]. This problem is quite involved.

From a principal point of view, similarity measures and distance functions
are equivalent: “very close” is the negation of “far away.” There are, however,
two kinds of difficulties:

1. What is easily definable for similarity functions may be difficult to express
in terms of distances and vice versa. For instance, the triangle axiom
cannot be easily expressed in terms of similarity measures.

2. Different kinds of techniques have been developed for similarities and dis-
tances. For instance for similarity measures, techniques for finding nearest
neighbors were cultivated, while for distances one was more interested in
finding objects that were far away from each other.

Both, similarity measures sim and distance functions d induce similarity rela-
tions Ssim and Sd in an obvious way. There is a natural relation between them:

A similarity measure sim and a distance measure d are called compatible
if and only if

– For all x, y, u, v ∈ M : Sd(x, y,u, v) ↔ Ssim(x, y,u, v) (the same similarity
relation is induced)
Transformation of measures: If a bijective, order inverting mapping
f : [0, 1] → [0, 1] exists with

– f(0) = 1
– f(d(x, y)) = sim(x, y)

then sim and d are compatible.
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0 α β sufficientdon’t knowinsufficient 1

Fig. 2.3. Uncertainty area

If one puts the focus on a fixed object x (usually the current problem) we
have additional useful relations induced ≥x, >x, ∼x defined by:

1. y ≥x z ⇔ R(x, y, z) “y is at least as similar to x as to z”
2. y >x z ⇔ (y >x z) ∧ ¬(z ≥x y) “y is more similar to x than to z” (strict

part of ≥x)
3. y ∼x z ⇔ (y ≥x z) ∧ (z ≥x y) “y and z are indistinguishable”

If only a few objects are given, it is easier for a human to provide a relational
similarity than a quantitative one. For a large number of objects, a similarity
measure is more useful. However, one has to be careful: If one looks at the
induced relation of a measure, then it may very well happen that it disagrees
with the relational intuition which one had in mind, and the measure has to
be improved.

By its very nature, similarity contains an essential element of uncertainty.
On the other hand, if similarity is involved in some process, for example,
for reaching a decision, one often encounters a “yes or no” problem. That
means, some defuzzification has to take place. This can be done by introducing
thresholds and proceed in the spirit of Rough Set Theory.

Example (see Fig. 2.3): Decisions based on sufficient similarity: We intro-
duce two thresholds α and β that define three areas:

If the similarity is in the “insufficient” area the solution is not accepted, in
the “sufficient” area it is accepted. The “don’t know” area is the uncertainty
area and one needs additional criteria for a decision.

2.2.2 An Abstract View: The Local–Global Principle

In the sequel, we will discuss many examples for similarity relations and mea-
sures. In order to relate different representations and functions to each other
we need some structural principle that is shared by them and allows discov-
ering common aspects as well as differences.

In order to formulate a systematic and general approach, we introduce a
general structural representation principle (see [8]). It is based on the view
that (complex) objects to be compared are built up in a systematic way; the
structure of the similarity measure is “parallel” to the structure of the objects.
The objects can be thought as very general ones like machines, the human
body, images, etc.

This structure is called the local–global principle for complex object de-
scriptions; it says:
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(1) There are local (atomic) description elements; for simplicity, we assume
that these are attributes

(2) Each object or concept A is (globally) described by some construction
operator C from the local elements:

A = C(Ai|i ∈ I).

Here I is some index set for the atomic elements (i.e., the attributes).
The local–global principle is also formulated for similarities and is

stated as:
There are local measures simi on the attributes Ai and there is some amal-

gamation function F such that for a, b ∈ U, U being the universe under
consideration, a = (ai|i ∈ I), b = (bi|i ∈ I)

sim(a, b) = F(simi(ai,bi)|i ∈ I).

The local measures simi compare values of individual attributes and sim is
the global measure. The amalgamation function F is the construction operator
and it is important that the two construction operators for objects and mea-
sures are closely related. In fact, the definition of the measure should follow
the structure of the objects. We will discuss this principle below for various
examples.

The principle gives rise to two tasks:

(a) The decomposition task: Break the object or concept down into atomic
parts. This task often occurs because the object may be presented globally
and the parts are initially unknown.

(b) The synthesis task: Compose an object or concept from simpler parts.

Both tasks play a role for relating the concepts we are interested in. For
the objects under investigation, the local–global principle has very different
realizations. We will discuss it for representations of symbolic character as
well as for approximation-oriented representations.

The claim is not that the principle itself is very innovative, in fact, it is
quite standard. The point is the unified use of the principle in order to allow
a systematic treatment of the different techniques. For this purpose we will
briefly introduce these techniques and discuss them from this point of view.

There is also the term structural similarity; it is used in two ways. On the
one hand, it means to consider structural aspects of the problems or cases in
the sense of the local–global principle but it can also mean to consider the
similarity of a whole set of cases [9].

2.2.3 Semantics

It is important to observe that the axioms do not carry any specific knowledge
about the domain or the problem. They reflect properties, which hold in all
applications of the concepts.
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In the subsequent sections, we will discuss how these axioms have partially
to be given up due to the different interpretations of the similarity concept.

The axioms also do not in any way determine the specific choice of the
measure; they only restrict the choice. It is also not clear when such axioms
are acceptable.

This depends on the intended meaning of the measure, i.e., on the
semantics.

Our starting point is that determining the semantics of a similarity bet-
ween two objects needs to consider the overall process, as for example, classi-
fication, diagnosis, or planning. The similarity is supposed to be useful for
the process and therefore the similarity measure must “know” something
about this process. This knowledge should be reflected in the semantics of
the measure.

The local–global principle splits the semantics of a measure into two parts:

– The local measures reflect the intentions of the specific attributes of the
domain and therefore local domain knowledge.

– The global measure puts the local measures into a global relation and
reflects usually, for example, the importance of the attributes for the task
under investigation.

The views on similarity have undergone several changes in the last 20 years, in
particular in CBR. Basically, one can observe three phases that are not clearly
separated. For a detailed description of the phases, see [10]. In the first phase,
a very näıve and intuitive view was dominating that was slowly changed to
more abstract views. This was leading to a much broader scope of applications,
but has, on the other hand, preserved the computational properties developed
initially.

The Näıve Period

In this period, two objects were considered as similar if they looked similar.
For classification, the interpretation was: Objects that look similar are in the
same class. In diagnosis, it meant that similar looking observations lead to
the same diagnosis and similar looking images describe the same situation.
Of course, looking similar is something subjective and this was discussed in
cognitive psychology.

The CBR-paradigm then reads as

Two problems that look similar have similar solutions.

The property of “looking similar” was taken näıvely and not questioned
very much. The practical interpretation of the CBR paradigm then was: Prob-
lems, which look similar, can be attacked with the same or almost the same
solution method.
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The applications at that time did not need much knowledge. They were
in principle quite simple but nevertheless useful because they saved humans
much problem solving time.

The crucial topics and techniques of CBR have been formulated in the
näıve period. In a nutshell, they are similarity-based matching and the nearest
neighbor search. The use of the similarity measure in using the experience base
is to select the most similar experience, i.e., the nearest neighbor to the actual
problem. Because the actual problem and the selected problem will still differ,
an adaptation of the solution may become necessary. But even then there is no
guarantee for getting a correct solution: CBR is an approximation technique.
This differs essentially from the database view.

The Sophisticated Period: Utility Orientation

Over time applications became more involved and the näıve view turned out
to be more and more insufficient. In the beginning of the nineties, demands
from applications asked to pay more attention to the specific task and to use
more involved knowledge, in particular, when defining measures. It was no
longer sufficient or necessary that objects looked similar but to find out what
is really important for certain purposes. One had to investigate:

– What influences a classification, a diagnosis, or a more general problem
solution?

– Are all important description elements listed? What means important?
– Which description elements are important for what?
– Which relations and dependencies of interest exist between them?

The term important can be interpreted in different ways. The uses of this term
in CBR can essentially be interpreted in the sense of usefulness, i.e., in the
sense of utility theory. This means the degree of similarity is the degree of
utility of the solution for a previous problem for the actual problem (see [11]).
This aspect was generalized later on, see below. In this view, similarity may
be far away from the intuitive notion of the näıve period and one may ask
whether the term “similar” is still justified. This is in fact questionable but
the term was kept, because all computational properties and all tools needed
for CBR were still applicable.

A crucial theoretical point is that the reduction to utility is a way to pro-
vide a rigorous foundation for the semantics of the concept of similarity. The
reason is that, at least in principle, utility can be evaluated by an outside and
independent experiment. It also explains the origins of the many variations of
similarity. Truth is an absolute concept (at least in logic) while utility has to
be defined in any single situation. This is related to the fact that there is only
one equality notion, but there are infinitely many inequalities. In addition,
the theoretical concepts and results of utility theory can be used. A practical
aspect is that the similarity assessment now has a guideline.
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In this sense, similarity is an a-priori approximation of utility and a goal of
similarity modeling is to provide a good approximation of the intended utility.
On the relational level, similarity then compares to preference relations: More
similar cases are preferred.

From utility theory, we need the following notions and concepts:

Utility Functions and Preference Relations

In order to describe the utility orientation of the similarity concept we discuss
utility itself briefly. The relational version is the preference relation expressing
what one finds more useful. Utility functions are the functional versions of
preference relations; they assign real numbers as values to the elements of the
domain:

u : U → IR.

If u(a) > 0, we call it the benefit, otherwise the cost of a. Mostly u is considered
as bounded; in this case, we can assume without loss of generality that the
values of u are in the interval [−1, 1].

The weaker relational formulation for utility functions uses preference
relations. Both, utility functions and preference relations usually are com-
plex. The local–global principle demands that they are defined on objects
A = C(Ai|i ∈ I).

The local–global principle for utility functions u (and analogously for pref-
erence relations) says that u can also be represented as

u(a) = G(ui(ai)|i ∈ I)

where the ui are called the local utilities. It is desirable to model the situation
in such a way that the global utility is a linear combination of local utilities:

u(a) = uw(a1, ..., an) = Σ(wi · u(ai), 1 ≤ i ≤ n).

The vector w = (w1, . . . ,wn) of real-valued coefficients is called the weight
vector of the representation. Generally, the global utility is in the center of
interest to the user and is given in the first place. In order to represent it
formally, one has to find the influence factors, i.e., to perform a sensitivity
analysis that finally breaks the utility function down to local components;
this is the decomposition task. This task is often quite difficult. The point is
that it has to be solved before the similarity can be defined.

For defining the similarity measure, one often has to go in an opposite
direction starting with the elements that can be influenced directly, i.e., one
has to perform a synthesis task. That means, one has to define the local simi-
larities first and then to define the construction operator. The local similarity
measures are defined in such a way that they are in correspondence to the
local utilities. The construction of the global similarity should reflect among
others importance that is present in the utility function. In this construction,
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Complex Preference Relation

match

Virtual attributes

Find influence 
factors

Goal: Concordance

Decompose
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Primary attributes

Fig. 2.4. Preference and similarity

Table 2.2. General partners

Observations Class
Symptoms Therapy
Knowledge needed Documents
Questions Answers
Functionalities Machines
Workers Coworkers
Images Meaning
Desired products Available products

new attributes called virtual attributes (as opposed to the original primary
ones, see Sect. 2.4.3), are introduced. These are attributes that are of major
importance and can be defined in terms of the given primary attributes.

An exact match between similarity and utility cannot be expected here.
A weaker and more practical demand is that utility and similarity are concor-
dant; this means, one function increases or decreases if and only if the other
one does, see Sect. 2.3. Figure 2.4 shows how the decomposition of preferences
and the synthesis of attributes are related.

The Generalized Period

The view of the sophisticated period was generalized extensively and the most
recent extensions (starting at the end of the nineties) could be named as
“partnership measures.” This leads to connecting similarity and utility even
stronger. Because the possible partners may come from different sets U and V,
the domain of sim has to be generalized to U×V. The intention of partnership
is that both objects cooperate more or less well as partners. In the extended
view, the measure compares objects like the ones seen in Table 2.2.

This view is today dominating in information retrieval (IR) and many
e-commerce applications. An immediate observation is that, as a consequence,
the axioms of reflexivity and symmetry have to be given up. Also, the term
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“case base” from CBR is replaced by expressions like product base, document
base, etc.

An even more radical change came up when similarity measures were re-
garded as a form of “dependency measure.” Dependency introduces some kind
of partial ordering, and for example, if sim(x, y) expresses the degree of de-
pendency of y from x. A major point is that symmetry for sim is again no
longer justified, i.e., sim(x, y) = sim(y, x) does not hold any more.

In such interpretations, similarity is no longer coherent with the use of this
term in everyday language. We still keep the term similarity not only because
of historical reasons but because of the fact that the techniques developed for
similarity reasoning apply here as well. Such techniques cover mainly retrieval
algorithms, the structure of the database, the assessment of measures, and
maintenance operations.

The leading and unchanged motivation in this (ongoing) period was still
the view that similarity approximates or imitates utility; more or less all
other aspects were on stake. In particular, and most importantly, CBR was
not anymore restricted to the use of previous experiences. Important aspects
subject to generalization were:

1. Scope of applications (the driving force)
2. Objects to be compared
3. Knowledge contained and the process of filling in knowledge
4. Properties and axioms

2.3 Basic Examples

In mathematics, metrics are discussed in detail. There is little domain knowl-
edge involved in the mathematical functions; for applications, one has to find
out when functions are useful and with which other knowledge can be com-
bined. For our purposes, the role of knowledge is crucial and we will have a
close eye on it. We will start with some elementary examples.

2.3.1 Global Measures With Numerical Arguments

A basic similarity measure is the Hamming measure, coming from coding
theory. It applies to attribute-value representations with Boolean-valued at-
tributes:

H((a1, . . . ., an), (b1, . . . .,bn)) = Σ(i|ai = bi, 1 ≤ i ≤ n).

The scalar product is a variation of the Hamming measure. It is defined as

S(x, y) =
n∑

i=1

xi · yi

The scalar product is often used in PR.
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For binary attributes we distinguish two cases:

(a) The values are 0 and 1: Then only values 1 contribute to the similarity.
(b) The values are −1 and +1: Then, in addition, nonagreeing values give a

penalty to the measure.

Both, the Hamming measure and scalar product are of very simple character:
The only knowledge they contain is the number of coinciding coordinates.

In applications, the disadvantage is that all attributes in the measure are of
equal importance. To overcome this difficulty the weighted Hamming measure
was introduced:

Hw((a1, . . . ., an), (b1, . . . .,bn)) = Σ(wi|ai = bi, 1 ≤ i ≤ n)

where w = (w1, . . . ,wn) with
∑

wi = 1 is a weight vector of nonnegative
coefficients. The local measures are still simple (only test of equality) while
the global measure reflects importance of attributes.

A further generalization is obtained by allowing arbitrary ranges of the
attributes and arbitrary local similarity measures. If sim = (sim1, . . . , simn)
is such a measure vector, the generalized Hamming measure is defined as:

Hw,sim((a1, . . . ., an), (b1, . . . .,bn)) = Σ(wi · simi(ai,bi)|1 ≤ i ≤ n).

In the same way, weighted Euclidean measures can be defined that read fa-
miliar in the form of distances:

d(x, y) =

√√√√ n∑
i=1

wi · (xi − yi)2

For the real case, another type of axiom is often used that runs under in-
variance properties. A typical example is scale invariance: If T is a linear
transformation then d(x,y) = d(Tx, Ty); in a similar way rotation invariance
is defined that is important for image understanding.

A measure frequently used in cognitive psychology runs under the name
Tversky feature model or contrast model (see [12]).

A feature is a Boolean-valued attribute. The basic idea is that the sim-
ilarity increases if a feature is common to both objects and decreases if it
is observed only in one object. In this context, the different types of objects
(problem objects p and case objects (prototypes) c) play a role. The features
are split into three subsets (depending on p and c):

– Com: The set of features observed for p and c; a = |Com|.
– P-C: The set of features observed for p but not for c (redundant features);

b = |P-C|.
– C-P: The set of objects observed for c but not for p (missing features);

c = |C-P|.
– NO: Features not observed for p and for c; d = |NO|.
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The contrast model assigns a numerical value sim(p,c) for the similarity
on the basis of these observations. It is defined by a real-valued function h on
sets of features and three positive real numbers α, β, and γ:

simcontr(p, c) = γh(Com(p, c)) − αh(P-C(p, c)) − βh(C-P)(p, c))

If the function h is a weighted sum like in the weighted Hamming measure
we get

simcontr(p, c) = γΣ(wi|i ∈ Com(p, c)) − αΣ(wi|i ∈ (P − C(p, c))
−βΣ(wi|i ∈ (C − P(p, c))

In experiments with humans [13], it is reported that humans prefer α > β,
i.e., the similarity increases with the number of features in the actual problem
that are also in the prototype while features observed in the problem object
only play a lesser role. In [13] it is also reported that for images diverging
features are higher rated while in verbal descriptions of the images features
in Com are higher rated.

Another slight computational variation of the Tversky measure is the Jac-
card coefficient. In [14] an extension of the Tversky approach is described.
There the local measures on the features are no longer binary (indicating
presence or absence of features) but real values; these measures are called
Fuzzy Features Contrast Models in [14].

There are many other variations of such measures. They have many appli-
cations in databases, PR, image interpretation, and applications in biology.
There is much experience when to use which measure but there is no general
theory. Next we give a short overview that contains some additional measures
besides the ones introduced above.

An early and very comprehensive reference for simple measures is in [15].
There is a huge number of simple similarity measures. Often, they differ

only the choice of certain coefficients. This choice is motivated by the needs of
some application. Mostly, the background is a deep insight into the applica-
tion. However, the choice is mostly ad-hoc and there is no principle behind it.

A summary (without details) of some simple measures is shown in
Table 2.3.

2.3.2 Simple Measures and Databases

Despite the simplicity of the Hamming measure or the Euclidean distance they
have many applications, as in [13] experiments with humans it is reported that
humans prefer α > β i.e., the similarity increases with the number of features
in the actual problem that are also in the prototype while features observed
in the problem object only play a lesser role. In [13] it is also reported that
for images diverging features are higher rated while in verbal descriptions of
the images features in Com are higher rated.

A summary (without details) of some simple measures is shown in
Table 2.3.
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Table 2.3. Examples of simple measures

Formula Comments

Euclidean distance SQRT(b+c) The square root of the sum of discordant
objects, minimum value is 0, and it has no
upper limit

Squared Euclidean
distance

b+c The sum of discordant cases, minimum
value is 0, and it has no upper limit

Size difference An index of asymmetry. It ranges from 0
to 1.

Pattern difference bc/(n∗∗2) Dissimilarity measure for binary data that
ranges from 0 to 1

Variance (b+c)/4n Ranges from 0 to 1
Simple matching (a+d)/n This is the ratio of matches to the total

number of values. Equal weight is given
to matches and nonmatches

Dice 2a/(2a + b + c) This is an index in which joint absences
are excluded from consideration, and
matches are weighted double. Also known
as the Czekanowski or Sorensen measure

Lance and Williams (b+c)/(2a+b+c) Range of 0 to 1. (Also known as the Bray-
Curtis nonmetric coefficient)

Nei & Lei’s genetic
distance

2a/[(a+b)+(a+c)]

Yule coefficient (ad−bc)/(ad+bc) A function of the cross-ratio; has range
[−1, 1]. Also known as the coefficient of
colligation

Another slight computational variation of the Tversky measure is the
Jaccard coefficient. In [14] an extension of the Tversky approach is described.
There the local measures on the features are no longer binary (indicating pres-
ence or absence of features) but real values; these measures are called Fuzzy
Features Contrast Models in [14].

There are many other variations of such measures. They have many appli-
cations in databases, PR, image interpretation, and applications in biology.
There is much experience when to use which measure but there is no general
theory. Next we give a short overview that contains some additional measures
besides the ones introduced above.

An early and very comprehensive reference for simple measures is in [15].

2.3.3 Simple Measures and Data Bases

Despite the simplicity of the Hamming measure or the Euclidean distance
they have many applications, for example, in database search and PR. One
reason is that they are simple to compute. This plays a central role in high
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dimensions. The knowledge in the measures is again of simple character. If the
vectors are very long and all arguments are of little importance, then these
measures are basically of the same expressive power as the measures equipped
with weights.

However, it was discovered that these measures often did not lead to the
desired results because the intended semantics was not covered. This was
due to the fact that the roles of the local measures as well as of the local–
global principle were not sufficiently well understood. Instead, (sometimes
very sophisticated) weightings and query expansions (see Sect. 2.9) have been
introduced.

Another method to overcome such difficulties is to introduce elliptic
queries. Traditionally, the nearest neighbors are computed by using circles
around the point of interest (the query). If the circles are no longer adequate,
the approach uses hyper-elliptic surfaces in order to represent relevant co-
ordinates better. However, this is nothing than introducing weights; it is in
one-to-one correspondence to choose the axes of the ellipses.

The drawback of this method as well as taking weights is that the method
is trapped into a local optimum, especially because each vector is wrapped
with many irrelevant coordinates.

2.3.4 Local Measures With Numerical Arguments

Next we come to measures that can contain more knowledge. Local mea-
sures contain knowledge coming from the distribution of the values of the
attributes. That means, local measures can contain specific information about
the attributes.

Example

Water temperature is an attribute wt with the domain, for example,
dom(wt) = [−100, +200]. In numerical domains, we can separate regions
in which the similarity undergoes little changes by using landmarks that sep-
arate the real axis into intervals. For water temperature we identify three
regions: [−100, 0], [0, 100], and [100, 200]. These landmarks reflect facts from
physics and not personal relevancies. The local similarity should not be uni-
form and reflect these facts too: numbers inside of a region should be quite
similar but numbers in different regions should have a low degree of similarity.
Hence, the measure should perform some kind of qualitative reasoning.

The relevance of temperature for some problem is reflected by a weight.
For attributes A with integer or real values similarity often based on the

difference of attribute values and not on the attribute values themselves, for
example:

– linearly scaled value ranges: simA(x,y) = f(x − y)
– exponentially scaled value ranges: simA(x,y) = f(log(x) − log(y))
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Fig. 2.5. Symmetry and asymmetry

where f : IR → [0..1] or Z → [0..1]. (f(0) = 1 indicates reflexivity)
Often one assumes that f(x) is monotonously decreasing for x > 0 or

monotonously increasing for x < 0. Symmetric and asymmetric measures are
shown in Fig. 2.5.

Discussion

There is a lot of knowledge contained in the measures. The first asymmet-
ric measure says “smaller is better (y < x)” while the second measure says
“greater is better (x < y).” As an example, we consider the attribute price
(for an object, a therapy, etc.). In the problem x, the desired price is presented
and it is perfectly matched in the case for y = x. If in the first example the
price to pay and in the second example the price obtained is meant then there
are two utilities involved. In the first situation, the utility is still optimal if one
has to pay less and in the second example it is still optimal if one gets more.
This justifies the shape of the curves. However, there is a subtle point because
the utility function may not be bounded. That means, to obtain even higher
prices will still increase the utility and this is not reflected by the measure.
From the viewpoint of fuzzy sets, these measures would be regarded as fuzzy
preferences.

Instead of linear functions, more involved ones for the decrease can occur
that contain more knowledge about the problem. Convexity is shown in
Fig. 2.6.

– Downward convexity: A small difference between two values causes a big
decrease of similarity

– Upward convexity: A small difference between two values causes only a
small decrease of similarity

– Combined

Such knowledge is often decisive for technical machines as well as for eco-
nomic decisions.

If we tolerate differences between the two values even to a defined dis-
tance x1 we can use the following similarity function as shown in Fig. 2.7
(S-Function) what gives rise to an even more sophisticated local measure:

Sim = exp
(
(−ax)3

)
with a ∈ IR
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As a result, one can say that a local attribute can contain important knowledge
for the problem solution. Because the knowledge can be of arbitrary nature
there is no general method to represent it in the measure. This depends on
the familiarity with the domain and with the representation methods.

These similarity measures reflect very much the utility orientation of the
sophisticated and the generalized period. In particular, similarity reflects pref-
erence. This shows again that the generalization is useful because all the
algorithms and tools can still be used; it is one of the reasons for commercial
success of CBR.

In specific situations, one has, of course, to define precisely the intended
semantics.

2.3.5 Symbolic Arguments

Symbolic arguments often are coded by numerical values. Symbolic values
can simply be sets or they can carry a structure. This can be, for exam-
ple, an ordering or a taxonomy. These structures are reflected by measures.
Other possibilities are interval-based values. Symbolic arguments are often
coded by numerical values. Such a coding is sometimes justified but not al-
ways. If one encodes symbolic values into numerical values this increases ef-
ficiency at run time. On the other hand, some transparency is lost because
one looses the connection to the original sources of the values. In particular,
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Table 2.4. Similarity table

s[x,y] v1 v2 . . . vk

v1 s[1,1] s[1,2] s[1,k]

v2 s[2,1] s[2,2] s[2,k]

. . .

vk s[k,1] s[k,2] s[k,k]

this creates difficulties in similarity assessment and maintenance, because the
original motivations are no longer visible.

For attributes A with unstructured symbolic values {v1, v2, . . . , vk}, there
is no other way for defining measures than using tables; they are also called
similarity matrices.

A similarity table simA(x,y) = s[x, y] is shown in Table 2.4.
The more structure is defined on the symbolic values the more systematic

the similarity measures can be defined.
For reflexive similarity measures diagonal entries are 1 and for symmetric

similarity measures we have: upper triangle matrix = lower triangle matrix.
For ordered symbols, an ordering is on the value range. Example: Quali-

tative values:

{small, medium, large}

where small < medium < large.
We want to use local similarity measures like for numeric types. Therefore,

we define an integer value for each symbol so that the ordering is preserved.
Example:

– Small → 1
– Medium → 2
– Large → 3

On the ordinal scale itself there are no differences defined. The mapping to
numbers, however, allows to model differences between the values, for example,
if the gap between small and medium is smaller than the one between medium
and large; it is a simple way to represent this knowledge in the measure. So,
for example,

– Small → 1
– Medium → 5
– Large → 6

would indicate such different gaps, namely that large is closer to medium that
medium to small.

In case of attributes like name where the values are strings, the Levenshtein
distance [16] often used. It counts the number of changes needed to change one



46 M.M. Richter

string into another one. The possible change actions are insertion, deletion,
and modification. If these steps have different costs then more similar means
cheaper. This measure is of a very simple character but it is sometimes useful
for correcting misprints. Often it is extended by making use of the fact that
certain orderings of letters do not or rarely occur in a language; this is of
course language dependent.

This principle of using modifications can also be used in global measures.
For example, if one compares technical devices a measure is given by the
number (or cost) of changes that transform one device into the other one.

In symbolic representations the local–global principle is quite standard.
Examples are component-oriented descriptions of complex objects like
machines, processes, or image descriptions. They very often employ a part-of
(or part-whole) hierarchy. The underlying language elements can be of differ-
ent nature. Quite common are description logics; here we will restrict ourselves
to attribute-value representations, see [17].

This gives rise to a taxonomic structures (trees or graphs) that can be
used to define similarities for representing knowledge about the taxonomies.

The simplest measure would count the number of nodes to the deepest
common predecessor what defines a graph distance.

A more refined method is seen in the next example.
The principle definition of the similarity for leaf nodes is:

– Assignment of a similarity value to each inner node
– Similarity values for successor nodes become larger
– Similarity between two leaf nodes is computed by the similarity value at

the deepest common predecessor

Example:
We consider a small example of a hierarchy of computer tools (Fig. 2.8).
Taxonomies are also widely used in order to investigate the similarity of

concepts. This lead to the investigation of the similarity of objects in an ontol-
ogy, see [18]. There the approach of just counting the number of steps to the
deepest common ancestor was refined. The difficulty here is that not all links
may have the same weights and counting the links will not suffice. Among the
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Fig. 2.8. Taxonomy



2 Similarity 47

generalizations one finds information content measures or additional informa-
tion about the part-of or the is-a relation, see Sect. 2.3.5. An interesting point
is that one can use context information too. Concepts may occur in several
ontologies, e.g., in a chemical as well as in a biological ontology. The context
is the specific ontology that can lead to different distances, see Sect. 2.3.5.
One can regard this as a utility orientation because an ontology is built for a
specific purpose.

These ideas are extended to nonhierarchical relations. A running system
is the lexical database WordNet, see [19].

2.3.6 More General Arguments

Besides attributes there may be many other kinds of expressions that can
serve as arguments for a similarity measure. We will discuss four of them:

1. Real-functions
2. Fuzzy functions
3. Random variables
4. Combinations of probabilities and taxonomies

We give some examples.

1. Real valued functions or sets in IRn: This will be discussed in Sect. 2.8.2
(Hausdorff and Frechet measures)

2. Fuzzy memberships functions as arguments (see [20]; for a general discus-
sion of similarity and fuzzy sets see [21])

In order to compare fuzzy membership functions, two methods became pop-
ular:

(a) Crisp Method:
Select some ai for which µi (ai) maximal, i = 1, 2; put d(µ1, µ2) := |a1−a2|

(b) Integral Method:
Fi =Area between µi and x - axis
d (µ1, µ2) = Size (F1∆F2) (Symmetric difference, Fig. 2.9)

Distances now compare fuzzy membership functions!
Problems:

(a) Two fuzzy functions with disjoint areas have always the same distance.
(b) The shape of the curves in the crisp method does not play a role.

A combined method is as follows:

µ1 µ2

Fig. 2.9. Symmetric difference
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a
L(A) R(A)

µ

Fig. 2.10. Points and fuzzy functions

– If the areas are not disjoint, apply the integral method
– If the areas are disjoint, add to the distance obtained by the inte-

gral method the distance between the two points where both curves
reach zero.

It is also of interest to compare numbers and fuzzy functions, for exam-
ple,“How similar is 43 years of age to young?”; see [20].

Suppose y ∈ Y ⊆ IR and there is a fuzzy predicate A with membership
function µ that has its maximum at m(A), see Fig. 2.10.

Requirements:

If a < b < m(A) then sim(b, µ) ≤ sim(a, µ);
If m(A) < a < b then sim(a, µ) ≤ sim(b, µ);
For a < L(A) or R(A) < a sim(a, µ) decreases monotonically in |a-L(A)| or

|R(A)-a|

3. Random variables as arguments

For random variables, there exist different methods to define similarity mea-
sures.

Let (X,Y)T be a vector of random variables. The linear correlation coef-
ficient for (X, Y)T is

ρ(X,Y) =
Cov(X,Y )√

V ar(X) ∗√V ar(Y )

ρ(X,Y) is a similarity measure in the sense that it measures linear depen-
dencies and it is quite natural for elliptical distributions. For other types of
distributions, the situation is, however, different.

An extension provides a stochastic version of the concept “having the same
monotonicity behavior”:

Let (xT, yT) and (xT, yT) be two observations of the continuous random
variables (XT, YT).

(xT, yT) and (xT, yT) are called

– concordant if (x − x)(y − y) > 0
– discordant if (x − x)(y − y) < 0
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This has a probabilistic version (see [22]) where one considers independent vec-
tors (XT, YT) and (XT, YT) of continuous random variables. Then between
these two vectors

– the probability of concordance is Prob((X − X)(Y − Y) > 0)
– the probability of discordance is Prob((X − X)(Y − Y) < 0)
– the order difference is Q = Prob((X−X)(Y−Y) > 0)−Prob((X−X)(Y−

Y) < 0)

This give rise to define a similarity measure called measure of concordance
between random variables X and Y.

A simple example is the measure called Kendall’s tau (the order difference
from above). Suppose (X, Y) is an independent copy of (X, Y). The we define

τ(X,Y) := Q = Prob((X − X)(Y − Y) > 0) − Prob((X − X)(Y − Y) < 0)

Hence τ measures simply the difference of the probabilities for concordance
and disconcordance, which is intuitively clear for risk analysis if one assumes
that X and Y represent costs.

The measure can be computed according to the following formula:

τ(X,Y) = Q(C,C) = 4 ×
∫∫

C(u, v)dC(u, v) − 1

where the integral is taken over [0, 1]2. The factor 4 is due to the fact that
the range of the measure is [−1, 1] instead of [0,1].

There is a reason why such measures are of interest in our context. What
one wants is to avoid unwanted financial consequences. For example, one does
not want to become bankrupt because all shares in a portfolio go down simul-
taneously. One knowledge source is implicit and hidden in the numerical data.
The concordance measure takes care of this. In risk analysis, the statistical
methods based on copulas and measures of concordance play an essential role.
On the other hand, there are several symbolic data of importance where no
statistical data may exist. It was emphasized several times that qualitative,
i.e., symbolic attributes are also important for describing risks. Such data may
be the type of the company, political stability, or type of the products sold.

How can these two data types be integrated? The problem is the lack of
integration with numerical attributes. We suggest here that the similarity-
based approach provides a possibility for such an integration method. The
idea is to have a combined vector of attributes, one part contains random
variables and the other one symbolic attributes.

In the context of risk analysis for investment it has to be avoided or mini-
mized that several assets of a portfolio go down drastically at the same time,
i.e., that they are not concordant with respect to going down. We assume here
that no distribution functions or statistical evidences for the relevancies of the
values of the symbolic attributes are available. Example attributes are:
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– Company type; range = {steel, military, energy, tourism}. For the local
similarity simCT with respect to concordance it is reasonable to assume
simCT (steel, tourism) < simCT (steel, military).

– Area; range = {EU, USA, Middle East, South America, . . .}. For the local
similarity simA with respect to concordance it is reasonable to assume
simA (EU, South America} < simA (EU, USA).

These attributes have to be associated with weights. The local measures and
the weights reflect domain knowledge in the same way as distribution functions
(if available) do.

4. Combining Probabilities and Taxonomies

This plays a role when sequences (like DNA) are stored with a large amount
of “annotation.” While the text is accessible by computer applications, it is
not easy to interpret the text computationally. This is one of the reasons for
the growing interest in ontologies within bioinformatics.

In ontologies, terms can have multiple parents as well as multiple chil-
dren along the “is-a” relationships. One way is to base measurements on the
information content of each term. This is defined as the number of times each
term, or any child term, occurs in the corpus. This can be expressed as a
probability in such a way that the information content of each node increases
monotonically toward the root node, which will have an information content of
1. Given these probabilities, there are several possible measures of similarity.

For two objects o1 and o2, P(o1 o2) is the set of parental concepts shared
by both o1 and o2. We take the minimum probability p(o), denoted by p, if
there is more than one shared parent. The minimum of these probabilities is
pm(o1, o2) := min(p(o)|o ∈ P((o1 o2)).

Possible similarity measures are:

1. sim1(o1, o2) = − ln(pm(o1, o2)) (the Resnik measure)
2. sim2(pm(o1, o2) = 2 ln(pm(o1, o2))/(ln(pm(o1) + ln(pm(o1)). This is

known as the Lin measure. It uses both the information content of the
shared parents and that of the query terms

For more applications, see Wordnet [19].

2.4 Case-Based Reasoning

CBR is a general problem solving method that can be applied to all problem
types discussed here. The basic idea is to make use of previous experiences
when solving problems. CBR has been developed in a systematic way over
the periods näıve, sophisticated, and generalized, discussed in Sect. 2.2.3. The
developments were always driven by applications. We will first discuss the gen-
eral principles of CBR. As a practical introduction into CBR, we recommend
the tool CBR Works [23].
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2.4.1 Introduction into CBR

A case is an ordered pair (p,s) where p is a problem and s is its solution (that is
assumed to be satisfactory). The solution may contain additional information,
e.g., an explanation or an advice how to use the solution. A case base CB is
a finite set of cases.

Formally, a case-based system is a quadruple (CB, L, sim, Ad) where L
is the representation language for the cases from the case base CB, sim a
similarity measure between problems, and Ad an adaptation operator that
transforms solutions into solutions.

The basic way a case-based system works is described in Fig. 2.11.
A new problem P is presented and a case is selected from the case base

where its problem part is a nearest neighbor to P. The solution part of the
case is either taken over directly or improved by the adaptation operator. Tak-
ing the nearest neighbor comes from the assumption that this gives the best
solution; it is analogous to the maximum likelihood principle in probability.
This causes a demand for the similarity measure: The selected solution should
in fact be the most useful one from the available ones. In the näıve period
this was not investigated very much. In general, the process of defining such
a measure is often quite involved and called similarity assessment (see [24]).

The retrieval of the nearest neighbor is a problem in itself. It is more
complex than in databases and hence the similarity should be computed fast.
We will not discuss the retrieval problem here and we remark only that this
is one of the reasons why a measure with a weighted sum is desirable.

The utility view is shown in Fig. 2.12. As a consequence of this view the
basic CBR paradigm is now seen as a demand on the similarity measure: If
a new problem p is considered as similar to an old problem pi then a useful
solution for pi should also be useful for p.

In other words, the similarity between problems should approximate the
utility of the solutions.

We have now two views. The classical CBR approach (Fig. 2.11):
The reuse step either takes over the solution from the case or it modifies

it. This is called a solution transformation or adaptation. It can be useful, for

new solution L

new problem P

Adaptation
Solution Li

Problem Pisim(P,Pii)

Fig. 2.11. CBR principle
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solution si

problem pi

new solution s

new problem p similarity

sim(p,pi)

C
A
S
E
B
A
S
E

utility u(p,si)

Fig. 2.12. Utility in CBR

problem

solution ?

problem from case base

Solution from 
the case base

nearest neighbor 
search

stored

reuse

Fig. 2.13. Classical CBR

problem

solution from the case base

nearest neighbor search
Requires:
Notion of similarity 
between problem and solution

Fig. 2.14. Direct solution search

example, if the object descriptions contain much symmetry: One stores only
one case from a set of symmetric ones and reintroduces the symmetry by an
adaptation.

The generalized approach establishes directly a relation between the prob-
lems and the possible solutions, as stated in Fig. 2.14.

This has the advantage that no stored cases are needed anymore, only
solutions. This is of particular interest if one has no experiences but much
background knowledge about the relation between problems and solutions.

2.4.2 Axioms Revisited

In the näıve period, it was very intuitive to assume axioms like reflexivity and
symmetry. This was only occasionally questioned as in cognitive science in
connection with the Tversky measure.

Due to the changed view on similarity measures in the last years, such
axioms have been more or less given up, at least in general. Originally the
measure was concerned with the similarity of problem situations in order to
apply previous experiences in some kind of analogical reasoning. The idea for
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similarity between objects was that they looked similar. In this view similarity
was thought as a form of fuzzy equality. Most axioms discussed above survived
for specific applications, only but not in general:

– From this point of view, the transitivity axiom of equality was abandoned
because small errors do add up.

– The symmetry axiom fails often when similarity measures are intended to
reflect utility.
For example, the degree of usefulness of A for B is often not the same as
the usefulness of B for A.

– If different sets U and V constitute the domain of the measure the axiom
of reflexivity sim(x, x) = 1 had to be given up.

So, are we running out of axioms and a similarity will be nothing then an
arbitrary real-valued binary function? There is another axiom that is not
inherited from fuzzy sets and metrics. It is connected with the local–global
principle:

The Monotonicity Axiom:
If sim(a,b) > sim(a, c), then there is at least one i ∈ I such that

simi(ai, bi) > simi(ai, ci).
This axiom can be regarded as a partial order form of the substitution

axiom (substituting equals by equals) for equalities. The importance of the
axiom is twofold, it allows in general more efficient computations and it sim-
plifies the assessment of utility functions and similarity measures. The point is
that local improvements of measures also lead to a global improvement. One
can make use of this in learning similarity measures.

Many measures introduced above satisfy this axiom. The question arises
whether the axiom can always be satisfied by a suitable choice of the measure.
An example where it fails is the well-known XOR classification problem that
is described in Fig. 2.15.

Suppose the case base contains already three elements that are correctly
classified, then there is no weighted Hamming measure for classifying the
fourth element correctly using the nearest neighbor method:

If the monotonicity axiom fails, the question is to replace the measure by
one where it is valid and that is compatible with the given one (see Sect. 2.4.1)

0

1

1

W2

W1

Two classes: {(0.0), (1,1)}, {(0,1), (1,0)} 
are given (representing the Boolean function 
“exclusive or”)

(1,1)

Fig. 2.15. Violation of monotonicity
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or that has at least the same nearest neighbor relation. The XOR example
shows that this is not always possible unless the vocabulary is extended. The
reason is that there are some dependency relations between local attribute
values.

A way out is to introduce additional virtual (definable) attributes in addi-
tion to the original primary ones. In case of the XOR-problem, the attribute
XOR (x,y) will suffice. Such additional attributes are called virtual attributes.
The purpose of introducing virtual attributes is to shift nonlinear depen-
dencies between attributes from the measure into the definition of virtual
attributes. There is a connection with neural nets where the XOR-example
shows that with a single neuron only one cannot compute all Boolean func-
tions. The introduction of virtual attributes corresponds to the insertion of
new nodes in the neural net. When virtual attributes are introduced and the
measure is extended correspondingly one has to verify that all the computa-
tions for the values of the new attributes have also been performed by the
old measure. However, there is still a foundational problem: Can one always
achieve a measure that is monotonic?

From a practical point of view, the virtual attributes have another advan-
tage: They can more directly reflect the utilities and therefore it is easier to
determine the weights.

In Sect. 2.5, PR methods will be considered. In PR, one is less interested
in the introduction of virtual attributes and takes care of dependencies in a
different way.

2.4.3 Knowledge Containers in CBR

CBR is more than just making use of similarity measures. It allows symbolic
reasoning as well and can be improved by learning procedures. For describing
this we introduce the concept of knowledge containers.

The XOR example in the last section already shows that there is a rela-
tion between the similarity measures and the representation language. That
means, the measure is only one part of the problem solving capacity of a CBR
system. We call such parts of the problem solving process knowledge contain-
ers as described in Fig. 2.16, (see [25], [26]). They are not submodules of a
system because they do not solve any subproblem. They are rather description
elements that can be filled with knowledge elements. They also play a role in
many other problem solving methodologies.

In CBR we identify four major knowledge containers, Fig. 2.16.
There is an interaction between the containers:
A simple observation is that any of the four containers can in princi-

ple contain essentially all relevant solution knowledge. In practice, however,
this is usually impossible and in addition such containers would contain little
efficiency knowledge:
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Available Knowledge

Vocabulary
Similarity
Measure

Case Base
Solution
Transformation

Fig. 2.16. Knowledge containers

– The vocabulary: We need for each problem description p simply an addi-
tional (ideal) virtual attribute sol which has as domain all solutions and
where s = sol(p) gives the correct solution.

– The similarity measure: For an ideal measure simideal, we could have
simideal (q, p) = 1 if the case (p,s) provides some best solution s and
simideal (q, p) = 0 otherwise.

– The case base: An ideal case base in this sense would simply contain all
possible cases.

– The solution transformation: One can simply ignore the cases and con-
struct the solution from scratch using the adaptation rules.

In practice of the CBR applications, this container is of little importance, it is
only used in order to reduce the number of stored cases because the remaining
ones can be obtained by straightforward adaptations. The situation is, as we
will see, somewhat different in IR.

This shows that the similarity measure is strongly related to the other
containers. The containers play a role when a CBR system is constructed;
then the containers have to be filled. We distinguish it into two phases:

(a) The compilation phase: That contains everything that happens before an
actual problem is presented

(b) The run time phase

For ordinary programs and knowledge-based systems, one has to understand
all the knowledge that enters the system. In a CBR system the cases need
not to be understood at compile time, they are just given to the case base
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container. Understanding the cases is only necessary at run time. The con-
struction of the measure is called similarity assessment; the measure has to
be understood at compile time.

This has the advantage that one can start with a system that works, but
not necessarily very well. At a later time the system can be improved.

There are two forms of improving the knowledge in the containers:

– Improving the knowledge for the individual containers separately
– Shifting knowledge between containers (e.g., by deleting cases and

improving the measure)

These two aspects are important for:

– Development of a CBR system (see [24])
– Maintenance of a CBR system, in particular as a reaction to changing

contexts (see e.g., [27])

There also basically two ways to perform the improvements:

– Improvements by humans
– Improvements by machine learning techniques

A common way to improve the system is to add new (virtual) attributes:
This allows defining simpler similarity measures, as was clear from the XOR
problem. In fact, virtual attributes are quite common in practice and they are
by no means restricted to CBR; we will present some examples.

Medicine

Suppose we have the two primary attributes height and weight of a person. In
order to judge the physical condition, it is useful to introduce the body-mass
index that allows comparing the physical condition of two persons. A com-
parison on the basis of primary attributes only would force the similarity
measure to perform the computation of the body-mass index during the sim-
ilarity computation. This has to be done at run time and is in addition much
less transparent.

Mechanical Engineering

In making use of analogies virtual attributes play a major role. They run in
this field under the name “similarity criteria.” They cover wide ranges as in
dynamics, thermodynamics, phase transitions, and processes in chemistry.

Robotics

Often the primary data, i.e., the digital signals coming from sensors, are not
very informative, for example, for determining the location of a robot because
the values of some virtual attributes need to be computed.



2 Similarity 57

Economics

The financial sections of newspapers are full of economical indices that are
relevant for economical decisions. Here not only few primary data are partic-
ipating but in fact there are very many. The virtual data are often computed
by statistical methods and in this context they run under the name metadata.

It is a frequent observation that the relation between the vocabulary con-
tainer and the similarity container is often overlooked and neglected. Finding
virtual attributes means to identify influence factors and belongs therefore to
the area of sensitivity analysis. That should be done before or at least parallel
to similarity assessment.

An extension of introducing virtual attributes is defining a whole new
language. This is necessary if the two objects to be compared are of very
different character and if the possible objects are not enumerated but represent
all instances of certain descriptions in a language.

These may be such objects as

– Functionalities and products: Electronic products that can be composed
respecting some constrains and possible actions that one can be performed
with them

– Observations, therapies, etc.

This occurs if one wants to classify products with respect to a certain function-
ality. The description uses not the same vocabulary for products and func-
tionalities and the techniques for building measures used so far cannot be
applied.

There is a gap between objects described in different languages that has
to be bridged in order to define a similarity measure.

An example from electronic commerce will illustrate this. Suppose we want
to deal with electronic switches and suppose that we have a description of the.
Intended functionality; then we have a description of the technical details of
the products, as in Fig. 2.17.

The bridge attributes are those that occur on both sides. If all attributes
are bridge attributes, one could perform the comparison directly. In a situation
as here (only one bridge attribute), one has to introduce a whole new bridge
level, i.e., a language to which both sides can be mapped. In this case, this
is the high level machine instruction to which both, functions and products,
can be mapped.

2.4.4 Learning Similarity Measures

The basic idea in CBR is to represent all knowledge and everything that
can be taken into account explicitly. However, there is knowledge that is not
easily available because it is hidden in the cases. In order to improve similar-
ity measure, this knowledge has to be made explicit what is done by learn-
ing procedures. Learning can be done with or without feedback. For pure
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Function Product
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High level machine instructions High level machine instructions
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Data Paths # Pipeline  Stages

Vcc = 5V Clock  #Registers 
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Bridge attribute

Fig. 2.17. Bridge language

attribute-value representations ideally weighted hamming measures can be
sufficient. In this case, all potential nonlinearities are hidden in the (possi-
bly virtual) attributes. As pointed out above, this goal cannot be reached by
just defining suitable measures; it also requires the introduction of virtual at-
tributes. To find virtual attributes is a topic in symbolic learning and seems
presently to be out of scope for machine learning techniques for complexity
reasons. Hence, we keep the vocabulary fixed and restrict ourselves to learning
measures.

The measures are to a large degree determined by the domain under con-
sideration because they should reflect utility. One can learn two things:

– Local measures
– The constructor function of the global measure

Learning of local measures has been paid relatively little attention. An
approach using genetic algorithms can be found in [28].

Learning global aspects has found considerable interest for weighted Ham-
ming measures. For this reason, we concentrate on learning procedures for the
global aspects, i.e., on the weight functions.

We again consider attribute-value representations. However, we have to
distinguish the different ways in which weights can be represented. In the
simplest case, weights are numbers.

The weights are global in the sense that they do not depend on the argu-
ments. In a more refined version, the weights depend on the specific arguments:

sim(p, s) =
n∑

i=1

wp,s · simi(pi, si)
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Fig. 2.18. Learning without feedback

Weight learning can take place with or without feedback and for both types
a number of variants is known, see [29], [30].

Learning weights for the Tversky feature representation took place in the
PATDEX system (see [31]) where a supervised version of the competitive
learning from neural nets was used (for classification purposes). The basic
procedure was:

– If class was correct, then increase weight for features with value 1 and
decrease weights for features with value 0.

– If class was false, then do the opposite.
– Normalize the weights finally

Learning without feedback studies the distribution of the objects in order to
determine the relevancies (Fig. 2.18). An example with two attributes:

Learning with feedback corrects errors in nearest neighbor search or more
general in the qualitative partial ordering ≥x.

The learning procedure employs a correction of the form: wik := wik+∆wik

Such a learning rule also be applied if the measure behaves correctly. One
simple approach for binary attributes is described as follows (see [32]):

1. Feedback = positive (for correct behavior):
– Weight of attributes with the same values for p and s is increased
– Weight of attributes with different values for p and s is decreased

2. Feedback = negative (for incorrect behavior):
– Weight of attributes with the same values for p and s is decreased
– Weight of attributes with different values for p and s is increased

In all cases, ∆wik remains constant.
More advanced methods use techniques from neural nets for weight learn-

ing as described in [33], [30], and [34]. Many theoretical results for learnability
can be found in [35]; there it is investigated what can theoretically be learned
and what cannot be learned.



60 M.M. Richter

For learning virtual attributes, the first idea is to use concept learning.
Unfortunately, this is out of scope for complexity reasons. In PR, this problem
is circumvented by learning numerical decision surfaces, see Sects. 2.5 and 2.6.

Learning methods have also been applied to improve other knowledge con-
tainers like the case base.

2.5 Pattern Recognition

Pattern recognition is a very general problem area that studies the operation
and design of systems that recognize patterns in data. We do not intend to
describe PR in general, we are only interested in aspects that are connected
with similarity.

The data orientation is important for PR. These data can be, however, of
a very general nature, for example numeric or symbolic as in CBR. Because
such patterns are not always identical, the concept of similarity often plays a
crucial role and we encounter similarity measures frequently. They are, how-
ever, accompanied by many other techniques, which we will not discuss in
detail. Some will be mentioned later. A major difference to CBR is that sym-
bolic reasoning methods do not play such a role. This restricts the scope of
possible applications. In fact, the main applications are in classification and
we will discuss some of this in Sect. 2.6.

The area encloses subdisciplines like discriminant analysis, feature extrac-
tion, error estimation, cluster analysis (together sometimes called statistical
PR), grammatical inference, and parsing (sometimes called syntactical pat-
tern recognition). Important application areas are image analysis, character
recognition, speech analysis, man and machine diagnostics, person identifica-
tion, and industrial inspection. However, in these disciplines special methods
have been developed that do not apply in other disciplines. On the other hand,
all these approaches are in some sense different from the CBR approach.

A typical PR system makes its “decisions” by simply looking at one or
more feature vectors fed as input. Pattern recognition aims to classify data
(patterns) based on either a priori knowledge or on statistical information
extracted from the patterns. The patterns to be classified usually groups of
measurements or observations, defining points in an appropriate multidimen-
sional space. The strength of this approach is that it can leverage a wide
range of mathematical tools ranging from statistics, to geometry, to optimiza-
tion techniques. There are two tasks:

– The representation task: How to represent the objects in a suitable way?
– The recognition task: How to classify the represented objects?

The first step is a preprocessing step that represents the patterns to be classi-
fied. The representation defines certain attributes that are important for the
task. This is sometimes quite simple, but can also be very involved, depending
on the task. Sometimes, this step requires much knowledge about the objects
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and the task. This is particularly difficult for dealing with images. Mostly, the
values of the attributes (the patterns) are represented as real-valued vectors;
these vectors code features or attributes of interest. This step requires much
knowledge about the objects and the task and it can essentially be viewed
as the definition of virtual attributes. This is particularly difficult for dealing
with images and often requires deep domain knowledge.

An important point is that the representation phase is a closed phase; after
it is finished it cannot be taken up again. This phase takes not place at run
time and therefore efficiency issues are of minor importance.

Examples are discussed in the sections of classification and image under-
standing.

After this step is performed, there is a crucial assumption:

– All remaining knowledge is contained in the data of the examples, i.e., no
background knowledge can be used afterwards.
The knowledge in the data is concerned with:
a) The dependencies between the attributes: Here often Bayesian net-

works are employed.
b) The determination of the decision surfaces of the classes.

For the recognition task, statistical techniques have been widely used. Statis-
tical classifiers include linear discriminant function (LDF), quadratic discrimi-
nant function (QDF), Parzen window classifier, nearest-neighbor (1-NN), and
k-NN rules, etc. Under the assumption of multivariate Gaussian density for
each class, the quadratic discriminant function is obtained by using Bayes
theory. The modified QDF (MQDF) proposed by Kimura et al. [37] aims
to improve the computation efficiency and classification performance of QDF
via eigenvalue smoothing, which has been used successfully in the handwriting
recognition. The difference from the QDF is that the eigenvalues of minor axes
are set to a constant. The motivation behind this is to smooth the parameters
for the compensation of the estimation error on finite sample size.

Because of this, in general very simple similarity measures are used; an
overview was given in Table 2.3 in Sect. 2.3.1. For specific applications, the
measures are often enriched by special tricks, motivated by special situations.
There is, however, no general domain-independent principle behind them.
Improving measures by learning plays only a little role.

Special attention was paid to high dimensions of attributes vectors. Some
kind of opposite to defining useful features is removing irrelevant data, i.e., the
reduction to lower dimensions. From the many methods, we mention an
information-oriented one. Suppose the patterns are given as functions S → U.

Any classifier (see below) C: US → {1, . . . ,n} and any subset X ⊆ S define
an equivalence relation =C,X over US by putting for αX, βX ∈ UX:

αX =C,X βX ⇔ for all γY ∈ UY : C(αX ∪ γY) = C(βX ∪ γY),where Y = S/X
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The influence potential is then defined by

νC(X) := |US/ =C,X |

The purpose of the influence potential is to see how far a subset of values of the
input pattern determines the class of the pattern. Subsets with low influence
potential can be omitted, see [36]. This reduction simplifies the computation
of the similarity measure. In CBR, it simplifies also the similarity assessment.

Because each attribute of high-dimensional data records only contains
a very small amount of information, the Euclidean distance of two high-
dimensional records may not always correctly reflect their real similarity. So,
a multidimensional query may have a k-nearest-neighbor set, which contains
only few relevant records. To address this issue, one can use an adaptive pat-
tern discovery method to search high-dimensional data spaces both effectively
and efficiently, see [38]. The user is allowed to participate in the database
search by labeling the returned records as relevant or irrelevant. By using
user-labeled data records as training samples, the method employs an adap-
tive pattern discovery technique to learn the distribution patterns of relevant
records in the data space. From the reduced data the approach returns the
top-k nearest neighbors of the query to the user – this interaction between
the user and the DBMS can be repeated multiple times.

As a consequence of using the simple similarity measures, the decision
surfaces are quite difficult; they are in particular far from being linear. If
the surfaces are under control then there is no need to invent virtual attributes
or sophisticated similarity measures. Everything is shifted to identify the
decision surface.

The determination of the decision surface is regarded as a learning task.
This learning is mostly unsupervised. The view is that the classes are clusters
that have to be identified. This is considered in the next section.

The success depends very much on the complexity of the objects and the
amount and quality of available data. If there are too many aspects in the local
attributes and too many dependencies one would need too many data. Even
if there is background knowledge about dependencies between the available
data, this knowledge could not be represented easily and could therefore not
be used.

A problem is that in many real-world applications the objects are not
naturally representable in terms of a vector of features. For example, graph
representations lack a canonical order or correspondence between nodes. Fur-
thermore, even if a vector mapping can be established, the vectors will be
of variable length, hence would not belong to a single vector space. On
the other hand, it is quite often possible to obtain a measure of the sim-
ilarity/dissimilarity of the objects to be classified. It is therefore tempting
to design a pattern recognizer which, unlike traditional systems, accepts as
input a matrix containing the similarities between objects and produces class
labels as output.
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2.6 Similarity, Classification, and Clustering

2.6.1 Classification

In classification one deals with a universe U and subsets Ki, i ∈ I, of U called
classes. A classifier is a function

f : U → I

where f(x) = i implies x ∈ Ki. In a cost sensitive classification, a certain cost
is associated with each false classification and hence not all errors are alike.
This is of particular importance if the classification has an insecure base (as
often in CBR).

A simple way for a utility function is Prob(x is classified correctly for
x ∈ U); for cost sensitive classification, it would be the expected cost.

Another classification task is what we call dynamic classification. Here
there is not a fixed number of classes but only a language to describe classes
and the particular classes can be dynamically generated. An example was
given above when products and functionalities have been compared.

The classification contains two tasks as mentioned above:

– The representation task: How to represent the objects in a suitable way?
– The recognition task: How to classify the represented objects?

The representation task is in particular difficult for images where one has to
extract relevant features from the image. For fingerprints, this uses e.g., arch,
tended arch, left loop, right loop, and whorl. For face recognition, very dif-
ferent features are used, see Sect. 2.8. If the relevant features are known in
advance and can be completely listed, PR techniques dominate here. See also
Sect. 2.8.4.

In a situation where such a listing is not achievable as often in medicine
where no listing of the pathologies but only a description language for the
object exists one is more tempted to use techniques from CBR.

In all methodologies, one has the choice between two strategies for per-
forming the recognition task:

– Similarity orientation
– Distance (dissimilarity) orientation

The first strategy favors to find out whether two objects are in the same class
while the second is interested in approving that two objects are in different
classes. A discussion of this question is given in [38].

In CBR, one takes a symbolic representation with attributes reflecting
directly the relevant aspects. PR, all features are represented numerically in a
preprocessing step. This uses essentially the same knowledge as in the symbolic
representation but it is hidden from the user.

Classifiers also be represented in different ways. A case based classifier is
essentially of the form (CB, sim) where CB is a case base and sim is a similarity
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measure on U×CB (to be more precise on U× (Problem parts(CB)). Therefore
the class of the elements in CB is known; the class of x ∈ U is now computed
using sim, for example, by

NN(x) ∈ Ki → x ∈ Ki

where NN(x) is the (or some) nearest neighbor of x in CB. Of course, the near-
est neighbor notion may be refined by considering the first k-nearest neigh-
bors (k-NN).

The classifier may, in addition to just providing the class of an element, give
additional pieces of information. If the objects of the universe are represented
as attribute value vectors, these could contain e.g., the attributes that are
responsible for vector being close to its nearest neighbor.

In a more general form, a case-based classifier is of the form

(CB, sim,T)

where T is a solution transformation. A typical situation where this occurs is
when symmetries are present. Suppose e.g., we have left-right symmetries in
a medical situation where left means “left ear” and right means “right ear”,
then we can make use of this in the following way:

if xleft is in Kleftthen xright is in Kright.

(x is an observation and K is a diagnosis). If now NN(z) = xright, xleft is not
in CB but closer to z than xright

i (because z is an object “of left type” then
the solution transformation has to map it: T(Kright

i ) = Kleft
i .

This approach is sometimes criticized because it can be computation-
ally expensive to compute the distance to all given examples while omitting
examples may loose accuracy.

In PR, there is much attention paid on the representation task. After that
learning procedures take place that extract classification knowledge from the
data and hence comparatively simple measures can be used, as the Euclid-
ean distance, the Hamming distance, or the mean-square error. However, the
classes are learnt in a complex process that needs many examples and statis-
tical and learning methods.

There are quite a number of improvements and we will mention one as
an example (see [40]). If one represents independent objects, the distribution
of summation-based distances is normally distributed in the limit, according
to the central limit theorem. Therefore, Bayesian classifiers assuming normal
distributions can be used. The approach in [40] allows that the NN-search
operates directly on the distances and not anymore on the objects themselves.

2.6.2 Clustering

Clustering is in some sense the opposite of classification: Given is a similarity
measure and a set of objects, how to define classes? Examples (data files)
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Fig. 2.19. Surfaces

Cluster result 1 Cluster result 2

x1
x1

x2 x2

Fig. 2.20. Different cluster results

are presented without relation to a class. The task of clustering is to discover
classes and definitions of classes. The examples are clustered on the basis of
similarity/distance.

This process is not uniquely determined and the notion of “a correct class”
does not apply because we encounter here unsupervised learning. However,
the results can be tested and on the result of these tests the learning can be
improved.

Density clustering is especially useful for finding clusters that are far away
from circles. As an example we may get e.g., the surfaces in Fig. 2.19, each
representing a cluster.

The obtained clusters depend heavily on the similarity measures as can be
seen in Fig. 2.20.

For the Euclidean distance:

– Cluster result 1 is better

For the weighted Euclidean distance with weights w1 = 0 and w2 = 1:

– Cluster result 2 is better.

Here we see that the weights reflect importances. We also see that elliptic
queries are the same as introducing weights.

With respect to learning, kernel-based learning machines, as support vec-
tor machines, kernel principal component analysis, and kernel Fisher discrim-
inant analysis have got much interest in the field of PR too.

The basic idea of kernel methods is finding a mapping φ such that, in new
space, problem solving is easier (e.g., linear). But the mapping is left implicit.
The kernel represents the similarity between two objects defined as the dot-
product in this new vector space. Thus, the kernel methods can be easily
generalized to a lot of dot-product (or distance)-based PR algorithms. Some
methods can also be seen as dot-product methods by eigen-decomposition of
the covariance matrix.
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2.7 Similarity and Diagnosis

Classification and diagnosis tasks are related in that way that classification is
the first step in a diagnostic process. Sometimes these phases can clearly be
separated, but not always. For that reasons, one has to distinguish between
the diagnostic process and the resulting diagnosis; the diagnostic process is an
interactive process. In medical contexts or in the context of machine faults,
often sufficient to determine the fault class only in so far that the needed
subsequent therapy action is uniquely determined. That means, the diagnostic
process can stop at an earlier stage.

Diagnosis can essentially be considered as cost sensitive classification with
incomplete information. This means that establishing the diagnosis is only the
final step of a diagnostic process. It does not mean that this is the ultimate
goal, because it has to be followed by (or is even interleafed with) a subsequent
therapy or repair operation.

The data on which the diagnosis is based are values of certain attributes
that are acquired by observations, questions, or general tests. Such observa-
tions may not directly lead to attribute values (like temperature); the attribute
values often have to be exhibited from more complex observations. Typical
examples are images what is discussed in Sect. 2.8.

Hence, the diagnostic process splits into test selection and diagnosis (in
the proper sense). Test selection is a problem in itself and can again be guided
by cases (such cases are often called strategic cases). The goal is to ask as few
(or cheap) queries as possible; or more precise to ask questions with a minimal
amount of cost (where cost can e.g., be pain).

In addition, both the diagnostic as well as the strategic cases can provide
additional information as e.g., explanations.

In diagnosis, background knowledge plays an essential role. This is con-
cerned with aspects like fault probabilities, dependencies between observa-
tions, temporal behavior, or the structure of the investigated object (for
example, a human or a machine). Because the diagnostic process is complex,
experiences are useful. The computer support of the diagnostic process, in par-
ticular when radiological images are involved was traditionally quite limited.
In CBR applications, it was, however, extensively in help-desk support.

In case of machine faults, one takes advantage of particular background
knowledge, the taxonomic structure of the machine. The taxonomy refers to
the part-of hierarchy and the different types of the parts. As an example we
consider PC Trouble-Shooting in Fig. 2.21.

Diagnosis in medicine follows partially the same principle as machine
diagnosis. There are, however, two kinds of essential differences (besides
ethical aspects):

1. In medicine, images often play a role, e.g., in radiological clinics
2. Often large data structures are involved (for example, concerning bacterial

analysis, etc.)
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C1 is perfectly suited:

– C1 is more similar to Q than C2

– sim (C1,Q)=1 sim(C2,Q)<1

Storage Device
manufacturer: Symbol 
capacity: Real 
access time: Real

Optical Storage Dev.
read-speed: Integer 
type-of-laser: Symbol

Magnetic Storage Device
build-in-size: {3.5 ; 5.25} 
type-of-magnetic-surface: Symbol

Streamer Floppy Disk Hard Disk

CD-ROM

CD-Writer CD-RW

Writeable O. S. D.
write-speed: Integer

optional storage:

C1

C2

Q

Fault occurs with every
Optical Storage Device

Fig. 2.21. Diagnosis with taxonomies

The first aspect falls into the category of image analysis and the second one
is an aspect of PR. This will be discussed in the next sections.

The cases are previous diagnostic situations (fault descriptions) and the
problem descriptions are observed symptoms for the current problem.

2.8 Similarity and Images

One distinguishes between image processing and image understanding. Image
processing algorithms manipulate images without being concerned with the
meaning of the images. Often this is sufficient to grasp the essentials of an
image. Many sophisticated tools have been developed in medicine for this
purpose. These tools are concerned with very special situations in order to
highlight specific aspects. The purpose of image understanding is different.
Image interpretation uses such algorithms but has a much broader scope. It
has not only to deal with the images as data structures but also have to
take into account the domain of objects occurring on the images. Therefore,
image interpretation makes a reference to the outside world. This world is
represented as a context.

The meaning of the term understanding has a wide range of interpretations.
In recognition tasks like identification of fingerprints or faces, it simply means
to perform this identification in a correct way. Here, the problem types are on
the borderline of image processing and image understanding. This also shows
that the borderline between image understanding and PR is not sharp.

A different problem occurs in a scenario with different kinds of objects
that may occur or may be missing. In addition, for the occurring objects
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there may be no fixed location in the image. The only thing we have is a
certain description language and the understanding task is to transfer the
image into a description of the image.

Similarity measures fall mostly into the category of image understanding.
There are many other techniques like the ones mentioned here (for example,
regarding color) that are not discussed here because we concentrate on the
role of similarities.

There are two major applications for image understanding:

1. For diagnostic purposes (in medicine or technical environments)
2. For archives: To find a relevant image

For an overview over CBR, image understanding, and processing see [41].
The specific approach below for the medical example is described in [42], [43],
and [44].

2.8.1 A General Principle: The Level Approach

Because similarity measures operate on representations we have to first discuss
the possible representations of images and how they are organized according
to the local–global principle.

Images are in the first place represented by pixels. There are different kinds
of pixels:

1. Values are only 0 or 1
2. Values are real numbers from [0, 1] (grey values)
3. Color values

For simplicity, we restrict on binary values. The increasing expressive power, in
particular, when using color values is, however, of great practical importance.

For describing the meaning of images, humans use natural language or
a high-level formal language that is easy to understand by the user. Such a
formal system could use e.g., logic-oriented languages like predicate logic or
attribute value representations with a well-defined semantics for formulating a
formal version of the meaning. A major problem is now how such a high-level
language can be reached from the (low) level of pixels.

For this purpose, we will introduce ordered language levels as an instance
of the local–global principle as seen in Fig. 2.22.

At the highest level, the meaning of the image is formulated. The expres-
sions of each level are defined in terms of expressions of lower levels. To obtain
the expressions of the higher level from a lower level, certain constructor func-
tions have to be defined that respect the constraints of the knowledge base.
As an example we use images from the medical domain.

Similarity measures can be and have to be defined at each of these levels;
they are combined according to the local–global principle.
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Level of overalldescription

Pixel Level

Geometric and shape level Image processing methods

Fig. 2.22. The level approach

Fig. 2.23. Where Hausdorff metric fails

2.8.2 The Lowest Level

This is the (given) pixel level. Because we restrict ourselves to binary val-
ues, the pixels can be regarded as points in the real plane. There are many
pixel-based measures and we restrict ourselves to some that are of principle
mathematical interest.

Suppose a metric δ on the plane is given. In order to compare sets A and
B of points, a common metric is the Hausdorff metric δH [45]:

(i) δH(x,A) := inf(δ(x.a)|a ∈ A)
(ii) (δasym(A,B) := sup(δH(a,B)|a ∈ A)
(iii) (δH(A,B) := max((δasym(A,B), (δasym(B,A))

The Hausdorff metric is mostly intuitive as well as useful for convex sets.
Otherwise, several very strange phenomena occur as we can see from the
example of the range of to curves (dotted and not dotted) where δ is the
Euclidean distance, Fig. 2.23:

Intuitively, the two lines are completely different and they will play a
different role in applications. On the other hand, the Hausdorff distance is
relatively small. What is the reason? It disregards the shapes. The point is
that not only the individual distances between points play a role but also
some higher-order features; these are completely neglected here.

For this reason, the Hausdorff measure in particular and the pixel level in
general is insufficient for grasping the meaning of an image. Of course, one
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can try to improve the situation by choosing another metric δ but with little
hope of success.

In a first attempt to overcome this problem, the Frechet measure [46] was
introduced. It deals with curves and surfaces with the restriction that only
finitely many segments and triangles are involved.

We start again with a metric δ on the plane or the real space and consider
parameterized curves or surfaces. These are given by continuous mappings f:
X → IRn, n = 2 or 3, where X is homeomorphic to [0, 1]k.

If now two such objects f: X → IRn and g: Y → IRn are given, the Frechet
distance is defined by:

δF(f, g) = inf(sup(δ(f(x), g(σ(x))|x ∈ X)|σ : X → Y is a homeomorphism)

This is a pseudo-metric and takes much of the geometry into account. On the
other hand, it is still governed by the principle “objects are similar if they look
similar.” That means many important aspects, e.g., in medical diagnosis, are
not grasped. This leads us to the next level of abstraction in Sect. 2.8.3.

Much research has been spent on determining the complexity of the com-
putation of the Hausdorff and the Frechet distance. The measures are some-
times difficult to compute. We will introduce a way of computing similarities
between points q and sets S by transforming the task into an optimization
problem, see [47]. The method has commercial application in e-commerce
(where the point denotes a query and the set is a set of products). Suppose a
similarity measure sim between points is given. We define:

sim∗(q, S) = max(sim(x, y)|y ∈ S).

Suppose the set S is defined by linear or quadratic constraints. We are inter-
ested in the optimization problem:

max(sim(q, x)|h(x) ≤ D)

where h is a set of m linear or quadratic functions and D is a vector of IRm

defining the constraints, see Fig. 2.24.
The attempt to use an arbitrary optimization method for this purpose has

the following limitations describing S.

q

Fig. 2.24. Similarity and optimization
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1. The constraints defining S are in general not convex
2. The similarity measure is in general not differentiable

For solving the optimization problem, several techniques have been pre-
sented in [47].

One method is to use Minkowski functionals (or gauges). For a compact
set B, a gauge with respect to B is defined as

γB(x) = inf(λ ≥ 0 : x ∈ λB).

For computing similarities, the use of gauges is to compute a distance dist(x,
y) from a point x to some y by putting x in the center of B and to enlarge
or shrink B until it touches y; then one sets dist(x, y) = γB(x − y). This
technique can be used for nonconvex sets in order to obtain upper and lower
bounds for the similarity measures.

2.8.3 The Geometric and Shape Level

The elementary geometric objects are introduced as lines, curves, and areas
with their boundaries and brightness, segments, etc. In addition, this level
will also deal with shades, texture information, and related properties. Such
geometric objects also called features and the pattern-recognition-oriented
approach deals with the situation where there is a fixed set of features that
have to be extracted. This is e.g., the case for fingerprint or face identification,
see 8.4. A discussion of feature-based similarity measures is given in [40].

If the objects shown in the image do not have a fixed position, a demand
on the measure is that it is transformation invariant for translations and
rotations, see Sect. 2.3.1. In medicine, the situation is often more difficult. It
has to be taken into account that such objects do not occur as mathematical
objects but as the real-world objects that do not meet exactly the conditions
of the mathematical definition. This leads to a wider class of problems that
occur in radiological clinics e.g., for knee examination. Here a more refined
approach is needed compared to the techniques of PR. Next we will present
such an approach.

A first observation is that some geometrical objects are vaguely defined,
e.g., “ovals.” These are informal versions of ellipses. In addition, there can be
new geometric objects that have not been defined before. A goal is to describe
them as variations or deformation of stored objects.

A first and standard step toward a computational investigation is an
approximation by polygons. Polygonal approximations are widely investigated
in mathematics and image processing.

Such an approximation can be more or less precise, as seen in Fig. 2.25.
From a structural point of view, the second polygon is sufficient. In the

next example (Fig. 2.26) we encounter some difficulty because of deformations
of standard objects.



72 M.M. Richter

Fig. 2.25. Polygons of a oval 2D image

Fig. 2.26. Deformation of an oval

Fig. 2.27. Turns

The convex hull of the polygon does not reflect adequately the deformation
of the oval. If the form of the deviation plays a role, the semantics will be
missed.

In order to describe shapes we need to extract attributes from the image
that are characteristic for the objects contained in the image. An example is
the deviation from an oval, described by turns, see Fig. 2.27.

The turns can be computed and indicate the deviations from a convex
oval. If the polygonal approximation is not precise enough, the phenomenon
cannot be described.
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Other attributes and predicates describe e.g.,

1. Convexity, concavity, direction of the bounding box, relation length/width,
qualitative size, etc.

2. Relative positions are given using expressions like:
– Right, left, up, down
– Right of, left of, higher, lower, symmetric to
– Bright, dark, darker then

These attributes and predicates allow describing the image in a component-
oriented way according to the local–global principle. As a consequence, simi-
larity measures can be defined for comparing them. The local similarities carry
much knowledge, e.g., which deformations can be tolerated and which cannot.
The weights reflect the importance of an attribute (e.g., size) for the intended
purpose. This heavily uses knowledge of the intended domain as in medicine:
“Left oval and right oval are in normal situations symmetric to some axis but
not necessarily if pathologies are present.”

We distinguish two kinds of attributes:

(i) Local image attributes: They are concerned with components, i.e., local
geometric parts of the image as special form of a boundary, length of a
radius, etc.

(ii) Global image attributes: They are concerned with larger parts of the
image, for example, density function, center of mass, etc.

Examples:
Shape

dom(shape) = {oval, irregular, butterfly}
dom(butterfly) = {leftWing, rightWing}

Density

dom(density) = {hypodensity, middleHypodensity, middleHyperdensity,
hyperdensity}

Relative density

dom(relativeDensity) = {hypodensity, hyper density}
Texture

dom(texture) = {homogeneous, heterogeneous}
We will not go into further details here.

The purpose of image processing methods in this context is to extract
knowledge that is used in the higher levels. The algorithms have access to
the pixel level and to the geometric level. For this a special knowledge base
for image processing methods is needed. It contains a descriptions of the
functionality of the algorithms and advices how to use them. It also has access
to the base of the available algorithms.
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Fig. 2.28. Three processing steps

For example, in Fig. 2.28, there are three processing steps that simplify the
information in the image and allow the application of geometry-describing
methods. These steps are a threshold, an opening and a closing operation.
The first operation omits all pixels with grey value that is not between two
thresholds (980–1 003 HU). The second operation thickens the results through
a morphological closing operator and the third operation eliminates small
objects and noise through a morphological opening operator.

A crucial image processing method is segmentation. Perner [48] described
image segmentation for CT images from the brain using CBR. As her research
progressed, she used more complex case representations, reasoning and learn-
ing strategies, and data mining techniques for PR. Perner [49] proposed a
system that used CBR to optimize image segmentation at the low-level stage
according to changing image acquisition conditions and image quality.

2.8.4 The Domain Specific and the Overall Level

These are the levels that have a semantics in the sense of the (for example,
medical) domain. At these levels, certain figures, areas, or forms are introduced
together with their possible properties representing concepts of medical inter-
est. These are concepts that medical experts use for describing a diagnosis or
a fact they consider as important. Of course, the expressions of this level can-
not be given for all aspects of medicine but have to be restricted to a certain
area. The requirements for the vocabulary at the levels are:

(i) Each expression has to be defined in terms of expressions of the geomet-
ric level.

(ii) With this vocabulary, all properties of interest should be definable. In
particular, it must be possible to distinguish pathological objects from
nonpathological ones.

An example of a short informal description of the structure “skull” is:

Skull = (Shape=oval, GreatConcav=1.4, Tolerance=12%;
Density=hyperdensity, GrayLevelMean=253, Tolerance=10%;
RelativeDensity=hyperdensity, Structure=Cerebrum, GrayLevelMean=109;
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Texture=Homogeneous, StandardDeviation=6.1, Tolerance=10%;
Position=Center, Centroid=260-276, Tolerance=05%;
RelativePosition=Around; Structure=Cerebrum, Centroid=259-277).

It has to be observed that these descriptions differ from those which one
finds in medical textbooks. The illustrations there refer directly to the visual
impression on the human. Here we have in addition to take into account that
one and the same object has different representations depending on the media
used (X-ray, NMR, etc.).

The Level of the Overall Description

At overall level, the meaning of the complete image is formulated in such
away that it is suitable for a diagnosis. Using the object description of the
domain-specific level, the position relationships of the complete description
should be achieved. This may not always be possible, for example, because
not all pathological variations may be known, or because they cannot be
distinguished from image processing errors. In this case, such regions have no
direct meaning but can be indicated to the human user as regions of interest.
The expert will have a closer look at those regions.

At all these levels, there is a minimal set of expressions in terms that
allow to define all. These expressions are the primary predicates, attributes,
etc. Although the primary attributes in principal suffice, we introduced virtual
expressions (predicates or attributes) for describing relevant properties. The
specific choice of the virtual vocabulary does not so much depend on the
domain but rather on the pragmatics, i.e., on the special task to perform.
The definition of virtual expressions often contains important knowledge (in
the vocabulary container).

Each expression at a higher level is interpreted in terms of expressions
of a lower level. For the elementary geometric attributes this is different,
their values are computed using image processing methods (e.g., checking
convexity).

Human Interpretation

If humans interpret images, there is a degree of subjectivity involved that
depends on the individual or on a group of individuals. For that reason, one
distinguishes (see [14]) between a measured (or perceived) similarity sim and
judged similarity sim that is defined as

sim(x, y) = g(sim(x, y))

where g is a monotonically nondecreasing function that represents the subjec-
tive element. One should notice that only the judged similarity is accessible to
experimentation. Examples for the function g are given in Sect. 2.3.3. Judged
similarities play a role when images are interpreted in different hospitals or
regions.
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Learning

Learning methods have also been used to improve image understanding meth-
ods. As an example we mention a semisupervised fuzzy clustering method as
reported in [50]. The method presented there can effectively learn class dis-
tributions from retrieval experience. The application to image retrieval was
reported to be successful.

Application: Medical diagnosis

In order to use images for a medical diagnosis, we need a database of pro-
totypes. These are images regarded by an expert as ideal instances of some
concept which can either be an instance of a healthy object or of a specific
pathology.

For each prototype p of some concept C, we define the fuzzy degree of
membership of some object u as

µC,p(u) = sim(u,p) and µC(u) = max(µC,p(u),p a prototype for C).

If there are several concepts, then the one with the highest degree of mem-
bership is chosen. In this way one can formulate

– Some X is a Y with degree x
– Some X has the property P with degree x

If some real actions (e.g., therapeutically ones) are based on the degree of
membership, the numerical values of the degree will play a role. For obtaining
a binary decision the membership has to be accepted or rejected as described
in Sect. 2.2.1. To achieve such a decision, we proceed in the spirit of rough
set theory (see Sect. 2.2.1). We introduce two thresholds α and β with α < β
which allows introducing proceed as follows:

membership accepted if β ≤ µC(u) and not accepted if µC(u)
< α, unknown if α < µC(u) < β.

The choice of the thresholds is triggered by experience and the observation of
occurring risks.

In an interactive system, objects in the uncertainty area can be shown to
the expert who makes the final decision.

The case base can contain nonpathological images only. Then the system
is able to tell the medical expert that the situation is definitely not with-
out pathological elements and the expert can react accordingly. Grimnes and
Aamodt [51] presented a system that integrates CBR into a task-oriented
model-based system for interpreting abdominal CT images. The case base
therefore contains some specific pathological images. A case-based reasoner
working on a segment case base contains the individual image segments. The
system is based on a propose-critique-modify learning cycle.
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In medical application, the judged similarity will lead to different inter-
pretation of images depending on the specific medical expert. It reflects the
utility of the diagnosis that may differ from hospital to hospital.

Application: Search in Archives

Archives store information about many patients and contain therefore gen-
eral information useful for the design of therapies, etc. For many purposes it
is sufficient to augment the images by a fixed textual part that can be used
for searching. Because of constantly changing problems this would require a
continuous updating what in general is not suitable. In addition, one cannot
foresee for which purpose an image may be of interest. Therefore, it is nec-
essary to investigate the images themselves and to interpret them during the
search. In radiological clinics, much effort and time of humans is spent for this
purpose.

The principle approach for using similarities is the same as for diagnosis.
The main difference is in the risk of errors. The diagnosis is much more safety–
critical, mistakes can be fatal. Data mining has a more statistical character
and individual errors can be tolerated.

Identification of Images

In image identification, the understanding of an image is rather limited. The
purpose is to select from a database of images the one that is most close to
a given image. When only images of a fixed structure (i.e., a fixed number of
objects on fixed positions) are considered, the situation is somewhat simpler.
One does not need a complicated language; it suffices to identify some objects
and evaluate certain parameters. An example is face recognition, which is
shown in a simplified way in Fig. 2.29.
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Fig. 2.29. Face
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For professional face identification, these parameters are more refined. For
face recognition, the components to be identified are quite obvious and intu-
itive. This is not always the case; it is more involved for fingerprint identifi-
cation. For fingerprints, one uses arch, tended arch, left loop, right loop, and
whorl for getting parameters.

In a CBR approach, the local measures contain much knowledge that can
be obtained from learning processes. In the PR approach, a simple measure
like the Euclidean distance may suffice; the knowledge is implicit in statistical
data and used by such methods.

2.9 Information Retrieval

The task of IR has changed over the years. Originally, IR was understood as
the search for a particular document in a structured set of documents. This
document could be a text or an image. These types of documents require
different retrieval methods. The image retrieval is closely connected to image
understanding and we will here restrict ourselves to text retrieval.

Today the solution of problems is central and the retrieved documents are
considered as a useful step during the problem solution. That means, IR is
part of the process and knowledge management.

There may be several documents of interest (or even none) and their rele-
vant aspects may become known only during the retrieval process itself. Typ-
ical examples are searches in the Internet and in libraries. Similarity describes
the usefulness of a document within the overall process. That means, similar-
ity does not deal with experiences in the first periods of CBR; rather belongs
to the generalized period where different objects are compared. That means,
we have a query and search for a useful document. In order to bridge the gap
between the query and the document, both are described in the same vocab-
ulary, namely in some terms of interest. Which terms are chosen is based on
some knowledge about the domain; later on it can be extended.

A very popular model is the vector space model that has been widely used
in the traditional IR field. This model is very suitable for comparison with
the CBR approach. We will concentrate on this model, thus neglecting, for
example, probabilistic models. Most search engines use similarity measures
based on this model to rank Web documents. The model creates a space in
which both documents and queries are represented by vectors.

As a first step, a number of terms are defined that are extracted from the
documents. This can be e.g., all words except the stop words (i.e., those that
do not discriminate any document). If the number of selected terms is m then
an m-dimensional vector is generated that has for each term some associated
weight. The weight is supposed to reflect the importance of the term for the
document. This importance is mostly based on some counting, i.e., it measures
a frequency.
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A document vector is of the form

d = (w1j,w2j, . . ..,wmj)

and a query has the format

q = (w1i,w2i, . . .,wmi)

There are many different ways to choose the weights. A standard method in
the vector space model (VSM) associated the weights with the terms on the
basis of the following two numbers:

– Term frequency, fij, the number of occurrence of term yj in document xi

– Inverse document frequency, gj = log(N/dj), where N is the total num-
ber of documents in the collection and dj is the number of documents
containing term yi

Then, as a standard for the similarity measure the cosine of a query q and a
document d with the scalar product (q,d) often used:

simvs(q,d) =
q · d

||q|| · ||d||
The similarity simvs(q, xi) is supposed to reflect the relevance of the document
for the query.

The documents weights wij and the query weights vj are

Wkj = fkj · log(N/dj)

and

Wki = log(N/dj) if yj is a term in q and 0 otherwise.

There are two main criteria of success: Recall and precision.

– Recall is the ratio of the number of relevant records retrieved to the total
number of relevant records in the database. It usually expressed as a
percentage.

– Precision is the ratio of the number of relevant records retrieved to the
total number of irrelevant and relevant records retrieved. It usually exp-
ressed as a percentage.

These criteria can be criticized because they do not take into account that
the recall and precision may be restricted to the documents and queries the
user is interested in.

The knowledge used is the weights of the terms. These weights are either of
statistical nature or they are provided by the user in the hope that interesting
documents are retrieved (what is rarely done). The retrieval result is, however,
not necessarily convincing. Therefore, a process starts a process for improving
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the results. That means, the query is reformulated into an optimal query
that (hopefully) finds all the relevant documents. This can be regarded as
analogous to the solution transformation in CBR. A basic difference is that
not the solution is transformed (one cannot rewrite a document) but rather
the query. Often it is quite complex.

There are several ways to do it and a popular one is query expansion that
has many variations. It is the process of supplementing the original query with
additional terms. The idea is to add such terms to the query that are similar
to the given ones. This means that the newly introduced terms are close to the
old ones with respect to some similarity measure. Automatic query expansion
uses a frequency measure on pairs of words; i.e., counting how often the words
occur together in texts.

This can be based on user feedback, inspection of past optimal queries, or
others; we will not go into further details here. In addition, the term weights
can be improved, for example, by using statistical information. More refined
ways like employing a thesaurus is rarely used in IR.

It should be, however, remarked that an important motivation for using
ontologies and similarity measures based on them is to overcome such prob-
lems.

After the query vectors have been changed, the retrieval process starts
again with the same similarity measure. This is not exactly true if one regards
the weights as a part of the similarity measure (what is done in CBR); in fact,
only the form of the computation remains invariant.

The knowledge of the method is mainly included in

– The terms describing the documents and queries
– The weights, these are parts of the similarity measure
– Possible statistics about former queries
– A user feedback

The vector space approach looks similar to the attribute-value representation
in CBR. But there are some differences:

– In CBR, we have attributes that have a domain from which the values
are taken.

– In IR, the vector coordinates are just numbers; there are no variables that
could be instantiated and each coordinate is labeled by a fixed term.

– In CBR, the weights are parts of the measure; in IR, they are parts of the
object representation.

It is, however, not difficult to unify the approaches. For this purpose, we
introduce for each term an attribute Frequency t(.) and take the weights as
the weights of a weighted Euclidean measure. This measure is equivalent to
the measure in the vector space model.

An even more sophisticated approach is to use phrases instead of words.
This means, one has to define local similarity measures on phrases. First steps
are described in [52].
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2.10 Speech Recognition

Speech recognition is an important task in PR. Spoken language is a sequence
of signals that is taken up by sensors and represented by numerical data.
There are two major tasks:

1. Speaker recognition; it is the process of automatically recognizing who is
speaking

2. Recognition of the words and the meaning of the spoken text, i.e., language
understanding

For both tasks, the representation phase is very much involved and uses
advanced methods, e.g. for filtering and denoising what we will not discuss
here. The ultimate representation often uses Fourier coefficients or, more
advanced, wavelet packages.

For both tasks, a similarity match has to be performed. The case base
consists of

1. Recorded voice sequences of a number of speakers for speaker recognition
2. Prepared sound or language models, i.e., a base of utterances where the

meaning is known

There are various ways how the case base can be achieved. One can take,
for example, physiological and behavioral characteristics of the speaker, or
emphasizing special vocabularies. We will not discuss this here but will remark
that most of the knowledge for solving the tasks is contained in the represen-
tation phase and the structure of the case base.

The similarity measures involved can contain more or less knowledge. The
simplest but widely used measure is the Euclidean distance. For speaker recog-
nition, statistical methods are added as e.g., a normalization method for dis-
tance values using a likelihood ratio. The likelihood ratio is defined as the
ratio of two conditional probabilities of the observed measurements of the
utterance. The first probability is the likelihood of the given acoustic data for
the claimed identity of the speaker. The second one is the given likelihood that
the speaker is an imposter. The likelihood ratio normalization approximates
optimal scoring in the Bayes sense.

For language understanding, most emphasis was put on efficiency. To pro-
mote higher speeds, the models must be more compact with faster similarity
calculation and best word-match search processing. To make the sound models
more compact, tree-type structures have been used in order to speed up the
conventional similarity calculation. The method employs acoustic look-ahead
functions that raise the speed of the word sequence search engine (see [53]).

The emphasis on statistics and efficiency favors certain goals but neglect
others. An example would be a cost sensitive approach to language under-
standing. Here other, utility-oriented similarity measures seem to be needed
that take care of the costs of misunderstanding an utterance.
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2.11 Other Applications of Similarity in CBR

Because in CBR general knowledge about a task can be represented in a
natural way, it is not limited to classification and image understanding. In
fact, there is no general restriction about the applicability of the methodology.
We will shortly present some examples in order to indicate how similarity can
be used in other contexts. The principle richness of such applications is due
to the detailed analysis of the similarity concept. It is not false to say that
this has lead to a whole new area, similarity-based reasoning.

Configuration and Design. Configuration is generally understood as the
construction of an artifact from a given set of components such that certain
conditions are satisfied. Hence, it can be considered as a constraint satisfaction
problem. Design introduces some degree of creativity because some compo-
nents or even structural elements of the artifacts may not be presented a
priori. Depending on this degree, one distinguishes routine design, innovative
design, and creative design. In this area, the use of experience is of particular
importance.

The solution to a configuration or design problem taken from a case base
can almost never be used unmodified for an actual problem but has in general
to be adapted. Another way to paraphrase this is that a previous solution is
reused.

Planning. The term planning covers a great variety of tasks. We will re-
strict ourselves to action planning. The problem is to find a sequence of actions
transforming a given initial situation into a desired goal situation. The size
of the sequence is not restricted but the set of available actions are fixed. In
partially ordered planning, the ordering of the actions is not total but only
partial. Action planning in AI traditionally assumes complete knowledge what
is, however, quite unrealistic for many applications.

For CBR again, the reuse aspect is dominant because the retrieved plans
have to be adapted.

Decision Support. The role of decision support is to help the decision maker
rather then to replace him. In many situations, there is no precisely stated
problem but rather a complex problem structure. The output of a support
system is usually not a solution but rather an advice or an useful piece of infor-
mation. An example is given by considering help desks. Experience combined
with the possibility of inexact matches makes CBR an important technology
in this field.

Prediction. Prediction tasks occur in very different situations and require
a great variety of methods. We mention just the method of extrapolating
real-valued functions. Similarity enters the scenario when one makes use
of recorded cases. As an example, we mention effort prediction of software
development tasks as described in [54]. The method is applicable to predict
effort related to any object at the requirement, feature, or project levels.

E-Commerce. The applications in e-commerce mostly refer to the gener-
alized period of CBR. The customers express some demands and these are
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put directly into relation with the products. In e-commerce an uncertain and
vague classification takes place. There are customer classes that are roughly
described and the classification task is to assign to products that class of
customers who prefer the product.

Knowledge Management and Complex Systems. Complex systems occur-
ring in knowledge management often cannot directly be represented in feature
vectors. On the one hand, this is too complex, on the other hand the objects
are given in e.g., a textual form and there is no knowledge about the features
that could be used for the representation. In [55] it is described that neverthe-
less a similarity measure can be defined that leads to successful applications
as in software engineering or biology.

2.12 Comparing CBR, PR, and IR

All three areas, CBR, PR, and IR are methodologies that have developed
techniques for solving problems. The scope of problems tackled is largest for
CBR, see Sect. 2.11. For this reason, we will compare the methodologies for
classification tasks only. IR is discussed less because it mainly uses techniques
from PR and CBR. All methods deal with certain data that are not restricted
in general. Because of the existence of reasoning methods CBR can deal,
however, with more complex data.

In order to perform classification, knowledge is needed. There are in prin-
ciple two knowledge types:

– Explicit knowledge about the problem domain
– Implicit knowledge coming from the available data

Explicit knowledge is represented in such a way that it can be directly under-
stood and applied, mostly in the form of rules. Implicit knowledge is hidden
in the data and need to be made explicit in order to be applied. In knowledge-
based systems, the term “knowledge intensive systems” often occurs. This is
not quite adequate because it almost always refers to explicit knowledge only.

This knowledge enters the methods of CBR and PR in different ways. The
objects to be classified can originally contain data of three types:

– Numerical values of some attributes
– Symbolic values of some attributes
– Other features like geometric objects

These data come from reality and have to be represented formally. This rep-
resentation step usually straightforward for numerical data.

Basically, the two views of CBR and PR can be summarized as:

– CBR view: What counts is the background knowledge because this gives
the understanding of what is going on.

– The PR view: The truth is in the facts and the facts are represented in
the data.
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Therefore, in CBR basically one tries to represent the background knowledge
while in PR the data knowledge has to be coded numerically and has later on
to be made explicit by additional processes.

For more complex data like images the representation is difficult. CBR
demands a symbolic representation while PR wants a numerical representa-
tion. The problem is, however, which aspects of the object (for example, the
image) have to be taken into account. This requires background knowledge.
For instances the features extracted for finger print detection are quite diff-
erent from the features extracted for face recognition.

In CBR, the result becomes visible in the form of an explicit symbolic
representation. In PR, the result is implicitly hidden in a preprocessing step
that is mostly performed by humans.

After the representation is done, the two methods proceed in differ-
ent ways.

1. In CBR, the knowledge is distributed over the knowledge containers. In
order to define a similarity measure according to the local–global principle,
one has to

– Define virtual attributes that are independent from each other and
represent influence factors

– Define local measures
– Define the global measure, i.e., weights

After this is done, the classification can be obtained using the nearest
principle. The classes are separated by a decision surface that is linear.
For these procedures actually no data are necessary, they are only needed
in order to test and improve the CBR system. The definition of the virtual
attributes and the measure requires, however, a large amount of knowl-
edge. The application can be done interactively by considering attributes
step by step and the result has some explanatory character. In particular,
the results are more intuitive and important aspects are more directly
visible.
On the other hand, in the case base container there is a lot of implicit
knowledge. But presently there are little attempts to make use of it.

2. In PR, the representation task is done by humans, often with little com-
puter support and without applying learning methods. From that point
on, all knowledge that can be used is in the data and is presented directly
to the system. The examples are n-dimensional vectors and the similarity
often measures the Euclidean distance or some variation of it. The price
to pay is that the decision surfaces are highly nonlinear and not easily
understood by humans. What PR tries to do is to discover these surfaces.
For this purpose, machine learning methods are employed, for instance
clustering methods.
To learn such surfaces, no additional background knowledge but many
data are needed. An improvement is obtained by including some Bayesian
learning as an intermediate step; we will not discuss this here. The
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methods are based on solid mathematical and statistical methods that
allow proofs for their validity. On the other hand, some tacit knowledge
is hidden in the assumptions and in the preprocessing.
Even in situations where explicit knowledge is available, PR makes little
use of it. As a consequence, the results, despite their accuracy, are often
not very intuitive. A major reason for this is that the measures are of a
simple nature comparing only simple data structures.

3. In IR the measure contains knowledge in the form of the weights and
this knowledge is updated in the retrieval phase. That means in principle,
that the measure is also updated but only in an ad-hoc manner. In the
query expansion, much knowledge is incorporated but more in the sense
of statistical than domain background knowledge.

Hence, we can summarize the different use and distribution of knowledge
for CBR, PR, and IR in Table 2.5.

The black box character of the PR systems makes them easy to use for
nonexperts. On the other hand, no human interaction is possible. This restricts
the application to socio-technical processes where human and machine agents
interact. Dynamic classification cannot be performed and one has problems
with diagnostic processes. That does not exclude, however, that PR can play
a useful role in diagnostics.

If one compares the approaches, the conclusion cannot be that one is
superior to the other one. In fact, both have strengths and weaknesses.

CBR needs much knowledge and if this is not available then PR has an
advantage. PR needs many data and if they are not available then CBR has
an advantage. PR is mathematically solid (but often with some unquestioned
assumptions) while CBR often of an ad-hoc character. PR operates as a black-
box system while CBR is interactively usable and represents the knowledge
explicitly. IR also uses mainly data but could be improved by knowledge.

Sometimes PR is criticized because of the simple character of its similarity
functions. But this is compensated by the fact that the relevant knowledge is
hidden in the data and extracted from them.

Both, CBR and PR, contain still “elements of art” and the scientific level
needed for an engineering discipline is only partially reached.

Table 2.5. Comparison

Methodology Background knowledge Knowledge in the data

Case-based reasoning In all knowledge containers For improving measures
and other containers

Pattern recognition For the representation task In the recognition phase

Information retrieval In (the frequency) of terms In the weights and the
query expansion
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When one is asked what to use, CBR or PR, there is no universal answer;
this depends on the problem type. Unfortunately, a user gets little help for
answering such a question. What can definitely be improved is the relation
between the two approaches in order to benefit from the alternative. An im-
portant issue is getting more experience in the way in which the approaches
can be integrated. This would improve the quality of socio-technical processes.
An essential part of this is to get more insight into the question where it is
better to store knowledge, in the similarity measure or at other places.

2.13 Summary

It is generally agreed that similarity and similarity-based reasoning is impor-
tant (if not dominating) in many problems occurring in computer science. The
reason is that one is not only concerned in problems of “yes or no” answers,
but in approximations of the kind of “better or worse.” In fact, such problems
often are dominating, although the Boolean-valued problem types will still
play an important role.

In mathematics, we observe an analogical development over the centuries:
We have a systematic theory of approximation theory as well as of numerical
mathematics and statistics.

In applications, similarity appears in many different ways and shapes. That
does not mean that the underlying principles are totally different, in fact there
are several unifying principles with, however, many diverging instances.

The approach of similarity reasoning is the attempt to make these princi-
ples clear and therefore to simplify its applications and to make the scope of
applications broader, clearer, and safer.

In order to obtain a unifying view, we used two principles:

– The local–global principle that allows to establish a relation between the
similarity measure and the objects to be compared.

– The knowledge container concept that allows to describe the distribution
of knowledge.

We consider similarity reasoning as a special part of an overall problem solving
process. To solve problems, knowledge is needed. This knowledge has to be
incorporated into the parts that participate in the problem solving process.
For this reason, we introduced the concept of knowledge containers.

We considered two main methodologies that use similarities, CBR and PR.
It was of particular interest to observe how knowledge is used. For instance,
for any task like for classification one needs some knowledge. Anybody can
solve a problem only if such knowledge is used.

Essentially in this context, we have two knowledge types, explicit (back-
ground) knowledge and implicit knowledge hidden in the data. The question
is how and to which extent a method makes use of the knowledge. Implicit
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knowledge is not directly usable and has to be made explicit and stored some-
where in the system. For this, learning and data mining techniques are used.
We pointed out in which way the methodologies make use of the knowledge
and which knowledge is contained in the similarity measures. In principle,
both methodologies are knowledge intensive but they store the knowledge in
different containers.

This is a rich area of research where many results have been achieved.
But we have also made clear that there are many isolated results and the

possible improvements of synergy are still in its infancies. Two main exam-
ples are:

– If background knowledge is available, why not using it in PR systemati-
cally?

– Each case base as a whole contains a lot of implicit knowledge, why not
extracting it and filling it into similarity measure?

Compared with equality the literature on similarity is relatively small, both
from the philosophical as from the computational side. On the other hand,
the similarity concept is much richer: There is only one equality but there are
many similarities. One must admit, however, that many aspects of similarity
are discussed in various other disciplines e.g., partial order or probability.
Nevertheless, a unified theory of similarity would be welcome.
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31. Wess, S.: Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entschei-
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Summary. Assessing the similarity between cases is a prerequisite for many
case-based reasoning tasks. This chapter centers on distance function learning for
supervised similarity assessment. First a framework for supervised similarity assess-
ment is introduced. Second, three supervised distance function learning approaches
from the areas of pattern classification, supervised clustering, and information
retrieval are discussed, and their results for two supervised learning tasks will be
explained and visualized. In each of these different areas, we show how the method
can be applied to areas of case-based reasoning. Finally, a detailed literature survey
will be given.

3.1 Introduction

Case-based reasoning depends heavily on assessing the similarity between
cases. Similarity assessment is the task of determining which cases are similar
to each other and which are dissimilar. In general, defining distance functions
is a difficult and tedious task.

There are several uses of distance functions in case-based reasoning all of
which can benefit from distance function learning. In case-base classification,
cases belonging to the same class should have a lower distance than cases
in different classes. A good distance function is one that leads to a highly
accurate classifier. In case base maintenance, the case base is reorganized into
clusters so that search time is reduced by consulting the cluster’s representa-
tive first. Cases far from the representative of the cluster can be removed to
improve search time. A good distance function is one that leads to tight and
cohesive clusters, effectively organizing the case base. In case-based retrieval,
several cases relevant to a user’s query are returned and users send feedback
to improve retrieval. A good distance function is one that retrieves a variety
of relevant cases for a user’s query. Each of these applications places differ-
ent requirements on the distance function, which makes manually tuning the
distance function difficult.
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Due to the fact that distance functions are difficult to design for different
applications, it is worthwhile to look for approaches that learn distance func-
tions from the case base. In particular this chapter will discuss methods in the
context of classification, where the goal of supervised similarity assessment is
to obtain distance functions that separate cases belonging to different classes
well. Consequently, the scope of the methods discussed in this chapter is lim-
ited to case bases that have class labels. Class labels either represent natural
classes or capture information about the relevancy of a particular case for a
particular use. Different methods are needed for unsupervised learning tasks,
such as clustering. The class labels associated with different cases can be
viewed as feedback that, as we will see, is instrumental for tailoring distance
functions for a particular classification task.

Figure 3.1 illustrates what distance function learning for supervised simi-
larity assessment is trying to accomplish; it depicts the distances of 13 cases,
five of which belong to a class that is identified by a square and eight belong
to a different class that is identified by a circle. When using the initial dis-
tance function dinit we do not observe much clustering with respect to the
two classes. Starting from this distance function, we would like to obtain a
better distance function dgood so that the cases belonging to the same class
are clustered together. In Fig. 3.1 we can identify three clusters with respect
to dgood, two containing only circles and one containing only squares. Why is
it beneficial to find such a distance function dgood? Most importantly, using
the learned distance function in conjunction with a k-nearest neighbor clas-
sifier [10] allows us to obtain a classifier with high predictive accuracy. For
example, if we use a three-nearest neighbor classifier with dgood it will have
100% accuracy with respect to leave-one-out cross-validation, whereas several
cases are misclassified if dinit is used. The second advantage is that looking

b) dgooda) dinit

Fig. 3.1. Objective of supervised distance function learning
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at dgood itself will tell us which features are important for the particular
classification problem.

It is also important to understand that there are no universal distance
functions for a given case base. The usefulness of a distance function is de-
termined in the context of the task it is used for. Consequently, a distance
function that does a good job in separating cancer patients from healthy pa-
tients is unlikely to be useful in separating diabetes patients from healthy
patients.

This chapter surveys how distance function learning is performed in three
separate areas of case-based reasoning: classification, maintenance, and re-
trieval. Section 3.2 reviews basic properties of distance functions and intro-
duces a supervised distance function learning framework. Section 3.3 discusses
the Relief algorithm used in case-based classification [30]. Section 3.4 discusses
the inside–outside weight adjustment algorithm used as a supervised method
for case-base maintenance [17]. Section 3.5 discusses a relevance feedback al-
gorithm used in case-based retrieval [37]. In Sect. 3.6 we show how, on two
example case bases, to visualize a distance function before and after learning.
Section 3.7 surveys recent work in distance function learning. Section 3.8 gives
a brief summary.

3.2 Distance Function Learning Model

A case x consists of a vector of features and a class label (target value).
We refer to x as one case in a space of possible cases X, as x ∈ X and
class(x) as the class to which x belongs.

3.2.1 Distance Functions

In general, the case need not be a vector. We define a distance function over
a set of cases x ∈ X. A distance function d : X × X → R should satisfy the
following two conditions for x, y, z ∈ X:

1. If d(x, y) = 0, then x and y are the same or as similar as possible.
2. If x is closer to y than it is to z, then d(x, y) < d(x, z).

A few more restrictions are required for practical distance functions.

Definition 1. A function d : X × X → R is a metric on the space X if for
all x, y, z ∈ X the following conditions hold :

0 ≤ d(x, y) < ∞

d(x, y) = d(y, x) (3.1)
d(x, y) = 0 ⇐⇒ x = y (3.2)
d(x, z) ≤ d(x, y) + d(x, z) (3.3)
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The pair (X, d) is called a metric space.

Condition (3.2) implies that two cases with distance 0 are equivalent.
Duplicate cases occur in practice and, either because of rounding or pre-
processing, they may have a distance of 0 even if the cases are not the same.
A simple application of the Condition (3.3) is the saying that the shortest
distance between two points is a straight line. This is because the Euclidean
distance is a metric in R

2.

Norms

A metric depends only on the definition of the distance function and not on
the composition of the set. In practice, however, the set X is the vector space
R

n where each x ∈ X is a vector of length n:

x = (x1, . . . , xn)

where xj ∈ R for all 1 ≤ j ≤ n. Each element, xj , in the vector is referred to
as a feature, and the vector x is called the feature vector. Given this vector
definition of a case, we say that a distance function is imposed by a norm
defined over the vector space.

Definition 2. A function ‖·‖ : R
n → R

+
0 is a norm if for all x, y ∈ R

n and
α ∈ R, the following conditions hold :

‖x + y‖ ≤ ‖x‖ + ‖y‖
‖αx‖ = |α| ‖x‖
‖x‖ > 0 for x �= 0

The first condition is known as the triangle inequality. Given a norm ‖·‖ over
R

n, the following distance function is a metric:

d(x, y) = ‖x − y‖

where x, y ∈ R
n.

We define a family of norms and distance functions.

Definition 3. A function ‖·‖p : R
n → R

+
0 is the Lp norm if for all p ∈ R,

p ≥ 1, and x ∈ R
n

‖x‖p =

⎛
⎝ n∑

j=1

|xj |p
⎞
⎠

1/p

For each Lp norm, there is a corresponding Lp distance function metric.
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Definition 4. The function d : R
n × R

n → R
+ is the Lp distance metric

if for all p ∈ R, p ≥ 1, and x, y ∈ R
n

d(x, y) = ‖x − y‖p

where ‖·‖p is the Lp norm.

This family of distance functions is also known as the Minkowski distance.
There are three common p values, which correspond to the following three
distance functions:

L1 Manhattan or city-block distance:

d(x, y) =
n∑

j=1

|xj − yj |

L2 Euclidean distance:

d(x, y) =
√

(x1 − y1)
2 + · · · + (xn − yn)2

L∞ Max distance:

d(x, y) =
n

max
j=1

|xj − yj |

In the remainder of this chapter we consider only the L1 distance because the
notation is simplest and it is faster to compute than L2.

3.2.2 Parameterized Distance Functions

In distance function learning, the objective is to find parameter values for
a parameterized distance function. The most common approach to obtain a
parameterized distance function is feature weighting. Feature weights are the
output of the distance function learning algorithms discussed here. Weighted
distance functions are a subclass of the more general linear distance functions.

Feature weights, one for each attribute, emphasize one subset of features
over the others. For the L1 distance, the weighted version is

dw(x, y) =
n∑

j=1

wj |xj − yj | (3.4)

where x, y, w ∈ R
n. We place a few restrictions on the vector wj for 1 ≤ j ≤ n:

w = (w1, . . . , wn)
wj ≥ 0

n∑
j=1

wj = 1
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These restrictions simplify the programming. In addition, positive weights
maintain the semantics of a distance function since negative weights and dis-
tances have no clear meaning.

Linear distance functions generalize the L2 distance by projecting the orig-
inal distance vector onto a linear basis A:

dA(x, y) = (x − y)T
A (x − y)

where x, y are column vectors and A is an n× n projection matrix. Although
most definitions of linear distance function take the square root of dA(x, y), we
usually ignore the root because it is expensive to compute and does not change
the relative distances. When A is positive semi-definite, the distance dA(x, y) is
a distance metric. When A is the identity matrix (In×n), the distance reduces
to the squared L2 distance as shown:

dI(x, y) = (x − y)T
In×n (x − y)

= (x − y)T (x − y)

=
n∑

j=1

(xj − yj)
2

= ‖x − y‖2

For small- to medium-sized case bases, it is often more efficient to compute
and store the distances between all pairs of cases. This forms a distance matrix
for the case base X and distance function d.

Definition 5. A matrix D ∈ R
m×m is a distance matrix if and only if:

Di,j = d(xi, xj)

for 1 ≤ i, j ≤ m, where d is a distance function, xi, xj ∈ X, and m is the
number of cases in X.

For distance function learning, we often decompose the distance matrix into
the set of matrices Dj for 1 ≤ j ≤ n, storing the distance with respect to the
jth feature. A weighted distance matrix for the L1 distance can be recreated
as D =

∑n
j=1 wjDj for feature weights w. For a metric distance function, D

is a symmetric matrix with zeros along the diagonal.

Examples

Example 1. A distance function without weights is assumed to have weights,
but they are equal and nonzero:
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wj =
1
n

for 1 ≤ j ≤ n.

Example 2. As a linear distance function, a weighted distance function consists
of a diagonal projection matrix W = diag(w):

dW (x, y) = (x − y)T
W (x − y) (3.5)

=
n∑

j=1

wj (x − y)2

where w is a weight vector as we have previously described. Although more
complex, we can obtain a linear form for the L1 distance:

dW (x, y) =
√
|x − y|T W

√
|x − y| (3.6)

=
n∑

j=1

wj |xj − yj |

where
√· denotes the component-wise root. In practice, it is usually more

efficient to use the form in (3.4) or (3.5).

Example 3. A common linear distance function is the Mahalanobis distance.

dΣ(x, y) = (x − y)T
Σ−1 (x − y)

where Σ is the n × n covariance matrix. This is often referred to the Ma-
halanobis distance between x and y. It assumes that x and y are distributed
according to the multivariate normal distribution N(µ,Σ) with mean µ. Since
both vectors are in the same distribution, the effect of the mean cancels are
as shown:

dΣ(x, y) = ((x − µ) − (y − µ))T
Σ−1 ((x − µ) − (y − µ))

= ((x − y − µ + µ))T
Σ−1 ((x − y − µ + µ))

= (x − y)T
Σ−1 (x − y)

3.3 Case-Based Classification

In case-based classification, each case has a class label. The objective of a
classification algorithm is to determine the class for an incoming case. In clas-
sification, an ideal distance function should make cases close to other cases
in the same class, while making them far from cases belonging to a different
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class. Most distance function learning algorithms for classification find pa-
rameters for a parameterized distance function and then apply an existing
distance-based classifier.

A classifier that uses distance functions is the k-nearest neighbor (k-NN)
algorithm [10]. In pattern classification, we consider a case base Y ⊆ X on
which learning is performed. The subset Y is further divided into a training
set Tr ⊂ Y and a testing set Te ⊂ Y such that Tr∪Te = Y and Tr∩Te = ∅.
Given a distance function d and a training set of cases Tr, the 1-NN algorithm
assigns the class label to a new case in the testing set y ∈ Te as follows based
on its nearest neighbor in the training set:

class(y) = class(x�)
x� = arg min

x∈Tr
dw(x, y)

The case x� ∈ Tr is called the nearest neighbor to y with respect to the dis-
tance function d. Despite its simplicity, the k-NN algorithm is usually accurate
and fast for medium-sized training sets.

3.3.1 Feature Evaluation

Two feature evaluation methods are common in the literature. Feature
selection algorithms finds a subset of features that more compactly represent
the case base. Feature evaluation algorithms assigns a score to each feature
that indicates the degree to which it is useful for classification. The higher the
score, the more useful a feature is. Thus, feature selection algorithms are a
specialization of feature evaluation methods, in which the score is either 0 or 1.
In high-dimensional case bases, such as images or signals, feature evaluation
methods are used to remove features that have a low score. This sometimes
improves classification accuracy and reduces computation time.

We use feature evaluation algorithms to compute weights in a distance
function. We make the weights proportional to the score. Let s = (s1, . . . , sn)
be the scores for each of the n features. We compute the weight vector w as

wi =
sj∑n

j=1 sj

where sj ≥ 0 for 1 ≤ j ≤ n.

3.3.2 Relief-F

The Relief algorithm was originally designed as a feature evaluation algorithm,
but it is commonly used to compute weights for distance functions [28]. The
weight of a feature corresponds to how well it separates cases from different
classes while not separating cases from the same class. Weights are updated
for each case in the case base.
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Algorithm 1 Relief-F’s weight-update where class(X) is the set of all classes
in the space X and p(C) is the proportion of cases in the training set that
belong to class C. This update yields a new weight vector, and is repeated
until the weights converge.
Input: Training set Tr , weight vector w, random sample size m.
Output: Updated weight vector w′

1. Select m cases x ∈ T from Tr randomly with uniform probability.
2. w′ = w
3. For 1 ≤ i ≤ m

a) For C ∈ class(X)
MC

i = Closest case to xi in class C using old weights w
b) Hi = M

class(xi)
i

c) For 1 ≤ j ≤ n
Update weight for feature j

w′
j = w′

j − 1

m
(xi,j − Hi,j) +

1

m

∑
C �=class(xi)

p(C)(xi,j − MC
i,j) (3.7)

Algorithm 1 shows the steps in a single iteration of the Relief-F algorithm,
which is an extension of the original Relief algorithm designed to handle mul-
tiple classes [30]. From the training set Tr ⊂ Y , a random sample (T ⊆ Tr)
of size m is selected. The weight of each feature, w′

j , is updated for each case
xi in T . The update considers the nearest neighbor of xi from each class using
the last weight vector, w. The neighbor in the same class as xi, Hi, is called
the hit case. Conversely, the nearest neighbor in each class C �= class(xi),
MC

i , is called a miss case. The update decreases the feature weight to bring
xi closer to the feature value of the hit and increases the weight to move xi

away from the feature value of the misses. This weight update procedure is
repeated for the new weight vector w′ until the weights converge.

Relief does not have an explicit objective function for the weights. Weights
are updated based on their prediction error, which makes this an iterative hill-
climbing approach. By updating weights for individual cases, Relief utilizes
local information. Many other feature evaluation methods consider only global
information such as the information gain (entropy with respect to class) and
the χ2 statistic (variance in the feature values) [16]. Local information is
particularly useful in distance function learning.

Example 4. Consider a set Tr of four cases in two classes completely separable
along the first dimension, which we will call the x-axis. For convenience, the
distance matrix is decomposed:

Dw = w1D1 + w2D2



100 A. Bagherjeiran and C.F. Eick

where Di is the distance matrix with respect to feature i and w is the weight
vector. Let D1 and D2 be the feature-specific distance matrices for the four
cases:

D1⎡
⎢⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤
⎥⎥⎥⎦

D2⎡
⎢⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎥⎦

Note that in D1, the diagonal consists of 2× 2 blocks of zeros and ones. This
means that along the x-axis, the distance to cases in the same class is zero
and the distance to cases in the other class is 1. Along the x-axis, the cases are
perfectly separated. Along y-axis, they are not separated well. In this case,
the ideal weight vector is (1, 0), which would make the final distance matrix
Dw = D(1,0) = D1.

We perform a single weight update as shown in Algorithm 1, starting with
weights (0.5, 0.5). The incrementally updated weight vector for each case is
shown. We use the training set T = Tr updating for all cases. The indexes
of the nearest hit and miss cases are H = (2, 1, 4, 3) and M = (3, 4, 1, 2),
where Hi denotes the hit for the ith case. The weight vector changes after
considering each case as follows:

Case 1 : 0.714 0.286
Case 2 : 0.959 0.041
Case 3 : 0.999 0.001
Case 4 : 0.999 0.001

The weight obtained after Case 4 is the new weight vector. Performing a
second iteration should result in the same weight vector; thus, the weights
have converged. Note that for the last two updates, the computed weights
were not in [0, 1]. After each update, we normalize the weights to be in [0, 1]
and sum to 1. The learned weights converge to the weights we expected.

3.4 Case Base Maintenance

In case-based reasoning, the case base often contains irrelevant or near-
duplicate cases, which degrades performance. Case base maintenance methods
organize the case base by removing such cases. This is typically accomplished
using clustering, where the case base is partitioned into a set of clusters. Next,
a prototype of each cluster is selected and becomes the representative of the
cluster. Cases that have high distance from the prototype can be removed or
at least assigned a low weight. Distance function learning is often used for
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Clustering X Distance Function d

‘‘Goodness’’ of d

Feedback

Clustering

Evaluation

Fig. 3.2. Coevolving clusters and distance functions

case base maintenance. This creates a customized case base for the distance
function.

If the case base has class labels, we seek a distance function such that the
resulting clusters are more pure. Purity is defined as the average fraction of
cases in a cluster that belong to a majority class. When the purity approaches
1.0, all cases in all clusters belong to a single class. The algorithm we discuss
in this section, inside–outside weight updating, relies on two ideas, as depicted
in Fig. 3.2. First, it uses clustering to evaluate the weighted distance function
shown in (3.5). Second, it uses the local information from clusters to update
the weights. We refer to this as a coevolving approach because the clustering
and the distance function are learned together.

After the cases have been clustered, the purity of the obtained clusters is
computed and is used to assess the quality of the current distance function.
Any clustering algorithm can be used for this purpose; however, supervised
clustering algorithms [18] that maximize cluster purity while keeping the num-
ber of clusters low are particularly useful for supervised distance function eval-
uation. More details on how clustering is exactly used for distance function
evaluation are given in [17].

Inside–outside weight updating uses the average distance between the
majority class members 1 of a cluster and the average distance between all
members belonging to a cluster for the purpose of weight adjustment. More
formally, let

dj(x, y) be the distance between x and y with respect to the jth attribute.
wj be the current weight of the jth attribute.
σj be the average normalized distances for the cases that belong to the cluster

with respect to dj .
µj be the average normalized distances for the cases of the cluster that belong

to the majority class with respect to dj .

1 If there is more than one most frequent class for a cluster, one of those classes is
randomly selected to be “the” majority class of the cluster.
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The weights, wj , are adjusted with respect to a particular cluster:

w′
j = wj + αwj(σj − µj) (3.8)

with 0 < α ≤ 1 being the learning rate.
After a clustering2 has been obtained with respect to a distance function

the weights of the distance function are adjusted using Formula (3.8) iterating
over the obtained clusters and the given set of attributes. It should also be
noted that no weight adjustment is performed for clusters that are pure or for
clusters that only contain a single case.

The weight adjustment formula (3.8) gives each cluster the same degree
of importance when modifying the weights. Suppose we had two clusters, one
with 10 majority cases and 5 minority cases and the other with 20 majority
and 10 minority cases, with both clusters having identical average distances
and average majority class distances with respect to a feature, the weight
would have identical increases (decreases) for the two clusters. This somehow
violates common sense; more efforts should be allocated to remove 10 minor-
ity cases from a cluster of size 30 than removing 5 members of a cluster that
only contains 15 cases. Therefore, we add a factor λ to the weight adjustment
heuristic that makes weight adjustment somewhat proportional to the num-
ber of minority cases in a cluster. Our weight adjustment formula therefore
becomes

w′
j = wj + αλwj(σj − µj) (3.9)

with λ being defined as the number of minority cases in the cluster over the
average number of minority cases for all clusters. Because the approach tends
to move majority cases to the center of a cluster and nonmajority cases away
from the center, it is called inside–outside weight updating.

This update rule is similar to that of the Relief algorithm as discussed in
Sect. 3.3. Like this method, Relief updates the weight to bring same-class cases
closer together and different-class cases further apart. Unlike this method,
Relief uses simple nearest-neighbor queries instead of whole-cluster informa-
tion. It does not take advantage of information from both the class labels
or the result of the clustering. For example, (3.7) puts more emphasis on the
cases in the same class compared to different classes. In the context of clusters,
this expression is similar to the µ term from (3.9).

Example 5. Assume we have a cluster that contains six cases numbered 1
through 6 with cases 1, 2, 3 belonging to the majority class. Furthermore, we
assume there are three attributes with three associated weights (w1, w2, w3)
which are assumed to be equal initially (w1 = w2 = w3 = 1

3 ), and the decom-
posed distance matrices D1, D2, and D3 with respect to the three attributes
are given below:

2 Clusters are assumed to be disjoint.
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D1⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 3
0 1 2 3 1

0 1 2 2
0 1 3

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

D2⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 5 1
0 1 1 5 1

0 1 5 5
0 5 1

0 5
0

⎤
⎥⎥⎥⎥⎥⎥⎦

D3⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 3 2 2 3
0 3 2 2 3

0 2 2 2
0 1 3

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

D⎡
⎢⎢⎢⎢⎢⎢⎣

0 1.67 2 2 3.67 2.33
0 1.67 1.67 3.33 1.67

0 1.33 3 3
0 2.33 2.33

0 2.33
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The case distance matrix D is next computed using

D = w1D1 + w2D2 + w3D3

First, the average cluster and average inter-majority case distances for each
attribute have to be computed; we obtain σ1 = 2, µ1 = 1.7; σ2 = 2.6, µ2 = 1;
σ3 = 2.3, µ3 = 2.5. The average distance and the average majority cases
distance within the cluster with respect to d are σ = 2.29, µ = 1.78. Assuming
α = 0.2, we obtain the new weights:

w′ =
(

1
3
,
1
3
,
1
3

)
∗ (1.06, 1.32, 0.953)

= (0.353, 0.440, 0.318)

where ∗ denotes the element-wise multiplication. After the weights have been
adjusted for the cluster, the following new case distance matrix D is obtained:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1.57 1.89 1.92 3.82 2.21
0 1.57 1.60 3.50 1.57

0 1.29 3.19 3.19
0 2.58 2.21

0 2.58
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The average inter-case distances have changed to σ = 2.31, µ = 1.64.
As we can see, the cases belonging to the majority class have moved closer
to each other (the average majority class case distance dropped by 0.14 from
1.78), whereas the average distances of all cases belonging to the cluster in-
creased very slightly, which implies that the distances involving majority cases
(involving cases 1, 2, and 3 in this case) have decreased, as intended.

3.5 Case-Based Retrieval

In case-based retrieval, cases are retrieved and ranked according to their dis-
tance to a query. Unlike classification and maintenance methods, the cases are
assumed not to have a class label. Offline training of a distance function is
therefore not possible. A user’s query, at runtime, partitions the set of cases
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into two classes: relevant and nonrelevant. Distance function learning uses this
feedback to improve the recall and precision of subsequent retrievals. Since a
new distance function is learned for each query, the learning process must be
very fast, even if not very accurate.

Learning a distance function in response to a user’s feedback is known
as relevance feedback. One of the earliest relevance feedback algorithms was
designed for text retrieval [37]. As in other fields, a case t is represented as a
vector of word features:

t = (t1, . . . , tn)

tj ≥ 0

where each tj is the value for the jth word from a set of all n words that occur
in the case base.

Although cases are represented by feature vectors much like the other
fields we have discussed, the values for the features have a special meaning.
This permits several assumptions in these case bases that are otherwise not
justified for the other domains we have considered. The most common form is
the term-frequency inverse case frequency (TFIDF) where each term has the
following form:

ti =

⎧⎨
⎩FREQi

(
1 − log2 DOCFREQ j

log2 m

)
wordj ∈ t

0 wordj /∈ t

where DOCFREQj is the number of cases that contain the jth word, FREQj

is the number of times the jth word occurs in the case t, and m is the number
of cases in the case base [39].

3.5.1 Distance Function Learning

The most common distance function learning algorithm for case-based re-
trieval using relevance feedback relies on some assumptions about relevant
cases and the words they contain. An analysis of the distribution of words in
text cases has shown the following [39]:

1. Relevant cases depend on a small set of relevant words (assumed to be in
the query)

2. Relevant words are rare across all cases (basis for the TFIDF feature
representation)

3. Relevant words are consistent across relevant cases

The most frequent words in a case base tend to be irrelevant to any partic-
ular topic, although most of these are removed during preprocessing. Within
the relatively small set of relevant cases, the cases are relevant because they
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contain these relevant words. As a result, the relevant words are expected to
occur consistently and more frequently in the set of relevant cases. Note that
the query does not always contain all relevant words, as the words may have
synonyms. In this case, the query may miss cases that use different words to
describe the same topic.

Since we assume that relevant cases are characterized by the consistent
presence of relevant words, distance function learning methods weight words
by their consistency within the set of relevant cases. A common measure for
inconsistency is the standard deviation of the word frequencies in the relevant
cases. The weights are inversely proportional to the standard deviation:

wi =
{ 1

σi,r
σi,r �= 0

w0 σi,r = 0

where σi,r is the standard deviation of word i with respect to the relevant
cases r and w0 is a fixed weight when the standard deviation is close to 0.
For words that consistently appear (and do not appear) in the relevant cases,
the standard deviation will be low and their weight will be high. For words
that do not appear consistently, the standard deviation will be high and their
weight will be low.

Despite the apparent simplicity of the weight update strategy, it has been
shown to be effective for text retrieval [8,37,39]. The main reason for its good
performance is that it has access to the relevant cases, rather than having to
predict class labels. In pattern classification and clustering, the relevance of a
new case (class label) is not known at runtime, the classification process is not
interactive. Information retrieval is an interactive process in which the task is
slightly different than classification. Instead of asking “What is the best class
of this case?” the question is “Given the relevant cases, what other cases are
similar to these?” By providing cases of relevant cases interactively, the user
provides significantly more information to the retriever than is available to
the classifier. Since distance functions are individualized and different from
each other, each distance function determines what is relevant for a particular
user but not what is relevant to all users.

Evaluating the performance of these algorithms is difficult in practice.
The retrieval process is evaluated in terms of precision (percent of the re-
turned cases that were relevant) and recall (percent of relevant cases that
were returned). Ideally, both precision and recall should be high. For relevance
feedback algorithms, users are typically not available during experiments.
A common practice is to simulate a user’s feedback by assigning a class label
to each case. Cases in the same class as the query are then considered relevant.

Example 6. Suppose we have a corpus (case base) of five cases with the
following most frequently occurring words:3

3 This example is intended to demonstrate the algorithm and not any political
opinion.
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1. George near a bush
2. George Herbert Walker Bush
3. George Clinton
4. The President
5. President Bush

Each case is the set of most frequently occurring words in a text document.
Following the standard text preprocessing procedure, single letter words and
articles (“the,” “a”) are removed and capitalization is ignored. The vector
representation of the case base is

t =

⎡
⎢⎢⎢⎢⎢⎢⎣

bush clinton george herbert near president walker
0.5 0 0.8 0 0.2 0 0
0.6 0 0.6 0.6 0 0 1
0 0.7 0.6 0 0 0 0

0.1 0 0.01 0 0 0.8 0
0.6 0 0.01 0 0 0.9 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The query of “President George W. Bush” results in the vector q:

q = (1, 0, 1, 0, 0, 1, 0)

With equal weights, cases 5, 1, 2, 4, 3 are returned in that order. The user
now selects cases 4 and 5 as relevant. The normalized weight vector is then
w′:

w′ = (0.17, 0.0, 0.0, 0.0, 0.0, 0.83, 0.0)

This assigns the highest weights to “President” and “Bush.” The weight
for “Bush” is less than that for “President” because “Bush” appears incon-
sistently across the relevant cases, in case 5 but not 4. The word “President,”
however, appears in both cases. The same query with the learned weights re-
turns the cases 5, 4, 2, 1, 3 in that order. After relevance feedback, the top
two cases were those marked as relevant.

3.6 Visualizing Proximity of Cases

Because distance functions are embedded in different algorithms (classifica-
tion, clustering, and retrieval), it can be difficult to evaluate the performance
of a distance function learning algorithm. Both to provide an intuitive un-
derstanding of distance functions and as a qualitative evaluation, we discuss
several visualization methods for distance functions. They show how learning
a distance function changes the spatial relationship among the cases, and try
to visualize how good distance functions can be distinguished from bad ones.
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3.6.1 Voronoi Diagrams

A Voronoi diagram partitions cases in a case base into mutually exclusive
regions called Voronoi cells (See [33] for more details). Each cell c contains
exactly one case x from the case base Y ⊆ X. The cell is defined such that
the case x is the nearest case in the case base to all cases in the cell. Cases
along the border are equally distance to the cases in the cells.

The weights change the shape of the cells in the Voronoi diagram.
Figure 3.3 shows two Voronoi diagrams of a case base with two classes. On
the left the cells appear to be wider but compressed vertically. This is because
our original case base is skewed along one dimension. We change the weights
to place more “emphasis” on the x-axis such that its weight is larger than
that of the y-axis. As a result, the cells on the right diagram are stretched
along the vertical dimension and compressed along the horizontal axis. As the
weight for x increases towards 1, the cells become vertical line segments.

3.6.2 Multidimensional Scaling

In the 2D case, we saw that a slight change of the weights significantly changed
the neighborhood of the cases. In the Voronoi diagram, this is easily seen
as changing the shape of the Voronoi cells. In higher dimensions, however,
computing the Voronoi diagram is computationally expensive.

Multidimensional scaling (MDS) (See [6] for more details) finds a
p-dimension representation for n-dimension cases, where 1 ≤ p < n. For
visualization, we assume that p = 2. A key benefit of MDS for visualization
is that it preserves the distance between cases such that

d(φ(x), φ(y)) ≈ d(x, y)

where x, y are cases in the original case base and φ : R
n → R

p projects the
input cases to the lower dimension.

Most MDS algorithm operate only on the distance matrix of the cases.
In classical multidimensional scaling, the projection is a decomposition of the
distance matrix. Since the purpose of distance function learning is to change
the distance function and thus the distance matrix, cases change their spatial
relationship as the weights change. For many MDS algorithms, the change in
position is so drastic that it is hard to compare the two figures before and
after changing the weights.

3.6.3 Distance Matrix Image

Although MDS can give us a nice visualization of the cases in 2D, much visual
information is lost when moving from one set of weights to another. This is
because the cases tend to move in seemingly unpredictable ways. The distance
matrix image does not suffer from these problems. The main disadvantage,
however, is that it can often be hard to see small intensity changes.
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To form the distance matrix image, each entry becomes a block of pixels in
an image. The color of each block is proportional to the distance. A common
color map is a linear gradient from black to white. In this color map, the
brighter the color, the larger the distance. Each row i in the image corresponds
to Di,j for all columns j. As the weights change in the distance function, the
color of the pixels will change.

To facilitate the qualitative meaning of the image, adjacent rows should
correspond to cases in the same class. Grouping by class allows us to observe
changes in the structural properties of the distance function. Blocks along
the diagonal represent the same classes. Off-diagonal blocks represent distance
between pairs of classes, and classes that are well separated will have bright
colors for these blocks. Cohesive classes in which the cases are all close to
each other will have dark colors in the blocks along the diagonal. We typically
assume that classes are cohesive, but this may not be true in general.

3.6.4 Examples of Learned Distance Functions

We show two example case bases before and after changing the weights. For
the 2D case base, we demonstrate all three visualization methods. For the
9D case base, we demonstrate only the last two methods. In both cases, the
objective of learning the objective function is to improve classification perfor-
mance. The objective function should make cases in the same class closer and
cases in different classes further apart.

Example: 2D Random Case Base

Figure 3.3 shows about 20 cases each from two 2D Gaussian distributions with

means µ1 = (0.8, 1), µ2 = (1, 1), and covariance Σ1 = Σ2 =
[

0.006 0
0 0.04

]
.

In Figs. 3.3, 3.4, and 3.5, the weights are

wu = (0.5, 0.5)
wr = (0.7, 0.3)

where wr has unequal weights to simulate learning the distance function.

Voronoi Diagrams

Figure 3.3 shows Voronoi diagrams for the cases with equal and unequal
weights. The diagram with unequal weights has been stretched vertically but
compressed along the horizontal axis. It may be unclear why the cells are
taller when the vertical weight is smaller. This is because a smaller weight
decreases distance along that dimension. As a result, more cases are closer to
the cases in the cells along that dimension. In contrast, horizontal distance
has increased leaving fewer cases close in the cells.
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Fig. 3.3. Voronoi diagrams for (left) equal weights and (right) weights (0.7, 0.3).
The scales are different in the figures because the algorithm that computes the
Voronoi diagram only uses unweighted Euclidean distance

The Voronoi diagram indicates that the distance function meets our
objectives. The separation between µ1 and µ2 is greatest along the horizontal
component because |µ1 − µ2| = (0.2, 0). The weights increase the horizontal
distance causing the means to be further apart. The result is that the distance
function can potentially improve classification performance.

Multidimensional Scaling

Figure 3.4 shows the result of multidimensional scaling with equal weights
and unequal weights. Although the original case base was 2D, with unequal
weights, the position of the cases and thus their distance has changed signifi-
cantly compared to the distance with equal weights.

The figures show that with unequal weights, the grouping of the cases
improves. As a whole, the classes appear to be further separated from each
other in Fig. 3.4 (right). Within each class, the cases appear to be closer
together.

Distance Matrix Image

Figure 3.5 shows the distance matrix image for the cases with equal and un-
equal weights. Since the cases are grouped by class, the lower-left and upper-
right quadrants of the figure denote cases in the same class. With unequal
weights, these regions are generally darker. This means that the distance
between cases in the same class has decreased overall. The lower-right and
upper-left quadrants of the figure denote the distance between cases in dif-
ferent classes. With unequal weights, these quadrants are generally brighter.
This means that the distance between cases in different classes has increased
overall.
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Fig. 3.4. Multidimensional scaling of the 2D case base with (top) equal weights in
the original case base and (bottom) weights (0.7, 0.3)
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Fig. 3.5. Distance matrix images for the 2D case base with (left) equal weights and
(right) weights (0.7, 0.3).

Example: Nine-Dimensional Case Base

With a 2D case base, the Voronoi diagrams were illustrative. Unfortunately,
for more than three dimensions the Voronoi diagram is expensive to compute
and difficult to display. For higher-dimensional case bases we use only the
multidimensional scaling and the distance matrix images.

The case base has nine features with 214 cases from seven classes [4].
We demonstrate the effect of weights with two weight vectors:

wu =
1
9

wr = (0.0646, 0.0936, 0.4283, 0.1275, 0.0466, 0.0340, 0.0826, 0.1121, 0.0109)

where wu consists of uniform weights and wr is the weight vector learned
by Relief-F algorithm [30]. As discussed in Sect. 3.3, Relief is designed to
find weights that increase the distance between cases of different classes and
decrease the distance between cases of the same class.

Multidimensional Scaling

Figure 3.6 shows the multidimensional scaling of the case base with equal
weights and with Relief weights. We see that the Relief algorithm works well
on this case base. Unlike the 2D case, the cases have shifted significantly
with the different weights. In general, the cases are further apart with the
Relief weights because the scale of the figures is different. Cases in the same
class are grouped together, which is desirable in classification problems. The
clusters are better separated from clusters of cases belonging to another class.
In general, the figure shows that cases are more tightly grouped within the
same class and these groups are better separated from each other.

Distance Matrix Image

Figure 3.7 shows images of the distance matrix with equal weights and
Relief weights. These figures show that the Relief weights increase the distance
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Fig. 3.6. Multidimensional scaling of the glass case base with (top) equal weights
and (bottom) Relief weights [30]
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Fig. 3.7. Distance matrix images for the 9D case base with (top) equal weights
and (bottom) Relief weights. The enlarged portions illustrate the difference between
intraclass distances (left) and interclass distances (right)
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between cases of different classes but decrease the distance between cases of
the same class. The enlarged portions of the figure highlight the difference
between the distance functions. With equal weights, the distance between
cases in the same class decreases, causing the image to appear darker. With
Relief weights, the distance between these cases and those of different classes
increases, causing the image to appear brighter. Among the rest of the cases,
the blocks along the diagonal appear darker with Relief weights. This means
that cases in the same class are closer to each other with Relief weights. The
off-diagonal blocks, particularly on the top and right, are brighter with Relief
weights.

The distance matrix images also reveal some distance structure across the
classes. If the classes were separated well, most of the distance matrix would
be brightly colored. Only the regions along the diagonal would be dark. Since
the majority of the distance values are small, this means that the three classes
in the upper-right are, as a whole, very far from the rest of the cases. The
Relief weights clarify this fact.

3.7 Related Work

In this section, we survey other distance function learning work in case-based
reasoning and machine learning. The work is grouped by the method and
objective. Our survey is broad in scope and touches several different fields of
research, each placing different requirements on distance functions. Although
we do not claim that our survey is complete, we hope it serves as a starting
point for newcomers to the field.

3.7.1 Statistical Methods

Statistical methods make use of either simple statistical models or models of
the probability distribution. The model is used to derive weights and usually
depends on distributional assumptions about the case base.

Correlation

The correlation ρ(X,Y ) between two random variables X and Y is defined as

ρ(X,Y ) =
ΣX,Y√
σ2

Xσ2
Y

where σ2 is the variance of each random variable and Σ is the covariance
between the random variables. The correlation has a range of −1≤ρ(X,Y )≤1.
When ρ=1, the variables are said to be positively correlated, which means
that as X increases, Y increases. When ρ = −1, the variables are negatively
correlated, meaning that as X increases, Y increases. In distance function
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learning, we are interested in the magnitude of the correlation, which indicates
the degree to which a feature is correlated (positive or negatively) with the
target value. Both kinds of correlation mean that the feature should have a
high weight.

Correlation is used for both selecting features and assigning weights.
Yu and Liu select features that are highly correlated with the class labels but
not correlated with each other [51]. This reduces redundant features because
features that are highly correlated may be redundant. Doulamis and Doulamis
set feature weights proportional to the correlation between the features val-
ues and a user-defined relevance measures, as in information retrieval [15].
Pan et al. find a highly correlated subset of features of a high-dimensional
projection of the case base [34]. Projecting features into a high-dimensional
space could introduce many irrelevant or redundant features. To eliminate
redundant features, we compute a kernel matrix and perform an eigenvalue
decomposition as in kernel PCA. The k largest eigenvalues correspond to the
most important features. Weights for this subset of features are proportional
to the correlation coefficient with respect to the target.

Variance

As we discussed in Sect. 3.5, many relevance feedback methods use the vari-
ance of features in the case base because it is easy to compute. It is especially
useful in interactive case-based systems, because users can specify which cases
are relevant. Kohlmaier et al. assign weights to a feature based on the degree
to which it increases variance in the computed similarity values [29]. The
variance in the similarity function is a good indicator of different cases. In ad-
dition to providing the single best response, a good case result should return a
variety of different, but related, cases. We consider adding a single feature to
the set of features. If this new feature increases the variance of the similarity
function, it is believed to be a good starting point for obtaining good feedback
from the users. If the variance is low with this feature, most of the cases are
similar based on this feature, so it may not help the user find a good solution.
The variance of similarity values can be used either alone or combined with
weights. Results show that the method performs better than weights alone on
several case-based retrieval tasks [40].

Expectation Maximization

Expectation maximization (EM) approaches iterative solve an optimization
problem where the objective is to maximize the likelihood of the case base
given the new model. In distance function learning, the model is the set of
weights. The likelihood is the probability of finding the existing case base
given the current weights. The EM algorithm has two basic steps. In the
maximization step, we find those weights that best explain the case base.
In the expectation step, we recompute the likelihood function, which changes
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when the weights change. The EM algorithm maximizes weights, computes
the expected case base given the weights, and then repeats until the weights
converge.

These methods are common in classification and clustering. In the max-
imum likelihood approach, we seek a set of weights that best explains the
case base. If we have a set of pair-wise constraints, such as knowing that the
two cases should not be considered similar, we can find weights that maxi-
mize the likelihood of separating cases [50]. Given the weights, we determine
the degree to which the pair-wise constraints are violated and update our
likelihood function. We can again find weights that maximize the likelihood.
Huang et al. apply another EM-type algorithm to find weights that induce
a good clustering, a maximum-likelihood clustering. Each cluster is modeled
by a multivariate Gaussian distribution. Each case has a probability of being
a member of each cluster. The weights are used to compute the membership
probabilities for each case. The EM approach is to obtain a new clustering
given the weights and then find the weights that improve the membership
probabilities [24].

3.7.2 Changing the Set of Features

Often the original set of features is not adequate for the distance function.
We would like to evaluate a feature, indicating its usefulness with respect
to the class labels. When there are many features, some are irrelevant or
redundant. Finding a suitable subset or subspace of the features, these fea-
tures can improve the computational efficiency. When the features do not
adequately express the target value, we can construct new features that are
more expressive.

Feature Evaluation

In Sect. 3.3, we discussed the popular Relief method. Many other feature
evaluation algorithms are commonly used to find weights for distance func-
tions. Most of these were designed, like Relief, for classification problems and
to compare the class distribution considering the different values of nominal
features. Information gain measures the difference in entropy with respect to
the class labels [16]. The case base is split into partitions with respect to a
particular feature such that all cases in the partition have the same value for
the feature. The entropy with respect to the class labels is calculated in each
partition. The information gain is the difference between the initial entropy,
without the partitions, and the average entropy after the partitioning.

As with the Relief algorithm, the output of a feature evaluation method
can be used for weights in a distance function. In classification, the information
gain increases weights for features that are similar to the class label. Features
that are distributed like the class label have high weights as do those features
with many values [14]. Text features, particularly in information retrieval,
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lend themselves to this method. A relevant word would only be in the set of
relevant cases, so we would expect it to have high information gain. If the
word is not relevant the class labels would tend to be distributed similarly in
each split, so the information gain would be small [49].

Extending the concept of feature weights to individual feature values is
also common in case-based reasoning literature. Such a local weight could,
for example, place more emphasis on the difference between the values “red”
and “blue” than on the difference between “red” and “pink”. Nunez et al.
compared several entropy-based weighting methods for local weighting [32].
They showed that the local weight approach can be useful. However, having
more weights to control makes the learning process more difficult. As a result,
more complex search methods such as genetic algorithms have to be used [25].

Decreasing the Number of Features

As we have seen, feature selection seeks an optimal subset of the initial set of
features. In dimension reduction, we also seek a reduced set of features, but
we consider combinations of features. As shown in our visualization cases in
Sect. 3.6, multidimensional scaling can reduce a high-dimensional case base
to a 2D case base that preserves clusters. There are three common methods
for dimension reduction: principal component analysis, linear discriminant
analysis, and multidimensional scaling.

Principal Component Analysis

The principal components of a case base are the directions (linear combination
of features) that indicate the variance in the cases. They are the eigenvectors
of the covariance matrix that correspond to the largest eigenvalues. The prin-
cipal components become the new features. The covariance matrix allows to
calculate the Mahalanobis distance, which projects the cases onto the inverse
of the covariance matrix. The projected cases is “corrected” for the covari-
ance such that an unweighted distance function can be used. The objective of
these distance function learning algorithms is to find the best projection. For
example, the projection should map the cases into well-separated classes [5,19].

Linear Discriminant Analysis

Rather than requiring a distance function to consist of good features, one can
require that it lead to good classification results. Since predicting accuracy
is computationally expensive, an alternative is to maximize the margin of
separation between cases. Since the separation depends on the learned distance
function, the problem is to find a distance that leads to the greatest separation
between cases in different classes. An early algorithm for this purpose is Linear
Discriminant Analysis (LDA). A local approach to LDA finds the discriminant
among a small neighborhood of cases. The linear projection matrix that leads
to the best discriminant is chosen for each case [22].
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Multidimensional Scaling

From a geometric perspective, these covariance approaches reshape the cases
to improve separation. The dimensionality of the projected cases is the same
as the original cases. As we have seen in Figs. 3.4 and 3.6, projecting cases
onto fewer dimensions can yield insight into the distances. Much work has
shown that they are quantitatively effective as well. A desirable property of
multidimensional scaling is that it should preserves distances in the projected
space. Rather than preserving all the original distances, the projection can
increase the distance between cases in different classes, leading to a better
separation of classes in the lower-dimensional space [52].

Other projection methods utilize different aspects of relatedness such as
knowledge of unwanted variance between cases of different classes [23] and the
structure of local neighborhoods [20].

Increasing the Number of Features

Feature Construction

Often the original set of features for a case base are unable to represent the
concept. For example, if the true target value is a nonlinear function of the
features such as x2 + xy, then it would be difficult for any weight vector to
approach the function. A common solution is to construct a new, larger set
of features. The similarity function and weights are then computed in this
high-dimensional feature space. Examples include the set of polynomials of
degree 2, yielding features such as (x1, x2, x

2
1, x

2
2, x1x2). This feature construc-

tion method can introduce significant redundancy among the features. As a
result, dimension reduction methods, like those discussed earlier, can be used.
A specialized version of PCA, called kernel PCA, is ideally suited for this prob-
lem [34]. As the original number of features increases, feature construction like
this tends to be very expensive, as O(n2) features have to be constructed. An-
other technique is to add new, derived features. An example is to find a set
of weights for a subset of features and then use the weighted combination of
feature values as a new feature [36]. The new feature can either replace or
augment the existing set of features. It is particularly useful with image cases,
when the individual low-level features are, by themselves, not good predictors
of the class.

Kernels

In kernel-based machines, cases are represented as a vector of similarity values.
Each case consists of its similarity to all other cases in the case base. A kernel
function k(x1, x2) defines the similarity between two cases x1 and x2. The
kernel matrix is constructed from the original case base as follows. For a case
base of size n, the kernel matrix has dimension n × n. Each entry Ki,j is the
value of the kernel for two cases Ki,j = k(xi, xj). Using the so-called kernel
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trick, any algorithm that operates on case bases with a dot product can be
modified to use a kernel function. This kernelization allows many existing
algorithms to be extended with kernels. Techniques that can be kernelized
are the support vector machines, principal component analysis, and distance
based algorithms [3, 41]. In kernel PCA, we compute a reduced-dimension
version of the kernel matrix. The weights for this new feature vector indicate
which cases contribute most to the overall covariance of the kernel matrix.
As with traditional PCA, the kernel version improves the performance of
algorithms when using the reduced set of features [34].

Recent work has established a relationship between kernels and distance
functions [3, 41]. In particular, the work shows that good distance functions
make for good kernels [3]. As a result, many researchers have applied distance
function learning methods, like those discussed in this chapter, to learn kernel
functions. As in distance function learning, feature evaluation methods like
Relief can be used to find weights for kernel-based machines [9]. Weights can
be learned for a parameterized kernel function in much the same way they
are learned for distance functions [26]. Recent work shows that good distance
function make for good kernels [3].

3.7.3 Extracting Weights from Learned Models

A common approach to assess the importance of features is to apply an
algorithm that generates weights as part of the model. The weights are then
extracted from the model and used as weights for the distance function or to
select features.

Classifiers

A popular classifier that computes weights is the Logistic regression algorithm.
This algorithm assumes that the probability of a case x belonging to a class
y is

Pr(y | x,w) =
1

1 + e−wT x

where w is a vector weight and includes a bias. The algorithm is trained using
a gradient descent approach. The learned weights are then used for feature
selection and weights in a distance function.

Arshadi and Jurisica have applied logistic regression to case-based classi-
fication of microarray cases [1]. Their objective was to select relevant features
from a very high dimensional case base. They combine several classifiers in an
ensemble. The classification approach is to retrieve several cases from the case
base with the learned weights and then compute the majority class label. Their
results show a significant improvement in accuracy. Wilson and Leake use this
method to maintain the case base through clustering [48]. By clustering and
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then learning a set of weights, cases that are very distant from the prototype
of the cluster are removed as irrelevant. Features with low weights are also
removed as irrelevant. Their results showed that this lead to an improvement
of classification accuracy.

Support vector machines also learn weights, classifying cases based on a
separating hyperplane as follows:

f(x) = sign(wT x + b)

where w is a weight vector and b is a bias. The learned hyperplane is typically
one that separates cases into two classes by the largest possible margin. The
decision function f(x) is the distance between a case and the separating hyper-
plane, so this function can itself be used as a distance function. Alternatively,
the weights are extracted and used as weights for a distance function [13].

Relevance Feedback

The relevance feedback methods like those we have previously discussed use
relevant cases as the basis for weights. Their objective is to find weights that
best separate relevant from nonrelevant cases. Applied both in text retrieval
[8, 37, 39] and image retrieval [38], these methods are quite popular. We can
also cluster the cases based on relevance and then find a distance function
that separates the clusters [27]

3.7.4 Local Search Methods

Local search methods are popular for distance function learning. The most
common of these are iterative methods such as hill-climbing. Here, an initial
weight vector is updated until the objective function converges, e.g., to the
peak of a hill in the objective function. Updates are computed either by the
gradient of the objective function or with heuristics. Relief, as we discussed
in Sect. 3.3, is a local search method.

Extensions to Relief

In the Relief algorithm, a weight is the degree to which a single feature can
be used to predict the class label [28]. In practice this technique works well
and has inspired several extensions. The most common extension, Relief-F,
extends Relief from two classes to several classes, which allows for greater
applicability and widespread use [30]. Rather than learning a single weight,
we can find a pair of weights for each class: one for the nearest hit and miss
cases [7]. Although widely used as a batch learning algorithm, a recent itera-
tive version of Relief achieves comparable accuracy as an online learner and
supports removing outliers [45].
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Using Gradients

Gradient-based hill climbing methods, known as gradient descent methods,
are the most common form of hill climbing algorithm. For distance function
learning, these methods define an objective function in terms of weights and
then compute its gradient. A common approach used in case-based retrieval
is to find weights that compute an optimal ranking of the cases. For exam-
ple, given a user’s feedback of known ranks for a set of cases, weights can be
learned that match the ranks. The error function is simply the squared dif-
ference between the known ranks and predicted ranks. This is a continuous,
differentiable function, which lends itself to gradient-based methods [31, 43].
Coyle and Cunningham minimize the difference between a user’s ranking of a
set of retrieved cases versus those computed with uniform weights. The idea
is to make the similarity with weights as different from uniform weights as
possible. By saving these weights for individual users, a customized case base
is created [11]. With a similarly objective function, Shiu et al. incorporate
learned weights as a first step in their case base maintenance process [42].
Tsang et al. find weights that induce a good clustering to edit the case base.
The objective is to improve cluster metrics such as intracluster distance (tight-
ness of the cluster) [46]. The objective function for optimization minimizes the
difference in the objective with learned weights vs. the set of uniform weights.

Nongradient Methods

In Sect. 3.4, we examined a nongradient approach that optimizes class
purity [17]. Here the weights are changed along the single attribute that im-
proves the purity the most. A subspace projection method, like hill climbing,
updates weights along a predefined direction as long as the objective function
improves [21]. This direction typically has components of several features.

3.7.5 Global Search Methods

Local search methods tend to converge to a point, known as a local optima.
This local solution may not be the global, best solution. Global search meth-
ods are intended to find this global solution. Optimization methods are used
when we know that there is only one optimal solution, typically because the
objective function is convex. Most other search methods expand their search
area with randomization.

Optimization

We can pose the distance function learning problem as one of the optimization.
In general, we would like to find feature weights that minimize a global error
function. Peleg and Meir find a subset of features that minimize the expected
generalization error [35]. The objective is to minimize the margin cost for a



122 A. Bagherjeiran and C.F. Eick

feature. Features that can adequately separate the cases have low margin cost.
Features that are poor separators are not useful for classification. Weinberger
et al. extend the optimization problem in the Relief algorithm. For Relief we
considered the distance between the nearest hit and miss case for each case
in the training set. Keeping the hit and misses fixed during optimization, the
objective is to minimize the distance between cases in the same class and
maximize the distance between cases in different classes [47].

Randomized Search

Genetic algorithms can directly search for weights and can evolve expressions
for the distance function. Stahl and Gabel find weights for specific feature
values. Each individual is a similarity table containing weights for pairs of
feature values. The fitness function is the accuracy of the ranks generated
with the weights [44]. Jarmulak et al. select features by evolving a feature bit
mask. The fitness function is cross-validation accuracy with classification cases
[25]. Using genetic programming, feature indexes and arithmetic operators are
added to a syntax tree forming an arithmetic expression. The fitness of the
expression is its estimated prediction accuracy [12].

Because objective functions over a clustering can be expensive to compute,
we seek search methods that do not evaluate many (very similar) solutions.
We can view the search for weights as a transition from one clustering, induced
by the original weights, to another, induced by the changed weights. If weights
lead to a good cluster, these weights, and those that led to them, form a path
of weights that lead to a good clustering. By remembering this path, consisting
of which choices were good and bad, the search can focus on good paths while
avoiding bad ones. If the path leads to a clustering that has already been seen,
the search can quickly switch to a different path rather than repeating work
already done. Conceptually, this is an application of reinforcement learning
to search, in which the best choices are remembered and reused [2].

3.8 Summary

The objective of distance function learning for supervised similarity assess-
ment is to find a distance function that groups together cases belonging to
the same class, while separating cases of different classes. We introduced a
framework for parameterized distance functions, which depends on a vector
of weights. We then provided detailed descriptions of algorithms used in three
different fields within case-based reasoning: case-based classification, case base
maintenance, and case-based retrieval. We showed how to visualize the dif-
ference between good and bad distance functions for high-dimensional case
bases. Finally, we surveyed recent work in the literature.

Distance function learning is particularly suited to applications with a
large number of dimensions, when it is difficult for us to determine which
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features are the most important. In classification, the Relief algorithm finds
features that separate cases from different classes. In case base maintenance,
the inside–outside weight update concentrates cases of the same class into co-
hesive clusters. In case-based retrieval, relevance feedback adapts the distance
function to a user’s preference at run time.

Distance function learning is a very active research field, and it can ben-
efit from a cross-fertilization of ideas from different fields. The algorithms
discussed in this chapter originated in the fields of machine learning, data
mining, and information retrieval. In the field of machine learning, recent
work has established a relationship between kernels and distance functions.
Distance function learning can be applied to obtain better kernels, and kernel
methods can be used to derive good distance functions. This has been used
in pattern classification. In data mining, distance function learning has found
widespread use when users can specify an objective function to organize infor-
mation. This suggests an interactive approach to unsupervised clustering in
which users can explore a clustering by changing objective functions. In infor-
mation retrieval, distance functions are tailored to individual users and their
queries. As different modalities of information become available in addition to
text (image, video, signals), distance function learning can be used to empha-
size the relevant features with respect to a user’s query. In all of these fields,
distance function learning is the common thread helping us better assess the
similarity between cases.
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32. Héctor Núñez, Miquel Sànchez-Marrè, and Ulises Cortés. Improving similarity
assessment with entropy-based local weighting. In Proc. 5th Int’l Conf. on Case-
Based Reasoning, LNAI 3689, pages 377–391, Trondheim, Norway, June 2003.

33. Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Hoboken,
NJ, 1992.

34. Rong Pan, Qiang Yang, and Lei Li. Case retrieval using nonlinear feature-space
transformation. In Proc. 7th European Conf. on Adv. in Case-Based Reasoning,
LNAI 3155, pages 361–374, Madrid, Spain, September 2004.

35. Dori Peleg and Ron Meir. A feature selection algorithm based on the global
minimization of a generalization error bound. In Lawrence K. Saul, Yair Weiss,
and Léon Bottou, editors, Adv. in Neural Information Processing Systems 17,
pages 1065–1072. MIT Press, Cambridge, MA, 2004.

36. Petra Perner. Why case-based reasoning is attractive for image interpretation.
In Proc. 4th Int’l Conf. on Case-Based Reasoning, LNAI 2080, pages 27–43,
Vancouver, BC, Canada, July 2001.

37. J.J. Rocchio. Relevance feedback in information retrieval. In Gerard Salton,
editor, The SMART Retrieval System–Experiments in Automatic Document
Processing, chapter 14, pages 313–323. Prentice Hall, 1971.

38. Yong Rui, Thomas S. Huang, and Sharad Mehrotra. Relevance feedback tech-
niques in interactive content-based image retrieval. In Storage and Retrieval for
Image and Video Databases, pages 25–36, San Jose, CA, January 1998.

39. Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, New York, NY, USA, 1983.



126 A. Bagherjeiran and C.F. Eick

40. Sascha Schmitt, Philipp Dopichaj, and Patricia Domı́nguez-Maŕın. Entropy-
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Transformations∗
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Summary. Inducing similarity measures for the case based reasoning scheme
through separable data transformations is considered in this chapter. Particular
attention is paid to linear transformations of multidimensional data on visualising
planes. Separable linear transformations are based both on solutions of eignevalue
problems used in the principal componet analysis or in the discriminant analysis as
well as on minimization of the convex and piecewise linear (CPL) criterion func-
tions. The perceptron and the differential criterion functions belong among others
to the CPL family. Such functions give possibility for flexible and efficient designing
separable transformations of data sets.

4.1 Introduction

Decision support systems are often based on the case based reasoning (CBR)
method [1]. An essential part of the CBR scheme is a search for such records
in a database which are most similar to the case actually analysed [1]. Such a
paradigm is also used in the nearest neighbours (K-NN) technique developed
in the framework of the pattern recognition [2,3]. One of the central problems
during implementation of the CBR or the K-NN scheme is the choice of a
similarity measure or the distance function between the database records [4].
The quality of the decision support rules can be improved by adjusting the
similarity measures or adequately tailoring the distance functions [5].

Here, we analyse possibilities of applying linear transformations of refer-
ence data sets for inducing similarity measures and diagnosis support rules
from the learning sets. Particular attention is paid to linear transformations
of multidimensional data on visualising planes. Designing linear transforma-
tion scheme that results from separability postulates is considered [5, 6]. The
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separability postulates are reinforced through minimization of the convex and
piecewise linear (CPL) criterion functions. The basis exchange algorithms,
similar to linear programming, allow one to find a minimum of the CPL cri-
terion functions efficiently, even in the case of large, multidimensional data
sets [7].

4.2 Separabilty of Reference Sets

Let us assume that object descriptions stored in a database are represented
as the so called feature vectors x = [x1, . . . . . . , xn]T, or as points in the
n-dimensional feature space F [n] [3]. The components xi of vectors x are
numerical results of various examinations of a given object. The feature vec-
tors x can be of the mixed, qualitative–quantitative type because their com-
ponents can be both real numbers (xi ∈ R) as well as binary ones (xi ∈ {0, 1}).

We assume that a database contains descriptions of m objects xj(k)
(j = 1, . . . . . . , m) labelled in accordance with their class (category) ωk(k =
1, . . . , K ′). The labelling of the feature vectors should be done in accor-
dance with an additional knowledge about particular decision support prob-
lem. For example, a clinical database contains the descriptions of m patients
xj(k)(j = 1, . . . . . . , m) labelled in accordance with their clinical diagnosis ωk.
The reference (learning) set Ck contains mk labelled feature vectors xj(k)
(precedents) related to the kth class ωk.

Ck = {xj(k)} (j ∈ Ik) (4.1)

where Ik is the set of indices j of mk feature vectors xj(k) belonging to the
class ωk.

Definition 1. The learning sets Ck (4.1) are separable in the feature space
F [n] if they are disjoined in this space. It means that each of the feature vectors
xj belongs to only one set Ck:

(∀xj(k) ∈ Ck) and (∀xj′(k′) ∈ Ck′ , k �= k′) xj′(k′) �= xj(k) (4.2)

In accordance with Definition 1, the feature vectors xj(k) and xj′(k′) from
different reference sets Ck and Ck′ cannot be equal.

We are also considering separation of the sets Ck (4.1) by the hyperplanes
H(wk, θk) in the feature space F [n]

H(wk, θk) =
{
x : wT

k x = θk

}
(4.3)

where wk = [wk1, . . . .,wkn]T ∈ Rn is the weight vector, θk ∈ R1 is the thresh-
old, and (wk)Tx is the inner product.

The feature vector x is situated on the positive side of the hyperplane
H(wl, θl) if and only if (wk)Tx > θl. Similarly, the vector x is situated on the
negative side of H(w1, θ1) if and only if (wk)Tx < θ1.
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Definition 2. The reference sets are linearly separable if each of the sets Ck

(4.1) can be fully separated from the sum of the remaining sets Ck′ by some
hyperplane H(wk′θk) (4.4):

(∀k ∈ {1, . . . , K ′}) (∃wk, θk) (∀xj(k) ∈ Ck) wT
k xj(k) > θk

and (∀xj′(k′) ∈ Ck′) wT
k xj′(k′) > θk (4.4)

In accordance with the relation (4.4), all the vectors xj(k) belonging to the
learning set Ck are situated on the positive side of the hyperplane H(wk, θk)
(4.2) and all the feature vectors xj′(k′) from the remaining sets Ck′ are situated
on the negative side of this hyperplane.

It can be proved that the sets Ck (4.1) are linearly separable if all the
feature vectors xj(k) are linearly independent (sufficient condition).

4.3 Distance Functions Induced by Linear
Transformations of the Feature Space F [n]

The nearest neighbours decision support rules are based on the distances
δ(x0,xj(k)) between the feature vector x0 of a new object and the labelled
vectors xj(k) from the reference sets Ck (4.1) [2]. Let us assume for a moment
that m labelled feature vectors xj(k) (4.1) are ranked {xj(1), xj(2), . . . ,xj(n)}
in respect to the distances δ(x0,xj(k)) between the vectors x0 and xj(k):

(∀i ∈ {1, . . . , m − 1) δ(x0,xj(i)) ≤ δ(x0,xj(i+1)) (4.5)

Let us define the reference ball Bx(x0,K) which is centred in x0 and contains
K first vectors xj(i)(k):

Bx(x0,K) = {xj(k) : δ(x0,xj(i)) ≤ δ(x0,xj(K))} (4.6)

In accordance with the K-nearest neighbours (K-NN) classification rule, the
object x0 is allocated into this class ωk (k = 1, . . . ..,K′) where most of the
labelled feature vectors xj(k) from the ball Bx(x0,K) (10) belong [2]:

if (∀l ∈ {1, . . . , K ′}) nk ≥ nl then x0 ∈ ωk (4.7)

where nk is the number of the vectors xj(k) from the set Ck (4.1) contained
in the ball Bx(x0,K) (6).

The decision rule similar to (4.11) is applied also in the case based rea-
soning scheme. It is assumed in this case that the reference ball Bx(x0,K)
contains such vectors xj(i)(k) which are most similar to the vector x0.

The Euclidean distance δE(x0,xj(i)) between the feature vectors x0 and
xj(i) is commonly used in the case based reasoning or in the nearest neighbours
classification rule (8):

δE
2(x0,xj(i)) = (x0 − xj(i))T(x0 − xj(i)) (4.8)
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A quality of the decision rule (4.11) based on the Euclidean distance δE

(x0, xj(i)) can be improved in some cases through modification of the dis-
tance function through transformations of the feature space F [n].

The Mahalanobis distance function δM(x0,xj) in the feature space X is
defined on the basis of the covariance matrix Σ [4]

δM
2(x0,xj(i)) = (x0 − xj(i))TΣ−1(x0 − xj(i)) (4.9)

The Mahalanobis distance function δM
2(x0,xj(i)) takes into account the lin-

ear dependencies in the pairs of the features xk and x1. When the covari-
ance matrix Σ is equal to the unit matrix In, then the Mahalanobis distance
δM

2(x0,xj(i)) is reduced to the Euclidean distance δM
2(x0,xj(i))) (8).

Let us consider the linear transformations of the feature vectors xj(k).
Such transformations can be represented in the matrix form given below:

yj(k) = W Txj(k) (j = 1, . . . ..,m) (4.10)

where W = [w1, w2, . . . . . . , wn′ ] is the matrix of dimension (n × n′) with
1 ≤ n′ ≤ n.

The relation (4.10) allows one to generate the transformed learning sets
C′

k, where
C′

k = {yj(k)} (j ∈ Ik) (4.11)

Let us define the induced distance function δI(x0, xj(i)) between the feature
vectors x0 and xj(i) as the Euclidean distance function δE(y0, yj(i)) (4.8)
between adequate points y0 and yj(i) transformed in accordance with (4.10).

δI
2(x0,xj(i)) = δE

2(y0,yj(i)) = (y0 − yj(i))T(y0 − yj(i))

= (x0 − xj(k))TWW T(x0 − xj(k)) (4.12)

The induced ball BI(x0,K) can be defined by using the distance function
δI(x0,xj(i)) (4.12).

BI(x0,K) = {xj(k) : δE
2(y0,yj(i)) ≤ δE

2(y0,yj(K))}
= {xj(k) : δI

2(x0,xj(i)) ≤ δI
2(x0,xj(K))} (4.13)

where points xj(i) are ranked {xj(1), xj(2), . . . . . . .., xj(n)}(4.5) in accordance
with the induced distance function δI(x0, xj(i)) (4.12).

The induced ball By(x0,K) contains such K feature vectors xj(k)
which are the most similar to x0 in accordance with the distance function
δI(y0, yj(i)) (4.11).

The case based reasoning (CBR) or the nearest neighbours decision rules
(4.7) can be based on the induced ball BI(x0,K) (4.13):

If most of the labelled vectors xj(k) from the induced ball BI(x0,K)
belongs to the class ωk, then the object represented by x0 should be

assigned to this class.
(4.14)
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The performance of the above decision (classification) rule can be optimised
through a special choice of the vectors wi (i = 1, . . . .., n′) in the transforma-
tion (4.10). A basic measure of the classification rule performance is the error
rate – the fraction of new objects that are assigned to the wrong category [3].

4.4 Whitening of Reference Sets

An important role in classification is played by such linear transformations
(4.9), which reduce correlation of the learning sets Ck (4.1) [2]. Such transfor-
mations can be built on the basis of the eigenvectors ki and the eigenvalues
λi of the covariance matrix Σ. Let us take into consideration the covariance
matrix Σk estimated on the set Ck (4.1)

Σk =
∑
j∈Ik

(xj(k)-µk) (xj(k)-µk)
T

/(mk − 1) (4.15)

where µk is the mean vector in the set Ck

µk = Σ xj(k)/mk

j ∈ Ik
(4.16)

The eigenvalue problem with the covariance matrix Σk is formulated as the
search for the eigenvectors ki and the eigenvalues λi of the covariance matrix
Σk. The eigenvectors ki and the eigenvalues λi fulfil the below equation

Σk ki = λi ki (4.17)

with an additional condition of the unit length

ki
Tki = 1 (4.18)

The eigenvectors ki and kk corresponding to different eigenvalues λi and
λk (λi �= λk) are orthogonal

ki
Tkk = 0 (4.19)

Let us assume that the linear transformations (4.10) is defined by n′ (1 ≤
n′ ≤ n) orthogonal eigenvectors ki with positive eigenvalues λi (λi > 0).
Typically, the eigenvectors ki and the greatest eigenvalues λi are taken into
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consideration. We are considering the linear transformation (4.10) with the
columns of the matrix W formed by the vectors ki/(λi)1/2

W k = [k1/(λ1)1/2, . . . . . . . . . ,kn′/(λn′)1/2] (4.20)

The transformed vectors yj(k) (4.9) form the set C′
k (4.11) with the mean vec-

tors µk′ (4.16). The correlation matrix Σk
′ (15) are defined on the transformed

vectors yj(k) (9) from one set C′
k (4.11)

Σk
′ = Σ(yj(k) − µk

′)(yj(k) − µk
′)T/(mk − 1)

= W T Σ(
j ∈ Ik

xj(k) − µk)
j ∈ Ik

(xj(k) − µk)
TW /(mk − 1) (4.21)

= W TΣkW = In′×n′

where In′×n′ is the unit matrix of the dimension (n′ × n′).
It could be seen that the decision rule (4.13) with the Euclidean distance

δE(y0,yj(i)) (4.8) in the transformed space is equivalent to the decision rule
(4.7) with the Mahalanobis distance functions δM

2(x0,xj(i)) (4.9) in the fea-
ture space F [n], where the points y0 and yj(i) are obtained through the trans-
formation (4.10) with (4.20) of the points x0 and xj(i), adequately.

In accordance with the equation (4.20), the transformation (4.10) decor-
relates the set C′

k (4.11). The classification rule (4.14) based on the ball
BI(x0,K) (4.13) which is induced by the transformation (4.10) gives the possi-
bility to decrease the error rate [5]. Results of some experiments which support
this statement are described in a farther part of the presented chapter. In these
experiments the induced ball BI(x0,K) (13) has been defined on the basis of
the Euclidean distance function δE

2(y0,yj(i)) (4.8) in the transformed space.
Generally, the decision rule (4.7) with the Euclidean distance δE

2(y0,yj(i))
(4.8) can be matched in the best manner to data sets C′

k (4.11) with the unit
correlation matrix Σk

′.

Example 1. The numerical experiment has been performed on two-dimensional
data sets Ck and C′

k (points on the plane). Data were generated from nor-
mal distributions with different covariance matrices and had different mean
vectors. They belonged to three overlapping classes. The correlation coeffi-
cients were accordingly ρ1 = −0.9, ρ2 = 0.2 and ρ3 = −0.6. There were 30
objects in every class. To check the differences between classification quality
using whitening process the original data had been transformed. First trans-
formation was the whitening based on the transformation matrix built using
covariance matrix of the first class, analogically – on the second and on the
third class covariance matrix. The last transformation has been performed
using transformation matrix built using pooled estimate of the common co-
variance matrix (Fig. 4.1).

The results of classification errors for K-NN rule for the number of neigh-
bours from K = 1 to K = 10 are shown in Table 4.1.
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Fig. 4.1. Plots of transformed data (a) based on Σ1, (b) based on Σ2, (c) based on
Σ3 and (d) based on ΣW

The mean value of the classification error for original data using K-NN
rule was 43%. Adapting decorrelations we have achieved 33% as a mean of
error Σ1, 39% (mean of error Σ2), 35% (mean of error Σ3) and 35% (mean of
error ΣW). We can observe in the above results that the decorrelation of the
learning sets Ck can improve the K-NN rule based on the Euclidean distance
δE(x0,xj). The decorrelation of the learning sets Ck has entailed including
the Mahalonobis distance δM (x0,xj) from these sets. With such interpreta-
tion, we can claim that the replacement of the Euclidean distance δE(x0,xj)
by Mahalonobis distance δM(x0,xj) can lead to the improvement of the K-NN
or the CBR rule. In the case of more than two classes using transformations
based on single class Ck is preferred, because of the effect of conjoin different
covariance matrices into one pooled estimate of the common covariance ma-
trix. In our example the best classification quality we achieved for transformed
data with transformation matrix built using covariance matrix for the second
class Σ2 (77%).
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Table 4.1. Comparison of the classification error for K-NN classifiers (K =
1, 2, . . . , 10) for correlated learning sets Ck (error nd) and decorrelated sets C′

k

(error Σ1 – decorrelation based on the covariance matrix of the C1 set, error Σ2 –
decorrelation based on the covariance matrix of the C2 set, error Σ3 – decorrelation
based on the covariance matrix of the C3 set, error ΣW – decorrelation based on the
pooled estimate of the common covariance matrix)

Decorrelation
K Error nd Error Σ1 Error Σ2 Error Σ3 Error ΣW

1 0.4111 0.4667 0.5667 0.5222 0.5222
2 0.2444 0.2556 0.3444 0.3 0.3111
3 0.4 0.4 0.5333 0.4667 0.4778
4 0.3667 0.2 0.3667 0.2667 0.2667
5 0.5 0.3889 0.4444 0.4222 0.4222
6 0.3889 0.3111 0.3 0.2556 0.2
7 0.4444 0.3778 0.3889 0.3778 0.3444
8 0.4556 0.2778 0.2556 0.3111 0.2889
9 0.5111 0.4222 0.4 0.3444 0.3333
10 0.5333 0.2889 0.3111 0.2444 0.3111

4.5 Perceptron Criterion Functions (CPL)

The perceptron criterion function Φ(w, θ) originated from neural networks the-
ory [3,9]. Ψ(w, θ) is the convex and piecewise linear (CPL) criterion function.
The designing transformation (4.10) can be based on the minimisation of the
perceptron criterion function [6].

It is convenient to define the perceptron criterion function Φ(w, θ) by using
the positive G+ and the negative G− sets of the feature vectors xj (1).

G+ = {xj} (j ∈ J+) and G− = {xj} (j ∈J−) (4.22)

Each element xj of the set G+ defines the positive penalty function υj
+(w, θ)

. . .. . . . . . 1 − wTxj + θ i f wTxj − θ ≤ 1 (4.23)
ϕj

+(w, θ) =
0 i f wTxj − θ > 1

Similarly, each element xj of the set Gl
− defines the negative penalty function

υj
−(w, θ)

1 + wTxj − θ i f wTxj − θ ≥ −1 (4.24)
υj

−(w, θ) =
0 i f wTxj − θ < −1

where w = [w1, . . . .,wn]T ∈ Rn is the weight vector and θk ∈ R1 is the
threshold.
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Both the penalty functions υj
+(w, θ) and υj

−(w, θ) are convex and piece-
wise linear. The penalty function υj

+(w, θ) is aimed at placing the vector
xj(xj ∈ G+) on the positive side of the hyperplane H(w, θ) (4.3). Similarly,
the function υj

−(w, θ) should insert the vector xj(xj ∈ G−) on the negative
side of this hyperplane.

The perceptron criterion function Φ(w, θ) is determined by the sets G+

and G− is the weighted sum of the penalty functions υj
+(w, θ) and υj

−(w, θ)

Φ(w, θ) = Σ αj
+ϕj

+(w, θ) + Σ αj
−ϕj

−(w, θ) (4.25)
j ∈ J+ j ∈ J−

where αj
+ (αj

+ > 0) and αj
−(αj

− > 0) are positive parameters (prices).

Φ∗ = Φ(w∗, θ∗) = min
w,θ

Φ(w, θ) ≥ 0 (4.26)

The basis exchange algorithms which are similar to the linear programming
allow one to find the minimum of the criterion function Φ(w, θ) efficiently
even in the case of large, multidimensional data sets G+ and G− (4.22) [7].

It has been proved that the minimum value Φ∗ of the perceptron criterion
function Φ(w, θ) (4.25) is equal to zero (Φ∗ = 0) if and only if the positive
G+ and the negative G− sets (4.22) are linearly separable (4.4). In this case,
all elements xj of the set G+ (4.22) are located on the positive side of the
hyperplane H(w∗, θ∗) (4.3) and all elements xj of the set G− are located on
the negative side:

(∀xj ∈ G+)(w∗)Txj > θ∗l
and (∀xj′ ∈ G−)(w∗)Txj′ < θ∗l (4.27)

If the sets G+ and G− (4.22) are not linearly separable (4.4), then the above
relation is fulfilled not by all but by a majority of the elements xj of these sets.

Minimization of the function Φ(w, θ) (4.25) allows one to find optimal
parameters (w∗, θ∗) which can define the hyperplane H(w∗, θ∗) (4.3), which
separates relatively well two sets G+ and G− (4.22). The vector w1

∗ can be
used also as one of the columns of the transformation matrix W (4.10).

4.6 Four-Fields Diagnostic Maps of the System Hepar

The computer system Hepar aggregates the clinical database with tools for
data exploration and diagnosis support [8]. The database of the system Hepar
contains hepathological data. An essential part of the system is data visual-
isation module. For the purpose of data visualisation there are used linear
transformations from multidimensional feature space F [n] on a plane. Such
transformations allow for inducing the distance function δI

2(x0,xj(i)) (4.12)
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based both on the Euclidean distance δE
2(y0,yj(i)) (4.8) as well as on a sub-

jective measures of similarity.
The parameters w∗ and θ∗ determining minimum (4.26) of the criterion

function Ψ(w, θ) (4.25) can be also used in definition of the affine transfor-
mation of the feature vectors x on a line (4.9):

y = (w∗)Tx − θ∗ (4.28)

where w = [w1, . . . . . . .,wn]T is the parameter vector which determines direc-
tion of the line.

Such transformations have been applied in the system Hepar for defini-
tion of the visualising planes. This system allows for designing pairs of special
visualizing transformations (4.28), which result in the so called diagnostic
maps. Two linearly independent transformations (4.28) give possibility to pro-
duce such a visualizing plane (diagnostic map), which relatively well separates
four groups of patients. The diagnostic maps are used for inducing the sim-
ilarity measure between feature vector of a new patient x0 and the vectors
xj(k) from the reference sets Ck (4.1).

The affine transformation of the feature vectors xj (4.1) on a plane can be
represented in a below manner

yj = [yj1, yj2]T = [(wl
∗)Txj − θ1

∗, (w2
∗)Txj−θ2

∗]T (4.29)

where wi
∗ = [wi1, . . . . . . .,win]T (i = 1, 2) are the parameter vectors that span

a plane.
The scatterplots or, in other words, the maps of data can be generated

as a result of visualisation of the transformed points yj(k). If the vectors wi

are orthogonal ((w1
∗)T w2 = 0) and have the unit length ((w1

∗)T w1
∗ =

(w2
∗)T w2

∗ = 0) then the transformations (4.2) describes the projection of
the feature vectors xj(k) on the visualizing plane P (w1

∗, w2
∗; θ∗)

P (w1,w2; θ) = {x : x = α1w1 + α2w2 + θ, where αi ∈ R1} (4.30)

where θi = [θ1, θ2]T

Example 2. Let us consider this example in order to explain the basic princi-
ples of the diagnostic map designing in the framework of the system Hepar.
We have taken into consideration four learning sets Ck (4.1) extracted from
the Hepar database [8]

C9–Hepatitis chronica activa –91 patients
C13–Steatosis hepatis –67 patients
C15–Hiperbilirubinemia functionalis –56 patients
C22–Cirrhosis hepatis billiaris primaria –272 patients

(4.31)

Patients from these sets Ck have been described by the feature vectors xj(k)
of dimensionality n equal to 106. The components xi of the vectors xj(k)
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were numerical results of various diagnostic examinations of a given patient.
Numerical results of both laboratory tests (xi ∈ R) as well as patients symp-
toms (xi ∈ {0, 1}) have been taken as features xi.

The maps can reflect an actual diagnostic hypothesis of a medical doctor
(an user). The user declares which classes ωk should be located into particular
quarters of the map and which features (tests) xi are to be used in the visual-
izing transformation or, in other words, used for hypothesis examination. The
above map (Fig. 4.2) resulted from the affine transformation (4.29) of the 106 –
dimensional feature vectors xj(k) on a visualizing plane.

The affine transformation (4.29) of the feature vectors xj on a visualising
plane is determined by two pairs of parameters (w1

∗, θ1
∗) and (w2

∗, θ2
∗).

These parameters have been induced from the sets (4.30) through minimisa-
tion of two perceptron criterion functions Φ1(w, θ) and Φ2(w, θ) (4.25). Each
function Φk(w, θ) was defined by their own pair of the sets Gk

+ and Gk
−

(22), where

G1
+ = C13 ∪ C15 and G1

− = C9 ∪ C22 (4.32)
G2

+ = C9 ∪ C13 and G2
− = C15 ∪ C22 (4.33)

If each pair of the sets Gk
+ and Gk

− (k = 1, 2) is linearly separable (4.4), then
the transformation (4.29) based on the above sets assures the exact placements
of the learning sets Ck (4.30) in an adequate quarter of the diagnostic map
(Fig. 4.2).

The transformation (4.29) defines the coordinates yj(k) = [yj1(k), yj2(k)]
on the map of particular feature vectors xj(k). The vector of x0 of a new
patient can be located on the map as y0 by using the transformation (4.29).
As a result, the system can be used in the diagnosis support in accordance
with the CNR or the K-NN schemes (4.7), which are based on the Euclidean
distances δE(y0,yj[k]) (4.8) between the transformed vectors y0 and yj[k]. It
has been demonstrated experimentally that despite the significant reduction
of the problem dimensionality (from n = 106 to n′ = 2), the replacement of
the distances δE(x0,xj[k]) by the distances δE(y0,yj[k]) induced through a
diagnostic map gives possibility to reduce the error rate of the classification
rules [8, 9].

4.7 Fisher Linear Discriminant and Principal
Components

Let us consider further linear transformations (4.10) of data sets Ck (4.1)
from n-dimensional feature space F [n] onto line. Such problem is analysed
in the discriminant analysis. Discriminant analysis seeks direction w that are
efficient in separation on a line of two data sets C1 and C2 (4.1).

y = (w)Tx (4.34)
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Fig. 4.2. The diagnostic map with the following structure: C9, the upper-left quarter;
C13, the upper-right quarter; C15, the lower-right quarter; C22, the lower-left quarter

The direction vectors w which are used in the discriminant analysis have the
unit length

wTw = 1 (4.35)

The linear transformation (4.34) with an additional condition (4.33) describes
the projection yj = (w)T xj of the corresponding vectors xj onto a line in the
direction of w.

A fundamental role in the discriminant analysis is played by the Fisher’s
criterion function J(w).

J(w) = |µ1(w) − µ2(w)|/(s1(w)2 + s2(w)2) (4.36)

where |µ1(w)−µ2(w)| is the distance between the projected mean vectors µ1

and µ2 (4.16)
|µ1(w) − µ2(w)| = |wT(µ1 − µ2)| (4.37)

and sk(w)2 (k = 1, 2) is the within-class scatter (a measure of variance) of
the projected points yj from the set Ck.

sk(w)2 = Σ(yj(k) − µk(w))2

j ∈ Ik (4.38)

The below optimization problem is based on the Fisher’s criterion function
J(w).
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J(w∗) = max
w

J(w) (4.39)

In accordance with the Fisher’s criterion, the vector w∗ that constitutes max-
imum of the function J(w) (4.30) determines the best discriminant line. The
optimal vector w∗ determines large distance between the projected means
µ1 and µ2 (4.31) relatively to some measure of the variance of the projected
points yj.

The criterion function J(w) can be represented in a matrix form. Let us
define for this purpose the scatter matrices Sk(k = 1, 2) and SW

Sk =
∑
j∈Ik

(xj(k) − µk)(xj(k) − µk)
T (4.40)

and
SW = S1 + S2 (4.41)

SW is called the within-class scatter matrix. The scatter sk(w)2 (4.38) can be
expressed as

sk(w)2 =
∑
j∈Ik

(wTxj(k)−wTµk)
2 = ΣwT(xj(k)−µk)(xj(k)−µk)

T w = wTSkw

(4.42)
thus

s1(w)2 + s2(w)2 = wTSWw (4.43)

Similarly,

(µ1(w)− µ2(w))2 = (wTµ1 −wTµ2)
2 = wT(µ1 − µ2)(µ1 − µ2)

Tw = wTSBw
(4.44)

where
SB = (µ1 − µ2)(µ1 − µ2)

T (4.45)

SB is called as the between-class scatter matrix.
The criterion function J(w) (4.36) can be written as

J(w) = wTSBw/wTSWw (4.46)

The vector w∗ that maximizes J(w) must satisfy a generalized eigenvalue
problem for some constant λ

SBw = λSW w (4.47)

The vector wF that maximizes J(w) is known as

wF = SW
−1(µ1 − µ2) (4.48)

Fisher’s linear discriminant y = (wF)Tx (4.34), which is determined by the
optimal vector wF, yields the maximum ratio of the between-class scatter
matrix to the within-class scatter on the projecting line.
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In the case of the probabilistic normal model, when the conditional densi-
ties f(x/ω1) and f(x/ω2) are multivariate normal distributions N(µ1, Σ) and
N(µ2, Σ) with the same covariance matrix Σ, then the optimal (Bayesian)
decision boundary is the hyperplane H(wB, θB) (4.3), where

(wB)Tx = θB (4.49)

and wB is determined by an equation similar to (4.48)

wB = Σ−1(µ1 − µ2) (4.50)

In this case, the optimal decision rule has the following form

if wB
Tx > θB then x should be allocated into the class ω1 (4.51)

if wB
Tx < θB then x should be allocated into the class ω2

The above considerations have been related to discrimination between only
two classes (K ′ = 2). When the number of classes c is greater than 2 (K ′ > 2),
then the generalization of Fisher’s linear discrimination involves K ′− 1 linear
discriminant functions [3]. In this case, it is designed projection (4.10) from
n-dimensional space to a (K ′ − 1)-dimensional space.

Discriminant analysis seeks a projection that best separates data in a last
squares sense. In contrast, principal component analysis (PCA) or Karhunen-
Loeve transform seeks a projection that best represents data in a last squares
sense. PCA deals with dimensionality reduction through such linear transfor-
mations (4.10) from n-dimensional space to a n′ - dimensional space which
preserve variability in data as much as possible.

Principal component analysis is based on n′ linear transformations yi =
(ki)Tx that are defined by the eigenvectors ki = [ki1, ki2, . . . . . . .., kin]T of
the covariance matrix Σk (4.15).

yi = (ki)Tx =ki1x1+ki2 x2 + . . . . . . . . . .. + kinxn (4.52)

The covariance matrix Σk (4.15) of dimensionality n×n can have up to n nor-
malised (4.18) eigenvectors ki with positive eigenvalues λi. The eigenvectors
ki are ranked in accordance with the eigenvalues λi.

k1, .k2, . . . . . . . . . . . . ,kn (4.53)

where
λ1 ≥ λ2 ≥ . . . . . . . . . . . . ≥ λn > 0

The first principal component y1 = (k1)T x is defined by the eigenvector k1

with the largest eigenvalue λ1. The second principal component y1 = (k1)T x
is defined by the second eigenvector k2 and so on. Principal components are de-
fined by n′ eigenvectors ki (1 ≤ n′ ≤ n) with the largest eigenvalues λi. Often,
there are just a few large eigenvalues λi and it can be assumed that remaining
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n − n′ dimensions contain noise. Considerable dimensionality reduction can
be achieved in such case through linear transformation of data.

The variance σi
2 of the ith principal component yi = (ki)Tx can be esti-

mated in the following manner (4.15 and 4.38)

σi
2 =

∑
j∈Ik

(yj(k) − µk)
2/(mk − 1) =

∑
j∈Ik

((ki)T(yj(k) − µk)
2/(mk − 1) (4.54)

=
∑
j∈Ik

((ki)T(yj(k) − µk)(yj(k) − µk)
Tki/(mk − 1) = (ki)TΣkki = λi

As it results from the above relation, the first principal component y1 =
(k1)T x has the largest variance σ1

2, and (4.53)

σ1 ≥ σ2 ≥ . . . . . . . . . ≥ σn > 0 (4.55)

Example 3. Two eigenvectors ki and ki′ with eigenvalues λi and λi′ of the kth
covariance matrix Σk (4.15) can be used in the below visualising transforma-
tion (4.20 and 4.29), the data map determined by the kth set Ck (4.1).

y = [y1, y2]T = [(ki/(λi)1/2)T(x − µk), (ki′/(λi′)1/2)T(x − µk)]
T (4.56)

where µk is the mean vector (4.15) of the set Ck (4.1).

In accordance with the relation (4.55), all feature vectors xj(k) (4.1) are
transformed into the points yj(k) on the visualising plane Pk(k1,k2;0) (4.30)
determined by the kth set Ck (4.1).

The mean value µ′
k (4.16) of the transformed points yj(k) from the set Ck

(4.1) is equal to zero.

µ′k =
∑
j∈Ik

yj(k)/mk = [0, 0]T = 0 (4.57)

The covariance matrix Σ′
k (4.15) of the transformed points yj(k) from the set

Ck (4.1) is equal the unit matrix I2×2.

Σ′
k =

∑
j∈Ik

(yj(k) − µ′
k)(yj(k) − µ′

k)
T/(mk − 1)

=
∑
j∈Ik

yj(k)yj(k)T/(mk − 1) = (W ′
k)TΣkW ′

k = I2x2 (4.58)

where Σk is the covariance matrix (4.15) and the matrix W ′
k has the following

form (4.20)
W ′

k = [ki/(λi)1/2,ki′/(λi′)1/2] (4.59)

As it results from the relation (4.50) the transformed features y1 and y2 (where
y = [y1, y2]T (4.48)) are uncorrelated. Each of these features yi has the mean
value equal to zero and the variance equal to one in the set Ck (4.1).
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In accordance with the considerations given in the Example 1 it should
be profitable to use the visualizing transformation (4.48) and the diagnostic
map for an inducing of similarity measure for the CBR or K-NN decision rules
(4.7) with the Euclidean distance δE

2(y0,yj(i)) (4.8).
For this purpose, the decisionic rule (4.7) can be modified in the following

manner.

if (∀l ∈ {1, . . . , K ′})nk(k) ≥ nl(k) then x0 ∈ ωk (4.60)

where nl(k) is the number of the vectors yj(l) from the set Cl (4.1) contained
in the ball Bk(y0,K), and

Bk(y0,K) = {yj : δ(y0,yj(i)) ≤ δ(y0,yj(K))} (4.61)

where points yj(i) are ranked {yj(1), yj(2), . . . . . . .., yj(n)} (4.5) in accor-
dance with the Euclidean distance function δE(y0,yj(i)) (4.8) on the plane
Pk (k1,k2;0) (4.30) determined by the kth set Ck (4.1).

The visualizing plane Pk (k1,k2;0) (4.30) design in the above manner can
be called as the one-field diagnostic map. Each of the maps Pk (k1,k2;0) is
centered on one of reference sets Ck (4.1).

4.8 Dipolar Separability Postulates

The linear transformations (4.10) can be defined on a variety of principles.
Let us use for this purpose the concept of the mixed and clear dipoles formed
by the feature vectors xj(k) (4.1) [6].

Definition 3. A pair of the feature vectors (xj(k),xj′(k′)) (xj(k) �= xj′(k′),
j′ > j) constitutes a mixed dipole if and only if the vectors xj(k) and xj′(k′)
belong to different classes ωk (k �= k′). Similarly, a pair of different feature
vectors from the same class ωk constitutes a clear dipole (xj(k),xj′(k)).

The dipoles {xj(k), xj′(k′)} of the length δx(j, j′) are transformed by
(4.10) into the dipoles {yj(k), yj′(k′)} – the pairs of the points yj(k) and
yj′(k) situated in the Euclidean distance δy(j, j′), where

δx
2(j, j′) = (xj(k) − xj′(k′))T(xj(k) − xj′(k′) (4.62)

δy
2(j, j′) = (yj(k) − yj′(k′))T(yj(k) − yj′(k′)) (4.63)

= (xj(k) − xj′(k′))TWW T(xj(k) − xj′(k′))

We are interested in designing such transformations (4.10) which fulfil the
following separability inequalities:

(∀(j, j′) ∈ Ic) δy
2(j, j′) ≤ ρc

2(j, j′) (4.64)

(∀(j, j′) ∈ Im) δy
2(j, j′) ≥ ρm

2(j, j′) (4.65)
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where Ic and Im are the so called control sets (the sets of indices (j, j′) of
selected clear and mixed dipoles adequately, ρc(j, j

′) and ρm(j, j′) are non-
negative parameters (margins).

Separability postulate. The linear transformation (4.10) should shorten
the clear dipoles {xj(k), xj′(k)} from the control set Ic to the length δy

2(j, j′)
less than ρc(j, j

′) (4.64) and lengthen the mixed dipoles {xj(k), xj′(k′)} from
the control set Im to the length δy

2(j, j′) more than ρm(j, j′) (4.65).
The above separability postulate is aimed at designing such linear trans-

formations (4.10) which enhance differences between categories ωk. This pos-
tulate can be treated as an alternative which is complementary to the Fisher’s
criterion (4.39) used in discriminant analysis [3].

In the case of a linear transformation on the ith line y = (wi)Tx, the
separability inequalities (4.64) and (4.65) can be represented as the following
sets of inequalities (i = 1, 2, . . . . . . , n′, with 1 ≤ n′ ≤ n):

(∀(j, j′) ∈ Ici) − ρci(j, j′) < (wi)T(xj′(k) − xj(k)) < ρci(j, j′) (4.66)
(∀(j, j′) ∈ Imi

+) (wi)T (xj′(k) − xj(k′)) > ρmi(j, j′) (4.67)
(∀(j, j′) ∈ Imi

−) (wi)T(xj′(k) − xj(k′)) < −ρmi(j, j′) (4.68)

where Imi
+ and Imi

− are disjoined subsets of the control set Imi (Imi
+∩Imi

− =
Ø and Imi

+ ∪ Imi
− = Imi) of the mixed dipoles {xj(k),xj′(k′)}, ρci

(j, j′) and
ρmi

(j, j′) are the clear and the mixed margins defined on the ith line.
Remark 1: If two orthonormal vectors w1 and w2 (wi

Twi = 1, wi
Twk =

0) fulfil the inequalities (separability postulate, (4.67), and (4.68)), then
the inequalities (4.64) and (4.65) with the below parameters ρc

2(j, j′) and
ρm

2(j, j′) are also fulfilled

(∀(j, j′) ∈ Ic) ρc
2(j, j′) = ρc1

2(j, j′) + ρc2
2(j, j′) (4.69)

(∀(j, j′) ∈ Im) ρm
2(j, j′) = ρm1

2(j, j′) + ρm2
2(j, j′) (4.70)

4.9 Reinforcement of the Separability Postulates
Through the Differential Criterion Function

The differential criterion function Ψ(w) similar to the perceptron function
Φ(w, θ) (25) can be used for the purpose of finding such vector of parame-
ters wi, which fulfil in a best manner (fully or partly) the inequalities (4.64–
4.67) [6, 9]. The criterion functions Ψ(w) is a positive combination of the
penalty functions πjj′

+(w), πjj′
−(w) and πjj′

0(w) defined on the differential
vectors rjj′ :

(∀(j, j′) ∈ Ic ∪ Im)rjj′ = xj′ − xj (4.71)

where xj(k) �= xj′(k′) and j′ > j.
The CPL penalty functions πjj′

+(w), πjj′
−(w) and πjj′

0(w) is defined in
a similar manner to υj

+(w, θ) (4.23) and υj
−(w, θ) (4.24)
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(∀(j, j′) ∈ Im
+) (4.72)

ρm(j, j′) − wTrjj′ if wTrjj′ ≤ ρm(j, j′)
ψjj′

+(w) =
0 if wTrjj′ > ρm(j, j′)

where ρm(j, j′) = ρmi
(j, j′) (4.67). The penalty functions πjj′

+(w) are aimed
at reinforcement the inequalities (4.67).

(∀(j, j′) ∈ Im
−) (4.73)

ρmi(j, j
′) + wTrjj′ if wTrjj′ ≥ −ρm(j, j′)

ψjj′
−(w) =

0 if wTrjj′ < −ρm(j, j′)

The penalty functions πjj′
−(w) are aimed at reinforcement the inequali-

ties (4.68).

(∀(j, j′) ∈ Ic) (4.74)
−ρc(j, j

′) − wTrjj′ if wTrjj′ ≥ −ρc(j, j
′)

ψjj′0(w) = 0 if − ρc(j, j
′) < wTrjj′ < ρc(j, j

′)
−ρc(j, j

′) + wTrjj′ if wTrjj′ ≥ ρc(j, j′)

where ρc(j, j
′) = ρci

(j, j′) (separability postulate). The penalty functions
πjj′

0(w) are aimed at reinforcement the inequalities (separability postulate).
The criterion function Ψ(w) is the weighted sum of the above penalty

functions

Ψ(w) = Σγjj′ψjj′
+(w) + Σγjj′ψjj′

−(w) + Σγjj′ψjj′0(w)

(j, j′)∈ Im+ (j, j′)∈ Im
− (j, j′) ∈ Ic (4.75)

where γjj′ (γjj′ > 0) are positive parameters (prices) related to particular
dipoles (xj(k),xj′(k′)).

The criterion function Ψ(w) belongs to the family of the convex and piece-
wise linear (CPL) criterion functions.

The function Ψ(w) (4.72) can be specified as the criterion function Ψi(wi)
linked to the ith axis (i = 1, . . . ., n′) of the transformed space. The speci-
fication of the criterion function Ψi(wi) to the ith axis is done through an
adequate choice of the function parameters. The sets of dipoles Ici (separabil-
ity postulate), Imi

+ (4.67) and Imi
− (4.68) and the sets of margins ρci(j, j

′)
(4.64) and ρmi

(j, j′) ((4.65), separability postulate) can be specified in a dif-
ferent manner for particular axis.

Minimization of the function Ψi(w) allows one to find the parameters
vector wi

∗, which defines (4.6) the ith column of the transformation matrix
W (4.10) or the ith axis of the (i = 1, . . . ., n′) of the transformed space.

Ψi
∗ = Ψi(wi

∗) = min
w

Ψi(w) ≥ 0 (4.76)
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The transformation (4.10) defined by the optimal vectors wi
∗ (4.76) will be

called as the dipolar one. The basis exchange algorithms allow to find the
minimal value Ψi

∗ of the criterion function Ψi(w) in an efficient manner [5].
It can be proved that the minimal value Ψi

∗ is equal to zero (Ψi
∗ = 0) if and

only if all the inequalities (separability postulate, (4.67), and (4.68)) can be
fulfilled on some line y = (w)Tx. In this case, all the inequalities (separability
postulate, (4.67), and (4.68)) are fulfilled on the optimal line y = (wi

∗)Tx.

Example 4. Let us examine such dipolar transformation (4.10) of the fea-
ture vectors xj(k) on the visualising plane (n′ = 2), which fulfil both the
inequalities (4.64) and (4.65) or the separability postulate. There is a struc-
tural difference between the separability inequalities (4.64) and (4.65). All
the inequalities (4.64) should be realised by both the axes w1

∗ and w2
∗ of

the visualising plane. Realisation of each inequality (4.65) by only one axis
w1

∗ or w2
∗ is sufficient for fulfilling of the separability postulate. In other

words, if the length δy(j, j′) (4.64) of the mixed dipole (xj(k),xj′(k′)} along
one axis wi

∗ is greater than ρm(j, j′), then the length of this dipole on the
plane is also greater then ρm(j, j′). The length δy(j, j′) of the mixed dipole
{xj(k),xj′(k′)} along the ith axis is greater then ρm(j, j′) (4.65) if and only if
one of the inequalities (4.67) or (4.68) is fulfilled by the optimal vector wi

∗. In
a consequence, the indices (j, j′) of such mixed dipoles which are sufficiently
long on the first axis w1

∗ cannot be considered on the second axis w2
∗. In a

result, the indices (j, j′) from the set Im could be divided along two axis of the
visualising plane. Such division reduces the sets Im1 and Im2 of mixed dipoles
{xj(k),xj′(k′)} considered on particular axis and, in result, increases chance
for fulfilling all the inequalities (separability postulate, (4.67), and (4.68)) on
the optimal line y = (wi

∗)Tx.

To realise the inequality (4.64) for the clear dipole {xj(k),xj′(k)}((j, j′) ∈
Ic), both the axes w1

∗ and w2
∗ of the visualising plane should produce small

enough lengths |((wi
∗)T(xj′(k)−xj(k))| (separability postulate). If the vectors

w1
∗ and w2

∗ are orthogonal and the first vector w1
∗ produces the length

|(w1
∗)T(xj′(k)−xj(k))| ≤ ρc

2(j, j′), then the second vector w2
∗ should fulfill

the below condition (4.64)

|(w2
∗)T(xj′(k) − xj(k))| ≤ ρc

2(j, j′) − |(w1
∗)T(x′

j(k) − xj(k))| (4.77)

To fulfill the separability postulate, the second vector w2
∗ should produce

such length |(w2
∗)T(xj′(k) − xj(k))|, which is small enough in accordance

with (4.77).
The linear transformations (4.10) based on the dipolar model can be used

in designing diagnostic maps. Such maps give possibility to enhance clusters of
points yj(k) on the visualizing plane. The number L of clusters (fields) on the
diagnostic map can be equal or greater than the number K of the classes ωk.
The number L of clusters on the diagnostic map can be equal to the number
of classes K, if all the feature vectors xj(k) from each set Ck (4.1) are used in
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producing clear dipoles {xj(k),xj′(k)}. It means that the set Ick (separability
postulate) contains all clear dipoles based on the set Ck (4.1).

Ick = {(j, j′) : (j′ > j) ∧ (xj(k) ∈ Ck) ∧ (xj′(k) ∈ Ck)} (4.78)

and
Ic = Ic1 ∪ . . .. . .. ∪ Ick (4.79)

In this case, the dipolar transformation similarly as the Fishers one is aimed at
focussing all the transformed points xj (k) from each set Ck (class ωk) into one
cluster on the map under condition of preserving the classes ωk separability.

In some cases, given set Ck has its own internal structure and it could
be profitable to enhance such structure by dividing this set into more than
one cluster. For this purpose, the set Ick (4.78) can be modified in a below
manner:

Ick = {(j, j′) : (j′ > j)∧(xj(k) ∈ Ck)∧(xj′(k) ∈ Ck)∧(δx(j, j′) ≤ ρ0)} (4.80)

where δx(j, j′) is the dipol length (4.62) and ρ0 is a ‘small’ parameter.
As it results from the relation (4.80), the set Ick contains the indices (j, j′)

of only such clear dipoles {xj (k),xj′(k)} which are ‘short’.

4.10 CPL Criterion Functions with Feature Costs

Data sets Ck (4.1) used in decision support systems are often multidimen-
sional. Many features (attributes) xi are used for description of particular
objects xj(k). A large part of these features xi can be unimportant or redun-
dant in decision support rules. Such features should be removed in accordance
with one of feature selection procedures.

The feature selection procedure can be based on the CPL criterion func-
tions with feature costs. Let us introduce for this purpose the modified percep-
tron criterion function Φ(w, θ) (4.25) and the modified differential criterion
function Ψ(w) (4.75). The modified perceptron function Φλ

′(w, θ) can have
the following form:

Φλ′(w, θ) = Φ(w, θ) + λΣγiφi(w, θ)
i ∈ {0, 1, . . .., n} (4.81)

= Σαjϕj
+(w, θ) + Σαjϕj

−(w, θ) + λ(Σγi|wi| + γ0

j ∈ J+ j ∈ J− i ∈ {1, . . .., n}
where αj ≥ 0, λ ≥ 0, γi > 0, w = [w1, . . . .,wn]T is the weight vector,
the function Φ(w, θ) is defined by the formula (4.25), and the cost functions
φi(w, θ) are equal to modulus |wi| of particular weights wi.

Minimization of the CPL criterion function Φλ
′(w, θ) (4.81) allows to find

the optimal parameters w∗ and θ∗.
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Φ∗
λ = Φ′

λ(w
∗, θ∗) = min

w,θ
Φ′

λ(w, θ) ≥ 0 (4.82)

Minimum of the function Φλ
′(w, θ) (4.81) can be found by using the basis

exchange alghorithm.
It can be shown that in the case of linearly separable (4.4) sets G+ and

G− (4.22), the minimal value Φλ
∗ of the criterion function Φλ

′(w, θ) (4.81)
with sufficient small value of the parameter λ(0 < λ < λg) is equal to

Φ∗
λ = Φ′

λ(w
∗, θ∗) = λ(Σ γi|w∗

i | + γ0|θ|) > 0 (4.83)

and (4.25)
Φ(w∗, θ∗) = 0 (4.84)

The optimal parameters w∗ and θ∗ give a balance between an increasing ten-
dency resulting from the penalty functions υj

+(w, θ) (4.23) and υj
−(w, θ)

(4.24) and decreasing tendency resulting from the cost functions φi(w, θ)
(4.81). An influence of the cost functions φi(w, θ) (4.81) decreases with the
value of the parameter λ.

The feature selection rules can be based on the optimal parameters w∗ =
[w1

∗, . . . .,wn
∗]T (4.82):

if w∗
i = 0 then theith feature xi can be neglected , (4.85)

or/

if |wi
∗| < ε then theithfeature xi can be neglected , (4.86)

where ϖ is a small parameter.
The differential criterion function Ψ(w) (4.75) can be also modified by

adding the cost functions φi(w, θ) in a manner similar to (4.81). The fea-
ture selection rules similar to (4.85) and (4.86) can be based on the modified
differential function Ψ(w) (4.75).

4.11 Concluding Remarks

Similarity measures for the case based reasoning scheme of decision support
can be induced through separable data transformations. In particular, lin-
ear transformations of data sets corresponding to particular categories allow
to reduce dimensionality of the data sets under the condition of preserving
the categories separability. Separable linear transformations can be designed
both through solutions of eignevalue problems used in the principal componet
analysis or in the discriminant analysis [4] as well as through minimization
of the convex and piecewise linear (CPL) criterion functions [9]. The percep-
tron and the differential criterion functions belong, among others, to the CPL
family.
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Functions from the CPL family give possibility for flexible modelling and
solving many problems of exploratory data analysis [9]. In particular, the
feature selection problem can be solved through minimization of the CPL
criterion functions. The basis exchange algorithms, which are similar to the
linear programming, allow one to find the minimum of the CPL criterion
functions efficiently even in the case of large, multidimensional data sets [7].
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5.1 Introduction

Graphs are a powerful and universal tool widely used in information process-
ing. Numerous methods for graph analysis have been developed. Examples
include the detection of Hamiltonian cycles, shortest paths, vertex color-
ing, graph drawing, and so on [5]. In particular, graph representations are
extremely useful in image processing and understanding, which is the com-
plex process of mapping the initially numeric nature of an image (or images)
into symbolic representations for subsequent semantic interpretation of the
sensed world.

Case-based reasoning (CBR) provides us powerful strategies to fulfill the
high demands on robustness, accuracy, and flexibility of image interpretation
systems [53]. In CBR systems a concept is described by a case base and an
associated similarity measure. Cases can be organized into a flat case base or
in a hierarchical fashion. In a flat organization, we have to calculate similar-
ity between the problem case and each case in memory. It is clear that this
will take a considerable amount of time. To speed up the retrieval process,
a more sophisticated, hierarchical organization of the case base is necessary.
This organization should allow separating the set of similar cases from those
cases not similar to the recent problem at the earliest stage of the retrieval
process. In case base creation, maintenance, and retrieval, a central issue is
that of case (object) similarity. In this chapter we are concerned with struc-
tural case representations [20,54], which are common in computer vision and
image interpretation [6], building design [31], timetabling [19], etc. Given such
representations, we consider the problem of determining the equality or simi-
larity of graphs, which is generally referred to as graph matching.

Standard concepts in exact graph matching include graph isomorphism
and subgraph isomorphism. Two graphs are called isomorphic if they have
identical structure. There exists a subgraph isomorphism between two graphs
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149–173 (2008)
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if one graph contains a subgraph that is isomorphic to the other. Subgraph
isomorphism is useful to find out if a given object is part of another object or a
collection of several objects. Although exact graph matching offers a rigorous
way to describe structure equality in mathematical terms, it is generally only
applicable to a restricted set of real-world problems. Inexact, or error-tolerant,
graph matching methods, on the other hand, are able to cope with strong
inner-class distortion, which is often present in real-world applications.

In this chapter we provide an overview of graph matching. We mainly
concentrate on the fundamental concepts and some recent developments. The
reader is referred to the recent survey [23] for a detailed discussion of the
numerous graph matching algorithms and also the vast applications of graph
matching. Other recent collections of papers on graph matching (and mining)
can be found in [18,24,26,29].

5.2 Basic Definitions and Notation

Attributed graphs with an unrestricted label alphabet is one of the most
general ways to define graphs. It turns out that the definition given below is
sufficiently flexible for a large variety of applications.

Definition 1 (Graph). A graph is a 4-tuple g = (V,E, α, β), where

– V is the finite set of vertices
– E ⊆ V × V is the set of edges
– α : V → LV is a function assigning labels to the vertices
– β : E → LE is a function assigning labels to the edges

Edge (u, v) originates at node u and terminates at node v. The label-
ing function can be used to integrate information about nodes and edges
into graphs by assigning attributes from LV and LE to nodes and edges, re-
spectively. Usually, there are no constraints imposed on the label alphabets.
In practical applications, however, label alphabets are often defined as vector
spaces �k of a fixed dimension k or discrete sets of symbols {s1, s2, . . . , sk}.
In principle, nodes and edges may also have other, arbitrarily complex labels.
The notation |g| will be used for the number of nodes of graph g.

The graph definition introduced above includes a number of special cases.
To define undirected graphs, for instance, we require that (v, u) ∈ E for every
edge (u, v) ∈ E such that β(u, v) = β(v, u). In the case of nonattributed
graphs, the label alphabets are defined by LV = LE = {φ}, so that every
node and edge gets assigned the null label φ.

For some applications, it is important to detect whether a smaller graph
is present in a larger graph – for instance, if the larger graph represents an
aggregation of objects and the smaller graph a specific object in the larger
context. This intuitively leads to the formal definition of a subgraph.
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Definition 2 (Subgraph). Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2)
be graphs; g2 is a subgraph of g1, written as g2 ⊆ g1, if

– V2 ⊆ V1

– E2 = E1 ∩ (V2 × V2)
– α1(v) = α2(v) for all v ∈ V2

– β1(e) = β2(e) for all e ∈ E2

Conversely, graph g1 is called a supergraph of g2 if g2 is a subgraph of g1.
Sometimes, the second condition of this definition is replaced by E2 ⊆ E1 ∩
(V2×V2), and a subgraph fulfilling the more stringent condition given above is
called an induced subgraph. The notion of subgraph can be used to approach
more complex problems such as the largest common part of several graphs,
which will be discussed below.

5.3 Exact Graph Matching

In exact graph matching, the objective is to determine whether or not the
structure and labels, or part of the structure, of two graphs are identical.

Definition 3 (Graph isomorphism). Let g1 and g2 be graphs. A graph
isomorphism between g1 and g2 is a bijective mapping f : V1 → V2 such that

– α1(v) = α2(f(v)) for all v ∈ V1

– for any edge e1 = (u, v) ∈ E1 there exists an edge e2 = (f(u), f(v)) ∈ E2

such that β1(e1) = β2(e2), and for any edge e2 = (u, v) ∈ E2 there exists
an edge e1 = (f−1(u), f−1(v)) ∈ E1 such that β1(e1) = β2(e2)

Two graphs g1 and g2 are called isomorphic if there exists a graph isomorphism
between them.

From this definition we conclude that isomorphic graphs are identical in
terms of structure and labels. To establish an isomorphism one has to map
each node from the first graph to a node of the second graph such that the
edge structure is preserved and the node and edge labels are consistent.

The graph isomorphism problem is of considerable practical importance
and also of theoretical interest due to its relationship to the concept of NP-
completeness. Despite intensive research for over three decades [30,55,58] still
no efficient (polynomial-bound) algorithm for graph isomorphism is known.
Neither has the conjecture been proved that no such algorithm can exist.
While it is easy to determine equality of patterns in case of feature vectors
or strings, the same computation is much more complex for graphs. Because
the nodes and edges of a graph cannot be ordered in general, unlike the com-
ponents of a feature vector or the symbols of a string, the problem of graph
equality (graph isomorphism) is computationally very demanding. The most
straightforward approach to checking the isomorphism of two graphs is to tra-
verse a search tree considering all possible node-to-node correspondences [61].
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The expansion of tree branches is continued until the edge structure implied
by the node mapping does not correspond in both graphs. If nodes and edges
are additionally endowed with labels, matching nodes and edges must also
be consistent in terms of their labels. Reaching a leaf node of the search tree
is equivalent to successfully mapping all nodes without violating the struc-
ture and label constraints and is therefore equivalent to having found a graph
isomorphism. In general, the computational complexity of this procedure is
exponential in the number of nodes of either graph.

By imposing certain restrictions on the underlying graphs, however, it is
possible to derive algorithms of polynomial-time complexity. For instance,
Luks [45] described a polynomially bounded method for the isomorphism
detection of graphs with bounded valence. For the special case of trivalent
graph isomorphism, it was shown in [45] that algorithms with a computational
complexity of O(n4) exist. Low-order polynomial-time methods [35, 36, 64]
are also known for planar graphs. Quadratic-time algorithms [37, 38] have
been reported for ordered graphs, in which the edges incident to a vertex are
uniquely ordered. Further special graph classes, for which the isomorphism
problem is solvable in polynomial time, are trees [1], interval graphs [9], permu-
tation graphs [22], chordal (6, 3) graphs [3], graphs with bounded genus [48],
graphs with bounded treewidth [7], graphs with bounded eigenvalue multi-
plicity [2], and rooted directed path graphs [4].

Closely related to graph isomorphism is the problem to detect if a smaller
graph is present in a larger graph. If graph isomorphism is regarded as a for-
mal notion of graph equality, subgraph isomorphism can be seen as subgraph
equality.

Definition 4 (Subgraph isomorphism). Let g1 = (V1, E1, α1, β1) and
g2 = (V2, E2, α2, β2) be graphs. An injective function f : V1 → V2 is called
a subgraph isomorphism from g1 to g2 if there exists a subgraph g ⊆ g2 such
that f is a graph isomorphism between g1 and g.

A subgraph isomorphism exists from g1 to g2 if the larger graph g2 can be
turned into a graph that is isomorphic to the smaller graph g1 by removing
some nodes and edges. Subgraph isomorphism can also be determined with
the procedure outlined above for graph isomorphism [61]. It is known that
subgraph isomorphism belongs to the class of NP-complete problems.

5.4 Inexact Graph Matching

In graph representations of real-world patterns, it is often the case that graphs
from the same class differ in terms of structure and labels. Hence, graph
matching systems need to take structural errors into account. In this section
several variants of realizing this goal are discussed.
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5.4.1 Graph Edit Distance

Graph edit distance offers an intuitive way to integrate error-tolerance into
the graph matching process and is applicable to virtually all types of graphs.
Originally, edit distance has been developed for string matching [62] and a
considerable amount of variants and extensions to the edit distance have been
proposed for strings and graphs. The key idea is to model structural variation
by edit operations reflecting modifications in structure, such as the removal of
a single node or the modification of an attribute attached to an edge. A stan-
dard set of edit operations consists of a node insertion, node deletion, node
substitution, edge insertion, edge deletion, and edge substitution operation.

Definition 5 (Edit path). Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2)
be graphs. Any bijective function f : V̂1 → V̂2, where V̂1 ⊆ V1 and V̂2 ⊆ V2, is
called an edit path from g1 to g2.

We say that node u ∈ V̂1 is substituted by node v ∈ V̂2 if f(u) = v.
If α1(u) = α2(f(u)) then the substitution is called an identical substitution.
Otherwise, it is termed a nonidentical substitution. Furthermore, any node
from V1 − V̂1 is deleted from g1, and any node from V2 − V̂2 inserted in g2

under f . We will use ĝ1 and ĝ2 to denote the subgraphs of g1 and g2 that are
induced by the sets V̂1 and V̂2, respectively.

The mapping f directly implies an edit operation on each node in g1 and
g2, i.e., nodes are substituted, deleted, or inserted as described above. Addi-
tionally, the mapping f indirectly implies edit operations on the edges of g1

and g2. If f(u1) = v1 and f(u2) = v2 and there exist edges (u1, u2) ∈ E1

and (v1, v2) ∈ E2 then edge (u1, u2) is substituted by (v1, v2) under f . If
β1((u1, u2)) = β2((v1, v2)) then the edge substitution is called an identical
substitution. Otherwise, it is termed a nonidentical substitution. If there exists
no edge (u1, u2) ∈ E1, but an edge (v1, v2) ∈ E2, then edge (v1, v2) is inserted.
Similarly, if (u1, u2) ∈ E1 exists but no edge (v1, v2), then (u1, u2) is deleted
under f . If a node u is deleted from g1, then any edge incident to u is deleted,
too. Similarly, if a node u′ is inserted in g2, then any edge incident to u′ is
inserted, too. Obviously, any edit path f can be understood as a set of edit
operations (substitutions, deletions, and insertions of both nodes and edges)
that transform a given graph g1 into another graph g2.

Example 1. A graphical representation of two graphs is given in Fig. 5.1. For
those graphs, we have the following:
LV = {X,Y,Z}; LE = {a, b, c}
V1 = {1, 2, 3}; V2 = {4, 5, 6, 7}
E1 = {(1, 2), (1, 3), (2, 3)}; E2 = {(4, 5), (4, 6), (4, 7), (5, 6), (5, 7)}
α1: 1 �→ X, 2 �→ X, 3 �→ Y
α2: 4 �→ X, 5 �→ X, 6 �→ Y , 7 �→ Z
β1: (1, 2) �→ a, (1, 3) �→ b, (2, 3) �→ b
β2: (4, 5) �→ a, (4, 6) �→ c, (4, 7) �→ b, (5, 6) �→ c, (5, 7) �→ b
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Fig. 5.1. An example of edit paths (see text)

Three examples of edit paths are the following:

– f1 : 1 �→ 4, 2 �→ 5, 3 �→ 7 with V̂1 = {1, 2, 3} and V̂2 = {4, 5, 7}
– f2 : 1 �→ 4, 2 �→ 5, 3 �→ 6 with V̂1 = {1, 2, 3} and V̂2 = {4, 5, 6}
– f3 : 1 �→ 4, 2 �→ 5 with V̂1 = {1, 2} and V̂2 = {4, 5}

Under f1, nodes 1, 2, and 3 are substituted by nodes 4, 5, and 7, respectively.
Consequently, edges (1, 2), (1, 3), and (2, 3) are substituted by (4, 5), (4, 7), and
(5, 7), respectively. The substitution of nodes 1 and 2 by 4 and 5 are identical
substitutions that involve no label change; there are no label changes involved
in the edge substitutions, either. The label Y of node 3 is substituted by Z
of node 7, and node 6 together with its incident edges (4, 6) and (5, 6) are
inserted in g2. There are, of course, many other paths from g1 to g2.

With substitutions, deletions, and insertions for both nodes and edges at
our disposal, any graph can be transformed into any other graph by iteratively
applying edit operations. Consequently, the concept of graph editing can be
used to define a dissimilarity measure on graphs. To quantify how strongly
an edit operation modifies the structure of a graph, it is common to use
an edit cost function that assigns a cost value to each edit operation. An edit
operation associated with a low cost is assumed to only slightly alter the graph
under consideration, while an edit operation with a high cost is assumed to
strongly modify the graph. To obtain a cost function on edit paths, we simply
accumulate individual edit operation costs of the edit path.

Definition 6. The cost of an edit path f : V̂1 → V̂2 from a graph g1 =
(V1, E1, α1, β1) to a graph g2 = (V2, E2, α2, β2) is given by

c(f) =
∑

u∈V̂1
cns(u) +

∑
u∈V1−V̂1

cnd(u) +
∑

u∈V2−V̂2
cni(u)

+
∑

e∈Es
ces(e) +

∑
e∈Ed

ced(e) +
∑

e∈Ei
cei(e),

where

– cns(u) is the cost of substituting node u ∈ V̂1 by f(u) ∈ V̂2

– cnd(u) is the cost of deleting node u ∈ V1 − V̂1 from g1
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– cni(u) is the cost of inserting node u ∈ V2 − V̂2 in g2

– ces(e) is the cost of substituting edge e
– ced(e) is the cost of deleting edge e
– cei(e) is the cost of inserting edge e

and Es, Ed, and Ei are the sets of edges that are substituted, deleted, and
inserted, respectively. All costs are nonnegative real numbers.

Notice that the sets Es, Ed, and Ei are implied by the mapping f . That
is, if edge e = (u1, u2) ∈ E1, f(u1) = v1, f(u2) = v2, and (v1, v2) �∈ E2,
then e ∈ Ed. Similarly, if (u1, u2) �∈ E1, f(u1) = v1, f(u2) = v2, and e =
(v1, v2) ∈ E2, then e ∈ Ei. Likewise, if e1 = (u1, u2) ∈ E1, f(u1) = v1,
f(u2) = v2, and e2 = (v1, v2) ∈ E2, then e1 ∈ Es. Because an edge is deleted
(inserted) whenever one or both of its incident nodes are deleted (inserted),
we furthermore observe that (1) e ∈ Ed if e ∈ (V1 × V1) − (V̂1 × V̂1) and (2)
e ∈ Ei if e ∈ (V2 × V2) − (V̂2 × V̂2).

The problem of measuring the dissimilarity of two graphs is then equivalent
to the problem of finding the edit path that models the structural difference
of two graphs in the least costly way. Consequently, the graph edit distance
of two graphs is defined by the minimum cost edit path from the first to the
second graph.

Definition 7 (Graph edit distance). Let g1 = (V1, E1, α1, β1) and g2 =
(V2, E2, α2, β2) be graphs and let c(f) denote the cost of edit path f . The edit
distance of g1 and g2 can be defined by

d(g1, g2) = min
all edit paths f from g1 to g2

c(f)

If the two graphs under consideration are very similar in terms of structure
and labels, it can be assumed that only minor edit operations are required to
transform the first into the second graph, which results in a low-cost optimal
edit path. In this case, the resulting edit distance will be small. Conversely,
if the two graphs differ significantly, every edit path will necessarily include
strong modifications and hence result in high costs.

In the following it is assumed, for the purpose of simplicity, that the costs
cnd(x), cni(x), and cns(x) do not depend on node x; neither do ced(e), cei(e),
and ces(e) depend on edge e. In other words, cnd(x), cni(x), and cns(x) will be
the same for any node x, and ced(e), cei(e), and ces(e) will be the same for any
edge e. Hence, the notation cnd(x) = cnd, cni(x) = cni, . . . , ces(e) = ces will be
used and a cost function is given by the 6-tuple C = (cnd, cni, cns, ced, cei, ces).
Unless otherwise stated, it is assumed that the cost of an identical node or
edge substitution is zero, while the cost of any other edit operation is greater
than zero.

Example 2. Consider the uniform cost function C = (cnd, cni, cns, ced, cei, ces)
= (1, 1, 1, 1, 1, 1). Then the edit path f1 given in Example 1 has cost c(f1) = 4
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(one node label substitution, one node insertion, and two edge insertions).
It can be easily verified that there is no other edit path from g1 to g2 that has
a smaller cost under C. For example, c(f2) = 5 (two edge label substitutions,
one node insertion, and two edge insertions) and c(f3) = 9 (one node and two
edge deletions, two node and four edge insertions). However, if we change the
cost function and consider C ′ = (1, 1, 3, 1, 1, 1) then c(f1) = 6, c(f2)=5, and
c(f3) = 9. Thus, f1 is no longer optimal under C ′ and it can be easily verified
that f2 has in fact the smallest cost among all possible paths from g1 to g2.
If we consider a third cost function C ′′ = (1, 1, 7, 1, 1, 7) then c(f1) = 10,
c(f2) = 17, and c(f3) = 9. Under this cost function, f3 is optimal.

If a cost function satisfies the conditions of positive definiteness and sym-
metry as well as the triangle inequality at the level of single edit operations,
the resulting edit distance is known to be a metric [10]. This fact legitimates
the use of the term distance in graph edit distance.

In practical applications, graph edit distance is usually accomplished
by means of heuristic A∗-based tree search procedures [10]. Because of the
exponential nature of the problem, such procedures are normally limited to
rather small graphs. Recently, however, several methods to speed up edit dis-
tance computation have been proposed. In [8, 59] the authors proposed to
optimize local rather than global criteria, which results in a suboptimal pro-
cedure. Other suboptimal techniques were introduced in [51, 56]. In Justice
and Hero [42] a linear programming method for computing the edit distance
of graphs with unlabeled edges is proposed. This method can be used to derive
lower and upper edit distance bounds in polynomial time.

5.4.2 Graph Distance Functions Based on mcs

The definition of subgraph isomorphism naturally leads us to the formal def-
inition of the largest common part of two graphs.

Definition 8 (Maximum common subgraph). Let g1 = (V1, E1, α1, β1)
and g2 = (V2, E2, α2, β2) be graphs. A common subgraph of g1 and g2,
cs(g1, g2), is a graph g = (V,E, α, β) such that there exist subgraph isomor-
phisms from g to g1 and from g to g2. We call g a maximum common subgraph
of g1 and g2, mcs(g1, g2), if there exists no other common subgraph of g1 and
g2 that has more nodes than g.

A maximum common subgraph of two graphs represents the maximal part
of both graphs that is identical in terms of structure and labels. Note that,
in general, the maximum common subgraph is not uniquely defined, that is,
there may be more than one common subgraph with a maximal number of
nodes. A standard approach to computing maximum common subgraphs is
based on solving the maximum clique problem in an association graph [44,46].
The association graph of two graphs represents the whole set of possible node-
to-node mappings that preserve the edge structure of both graphs. Finding a
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maximum clique in the association graph, that is, a fully connected maximal
subgraph, is equivalent to finding a maximum common subgraph. In Bunke et
al. [16] the reader can find a comparison of algorithms for maximum common
subgraph computation on randomly connected graphs.

Graph dissimilarity measures can be derived from the maximum common
subgraph of two graphs. Intuitively speaking, the larger a maximum common
subgraph of two graphs is, the more similar are the two graphs. This observa-
tion leads to graph dissimilarity measures that are able to cope with structural
errors. Bunke and Shearer [12] have introduced such a distance measure:

dMCS (g1, g2) = 1 − |mcs(g1 , g2 )|
max{|g1|, |g2|} (5.1)

where | . . . | indicates the size of a graph (usually taken to be the number of
nodes). Note that, whereas the maximum common subgraph of two graphs
is not uniquely defined, the dMCS distance is. If two graphs are isomorphic,
their dMCS distance is 0; if two graphs have no part in common, their dMCS

distance is 1. The dMCS distance accounts for a certain amount of tolerance
towards errors, as two graphs need not be completely identical for a successful
match. However, a small dMCS distance, and hence a high graph similarity,
can only be obtained if large portions of both graphs are isomorphic. It has
been shown that dMCS is a metric and produces a value in [0, 1].

A second distance measure which has been proposed by Wallis et al. [63],
based on the idea of graph union, is

dWGU (g1, g2) = 1 − |mcs(g1 , g2 )|
|g1| + |g2| − |mcs(g1, g2)|

By “graph union” it is meant that the denominator represents the size of
the union of the two graphs in the set-theoretic sense. This distance measure
behaves similarly to dMCS . The motivation of using graph union in the de-
nominator is to allow for changes in the smaller graph to exert some influence
over the distance measure, which does not happen with dMCS . This measure
was also demonstrated to be a metric and creates distance values in [0, 1].

A similar distance measure [11] which is not normalized to the interval
[0, 1] is

dUGU (g1, g2) = |g1| + |g2| − 2 · |mcs(g1, g2)|
Fernandez and Valiente [27] have proposed a distance measure based on both
the maximum common subgraph and the minimum common supergraph

dMMCS (g1, g2) = |MCS(g1, g2)| − |mcs(g1, g2)|
where MCS(g1, g2) is the minimum common supergraph of graphs g1 and g2,
which is the complimentary idea of minimum common subgraph.

Definition 9 (Minimum common supergraph). Let g1 = (V1, E1, α1, β1)
and g2 = (V2, E2, α2, β2) be graphs. A common supergraph of g1 and g2,
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CS(g1, g2), is a graph g = (V,E, α, β) such that there exist subgraph
isomorphisms from g1 to g and from g2 to g. We call g a minimum com-
mon supergraph of g1 and g2, MCS(g1, g2), if there exists no other common
supergraph of g1 and g2 that has less nodes than g.

The concept that drives the distance measure above is that the maximum com-
mon subgraph provides a “lower bound” on the similarity of two graphs, while
the minimum supergraph is an “upper bound.” If two graphs are identical,
then both their maximum common subgraph and minimum common super-
graph are the same as the original graphs and |g1| = |g2| = |MCS(g1, g2)| =
|mcs(g1, g2)|, which leads to dMMCS (g1, g2) = 0. As the graphs become more
dissimilar, the size of the maximum common subgraph decreases, while the size
of the minimum supergraph increases. This in turn leads to increasing values
of dMMCS (g1, g2). For two graphs with no maximum common subgraph, the
distance will become |MCS(g1, g2)| = |g1|+ |g2|. The distance dMMCS (g1, g2)
has also been shown to be a metric, but it does not produce values normalized
to the interval [0, 1], unlike dMCS or dWGU . We can also create a version of
this distance measure which is normalized to [0, 1] as follows:

dMMCSN (g1, g2) = 1 − |mcs(g1, g2)|
|MCS(g1, g2)|

Note that if the conditions holds that |MCS(g1, g2)| = |g1| + |g2| −
|mcs(g1, g2)|, then dUGU and dMMCS are identical. The same is true for dWGU

and dMMCSN .

5.4.3 Relaxation Approaches

We use a matching matrix M to indicate the compatibility of nodes in the
two graphs being matched. If the ith row and jth column element Mij is 1,
then node i in graph g1 is matched with node j in graph g2; otherwise there
is no match and Mij = 0. Constraints can be imposed on M so that each row
has exactly one 1 and no column has more than one 1. Such a representation
and the algorithms applied to it for determining graph matching are straight-
forward; however, they can require generating all the permutations of possible
node matchings over the matrix.

To improve time complexity, we can instead attempt to approximate the
optimal solution by finding good suboptimal solutions. A method that is some-
times used to achieve this for graph matching problems is called relaxation
(or more specifically, discrete relaxation). Put simply, discrete relaxation is a
method of transforming a discrete representation (such as the matrix M used
for graph matching) into a continuous representation. Thus, we can transform
a discrete optimization problem into a continuous one. Compared to the typi-
cal state-space search approaches to graph matching, relaxation is a nonlinear
optimization approach. Gold and Rangdarajan [32] applied relaxation to the
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graph matching problem. They have posed the problem of attributed graph
matching in terms of an optimization problem:

E = −1
2

|V1|∑
a=1

|V2|∑
i=1

|V1|∑
b=1

|V2|∑
j=1

MaiMbj

R∑
r=1

C
(2,r)
aibj + α

|V1|∑
a=1

|V2|∑
i=1

Mai

S∑
r=1

C
(1,s)
ai

Here M is the matching matrix as before, R is the number of edge types,
S is the number of node types, α is a weighting factor, and the C’s are
compatibility measures between the edges of the two graphs. The goal is then
to minimize the objective function given above. In [32] the authors use the
graduated assignment algorithm to find an M which minimizes E.

Medasani et al. [47] gave a procedure based on fuzzy assignments and
relaxation similar to the method just described. The objective function for
this approach is

J(M,C) =
|V1|+1∑

i=1

|V2|+1∑
j=1

M2
ijf(Cij) + η

|V1|+1∑
i=1

|V2|+1∑
j=1

Mij(1 − Mij)

where M is now a fuzzy membership matrix (0 ≤ Mij ≤ 1) that relates the
degree of match between nodes, C is a compatibility matrix between nodes
(rather than edges as above), η is a control parameter, and

f(Cij) = e−βCij

The summations in the objective function are under the constraint that
(i, j) �= (|V1| + 1, |V2| + 1); the extra nodes in the graphs are dummy nodes.
The authors then go on to derive the necessary update equations for M and C
in order to minimize J(M,C) and propose an algorithm which updates these
matrices in an alternating fashion.

5.4.4 Probabilistic Approaches

In this section we summarize the probabilistic approach proposed by Wilson
and Hancock [66]. We attempt to match a data graph gD and a stored model
graph gM , both being attributed graphs. In Wilson and Hancock [66] an at-
tributed graph is defined to be one g = (V,E,A), where A is a set of attributes
associated with each node, A = xy

v, ∀v ∈ V .
The attributes in the data graph are to be matched to those in the model

graph, such that the matched nodes have the same or similar attributes. Edges
may also have associated attributes, but they are not considered in this ap-
proach. Next, we have the concept of super-clique of a node. A super-clique [66]
of a node i in graph g = (V,E,A) is defined as Ci = i∪{j|(j, i) ∈ E}. In other
words, the super-clique of a node i is the set of nodes which contain i and all
nodes connected to it by edges. The goal is then to match all super-cliques in
the data graph with super-cliques in the model graph.
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The set of all possible matches between super-clique Ci in the data graph
gD and super-cliques in the model graph gM is called a dictionary and denoted
Θi. To cope with size differences between the data and model super-cliques
dummy (or null) nodes φ are allowed to be inserted into Sj so that both graphs
have the same number of nodes. The function matching a node in Ci to a node
in S is f : VD → VM ∪ φ. The probability of matching errors (a node in gD is
matched to the wrong node in gM ) is denoted Pe and the probability of struc-
tural errors (a node in gD is matched to a dummy node in gM ) is denoted Pφ.
Given these definitions, some assumptions, and through application of Bayes’
rule and other probability theoretic constructions, Wilson and Hancock arrive
at a mathematical description for the probability of a super-clique matching
between two graphs (denoted Γj for super-clique Cj):

P (Γj) =
KCj

|Θj |
∑

Sj∈Θj

exp{−(keH(Γj , Si) + kφ[ψ(Γj , Si) + Ψ(Γj)])}

where

KCj
= [(1 − Pe)(1 − Pφ)]|Cj |

ke = ln
1 − Pe

Pe

kφ =
(1 − Pe)(1 − Pφ)

Pφ

H(Γj , Si) is the Hamming distance between the super-clique of gD under the
mapping f and the super-clique of gM , ψ(Γj , Si) = |Cj |−|Si| (i.e., the number
of null nodes inserted into Si), and Ψ(Γj) is the number of nodes in Cj which
are mapped onto null nodes in Si. The deviation of P (Γj) is beyond the
scope of this chapter, but the equation contains three parts which are fairly
straightforward. The part associated with KCj

is the probability of no error
occurring. The part associated with ke is concerned with the probability of
matching error occurring. Finally, the part associated with kφ deals with the
probability of structural errors occurring. For an in-depth derivation of these
equations, the reader is referred to [66].

The authors then go on to derive rules which can be applied to update the
matching function f under three different methods (null-labeling, constraint
filtering, and graph edit operations). The methods use update rules of the
form

f(u) = arg max
v∈VM

P (u, v|xD
u , xM

v )
P (u, v)

∑
j∈Cu

P (Γj)

Here P (u, v) indicates the prior probability that node u in gD corresponds to
node v in gM , while the other probability in the numerator is the conditional
a posteriori probability, given the corresponding attributes related with the
nodes.
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An advantage of this framework is that it can be applied in many situa-
tions. For example, an extension of the work [65] deals with multiple graph
matching through computations of fuzzy consistency matrices. Finch et al. [28]
developed an energy function for graph matching based on the probabilistic
framework of this section. A method using this approach for the fitness func-
tion in a genetic search for graph matching is described in [25]. A similar prob-
abilistic framework for hierarchical graphs is given in [67]. Myers et al. [49]
modified the approach described here to include graph edit distance; the new
method achieves better complexity by removing the need to inset null nodes
in the model graph.

5.4.5 Distance Preservation Approach

In [21] Chartrand et al. describe an approach for graph distance calculation
based on preserving the distance between nodes. The idea comes from the fact
that when two graphs are isomorphic, the distance (meaning in this context
the number of edges traversed) between every pair of nodes are identical in
both graphs. Given a graph g = (V,E), the distance between two nodes
x, y ∈ V , denoted dg(x, y), is defined as the minimum number of edges that
need to be traversed when traveling from x to y [21]. Further, the φ-distance
[21] between two graphs g1 an g2, denoted dφ(g1, g2), is defined as

dφ(g1, g2) =
∑

∀x∀y∈V1

|dg1(x, y) − dg2(x, y)|

where φ is a one-to-one mapping (but not necessarily an isomorphism) between
g1 and g2.

If φ is an isomorphism, then dφ(g1, g2) = 0; if g1 and g2 are not isomor-
phic, then dφ(g1, g2) > 0. This leads to a definition of distance between two
graphs as

d(g1, g2) = min
∀φ

dφ(g1, g2)

In [21] the authors also go on to show that we can make some other, less
expensive calculations if the graphs meet certain requirements. For example,
if g1 and g2 are connected graphs with an equal number of nodes, then we
can determine the lower bound on their distance by

d(g1, g2) ≥ |td(g1) − td(g2)|

where
td(g) =

∑
∀u,v∈V

d(u, v)

or, in other words, the sum of distances between all pairs of nodes in graph.
Further theoretical contributions related to this approach can be found in [21].
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5.5 Theoretical Foundations of Graph Matching

The graph distance measure according to (5.1) is based on the maximum
common subgraph of two graphs. Obviously, it can be regarded an alternative
to graph edit distance. Indeed, it was recently shown that there is a direct
relation between graph edit distance and maximum common subgraph in the
sense that graph edit distance and maximum common subgraph computation
are equivalent to each other under a certain cost function [11]. In [11] the
following cost function was considered:

cns(x) =
{

0, if α1(x) = α2(f(x))
∞, otherwise

}
for any x ∈ V̂1,

cnd(x) = 1 for any x ∈ V1 − V̂1,

cni(x) = 1 for any x ∈ V2 − V̂2,

ces(e) =
{

0, if β1((x, y)) = β2((f(x), f(y)))
∞, otherwise

}
for any e = (x, y) ∈ V̂1 × V̂1,

ced(e) = 0 for any e = (x, y) ∈ (V1 × V1) − (V̂1 × V̂1),
cei(e) = 0 for any e = (x, y) ∈ (V2 × V2) − (V̂2 × V̂2).

(5.2)

Under this cost function, any node deletion and insertion has a cost equal to
one. Identical node and edge substitutions have zero cost, while substitutions
involving different labels have infinity cost. The insertion or deletion of an
edge incident to a node that is inserted or deleted, respectively, has no cost.
Intuitively speaking, it is assumed that the cost of a node deletion (insertion)
includes the cost of deleting (inserting) the incident edges. As for any two
graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) there is always an edit
path f with cost c(f) = |V1|+ |V2| (corresponding to the case where all nodes
together with their incident edges are deleted from g1, and all nodes with
their incident edges are inserted in g2), any edit operation with infinity cost
will never need to be considered when looking for an optimal edit path. Thus,
we may think of edit operations with infinity cost as nonadmissible. In other
words, under the given cost function we can restrict our attention on edit paths
involving only insertions, deletions, and identical node and edge substitutions,
but no nonidentical substitutions. For example, for the edit path f3 discussed
in Example 1, we have c(f3) = 3 under the considered cost function. Obviously
both f1 and f2 have infinity cost.

It was shown in [11] that under this cost function the following equation
holds true for any two graphs g1 and g2, and a maximum common subgraph
g of g1 and g2 (this maximum common subgraph may be empty):

d(g1, g2) = |g1| + |g2| − 2|g| (5.3)

Obviously, this equation establishes a relation between the size |g| of the
maximum common subgraph of two graphs g1 and g2, and their edit distance
d(g1, g2). Thus, given one of the two quantities and the size of g1 and g2, we
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can immediately calculate the other. It was furthermore shown in [11] that
the mapping f : V̂1 → V̂2, defining an optimal edit path according to Def.
7, represents a maximum common subgraph of g1 and g2, i.e., f is a graph
isomorphism between ĝ1, the graph induced by V̂1, and ĝ2, the graph induced
by V̂2, and there are no larger subgraphs in g1 and g2, respectively, that are
isomorphic to each other.

This theoretical result has an interesting practical consequence, namely,
any algorithm for graph edit distance computation can be applied for maxi-
mum common subgraph computation if it is run under the cost function given
in (5.2). Conversely, any algorithm that computes the maximum common sub-
graph of two graphs can be used for graph edit distance computation under
cost function (5.2), using (5.3). A similar relation between string edit distance
and longest common subsequence has been known for long [60].

The results derived in [11] were recently shown to hold not only for the
cost function given in (5.2), but for a whole class consisting of infinitely many
cost functions. In [13] cost functions C with cns = ces = 0 for identical
substitutions and

cnd + cni < cns and cnd + cni < ces (5.4)

are considered. (Note that (5.2) is a special case of this class.) It is shown that
for this whole class of cost functions the minimum cost mapping f : V̂1 →
V̂2 represents a maximum common subgraph of g1 and g2 and, conversely,
any maximum common subgraph represents a minimum cost mapping in the
sense of Def. 7. Intuitively speaking, the conditions in (5.4) imply that a
node deletion together with a node insertion will be always preferred over a
node or an edge substitution because of a smaller cost. This means that all
nodes and edges in g1 that cannot be mapped to a node or an edge with an
identical label in g2 will be deleted from g1. Similarly, all nodes and edges in
g2 that are not part of the mapping f (i.e., that do not have a corresponding
node or edge with identical label, respectively) will be inserted. What remains
for the mapping f is exactly the maximum common subgraph of g1 and g2.
An example is the edit path f3 in Example 1. It is optimal under the cost
function C ′′ = (1, 1, 7, 1, 1, 7) as explained in Example 2. As a matter of fact,
f3 corresponds to the maximum common subgraph of g1 and g2 in Fig. 1, and
cost function C ′′ satisfies conditions (5.4).

The equivalence of maximum common subgraph and graph edit distance
computation shown in [13] is based on the assumption cei(e) = ced(e) =
0 for any edge e from (V1 × V1) − (V̂1 × V̂1) and (V2 × V2) − (V̂2 × V̂2),
respectively, see (5.2). Thus, no individual costs for the deletion of edges from
(V1 × V1) − (V̂1 × V̂1) and no individual costs for the insertion of edges in
(V2×V2)−(V̂2× V̂2) are taken into regard. The reason is that these operations
are automatically implied by the deletion of nodes from (V1 − V̂1) and the
insertion of nodes in (V2−V̂2), respectively. Thus, it is assumed that their costs
are included in the costs of the corresponding node deletions and insertions.
In other words, the cost of a node deletion (insertion) includes not only the
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cost of deleting (inserting) a node, but also the deletion (insertion) of the
edges that connect it to the other nodes of the graph. This assumption may
be justified in many applications.

The equivalence of graph edit distance and maximum common subgraph
shown in [13] yields additional insight on the measure dMCS (g1, g2) of (5.1).
Although no explicit costs of graph edit operations are needed to compute
dMCS (g1, g2), there are, nevertheless, costs involved in an implicit manner,
because the quantity |mcs(g1, g2)| in (5.1) is equivalent to the graph edit
distance d(g1, g2) in the sense of (5.3), assuming a cost function satisfying
(5.4). In other words, whenever we compute the maximum common subgraph
of two graphs we may consider this as a graph edit distance computation
under an arbitrary cost function belonging to the class studied in [13]. From
this point of view, the measure defined in (5.1) may be regarded an advantage
over conventional graph edit distance computation because it is robust against
changing the costs of the underlying graph edit operations over a fairly wide
range.

Another important result shown in [13] is the existence of classes of cost
functions that always result in the same optimal mapping f : V̂1 → V̂2 for
any two given graphs g1 and g2. Intuitively speaking, if we consider two cost
functions C and C ′, where C ′ is a scaled version of C, i.e., c′nd = αcnd, c

′
ni =

αcni, . . . , c
′
ei = αcei for some α > 0, then we expect that any edit path f

that is optimal under C is also optimal under C ′ for any two given graphs g1

and g2. Just the absolute cost of the two optimal edit paths would differ by a
factor α. In [13] it was shown that any optimal edit path under a cost function
C is optimal under another cost function C ′ not only if C ′ is a scaled version
of C, but for a much larger class of cost functions C ′. If the conditions

(cni + cnd)/cns = (c′ni + c′nd)/c′ns and (5.5)

ces/cns = c′es/c′ns (5.6)

for cost functions C and C ′ are satisfied then any edit path f is optimal
under C if and only if it is optimal under C ′ for any two given graphs g1 and
g2. Furthermore, there is a relation between the values c(f) obtained under
two different cost functions that is similar to (5.3). Given the edit distance
under cost function C we can analytically compute the edit distance under C ′

using just the parameters of C and C ′ and the size of the two graphs under
consideration. Hence, given an algorithm that was designed for a particular
cost function C, we can use the same algorithm for any other cost function C ′

for which (5.5) and (5.6) are satisfied. The existence of similar classes of cost
functions for string edit distance has been discovered recently Rice et al. [57].

As discussed above, maximum common subgraph computation is a special
case of graph edit distance under a particular class of cost functions. It was
furthermore shown in [13] that also graph isomorphism and subgraph isomor-
phism are special cases of edit paths. If we define cnd = cni = cns = ced =
cei = ces = ∞ then an edit path f between g1 and g2 with c(f) < ∞ exists if
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and only if there exists a graph isomorphism between g1 and g2. Clearly, any
such graph isomorphism f is optimal and c(f) = 0. Similarly, if

cnd = cns = ∞,
0 ≤ cni < ∞,

ces(e) = cei(e) = ced(e) = ∞ if e ∈ V̂1 × V̂1,

ced(e) = 0 if e ∈ (V1 × V1) − (V̂1 × V̂1),
cei(e) = 0 if e ∈ (V2 × V2) − (V̂2 × V̂2),

then an optimal edit path f with c(f) < ∞ between g1 and g2 exists if and
only if there exists a subgraph isomorphism from g1 to g2. Any optimal edit
path f is in fact a subgraph isomorphism and c(f) = (|g2| − |g1|)cni.

5.6 Some Recent Developments

In this section we discuss some of the recent developments, in particular,
automatic learning of graph edit distance, median graph, and weighted mean
of two graphs.

5.6.1 Learning Edit Costs

One of the major difficulties in the application of edit distance in graph match-
ing is the definition of adequate edit costs. The edit costs essentially govern
how the structural matching is performed. For some graph representations, it
may be crucial whether a node is missing or not, while for other representa-
tions, the connecting edges are more important than the nodes. The question
of how to define edit costs can therefore only be addressed in the context of
an application-specific graph representation.

In the case of labels from n-dimensional space of real numbers, a simple
edit cost model that has been used often is based on the distance of labels.
The idea is to assign edit costs to substitutions that are proportional to the
Euclidean distance of the two labels. Substituting an edge by another edge
with the same label therefore does not involve any costs. For nonidentical
labels, the further the two labels differ from each other, the higher will be the
corresponding substitution cost. Insertions and deletions are often assigned
constant costs in this model. The advantage of this simple model is that
only a few parameters are involved and the edit costs are defined in a very
intuitive way. However, it turns out that for some applications this model is
not sufficiently flexible. For instance, it does not take into account that some
label components may be more relevant than others. Also, the absolute values
of the labels are not evaluated, but only the distance of labels, which means
that all regions of the label space are equally weighted in terms of edit costs.

Recently, automatic approaches [50, 52] have been proposed to learn the
edit costs. In [50] an approach based on self-organizing maps (SOM) is pro-
posed. SOMs [43] are two-layer neural networks consisting of an input layer
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and a competitive layer. The role of the input layer is to forward input patterns
to the competitive layer. The competitive neurons are arranged in a homoge-
neous grid structure such that every neuron is connected to its neighbors. The
idea is that the competitive layer reflects the space of input elements, that
is, every competitive neuron corresponds to an element of the input space.
For pattern representations in terms of feature vectors, this is usually accom-
plished by assigning weight vectors of the same dimension as the input space
to neurons. Upon feeding an input pattern into the network, neurons of the
competitive layer compete for the position of the input element. To this end,
the weight of the closest competitive neurons and their neighbors are adapted
so as to shift them towards the position of the input element. The longer this
procedure is carried out, the more the competitive neurons tend to migrate to
areas where many input elements are present. That is, the competitive layer
can be regarded as a model of the pattern space, where the neuronal density
reflects the pattern density. This unsupervised learning procedure is called
self-organization as it does not rely on predefined classes of input elements.

SOMs can be used to model the distribution of edit operations. The idea
is to use a SOM to represent the label space. A sample set of edit opera-
tions is derived from pairs of graphs from the same class in a manner that is
equivalent to the probabilistic model. The self-organization process turns the
initially regular grid of the competitive layer into a deformed grid. From the
deformed grid, we obtain a distance measure for substitution costs and a den-
sity estimation for insertion and deletion costs. In the case of substitutions,
the SOM is trained with pairs of labels, where one label belongs to the source
node (or edge) and one to the target node (or edge). The competitive layer
of the SOM is then adapted so as to draw the two regions corresponding to
the source and the target label closer to each other. The edit cost of node and
edge substitutions is then defined proportional to the distance in the trained
SOM. That is, instead of measuring label distance by the Euclidean distance,
we measure the deformed distance in the corresponding SOM. In the case of
insertions and deletions, the SOM is adapted so as to draw neurons closer to
the inserted or deleted label. The edit cost of insertions and deletions is then
defined according to the competitive neural density at the respective posi-
tion. That is, the more neurons at a certain position in the competitive layer
are, the lower is the respective insertion or deletion cost. The self-organizing
training procedure for substitutions, insertions, and deletions hence results in
lower costs for those pairs of graphs that are in the training set and belong to
the same class.

5.6.2 Median Graph

The concept of median graph does not give us an indication of graph similarity,
but is useful in summarizing a group of graphs. This is among others needed in
applications such as clustering, where we have to represent a group of graphs
by some representative exemplar graph.
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Given a set of graphs S = {g1, g2, . . . , gn} defined over labels from LV and
LE and a distance function d() that measures the dissimilarity of two graphs,
the concept of median graph is given as follows [39]:

Definition 10. Let U be the set of all graphs that can be constructed using
labels from LV and LE. The generalized median graph g and the set median
graph ĝ of S ⊂ U are defined by

g = arg min
g∈U

n∑
i=1

d(g, gi)

and

ĝ = arg min
g∈S

n∑
i=1

d(g, gi)

respectively.

Both the generalized median and the set median graph minimize the sum
of distances to all input graphs and the only difference lies in the graph space
where the median is searched for. The generalized median is the more general
concept and therefore usually a better representation of the given patterns
than the set median. Notice that g is usually not a member of S. In general
several generalized median graphs and several set median graphs may exist.
However, this is usually not a drawback in practice since any such graph may
serve equally well as a representative of the given set.

Conceptually, searching for the set median graph of n input graphs is an
easy task since it suffices to compute 1

2n(n − 1) pairwise graph distances.
Due to the high expense of graph distance computation, however, it is often
desired to determine the set median graph more efficiently than under the
naive approach. Some suggested methods for this purpose can be found in [41].

Determining the generalized median graph is computationally more com-
plex. On the one hand, the computation time is clearly exponential in the
size of the input graphs. On the other hand, it is also exponential in terms
of the number of input graphs. The reason for this behavior is that already
for the special case of strings, the required time is exponential in the number
of input strings [34]. As a consequence, we are generally forced to resort to
approximate solutions that can be found in reasonable time. In [39] a genetic
solution is proposed for this purpose. A comparison of the genetic algorithm
against combinatorial search is described in [14].

When approximative approaches are involved, the question of accuracy of
the approximative generalized median graph g̃ arises. In [40] a lower bound is
proposed to answer this question. An approximate computation method gives
us a solution g̃ such that

SOD(g̃) =
∑
p∈S

d(g̃, p) ≥
∑
p∈S

d(g, p) = SOD(g)
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where SOD stands for sum of distances and g represents the (unknown) true
generalized median graph. The quality of g̃ can be measured by the difference
SOD(g̃)− SOD(g). Since g and SOD(g) are unknown in general, we resort to
a lower bound Γ ≤ SOD(g) and measure the quality of g̃ by SOD(g̃) − Γ .
Note that the relationship

0 ≤ Γ ≤ SOD(g) ≤ SOD(g̃)

holds. Obviously, Γ = 0 is a trivial, and also useless, lower bound. We thus
require Γ to be as close to SOD(g) as possible.

The distance function d(p, q) is assumed to be a metric. The generalized
median graph g is characterized by

minimize SOD(g) = d(g, g1) + d(g, g2) + · · · + d(g, gn) subject to

∀i, j ∈ {1, 2, . . . , n}, i �= j,

⎧⎨
⎩

d(g, gi) + d(g, gj) ≥ d(gi, gj)
d(g, gi) + d(gi, gj) ≥ d(g, gj)
d(g, gj) + d(gi, gj) ≥ d(g, gi)

∀i ∈ {1, 2, . . . , n}, d(g, gi) ≥ 0

Note that the constraints except the last set of inequalities are derived from
the triangular inequality of the metric d(p, q). By defining n variables xi,
i = 1, 2, . . . , n, we replace d(g, gi) by xi and obtain the linear program LP:

minimize x1 + x2 + · · · + xn subject to

∀i, j ∈ {1, 2, . . . , n}, i �= j,

⎧⎨
⎩

xi + xj ≥ d(gi, gj)
xi + d(gi, gj) ≥ xj

xj + d(gi, gj) ≥ xi

∀i ∈ {1, 2, . . . , n}, xi ≥ 0

If we denote the solution of LP by Γ , then the true generalized median g
satisfies Γ ≤ SOD(g), i.e., Γ is a lower bound for SOD(g).

5.6.3 Weighted Mean of Two Graphs

If we consider two points x and y in the k-dimensional real space �k, their
weighted mean can be defined as a point z such that

z = (1 − γ) · x + γ · y, 0 ≤ γ ≤ 1

Clearly, if γ = 1
2 then z is the (normal) mean of x and y. If z is as defined

above, then z − x = γ · (y − x) and y − z = (1 − γ) · (y − x). In other words,
z is a point on the line segment in n dimensions that connects x and y, and
the distance between z and both x and y is controlled via the parameter γ.

Conceptually, the same idea can be easily transformed into other domains,
such as strings [17] and graphs [15]. According to Bunke and Günter [15] the
weighted mean of two graphs g1 and g2 is a graph g such that
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Fig. 5.2. Example of a series of weighted means of two graphs

d(g, g1) = γ · d(g1, g2)

and
d(g, g2) = (1 − γ) · d(g1, g2)

where 0 < γ < 1.
An algorithm for finding the weighted mean of two graphs is given in

[15]. It is an extension of the method for weighted mean of strings [17] and
involves finding a subset of edit operations (given the lowest edit cost between
two graphs) for the given γ in order to determine the weighted mean graph.
Figure 5.2 shows an example of a series of weighted means of two graphs. In
some sense the concept of weighted mean graph gives us a tool of “morphing”
one graph into another graph.

If γ = 0.5, then we obtain the mean of two graphs g1 and g2 [33] and

d(g1, g) = d(g, g2), d(g1, g2) = d(g, g1) + d(g, g2)

holds. In other words, the mean graph g is equidistant from both g1 and g2.
Clearly, the mean will depend on the distance function chosen. There may be
more than one graph satisfying these conditions; it is also possible that no
(exact) mean graph exists for a given pair of graphs.

5.7 Conclusions

Graph matching has successfully been applied to various problems in image
processing and understanding. In the case of exact graph matching, the graph
extraction process is assumed to be structurally flawless, i.e., the conversion of
image data of a single class into graphs always results in identical structures or
substructures. Otherwise, graph isomorphism or subgraph isomorphism detec-
tion are rather unsuitable, which seriously restricts the applicability of graph
isomorphism algorithms. The main advantages of isomorphism algorithms are
their mathematically stringent formulation and the existence of well-known
procedures to derive optimal solutions.

Error-tolerant methods, sometimes also referred to as inexact or error-
correcting methods, are characterized by their ability to cope with errors, or
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noncorresponding parts, in structure and labels of graphs. Hence, in order
for two graphs to be positively matched, they need not be identical at all,
but only similar. The notion of graph similarity depends on the error-tolerant
matching method that is to be applied.

In this chapter we have given an overview of both exact and inexact graph
matching. The emphasis has been the fundamental concepts and the recent
developments concerned with the automatic learning of edit costs, median
graph, and weighted mean of two graphs. Particularly, the concept of inexact
graph matching provides us a means of measuring the similarity of graphs and
thus lays the foundation of using the versatile and flexible tool of graphs in
case-based reasoning in dealing with images.
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Summary. Case-based reasoning (CBR) methodology stems from research on
building computational memories capable of analogical reasoning, and require for
that purpose specific composition and organization. This main task in CBR has
triggered very significant research work and findings, which are summarized and
analyzed in this article. In particular, since memory structures and organization
rely on declarative knowledge and knowledge representation paradigms, a strong
link is set forth in this article between CBR and data mining for the purpose of
mining for memory structures and organization. Indeed the richness of data min-
ing methods and algorithms applied to CBR memory building, as presented in this
chapter, mirrors the importance of learning memory components and organization
mechanisms such as indexing. The article proceeds through an analysis of this link
between data mining and CBR, then through an historical perspective referring to
the theory of the dynamic memory, and finally develops the two main types of learn-
ing related to CBR memories, namely mining for memory structures and mining for
memory organization.

6.1 Introduction

Case-based reasoning (CBR) systems have tight connections with machine
learning and data mining. They have been tagged by machine learning
researchers as lazy learners because they defer the decision of how to gen-
eralize beyond the training set until a target new case is encountered [37], by
opposition to most other learners, tagged as eager. Even though a large part of
the inductive inferences are definitely performed at Retrieval time in CBR [3],
mostly through sophisticated similarity evaluation, most CBR systems also
perform inductive inferences at Retain time. There is a long tradition within
this research community to study what is a memory and what its components
and organization should be. Indeed CBR methodology focuses more on the
memory part of its intelligent systems [51] than any other artificial intelligence
(AI) methodology, and this often entails learning declarative memory struc-
tures and organization. Therefore this article proposes to focus on studying
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CBR from the memory standpoint more than the inference standpoint, which
opens a different, and complementary, perspective on the lazy/eager learn-
ing comparison. For CBR, this antagonism can be more adequately called
the lazy/eager retrieval dilemma or pondering when it is more appropriate to
learn: at Retrieval time or at Retain time [1]. The lazy learners are also the
eager retrievers, and the eager learners are the lazy retrievers. Both though
are full-fledged CBR systems. More precisely, the approach taken here has an
analogy in the medical domain. Instead of studying the patient – CBR is here
the object of our study – from the physiological standpoint, we will adopt the
anatomical perspective, and attempt to answer this question: what structures
and organization constitute the anatomy of a CBR system memory? We will
see that a variety of data mining tasks and methods are performed in CBR,
and that this richness reinforces the well known fact that CBR systems are
indeed powerful data mining systems. The second section explains the rela-
tionship between CBR and data mining, and the motivation behind mining
in CBR. The third section revisits data mining in early CBR systems. The
fourth section concentrates on mining for memory structures, and the fifth on
mining for memory organization. It is followed by a discussion on CBR and
data mining, and by the conclusion.

6.2 Data Mining and Case-based Reasoning

Data mining is the analysis of observational data sets to find unsuspected
relationships and to summarize the data in novel ways that are both
understandable and useful to the data owner [22]. CBR systems are generally
classified as data mining systems simply because they answer this definition.
From a set of data – called cases in CBR – they perform one of the classical
data mining tasks such as prediction for instance, which gives the case base a
competency beyond what the data provide. In this chapter, we will focus more
on another aspect, namely what data mining tasks and methods are used in
CBR and what is their result in the CBR memory.

First of all, since data mining emerged in the nineties from scaling up
machine learning algorithms to large datasets, let us review what machine
learning authors have been saying about CBR. Machine learning authors
consider case-based reasoning systems as either analogical reasoning sys-
tems [11, 15, 33, 55] or instance based learners [37]. Michalski presents the
analogical inference, at the basis of case-based retrieval, as a dynamic induc-
tion performed during the matching process [33]. Mitchell refers to CBR as a
kind of instance based learner [37]. This author labels these systems as lazy
learners because they defer the decision about how to generalize beyond the
training data until each new query instance is encountered. He also praises
CBR systems for not committing to a global approximation once and for all
during the training phase of machine learning, but for being able to general-
ize specifically for each target case, therefore, to fit its approximation bias, or
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induction bias, to the case at hand. He points here to the drawback of over-
generalization that is well known for eager learners, to which instance-based
learners are exempt [37].

These authors focus their analysis on the inferential aspects of learning in
case-based reasoning [2, 17, 25]. Historically CBR systems have evolved from
the early work of Schank in the theory of the dynamic memory [51], where
this author proposes to design intelligent systems primarily by modeling their
memory. Ever since Schank’s precursory work on natural language under-
standing, one of the main goals of case-based reasoning has been to unify
as much as possible memory and inferences for the performance of intelli-
gent tasks. Therefore, focusing on studying how case-based reasoning systems
learn, or mine, their memory structures and organization can prove at least
as fruitful as studying and classifying them from an inference standpoint.

From a memory standpoint, learning in CBR consists in the creation,
update, and organization of the structures and organization in memory. It is
often referred to as case base maintenance [54, 58]. In the general cycle of
CBR, learning takes place within the general reasoning cycle – see Aamodt
and Plaza [1] for this classical cycle. It completely serves the reasoning, and
therefore one of its characteristics is that it is an incremental type of mining.
It is possible to fix it after a certain point, though, in certain types of applica-
tions, but it is not a tradition in CBR: learning is an emergent behavior from
normal functioning [26]. Ideally, CBR systems start reasoning from an empty
memory, and their reasoning capabilities stem from their progressive learning
from the cases they process. The decision to stop learning because the sys-
tem is judged competent enough is not taken from definitive criteria. It is the
consequence of individual decisions made about each case, to keep it or not in
memory depending upon its potential contribution to the system. Thus often
the decisions about each case, each structure in memory, allow the system to
evolve progressively toward states as different as ongoing learning, in novice
mode, and its termination, in expert mode. If reasoning, and thus learning, are
directed from the memory, learning answers to a process of prediction of the
conditions of cases recall (or retrieval). As the theory of the dynamic memory
showed, recall and learning are closely linked [51]. Learning in case-based rea-
soning answers a disposition of the system to anticipate future situations: the
memory is directed toward the future. The anticipation deals both with avoid-
ing situations having caused a problem, and with reinforcing the performance
in success situations.

More precisely, learning in case-based reasoning takes the following forms:

1. Adding a case to the memory : it is at the heart of CBR systems, tradi-
tionally one of the main phases in the reasoning cycle, and the last one:
Retain [1]. It is the most primitive learning kind, also called learning by
consolidation or rote learning

2. Explaining : the ability of a system to find explanations for its successes
and failures, and by generalization the ability to anticipate
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3. Choosing the indices: it consists in anticipating Retrieval, the first reason-
ing step

4. Learning memory structures: these may be learnt by generalization from
the cases or be provided from the start to hold the indices, for exam-
ple. These learnt memory structures can play additional roles, such as
facilitating the reuse or the retrieval

5. Organizing the memory : the memory comprises a network of cases, given
memory structures, and learnt memory structures, organized in efficient
ways. Flat and hierarchical memories have been traditionally described

6. Refining cases : cases may be updated, refined based upon the CBR result
7. Refining knowledge: the knowledge at the basis of the case-based reasoning

can be refined, such as modifying the similarity measure (weight learning)
or situation assessment refinement

6.3 Data Mining in Early CBR Systems

Roger Schank pioneered the methodology that would become CBR from a
cognitive background [51]. Based on cognitive science research, he proposed
a model of dynamic memory [51] capable of evolving the events it encounters
and of learning both from successes and failures. The theory of the dynamic
memory presents memory structures and organization that were later imple-
mented in some of the first CBR systems. Their principles have been followed
up to current CBR sytems.

6.3.1 The Theory of the Dynamic Memory

Memory structures are of two types, domain dependent and domain indepen-
dent. The domain dependent structures are called scripts, defined as general-
ized standardized episodes. All the other structures are either organizational
structures or generalized structures. The organizational structures are gener-
alized scenes, MOPs (memorization organization packets), and meta-MOPs.
Generalizations of these are, respectively, universal scenes, u-MOPs, and uni-
versal u-MOPs [51] (see Fig. 6.1). The domain independent structures are
TOPs (thematic organization packets).

6.3.2 Generalization Based Memory

The memory of IPP (integrated partial parser) is a generalization-based mem-
ory [27,28]. IPP is a natural language understanding system working from tex-
tual information from news about international terrorism. Text understanding
is presented in [28] as memory directed, but accomplishes a case-based type
of search through the memory for specific events linked with the text in entry,
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Fig. 6.1. The two dimensions of the dynamic memory and its domain dependent
structures

giving it a meaning. IPP is a system implementing closely the theory of the
dynamic memory.

The memory structures are on the one hand the initial structures, and
on the other hand the structures learnt by the system from documents. The
initial structures reproduce the stereotypical aspects of the situations: these
are the S-MOPs (simple MOPs) and the AUs (action units). The S-MOPs
or Simple MOPs describe abstract situations such as acts of extortion and
attack. The AUs or Action Units represent concrete events such as shootings
or hostage liberations. The AUs are components of the S-MOPs. The learnt
structures are the spec-MOPs, containing the traits common to the struc-
tures indexed under them. These common traits are conjunctions of triplets
<attribute1, attribute2, value>, such as, for example:

(TARGET NATION DOMINICAN-REPUBLIC)
(TARGET TYPE GOVERNMENT)
(LOCATION COUNTRY COLUMBIA)
(METHOD AU OCCUPATION). . .

In this last example, the method used is represented by an AU: Occupa-
tion. At the highest level, the memory is a set of S-MOPs, under which are
indexed some spec-MOPs forming a network. Each spec-MOP contains a dis-
crimination network being a set of indexes to the events (AUs and role values
associated with them) close to this spec-MOP. Moreover, these indexes take
as values the differences between the events and the spec-MOP from which
they depend.

The memory is organized as a generalization based memory, which means
that the S-MOPs are the most general structures, and that the degree of
generalization decreases with the deepness from the root of the structures
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traversed in memory following the indexes. Thus the events not having struc-
tures indexed under them are the most specific structures.

Learning in IPP follows the same mechanism as in GBM (generalization-
based memory) [30], which is a concept learning system particularly inter-
esting because it can also be linked, from its methodology, to case-based
reasoning systems. Works by Lebowitz deal with hierarchical clustering as a
way of implementing the theory of the dynamic memory [27]. GBM’s memory
is composed of GEN-NODES (for generalized nodes), also called concepts and
instances. The GEN-NODES, similar to MOPs, are built by factoring com-
mon traits in the form of <attribute, value> pairs of the instances indexed
underneath them. Indexing is similar to that performed in IPP. Attribute
values are qualitative. Moreover a discrimination network, called D-NET, is
associated to each GEN-NODE, like in IPP. The D-NET indexes the in-
stances depending upon it by the traits differing from the norm carried by
the GEN-NODE. Learning in such a system is particularly flexible. Through
the bias of a counter carried by a node, each of these traits can be con-
firmed, by incrementation, or infirmed, by decrementation, during the search
through the memory for a new instance presented to the system. When a
minimum threshold is reached, a system parameter, the trait is removed from
the concept, and the concept is removed when it does not comprise any trait
anymore. Inversely, the system constantly searches for new concepts to create.
The system memory is a dynamic memory containing both instances and con-
cepts. It was used in two systems, UNIMEM [31] and RESEARCHER [29].

Some issues for the system have been the dependency of learnt concepts
upon the order of presentation of the instances. To remedy it, Lebowitz pro-
posed to postpone as much as possible the formation of new concepts [32].
When a new instance cannot be incorporated to a concept, because of a trait
for which the counter is not high, the system prefers to wait before rejecting
this concept that the concept evolution permits to definitively incorporate the
instance or not.

6.4 Mining for Memory Structures

Memory structures in CBR are not only cases. A case is defined as a contex-
tualized piece of knowledge representing an experience that teaches a lesson
fundamental to achieving the goals of a reasoner [26]. For many systems, cases
are represented as truthfully as possible from the application domain. Addi-
tionally, data mining methods have been applied to cases themselves, features,
and generalized cases. These techniques can be applied concurrently to the
same problem or selectively. If the trend is now to use them selectively, prob-
ably in the near future CBR systems will use these methods more and more
concurrently.
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6.4.1 Case Mining

Case mining refers to the process of mining potentially large data sets for
cases [60]. Researchers have often noticed that cases simply do not exist in
electronic format, that databases do not contain well-defined cases, and that
the cases need to be created before CBR can be applied. Another option is
to start CBR with an empty case base. When large databases are available,
preprocessing these to learn cases for future CBR permits to capitalize on
the experience dormant in these databases. Yang and Cheng propose to learn
cases by linking several database tables [60]. Clustering and support vector
machines (SVM) techniques permit to mine for cases in [60].

6.4.2 Feature Mining

Feature mining refers to the process of mining data sets for features. Many
CBR systems select the features for their cases and/or generalize them.
Wiratunga et al. notice that transforming textual documents into cases
requires dimension reduction and/or feature selection [59], and show that
this preprocessing improves the classification in terms of CBR accuracy and
efficiency. These authors induce a kind of decision tree called boosted decision
stumps because they comprise only one level, in order to select features, and
induce rules to generalize the features. In biomedical domains, in particular
when data vary continuously, the need to abstract features from streams of
data is particularly prevalent. Recent, and notable, examples include Montani
et al., who reduce their cases time series dimensions through discrete Fourier
transform [39], approach adopted by other authors for time series [42]. Niloofar
and Jurisica propose an original method for generalizing features. Here the
generalization is an abstraction that reduces the number of features stored in
a case [41]. Applied to the bioinformatics domain of micro arrays, the system
uses both clustering techniques to group the cases into clusters containing
similar cases, and feature selection techniques. The goal in their system is to
abstract cases in a domain where there are many attributes, and few sam-
ples, where the pitfall is the famous “curse of dimensionality.” The clustering
method chosen is spectral clustering and the feature selection technique is
logistic regression. Applying these methods to the case base improved the
case-based reasoning along several dimensions, among which improved accu-
racy, less error, and less undecided cases (those for which there is a tie in the
similarity score) [41].

6.4.3 Generalized Case Mining

Generalized case mining refers to the process of mining databases for general-
ized and/or abstract cases. Generalized cases are named in varied ways, such as
prototypical cases, abstract cases, prototypes, stereotypes, templates, classes,
categories, concepts, and scripts – to name the main ones [36]. Although all
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these terms refer to slightly different concepts, they represent structures that
have been abstracted or generalized from real cases either by the CBR system
or by an expert. When these prototypical cases are provided by a domain
expert, this is a knowledge acquisition task [7, 8]. More frequently they are
learnt from actual cases. In CBR, prototypical cases are often learnt to struc-
ture the memory. Therefore most of the prototypical cases presented here will
also be listed in the section on structured memories.

Many authors mine for prototypes, and simply refer to induction for learn-
ing these. CHROMA [4] uses induction to learn prototypes corresponding to
general cases, which each contain a pair <situation, plan>, where the situa-
tion is an object whose slots have several values possible – values are elements
of a set. Bellazzi et al. organize their memory around prototypes [10]. The
prototypes can either have been acquired from an expert or induced from
a large case base. Schmidt and Gierl point that prototypes are an essen-
tial knowledge structure to fill the gap between general knowledge and cases
in medical domains [53]. The main purpose of this prototype learning step
is to guide the retrieval process and to decrease the amount of storage by
erasing redundant cases. A generalization step becomes necessary to learn the
knowledge contained in stored cases. They use several threshold parameters
to adjust their prototypes, such as the number of cases the prototype is filled
with, and the minimum frequency of each contraindication for the antibiotic
therapy domain [53].

Others specifically refer to generalization, so that their prototypes cor-
respond to generalized cases. An example of system inducing prototypes by
generalization is a computer aided medical diagnosis system interpreting elec-
tromyography for neuropathy diagnosis [34]. The first prototypes are learnt
from the expert by supervised learning, then the prototypes are automatically
updated by the system by generalizing from cases. Prototypes can fusion if
one is more general than the other ones, or new prototypes can be added to
the memory. Malek proposes to use a neural network to learn the prototypes in
memory for a classification task, such as diagnosis [35]. A similar connectionist
approach is proposed by [50]. Portinale and Torasso [47] in ADAPTER orga-
nize their memory through E-MOPs [26] learnt by generalization from cases
for diagnostic problem-solving. E-MOPs carry the common characteristics of
the cases they index, in a discrimination network of features used as indices
to retrieve cases. Mougouie and Bergmann [40] present a method for learning
generalized cases. This method, called the Topkis-Veinott method, provides
a solution to the computation of similarity for generalized cases over an
n-dimensional Real values vector. Maximini et al. [36] have studied the differ-
ent structures induced from cases in CBR systems. They point out that several
different terms exist, such as generalized case, prototype, schema, script, and
abstract case. The same terms do not always correspond to the same type of
entity. They define three types of cases. A point case is what we refer to as a
real case. The values of all its attributes are known. A generalized case is an
arbitrary subspace of the attribute space.
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There are two forms: the attribute independent generalized case, in which
some attributes have been generalized (interval of values) or are unknown,
and the attribute dependent generalized case, which cannot be defined from
independent subsets of their attributes.

Yet other authors refer to abstraction for learning abstract cases. Branting
proposes case abstractions for its memory of route maps [16]. The abstract
cases, which also contain abstract solutions, provide an accurate index to less
abstract cases and solutions. Perner [44] learns prototypes by abstracting cases
as well.

Finally, many authors learn concepts through conceptual clustering.
MNAOMIA [12–14] learns concepts and trends from cases through concep-
tual clustering similar to GBM [30] (see Fig. 6.2). Perner learns a hierarchy
of classes by hierarchical conceptual clustering, where the concepts represent
clusters of prototypes [44].

Dı̀az-Agudo and Gonzàlez-Calero use formal concept analysis (FCA) –
a mathematical method from data analysis – as another induction method
for extracting knowledge from case bases, in the form of concepts [18]. The
concepts learnt comprise some cases, and have both an intent– the set of
attributes shared by these cases represented by a concept. Retrieval step is
a classification in a concept hierarchy, as specified in the FCA methodology,
which provides such algorithms. The concepts can be seen as an alternate
form of indexing structure. The authors point to one notable advantage of
this method, during adaptation. The FCA structure induces dependencies
among the attributes that guide the adaptation process [19].

6.5 Mining for Memory Organization

Efficiency at case retrieval time is conditioned by a judicious memory orga-
nization. Two main classes of memory are presented here: unstructured – or
flat – memories, and structured memories.

6.5.1 Flat Memories

Flat memories are memories in which all cases are organized at the same level.
Retrieval in such memories processes all the cases in memory. Classical nearest
neighbor (NN) retrieval is a method of choice for retrieval in flat memories.
Flat memories can also contain prototypes, but in this case the prototypical
cases do not serve as indexing structures for the cases. They can simply replace
a cluster of similar cases that has been deleted from the case base during case
base maintenance activity. They can also have been acquired from experts.
Flat memories are the memories of predilection of NN retrieval methods [3].

Among these are so called memory-based systems, such as ANON [43].
Although capable of case-based reasoning, they have also their own charac-
teristics. The memory of memory-based systems is completely directed by the
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Fig. 6.2. Conceptual clustering example in MNAOMIA: a new case c6 being CBR
processed creates two new concepts C6 and C7, and concept C3 is abstracted by
losing two features

inferences. Implemented on parallel machines, indexation is replaced by the
attribution of labels to the different cases, corresponding to the traditional in-
dices of case-based reasoning. Feature extraction and the search through the
memory correspond to the same inferences. There is generally a compromise
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between the importance of the inferences during the features extraction to
constitute the indices, and during the search through the memory. Two
approaches are possible: maximizing the inferences during the extraction of
the features to constitute the indices, and maximizing the inferences dur-
ing the search through the memory. The features serving as indices in both
approaches are by the way different: having a semantic connotation in the
former and a syntactic one in the latter. ANON proposes to integrate both by
using first the features with syntactic load to perform a preselection, then the
features with semantic load are extracted on the retained cases, powered by
processors working in parallel. These memories are called active [43] because
they must perform an important inferential effort during the search through
the memory, to compensate for the absence of a learnt structuring.

6.5.2 Structured Memories

Among the different structured organizations, the accumulation of generaliza-
tions or abstractions facilitates the evaluation of the situation and allows a
control of indexation.

Like GBM and related early systems, many CBR memories are organized
hierarchically through generalization or abstraction. SWALE [24, 52] is a
case-based explanation system. An explanation is a causal chain. Its cases are
generalized explanations. When a new case must be integrated to the memory,
it constructs a schema generalized from this case and the retrieved case used
for reasoning. This constructed schema, called an explanation schema, is sim-
ilar to a MOP. The authors refer to a generalization process for learning this
schema. SWALE’s memory is organized hierarchically, and the most abstract
explanation schemas are located near the root, while the least abstract ones
are positioned near the leaves, made up of the explanation cases. CANDIDE [9]
is a system for language acquisition from similar cases. Based on a concep-
tual clustering algorithm [46], its memory is organized in categories, induced
by abstraction of the common elements of two cases. Nevertheless, learning
goes through three phases, the first one being totally supervised (an expert
provides a set of cases and a generalization hierarchy). The second phase
interacts with the expert, helping him by extracting similar memorized cases.
The third phase is then an unsupervised recognition phase. This form of
learning is close to knowledge acquisition. Similarly, AQUA [49] builds cate-
gories by induction. But the traits chosen for the generalization are selected
in function of their pertinence. As previously, pertinence is evaluated by the
construction of a causal explanation. The generalization is constrained by
explanations: it is an explanation based generalization [38], and is a form of
axiomatic learning. Branting’s case abstractions assist case indexing, match-
ing, and adaptation [16]. The abstract solutions contain the most important
aspects of the less abstract solutions. Matching is less expensive because new
cases are compared with the abstract cases, which contain many less features
than the specific cases and also are less numerous. The adaptation effort is
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less costly too because many nonpertinent features need not be adapted. The
system has been applied to route finding. This author evaluates the compara-
tive performance of ground-level CBR, heuristic search (A∗), REFINEMENT
(hierarchical problem solving), and SCBR (Stratified case-based reasoning)
[16]. Like SCBR, REFINEMENT is a form of hierarchical problem solving, in
which a solution at one level of the hierarchy guides the search at a lower
level in the hierarchy. The difference between REFINEMENT and SCBR is
that SCBR starts by matching with the most specific case in the hierarchy,
not systematically the most abstract ones only. The match in this particu-
lar domain is the match between a given abstract start position and a given
abstract goal position. In both methods, the search starts from the root of the
hierarchy and proceeds top-down. SCBR proved to be an improvement over
ground-level CBR and heuristic search in terms of number of levels of ab-
straction, the size of the case library, and the resemblance among cases. SCBR

was also an improvement over REFINEMENT in the same dimensions when
the number of levels in the hierarchy reached at least three [16]. Some hierar-
chies are nonrefinable, which means that a solution may show at an abstract
level, but not be valid at a more specific level. In this type of hierarchy, SCBR

outperforms REFINEMENT particularly in nonrefinable hierarchies.
Structured memories, dynamic, present the advantage of being declarative.

The important learning efforts in declarative learning are materialized in the
structures and the dynamic organization of their memories. Perner learns a
hierarchy of classes by hierarchical conceptual clustering, where the concepts
are clusters of prototypes [44]. She notes the advantages of this method: a
more compact case base, and more robust (error-tolerant). The same author
explains that an important aspect of case base maintenance – beyond the
classic trio addition, removal and revision of cases – is learning the memory
organization as well as the prototypes in memory [45]. Case-based organization
is based on approximate graph subsomption. The nodes in the graph can
be represented by a prototype. MNAOMIA [14] proposes to use incremental
concept learning [20,21], which is a form of hierarchical clustering, to organize
the memory. Concepts are composed of pairs of <attribute, value> common
to all the cases indexed under these concepts. This system integrates highly
data mining with CBR because it reuses the learnt structures to answer higher
level tasks such as generating hypotheses for clinical research (see Fig. 6.3),
as a side effect of CBR for clinical diagnosis and treatment decision support.
Therefore this system illustrates that by learning memory structures in the
form of concepts, the classical CBR classification task improves, and at the
same time the system extracts what it has learnt, thus adding a knowledge
discovery dimension to the classification tasks performed.

Another notable class of systems is composed of those who perform
decision tree induction [48,56] to organize their memory. INRECA [5] project
studied how to integrate CBR and decision tree induction. They propose to
preprocess the case base by an induction tree, namely a decision tree. The sys-
tem is based on similar approach in KATE and PATDEX from the authors.
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The decision tree partitions the case base around nodes composed of a sin-
gle attribute and two branches per node, splitting the values on each branch
in the median, based on the interquartile distance. Later refined into an IN-
RECA tree [6] (see Fig. 6.4), which is a hybrid between a decision tree and a
k-d tree, this method allows both similarity based retrieval and decision tree
retrieval, is incremental, and speeds up the retrieval. The structures are a set
of classes, each class carrying a rule to determine whether a case belongs to it
or not. Each condition in the rule is sufficient and concerns a single attribute.
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The similarity measure between cases takes into account the classes. Jarmulak
uses a tree induction algorithm to induce the top level of the structure, and a
clustering algorithm to cluster similar cases in the leaves [23]. This system is
applied to imaging for the classification of ultrasonic B-scans.

Another important method is to organize the memory like a hierarchy
of objects, by subsomption. Retrieval is then a classification in a hierarchy
of objects, and functions by substitution of values in slots. CHROMA [4]
uses its prototypes, induced from cases, to organize its memory. The retrieval
step of CBR retrieves relevant prototypes by using subsomption in the object
oriented language NOOS to find the matching prototypes. The prototypes
contain a pair <situation, plan> where the situation is an object. Bellazzi
et al. [10] also show a memory organization around classes of prototypes
in the domain of Diabetes Mellitus. The memory organization is a tree-like
structured taxonomy: each class in the hierarchy is a prototypical descrip-
tion of the set of problems or situations it represents. The leaves in the
taxonomy are basic classes containing a single case in the case library. The
authors stress that in many domains, some knowledge about the structuring
of the domain is available, or can be induced. This is the case in object ori-
ented approaches both for database management and programming languages.
Every knowledge-based methodology derived from frames and semantic nets
rely on that type of knowledge. In such a hierarchy, the retrieval step is two
folded: first a classification in a hierarchy of objects, in this system a Bayesian
classification, followed by a NN technique on the cases in the classes selected by
the first step. This method is called PBR (pivoting based retrieval). An evalu-
ation shows that PBR retrieves cases linearly with the size of the case base,
in comparison with the NN technique, which grows quadratically with the
number of cases [10].

Many systems use personalized memory organizations structured around
several layers or networks. Malek and Rialle in the domain of neuropathy diag-
nosis construct a memory of prototypical cases that is reused in the retrieval
phase. The memory structure has two levels: the upper level contains pro-
totypes, each of them representing a group of cases; the lower level contains
analyzed patient cases organized into groups of similar cases [34]. A small
memory of prototypes learnt by generalization decreases the retrieval time in
comparison with a large memory of cases. Malek uses a neural network to learn
the prototypes in memory for a classification task, such as diagnosis [35]. Here
the memory is organized in three layers: an input layer containing one unit
for each attribute, a hidden layer containing the prototypes, and an output
layer containing one unit for each class.

Another type of memory organization is the formal concept lattice. Dı̀az-
Agudo and Gonzàlez-Calero organize through formal concept analysis (FCA)
the case base around Galois lattices [18]. Retrieval step is a classification in
a concept hierarchy, as specified in the FCA methodology, which provides
such algorithms. The concepts can be seen as an alternate form of indexing
structure.
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Yet other authors take advantage of the B-tree structure implementing
databases. West and McDonald propose a method using database SQL query
language to retrieve cases over a large case base stored in a database [57].
The method makes implicit use of the optimized B-tree structure underlying
the relational databases implementation for fast retrieval, and computes the
similarity measure during retrieval. The look up time for retrieving from a case
library of any size is constant – and low – and the inclusion of the similarity
assessment varies less than linearly [57].

6.6 Discussion

CBR systems make efficient use of most data mining tasks defined for descrip-
tive modeling. We can list among the main ones encountered cluster analy-
sis, rule induction, hierarchical cluster analysis, and decision tree induction.
The motivations for performing an incremental type of data mining during
CBR are several folds, and their efficiency has been measured to validate the
approach. The main motivations are the following:

– Increase efficiency of retrieval mostly, but also of reuse, revise, and
retain steps

– Increase robustness, tolerance to noise
– Increase accuracy of reasoning
– Improve storage needs
– Follow a cognitive model
– Add a synthetic task such as generating new research hypotheses as a

side effect of normal CBR functioning

The memory organization maps directly into the retrieval method used.
For example, object-oriented taxonomies will retrieve cases by subsomption
mechanism and not by NN retrieval as in flat memories. Generalized cases and
the like are used both as indexing structures and organizational structures.
We can see here a direct mapping with the theory of the dynamic memory,
which constantly influences the CBR approach. The general idea is that the
learnt memory structures and organizations condition what inferences will
be performed and how. This is a major difference with database approaches,
which concentrate only on retrieval, and also with data mining approaches,
which concentrate only on the structures learnt, and not on how they will be
used. The ideal CBR memory is one which at the same time speeds up the
retrieval step and improves the accuracy and robustness of the task performed
by the reasoner, and particularly the reuse performed, influencing positively
both the retrieval, the reuse, and the other steps. Researchers do not want to
settle for a faster retrieval at the expense of less accuracy due to an overgene-
ralization. And they succeed at it.
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6.7 Conclusion

Data mining in CBR consists mainly in incremental mining for memory struc-
tures and organization with the goal to improve performance of retrieval,
reuse, revise, and retain steps. Memory structures mining comprises case min-
ing, feature mining, and generalized case mining. CBR memories are rich in
a variety of generalized structures such as concepts, prototypes, and abstract
cases. These structures can be organized in flat memories or in structured
memories, among hierarchies, conceptual hierarchies, decision trees, object-
oriented taxonomies, formal concept lattices, and B-trees. Researchers are
aiming at the ideal memory as described in the theory of the dynamic mem-
ory, which follows a cognitive model, while also improves performance and
accuracy in retrieve, reuse, revise, and retain steps. Many have succeeded in
showing that their memories indeed both decrease retrieval time and increase
accuracy of reasoning. This demanding goal is what motivates the constant
search for novel mining methods specific for CBR, and that cannot be met
by methodologies that simply do not share the same goals. The variety of
approaches as well as the specific and complex purpose lead to thinking that
there is still space for future models and theories of CBR memories.
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ters. In: Funk P, Gonzàlez Calero P (eds) Proceedings of ECCBR 04. Springer-
Verlag, Lecture Notes in Artificial Intelligence 3155, Berlin, Heidelberg, New
York, pp 659–672



6 Memory Structures and Organization in Case-Based Reasoning 193

40. Mougouie B, Bergmann R (2002) Similarity Assessment for Generalized Cases
by Optimization Methods. In: Craw S, Preece A (eds) Proceedings of EWCBR
02. Springer-Verlag, Lecture Notes in Artificial Intelligence 2416, Berlin,
Heidelberg, New York, pp 249–263

41. Niloofar A, Jurisica I (2004) Maintaining Case-Based Reasoning Systems:
A Machine Learning Approach. In: Funk P, Gonzàlez Calero P (eds) Proceed-
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Summary. This chapter is concentrated with the performance characterization of
a case-based reasoning (CBR) system. Based on the match score and nonmatch
score computed from the cases in the case library, we develop a statistical model
for prediction. We estimate the size of a subset of cases, called gallery size, that
can generate the optimal error estimate and its confidence on a large population
(relative to the size of the gallery). The statistical model is based on a generalized
two-dimensional prediction model that combines a hypergeometric probability dis-
tribution model with a binomial model explicitly and considers the data distortion
problem in large populations. Learning is incorporated in the prediction process
in order to find the optimal small gallery size and to improve the prediction per-
formance. During the prediction, the expectation–maximization (EM) algorithm is
used to learn the match score and the nonmatch score distributions that are rep-
resented as mixture of Gaussians. By learning, the optimal size of small gallery is
determined and at the same time the upper bound and the lower bound for the
prediction on large populations are obtained. Results are shown using a real-world
database with the increasing size of the case library.

7.1 Introduction

Case-based approaches are characterized by how the learner represents what
it has learned so far, as well as the analogical methods which are used to
transfer the learned experience [1]. In CBR, “past” experiences are stored in
memory as cases and are used to solve a new problem case. Given a problem
to be solved, the case-based method retrieves from the memory the solution
to a similar problem encountered in the past, adapts the previous solution to
the current problem, and stores the new problem-solution packet as another
case in the memory. The major concerns with CBR are the selection of the
indexing scheme to organize cases in the memory, the method for choosing
the most relevant cases at reasoning time, the adaptation heuristics to modify
pervious cases to fit the current problem, and maintenance of the case library.
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An important problem for a CBR system is the prediction of its performance
as the case library grows. In this chapter, we present a statistical model for
performance characterization.

Recognition/classification systems can classify images, signals, or other
types of measurements into a number of classes. In a simplistic way, we can
view a CBR system as a model-based recognition/classification system [2, 3],
which stores a set of models in its case library and classifies the incom-
ing cases by performing match with the database models. In this process,
the case library will be continuously growing as more cases/models become
part of the case base. It is like an incremental learning system for object
recognition, which not only involves traditional recognition/classification of
complete/occluded objects but also new model acquisition and refinement of
existing model [3, 4]. This chapter provides a method for the life-time prob-
lem [5] of a CBR system. We define the following terms in the concept of
CBR: gallery/training set, probe/testing set, populations, algorithm/system,
data, recognition/classification.

We define the following terms in the context of CBR: The gallery set and
the probe set are the training set and the testing set, respectively. The algo-
rithm/system is the set of recognition/classification programs. The population
is the data that the system under consideration may encounter in its lifetime.

Since the recognition performance of an algorithm/system is usually based
on limited data, it is difficult to estimate this performance for additional data:
the limited test data may, after all, not accurately represent a larger popu-
lation. Before we can evaluate and predict the performance of a recognition
algorithm/system on large populations, we need to answer some fundamental
questions. When we use a small gallery to estimate the algorithm/system per-
formance on large populations how can we find the optimal size of the small
gallery and how accurate is the estimation? Since the prediction is based on
the selected recognition algorithm/system, we can give the confidence inter-
val for the performance estimation on a large population [6]. The confidence
interval can describe the uncertainty associated with the estimation. This gives
an interval within which the true algorithm/system performance for the large
population is expected to fall, along with the probability that it is expected
to fall there [7].

Given limited data we can use the Bayesian parameter estimation or
nonparametric estimation methods to estimate the data distribution. The
expectation–maximization (EM) algorithm, one of the parameter estimation
methods, assumes that the underlying distribution is known. It is an iterative
method to estimate the mixture parameters by maximum likelihood tech-
niques. The parzen window and the K-nearest-neighbor are nonparametric
estimation methods that are used to estimate the data distribution in case
the underlying distribution is unknown. These two methods converge the dis-
tribution to the unknown distribution. The parzen window method estimates
the density, while the K-nearest-neighbor method determines the K closest
neighbors [8].
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In this chapter, we use a generalized prediction model that combines a
hypergeometric probability distribution model with a binomial model. This
prediction model takes into account distortion that may occur in large popula-
tions. It also provides performance measurements as a function of rank, large
population size, number of distorted images, and similarity score (match and
nonmatch score) distributions. While we use the EM algorithm to estimate
the match score and the nonmatch score distributions, we introduce learning
to feed back similarity scores (match scores and nonmatch scores) to increase
the small gallery size. In this way, we can find the optimal size of the small
gallery to predict the large population performance. Meanwhile, we provide
the upper and the lower bounds for the prediction performance of a large pop-
ulation. In this chapter, we use two different statistical methods – Chernoff’s
inequality and Chebychev’s inequality – to obtain the relationship between
the small gallery size and the confidence interval given a margin of error.
The small gallery size for prediction that we get from the learning process is
smaller than the size determined by statistical methods.

The paper is organized as follows. Related work and contributions are pre-
sented in Sect. 7.2. The details of the technical approach are given in Sect. 7.3.
It includes the integrated model, the procedure of learning for similarity score
distributions in the prediction, and the statistical methods to find the opti-
mal sample size. Experimental results are shown in Sect. 7.4. The integrated
model with learning is tested on the NIST-4 fingerprint database. Conclusions
are given in Sect. 7.5.

7.2 Related Work and Contributions

7.2.1 Related Work

Until now the prediction models are mostly based on the feature space or sim-
ilarity scores [9]. The statistical approaches are used by many researchers to
estimate the recognition system performance. Wayman [10] and Daugman [11]
develop a binomial model that uses the nonmatch score distribution. This
model underestimates recognition performance for large populations. Phillips
et al. [12] develop a moment model, which uses both the match score and
the nonmatch score distributions. Since all the similarity scores are sampled
independently, the probability of error is increased and the prediction results
underestimate the identification performance. Wang and Bhanu [9] present a
binomial model to predict the large fingerprint database recognition perfor-
mance based on a small gallery. They present their early work on a generalized
two-dimensional model, which integrates a hypergeometric probability distri-
bution explicitly with a binomial distribution [13]. This work considers the
distortion caused by sensor noise, feature uncertainty, feature occlusion, and
feature clutter. However, there is no learning to determine the optimal small
gallery size and the bounds on performance. Johnson et al. [14] improve the
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moment model by using a multiple nonmatch score set. They average match
scores on the whole gallery. For each match score they count the number of
times that a nonmatch score is larger than the match score, leading to an
error. In this chapter, they assume that the distribution of the match score
is uniform. Grother and Phillips [15] introduce the joint density function of
the match score and the nonmatch score to estimate both the open-set and
the closed-set identification performance. The closed-set identification is the
identification for which all potential users are enrolled in the system. The
open-set identification is the identification for which some potential users are
not enrolled in the system. Since the joint density is generally impractical to
estimate, they assume that the match score and nonmatch score are indepen-
dent and their distributions are the same for large populations. They use the
Monte Carlo sampling method to linearly interpolate the match score and the
nonmatch score look-up tables.

Providing the upper and lower bounds for the prediction performance is
another important topic in the recognition performance prediction. Linden-
baum [16] proposes a probabilistic method to derive bounds on the number of
features required to achieve recognition with a certain degree of confidence.
This method considered object similarity, bounded uncertainty, and occlusion.
A similar approach presented in [17] can be used to analyze object recognition
with uncertainty, similarity, and clutter. Boshra and Bhanu [18, 19] present
a method to predict upper and lower bounds on the performance prediction.
They predict performance by considering feature uncertainty, occlusion, clut-
ter, and similarity simultaneously. In their method performance is predicted
in two steps: compute the similarity between each pair of models; use the sim-
ilarity information along with the statistical model to determine upper and
lower bounds for the object recognition performance. Guyon et al. [1] propose
guaranteed estimators to determine the test size for the independent identical
distribution recognition error and the correlated recognition error, along with
the assumption of the underlying probability distribution.

7.2.2 Contributions

In this chapter we address the problems associated with the prediction of
performance on large populations and optimal small gallery size. The specific
contributions are the following:

1. We use a generalized prediction model that combines a hypergeometric
probability distribution model explicitly with a binomial model which
takes into account distortions that may occur in large populations. Our
distortion model includes feature uncertainty, feature occlusion, and fea-
ture clutter. In the prediction model, we use the EM algorithm to estimate
similarity score (match score and nonmatch score) distributions and find
the number of components of the distributions automatically.
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2. We find the optimal size of a small gallery by an iterative learning
process [20]. We use the Chernoff inequality and the Chebychev inequality
to determine the small gallery size in theory which is related to the margin
of error and the confidence interval. We find the upper bound and a good
lower bound for predicting recognition performance on a large population.

3. The results are shown on a large data set (NIST-4) of fingerprint im-
ages [21]. We show the prediction results with the increasing size of the
database.

7.3 Technical Approach

We are given two sets of data: a gallery set and a probe set. The gallery is a set
of models saved in the database. The probe is a set of queries for the database.
A large population is the unknown data set whose recognition performance
needs to be estimated. Based on the given gallery and probe set we would like
to estimate the recognition performance on large populations.

7.3.1 Methodology for Determining the Small Gallery Size

Figure 7.1 provides the detailed diagram for the implementation of our pro-
posed approach to get the optimal small gallery size. For a given recognition
system whose database size or the number of classes is N , we randomly pick
n images from the database N to be our small gallery. By an authentica-
tion process, we can get a set of match scores and nonmatch scores for this
small gallery. Then, we use the EM algorithm [8] to estimate distributions
of the match score and the nonmatch score. Assume that the match score
and nonmatch score distributions are Gaussian mixtures. Let ms(x) repre-
sents the match score distribution and ns(x) represents the nonmatch score
distribution. We have

ms(x) =
m∑

i=1

αimsi(x) (7.1)

and

ns(x) =
n∑

j=1

βjnsj(x) (7.2)

where m and n are the number of components, αi and βj are the component

proportions,
m∑

i=1

αi = 1, and
n∑

j=1

βj = 1. We have msi ∼ N(µsi, σ
2
si), nsj ∼

N(µnj , σ
2
nj), where µs, µn, σ2

s , and σ2
n are the mean and variance for the

match score distribution and the nonmatch score distribution, respectively.
Based on these distributions, we use our prediction model, which com-

bines a hypergeometric probability distribution model with a binomial model
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Fig. 7.1. Conceptual prediction model

to estimate the recognition system performance for a large population N1,
a subset of database N (N1 < N). We assume the prediction performance on
N1 is p̂. From the recognition system we can obtain the match score and the
nonmatch score for N1. Then, compute the actual recognition performance p
for N1. ẽ is the error between the predicted performance and the actual per-
formance, ẽ = |p̂ − p|. The margin of error e is the maximum specified error
acceptable by the recognition system. If ẽ is larger than the margin of error
e then we increase the small gallery size n and feed back match scores and
nonmatch scores to the EM algorithm to estimate the similarity score distri-
butions again. Otherwise, we increase N1, the size of the large population,
and repeat this process until the N1 has increased to N . We use the Chernoff
and Chebychev inequalities to find the relationship between the small gallery
size and the prediction confidence interval given a margin of error. The small
gallery size which we get from the inequalities is used to validate the learned
optimal small gallery size. We will explain each part of the diagram in detail
in this section.



7 Statistical Model for Performance Prediction in Case-Based Reasoning 201

7.3.2 Prediction Model

Usually a recognition system consists of three stages: image acquisition, fea-
ture extraction, and matching. Distortion often occurs in these stages and
is caused by sensor noise, feature uncertainty, feature occlusion, and feature
clutter. The effects of sensor and image noise are reflected in the feature
uncertainty. Our two-dimensional prediction model considers the distortion
problem which conforms to reality. Assume we have two kinds of different
quality biometric images, group #1 and group #2. Group #1 is a set of bio-
metric images without distortion. Group #2 is a set of biometric images with
distortion. Let the size of these two groups be n1 pairs and n2 pairs, respec-
tively. We randomly pick n pairs of images from group #1 and group #2 to
be our small gallery. Then, the number of pairs of distorted images y which
are chosen from group #2 follow the hypergeometric distribution

f(y) =
Cn1

n−yCn2
y

Cn1+n2
n

(7.3)

where n1 + n2 is the total number of images in these two groups and n− y is
the number of images chosen from group #1.

These n pairs of images are our small gallery. We split them into the
gallery and the probe set. For each image in the probe set, we compute the
match score and the nonmatch score with images in the gallery. Then, we
have one match score and n − 1 nonmatch scores for this image. We assume
that the match score and the nonmatch score are independent. With all these
similarity scores we can use the EM algorithm to estimate the match score
and the nonmatch score distributions.

From the above discussion, we know that the match score and nonmatch
score distributions depend not only on the similarity scores but also on the
number of images with distortion. Let ms(x|y) and ns(x|y) represent the dis-
tributions of match scores and nonmatch scores given the number of distorted
images. If the similarity score is higher then the object are more similar. The
error occurs when a given match score is smaller than the nonmatch score
corresponding to the same image. For a given number of distorted images,
the probability that the nonmatch score is greater than or equal to the match
score x is NS(x), where

NS(x) =
∫ ∞

x

n∑
y=0

ns(t|y)f(y)dt (7.4)

Thus, the probability that the nonmatch score is smaller than the match score
is 1 − NS(x).

If the size of the large population is N , then for the jth image we can have
one match score and N − 1 nonmatch scores. We rank the match score and
the nonmatch score in the descending order. For a given number of images
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with distortion, the probability that the match score x is at rank r is given
by the binomial probability distribution

CN−1
r−1 (1 − NS(x))N−r(NS(x))r−1 (7.5)

Integrating over all the match scores, for a given number of images with
distortion, the probability that the match score is at rank r can be written as∫ ∞

−∞
CN−1

r−1 (1 − NS(x))N−r(NS(x))r−1ms(x|y)dx (7.6)

By summing over the images chosen from group #2, the probability that the
match score is at rank r can be written as∫ ∞

−∞
CN−1

r−1 (1 − NS(x))N−r(NS(x))r−1
n∑

y=0

ms(x|y)f(y)dx (7.7)

In theory, a match score can be any value within (−∞,∞). The probability
that the match score is within rank r is

P (N, r) =
r∑

i=1

∫ ∞

−∞
CN−1

i−1 (1 − NS(x))N−i(NS(x))i−1
n∑

y=0

ms(x|y)f(y)dx

(7.8)
Given that the correct match takes place above a threshold t, the probability
that the match score is within rank r becomes

P (N, r, t) =
r∑

i=1

∫ ∞

t

CN−1
i−1 (1 − NS(x))N−i(NS(x))i−1

n∑
y=0

ms(x|y)f(y)dx

(7.9)
When rank r = 1 the prediction model with threshold t becomes

P (N, 1, t) =
∫ ∞

t

(1 − NS(x))N−1
n∑

y=0

ms(x|y)f(y)dx (7.10)

In this model, we make two assumptions: match scores and nonmatch scores
are independent and large populations have distortion with model of feature
uncertainty, occlusion, and clutter. We use a small gallery to estimate distri-
butions of ms(x|y) and ns(x|y).

7.3.3 Estimation of The Small Gallery Size Based
on Statistical Inequalities

In the following, we discuss the relationship between the prediction confidence
interval and the size of the small gallery which could be used to validate the
optimal small gallery size that we obtain by the learning process. We use lim-
ited data to estimate a large population recognition performance. Therefore,
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the prediction value may or may not be very accurate. This question can be
mathematically expressed as

P{|(p − p̂)| > e} ≤ (1 − α) (7.11)

where p̂ is the predicted performance for the recognition system which can
be obtained from our prediction model, p is the actual performance of the
recognition system, e is the margin of error for the system, and α is the
confidence interval. Then, inequality (7.9) can be written as

P{p > p̂ + e} ≤ (1 − α) (7.12)

or
P{p < p̂ − e} ≤ (1 − α) (7.13)

Here, we consider inequality (7.12) since inequality (7.13) can be solved by
the same procedure as inequality (7.12).

We assume that a recognition system recognizes (authentication) individ-
uals with the probability P{Xi = 1} = p and P{Xi = 0} = 1 − p, where
Xi = 1 means an individual with a given object Xi is recognized correctly,
Xi = 0 means the opposite, 0 ≤ p ≤ 1. According to the Chernoff inequal-
ity [22], let X1, X2, . . . , Xn be independent random variables. We define the
random variable

X =
1
n

n∑
i=1

Xi (7.14)

For any t ≥ 0 we have

P{X ≥ E(X) +
t

n
} ≤ e−

2t2
n (7.15)

where E(X) is the mean of X. Comparing with inequality (7.12), we can get

1 − α = e−
2t2
n (7.16)

So,

t =

√
−n ln(1 − α)

2
(7.17)

Thus, equation (7.15) becomes

P{X ≥ E(X) +

√
− ln(1 − α)

2n
} ≤ 1 − α (7.18)

From inequality (7.12), we know that

e =

√
− ln(1 − α)

2n
(7.19)
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Thus, we get

n = − ln(1 − α)
2e2

(7.20)

Equation (7.20) is the relationship between the small gallery size and the
confidence interval under the given margin of error for the system with the
underlying distribution.

In the above we assume that a recognition system can recognize object
with a certain distribution. If we do not know the underlying distribution of
the recognition system, then we can use the Chebychev inequality [22] which
is distribution independent. Assume X1, X2, . . . , Xn are independent random
variables. We define X as

X =
1
n

n∑
i=1

Xi (7.21)

For any ε ≥ 0, we have

P{|X − E(X)| ≥ ε} ≤ σ2

nε2
(7.22)

where σ2 is the variance of X. Comparing with (7.12), we have

1 − α =
σ2

nε2
(7.23)

From the above equation, we obtain

ε =
σ√

n(1 − α)
(7.24)

From (7.22), (7.23), and (7.24) we have

P{X ≥ E(X) +
σ√

2n(1 − α)
} ≤ (1 − α) (7.25)

Then
e =

σ√
2n(1 − α)

(7.26)

So we have,

n =
σ2

2(1 − α)e2
(7.27)

From equation (7.27), we obtain the relationship between the small gallery
size and the confidence interval under the given margin of error for the system
without the assumption of the underlying distribution. It is known that the
Chernoff inequality is much tighter than the Chebychev inequality and the
Chebychev inequality is distribution independent.

In the above we provide a statistical estimation of the small gallery size.
Meanwhile, in our approach presented in Sect. 7.3.1, we learn the similarity
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score distribution to find the optimal size of the small gallery. The small
gallery size which we get from the statistics can be used as a guide for learning.
Under the assumptions that the randomly chosen small galleries can represent
the distributions of similarity scores for other galleries of the same size, we
use different small galleries with the learned optimal size to predict large
population performance. We randomly choose several small galleries of the
optimal size to predict the large population performance. Then, we obtain
the maximum and minimum prediction performance on the large population.
In this way, we can provide the upper bound and the good lower bound for
performance prediction on large populations.

7.4 Experimental Results

In all the experiments, we use fingerprints from the NIST Special Database 4
(NIST-4). It consists of 2,000 pairs of fingerprints. Each of the fingerprints is
labeled with an ID number preceded by an “f” or an “s,” which represents
different impressions of the same fingerprint. The images are collected by
scanning inked fingerprints from paper. The resolution of the fingerprint image
is 500 DPI and the size of the image is 480 × 512 pixels.

7.4.1 Prediction Model

Distorted Data

Since large populations will have distortions which may not be presented in the
small gallery, we simulate the distortion in our prediction model to estimate
the recognition performance based on small galleries. The minutiae features
used for the fingerprint recognition can be expressed as f = (x, y, c, d), where
x and y are the locations of a minutiae, c is the class of the minutiae which
represents whether the minutiae is endpoint (0) or bifurcation (1), and d is the
direction of the minutiae. We define the amount of the minutiae distortion for
a fingerprint as g%. In this chapter, we choose g = 5%. Assume the number
of minutiae is numj . Usually one pair of fingerprints has a different number
of minutiae so j = 1, 2, . . . , 4000. We apply the distortion model [13] to these
2,000 pairs of fingerprints as follows:

(a) Uncertainty : Uniformly choose U = 5% × numj minutiae features out of
numj features and replace each fi = (x, y, c, d) with f ′

i chosen uniformly
from the set {(x′, y′, c′, d′)}, where (x′, y′) ∈ 4NEIGHBOR(x, y), c′ =
1 − c, d′ = d ± 3◦, i = 1, 2, . . . , U .

(b) Occlusion: Uniformly choose O = 5% × numj minutiae features out of
numj features and remove these minutiae.
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(c) Clutter : Add C = 5% × numj additional minutiae, where each minutiae
is generated by picking a feature uniformly at random from the clutter
region. Here we choose the clutter region as CR = {(x, y, c, d), 50 ≤ x ≤
450, 60 ≤ y ≤ 480, c = {0, 1, 2, 3, 4}, 10◦ ≤ d ≤ 350◦}.

In our experiments we use the uniform distribution as the uncertainty PDF
and the clutter PDF. The number of features with uncertainty, occlusion, and
clutter is the same. We use the algorithm provided in [23] to extract minutiae
and algorithm [21] for matching.

Verification

We use the algorithm provided in [23] to extract minutiae. Suppose there are
M and Q minutiae in the gallery and query fingerprints, respectively. ∆m

and ∆q are potential corresponding triangles. We assume F (s, θ, tx, ty) is the
transformation between the query and gallery fingerprints, where s is a scale
parameter, θ is a rotation parameter, tx and ty are translation parameters.
If these parameters are within limits [21], then we apply this transformation
as the transformation between potential corresponding triangles ∆m and ∆q.
The details of how to estimate the transformation parameters are explained
in [21]. Based on the transformation F (s, θ, tx, ty), we compute the distance
d by using equation (7.28),

d =
arg min

i

{∣∣∣∣F̂
([

xj,1

xj,2

])
−
[

yi,1

yi,2

]∣∣∣∣
}

(7.28)

where (xj,1, xj,2) and (yi,1, yi,2) are two sets of minutiae in the gallery and
query fingerprints, j = 1, 2, . . . M and i = 1, 2, . . . Q. If d is smaller than a
threshold, then we can say that (xj,1, xj,2) and (yi,1, yi,2) are the correspond-
ing points. If the number of corresponding points is greater than a thresh-
old [21], then we define ∆m and ∆q as the corresponding triangles between
the template and the query fingerprints. The final match score is the number
of corresponding triangles between the query and template fingerprints.

Prediction Results

We randomly choose 50 pairs of fingerprints from two kinds of fingerprint pairs
(with and without distortion) as our small gallery following a hypergeometric
distribution. For this small gallery, we get 50 match scores and 2,450 nonmatch
scores. After we obtain these similarity scores we use the EM algorithm to
estimate the match score distribution and the nonmatch score distribution.
The EM algorithm can find the number of components automatically [24] and
for each component the EM algorithm finds its mean, variance, and weight. In
this chapter, the similarity scores are the number of matched triangles between
two fingerprints, the match scores are positive integers and the nonmatch
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Fig. 7.2. Absolute error between the prediction and the actual performance when
the small gallery size is 50

scores are close to 0. By applying the prediction model, we can estimate
the fingerprints recognition performance on 2,000 pairs of fingerprints based
on these 50 pairs of fingerprints. We repeat the experiment seven times and
average the results to obtain the prediction performance which is shown in
Fig. 7.2. Here, we choose the subset size N1 = 100 and the margin of error
e = 0.06. From this curve, we can see that for the large population size 100
the error between the prediction performance and the actual performance is
0.137, which is larger than the margin of error.

Now, we apply learning to the prediction process. We increase the small
gallery size to n = 100. We feed back the match score and the nonmatch score
from the randomly selected 100 pairs of fingerprint and repeat this process
seven times. When the large population size is 100, the absolute error between
the prediction performance and the actual performance is 0.135, which is
greater than the margin of error 0.06. So, we increase the small gallery size to
n = 200 and repeat the same process seven times. The absolute error is 0.09
when the large population size is 100. Then, we increase the small gallery size
to n = 300 and repeat the same process seven times. The absolute error is
0.042 when the large population size is 100. We increase the large population
size in steps of 100 until the large population size N = 2, 000. For these
three small galleries, most of the nonmatch scores are 0. Table 7.1 shows the
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Table 7.1. Match score distributions estimated by the EM algorithm

Size Component # Mean Variance Weight

100 2 17.152658 334.452802 0.535764
299.015489 55459.580193 0.450296

200 5 57.348298 1026.825771 0.160830
3.615611 20.189071 0.362406

585.278037 66686.529667 0.151087
206.327514 7334.980411 0.191394
27.106400 131.423073 0.133465

300 4 3.581775 21.569950 0.395165
420.142835 64933.952657 0.236481
35.420091 423.267100 0.228275

143.774430 3016.000039 0.139634

Fig. 7.3. Match score distributions for different small gallery sizes

estimation of the match score distributions with different small gallery sizes.
The distributions are represented by the Gaussian mixture model. For each
component we have its mean, covariance, and weight. Figure 7.3 shows the
match score distribution curves on different small gallery sizes. For each small
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Fig. 7.4. Absolute error between the predicted and actual performance for different
small gallery sizes

gallery size we provide two figures with different range of match score (X-axis)
so that the distribution can be more closely examined. Figure 7.4 shows the
absolute error between the prediction and the actual performance decreases
when the gallery size increases. When the small gallery size is n = 300, the
absolute error for the large population is smaller than the margin of error
0.06. At this point we can stop learning the small gallery size.

We use different small galleries with the learned optimal size to predict
large population performance. Then, we select the maximum and the min-
imum prediction performance as our upper bound and lower bound for the
performance prediction on the large population. Figure 7.5 gives the upper
bound and lower bound on the prediction of large population performance
when the small gallery size n = 300. Since we have 2,000 pairs of finger-
prints, the actual recognition performance for the distorted images is shown
in Fig. 7.5. Beyond this population size we can give the bounds for the pre-
diction. From Fig. 7.5 it can be seen that the actual performance is within
the upper bound and lower bound except when the population size is very
small. Our experiments show that when the small gallery size is n = 300 the
prediction error is less than 0.05.
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Fig. 7.5. The upper bound and lower bound on the large population when the small
gallery size is 300. Note that the upper bound and lower bound are within 5%.

Table 7.2. Values of the confidence interval, the margin of error, and the small
gallery size for Chernoff inequality and Chebychev inequality (σ2 = 1)

1 − α 0.05 0.05 0.1 0.1 0.15 0.15
e 0.06 0.04 0.06 0.04 0.06 0.04
n(Chernoff) 417 937 320 720 264 593
n(Chebychev) 2,778 6,250 1,389 3,125 926 2,083

7.4.2 Estimation of The Small Gallery Size Based
on Statistical Inequalities

Table 7.2 shows different small gallery sizes given different confidence intervals
and margins of error for Chernoff inequality and Chebychev inequality (σ2 =
1). From the table we ascertain that the Chernoff inequality is much tighter
than the Chebychev inequality. We compare our learning small gallery size
with the Chernoff inequality. When the confidence interval α = 95% and
margin of error e = 0.06 then the small gallery size n = 417. From our
experiment for the same margin of error the small gallery size is 300 and the
confidence interval is α = 95%. Note that statistical methods give us a loose
estimate of the small gallery size. Based on our recognition system we find a
more accurate small gallery size by learning.
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7.5 Conclusions

We focused on the problem of performance characterization of a simplified
CBR system. In particular, we addressed the following questions: what is the
optimal size of the small gallery that can give good error estimation and what
is the confidence in the estimation? We use a generalized prediction model that
combines a hypergeometric probability distribution model with a binomial
model, taking into account distortion in large populations. We incorporate
learning in the prediction process to find the optimal small gallery size and
provide the upper and lower bounds for the performance prediction on large
populations. The Chernoff inequality and the Chebychev inequality are used
as a guide to obtain the small gallery size and the confidence interval given a
margin of error. Experimental results show that the small gallery size obtained
from the statistical methods are loose compared to the size provided by the
proposed learning method. We believe that the methodology and results of
this research will be useful for a wide range of applications of CBR in signal
processing, image processing, computer vision, and pattern recognition.
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Summary. This work presents a multiagent system for evaluating automatically the
interaction that exists between the atmosphere and the ocean surface. monitoring and
evaluating within the ocean carbon dioxide exchange process is a function requiring
working with a great amount of data: satellite images and in situ Vessel’s data. The
system presented in this work focuses on Ambient Intelligence (AmI) technologies
since the vision of AmI assumes seamless, unobtrusive, and often invisible but
also controllable interactions between humans and technology. The work presents the
construction of an open multiagent architecture which, based on the use of deliberative
agents incorporating Case-Based Reasoning (CBR) systems, offers a distributed
model for such an interaction. This work also presents an analysis and design
methodology that facilitates the implementation of CBR agent-based distributed
artificial intelligent systems. Moreover, the architecture takes into account the fact
that the working environment is dynamic and therefore it requires autonomous models
that evolve overtime. In order to resolve this problem an intelligent environment has
been developed, based on the use of CBR agents, which are capable of handling
several goals, constructing plans from the data obtained through satellite images and
research Vessels, acquiring knowledge, and of adapting to environmental changes, are
incorporated. The artificial intelligence system has been successfully tested in the
North Atlantic ocean, and the results obtained will be presented within this work.

8.1 Introduction

Ambient intelligent environments are characterized by their ubiquity, trans-
parency, and intelligence [2]. The agents and multiagent systems (MASs)
have become increasingly relevant for developing distributed and dynamic
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intelligent environments. Agents and MAS have become increasingly relevant
for developing applications in the internet, personalized user interfaces,
oceanography, control systems, or robotic environments. Agents can be char-
acterized through their capacities in areas such as autonomy, reactivity, proac-
tivity, social abilities, reasoning, learning, and mobility. These capacities which
can be modelled in various ways, using different methodologies [47], make the
agents and MAS highly suited to intelligent environments. One of the possibil-
ities to model the reasoning capacity is to use Case-Based Reasoning (CBR).
In this work we present a distributed architecture whose main characteris-
tic is the use of Case-Based Reasoning–Beliefs Desires Intentions (CBR–BDI)
agents [13], which will be named in this chapter as CBR agents. These agents
are capable of learning, from their initial knowledge and by interacting au-
tonomously with their environment and with users of the system, adapting
themselves accordingly. Both, the developed multiagent architecture and the
Modelling agent are described in detail. The development of ambient intel-
ligent systems is normally complicated due it novel connotations, this work
presents a practical way for analyzing and designing MAS at the same time
of describing the distributed ambient intelligent system developed.

The mission of the intelligent environment presented in this work, is to
globally monitor the interaction between the ocean surface and the atmosphere,
facilitating the work of oceanographers. Initially, the system is being used in
order to evaluate and predict the amount of carbon dioxide (CO2) absorbed or
expelled by the ocean in the North Atlantic [6, 7, 15]. The main purpose of
this work is to obtain an architecture that enables the construction of open,
distributed, and dynamic systems capable of growing in dimension and of
adapting their knowledge according to different changes that take place in
their environment. There are many different architectures for constructing
deliberative agents and many of them are based on the BDI model. In the
BDI model, the internal structure of an agent and its capacity to choose is
based on mental aptitudes. This has the advantage that it uses a natural model
(human) andahigh level of abstraction.TheBDImodel uses the agent’Beliefs as
informational aptitudes, its Desires as motivational aptitudes and its Intentions
as deliberative aptitudes. The method proposed in [5, 12, 13] facilitates the
incorporation of CBR systems as a deliberative mechanism within BDI agents,
allowing them to learn and adapt themselves, and lending them a greater level
of autonomy than pure BDI architecture [25]. Moreover, this proposal differs
from others [10, 22, 31, 36, 46] in that it proposes direct mapping between the
concept of the agents and their implementation. CBR systems are also highly
suited to some of the tasks in the study of carbon dioxide exchange between the
ocean and the atmosphere, such as the interpretation of satellite images [40].

One of the major problems in the development of an architecture based on
MAS is that there are currently no clear standards or well developed method-
ologies for defining the steps of analysis and design that need to be taken in
order to define an intelligent environment. There are at present a number
of methodologies: Gaia [48], AUML [8, 34, 35], MAS-CommonKADS [26],
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MaSE [18], ZEUS [33], MESSAGE [21]. The problem with these method-
ologies is that they are generally not fully developed and present a number
of limitations. For this study, we have decided to opt for a combination of
elements from Gaia and Agent Unified Modelling Language (AUML) for our
MAS. Gaia is a simple methodology that allows us to carry out a preliminary
analysis and design with which to confront the problem at a general level.
The great advantage is that we can carry out a rapid, broad study but prob-
lems arise when the design is at its completion because there tends to be an
overly high level of abstraction. AUML, on the other hand, offers mechanisms
which allow us to obtain a design that is sufficiently precise and able to pass
directly to the implementation stage, but has the disadvantage of being too
precise and detailed for the preliminary stages. Our goal is to take advantage
of both methodologies by carrying out a preliminary analysis and design with
Gaia and later on to carry out the appropriate changes by using a detailed
AUML design. In this way we are able to obtain both a generalized vision of
the problem in terms of organization, and a detailed MAS description which
helps enormously in the development of such a research project.

In order to implement the BDI agents, various tools are used. One inter-
esting tool is Jadex [41], which incorporates the BDI architecture into Jade
agents [9]. In this sense, Jadex agents work with concepts of beliefs, goals,
and plans, all of which become objects which can be created and manipulated
within the agent. The beliefs represent any type of Java object and are stored
in the beliefs’ database. The goals represent specific motivations that influ-
ence the behaviour of the agent. The plans are procedures written in Java
which are executed in order to reach the goals. Jadex has the advantage to
allow the programmer to introduce his own deliberative planning mechanisms.
In our case, this mechanism will be a CBR system. In addition, it offers all
the advantages of Jade and allows the use of Jade and Jadex agents within
the same MAS. The MAS incorporates “lightweight” agents that can live in
mobile devices, such as phones, personal digital assistants (PDAs), etc. These
agents make it possible for a oceanographer to interact with the MAS in a
very simple way, downloading and installing a personal agent in his mobile
phone or PDA.

In Sect. 8.2, we will explain the various relationships that can be estab-
lished between CBR and BDI concepts. In Sect. 8.3 we will describe the
oceanic/atmospheric problem that has led to most of this research. In Sect. 8.4,
the MAS developed will be described, paying special attention to the CBR
agents. Finally, some preliminary results and the conclusions will be presented.

8.2 CBR–BDI Agents

Ambient Intelligence has been widely studied and different artificial intel-
ligence techniques have been applied. The application of agents and MAS
facilitates taking advantage of the agent capabilities, such as mobility,
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proactivity, or social abilities, as well as the possibility of solving problems
in a distributed way. Agents, in the context of an intelligent environment,
must be able to respond to events, take the initiative according to their goals,
communicate with other agents, interact with users, and make use of past ex-
periences to find the best ways to achieve goals. There are many architectures
for constructing deliberative agents and many of them are based on the BDI
model [27,28]. In the BDI model, the internal structure of an agent and its ca-
pacity to choose, is based on mental aptitudes: agent behaviour is composed
of beliefs, desires, and intentions [42]. The beliefs represent its information
state, what the agent knows about itself and its environment. The desires are
its motivation state, what the agent is trying to achieve. And the intentions
represent the agent’s deliberative states. Intentions are sequences of actions;
they can be identified as plans. A BDI architecture has the advantage that it is
intuitive and relatively simple to identify the process of decision-making and
how to perform it. Furthermore, the notions of belief, desire, and intention
are easy to understand. On the other hand, its main drawback lies in finding
a mechanism that permits its efficient implementation.

CBR is a type of reasoning based on the use of past experiences [28]. The
purpose of CBR systems is to solve new problems by adapting solutions that
have been used to solve similar problems in the past. The fundamental concept
when working with CBR is the concept of case. A case can be defined as a
past experience, and is composed of three elements: A problem description
which describes the initial problem, a solution which provides the sequence
of actions carried out in order to solve the problem, and the final state which
describes the state achieved once the solution was applied. A CBR system
manages cases (past experiences) to solve new problems. The way in which
cases are managed is known as the CBR cycle.

The deliberative agents, proposed in the framework of this investigation,
use this concept to gain autonomy and improve their problem-solving capabili-
ties. The method proposed in [13] facilitates the incorporation of CBR systems
as a deliberative mechanism within BDI agents, allowing them to learn and
adapt themselves, lending them a greater level of autonomy than pure BDI
architecture [12]. Accordingly, CBR agents implemented using CBR systems
could reason autonomously and therefore adapt themselves to environmental
changes. The CBR system is completely integrated within the agents’ archi-
tecture. The CBR–BDI agents incorporate a “formalism” which is easy to im-
plement, in which the reasoning process is based on the concept of intention.
Intentions can be seen as cases, which have to be retrieved, reused, revised,
and retained. This makes the model unique in its conception and reasoning
capacities. The structure of the CBR system has been designed around the
concept of a case. A direct relationship between CBR systems and BDI agents
can also be established if the problems are defined in the form of states and
actions.
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Case: <Problem, Solution, Result> BDI agent
Problem: initial state Belief: state
Solution: sequence of Intention: sequence of

<action, [intermediate state]> <action>
Result: final state Desire: set of <final state>

The relationship between CBR systems and BDI agents can be established
by implementing cases as beliefs, intentions, and desires which lead to the
resolution of the problem. As described in [7, 16], in a CBR–BDI agent, each
state is considered as a belief; the objective to be reached may also be a belief.
The intentions are plans of actions that the agent has to carry out in order
to achieve its objectives [11], so an intention is an ordered set of actions; each
change from state to state is made after carrying out an action (the agent
remembers the action carried out in the past, when it was in a specified state,
and the subsequent result). A desire will be any of the final states reached in
the past (if the agent has to deal with a situation, which is similar to a past
one, it will try to achieve a similar result to that previously obtained).

8.3 Air–Sea Interaction Problem

One of the factors of greatest concern in climactic behaviour is the quantity
of carbon dioxide present in the atmosphere. Carbon dioxide is one of the
greenhouse gases that helps to make the earth’s temperature habitable, so
long it is maintains certain levels [43]. Traditionally, it has been considered
that the main system regulating carbon dioxide in the atmosphere is the
photosynthesis and respiration of plants. However, thanks to teledetection
techniques, it has been shown that the ocean plays a highly important role in
the regulation of carbon quantities, the full significance of which still needs
to be determined [44]. Current technology allows us to obtain data and make
calculations that were unthinkable some time ago. This data gives us an insight
into the original source and the decrease in carbon dioxide as well as its
causes [30], which allows us to make predictions on the behaviour of carbon
dioxide in the future.

The need to quantify the carbon dioxide valence, and the exchange rate
between the oceanic water surface and the atmosphere, has motivated us to
develop the distributed system, presented here, that incorporates CBR agents
capable of estimating such values using accumulated knowledge and updated
information. The CBR agents receive data from satellites, oceanographic data-
bases, oceanic, and commercial Vessels. The CBR system incorporated within
the BDI agents allows the agents to optimize tasks such as the interpretation of
images using various strategies [39]. The information received is composed of
satellite images of the ocean surface, wind direction and strength, and other
parameters such as water temperature, salinity, and fluorescence as can be
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Fig. 8.1. Satellite colour pictures

seen in Fig. 8.1. An improvement over the monitoring and forecasting meth-
ods presented in [5,6,15] has been incorporated to the modelling CBR agents
presented in this chapter.

The parameters obtained from the satellite images and which have most
influence within our models are: temperature of the water and air, salinity of
the water, wind strength, wind direction, and biological parameters such as
chlorophyll. These parameters allow us to calculate the variables that define
our models, such as the velocity of gas transfer, solubility, or the differentiation
between partial pressures on the atmosphere and sea surface (a case structure
is shown in Table 8.1). The majority of CO2 is dissolved in the sea water
because of phytoplankton or accumulates at the bottom of the ocean in the
form of organic material. The phytoplankton present in deep areas of the
ocean is taken to the surface by surges or surface appearances that are no
more than large upwards movements of cold water that bring nutrients to the
sea surface. The principal cause of there surges are the winds. The way to
detect them through satellites is to study the images captured with sensors
that are sensitive to longitudes of thermal infrared waves (capable of detecting
the sea surface temperature (SST)) and to identify the cold waters. Another
possible way to detect them is to monitor the activity of the chlorophyll
through sensors within the spectrum range found between blue and green
which are associated with the presence of phytoplankton. In order to obtain
the satellite images that contain information about these parameters it is
necessary to use different sensors. The Earth Observation satellites that have
been used to obtain images in the Northern Atlantic are NOAA, Orbview-2,
and above all, the ENVISAT satellite of the European Space Agency. Below
we shall briefly describe the sensor used in each one of these and the software
for the digital processing of the images.
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The thermal sensors allow us to measure the surface temperature of
the sea. The NOAA satellites are equipped with the Advanced Very High-
Resolution Radiometer (AVHRR) sensor that is capable of detecting electro-
magnetic energy reflected by objects present on the earth within five spectrum
ranges (three bands in the visible and two in the thermal range). It has a
receiving cycle of 12 hours with which it is possible to obtain up to six images
per day at a resolution of 1 km2. In order to determine the SST, the NOAA
uses a multichannel algorithm for the water surface [29]. The ENVISAT satel-
lite has an Avanced Along-Track Scaning Radiometer (AATSR) sensor with
which it is capable of exploring the ocean surface at various infrared and
visible frequencies in order to measure the exact temperature. Specifically,
the temperature of the sea surface can be calculated with an accuracy of
0.3◦C. [45]

There are also sensors that allow us to measure the concentration of
chlorophyll. The Earth Observation satellite Orbview-2 uses a Sea-Viewing
Wide Field-of-view Sensor (SeaWIFS) [29, 49], which is capable of giving
images with information on eight bands or ranges of the electromagnetic
spectrum. Of these eight bands, four around the blue–green are used for the
detection of chlorophyll. In order to calculate these quantities, the Ocean
Chlorophyll 4-band OCTS is used, included in the SeaWIFS Data Analysis
System (SeaDAS) software developed by NASA [38]. The ENVISAT satel-
lite has a Medium Resolution Image Spectrometer (MERIS) with which it is
possible to take images of the planet surface and the clouds, capturing the
light of the visible areas, and the infrared of the electromagnetic spectrum.
In this way it is capable of knowing the exact colour of the ocean surface and
coastal areas, from which it is possible to reflect the biological activity, to
monitor cloud cover and to detect the vapour of the invisible water into the
atmosphere. [3, 4, 45]

The processing of the images obtained may vary depending on the sensor
that has taken them [19,20]. The processing of the images is carried out at the
CAXIS centre at the Plymouth Marine Laboratory (PML). The processing of
the thermal images is carried out initially by taking a reading of the images in
their original format as they were received. Then a calibration and a radiometric
correction is made in order to reduce the atmospheric effects and a reference is
made to a known cartography base. The next step is to mask the clouds and the
land in order to eliminate distortions. Lastly, the SST is calculated applying a
suitable algorithm. In order to process images of the chlorophyll concentration
a reading is made of the images and decoded when necessary. Meteorological
and ozone files are requested by the software. The clouds and land are masked
and the chlorophyll image is calculated. Lastly, reference is made to a known
cartographic base and compositions and midpoint images are made, which can
take some days.

The MAS presented is aimed at modelling the flux of carbon dioxide ex-
changed between the atmosphere and the ocean surface. The oceans contain
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approximately 50 times more carbon dioxide in dissolved forms than the
atmosphere, while the land biosphere including the biota and soil carbon
contains about three times as much carbon (in carbon dioxide form) as the
atmosphere [44]. The carbon dioxide concentration in the atmosphere is gov-
erned primarily by the exchange of carbon dioxide with these two dynamic
reservoirs. Since the beginning of the industrial era, about 2,000 billion tons
of carbon have been released into the atmosphere as carbon dioxide from vari-
ous industrial sources including fossil fuel combustion and cement production.
This amount, which is about 35% of the total amount of carbon in the prein-
dustrial level, corresponds to approximately 590 billion tons as carbon. At
present, atmospheric carbon dioxide content is increasing at an annual rate
of about 3 billion tons which corresponds to one-half of the annual emission
rate of approximately 6 billion tons from fossil fuel combustion. Whether the
missing carbon dioxide is mainly absorbed by the oceans or by the land and
their ecosystems has been debated extensively over the past decade.

It is important, therefore, to fully understand the nature of the physical,
chemical, and biological processes which govern the oceanic sink/source con-
ditions for atmospheric carbon dioxide [30, 44]. Satellite-borne instruments
provide high-precision, high-resolution data on atmosphere, ocean boundary
layer properties and ocean biogeochemical variables, daily, globally, and in the
long term. All these new sources of information have changed our approach
to oceanography and the data generated needs to be fully exploited. Wind
stress, wave breaking, and the damping of turbulence and ripples by surface
slicks, all affect the air–sea exchange of carbon dioxide. These processes are
closely linked to the “roughness” of the sea surface, which can be measured by
satellite radars and microwave radiometers. Sea surface roughness consists of
a hierarchy of smaller waves upon larger waves. Different sensors give subtly
different measurements of this roughness.

Our final aim is to model both the open ocean and shelf seas and it is
believed that by assimilating Earth Observation (EO) data into artificial
intelligence models these problems may be solved. Earth Observation data
(both for assimilation and for validation) are vital for the successful develop-
ment of reliable models that can describe the complex physical and biogeo-
chemical interactions involved in marine carbon cycling. Satellite information
is vital for the construction of oceanographic models, and in this case, to
produce estimates of air–sea fluxes of carbon dioxide with much higher spa-
tial and temporal resolution, using artificial intelligence models than can be
achieved realistically by direct in situ sampling of upper ocean carbon dioxide.
To handle all the potentially useful data to create daily models in a reasonable
time and with a reasonable cost, it is necessary to use automated distributed
systems capable of incorporating new knowledge. Our proposal is presented
in Sect. 8.4.
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8.4 Air–Sea Interaction Multiagent System

The option chosen to define an appropriate analysis and design methodology
for the problem to be resolved is one that combines Gaia [48] and Agent-UML
(AUML) [8, 34, 35], in an attempt to take advantage of both. Through Gaia
it is possible to make an analysis of the problem using organizational criteria
and a later design. After applying Gaia, the result consists of a design at the
elevated abstraction level. At this point the Gaia design is transformed so
that Agent-UML techniques can be applied. Figure 8.2 illustrates the paths
followed in order to obtain the different models used. It shows how Gaia is
used initially in order to obtain an analysis and high-level design and then
Agent-UML is used in order to obtain a detailed, low-level design.

8.4.1 Gaia Analysis and Design

Gaia is a methodology for analysis and design in agent-based systems. It is
very general and therefore applicable to a very wide range of MAS. It also
allows the user to have a wide knowledge of the MAS both at an organiza-
tional (social) level and at a detailed level for each agent [48]. Through the
Gaia analysis, two models are obtained: the role model and the interaction
model. We analyse a problem in terms of organization, first by analyzing the
different roles that our system could play. Studying the requirements of the
problem we have come to the conclusion that we need six roles: a STORING
role, for obtaining data that should be permanently available and stored in a
database; a PROCESSING role, for transforming the images from the satellite
into cases; a DATACAPTURING role for obtaining the data from the Ves-
sel; a CONSTRUCTAPARTIALCO2MODEL role, for generating a model;
an OBTAINCO2EXCHANGE role for calculating the rate of CO2 exchange

Fig. 8.2. Methodology followed
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Fig. 8.3. Gaia role model for the STORING role

using the data from the model; an AUTOEVALUATION role for assessing
the model by contrasting the results offered by the model with the real data
obtained by the sensors on the boat; and finally, a PROCESSINGINFORMA-
TION role for allowing the user to interact with the system. For each of these
roles, it will be necessary to specify its particular attributes: responsibilities,
permission, activities, and protocols [48].

As an example, we shall present the STORING role: In Fig. 8.3 we can
see how the STORING role is responsible for storing the data fed into the
systems from its surroundings. The data comes from satellites or ships. As
part of this role, the consulting tasks related to the data stored and the
possible modifications to this data are also carried out. The protocols used
are those requesting data from Vessel, the sending of data obtained to the
database Store, informing of the possibility that a new evaluation may be
carried out, and the request for data processing. The actions that are carried
out consist of storing the satellite images, storing the images from the Vessel
sensors, making changes in the storage parameters, or in the database data,
when necessary. The role must have permission to access the data and the
Vessel data via satellite. In addition, it must have permission for reading and
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writing over the Store database where the data received is stored. Its liveness
responsibilities are as follows: STORESAT which continually stores the data
received via satellite. When new data is received, it is stored in “raw” format
and then a request is made to the PROCESSING role to carry out a data
processing action. STOREVESSELDATA is responsible for storing the data
that is received from the Vessels. In order for the data to arrive, there exist
two possibilities, the data is either requested from the boat, or the boat sends
them under its own initiative. In the first case, the sequence is to carry out
a data request and store the data. In the second case, the sequence is to
store the data, and the appropriate role is informed of the possibility to carry
out an autoassessment of the current model with the new data. CONSULTCA
carries out consultations concerning the Store database. MODIFYCA makes it
possible to carry out modifications both on the parameters of the storage of the
database Store, and on the data stored there. Lastly, the safety responsibilities
that the STORING role has are those which can establish a valid connection
either with the satellite and the Vessel, or with the database.

Once the role model has been obtained, the Gaia analysis is completed
with the interaction model. The interaction model shows us the dependences
and relationships between the roles. For each interaction between two roles
there is a protocol. For our MAS, we have decided to use the following
interaction protocols: ObtainVesselData is formed by protocols between the
STORING role and the DATACAPTURING role, whereby the first proto-
col requests the data in situ from the Vessel (for a specific date) and the
second protocol ensures that it is given. ObtainConstructData is an interac-
tion through which the CPCM (CONSTRUCTAPARTIALCO2MODEL) role
wishes to construct a new model and in order to do so, requests new cases from
the PROCESSING role. The PROCESSING role responds with the requested
information. ObtainInsituData allows the AE (AUTOEVALUATION) role
to obtain current data in situ aboard the Vessel. To do this, it is necessary
to make a request to the STORING role to carry out a consultation of the
Store database. In case the data requested is not available, a request will
be made to the DATACAPTURING role to obtain it. ObtainStExchange is
used by the PI (PROCESSINGINFORMATION) role to obtain the rate of
exchange of CO2 that is produced when applying the current model. OCE
(OBTAINCO2EXCHANGE) consults the model database and calculates the
exchange. ObtainNewModelSuper allows the PI role to request the creation
of a new model. In order to do this, it makes a request from CPCM, which
will in turn have to consult if there are new cases available within the case
database. ObtainNewModelAuto allows the AE role to request the creation
of a new model in case the current one is considered inadequate. Obtain-
NewModelStoring is the protocol that is executed when the PROCESSING
role informs the CPCM role that new images have arrived from the satellite
and have been transformed. With the new data, a new model can be created.
ObtainStModel enables the PI role to consult the information associated with
a certain model. ObtainStore allows the PI role to consult the data stored
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in the Store database. In order to do this, it makes a request to the STOR-
ING role. ObtainVessel allows the PI role to consult the data stored in the
EPROM memory of the Vessel. In order to do this it makes a request to DAT-
ACAPTURING role. ObtainEvaluationSuper is the protocol with which PI
requests an evaluation of a model. To do this, it makes a request to the AE
role. The AE role needs to know the current data in situ in order to make
the evaluation. ObtainEvalautionDC enables the DATACAPTURING role to
inform the AE role that the Vessel has carried out a new data collection. This
implies that AE is able to carry out an evaluation of the current model. If
the evaluation is not satisfactory, a request is made to generate a new model.
The DATACAPTURING role does not have any direct communication with
the AE role so it must make the request to the STORING role, which acts
as an intermediary. Activate/Deactivate Sensors allow the PI role to activate
or deactivate the Vessel sensors. In order to do this, it is necessary for it to
communicate with the DATACAPTURING role. Delete EPROM allows the
PI role to delete all the data from the Vessel’s EPROM memory. Change-
Store enables the PI role to modify the storage parameters of the Store data.
It communicates with the STORING role that carries out the modifications.
ChangeCase allows the PI role to modify the storage parameters of the case
memory store. To do this it needs to communicate with the PROCESS-
ING role.

Figure 8.4 illustrates the interaction ObtainVesselData. It shows that the
interaction uses two different protocols. In each protocol, a textual description
indicates the type of interaction (RequestInsituData and SendInsituData), the
role that initiates the interaction (STORING in the first one, and DATACAP-
TURING in the second one), and the role to which it is directed (DATACAP-
TURING in the first one and STORING in the second one), and a description
of the process that is carried out during the interaction. Moreover, the entry
information given by the role that initiates the interaction (InsituDataFromA-
GivenDate in the second protocol) and the exit information given by the role
to which the interaction is directed (VesselInsituData in the second protocol)
is also shown.

Once the analysis has been finalized, the Gaia design is carried out.
Traditional techniques of software engineering are not followed in terms of
detailing the analysis to the extent that a direct implementation can be made.
Instead, the level of abstraction is reduced so that traditional techniques can
be applied. In the design process three models are considered: agent model,
services model, and acquaintance model [48]. The agent model shows the types
of agents that are going to appear in the system, as well as the number of
instances for each agent type that can be executed within the execution time.

Using the role models as a base, we have decided to use five types of
agents: Store, Vessel, Modelling, User, and SuperUser. As Fig. 8.5 illustrates,
each agent is responsible for carrying out some particular roles. For example,
Store agent is responsible for carrying out STORING and PROCESSING



8 A CBR Agent for Monitoring the Carbon Dioxide Exchange Rate 225

Fig. 8.4. Protocols for the ObtainVesselData interaction

Fig. 8.5. Gaia agents model for our MAS
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Fig. 8.6. Gaia acquaintance model for our MAS

roles, and within the execution time it will be necessary to have at least one
instance of STORING role and one instance of PROCESSING role.

The services model identifies the services associated with each role, being a
service a function that the agent needs to develop. In object oriented method-
ologies, the service coincides with the method, but the difference here is that
they would not be available for other agents in the way methods were for other
objects. A service will serve as a block of simple, individual, and coherent ac-
tivities that create an agent. Each Gaia activity corresponds to a service, in
other words, it will be developed into a service but not all services need to
correspond necessarily to an activity.

Lastly, the acquaintance model defines the communication links that exist
between the different types of agents. As can be seen in Fig. 8.6, the mes-
sages – or formats – are not defined, even when they are sent, but are only
responsible for indicating the communication paths. At this point, it may be
of interest to introduce a diagram that shows the architecture of our sys-
tem, indicating the number of agents, the relationships between them and
their surroundings. The aim of this project is to construct a MAS composed
of various subsystems. Each one of these subsystems will be responsible for
modelling the carbon dioxide exchange in an area of the ocean with particular
characteristics. There will be communication between the subsystems, with
an exchange of information to help construct and improve local models.

Figure 8.7 illustrates a subsystem in which is it possible to observe how
a Modelling agent is responsible for the creation and evaluation of models
in terms of the data received from the Store, Vessel, and User agents. This
model allows us to monitor and predict the carbon dioxide exchange between
the ocean surface and the atmosphere. The Store agent processes the images
from the satellite and transforms them for use by the system. Each Vessel
agent is installed in a ship and collects information in situ that allows us
to evaluate the models created by the Modelling agent. The User agent can
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Fig. 8.7. Diagram of the architecture of our MAS

interact with any of the other agents. Figure 8.7 shows how the agents interact
with each other and with their surroundings. From the oceanographic point
of view, in order to resolve the problem that confronts us, the ocean has been
divided into a series of zones. In each of these zones there will be a Modelling
agent, a Store agent, and various Vessel agents.

8.4.2 Detailed Agent-UML Design

As well as presenting the proposal for the Agent-UML design established
for the problem, it is necessary to establish a relationship between the Gaia
methodology used during the analysis and the Agent-UML methodology.
Moreover, its use needs to be justified. In contrast to Gaia, Agent-UML works
at a highly detailed level, perhaps too high in its initial stages for large scale
problems, as it is our case. We propose to use the low-level analysis made by
Gaia and develop a design with Agent-UML, at a low level, but with sufficient
detail to proceed with the implementation.

There are three concepts that diverge slightly between the meaning from
the Gaia methodology and the Agent-UML methodology. Firstly, in Agent-
UML a role is considered the result of social restrictions and individual
behaviours and refers to the organization. Specifically, it makes reference to
the behaviour of an agent within a society. One agent can play many roles in a
MAS and may change role during its execution. Secondly, a service is defined
within Agent-UML as the activity which an agent can develop and distribute
among other agents. Lastly, a capability describes what the agent is capable
of doing under certain particular conditions. Due to the existing differences in
the definition that Gaia and Agent-UML provide of roles, services, and capac-
ities, it is necessary to adapt the Gaia design to the Agent-UML standard. As
far as the roles are concerned, we have divided those of Gaia into more specific
Agent-UML roles. The services of Gaia are divided into Agent-UML services
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and capabilities, and, given that the level of detail is greater, it is possible
that it will be necessary to consider some new service or capability, or divide
and specialize some of the Gaia services. Another important change refers to
the models of interaction. In Gaia the interactions were specified through the
acquaintance model of services [48]. Now they will be used to obtain sequence
and collaboration diagrams which will be much more detailed and in which
there appear messages exchanged between agents (interpreting a particular
role), and the order in which these exchanges of messages are produced.

In order to model the system’s behaviour even more, state and activity
diagrams will be used. These diagrams are not clearly defined in Agent-UML,
and therefore we will have to make an adaptation from the Unified Mod-
eling Language (UML) diagram types, so that they can represent the state
through which our agents can pass and the dynamic of the activities that
are produced within our system. After carrying out the appropriate changes,
we begin the design of the Agent-UML by obtaining the class diagrams. The
specifications that will be followed are those of the Foundation for Intelligent
Physical Agents (FIPA) for the modelling of class diagrams for agents using
Agent-UML [8]. We obtain a class diagram for one of the most prominent
agents, the Modelling agent, the CBR agent.

Figure 8.8 shows the class diagram for the Modelling agent. The Modelling
agent develops six capabilities and offers four services to other agents. The
Jacobean Sensitivity Matrix (JSM) capability offers a mechanism to retrieve
the beliefs that can be used to solve a given problem in a given situation.

Fig. 8.8. Class diagram for the Modelling agent
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These beliefs are given in the form of problem descriptions. Pondered Weigh
Technique (PWT) is the capability of the Modelling agent through which it
can calculate the most suitable solution for a given problem. The solution is
calculated taking into consideration the beliefs retrieved by the JSM capa-
bility. The Revision Simulated Equation (RSM) capability enables the agent
to compare the model obtained in the PWT capability with other oceano-
graphic models and in situ data supplied from vessels. Calculate Exchange is
the capability that allows it to calculate the rate of exchange of carbon diox-
ide that a specific ocean zone produces at a given time using that particular
model. Evaluate Model allows the agent to evaluate the goodness of a model,
in other words, it can measure the efficiency of a model by comparing the
results that have been given with the results from the Vessel’s sensors. Con-
sult Model allows it to carry out consultations of the model database. As far
as the services offered by the agent are concerned, we have: Obtain Exchange
through which an agent can request a calculation of the rate of exchange of
carbon dioxide that is produced in a given ocean zone at a given date, by
using the specific model indicated. Obtain Model allows an agent to request
the Modelling agent for data from a model that was being used at a given
date. Construct Model offers the possibility to attend to construction requests
from the models. Lastly, Obtain Evaluation offers any agent the possibility to
request an evaluation for a particular model in a particular ocean zone at a
given date based on the real data obtained from the Vessel sensors.

The Agent-UML design is completed by offering interaction diagrams
which show the interaction between the MAS agents as well as the differ-
ent roles that can be taken up by the different agents and the interactions
between these roles. It is habitual to use a collaboration diagram, although a
sequence diagram, which would be equivalent to the collaboration diagram,
can also be used, [34]. We can differentiate ten different interactions.

Figure 8.9 shows the interactions between the Modelling and Store agents
when a new problem descriptor or case is stored. When new satellite data
is received, the Store Sat Data role of the Store agent is in charged of stor-
ing the data in the right format with the help of the Transform Im-Cases
role. The image is digitally processed in order to obtain the corresponding
problem description data. Finally, the Store agent moves into the Store Cases
role to store the new problem description data. The Store agent establishes a
communication process with the Modelling agent and transfers the new prob-
lem description information. The Modelling agent processes the new problem
description, and may, creates a new model. The Modelling agent executes the
Jacobean Sensitivity Matrix role, in which the agent consults the beliefs base
in order to obtain the most similar beliefs (problem descriptions) to the initial
problem sent by the Store agent. Once the Modelling agent has retrieved the
beliefs, it changes to execute the Pondered Weigh Technique role. Now, the
agent calculates the most suitable solution for the initial problem case pro-
vided by the Store agent. The most suitable solution is calculated using the
cases retrieved by the Jacobean Sensitivity Matrix role as it is shown in
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Fig. 8.9. Collaboration diagram corresponding to the interactions that occurs
because of the arrival of a new satellite image to the Store agent.

Sect. 8.4.3. A model is created using the most suitable solution, and the RSE
role is executed, which is in charge of the revision of the model. Finally, the
RSE role transmits the result of the revision by changing back to the role Ja-
cobean Sensitivity Matrix. Now the Modelling agent (with the Jacobean Sensi-
tivity Matrix role) retains the problem description and the knowledge obtained
after all this process. A new model may have been created or modified.

To finish the Agent-UML design, state, and activity diagrams are created
to model the behaviour of the agents. We use UML state diagrams [37], which
we have designed for the Store and Modelling agents. Figure 8.10 shows the
state diagram for the Store agent. We believe that the Store agent can be found
in three possible states: A state in which the agent is awaiting requests; a state
in which the agent is modifying stored data; and thirdly, a state in which the
agent carries out operations to store data. Some of these operations include
obtaining particular parameters that characterize an image. An additional
state allows it to be ready to receive new requests when it has no tasks to
be carried out. Finally, to finish with the Agent-UML design, in terms of the
activity diagrams, we focus on the activities that will be developed within the
CBR cycle.

Once the design is complete, we go on to the implementation, using the
Jadex tool, a tool that incorporates the BDI model within Jade agents and
tool. With Jadex, the Modelling agents are built while the rest of the agents
will be Jade. The communication mechanisms are the same as in Jade (Agent
Communication
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Language (ACL) is used) [9, 41]. The use of Jadex means that it is neces-
sary to use Object Query Language (OQL) consulting language.

8.4.3 The CBR–BDI Modelling Agent

Once the architecture proposed has been studied, it would seem a good idea
to deepen the Modelling agents – in the form of a deliberative agent that uses
a CBR mechanism. This agent will have two principal functions. The first one
is to generate models which are capable of predicting the atmospheric/oceanic
interaction in a particular area of the ocean in advance. The second one is
to permit the use of such models. In Fig. 8.10, we can see that a Modelling
agent possesses two principal states: one to generate the forecasting models
and the other to permit the use of the models. Moreover, the reasoning cycle
is one of the activities carried out by the Modelling agent. We can see how the
reasoning cycle of a CBR system is included among the activities, composed
of stages of retrieval, reuse, revise, and retain. Also, an additional stage that
introduces expert’s knowledge is used. This reasoning cycle must correspond
to the sequential execution of some of the agent roles.

The Modelling agent presents a deliberative architecture, based on the
BDI model [12]. In this model, the internal structure and capabilities of the
agents are based on mental aptitudes, using beliefs, desires, and intentions.
This method facilitates the incorporation of CBR systems [1] as a delib-
erative mechanism within BDI agents, facilitating learning, and adaptation

Fig. 8.10. State diagram for the Store agent
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and providing a greater degree of autonomy than pure BDI architecture. To
introduce a CBR motor into a BDI agent it is necessary to represent the cases
used in a CBR system by means of beliefs, desires, and intentions, and imple-
ment a CBR cycle. A case is a past experience composed of three elements:
an initial state or problem description that is represented as a belief; a final
state that is represented as a set of goals; and the sequence of actions that
makes it possible to evolve from an initial state to a final state. This sequence
of actions is represented as intentions or plans. CBR consists of four sequen-
tial stages: retrieve stage to recover the most similar past experiences to the
current one; reuse stage to combine the retrieved solutions in order to obtain
a new optimal solution; revise stage to evaluate the obtained solution; and
retain stage to learn from the new experience.

Figure 8.11 shows the internal structure of a CBR agent. Problem descrip-
tion (initial state) and solution (situation when final state is achieved) are
represented as beliefs, the final state as a goal (or set of goals), and the se-
quences of actions as plans. The CBR cycle is implemented through goals and
plans. When the goal corresponding to one of the stages is triggered, different
plans (algorithms) can be executed concurrently to achieve the goal. Each
plan can trigger new subgoals and, consequently, cause the execution of new
plans.

Deliberative CBR agents, like Modelling agent, are able to incorporate
other reasoning mechanisms that can coexist together with the CBR. Mod-
elling is an autonomous agent that can survive in dynamic environment. How-
ever, is possible to incorporate communication mechanisms that allow it to
be easily integrated into a MAS and work coordinately with other agents to
solve problems in a distributed way.

The CBR motor is divided into four sequential stages and different algo-
rithms can be used in each one. The reasoning structure is presented in detail
in the next paragraphs.

The roles of the Modelling agent are shown in Fig. 8.8. The agent carries
out roles to generate models such as Jacobean Sensitivity Matrix, Pondered
Weigh Technique, RSE, and other roles that allow it to operate with the
models calculated, like Forecast Exchange Rate, Evaluate Model, or Consult
model. The roles used to carry out the stages of the CBR cycle are now de-
scribed. Jacobean Sensitivity Matrix: This role is in charge of carrying out
the retrieval stage. In order to do this it needs to use a method that guaran-
tees the recuperation of cases whose characteristics are similar to the current
problem. The Jacobean Sensitivity Matrix is used in this case for data clus-
tering and retrieval [32]. The Jacobean Sensitivity Matrix method is a novel
approach for feature selection. It can be used to visualize and extract infor-
mation from complex, and highly dynamic data. The model is based on the
principal component analysis and is used to identify which input variables
have more influence in the output of the neural network used to perform the
principal component analysis. The neural network identifies the beliefs stored
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Fig. 8.11. CBR-agent (CBR–BDI) internal structure
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by the agent that can be more useful to solve a given problem. The mathe-
matical model is now outlined.

If Jacobean Sensitivity Matrix is a matrix NxM where
N: is the number of input of the neural network.
M: is the number of output of the neural network.

And if the element Ski in the matrix represents the sensitivity (influence)
of the output k over the input I, then

Ski =
∂yk

∂xi
=

∂fk (netk)
∂xi

=
∂fk (netk)

∂netk

∂netk
∂yj

∂yj

∂netj

∂netj
∂xi

=
∂fk (netk)

∂netk

⎛
⎝ H∑

j=1

wkj
∂fj (netj)

∂netj
wji

⎞
⎠ (8.1)

where

wji: is the weight of the connection between the input neuron i and the
hidden neuron j.

wkj : is the weight of the connection between the hidden neuron j and the
output neuron k.

yk: is the Output obtained for neuron k of the output layer.

Then
yk = fk(netk) (8.2)

where

yj : is the Output obtained for neuron j of the hidden layer.

Then
yj = fj(netj) (8.3)

where

xi: is the Input for neuron i.
fh: is the activation function in neuron h.

then

netj =
N∑

i=1

wji xi + θj (8.4)

netk =
H∑

j=1

wkj yj + θk (8.5)

where

H: is the number of neurons in the hidden layer.
θj : is the value of threshold of neuron j of the hidden layer.
θk: is the value of threshold of neuron k of the output layer.
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Pondered Weigh Technique: The reuse is carried out using the cases selected
during the retrieval stage. The cases are pondered [17] and the bigger weight
is given to the one that more resembles the current problem in the following
way:

p∗ =
1

Z∑
r=1

e−|a−r|

Z∑
r=1

e−|a−r|pr (8.6)

where:

p∗: is the solution prediction.
Z: is the number of retained cases from the base of beliefs.
a: is the measure of minimum similarity between the retained cases from the

base of beliefs and the current case.
pr: is the retained prediction rth from the base of beliefs.
r: is the measure of similarity between the retained cases rth from the base

of beliefs and the current case.

RSE: During the revision stage an equation (F) is used to validate the pro-
posed solution p∗.

F = kso(pCO2SW − pCO2AIR) (8.7)

Where:

F: is the flux of CO2.
k: is the gas transfer velocity.

Then
k = (−5, 204Lat + 0, 729Long + 2562, 765)/3600 (8.8)

Where:

Lat: is the Latitude.
Long: is the Longitude.
so: is the Solubility.
then it is verified that:

so = e(
93,4517
100tk −60,2409+23,3585 log(100tk)+s(0,023517−0,023656•100tk+0,0047036•1002tk))

(8.9)

tk = 273, 15 + t (8.10)

Where:

t: is the Temperature.
s: is the Salinity.

pCO2 = A + BLong + CLat + DSST + EY ear (8.11)
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Table 8.1. Case attributes

Case field Measurement

DATE Date (dd/mm/yyyy)
LAT Latitude (decimal degrees)
LONG Longitude (decimal degrees)
SST Temperature (◦C)
S Salinity (unitless)
WS Wind strength (m s−1)
WD Wind direction (unitless)
Fluo calibrated Fluorescence calibrated with chlorophyll
SW pCO2 Surface partial pressure of CO2 (microatmospheres)
Air pCO2 Air partial pressure of CO2 (microatmospheres)
Flux of CO2 CO2 exchange flux (Moles m−2)

Table 8.2. Months\Coefficients values

Months\Coefficients A B C D E

Feb −2488 −0,42 4,98 −12,23 1,38
May −7642 −0,9 −1,74 −20,77 4,14
Jun −4873 −0,85 1,3 −15,64 2,66
Jul −7013 −0,025 3,66 −7,07 3,64
Aug −3160 −0,69 0,84 −11,31 1,8
Sep −1297 0,43 −4,19 −17,06 1,05
Oct 83 −0,81 4,81 −10,92 0,076
Nov 747 0,2 −0,73 −17,3 −0,062
Dec −4306 0,38 −0,22 −17,13 2,45

Where SST is the temperature of the marine surface or air as it corresponds
to pCO2SW or pCO2AIR. The coefficients of the equation depend on the
month, as shown in Table 8.2.

During the revision, the agent compares the obtained F value with the
predicted one, and if the prediction differs in less than 10%, the case is stored
on the base of beliefs. As it has been shown the CBR agents use a CBR
system, at a low level of implementation, which is the reason for using cases.
One case for the CBR consists of a problem (initial situation and a number
of goals) and the plans to resolve it. For oceanic/atmospheric interaction, we
define the problem in terms of the attributes shown in Table 8.1:

Table 8.1 shows the description of a case: DATE, LAT, LONG, SST, S,
WS, WD, Fluo calibrated, SW pCO2, and Air pCO2. Flux of CO2 is the value
to be identified.

As mentioned in Sect. 8.2 there is a correspondence between cases and BDI
agents. To use a deliberative BDI model that utilizes a CBR mechanism, it
is necessary to transform the case representation by the CBR system into a
BDI formalisms. The BDI model deals with:
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1. Beliefs, which represent the state of the problem, with certain knowl-
edge about the surroundings and the agent itself. In our problem we
shall use as belief the attributes DATE, LAT, LONG, SST, S, WS, WD,
Fluo calibrated, SW pCO2, and Air pCO2. A beliefs base will be used
in which each belief is a ProblemDescription type and contains all the
attributes mentioned in Table 8.1.

2. Desires, that represent those final states to which the agent wishes to
arrive or reach. In this case, it deals with three goals:

– Predict the flux of carbon dioxide exchanged between the sea surface
and the atmosphere, using a window of two or three weeks.

– Calculate the best parameters to use in order to improve the prediction
for different window sizes.

– Calculate the most suitable prediction window in relation to a maxi-
mum % error allowed.

An agent stores all the goals in a similar way to the beliefs.
3. Intention, that represents the sequence of actions that should be followed

in order to reach the final state or goal. This new attribute is introduced
into the case description. The sequence of actions to be carried out is
generally formed by the stages of the reasoning cycle and the different
algorithms executed in each one of those stages. In general an agent will
have available various predefined plans or intentions that could be called
up and modified at the execution time. The selection of plans is made
through the CBR agent, Jacobean Sensitivity Matrix, Pondered Weigh
Technique, and Revise Simulated Equation mechanisms.

The tools offered by the Jadex platform [41] have been used for the storing
and use of beliefs, desires, and intentions or plans. In this way, we have been
able to construct a deliberative BDI agent capable of reasoning through the
use of a CBR mechanism. The agent manages cases and carries out CBR
cycles.

8.4.4 Communication Agents

To complete the proposal for the MAS, we outline the types of communication
that the system agents employ. The Jadex tool has been used to carry out the
implementation of the system. This tool is an extension of Jade and, among
other features, which uses a standard for communications in accordance with
the FIPA [23]. In this way, both ontologies and languages used are those
proposed by the FIPA. Jade uses the ACL defined by the FIPA. The agents
send and receive java objects that represent ACL messages in accordance with
a series of protocols. The majority of protocols appear in the libraries offered
by Jade [9]. Furthermore, the FIPA – Semantic Language (FIPA-SL) contents
language is used.

The messages used have a syntax whereby the agent is instructed to send
the message to the receiver of that message. It also indicates the content
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Fig. 8.12. Example of the message used in the multiagent system. The User agent
makes a request to the Modelling agent asking about the models generated for the
maximum and minimum longitude and latitude coordinates the 27 November 2005.

of the message, information to identify the message, name of the language in
which the content of the message is written, and the ontologies that define the
meaning of the vocabulary used. Figure 8.12 shows an example of a message
used by the Modelling agent to request the Storing agent for information on
the cases stored in the case base. The language of contents used is FIPA
Semantic Language. The ontology defines the vocabulary that is used within
the message and the content makes reference to the request for a search to be
carried out of the cases and the specific parameters of the search.

The types of messages used in the MAS proposed in this work: request,
agree, refuse, cancel, inform, query-if, subscribe, propose, reject-proposal,
accept-proposal, failure, and not-understood. As far as the protocols are con-
cerned, the three used are defined by the FIPA: FIPA-request protocol, FIPA-
query protocol, and FIPA-ContractNet protocol [23].

8.5 Results and Conclusions

The application of Artificial Intelligence techniques [1] is extremely useful in
a field like oceanography and specifically in the study of the carbon dioxide
exchange between the ocean surface and the atmosphere. The intelligent envi-
ronment that has been developed allows oceanographers to maintain a seam-
less, unobtrusive, and often invisible but also controllable interaction with
the available technology. The use of agents and MAS as the fundamental base
for creating an intelligent environment is highly suited because of the char-
acteristics of the agents themselves. Their mobility, proactivity, autonomy,
social capabilities, reasoning, and capacity for learning all makes the MAS
and transparent intermediate layer between the user of the system and the
underlying technology. A user can access the system rapidly and efficiently
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using their personal agent. This agent is able to sit within a “light” device
and can communicate through wireless technology with the other agents of
the system. This allows oceanographers to be independent and unbound by
location. Figure 8.13 shows the interface of a User agent accessed via a PDA.
It is possible to see how the user can access the Modelling, Store, or Vessel
agent. The appropriate Store or Vessel can be selected through a simple in-
terface that only presents the necessary information and avoids showing too
many elements on the screen. The oceanographers themselves can decide that
amount of elements that they wish to see. Figure 8.13b presents the options
that can be executed by the Modelling agent: To request the creation of a
new model, for which it will be necessary to enter the appropriate parame-
ters; predict the level of exchange in a particular zone of the ocean; make an

Fig. 8.13. User agent screen shot. (a) Menu accessing subsystem agents. (b) User
options for interacting with the Modelling agent from a light device (c) Inquiry
about cases from a Store agent. (d) Result obtained from the inquiry made in (c)
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inquiry about the models stored; evaluate a model by entering real data; or
saving the corresponding data to the models that are being currently used.

The User agent offers similar menus to allow the user to interact with the
Vessel and Store agents. Figure 8.13c shows the parameters that an oceanog-
rapher needs to enter when he wishes to make and inquiry the cases stored
by the Store agent for the zone of the Atlantic Ocean situated between 10◦

and 100◦ latitude and 10◦ and 100◦ longitude on the 11 March 2006. After
the inquiry is made, the cases are shown to the user in a table as can be
seen in Fig. 8.13d. The user can select each one of these cases and modify the
parameters.

However, the agents do not represent a mere software that interacts be-
tween the user and the technology, but also has the capacity to make decisions
and act for themselves in a distributed way, in order to respond and adapt to
the changes that are produced within the environment and within its own in-
ternal knowledge structure. In this chapter we have described the construction
of a MAS whose main component is the Modelling agent, a deliberative agent
based on the BDI model [12] that uses CBR [1] as its reasoning mechanism.
As can be seen in Fig. 8.14, the Modelling agent handles beliefs, desires, and
intention from a conceptual point of view and cases from an implementation
point of view. A case (a file in Fig. 8.14) is composed of the attributes de-
scribed in Table 8.1. Cases can be viewed, modified, and deleted manually or
automatically by the agent (during its revision stage). The agent plans (in-
tentions) can be generated using different strategies since the agent integrates
different algorithms.

Figure 8.14 shows the North Atlantic exchange rate calculating by the
Modelling agent, during the 11 March 2006. The screen shot also presents
the algorithms used in the different stages of the CBR cycle. The menus on
the left facilitate the interaction or interrogation with the agent in order to
evaluate models, predict exchange rates, consult data, change data create a
new model or save the current model data. Figure 8.14 presents a view of
the Modelling agent. These agents have their own interface and can also be
accessed via the User or Super user agents.

The Modelling agent is fully integrated within the MAS. As can be ob-
served in Fig. 8.15, the Modelling agent creates new goals based on the changes
in its internal state or in response to messages received from other agents
within the system. Figure 8.15 is a screen shot of the Jadex Tracer agent [41]
in which the behaviour of the Modelling agent is represented. In it we can
observe the goals generated by the Modelling agent, the plans that are put
into operation, and the messages that it receives. For example, for a Request
message inquiring about a model received from the Gui agent, the Modelling
agent executes the update plan model, from which a consult model goal is
created, that subsequently launches the plan ConsultModelPlan. As can be
seen, the agent is capable of handling various goals and plans at the same
time.
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Fig. 8.14. Modelling agent User interface

Fig. 8.15. Behaviour of the Modelling agent observed through a Jadex Tracer agent
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Table 8.3. Mmol m−2d−1 of C02 exchanged in the North Atlantic during 2005 and
2006

Method Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar.

PWT −2.119 −2.230 −1.885 −1.622 −1.164 0.495 2.435 2.235
CoHel IBR −2.325 −2.126 −1.926 −1.625 −1.210 0.845 2.634 2.325
VCBP −2.453 −2.965 −2.036 −1.155 0.965 −0.235 2.555 2.725
Casix manual −4.317 −1.875 −1.655 −1.233 0.205 2.035 3.978 1.955

models

The previously described system was tested in the North Atlantic Ocean
during the last few months. During this period of time, the MAS has been
tuned and updated, and the first autonomous prototype started to work In
August 2004. Although the system is not fully operational and the aim of
the project is to construct a research prototype and not a commercial tool,
the initial results have been very successful from the technical and scientific
point of view. The interaction between the system developers and oceanogra-
phers with the MAS has been continuous during the construction and pruning
period, from December 2003 to February 2005. The system has been tested
from September 2005 to March 2006 and the results have been very accurate.
Table 8.3 presents the results obtained with the MAS proposed in this work,
previous MAS developed [5, 6, 15], and with mathematical Models [30] used
by oceanographers to identify the amount of carbon dioxide exchanged. As
can be observed in Table 8.3, the models proposed for the MAS offer results
that are very close to real values obtained by oceanographers, while the re-
sponse time is significantly reduced. The mathematical model proposed in this
chapter offers far greater precision than models based on the variational cal-
culus [6,14,16] and Hebbian learning [5,15,24] previously proposed. The error
committed by two previous models has been reduced although it should be
said that the differences are not highly significant. An analysis of the principal
components allows us to optimize the recovery stage of the CBR cycle.

The models have constructed cases based on real data obtained in the
Azores zone of the Atlantic Ocean (± 37N, 25W). Under these conditions the
models proposed for the MAS have been increasingly accurate. The accuracy
of the results increases as the number of cases increase. However, if the number
of cases managed is very high, the efficiency of the system falls. Figure 8.16
shows a comparative sample between real data and the predictions made by
the MAS working on data related to the months 2005–2006.

The construction of the distributed system has been relatively easy using
previously developed CBR-agent libraries [5,6,13–16]. From the software engi-
neering point of view Agent-UML [8,34,35] and Gaia [48] provide an adequate
framework for the analysis and design of distributed agent-based systems. The
formalism defined in [25] facilitates the straight mapping between the agent
definition and the CBR construction. Although the proposed system requires
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Fig. 8.16. CO2 real flux and flux prediction

further improvements and more work, the initial results are very promising.
The generated open framework facilitates the incorporation of new agents
using different modelling techniques and learning strategies so further experi-
ments will allow us to compare these initial results with the ones obtained by
other techniques.
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Summary. In many industrial and medical diagnosis problems it is essential to
investigate time series measurements collected to recognize existing or potential
faults/diseases. Today this is usually done manually by humans. However the lengthy
and complex nature of signals in practice often makes it a tedious and hard task to
analyze and interpret available data properly even by experts with rich experiences.
The incorporation of intelligent data analysis method such as case-based reasoning
is showing strong benefit in offering decision support to technicians and clinicians
for more reliable and efficient judgments.

This chapter addresses a general framework enabling more compact and effi-
cient representation of practical time series cases capturing the most important
characteristics while ignoring irrelevant trivialities. Our aim is to extract a set of
qualitative, interpretable features from original, and usually real-valued time series
data. These features should on one hand convey significant information to human
experts enabling potential discoveries/findings and on the other hand facilitate much
simplified case indexing and similarity matching in case-based reasoning. The road
map to achieve this goal consists of two subsequent stages. In the first stage it is
tasked to transform the time series of real numbers into a symbolic series by tempo-
ral abstraction or symbolic approximation. A few different methods are available at
this stage and they are introduced in this chapter. Then in the second stage we use
knowledge discovery method to identify key sequences from the transformed sym-
bolic series in terms of their cooccurrences with certain classes. Such key sequences
are valuable in providing concise and important features to characterize dynamic
properties of the original time series signals. Four alternative ways to index time
series cases using discovered key sequences are discussed in this chapter.

9.1 Introduction

Case-based reasoning (CBR) [1] has been widely recognized as a powerful
learning methodology for circumstances where generalized domain knowledge
is not available or hard to obtain. Based on the tenet that similar problems
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have similar solutions, CBR attempts to solve new problems by retrieving
previous similar cases for which solutions are already known. Usually condition
parts of cases are represented as vectors of selected attribute values when
making similarity matching between a query case and previous ones in the
case base. Proper case index capturing truly relevant features has shown to
be one of the crucial factors for the success of case retrieval.

Tackling time series cases is attaining increasing importance in applying
case-based reasoning to various real-world problems. As long as processes in
the underlying domain are inherently dynamic, cases should be constructed to
reflect the phenomena that were evolving overtime rather than be depicted as
snapshots at a given time instant. Unlike static cases described by time inde-
pendent attributes, time series cases contain profiles of time-varying variables
wherein pieces of data are associated with a times tamp and are valid only for
a specific interval in the case duration. Temporal aspect of time series data
has to be taken into account in the tasks of case indexing and case retrieval.
Abstraction and representation of temporal knowledge in CBR systems were
discussed in [7, 22,42].

Signal analysis techniques have been applied to extract relevant features
from time series signals such as sequential sensor readings. The most com-
mon methods used in applications are discrete Fourier transform (DFT) and
wavelet analysis, see [9,35,36,51]. Both aims to capture significant characteris-
tics of original signals by providing frequency related information. However, as
noted in [11], such traditional analytical tools are only competent on signals
with relatively simple dynamics, they fail to characterize patterns of more
complex dynamics such as bifurcations and chaotic oscillations.

Another concern with signal analysis is the large number of coefficients
produced during signal transformation such that feature selection is entailed
to reduce the number of inputs to build similarity measures for case match-
ing and retrieval. The issue of dimensionality reduction becomes particularly
critical when measurements are gathered within a very long time span. Longi-
tudinal time series signals are prevalent in circumstances such as patient mon-
itoring for medical health care or condition-based maintenance of industrial
equipments, where subjects monitored are expected to possibly change their
behavior patterns during the long period of observation. Later in Sect. 9.2,
we shall show that, using traditional signal processing methods, it is hard to
acquire a moderate number of features as concise representation of original
signals while retaining their time-varying properties.

This chapter suggests a general framework fostering compact and efficient
representation of lengthy time series cases capturing important temporal
behaviors while ignoring irrelevant trivialities. The aim is to extract a set of
qualitative, interpretable features from original and usually real-valued time
series data. These features should on one hand convey significant information
to human experts enabling potential discoveries/findings and on the other
hand facilitate much simplified case indexing and similarity matching in case-
based reasoning. The road map to achieve this goal consists of two subsequent
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stages. In the first stage the time series of real numbers is transformed into
a symbolic series by temporal abstraction or symbolic approximation. A few
different methods are available to be utilized at this stage. Then, in the sec-
ond stage, we use knowledge discovery method to identify key sequences from
the transformed symbolic series in terms of their cooccurrences with certain
classes. Such key sequences are valuable in providing important features to
characterize dynamic properties of sensor signals, thus leading to concise index
of longitudinal time series as well as reduced input dimensionality of similarity
measures.

The remainder of this chapter is organized as follows. Section 9.2 gives
a brief overview and outlines our general framework to handle longitudinal
time series for efficient and compact case index. Approaches to transforming
series of sensor measurements into symbolic ones are introduced in Sect. 9.3,
followed by a knowledge discovery method presented in Sect. 9.4 to identify
key sequences from symbolic series transformed. Subsequently, in Sect. 9.5, we
discuss the utilities of key sequences discovered in case-based reasoning, e.g.,
case indexing, measures for similarity. Relevance to related works is discussed
in Sect. 9.6. Finally Sect. 9.7 ends this chapter with concluding remarks.

9.2 Classification Based on Sensor Signals

Categories of subjects can be recognized by observing their relevant variables
during their operation. Using sensor technology it is possible to measure the
values of such variables and also record the profiles of their evolution with
the time. We can then process and analyze the collected sensor recordings to
find out hidden symptoms. These symptoms give us basis to reason about the
class the subject belongs to or make prediction about a potential failure, that
it is likely to emerge in the near future. A general road map for this purpose is
illustrated in Fig. 9.1, which includes signal filtering, feature extraction, and
pattern classifier as its functional components.

Signal filtering is used to purify original sensor readings by removing noises
contained in the signals such that more reliable classification results will be

Fig. 9.1. Classification based on sensor signals
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warranted. Usually there are two kinds of noises included in the received
signals; one is measurement noise due to intrinsic imprecision of sensors and
the other is external noise caused by disturbance from surroundings and which
is added to the sensor data recorded. Signal recovery from external background
noise has been achieved by applying signal processing methods like wavelet
analysis and time domain averaging [29,30]. Reduction of measurement errors
is outside the scope of this chapter, but interested readers can refer to sensor
fusion systems in which Bayesian-based filtering approaches such as Kalman
filtering [4] and particle filtering [15] merit to be used to acquire more accurate
estimates of states for subjects.

Feature extraction is purported to identify characteristics of sensor signals
as useful symptoms for further analysis. This stage is crucial in many industrial
and medical domains where the process in consideration is dynamic such that
measured variables generally change with the time. This means that it is
not possible to depict sensor observations with static single values. Instead we
need to identify a collection of features to characterize the evolution of a time-
varying variable. The set of extracted features is desired to have a moderate
size to reduce the input dimensionality for the pattern classifier (Fig. 9.1). On
the other hand, features extracted also ought to be adequate to accommodate
temporal information or transitional patterns of signals to be analyzed.

Regarding pattern classifier a number of methods might be considered.
Expert systems were developed in support of gathering, representing, and uti-
lizing human expert knowledge for problem solving but they suffer from the
knowledge acquisition bottleneck. Regression functions distinguish objects by
defining linear boundaries between classes using a moderate number of at-
tributes as function variables. For problems with nonlinear boundaries artifi-
cial neural networks would be a suitable approach because they are capable
of realizing arbitrary nonlinear mappings between input and output units.
Nevertheless the functions of neural networks are rather like a black box,
they hardly provide any reasons and arguments for decisions recommended
by them. Comparatively, CBR is more transparent by making decisions ac-
cording to similar cases retrieved such that human users are given reference
information to understand, verify, and occasionally also modify the suggested
results. The explanatory issue is quite important in many medical and in-
dustrial applications where AI systems serve as decision support and every
decision made has to be well justified before taking into effect. This motivates
us to adopt the methodology of CBR to classify time series signals and we
narrow down to case-based classifier in the remaining of this chapter.

9.2.1 Conventional Methods for Feature Extraction

As mentioned before, the measurements from a dynamic system constitute
time-varying data streams that are not suitable for immediate usage. Hence
we need to “dig out” representative features hidden in the signals prior to
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classification. The features extracted are delivered to the case-based classifier
as an index of the query case. Currently features extracted with traditional
methods fall into two categories, namely statistical features and frequency-
based features.

Statistical features are extracted from the profile of signal values with
respect to calculated statistics as overall generalization. Typical features of
this kind can be peak value, start time, overshoot, rising time, mean value,
integral, standard deviation, etc. In practice what features to derive for case
indexing is commonly ad hoc and domain dependent. An example of using
statistical features for case-based circuit diagnosis was illustrated in [39].
However extracting statistical features has a weakness of converting dynamic
data streams into static values, thus losing information of temporal relation
between data.

Frequency-based features characterize sensor signals by groups of quanti-
ties related to a diversity of frequencies. As numerous signal transforms are
available to yield frequency spectra, we seem to have more solid basis for
extracting features based on frequency than for deriving features based on
statistics. The two most common signal transform methods to this end are
Fourier transform and wavelet analysis. We shall introduce them briefly in the
following and also indicate their limitations facing longitudinal signals with
substantial variations.

The Discrete Fourier Transform (DFT)

The DFT transforms a series of sampled values from a signal into spectral
information about the signal. Let x∗(t) = x(nT ) = x(n) be a sampled function
taking samples at times t = 0, T, . . . , nT, . . . , (N − 1)T, and T is the
sampling period (the time between two consecutive samples). The components
of DFT for the sampled signal x∗(t) are given by a complex summation [47]
as follows

X(k) =
N−1∑
n=0

x(nT ) exp [−jknT2π/(NT )] =
N−1∑
n=0

x(n) exp [−jknΩ0] (9.1)

where

k = 0, 1, 2, N − 1 and Ω0 = 2π/N

If we substitute exp [−jknΩ0] in (9.1) with Euler identity, the DFT compo-
nents can be equivalently written as

X(k) =
N−1∑
n=0

x(n) cos(knΩ0) − j
N−1∑
n=0

x(n) sin(knΩ0) (9.2)
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Note that X(k) shows the signal characteristics at the frequency k/(N-1)T.
Thus the frequency spacing between two neighboring components in the DFT
spectrum is

∇f =
1

(N − 1)T
Hz (9.3)

In general, the DFT component X(k) is a complex consisting of a real and an
imaginary part. We adopt the magnitude of X(k)

|X(k)| =

√√√√(N−1∑
n=0

x(n) cos(knΩ0)

)2

+

(
N−1∑
n=0

x(n) sin(knΩ0)

)2

(9.4)

as the feature value corresponding to the frequency k/(N-1)T when doing
Fourier transforms for feature extraction.

Two limitations of using DFT for feature extraction have to be pointed out
here. First, it is clear that, for every k = 0, 1, . . . .N− 1, there is a DFT term
X(k) such that the number of features equals the number of sampled data
N. This would lead to an explosion in the number of features extracted when
dealing with longitudinal signals common in practice. The sampling period of
a signal must be kept below an upper bound according the Shanon theorem
in order to avoid distortion of the original signal.

The second limitation with DFT is that the features extracted from the
magnitudes of X(k) cannot guarantee to distinguish different orders of pat-
terns within a signal. To show this point more clearly, let us consider two
sampled signals with six sampling periods as follows:

x∗
1(t) =

[
3, 3, 3,
mode A

| 5, 5, 5
mode B

]

x∗
2(t) =

[
5, 5, 5,
mode B

| 3, 3, 3
mode A

]

Obviously the two signals differ only in the order of appearances of values
(x∗

1 takes the value of 3 in the first three sampling instances followed by 5
later, whereas x∗

2 appears in the opposite order). The DFT terms of these two
signals are calculated according to (9.2) with the results given by

X1(0) = 24, X1(1) = −2.000 + 3.4641j , X1(2) = 0
X1(3) = −2, X1(4) = 0, X1(5) = −2.000 − 3.4641j

X2(0) = 24, X2(1) = 2.000 − 3.4641j , X2(2) = 0
X2(3) = 2, X2(4) = 0, X2(5) = 2.000 + 3.4641j

It is clearly seen from the above that the magnitudes of X1(k) and X2(k)
are identical for any k = 0, 1, 2, . . . , 5. As a consequence the signals x∗

1

and x∗
2 cannot be distinguished by using the features extracted by DFT. This

example, although simple, implies a potential problem for signals with varying
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modes in the whole duration, because temporal information of mode A fol-
lowed by B or mode B followed by A might be completely indifferent to the
DFT features.

Wavelet Transform

Wavelet transform (WT) is a relatively recently introduced signal analysis
method [5, 19], which aims to provide a means of analyzing local behavior of
signals. In this sense it is fundamentally different from global transforms such
as the Fourier transform. The basic principle underlying WT is to represent a
signal, x(t), of interest as a weighted sum of wavelets and scaling function by

x(t) = A1ϕ(t) + A2ψ(t) +
∑

n∈+Z
m∈Z

An,mψ(2−nt − m) (9.5)

where ψ(t) is the mother wavelet function and ϕ(t) denotes the scaling func-
tion. Principally any function with positive and negative areas canceling out
can be adopted as a wavelet. In other words the only condition imposed on a
wavelet function is that it satisfies

∞∫
−∞

ψ(t)dt = 0 (9.6)

In practice a very frequently used wavelet function is the Haar function which
is defined as

ψ(t) =

⎧⎨
⎩

1 if 0 ≤ t < 0.5
−1 if 0.5 ≤ t < 1
0 otherwise

(9.7)

Dilations and translations of the mother wavelet function (9.7) create child
wavelets functions as expressed by

ψs,l(t) = 2−
s
2 ψ(2−st − l) (9.8)

where parameters s and l are integers according to which the mother wavelet
function ψ(t) is scaled and dilated. The child wavelets constitute an ortho-
normal basis of the Haar system. Using this orthonormal basis, time series x
can now be formulated as a linear combination of the Haar wavelets:

x = x0 +
log2 N∑
s=1

N
2s −1∑
l=0

cs,lΨs,l(t) (9.9)

Here N is a power of 2 representing the number of data points in the time
series. By x0 we denote the coarsest approximation of the signal. The coeffi-
cients cs,l are considered as features obtained from wavelet transform. The WT
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features can be derived by a procedure of averaging and differencing applied
on a finite signal, as illustrated in the following example.

Assume a finite time series x = [2, 5, 8, 9, 7, 4, −1, 1]. We now want to
express the signal into the form of (9.9) using Haar basis. This can be achieved
with three steps below.

Step 1: Perform averaging and differencing at the level corresponding to
s = 1 such that

x = [2 + 5, 8 + 9, 7 + 4,−1 + 1, 2 − 5, 8 − 9, 7 − 4,−1 − 1]/√
2 = [7, 17, 11, 0,−3,−1, 3,−2]

√
2

Here we obtain the WT features in the highest frequency subband

WF (1) = [c1,0, c1,1, c1,2, c1,3] = [−3,−1, 3,−2]/
√

2

, which reflects the changing rates of the signal within every two sampling
periods in the time dimension.

Step 2: Perform averaging and differencing at the level corresponding
to s=2 such that

x =
[
7 + 17√

2
,
11 + 0√

2
,
7 − 17√

2
,
11 − 0√

2
,−3,−1, 3,−2

]
/√

2 =
[

24√
2
,

11√
2
,
−10√

2
,

11√
2
, −3,−1, 3,−2

]/√
2

Here we obtain the WT features in the medium frequency subband

WF (2) = [c2,0, c2,1] =
[−10√

2
,

11√
2

]/√
2 = [−5.00, 5.50]

, which reflects the changing rates of the signal within every four sampling
periods in the time dimension.

Step 3: Perform averaging and differencing at the level corresponding to
s=3 such that

x =

[
24 + 11(√

2
)2 ,

24 − 11(√
2
)2 ,

−10√
2

,
11√

2
,−3,−1, 3,−2

]

/√
2 =

[
35
2

,
13
2

,
−10√

2
,

11√
2
,−3,−1, 3,−2

]
/√

2 ≈ [12.4, 4.60,−5.00, 5.50,−2.12,−0.707, 2.12,−1.41]

Here we obtain the WT features in the lowest frequency subband

WF (3) = [c3,0] =
[
13
2

]/√
2 = [4.60]
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, which reflects the changing rate of the signal in the whole duration of eight
sampling periods.

With the above example we understand that the WT coefficients can be
divided into different frequency subbands, each of which reflects how fast the
signal increases or decreases its values in the corresponding frequency. The
total number of coefficients is equal to N/2 + N/4 + Λ + 1 = N − 1, which
is almost the same as the length of the time series N . In order to get a
reduced number of features for case indexing, common practices so far are
to choose a dominant coefficient as representative of the subband [36] or to
derive statistic values from each frequency subband [50]. Such methods work
well with relatively short time series exhibiting simple dynamics. However,
considering that WT coefficients themselves constitute a dynamic time series
in a frequency subband, how to extract complete and compact information to
characterize lengthy, time-varying subbands is still an unresolved issue.

9.2.2 The Proposal of Hybridizing Symbolization
and Knowledge Discovery

As was noted in Sect. 9.2.1, traditional methods for feature extraction suffer
from some drawbacks, such as undesired large number of features as well as
the risk of loss of temporal relationship, when they are applied to complex,
longitudinal series of measurements. The reason for this can be attributed to
the primary representation of time series based on which features are derived.
The data streams utilized are data rich but poor in information content. They
only record measurements at every sampling point whereas contain no gen-
eralized descriptions of how the data in series evolve with the time. Pure
signal processing and mathematical manipulations do not suffice to ensure
the derivation of concise and complete dynamic information from primary
sampling point-based data records.

The solution we propose in this chapter is to convert the sampling point-
based representation of the time series into an interval-based representation.
An interval consists of a set of consecutive sampling points and thus encom-
passes multiple sampling periods in the time dimension. Then data within an
interval have to be generalized and aggregated into one symbolic value; the
symbolization is conducted via discretization of the range for possible values
of the signal. By doing this, the primary time series is now transformed into a
symbolic series associated with intervals. Symbolization of primary numerical
(usually real valued) time series signals brings the following merits:

1. Symbolic series are shorter in length and more intensive in information
content (every symbol is considered as a generalization of the signal
behavior in the associated interval), while much of the important tem-
poral information is still retained.

2. Symbolic series facilitate higher computational efficiency; require less com-
putational resource and memory space.
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3. Symbolic data are more robust, less sensitive to measurement noises, and
also enhance human understanding.

4. With symbolic time series data, it is relatively easier to apply data mining
and knowledge discovery methods, algorithms, and tools to find novel,
interesting knowledge, and patterns [12], which would in turn help better
indexing and characterization of time series cases.

After a numerical signal has been converted into symbolic series, we have to
focus on transitions of symbols in it rather than single symbolic values for
interpreting and characterizing the series. This is supported by the fact that
behaviors in dynamic processes are reflected from transitional patterns over
time and occurrences of certain sequences are believed to be significant ev-
idences to identify properties of sequential records. For instance, in medical
domains, sequence of symptoms of patients are crucial for diagnosis by physi-
cians, and frequently conditional changes with patients are more important
than their static states within single time intervals. Deciding key sequences
for case characterization is domain dependent. We need knowledge acquisition
and discovery to find knowledge about key sequences when it is not known in
advance.

The process of knowledge discovery for key sequences is highlighted in
Fig. 9.2. It first entails converting the original database of numerical time series
into a database of symbolic ones by means of symbolization. Subsequently the
symbolic database with classified series is delivered as input to the knowledge
discovery module, which then searches for qualified sequences in the space of
all possible sequences. All competent sequences are to be picked up into the
library of key sequences as final results.

Once the knowledge about key sequences has been made available, they are
utilized as reference to capture important contents in a time series of query.
This is shown in Fig. 9.3. The symbolic series transformed from the numerical
one is checked thoroughly to detect any occurrences of key sequences stored in

Database of
numerical
time series

Database of
symbolic

time series

Symbolization

Knowledge
Discovery

Space of
all possible
sequences

Library of
key sequences

Fig. 9.2. Knowledge discovery to find key sequences
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Detection
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key sequences

Numerical
signal

Symbolic
series

Detected
occurrences

Numerical
case index

Fig. 9.3. Detection of key sequences in a time series

the key sequence library. Then the information derived about whether a key
sequence has occurred and with how many times is made use of for building
a numerical case index. This case index is concise since it only considers
appearances of key sequences while ignoring other trivial randomness. Various
ways to construct such case indexes will be addressed with details in Sect. 9.5.

At this point we can summarize the road map of our suggested solution as

Numericaltimeseries −→ Symbolictimeseries −→ Numericalcaseindex

Symbolization is performed as an intermediate stage to create symbolic expres-
sions of cases which are more abstract and information intensive to facilitate
knowledge discovery. Key sequences found by knowledge discovery capture the
most significant transitions in a signal to identify its property. Finally case
indexing in terms of key sequences creates compact descriptions of cases by
quantifying influences of key sequences occurrences into numerical values.

9.3 Transformation into Symbolic Time Series

As noted before, symbolization of original numerical time series is a prestep
for performing knowledge discovery to find key sequences. Fortunately many
previous studies have shown that it is feasible to do so. Various approaches
to making such transformation have been reported in the literature and they
will be briefly outlined in this section.

9.3.1 Defining Symbols

Defining appropriate symbols is the first task to conduct during symbolization
of signals. It involves partitioning the range of possible values of measurements
into a set of regions. Each region corresponds to a specific symbol and each
measurement value is thus uniquely mapped into the symbol of the region
in which it falls in. The number of regions (symbols) reflects the level of
resolution for the information that is retained. A low number of regions implies
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coarse discrimination of measurement details yet reduced problem space as
well as improved efficiency in computation. On the other hand, increased
number of regions preserves deeper information details whereas causes higher
sensitivity to measurement noise at the same time. There are hence trade-
offs between different criteria to account for when making decisions about the
number of regions.

After fixing the number of regions, we have to select locations of these
partitions to reach satisfactory results. Sensitivity of the results to the way
of locating regions also has to be evaluated. In [10] authors proposed a the-
oretical approach to choosing optimal locations of partitions for noise-free,
deterministic processes. However, selecting theoretically optimal partitions is
hardly possible for practical sensor measurements. The reason is that the sen-
sor data are expected to be produced from practical, uncertain processes with
hidden dynamics and unknown characteristics of noise, such that a universally
strict optimization method does not exist. In practice problem dependent ad
hoc techniques are widely employed to determine suitable ways to partition
sensor measurements.

In some cases partitioning can be conducted according to the context of
the problem provided that the underlying physics betrays a natural choice for
granulation. This means the situations where systems in consideration involve
dynamics with natural borderlines dividing system states into distinct physical
areas. For example, in neurobiological and chemical systems, there is often an
excitability threshold above which oscillations will be activated [8,24]. Natural
partitioning based on problem context gives a means of accommodating phys-
ical knowledge and makes meaningful results easy for human understanding.

In most of other cases traditional methods are to use data mean, midpoint,
or median, equal-sized regions, or regions with equal probability to divide the
whole range of sensor measurements. In [48] binary symbols corresponding
to regions separated by sample median were adopted for reconstruction of
dynamics of nonlinear models in light of existing heavy noise. Equal-sized
partitions were developed by [18] in dealing with EEG signals. Kim and his
colleagues [27] used combinations of sample mean and standard deviations
to define regions when analyzing heart-rate dynamics. Finally symbols with
equal probability were addressed in [14] by dividing the whole data range into
regions in which observation values have identical likelihood to fall.

9.3.2 Symbolic Approximation

The method of symbolic approximation was proposed in [43] with the aim to
convert a primary real-valued time series into a condensed symbolic sequence
of much shorter length. In doing this the whole duration of the signal is divided
into equally sized intervals, i.e., each interval encompasses the same amount
of sampling periods. The data in each interval is averaged into a mean value,
thus creating a sequence of real numbers summarizing signal behaviors in
consecutive time intervals. We term this sequence as PAA (piecewise aggregate
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approximation) representation of the original signal. Then the PAA sequence
is further transformed into a symbolic form by mapping the real numbers in
it into corresponding symbols.

To be more concrete, PAA is performed to convert a real-valued time series
(primary sensor signal) C = [c1, c2, . . . , cn] into a shorter sequence C̃ =
[c̃1, c̃2, . . . , c̃w] (w < n). The element c̃i in C̃ represents the mean value of
the data collected during the ith interval, thus it is given by

c̃i =
w

n

n
w i∑

j= n
w (i−1)+1

cj (9.10)

where w is the total number of time intervals. PAA creates a substantial
data reduction by aggregating signal values within intervals into single values.
The PAA sequence, as an intermediate representation, is visualized in Fig. 9.4
where the original signal is approximated by pieces of horizontal segments
reflecting the signal’s average levels during respective time intervals.

After the PAA sequence C̃ is obtained, it has to be transformed into a
symbolic sequence Ĉ = [ĉ1, ĉ2, . . . , ĉw] via symbolization. This entails dis-
cretization of the range of signal values into a set of nonoverlapping regions.
According to [43] it is desirable to define regions (symbols) with equiproba-
bility [3, 31]. The equal probability of symbols demands that the ordered list
of breakpoints B = β1, β2, . . . , βr−1 separating regions be defined in such a
way that

∫ βi+1

βi

p(x)dx =
1
r

(9.11)

β0 = −∞, βr = ∞

holds for any i ∈ {0, 1, . . . , r − 1}, where r is the number of symbols and by
p(x) we denote the probability density function of measured values.

Fig. 9.4. PPA sequence approximating an original signal [43]
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Table 9.1. The breakpoints when measurements subject to Gaussian distribution
N(0,1)

Symbol
number

β1 β2 β3 β4 β5 β6 β7 β8 β9

3 −0.43 0.43

4 −0.67 0 0.67

5 −0.84 −0.25 0.25 0.84

6 −0.97 −0.43 0 0.43 0.97

7 −1.07 −0.57 −0.18 0.18 0.57 1.07

8 −1.15 −0.67 −0.32 0 0.32 0.67 1.15

9 −1.22 −0.76 −0.43 −0.14 0.14 0.43 0.76 1.22

10 −1.28 −0.84 −0.52 −0.25 0 0.25 0.52 0.84 1.28

Specifically, for sensor measurements subject to the Gaussian distribution
N(0,1), the values of these breakpoints are given in Table 9.1 where the number
of symbols ranges from 3 to 10.

Once the breakpoints for separation of regions are fixed, the symbolic
sequence Ĉ = [ĉ1, ĉ2, . . . , ĉw] can be obtained from the intermediate PAA
sequence C̃ = [c̃1, c̃2, . . . , c̃w] by using the following rule:

ĉi = alphaj iff βj−1 ≤ ci ≤ βj (9.12)

where alphaj denotes the symbol assigned to the jth region bounded by βj−1

and βj.

9.3.3 Temporal Abstraction

Temporal abstraction is an artificial intelligence technique first proposed
by [45] to solve data interpretation tasks. The goal is to derive high level
generalization from time-stamped representations of time series to evolve to-
ward interval-based representations. Basically this is achieved by aggregating
adjacent events exhibiting a common behavior overtime into a generalized
concept. Through temporal abstraction, large amounts of temporal data in
primary, longitudinal signals can be compressed into compact, abstract, and
more meaningful descriptions in the form of series of symbolic values.

Basic temporal abstraction seems sufficient to derive symbolic time se-
ries data in the context of this chapter. The ontology for basic temporal ab-
straction is depicted in Fig. 9.5 which includes state abstraction and trend
abstraction. The former focuses on the measured values themselves to extract
intervals associated to qualitative concepts such as low, normal, and high,
while the latter considers differences between two neighboring records to de-
tect specific patterns like increase, decrease, and stationarity in the series. If
differences between consecutive measurements are treated as data for a new
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Fig. 9.5. Ontology of basic temporal abstraction

series, trend abstraction is equivalent to applying state abstraction to the
secondary series of differences derived from the original series of measured
values.

The regions associated with qualitative concepts are to be defined before-
hand through discretization of the range of measured values for state abstrac-
tion or the range of difference values for trend abstraction. The essential thing
to do in abstraction is merging adjacent entities falling in the same region into
a cluster and summarizing behaviors in this cluster with a concept (symbol)
corresponding to the region. Then, arranging concepts of clusters according to
the order of their appearances produces a required symbolic series. This new
series is compact, abstract, and contains more meaningful information than
the primary one.

Temporal abstraction was applied successfully to intelligent analysis of lon-
gitudinal data series gathered from monitoring of chronic patients, as reported
in [6]. This work, for instance, analyzed and abstracted body temperature pro-
files in terms of the concepts of low, normal, high, and very high. At the same
time the trend for temperature changes were identified as stationarity, in-
crease, or decrease. A simple example given in [6] to illustrate abstractions of
body temperatures is shown in Fig. 9.6.

9.3.4 Phase-Based Pattern Identification

In some cases a longitudinal signal consists of a series of phases and every
phase has its physical significance to identify its property (pattern) alone.
This motivates us to divide the whole signal profile into pieces of subsignals
and each of which corresponds to a phase. Since subsignals are assumed to
be relatively short and simple, conventional signal processing methods like
Fourier or wavelet transforms can be applied to them for extracting features
and classifying their patterns. Further, arranging patterns of subsignals in
order of their appearances creates a symbolic series as compact and abstract
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Fig. 9.6. A simple example for temporal abstractions on body temperatures [6]

representation for the overall signal. Each symbol in this series signifies the
pattern of a subsignal corresponding to a phase. We refer the method stated
above as phase-based pattern identification.

This method is used in one of our AI projects related to stress medi-
cine [35], where RSA signals obtained from patients are employed to classify
their stress levels. A patient is usually tested through a series of 40–80 breath-
ing cycles (including inhalation and exhalation). Every respiration cycle lasts
on average 5–15 s and corresponds to either a normal breathing pattern or
one of the dysfunctional patterns. The patterns of breathing (also called RSA
patterns) are identified from RSA measurements in the respective respiration
periods. Further patterns from consecutive breathing cycles constitute a sym-
bolic time series, which is to be investigated to find information reflecting
stress levels of patients.

An overview of the stress medicine project is depicted in Fig. 9.7. First
the RSA signal measured during the whole test period is decomposed into a
collection of subsignals. By subsignal i in Fig. 9.7 we denote the phase of the
signal recorded for the ith breathing cycle. Each subsignal i is delivered to
the block “signal classifier,” where wavelet analysis and CBR are applied to
decide upon its pattern [35]. The identified patterns are then composed into
a symbolic series in terms of their appearance order for classifying categories
concerning stress levels.
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Fig. 9.7. An overview of the stress medicine project

9.4 Knowledge Discovery on Symbolic Time Series
Representations

Once a numerical signal has been converted into a symbolic series, it is cru-
cial to get awareness of which parts in the series make sense while others are
ignorable. This entails discovering knowledge about key sequences for an un-
derlying domain. Key sequences help better interpret and characterize time
series at hand to capture real nature of dynamic systems

Indeed the value of knowledge about key sequences has been made ob-
vious in many application scenarios. For instance, in health monitoring of
engineering equipments, original sensor readings can be converted into dis-
crete symbols [41], and some critical changes in series of measurements like
swell, sag, impulsive transients, might be signs indicating a present or poten-
tial anomaly. In telecommunications, useful information can be obtained from
sequences of alarms produced by switches for analysis and prediction of net-
work faults. In defense, sequences of deployments/actions of enemies would
possibly betray their tactical intentions. Finally, in a medical scenario, a data
sequence of symptoms exhibited on a patient may help to forecast a disease
that follows the emerging symptoms.

9.4.1 Problem Statements

To clearly present the proposed knowledge discovery approach, we now give
descriptions of the various terms and concepts that are related. We start
from formal definitions of symbolic time series, sequences, and time series
databases, and then we precisely formulate the problem this section aims to
tackle.
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Definition 1. A symbolic time series is a series of symbols signifying events
that occurred sequentially overtime, X = [x(1), x(2), . . . , x(i), . . . , x(w)], where
i indexes an time segment corresponding to symbolic value x(i).

In a general sense, a symbolic series in Definition 1 can be either a conver-
sion from a numerical signal or a recording of discrete events that happened
sequentially in nature. In the remaining of this chapter we refer time series to
only symbolic ones given no special notes.

Moreover, every time series has an inherent class. The previous time series
data are assumed to have been classified and they are stored in a database
together with their associated classes to facilitate data mining. A definition
of time series database in the context of classification is given as follows:

Definition 2. A time series database is a set of pairs {(Xi, Zi)}K
i=1, where

Xi denotes a time series, Zi the class assigned to Xi, and K is the number
of time series cases in the database.

With a time series database at hand, the data mining process involves
analyzing sequences that are included in the database. A sequence of a time
series is formally described in Definition 3.

Definition 3. A sequence S of a time series X = [x(1), x(2), . . . , x(w)] is a
list consisting of elements taken from contiguous positions of X, i.e., S =
[x(k), x(k + 1) , . . . , x(k + m − 1)] with m ≤ w and 1 ≤ k ≤ w − m + 1.

Usually there is a very large amount of sequences included in the time
series database. But only a part of them that carry useful information for
estimating classes are in line with our interest. Such sequences are referred to
as indicative sequences and defined in the following:

Definition 4. A sequence is regarded as indicative given a time series data-
base provided that:

(1) It appears in a sufficient amount of time series profiles of the database
(2) The discriminating power of it, assessed upon the database, is above a

specified threshold

A measure for discriminating power together with the arguments that lie
behind this definition will be elaborated in Sect. 9.4.2. The intuitive explana-
tion is that an indicative sequence is such a one that, on one hand, appears
frequently in the database, and on the other hand, exhibits high cooccurrence
with a certain class.

Obviously, if a sequence is indicative, another sequence that contains it as
subsequence may also be indicative for predicting the class. However, if these
both are indicative of the same class, the second sequence is considered as re-
dundant with respect to the first one because it conveys no more information.
Redundant sequences can be easily recognized by checking possible inclusion
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between sequences encountered. The goal here is to find sequences that are
not only indicative but also nonredundant and independent of each other.

Having given necessary notions and clarifications we can now formally
define our problem to be addressed as follows:

Given a time series database consisting of time series profiles and asso-
ciated classes, find a set of indicative sequences {S1 , S2 , . . . , Sp} that satisfy
the following two criteria:

(1) For any i, j ∈ {1 , 2 , . . . , p} neither Si ⊆ Sj nor Sj ⊆ Si if Si and Sj are
indicative of a same class

(2) For any sequence S that is indicative, S ∈ {S1 , S2 , . . . , Sp} if S is not
redundant with respect to Sj for any j ∈ {1, 2, . . . , p}
The first criterion above requests compactness of the set of sequences

{S1 , S2 , . . . , Sp} in the sense that no sequence in it is redundant by hav-
ing a subsequence indicative of the same class as it. A sequence that is both
indicative and nonredundant is called a key sequence. The second criterion
further requires that no single key sequence shall be lost, which signifies a
demand for completeness of the set of key sequences to be discovered.

9.4.2 Evaluation of Single Sequences

This section aims to evaluate individual sequences to decide whether one
sequence can be regarded as indicative. The main thread is to assess the dis-
criminating power of sequences in terms of their cooccurrence relationship
with possible time series classes. In addition we also illustrate the importance
of sequence appearing frequencies in the case base for ensuring reliable assess-
ments of the discriminating power.

We assume that given a sequence S there are a set of probable consequent
classes {C1, C2, . . . , Ck}. The strength of the cooccurrence between sequence
S and class Ci(i = 1 . . . k) can be measured by the probability, p(Ci|S), of
Ci conditioned upon S. Sequence S is considered as discriminative in pre-
dicting outcomes as long as it has a strong cooccurrence with either of the
possible classes. The discriminating power of S is defined as the maximum of
the strengths of its relations with probable consequent classes. Formally this
definition of discriminating power PD is expressed as:

PD(S) = max
i=1...k

P (Ci|S) (9.13)

In addition we say that the class yielding the maximum strength of the
cooccurrences, i.e., C = arg

i=1...k
max P (Ci|S), is the class that sequence S is

indicative of.
The conditional probabilities in (9.13) can be derived according to the

Bayesian theorem as:

P (Ci|S) =
P (S|Ci)P (Ci)

P (S)
(9.14)
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As the probability P (S) is generally obtainable by

P (S) = P (S|Ci)P (Ci) + P (S|Ci)P (Ci) (9.15)

(9.14) for conditional probability assessment can be rewritten as

P (Ci|S) =
P (S|Ci)P (Ci)

P (S|Ci)P (Ci) + P (S|Ci)P (Ci)
(9.16)

Our aim here is to yield the conditional probability P (Ci|S) in terms of (9.16).
As P (Ci) is a priori probability of occurrence of Ci which can be acquired from
domain knowledge or approximated by experiences with randomly selected
samples, the only things that remain to be resolved are the probabilities of S
in (time series) cases having class Ci and in cases not belonging to class Ci,
respectively. Fortunately such probability values can be easily estimated by
resorting to the given case base. For instance we use the appearance frequency
of sequence S in class Ci cases as an approximation of P (S|Ci), thus we
have:

P (S|Ci) ≈ N(Ci,S)
N(Ci)

(9.17)

where N(Ci) denotes the number of cases having class Ci in the case base
and N(Ci, S) is the number of cases having both class Ci and sequence S.
Likewise the probability P (S|Ci) is approximated by

P (S|Ci) ≈ N(Ci,S)

N(Ci)
(9.18)

with N(Ci) denoting the number of cases not having class Ci and N(Ci, S)
being the number of cases containing sequence S but not belonging to
class Ci.

The denominator in (9.16) has to stay enough above zero to enable
reliable probability assessment using the estimates in (9.17) and (9.18). Hence
it is crucial to acquire an adequate amount of time series cases containing
S in the case base. The more such cases available the more reliably the
probability assessment could be derived. For this reason we refer the quan-
tity N(S) = N(Ci, S) + N(Ci, S) as evaluation base of sequence S in this
chapter.

At this point we realize that two requirements have to be satisfied for be-
lieving a sequence to be indicative of a certain class. Firstly the sequence has
to possess an adequate evaluation base by appearing in a sufficient amount
of time series cases. Obviously a sequence that occurred randomly in few oc-
casions is not convincing and can hardly be deemed significant. Secondly, the
conditional probability of that class under the sequence must be dominatingly
high, signifying a strong discriminating power. These explain why indicative
sequence is defined by the demands on its appearance frequency and discrim-
inating power in Definition 4.



9 Extracting Knowledge from Sensor Signals for Case-Based Reasoning 267

In real applications two minimum thresholds need to be specified for the
evaluation base and discriminating power, respectively, to judge sequences as
indicative or not. The values of these thresholds are domain dependent and
are to be decided by human experts in the related area. The threshold for
discriminating power may reflect the minimum probability value that suffices
to predict a potential outcome in a specific scenario. The threshold for the
evaluation base indicates the minimum amount of samples required to fairly
approximate the conditional probabilities of interest. This threshold value can
be estimated in terms of the distribution of cases in classes in the case library
as well as their prior probabilities. It is shown in the following.

Let δ > 0 be the smallest distance for the denominator in (9.16) to remain
sufficiently away from zero, we demand

N(Ci, S)
N(Ci)

P (Ci) +
N(Ci, S)
N(Ci)

P (Ci) ≥ δ (9.19)

Further the above relation has to hold for every class Ci to ensure reliable
assessments of conditional probabilities for all the classes given sequence S.
Next the lower bound for the left side of inequality (9.19) is yielded by

N(Ci, S)
N(Ci)

P (C) +
N(Ci, S)
N(Ci)

P (Ci) ≥ N(Ci, S)P (Ci) + N(Ci, S)P (Ci)
max[N(Ci), N(Ci)]

≥ [N(Ci, S) + N(Ci, S)] • min[P (Ci), P (Ci)]
max[N(Ci), N(Ci)]

=
min[P (Ci), P (Ci)]
max[N(Ci), N(Ci)]

N(S)

(9.20)

Since this lower bound not being less than δ is a sufficient condition for sat-
isfaction of inequality (9.19), we simply impose constraints on the evaluation
base N(S) as given by

N(S) ≥ max[N(Ci), N(Ci)]
min[P (Ci), P (Ci)]

• δ ∀i (9.21)

Herewith it is clearly seen that the threshold value for the evaluation base can
be defined as the minimum number of N(S) that satisfies all the constraints
in (9.21) for every class Ci. Finally only those sequences that pass thresholds
for both discriminating power and evaluation base are evaluated as indicative
ones.

9.4.3 Searching for Key Sequences

With the evaluation of sequences being established, we now turn to exploration
of qualified sequences in the problem space. The goal is to locate all key
sequences that are nonredundant and indicative. We first detail a sequence
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[  ] 

[ a ] [ b ] [ c ] 

[ ab ] [ ac ] [ ba ] [ bb ] [ bc ] [ ca] [ aa ] [ cb ] [ cc ] 

Fig. 9.8. The state space for sequences with three symbols

search algorithm for this purpose in this section and then we demonstrate
simulation results on a synthetic case base with the proposed algorithm in
Sect. 9.4.4

Discovery of key sequences can be considered as a search problem in a
state space in which each state represents a sequence of symbols. Connection
between two states signifies an operator between them for transition, i.e.,
addition or removal of a single symbol in time sequences. The state space for
a scenario with three symbols a, b, c is illustrated in Fig. 9.8, where an arc
connects two states if one can be created by extending the sequence of the
other with a following symbol.

A systematic exploration in the state space is entailed for finding a com-
plete set of key sequences. We start from a null sequence and generate new
sequences by adding a single symbol to parent nodes for expansion. The child
sequences are evaluated according to evaluation bases and discriminating pow-
ers. The results of evaluation determine the way to treat each child node in
one of the following three situations:

(a) If the evaluation base of the sequence is under a threshold required for con-
veying reliable probability assessment, terminate expansion at this node.
The reason is that the child nodes will have even smaller evaluation bases
by appearing in fewer cases than their parent node.

(b) If the evaluation base and discriminating power are both above their re-
spective thresholds, do the redundancy checking for the sequence against
the list of key sequences already identified. The sequence is redundant if
at least one known key sequence constitutes its subsequence while both
remaining indicative of the same consequent. Otherwise the sequence is
considered nonredundant and hence is stored into the list of key sequences
together with the consequent it indicates. After that this node is further
expanded with the hope of finding, among its children, qualified sequences
that might be indicative of other consequents.
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(c) If the evaluation base is above its threshold whereas the discriminating
power still not reaching the threshold, continue to expand this node with
the hope of finding qualified sequences among its children.

The expansion of nonterminate nodes is proceeded in a level-by-level fashion.
A level in the search space consists of nodes for sequences of the same length
and only when all nodes at a current level have been visited does the algorithm
move on to the next level of sequences having one more symbol. This order of
treating nodes is very beneficial for redundancy checking because a redundant
sequence will always be encountered later than its subsequences including the
key one(s) during the search procedure.

From a general structure, the proposed sequence search algorithm is a
little similar to the traditional breadth-first procedure. However, there are still
substantial differences between both. The features distinguishing our search
algorithm are (1) it does not attempt to expand every node encountered and
criteria are established to decide whether exploration needs to be proceeded
at any given state and (2) it presumes multiple goals in the search space and
thus the search procedure is not terminated when a single key sequence is
found. Instead the search continues on other prospective nodes until none of
the nodes in the latest level needs to be expanded. A formal description of
the proposed search algorithm is given as follows:

Algorithm for finding a complete set of key sequences

1. Initialize the Open list with an empty sequence.
2. Initialize the Key List to be an empty list.
3. Remove the most left node t from the Open list.
4. Generate all child nodes of t
5. For each child node, C(t), of the parent node t

a) Evaluate C(t) according to its discriminating power and evalua-
tion base;

b) If the evaluation base and discriminating power are both above their
respective thresholds, do the redundancy checking for C(t) against the
sequences in the Key list. Store C(t) into the Key list if it is judged
as not redundant. Finally put C(t) on the right of the Open list.

c) If the evaluation base of C(t) is above its threshold but the discrimi-
nating power is not satisfying, put C(t) on the right of the Open list.

6. If the Open list is not empty go to step 3, otherwise return the Key list
and terminate the search.

Finally it bears mentioning that finding key sequences in our context differs
from those [2, 13, 46] in the literature of sequence mining. Usually the goal
in sequence mining is merely to find all legal sequential patterns with their
frequencies of appearances above a user-specified threshold. Here we have
to consider the cause-outcome effect for classification purpose. Only those
nonredundant sequences that are not only frequent but also possess strong
discriminating power will be selected as the results of search.
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Table 9.2. Sequences discovered on a synthetic case base

Sequence
discovered

Discriminating power% Evaluation base Dominating
consequent

[a d c] 76.70 103 Class 1
[b c a] 78.22 101 Class 1
[d e b] 73.39 124 Class 2
[e a e] 83.18 107 Class 3

9.4.4 Simulation Results

To verify the feasibility of the mechanism addressed above we now present the
simulation results on a synthetic case base. A case in this case base is depicted
by a time series of 20 symbols and one diagnosis class as the outcome. A
symbol in a time series belongs to {a, b, c, d, e} and a diagnosis class is either
1, 2, or 3. The four key sequences assumed are [a d c], [b c a], [d e b], and [e a e].
The first two sequences were supposed to have strong cooccurrences with class
1 and the third and fourth exhibit strong cooccurrences with classes 2 and 3,
respectively. Each time series in the case base was created in such a way that
both sequences [a d c] and [b c a] had a chance of 80% of being reproduced
once in the time series cases of class 1 while sequences [d e b] and [e a e] were
added into class 2 and class 3 cases, respectively, with a probability of 90%.
After stochastic reproduction of these key sequences, the remaining symbols
in the time series of all cases were generated randomly. The whole case base
consists of 100 instances for each class. Presuming such time series cases to
be randomly selected samples from a certain domain, a priori probability of
each class is believed to be one-third.

The sequence search algorithm was applied to this case base to find key
sequences and potential cooccurrences hidden in the data. The threshold for
the discriminating power was set at 70% to ensure an adequate strength of the
relationships discovered. We also specified 50 as the threshold of the evaluation
base for reliable assessment of probabilities. The sequences found in our test
are shown in Table 9.2 below.

As seen from Table 9.2 we detected all the four key sequences previously
assumed. They were recognized to potentially cause the respective consequents
with the probabilities ranging from 73.39 to 83.18%. These relationships with
a degree of uncertainty are due to the many randomly generated symbols
in the case base such that any sequence of symbols is more or less probable
to appear in time series of any class. But such nondeterministic property is
prevalent in many real-world domains.

9.5 Utility of Key Sequences in Case-Based Classification

The key sequences discovered help us better focus on the most important
dynamic patterns while ignoring trivial randomness in examining a time se-
ries. They are treated as significant features in capturing dynamic system



9 Extracting Knowledge from Sensor Signals for Case-Based Reasoning 271

behaviors. Rather than enumerating what happened in every consecutive time
segment, we can now more concisely represent a time series case in terms of
occurrences of key sequences in it. Let {S1 , S2 , . . . , Sp} be the set of key
sequences. We have to search for every Si(i = 1 . . . P ) in a time series X to
detect all possible appearances. Then case index for X can be established ac-
cording to the results of key sequence detection. In the following four alternate
ways to index X based on key sequences are suggested.

9.5.1 Naive Case Index

A naive means of indexing a time series case X is to depict it by a vector of
binary numbers each of which corresponds to a key sequence. A number in
the vector is unity if the corresponding sequence is detected in X and zero
otherwise. This means that, by the naive method, the index of X is given by

Id1(X | S1, . . . , SP ) = [b1, b2, . . . , bP ] (9.22)

where

bi =
{

1 if Si is subsequence of X
0 otherwise

(9.23)

This index has the merit of imposing low demand in computation. It also en-
ables the similarity between two cases to be calculated as the proportion of the
positions where their indexing vectors have identical values. Suppose two time
series cases X1 and X2 which are indexed by binary vectors [b11 , . . . , b1P ] and
[b21 , . . . , b2P ], respectively, the similarity between them is simply defined as

Sim1(X1, X2) = 1 − 1
P

∑P

j=1
|bij − b2j | (9.24)

9.5.2 Case Index Using Sequence Appearance Numbers

With a binary structure the case index in Sect. 9.5.1 carries a little limited
content and would be usable only in relatively simple circumstances. A main
reason is that the index cannot reflect how many times a key sequence has
appeared in a series of consideration. To incorporate that information, an
alternate way is to directly employ the numbers of appearances of single key
sequences in describing time series cases. By doing this we acquire the second
method of indexing time series X by an integer vector as

Id2(X | S1, . . . , SP ) = [f1, f2, . . . , fP ] (9.25)

where fi denotes the number of occurrences of sequence Si in series X.
Further, considering the case index in (9.25) as a state vector, we use

the cosine matching function [44] as the similarity measure between two time
series cases X1 and X2. Thus we have
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Sim2(X1, X2) =

∑P
j=1 f1jf2j√∑P

j=1 f2
1j

√∑P
j=1 f2

2j

(9.26)

with f1j, f2j denoting the numbers of occurrences of key sequence Sj in X1

and X2, respectively.

9.5.3 Case Index in Terms of Discriminating Power

Although the case index in (9.25) can distinguish two cases having a same key
sequence but with different numbers of appearances, it still might not be an
optimal representation to capture the exact nature of the problem. Recall that
the value of a key sequence is conveying a degree of confidence in the sense
of discriminating power for predicting a potential consequent, a time series
X would be more precisely characterized by the discriminating powers of the
appearances of single key sequences. Intuitively two times of occurrences of
a key sequence would give a stronger discriminating power than occurring
just once, but not twice in the quantity of the strength. From view of this we
suggest indexing X as a vector of real numbers, representing discriminating
powers for the appearances of single key sequences, as follows:

Id3(X | S1, . . . , SP ) = [g1, g2, . . . , gP ] (9.27)

with

gi =
{

DP (fi ∗ Si) if fi ≥ 1
0 if fi = 0 (9.28)

By DP (fi ∗Si) we denote the discriminating power by sequence Si appearing
fi times in X.

Let C be the class that the key sequence Si is indicative of. We define
the discriminating power DP (fi ∗ Si) as the probability for class C given fi

appearances of sequence Si. This probability can be obtained by applying the
Bayes theorem in a sequential procedure. Assuming a two class problem with-
out loss of generality, this procedure is depicted here by a series of equations
as follows:

P (C
∣∣Si) =

P (Si|C)P (C)
P (Si|C)P (C) + P (Si|C)P (C)

(9.29)

P (C|2 ∗ Si) =
P (Si|C)P (C

∣∣Si)
P (Si|C)P (C

∣∣Si) + P (Si|C)P (C
∣∣Si)

(9.30)

P (C|t ∗ Si) =
P (Si|C)P (C|(t − 1) ∗ Si)

P (Si|C)P (C|(t − 1) ∗ Si) + P (Si|C)P
(
C|(t − 1) ∗ Si

) (9.31)
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DP (fi ∗ Si) = P (C|fi ∗ Si) =
P (Si|C)P (C|(fi − 1) ∗ Si)

P (Si|C)P (C|(fi − 1) ∗ Si) + P (Si|C)P
(
C|(fi − 1) ∗ Si

)
(9.32)

where the probabilities P (Si|C) and P (Si|C) can be estimated according to
(9.17) and (9.18), respectively. The probability updated in (9.29) represents
the probability for class C given one appearance of Si, which is further up-
dated in (9.30) by the second appearance of Si producing a higher probability
considering both occurrences. Generally, the probability P (C|t∗Si) is yielded
by updating the prior probability P (C|(t − 1) ∗ Si) with one more occurrence
of Si in (9.31). Finally we obtain the ultimate probability assessment incor-
porating all appearances, i.e., the required discriminating power, by (9.32).

We now give a concrete example to illustrate how a case index can be
built in terms of occurrences of key sequences. Suppose a two class situation
in which three key sequences S1, S2, and S3 are discovered. Sequence S1

appears twice in time series X and S2 appears once while S3 is not detected.
S1 and S2 are both indicative of a certain class C. The a priori probability
for class C is 50% and the probabilities of sequences S1, S2 in situations of
class C and its complementary are shown below:

P (S1 |C ) = 0.56 P (S1

∣∣C ) = 0.24

P (S2 |C ) = 0.80 P (S2

∣∣C ) = 0.40

With all the information assumed above, the discriminating powers for the
appearances of S1 and S2 are calculated in the following:

1. Calculate the probability for C with the first appearance of S1 by

P (C |S1) =
P (S1 |C)P (C)

P (S1 |C)P (C) + P (S1

∣∣C)P (C)
=

0.56 · 0.5

0.56 · 0.5 + 0.24 · 0.5
= 0.70

2. Refine the probability P (C|S1) with the second appearance of S1, pro-
ducing the discriminating power for the appearances of S1

DP (2 ∗ S1) = P (C |2 ∗ S1) =
P (S1 |C)P (C |S1 )

P (S1 |C)P (C |S1 ) + P (S1

∣∣C)P (C |S1 )

=
0.56 · 0.70

0.56 · 0.70 + 0.24 · 0.30
= 0.8448

It is clearly seen here that the power of discrimination is increased from
0.70 to 0.8448 due to the key sequence occurring for the second time.

3. Derive the discriminating power for the occurrence of S2 by calculating
the conditional probability for C upon S2 as

DP (1 ∗ S2) = P (C |S2) =
P (S2 |C)P (C)

P (S2 |C)P (C) + P (S2

∣∣C)P (C)

=
0.80 · 0.50

0.80 · 0.50 + 0.40 · 0.50
= 0.6667



274 P. Funk and N. Xiong

Moreover, because S3 is not detected in X, there is no discriminating
power for it. Hence we construct the index for this time series case as:

Id3(X |S1 , S2, S3) = [0.8448, 0.6667, 0]

Finally, with this case indexing scheme, we use the cosine function again as
the similarity measure for case retrieval. So the similarity between two time
series X1 and X2 is given by

Sim3(X1, X2) =

∑P
j=1 g1jg2j√∑P

j=1 g2
1j

√∑P
j=1 g2

2j

(9.33)

where g1j and g2j denote the jth elements in the case indexes (9.27) for X1

and X2, respectively.

9.5.4 Case Indexing with Key Sequence Union

In Sect. 9.5.3 cases are indexed according to the discriminating powers of oc-
currences of single key sequences. Such work could be extended by regarding
the key sequences that are indicative of a common class as a collective union.
This view motivates us to group occurrences of key sequences in time series
X into a set of clusters. For every class Ci there is a cluster Vi corresponding
to it. Vi is a collection of events for occurrences of those key sequences that
are indicative of class Ci. The discriminating power of cluster Vi is defined as
the probability of class Ci in light of the events included in the cluster. Hence
we write

DP (Vi) =
{

P (Ci |{ej |ej ∈ Vi } ) if Vi �= Ø
0 if Vi = Ø (9.34)

Further, the discriminating powers of clusters of events representing key se-
quences occurrences are utilized to index a time series case. Hence the index
for time series X is given by

Id4(X | S1, . . . , SP ) = [DP (V1), DP (V2), . . . , DP (VK)] (9.35)

where K denotes the number of classes of interest.
It is clear that the case index in the form of (9.35) is highly concise. It

reduces the length of index vector to the number of classes. This is achieved
by calculating the discriminating power for a union of key sequences that are
consistent. Consequently every component in the vector of (9.35) contains rich
information by fusion of occurrences from multiple key sequences. This pro-
posed case index is valuable for further dimensionality reduction particularly
under the circumstances when the number of key sequences discovered is still
quite large.

Let Vi = {e1, e2,Λ, eT } be a cluster of events of key sequences occurrences
corresponding to class Ci. We now want to obtain the discriminating power of
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cluster Vi by calculating the conditional probability P (Ci|e1, e2,Λ, eT ). This
probability is yielded by exploiting the events ej as evidences for probability
updating in separate steps. At every step we use a single event to revise prior
probabilities according to the Bayes theorem and these updated probability
estimates are then propagated as prior beliefs to the next step. The procedure
of probability updating using events in cluster Vi is depicted by a series of
equations as follows:

P (Ci|e1) =
P (e1|Ci)P (Ci)

P (e1|Ci)P (Ci) + P (e1|Ci)P (Ci)
(9.36)

P (Ci|e1, e2) =
P (e2|Ci)P (Ci |e1 )

P (e2|Ci)P (Ci |e1 ) + P (e2|Ci)P (Ci |e1 )
(9.37)

P (Ci|e1, . . . , ei) =
P (ei|Ci)P (Ci |e1 , . . . , ei−1)

P (ei|Ci)P (Ci |e1, . . . , ei−1) + P (ei|Ci)P (Ci |e1, . . . ei )
(9.38)

p(Ci|e1, . . . , eT ) =
P (eT |Ci)P (Ci |e1 , . . . , eT−1)

P (eT |Ci)P (Ci |e1, . . . , eT−1)+ P (eT |Ci)P (Ci |e1, . . . eT−1 )
(9.39)

where the probabilities P (ei|Ci) and P (ei|Ci) for i ∈ {1, . . . , T} can be esti-
mated according to (9.17) and (9.18), respectively, as ei is considered as the
occurrence of a sequence. The probability updated in (9.36) represents the
probability for class Ci given event e1, which is further updated in (9.37) by
event e2 producing a more refined belief considering both e1 and e2. Gener-
ally the probability P (C|e1, . . . , ei) is yielded by updating the prior probability
P (C|e1, . . . , ei−1) with a new event ei in (9.38). Finally we obtain the ultimate
probability assessment incorporating all available events in (9.39).

At this stage one may question the order in which single events from a
cluster are used to refine probability assessments. This seems a fundamen-
tal issue and involves allocation of events to different steps of a sequential
procedure. Fortunately our study has clarified that the order of events used
in probability updating is completely indifferent. The final probability value
remains constant as long as each piece of event is assigned to a distinct step.
The claims as such are formally based on the following theorems.

Lemma 1. Let {e1, . . . , eT } be a cluster of events representing appearances of
certain key sequences in a time series X. The probability for class C given the
cluster is not affected if two adjacent events exchange their positions in the
order of events used for probability refinements. This means that the relation
P (C|e1, . . . ei, ei+1, . . . , eT } = P (C|e1, . . . ei+1, ei, . . . , eT } holds for i ∈ {1, . . .
T − 1}.
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Proof. For proof of the lemma with the statement that P (C|e1, . . . , ei−1, ei,
ei+1, . . . , eT } = P (C|e1, . . . , ei−1, ei+1, ei, . . . , eT }, we only need to establish
the relation for P (C|e1, . . . , ei−1, ei, ei+1} = P (C|e1, . . . , ei−1, ei+1, ei), which
is equivalent to the lemma.

We start to consider the probability P (C|e1, . . . ei, ei+1} which is acquired
by updating the prior belief P (C|e1, . . . , ei) with a new evidence ei+1, hence
it can be written as

P (C|e1, . . . , ei, ei+1) =
P (ei+1|C)P (C|e1, . . . , ei)

P (ei+1|C)P (C|e1, . . . , ei) + P (ei+1|C)P (C|e1, . . . , ei)
(9.40)

Further the probability P (C|e1, . . . , ei) is formulated by taking P (C|e1, . . . , ei−1)
as its prior estimate such that

P (C|e1, . . . , ei) =
P (ei|C)P (C|e1, . . . , ei−1)

P (ei|e1, . . . , ei−1)
(9.41)

Likewise we obtain

P (C|e1, . . . , ei) =
P (ei|C)P (C|e1, . . . , ei−1)

P (ei|e1, . . . , ei−1)
(9.42)

Combining (9.41) and (9.42) into (9.40) gives rise to a transformed formula-
tion as

P (C|e1, . . . , ei, ei+1)

=
P (ei+1|C)P (ei|C)P (C|e1, . . . , ei−1)

P (ei+1|C)P (ei|C)P (C|e1, . . . , ei−1) + P (ei+1|C)P (ei|C)P (C|e1, . . . , ei−1)
(9.43)

Next we express the conditional probabilities P (ei+1|C), P (ei+1|C), P (ei|C),
P (ei|C) with their Bayes forms by

P (ei+1|C) =
P (C|ei+1)P (ei+1)

P (C)
(9.44)

P (ei+1|C) =
P (C|ei+1)P (ei+1)

P (C)
(9.45)

P (ei|C) =
P (C|ei)P (ei)

P (C)
(9.46)

P (ei|C) =
P (C|ei)P (ei)

P (C)
(9.47)

where P(C) and P (C) denote the initial probability estimates for class C
and its complementary without any events about key sequences appearances.
Using the Bayes forms from (9.44) to (9.47), (9.43) is finally rewritten as
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P (C|e1, . . . , ei, ei+1)

=
P 2(C)P (C|ei+1)|P (C|ei)P (C|e1, . . . , ei−1)

P 2(C)P (C|ei+1)|P (C|ei)P (C|e1, . . . , ei−1) + P 2(C)P (C|ei+1)|P (C|ei)P (C|e1, . . . , ei−1)

(9.48)

Clearly we see from (9.48) that the order between ei and ei+1 has no effect at
all on the probability P (C|e1, . . . , ei, ei+1) assessed. It follows that

P (C|e1, . . . , ei−1, ei, ei+1) = P (C|e1, . . . , ei−1, ei+1, ei) (9.49)

and here from the lemma is proved.
With the lemma justified by the proof above, we further contemplate the

implication of it. This leads to a corollary presented below. ��
Corollary 1. Let {e1, . . . , eT } be a cluster of events representing appearances
of certain key sequences in a time series X. The probability for X in class C
given the cluster is independent of the order according to which single events
e1, e2,..., eT , are used in probability refinements.

The proof of Corollary 1 is obvious. According to the lemma, an element
in a given order of events can be moved to an arbitrary position by repeat-
edly exchanging its position with an adjacent one while not affecting the final
probability assessments. As this can be done to every piece of event, we enable
transitions to any orders of events without altering the estimated value of the
probability.

This corollary is important in providing theoretic arguments allowing for
an arbitrary order of sequences to be used in probability fusion based on the
Bayes theorem. The connotation is that when a key sequence occurred in the
time series does not matter for the case index. Instead only the numbers of
appearances of key sequences affect the likelihoods of classes given respective
occurrence clusters, which are included as components in the case index vector.

Now let us study an illustrative example to better understand how the above
sequential procedure works in derivation of required probabilities using clusters
of events as evidences. Consider a time series X with two probable classes.
Suppose that four key sequences S1, S2, S3, and S4 are detected in X, and
S1, S2 are indicative of class C while S3 and S4 are indicative of the comple-
mentary of C. The a priori probability of class C is 50%, and the probabilities
of sequences S1, S2, S3, and S4 in situations of class C and its complementary
are shown below:

P (S1|C) = 0.56
P (S2|C) = 0.80
P (S3|C) = 0.35
P (S4|C) = 0.18

P (S1|C) = 0.24
P (S2|C) = 0.40
P (S3|C̃) = 0.62
P (S4|C̃) = 0.30

Further we assume that sequence S1 appears twice in X and S2, S3, S4 appear
once, hence the clusters of key sequence occurrences for X are notated as
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V1(X) = {S1, S1, S2} and V2(X) = {S3, S4}. With these three occurrences
detected, the probability of class C is yielded in the following three steps:

Step A1: Update the a priori probability P (C) with the first appearance of
S1 by

P (C|S1) =
P (S1|C)P (C)

P (S1|C)P (C) + P (S1|C)P (C)
=

0.56 · 0.5
0.56 · 0.5 + 0.24 · 0.5

= 0.70

Step A2: Refine the probability updated in step A1 with the second appearance
of S1, thus we have

P (C|S1, S1) =
P (S1|C)P (C|S1)

P (S1|C)P (C|S1) + P (S1|C)P (C|S1)

=
0.56 · 0.70

0.56 · 0.70 + 0.24 · 0.30
= 0.8448

Step A3: Refine the probability updated in step A2 with the occurrence of S2,
and we acquire the final probability assessment taking into account all events by

P (C|S1, S1, S2) =
P (S2|C)P (C|S1, S1)

P (S2|C)P (C|S1, S1) + P (S2|C)P (C|S1, S1)

=
0.80 · 0.8448

0.80 · 0.8448 + 0.40 · 0.1552
= 0.9159

Likewise we calculate the probability P (C|S3, S4) with two steps as follows:
Step B1: Update the prior probability P (C) with occurrence of S3

P (C|S3) =
P (S3|C)P (C)

P (S3|C)P (C) + P (S3|C)P (C)
=

0.62 · 0.5
0.35 · 0.5 + 0.62 · 0.5

= 0.6392

Step B2: Refine the probability updated in step B1 with appearance of S4

P (C|S3, S4) =
P (S4|C)P (C|S3)

P (S4|C)P (C|S3) + P (S4|C)P (C|S3))

=
0.30 · 0.6392

0.18 · 0.3608 + 0.30 · 0.6392
= 0.7470

Finally, with the required probabilities at hand, we can establish the case index
for the time series X as follows

Id4(X|S1, S2, S3, S4) = [DP (V1), DP (V2)]
=
[
P (C|S1, S1, S2), P (C|S3, S4)

]
= [0.9159, 0.7470]

For similarity assessment, we first calculate the dissimilarity between two time
series X1 and X2 as the average of the differences in discriminating powers
over all key sequences clusters
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Dis4(X1, X2) =
1
K

∑K

j=1
|DP (V1j) − DP (V2j)| (9.50)

where V1j and V2j denote the jth clusters of key sequences corresponding to
class Cj, for X1 and X2, respectively. Since the concept of dissimilarity is
opposite to that of similarity, the degree of similarity between X1 and X2 is
simply defined as unity subtracted by the dissimilarity value

Sim4(X1, X2) = 1 − Dis4(X1, X2) (9.51)

9.6 Relation to Relevant Works

Representation and retrieval of sequential sensor measurements as time series
cases have received increasing research efforts during the recent years. The
primary idea is to convert time-varying profiles into somehow simplified and
shorter vectors that still preserve distances between original signals. Fourier
transform and wavelet transform are two commonly used methods for such
a conversion, and their usages for retrieving similar cases to support clinical
decisions and industrial diagnoses have been shown in [33,35,36], respectively.

A more general framework for tackling cases in time dependent domain
was proposed by [34], in which temporal knowledge embedded in cases are rep-
resented at two levels: case level and history level. The case level is tasked to
depict single cases with features varying within case durations, while consecu-
tion of cases occurrences have to be captured in the history level to reflect the
evolution of the system as a whole. It was also recommended by the authors
that, at both of the two levels, the methodology of temporal abstraction [6,45]
could be exploited to derive series of qualitative states or behaviors, which fa-
cilitate easy interpretation as well as pattern matching for case retrieval.

This chapter would be a valuable supplementary to the framework by
Montani and Portinale in the sense that our key sequence discovery approach
can be beneficially applied to the series of symbols abstracted from origi-
nal numerical time series. The point of departure is that, in many practical
circumstances, significant transitional patterns in history are more worthy
of attentions than the states or behaviors themselves associated with sin-
gle episodes. It follows that the key sequences discovered will offer us useful
knowledge to focus on what are really important in case characterization.
Moreover, as the number of key sequences is usually is much smaller than the
number of elements in the series, indexing cases in terms of key sequences
exhibits a further dimensionality reduction from series obtained via temporal
abstraction.

It is worthy noting that the knowledge discovery treated here distinguishes
itself from traditional learning included in a CBR cycle. The retain step in
CBR typically stores a new case in the library or modifies some existing cases
and may contain a number of substeps [1]. Learning therein is therefore case
specific with knowledge stemming directly from newly solved cases. Contrarily,
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in our approach, learning is treated as a background task separated from the
retain step and the whole case library is the input to the knowledge discov-
ery process. Some relevant works combining knowledge discovery and CBR
systems include: genetic-based knowledge acquisition for case indexing and
matching [23], incremental learning to organize a case base [38], exploitation
of background knowledge in text classification [53], and analysis of pros and
cons for explanations in CBR systems [32].

Finding sequential patterns was widely addressed in the literature of se-
quence mining [2,13,46], where the goal was merely to find all legal sequential
patterns with adequate frequencies of appearances. Identifying key sequences
in our context differs from those in sequence mining in that we have to consider
the cause-outcome effect for classification purpose. Only those nonredundant
sequences that are not only frequent but also indicative in predicting outcomes
will be selected.

Finally, time series data mining have gained increasing attention recently.
Three embedding methods were proposed by [16] to transform time series
data into a vector space for classification purpose. Keogh and his colleagues
addressed the issue of dimensionality reduction for indexing large time series
databases [25] and also for fast search in these databases [26]. In [52] a family
of three unsupervised methods was suggested to identify optimal and valid
features given multivariate time series data. Similarity mining in time series
was tackled by [21] and various methods for efficient retrieval of similar time
sequences were discussed in [9, 17, 37, 51]. Algorithms for mining association
rules were handled in [28,40,49] to model and predict time series behaviors in
dynamic systems, and the application of association mining to disclose stock
prices relations in time series was presented in [20].

9.7 Conclusion

This chapter suggests a novel hybrid methodology combining data symbol-
ization and knowledge discovery for analysis and interpretation of complex,
longitudinal signals prevalent in medical and industrial domains. Data symbol-
ization is tasked to transform primary numerical (usually real valued) series of
measurements into shorter, more abstract series of symbolic data. The process
of knowledge discovery is then applied to the case base of converted symbolic
series to find key sequences, which would in turn help better characterizing
and indexing primary numerical sensor signals into a concise case structure.

The knowledge discovery approach proposed utilizes the whole case li-
brary as available resources and is able to find from the problem space all
qualified sequences that are nonredundant and indicative. An indicative se-
quence exhibits a high cooccurrence with a certain class and is hence valuable
in offering discriminative strength for prediction and classification. A sequence
that is both indicative and nonredundant is termed as a key sequence.
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It is shown that the key sequences discovered are highly usable to charac-
terize time series cases in case-based reasoning. The idea is to transform an
original (lengthy) time series into a more concise case structure in terms of
the occurrences of key sequences detected. Four alternate ways to develop case
indexes based on knowledge about key sequences are suggested. The perfor-
mance and applicability of these four case indexing methods are being tested
in practical case studies related to our medical and industrial projects.
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Prototypes and Case-Based Reasoning
for Medical Applications

R. Schmidt, T. Waligora, and O. Vorobieva

Institut für Medizinische Informatik und Biometrie, Universität Rostock

Summary. Already in the early stages of case-based reasoning (CBR) prototypes
were considered as an interesting technique to structure the case base and to fill
the knowledge gap between single cases and general knowledge. Unfortunately, later
on prototypes never became a hot topic within the CBR community. However, for
medical applications they have been used rather regularly, because they correspond
to the reasoning of doctors in a natural way. In this chapter, we illustrate the role of
prototypes by application programs, which cover all typical medical tasks: diagnosis,
therapy, and course analysis.

10.1 Introduction

Cases are the most specialised form of knowledge representation. The knowl-
edge of physicians consists of general knowledge they have read in medical
books and of their experiences in form of cases they have treated themselves
or colleagues have told them about. Not all cases are of the same impor-
tance. Some are typical while others are rather exceptional, e.g. a paediatri-
cian does not remember all his patients with measles, but maybe those with
serious complications or those where his measles diagnosis was surprisingly
wrong. Doctors consider differences between their current patient and typical
or known exceptional cases.

We believe that medical case-based reasoning (CBR) systems should take
the reasoning of doctors into account [1]. Such systems should not only consist
of general medical domain knowledge plus a flat case base, but the case base
should be structured by typical case generalisations called prototypes [2].

Though the use of prototypes had been early introduced in the CBR com-
munity [3,4], their use is still rather seldom. Later on it fell into oblivion and
was brought up again by Bergman in form of generalised cases [5], which are
similar but not identical with the idea of prototypes. While generalised cases
are general or abstract in contrast to concrete cases, prototypes contain the
typical features of a set of cases.
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However, since doctors reason with typical cases anyway, in medical CBR
systems prototypes are a rather common knowledge form, they are used in a
variety of applications, e.g. for diabetes [6], for eating disorders [7], and for
pulmonology [8]. Prototypical images that can be transformed after certain
image processing steps in prototypes are used for the diagnosis of medical
images [9].

A prototype is generalised from a set of single cases. The cases in this set
are very similar to each other or they belong in some other specific way to-
gether and form a sort of class. For example, in a diagnostic system all patients
that are diagnosed as measles patient might be grouped together. Usually,
prototypes have the same structure as cases but have less and more general
features, namely just the typical ones. Sometimes prototypes are defined by
medical experts, sometimes they can be found in literature (e.g. the typical
symptoms for measles), and sometimes they are computed.

The use of case-oriented generalised knowledge presents the opportunity
to structure case bases. Cases can be clustered into groups, prototypical dis-
eases, or schema. Clancey [10] distinguishes between prototypes that represent
specific expressions of diseases or therapies and schema that contain essen-
tial features of diseases or therapies. As Selz [11] characterises a schema as a
description of an entity where at least one part remains vague, the distinc-
tion between prototypes and schema seems to be fluid. We only use the term
prototype and refer to a hierarchy of prototypes where the most general pro-
totypes that contain the most common features are situated on top and the
most specific ones are placed at the bottom.

This notion of prototypes differs from the usual notion of classes and clus-
ters [12] in many ways. Prototypes are not the result of a classification process.
Whether a case belongs to a prototype is determined by its features or defined
by an expert. There may be a hierarchy of prototypes but there are not rela-
tions (similarity, is–a and so on), and the set of cases belonging to a prototype
is not represented by its most representative case but by the prototype.

The main purpose of such generalised knowledge is to guide the retrieval
and sometimes to decrease the amount of storage by erasing redundant cases.
In domains with rather weak domain theories another advantage of case-
oriented techniques is their ability to learn from cases. Only gathering new
cases may improve the systems ability to find suitable similar cases for current
problems, but it does not elicit the intrinsic knowledge of the stored cases. To
learn the knowledge contained in cases a generalisation process is necessary.
Generally speaking, prototypes fill the knowledge gap between the specificity
of single cases and abstract knowledge usually expressed as rules.

In this chapter we present systems we developed during the last 10 years
and focus on the role of prototypes within them. We start with a prototype-
based system for diagnosis of dysmorphic syndromes. Subsequently we present
a system for course analysis and prognosis of the kidney function and finally
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we present two therapeutic systems, namely one for antibiotic therapy advice
and ISOR, a system that deals with therapeutic problems in the endocrine
domain.

10.2 Prototype-Based Diagnosis of Dysmorphic
Syndromes

In this application, retrieval does not search for former single cases but only for
prototypes. Each prototype represents and characterises one specific diagnosis.
We assume that this idea is rather typical for diagnostic tasks, because it
seems to be reasonable to search for a general description of a disease instead
of searching for single patients.

When a child is born with dysmorphic features or with multiple congenital
malformations or if mental retardation is observed at a later stage, finding the
correct diagnosis is extremely important. Knowledge of the nature and the
etiology of the disease enables the pediatrician to predict the patient’s future
course. So, an initial goal for medical specialists is to diagnose a patient to
a recognised syndrome. Genetic counselling and a course of treatments may
then be established.

A dysmorphic syndrome describes a morphological disorder and it is char-
acterised by a combination of various symptoms, which form a pattern of
morphologic defects. An example is Down syndrome which can be described
in terms of characteristic clinical and radiographic manifestations such as
mental retardation, sloping forehead, a flat nose, short broad hands, and gen-
erally dwarfed physique [13]. The main problems of diagnosing dysmorphic
syndromes are as follows [14]:

– More than 200 syndromes are known
– Many cases remain undiagnosed with respect to known syndromes
– Usually many symptoms are used to describe a case (between 40 and 130)
– Every dysmorphic syndrome is characterised by nearly as many symptoms

Furthermore, knowledge about dysmorphic disorders is continuously modified,
new cases are observed that cannot be diagnosed (it exists even a journal that
only publishes reports of newly observed interesting cases [15]), and some-
times even new syndromes are discovered. Usually, even experts of paediatric
genetics only see a small count of dysmorphic syndromes during their lifetime.

So, we have developed a diagnostic system that uses a large case base.
Starting point to build the case base was a large case collection of the paedi-
atric genetics of the University of Munich, which consists of nearly 2,000 cases
and 229 prototypes. A prototype (prototypical case) represents a dysmor-
phic syndrome by its typical symptoms. Most of the dysmorphic syndromes
are already known and have been defined in literature. And nearly one-third
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of the prototypes were determined by semiautomatic knowledge acquisition,
where an expert selected cases that should belong to same syndrome and
subsequently a prototype, characterised by the most frequent symptoms of
his cases, was generated. To this database we have added rare dysmorphic
syndromes, namely from “clinical dysmorphology” [15] and from the London
dysmorphic database [16].

10.2.1 Diagnostic Systems for Dysmorphic Syndromes

Systems to support diagnosis of dysmorphic syndromes have already been
developed in the early 1980s. The simple ones perform just information re-
trieval for rare syndromes, namely the London dysmorphic database [16],
where syndromes are described by symptoms, and the Australian POSSUM,
where syndromes are visualised [17]. Diagnosis by classification is done in a
system developed by Wiener and Anneren [18]. They use more than 200 syn-
dromes as database and apply Bayesian probability to determine the most
probable syndromes. Another diagnostic system, which uses data from the
London dysmorphic database was developed by Evans [19]. Though he claims
to apply CBR, in fact it is again just a classification, this time performed by
Tversky’s measure of dissimilarity [20]. The most interesting aspect of his ap-
proach is the use of weights for the symptoms. That means the symptoms are
categorised in three groups – independent of the specific syndromes, instead
only according to their intensity of expressing retardation or malformation.
However, Evans admits that even features, that are usually unimportant or
occur in very many syndromes sometimes play a vital role for discrimination
between specific syndromes.

10.2.2 Prototypicality Measures

In CBR usually cases are represented as attribute-value pairs. In medicine,
especially in diagnostic applications, this is not always the case, instead often
a list of symptoms describes a patient’s disease. Sometimes these lists can be
very long, and often their lengths are not fixed but vary with the patient.
For dysmorphic syndromes usually between 40 and 130 symptoms are used to
characterise a patient.

Furthermore, for dysmorphic syndromes it is unreasonable to search for
single similar patients (and of course none of the systems mentioned above
does so) but for more general prototypes that contain the typical features of a
syndrome. To determine the most similar prototype for a given query patient
instead of a similarity measure a prototypicality measure is required. One
speciality is that for prototypes the list of symptoms is usually much shorter
than for single cases.

The result should not be just the one and only most similar prototype,
but a list of them – sorted according to their similarity. So, the usual CBR
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retrieval methods like indexing or nearest neighbour search are inappropriate.
Instead, rather old measures for dissimilarities between concepts [20, 21] are
applied.

Since our system is still in the evaluation phase, the user has three choices
for a prototypicality measure. As humans look upon cases as more typical for
a query case as more features they have in common [21], distances between
prototypes and cases usually mainly consider the shared features. The first,
rather simple measure (10.1) just counts the number of matching symptoms
of the query patient (X) and a prototype (Y) and normalises the result by
dividing it by the number of symptoms characterising the syndrome. This nor-
malisation is done, because the lengths of the lists of symptoms of the various
prototypes vary very much. It is performed by the two other measures too.

The following equations are general (as they were originally proposed) at
the point that a general function “f” is used, which usually means a sum that
can be weighted. In general these functions “f” can be weighted differently.
However, since we do not use any weights at all, in our application “f” means
simply a sum.

D(X,Y) =
f(X + Y)

f(Y)
(10.1)

The second measure (10.2) was developed by Tversky [20]. It is a measure of
dissimilarity for concepts. In contrast to the first measure, additionally two
numbers are subtracted from the number of matching symptoms. Firstly, the
number of symptoms that are observed for the patient but are not used to
characterise the prototype (X−Y), and secondly the number of symptoms used
for the prototype but are not observed for the patient (X− Y) is subtracted.

D(X,Y) =
f(X + Y) − f(X − Y) − f(Y − X)

f(Y)
(10.2)

The third prototypicality measure (10.3) was proposed by Rosch and Mervis
[21]. It differs from Tversky’s measure only in one point: the factor X–Y is
not considered:

D(X,Y) =
f(X + Y) − f(Y − X)

f(Y)
(10.3)

10.2.3 Our System

Our system consists of four steps (Fig. 10.1). At first the user has to select
the symptoms that characterise a new patient. This selection is a long and
very time consuming process, because we consider more than 800 symptoms.
However, diagnosis of dysmorphic syndromes is not a task where the result
is very urgent, but it usually requires thorough reasoning and subsequently
a long-term therapy has to be started. Secondly, the user can select one of
the prototypicality measures explained in Sect. 10.6. In routine use, this step
shall be dropped and the measure with best evaluation results shall be used
automatically.
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Data Input 

Selection of a
Prototypicality Measure 

Search for
Similar Prototypes 

Application of
Adaptation Rules 

Display of most
SIMILAR Syndromes

Display of most
PROBABLE Syndromes

Fig. 10.1. Steps to diagnose dysmorphic syndromes

Fig. 10.2. Top part of the listed prototypes after applying a prototypicality measure

In the third step to diagnose dysmorphoic syndromes, the chosen measure
is sequentially applied on all prototypes (syndromes). Since the syndrome with
maximal similarity is not always the right diagnosis, the 20 syndromes with
best similarities are listed in a menu (Fig. 10.2).

In the fourth and final step, the user can optionally choose to apply adap-
tation rules on the syndromes. These rules state that specific combinations of
symptoms favour or disfavour specific dysmorphic syndromes. Unfortunately,
the acquisition of these adaptation rules is very difficult, because they cannot
be found in textbooks but have to be defined by experts of paediatric genet-
ics. So far, we have got only 18 of them and so far, it is not possible that a
syndrome can be favoured by one adaptation rule and disfavoured by another
one at the same time. When we, hopefully, acquire more rules such a situation
should in principle be possible but would indicate some sort of inconsistency
of the rule set.

How shall the adaptation rules alter the results? Our first idea was that the
adaptation rules should increase or decrease the similarity scores for favoured
and disfavoured syndromes. But the question is how. Of course no medical
expert can determine values to manipulate the similarities by adaptation
rules and any general value for favoured or disfavoured syndromes would be
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Fig. 10.3. Top part of the listed prototypes after additionally applying adaptation
rules

arbitrary. So, instead the result after applying adaptation rules is a menu that
contains up to three lists (Fig. 10.3).

On top the favoured syndromes are depicted, then those neither favoured
nor disfavoured, and at the bottom the disfavoured ones. Additionally, the
user can get information about the specific rules that have been applied on a
particular syndrome.

In the example presented in Figs. 10.2 and 10.3, the correct diagnosis is
Lenz syndrome. The computation of the prototypicality measure of Rosch and
Mervis provided Lenz syndrome as the most similar but one syndrome (here
Tversky’s measure provides a similar result, only the differences between the
similarities are smaller). After application of adaptation rules, the ranking
is not obvious. Two syndromes have been favoured, the more similar one is
the right one. However, Dubowitz syndrome is favoured too (by a completely
different rule), because a specific combination of symptoms makes it probable,
while other observed symptoms indicate a rather low similarity.

10.2.4 Results

Cases are difficult to diagnose when patients suffer from a very rare dymorphic
syndrome for which neither detailed information can be found in literature
nor many cases are stored in our case base. This makes evaluation difficult.
If test cases are randomly chosen, frequently observed cases resp. syndromes
are frequently selected and the results will probably be fine, because these
syndromes are well known. However, the main idea of the system is to support
diagnosis of rare syndromes. So, we have chosen our test cases randomly but
under the condition that every syndrome can be chosen only once. For 100
cases we have compared the results obtained by both prototypicality measures
(Table 10.1).

The results may seem to be rather poor. However, diagnosis of dysmorphic
syndromes is very difficult and usually needs further investigation, because
often a couple of syndromes are very similar. The first step is to provide the
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Table 10.1. Comparison of prototypicality measures

Right Syndrome Rosch and Mervis Tversky

on Top 29 40
among top 3 57 57
among top 10 76 69

Table 10.2. Results after applying adaptation rules

Right syndrome Rosch and Mervis Tversky

on Top 32 42
among top 3 59 59
among top 10 77 71

Table 10.3. Results after applying some more adaptation rules

Right Syndrome Rosch and Mervis Tversky

on Top 36 44
among top 3 65 64
among top 10 77 73

doctor with information about probable syndromes, so that he gets an idea
which further investigations are appropriate. That means, the right diagnose
among the three most probable syndromes is already a good result.

Obviously, the measure of Tversky provides better results, especially when
the right syndrome should be on top of the list of probable syndromes. When
it should be only among the first three of this list, both measures provide
equal results.

Adaptation Rules

Since the acquisition of adaptation rules is a very difficult and time consuming
process, the number of acquired rules is rather limited, namely at first just ten
rules. Furthermore, again holds: The better a syndrome is known, the easier
adaptation rules can be generated. So, the improvement mainly depends on
the question how many syndromes involved by adaptation rules are among the
test set. In our experiment this was the case only for five syndromes. Since
some had been already diagnosed correctly without adaptation, there was just
a small improvement (Table 10.2).

Some More Adaptation Rules

Later on we acquired eight further adaptation rules and repeated the tests
with the same test cases. The new adaptation rules again improved the results
(Table 10.3). It is obvious that with the number of acquired adaptation rules
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the quality of the program increases too. Unfortunately, the acquisition of
these rules is very difficult and especially for very rare syndromes probably
nearly impossible.

10.3 Time Course Prognosis

In this section we present a method for prognosis of temporal courses based
on multiparametric numeric values for organ functions.

Since traditional time series techniques [22] work well with known periodic-
ity, but do not fit in domains characterised by possibilities of abrupt changes,
much research has been performed in the field of medical temporal course
analysis. However, the methods developed so far either require a complete
domain theory or well-known standards (e.g. course pattern or periodicity).

An ability of RÉSUMÉ [23] is the abstraction of many parameters into
one single parameter and to analyse courses of this abstracted parameter.
However, interpretation of these courses requires complete domain knowledge.
Haimowitz and Kohane [24] compare many parameters of current courses with
well-known standards (trend templates). In VIE-VENT [25] both ideas are
combined: Courses of single quantitative measured parameters are abstracted
into qualitative course descriptions that are matched with well-known stan-
dards.

When we started building a system for course analysis and prediction of
the kidney function, we were confronted with a domain where the domain
theory is extremely incomplete and no standards were known. So we had to
design our own method. For temporal courses, our general idea is to search
with CBR retrieval methods [8, 9] for former patients with similar courses
and to consider their course continuations as possible prognosis for a query
patient.

To make CBR applicable an appropriate case representation has to be
found. Usually, a list of attribute-value pairs that contains all case attributes
is sufficient. However, for multiparametric time courses the choice of suitable
attributes is not obvious. Firstly, not complete courses (they may differ in
their length, they may go much further back than it is relevant for the current
situation), but only patients’ current developments of a certain length should
be compared with parts of former patients’ courses, which should have about
the same length. Secondly, each course consists of a sequence of measured or
calculated parameter sets. It cannot be assumed that all parameters are of
the same importance, especially the more recent parameter sets are usually
more important than older ones.

And even the importance of parameters within the same set may extremely
differ. One idea is to look for appropriate weightings for the parameters. How-
ever, hundreds of parameters might be involved, much domain knowledge may
be required, and weights can be very subjective. Furthermore, it seems to be
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impossible to visualise a sequence of parameter sets in such a way that a user
can rapidly discern the important characteristics.

In the kidney function domain, we chose a different alternative. With the
help of medical experts we defined kidney function states based on the most
important parameters and subsequently we abstracted each daily parameter
set into such a function state. So, courses are represented as a sequence of
function states.

10.3.1 Prognostic Model

We propose a prognostic model for multiparametric time courses that com-
bines two abstraction steps with CBR (Fig. 10.4).

The first step is a state abstraction from a set of parameter values to a
single function state. Therefore few requirements have to be met. Meaningful
states to describe the parameter sets and a hierarchy of these states must
exist. Furthermore, knowledge to define the states must be available. These
definitions may consist of obligatory or optional conditions on the parameter
values. Of course, all obligatory conditions should be met, while for the op-
tional ones some alternatives exist how to determine the appropriate state.
One simple idea is to count the met conditions. Additionally, the quality of
meeting graduated conditions may be considered (e.g. fuzzy methods may be
applied).

The second abstraction means to describe a course of states. An often-
realised idea is to use different trend descriptions for different periods of time,
e.g. short-term or long-term trend descriptions etc. (e.g. [25]).

Measured and Calculated Parameters

Course of Kidney Function States

Trend Descriptions

Similar Courses serve as Prognoses

State Abstraction

Time Abstraction

CBR - Retrieval

Fig. 10.4. Prognostic model for time course
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The lengths of each trend description can be fixed or they may depend on
concrete values (e.g. successive equivalent states may be concatenated).

However the trend descriptions may be defined, they can be expressed
by four parameters: the length, the first and last state, and an assessment.
The lengths and the assessments of the descriptions can vary with domain-
dependent demands, while the state definitions and their hierarchy are domain
dependent anyway.

The third step means CBR retrieval. Since especially for large case bases a
sequential search for similar cases is too time consuming, a few nonsequential
retrieval algorithms have been developed in the CBR community. Most of the
retrieval algorithms can handle various sorts of attributes, but usually they
only work well for those sorts of attributes or problems they have been devel-
oped for. So, the choice of the retrieval algorithm should mainly depend on
the sort of values of case attributes and sometimes additionally on application
characteristics.

The question arises: Of which sort are the four parameters that describe a
trend? The states are obviously nominal valued ordered according to their
hierarchy. The assessments should have ordered nominal values too, e.g.
steady, decreasing etc. Only the lengths should have numeric values. If the time
points of the parameter measurements are few integers, they can be treated as
ordered nominal values. The proposed retrieval algorithms for ordered nominal
valued attributes are CBR-Retrieval-Nets [26], which are based on Spreading
Activation [28]. So, if all four parameters have ordered nominal values, the
choice of the retrieval algorithm should obviously be CBR-Retrieval-Nets.

However, we made some assumptions that may not necessarily be met
in every domain. For example, the lengths may not be transformable into
nominal values, the trend assessments may not be just simple nominal values,
but more sophisticated descriptions, and there are of course alternatives to
describe trends, e.g. even a computed real value might somehow express a
trend.

10.3.2 Kidney Function Courses

Up to 60% of the body mass of an adult person consists of water. The elec-
trolytes dissolved in body water are of great importance for an adequate cell
function. The human body tends to balance the fluid and electrolyte situation.
But intensive care patients are often no longer able to maintain adequate fluid
and electrolyte balances themselves due to impaired organ functions, e.g. renal
failure, or medical treatment, e.g. parenteral nutrition of mechanically venti-
lated patients. Therefore physicians need objective criteria for the monitoring
of fluid and electrolyte balances and for choosing therapeutic interventions as
necessary.

At our ICU, physicians daily get a printed renal report from the moni-
toring system NIMON [29] which consists of 13 measured and 33 calculated
parameters of those patients where renal function monitoring is applied. For
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example, the urine osmolality and the plasma osmolality are measured pa-
rameters that are used to calculate the osmolar clearance and the osmolar
excretion. The interpretation of all reported parameters is quite complex and
needs special knowledge of the renal physiology.

The aim of our knowledge-based system ICONS is to give an automatic
interpretation of the renal state to elicit impairments of the kidney function
on time and to give early warnings against forthcoming kidney failures. That
means, we need a time course analysis of many parameters without any well-
defined standards.

However, in the domain of fluid and electrolyte balance, neither a pro-
totypical approach in ICU settings is known nor exists complete knowledge
about the kidney function. Especially, knowledge about the behaviour of the
various parameters on time is yet incomplete. So, we combined the idea of
RÉSUMÉ [23] to abstract many parameters into one single parameter with
the idea of Haimowitz and Kohane [24] to compare many parameters of cur-
rent courses with well-known standards. Since well-known standards were not
available, we used former similar cases instead.

The method in ICONS corresponds to the general method proposed above
and shown in Fig. 10.4.

State Abstraction

For the data abstraction we use states of the renal function, which determine
states of increasing severity beginning with a normal renal function and ending
with a renal failure. Based on the kidney function states (e.g. in Fig. 10.5 a
reduced kidney function), characterised by obligatory and optional conditions
for selected renal parameters, we first check the obligatory conditions. For
each state that satisfies the obligatory conditions we calculate a similarity

Reduced Kidney Function

Obligatory Condtion: c_kreat40 - 80

Optional Conditions:

Retention Rates: p_kreat_se        <2
p_urea_se         <  150

Tubular Function: u_osmol320 – 600
u_p_osmol 1.1–1.8
u_kreat 10 – 40
u_p_kreat         20–50

Urine Volume:                        urine volume 0.7–3.0
osmol_ex 800–3000

Fig. 10.5. Definition of the reduced kidney function state. Abbreviations: c, clear-
ance; p, plasma; u, urine; kreat, kreatinin; osmol, osmolality; se, serum; ex, excretion
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value concerning the optional conditions. We use a variation of Tversky’s [20]
measure of dissimilarity between concepts. Only if two or more states are
under consideration, ICONS presents them to the user sorted according to
their similarity values together with information about the satisfied and not
satisfied optional conditions.

The user can accept or reject a presented state. When a suggested state has
been rejected, ICONS selects another one. Finally, we determine the central
state of occasionally more than one states the user has accepted. This central
state is the closest one towards a kidney failure. Our intention is to find the
state indicating the most profound impairment of the kidney function.

Temporal Abstraction

First, we have fixed five assessment definitions for the transition of the kidney
function state of one day to the state of the, respectively, next day. These
assessment definitions are related to the grade of renal impairment:

steady. both states have the same severity value.
increasing. exactly one severity step in the direction towards a normal func-

tion.
sharply increasing. at least two severity steps in the direction towards a

normal function.
decreasing. exactly one severity step in the direction towards a kidney failure.
sharply decreasing. at least two severity steps in the direction towards a

kidney failure.

These assessment definitions are used to determine the state transitions from
one qualitative value to another. Based on these state transitions, we gener-
ate three trend descriptions. Two trend descriptions especially consider the
current state transitions.

short-term trend:= current state transition; Abbreviation: T1
medium-term trend:= looks recursively back from the current

state transition to the one before and
unites them if they are both of the same
direction or one of them has a “steady”
assessment;
Abbreviation: T2

long-term trend:= characterises the considered course of at
most seven days; Abbreviation: T3

For the long-term trend description we additionally introduced four new
assessment definitions. If none of the five former assessments fits the com-
plete considered course, we attempt to fit one of these four definitions in the
following order:

alternating. at least two up and two down transitions and all local minima
are equal.

oscillating. at least two up and two down transitions.
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fluctuating. the distance of the highest to the lowest severity state value is
greater than 1.

nearly steady. the distance of the highest to the lowest severity state value
equals one.

Only if there are several courses with the same trend descriptions, we use
a minor fourth trend description T4 to find the most similar among them. We
assess the considered course by adding up the state transition values inversely
weighted by the distances to the current day. Together with the current kid-
ney function state these four trend descriptions form a course depiction, that
abstracts the sequence of the kidney function states.

Looking back from a time point t, these four trend descriptions form a
pattern of the immediate course history of the kidney function considering
qualitative and quantitative assessments.

Why These Four Trend Descriptions?

There are domain specific reasons for defining the short-, medium-, and long-
term trend descriptions T1, T2, and T3. If physicians evaluate courses of the
kidney function, they consider at most one week prior to the current date.
Earlier renal function states are irrelevant for the current situation of a pa-
tient. Most relevant information is derived from the current function state, the
current development and sometimes a current development within a slightly
longer time period. That means, very long-term trends are of no interest in
this domain. In fact, very often only the current state transition or short
continuous developments are crucial.

The short-term trend description T1 expresses the current development.
For longer time periods, we have defined the medium- and long-term trend
descriptions T2 and T3, because there are two different phenomena to discover
and for each, a special technique is needed. T2 can be used for detecting
a continuous trend independent of its length, because equal or steady state
transitions are united recursively beginning with the current one. As the long-
term trend description T3 describes a well-defined time period, it is especially
useful for detecting fluctuating trends.

Since every abstraction loses some specific information, information about
the daily kidney function states is lost in the second abstraction step. The
course description contains only information about the current and the start
states of the three trend descriptions. The intermediate states are abstracted
into trend description assessments.

Example. The following kidney function states may be observed in this
temporal sequence (Fig. 10.6):

selective tubular damage, reduced kidney function, reduced kidney function,
selective tubular damage, reduced kidney function, reduced kidney function,
sharply reduced kidney function



10 Prototypes and Case-Based Reasoning for Medical Applications 299

Current Case

.......

..............

Presentation: Sorted According Activation Values 

Projectionpart - n.......

Search for a
Prototype

Spreading
Activation

Sufficient
Similarity

Fine Selection

Similar Course - n

Projectionpart - 1 Projectionpart - 9

Similar Course - 1 Similar Course - 9

Fig. 10.6. Comparative presentation of a current and a similar course

So we get these six state transitions:
decreasing, steady, increasing, decreasing, steady, decreasing
with these trend descriptions:

current state: sharply reduced kidney function
T1: decreasing, reduced kidney function, one transition
T2: decreasing, selective tubular damage, three transitions
T3: fluctuating, selective tubular damage, six transitions
T4: 1.23

In this example, the short-term trend description T1 assesses the current state
transition as “decreasing” from a “reduced kidney function” to a “sharply
reduced kidney function.” Since the medium-term trend description T2 accu-
mulates steady state transitions, T2 determines a “decrease” in the last four
days from a “selective tubular damage” to a “sharply reduced kidney func-
tion.” The long-term trend description T3 assesses the entire course of seven
days as “fluctuating,” because there is only one increasing state transition
and the difference between the severity values of a “selective tubular damage”
and a “sharply reduced kidney function” equals two.
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Retrieval

We use the parameters of the four trend descriptions and the current kidney
function state to search for similar courses. As the aim is to develop an early
warning system, we need a prognosis. For this reason and to avoid a sequential
runtime search along the entire cases, we store a course of the previous seven
days and a maximal projection of three days for each day a patient spent on
the intensive care unit.

Since there are many different possible continuations for the same previous
course, it is necessary to search for similar courses and for different projections.
Therefore, we divided the search space into nine parts corresponding to the
possible continuation directions. Each direction forms an own part of the
search space. During the retrieval these parts are searched separately and
each part may provide at most one similar case. The similar cases of these
parts together are presented in the order of their computed similarity values.

Before the main retrieval, we search for a prototypical case (see Sect. 10.3.3)
that matches most of the trend descriptions. Below this prototype the main
retrieval starts (Fig. 10.7). It consists of two steps for each part. First we
search with an activation algorithm concerning qualitative features.

Subsequently, we check the retrieved cases with a similarity criterion [27]
that looks for sufficient similarity, because even the most similar course may
differ from the current one significantly. This may happen at the beginning of
the use of ICONS, when there are only a few cases known to ICONS, or when
the query course is rather exceptional.

If two or more courses are selected in the same projection part, we use
the sequential similarity measure of TSCALE [30], which goes back to Tver-
sky [20], concerning the quantitative features in a second step.

Continuation of the example. For the example above, the following similar
course (Fig. 10.6) with these transitions is retrieved:

decreasing, increasing, decreasing, steady, steady, decreasing
with these trend descriptions:

current state: sharply reduced kidney function
T1: decreasing, reduced kidney function, one transition
T2: decreasing, selective tubular damage, four transitions
T3: fluctuating, selective tubular damage, six transitions
T4: 1.17

In the lower part of each course the (abbreviated) kidney function states
are depicted. The upper part of each course shows the deduced trend descrip-
tions.

T1 describes a “decrease” from a “reduced kidney function” and T2 de-
scribes a “decrease” from a “selective tubular damage” to a “sharply reduced
kidney function” in the last five days. T3 assesses the considered course as
“fluctuating.” For T4, a slightly lower value in comparison to the current
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Fig. 10.7. The retrieval procedure

course has been calculated, because the change from a “selective tubular dam-
age” to a “reduced kidney function” state occurs earlier.

After another day with a “sharply reduced kidney function” the patient
belonging to the similar course had a kidney failure. The physician may notice
this as a warning and it is up to him to interpret it.

This former course was retrieved, because especially the features with the
highest weights (the current state and all assessments) equal the features of
the query course. As there is no significant difference between both courses,
there is no reason for the sufficient similarity criterion to reject this similar
course.

10.3.3 Learning a Tree of Prototypes

Prognosis of multiparametric courses of the kidney function for ICU patients is
a domain without a medical theory. Moreover, we cannot expect such a theory
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Fig. 10.8. Prototype architecture for the trend descriptions T1, T2, and T3

to be formulated in the near future. So we attempt to learn prototypical course
pattern. Therefore, knowledge on this domain is stored as a tree of generalised
cases (prototypes) with three levels and a root node (Fig. 10.8).

Except for the root, where all not yet clustered courses are stored, each
level corresponds to one of the trend descriptions T1, T2, or T3. As soon as
enough courses that share another trend description are stored at a prototype,
a new prototype with this trend is created. At a prototype at level 1, we cluster
courses that share T1, at level 2, courses that share T1 and T2 and at level
3, courses that share all three trend descriptions T3.

We can do this, because regarding their importance, the short-, medium-,
and long-term trend descriptions T1, T2, and T3 refer to hierarchically related
time periods. T1 is more important than T2 and T3, and so forth.

We start the retrieval with a search for a prototype that has most of the
trend descriptions in common with the query course. The search begins at
the root node with a check for a prototype with the same short-term trend
description T1. If such a prototype can be found, the search goes on below this
prototype for a prototype that has the same trend descriptions T1 and T2,
and so forth. If no prototype with a further trend in common can be found,
we search for a course at the last accepted prototype.

If no prototype exists that has the same T1 as the query course, we search
at the root node, where links to all courses in the case base exist.

Continuation of the example. In the example above, we can create just
one prototype at level 1, because at the second level the query course and the
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similar one, called “similar-1” differ in their length. Although the long-term
trend description T3 is equal for both courses, we cannot create a prototype
at level 3 because of the strictly hierarchical organisation of the prototype
tree. However, learning a prototypical description “fluctuating in seven days
from a selective tubular damage to sharply reduced kidney function” which
does not consider any more similarities or deviations within this time period
would be too general and therefore too impracticable.

Assuming we find another similar course, called “similar-2”, for the current
case of the example above with the following kidney function states:

reduced kidney function, reduced kidney function, selective tubular damage,
selective tubular damage, reduced kidney function, reduced kidney function,
sharply reduced kidney function with these trend descriptions:

current state: sharply reduced kidney function
T1: decreasing, reduced kidney function, one transition
T2: decreasing, selective tubular damage, four transitions
T3: oscillating, reduced kidney function, six transitions
T4: 1.33

The current query course, “similar-1”, and “similar-2” will be clustered at
level 1 to prototype T1-a, defined by T1 as “decreasing, reduced kidney func-
tion, one transition”. Afterwards at level 2 the current course and “similar-2”
will be clustered to a prototype T1-a + T2-a, defined by T1 as “decreasing,
reduced kidney function, one transition” plus by T2 as “decreasing, selective
tubular damage, four transitions.” The attempt to create another prototype
at level 3 fails, because the trend descriptions T3 have different assessments
and different start states. The result, a tree of prototypes learned from the
three courses is shown in Fig. 10.9.

10.3.4 Retrieval Experiments

Since we wished to be convinced that CBR-Retrieval-Nets really are the appro-
priate retrieval algorithm for our prognostic model, we compared them with
an indexing algorithm, which had been developed for nonordered nominal val-
ues [31]. The results of this comparison are as follows: The indexing algorithm
works faster (Table 10.4), but provides worse results, because stored cases get
only activation values for attribute values that exactly match the query case
values. The CBR-Retrieval-Nets additionally send smaller activation values
to cases with attribute values similar to query case values. Hence, courses can
be determined to be similar which have attribute values that slightly deviate
from the query case values.

Since one idea of using prototypes is to speed up the retrieval by structur-
ing the case base, we additionally compared both algorithms with and without
using prototypes. To decide when a prototype should be generated, a thresh-
old parameter is required. We set this parameter to the value of 2, which
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Prototype
T1-a

Prototype
T1-a
 +  T2-a

Root

Courses:

- similar-1
- similar-2
- current

Courses:

- similar-1
- similar-2
- current

Courses:

- similar-2
- current

Fig. 10.9. Generated prototype tree from three example courses

Table 10.4. Retrieval times (in seconds) for the retrieval algorithms “CBR-
Retrieval-Nets” and “indexing” with and without using prototypes

Courses Retrieval nets Retrieval nets,
Use of prototypes

Indexing Indexing, use
of prototypes

No. 1 0.163 0.163 0.155 0.155
No. 2 0.284 0.281 0.214 0.218
No. 3 0.316 0.366 0.165 0.213
No. 4 0.455 0.513 0.404 0.452
No. 5 0.514 0.544 0.428 0.506
No. 6 1.328 0.759 0.600 0.717
No. 7 0.649 0.401 0.246 0.347
No. 8 0.685 0.642 0.376 0.469
No. 9 0.550 0.617 0.444 0.551
No. 10 0.386 0.476 0.257 0.394
No. 11 0.537 0.553 0.234 0.367
No. 12 1.396 0.870 0.743 0.890
No. 13 0.577 0.607 0.244 0.332
No. 14 0.518 0.425 0.340 0.494

means, that already two cases with the same trend description are sufficient
to generate a prototype. Hence many prototypes were generated.

At first glance the results (Table 10.4) are not very encouraging for using
prototypes. However, for the CBR-Retrieval-Nets the time differences between
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with and without prototypes are very small except for those two courses where
the retrieval worked noticeably slower (No.6 and No.12): Here, using proto-
types reduces the retrieval by at least a third.

However, so far the determination of the appropriate prototype occurred
by sequentially matching the trend description parameters. So, most of the
time gained by reducing the number of cases worth to consider is used up
to determine the appropriate prototype. This indicates that not only the re-
trieval algorithm for cases, but also the determination of appropriate proto-
types should be organised in a nonsequential way.

10.4 Antibiotics Therapy Advice

We developed an antibiotics therapy advice system called ICONS for patients
in an intensive care unit who have caught an infection as additional compli-
cation. To speed up the process of finding suitable therapy recommendations,
we applied CBR techniques. As information about antibiotics therapy changes
in time, new cases are incrementally incorporated into the case base and out-
dated ones are updated or erased.

10.4.1 Antibiotics Therapy

Severe bacterial infections are still a life-threatening complication in intensive
care medicine, correlating with a high mortality [32]. Identification of bacter-
ial pathogens is often difficult. It usually requires at least 24 hours to identify
the pathogen that is responsible for an infection and at least another 24 hours
to find out which antibiotics have therapeutic effects against the identified
pathogen. In order not to endanger the patient, physicians sometimes have to
start an antimicrobial therapy before the responsible pathogen and its sensi-
tivities are determined. This sort of antibiotic therapy is called “calculated,”
in contrast to a “selective” therapy, which is used when microbiological re-
sults are already available. For an adequate calculated antibiotic therapy, it
is essential to access information about the expected pathogen spectrum and
its expected susceptibility, existing contraindications, and the side effects of
antibiotics.

The main task of our adviser is to present suitable calculated antibiotics
therapy advice for intensive care patients who have caught a bacterial infec-
tion as an additional complication. Since, for such critical patients, physicians
cannot wait for the laboratory results, we use an expected pathogen spec-
trum based on medical background knowledge. Each recommended antibi-
otics therapy should completely cover this spectrum. Furthermore, as advice
is needed very quickly we speed up the process of computing recommended
antibiotic therapies by using CBR methods (the right path in Fig. 10.10). This
means that we search for a previous similar patient and transfer the therapies
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Fig. 10.10. Program flow in ICONS

suggested for his situation to the current patient. These previous therapies
are then adapted to take account of any differences between the situations of
the previous and current patients.

10.4.2 Strategy for Selecting Recommended Antibiotic Therapies

As ICONS is not a diagnostic system, we do not attempt to deduce evi-
dence for diagnoses based on symptoms, frequencies, or probabilities, but in-
stead pursue a strategy that can be characterised as follows: find all possible
solutions, and subsequently reduce them using the patient’s contraindications
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and the requirement to completely cover the calculated pathogen spectrum
(establish-refine strategy).

Firstly, we distinguish between different groups of patients (infection ac-
quired in or outside the ward, respectively, the hospital; immunocompromised
patients). An initial list of antibiotics is generated by a susceptibility relation,
which for each group of pathogens provides all antibiotics that usually have
therapeutic effects. This list contains all antibiotics that cover at least a part
of the potential pathogen spectrum. We obtain a second list of antibiotics by
reducing the first one through applying two constraints: the patient’s con-
traindications and the desired sphere of activity. Using the antibiotics on this
second list, we try to find antibiotics that cover the whole pathogen spectrum
individually.

Except for some community-acquired infections, monotherapies have to
be combined with antibiotics that have synergistic or additive effects. If no
adequate single therapy can be found, we use combination rules to generate
combinations of antibiotics. Each possible combination must be tested for the
ability to cover the expected spectrum completely.

10.4.3 Case-Based Reasoning

In this application, the main argument for using CBR methods is to speed up
the process of finding adequate therapies. We shorten the strategy described
above for selecting recommended antibiotic therapies by searching for a similar
case, retrieving its suggested therapies, and by adapting them according to
the contraindications of the current patient.

The retrieval consists of three steps. Firstly we select the part of the case
base in which all cases share the following two attributes with the current
patient: the group of patients, and the infected organ system. This means a
selection of the appropriate prototype tree. Subsequently, we apply the tree-
hash retrieval algorithm of Stottler, Henke, and King [33] for nominal valued
contraindications and the similarity measure of Tversky [20] for the few inte-
ger valued contraindications. Furthermore, we use an adaptability criterion,
because not every case is adaptable [34]. The attributes used for the retrieval
are the contraindications, which work as constraints on the set of possible
antibiotics. It is therefore obvious that we should use only former cases whose
contraindications are shared by the current patient. To guarantee this condi-
tion the adaptability criterion has to be checked during retrieval.

In ICONS three different sorts of adaptations occur: A CBR adaptation
to obtain sets of calculated advisable therapies for current patients, an adap-
tation of chosen therapies according to laboratory findings, and a periodical
update of laboratory information (resistance situation, frequently observed
pathogens).

Each contraindication restricts the set of advisable therapies. During the
retrieval we require that the retrieved case does not have any additional
contraindications besides those of the current case. Otherwise the solution
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set for the current case would be inadmissibly reduced by the additional con-
traindications of a previous case.

Because of this criterion, the adaptation of a previous similar case is rather
simple. It is simply a matter of transferring the set of advisable therapies and
if necessary of reducing this set according to the additional contraindications
of the current case.

10.4.4 Prototypes

Since in an incrementally working system the number of cases increases con-
tinuously, storing each case would slow down the retrieval time and exceed
any space limitations. We therefore decided to structure the case base by pro-
totypes and to store only those cases that differ significantly from their proto-
type. Like for diagnosis (see Sect. 10.2), we create prototypes that include the
most frequent features of the corresponding cases. In diagnostic applications,
prototypes correspond to typical diseases or diagnoses. So, for antibiotic ther-
apies, prototypes are expected to correspond to typical antibiotic treatments
associated with typical clinical features of patients. However, as the attributes
are contraindications that are responsible not for the generation, but for the
restriction of the solution set, this is only partly true.

We investigated the growth of a hierarchical prototype structure built
up from a randomly ordered stream of cases. The results are presented and
discussed in Sect. 10.4.5.

Selection of a Prototype Tree

In ICONS there is not just one prototype tree, but a forest of trees, which
are all independent from each other. A specific tree can be generated for each
affected organ system combined with each group of patients. So, for nearly 20
organ systems and five patient groups there are nearly 100 possible prototype
trees. We generate them dynamically only when required. For example a tree
for “community-acquired kidney infections” will be generated as soon as the
first data input occurs from a patient who has a kidney infection which he
has acquired outside the hospital.

Since all cases within the same prototype tree belong to the same group
of patients, and the same organ system is affected, it follows that the same
expected pathogen spectrum deduced from background knowledge has to be
covered. Cases within the same prototype tree are only discriminated from
each other by their contraindications. These are allergies against specific an-
tibiotics, reduced organ functions (kidney and liver), specific diagnoses (e.g.
CNS disease), special blood diseases, pregnancy, and the patient’s age.

Generating Prototypes

The aim of our concept of prototypical cases is to structure the case base, to
keep the prototypes always up to date, and to erase redundant cases. As the
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prototypes are generated incrementally and as they should always contain the
typical features of their cases, we use two threshold parameters:

(1) The parameter “minimum frequency” determines how (relatively) often a
contraindication has to occur in the set of cases to be incorporated into
the prototype.

(2) The parameter “number of cases” determines the required number of cases
that are necessary to fill a prototype or to create an alternative prototype.
The lower this threshold the more prototypes are created and the fewer
cases are stored.

First, all cases are stored below the prototype they belong to. If the threshold
“number of cases” is reached after storing a new case below a prototype, the
prototype will be “filled”. At this point, every contraindication that occurs in
the prototype’s cases at least as often as the “minimum frequency” thresh-
old will be included into the prototype. Subsequently, the “filled” prototype
can be treated like a case. The same holds for prototypes as for cases: Each
contraindication restricts the set of advisable therapies. The contraindications
of a prototype are those that occur most often within its cases. So from the
viewpoint of frequency they are the typical ones. Those cases that have no
additional contraindications in comparison with their prototypes are erased.

When new cases are added later on to an already filled prototype, the ob-
served frequencies may change and consequently the contraindications of the
prototype may have to be recomputed. If the contraindications of a prototype
change, the suggested antibiotic therapies have to be recomputed, too. In ad-
dition, all cases must be inspected again to determine whether they need to
be stored.

We create an “alternative” prototype below an already existing prototype
if for the latter enough cases exist (which means the threshold “number of
cases” is reached) that have at least one contraindication in common, which
the already existing prototype does not include. We generate the alterna-
tive prototype using those cases that share at least one contraindication not
included in the existing prototype. We place this new prototype in the hier-
archy directly below the already existing prototype. Alternative prototypes
differ from their superior prototypes by their contraindications and therefore
also by their sets of advisable antibiotic therapies.

10.4.5 Experimental Results with Prototype Generation Strategies

The general idea of our concept is to keep the prototypes always up to date.
They should contain the typical features of their cases. We have tested two
contrasting policies for deleting redundant cases and a strategy of keeping
all cases. Our evaluation had two aims. First, we wished to find a strategy
that best fits the two contrasting aims of finding many adaptable cases or
prototypes and requiring little memory. Secondly, we wished to find good
settings for the threshold parameters.
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Normally, cases without additional features in comparison to their pro-
totype are redundant, because they do not contain any additional informa-
tion [31]. However, in our application the attributes are contraindications,
which are not used to generate a solution, but to restrict a solution set. This
means they are applied as constraints. A case with fewer contraindications
than its prototype has a greater chance of being adaptable to a query case,
because only a case without additional contraindications in comparison to the
query case is adaptable.

We have therefore tested two opposing strategies: firstly, deleting cases
without additional attributes, and secondly, deleting only cases with addi-
tional attributes. Additionally, we have tested a strategy without deleting
any cases at all.

The memory size without any stored cases is about 2.248 MB for all three
strategies. The argument about the memory might seem to be unreasonable,
because the differences between the strategies are only about 40 KB for 75
test cases. However, we performed our tests in just one of about 100 possible
parallel sets. 75 cases in each set might lead to differences of up to 4 MB.
This leads to the question of whether our system should require about 12 or
about 16 MB memory. Certainly, problems should not occur until the number
of cases per set exceeds 75.

Without generating any prototypes at all, for 51 of the 75 test cases a
similar adaptable case can be found. As prototypes are treated like cases, this
number can be exceeded.

Strategy A: Deleting Cases Without Additional Attributes

We have tested the strategies with 75 cases, which were incrementally incor-
porated into the system. For strategy A, we varied the threshold parameter
“number of cases,” which indicates how many cases are necessary to generate
a prototype. The second threshold parameter “relative frequency” was set to
33%, which means that a contraindication is incorporated into a prototype if
at least a third of its cases have this contraindication.

The results (Table 10.5) can be summarised as follows: The more cases
necessary to generate a prototype (this is achieved by increasing the value
“number of cases”) the higher the number of stored cases and the higher the
number of retrieved adaptable cases. After a while there is only little to be
gained by increasing this threshold parameter any further (fourth setting). A
surprise is the big increase in the number of retrieved adaptable cases in the
second setting compared with the first one. This cannot be simply explained
by the four additionally stored cases, but by the following two phenomena.
Firstly, those cases that have no additional information (contraindications) in
comparison to their prototype are deleted. This means that the deleted cases
would be more likely to be adaptable to future queries.

Secondly, under the second setting the prototypes are generated later and
consequently cases are deleted later as well.
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Table 10.5. Test results for strategy A

1. Setting
number of
cases = 2

2. Setting
number of
cases = 3

3. Setting
number of
cases = 4

4. Setting
number of
cases = 5

memory size in Mbytes in Mbytes in Mbytes in Mbytes
after 75 cases 2.392 2.390 2.401 2.402
number of prototypes 9 7 8 8
number of stored cases 53 57 62 63
number of deleted cases 22 18 13 12
number of adaptations 12 26 31 31

Table 10.6. Test results for strategy B

1. Parameter setting:
relative frequency = 33 %

2. Parameter setting
relative frequency = 25 %

memory size
after 75 cases 2.373 MB 2.368 MB
number of generated
prototypes

9 6

number of stored cases 20 25
number of deleted cases 55 50
number of adaptations 14 14

One aim of using prototypes is the hope of reducing the memory size.
For strategy A this benefit does not occur, because the storage requirement
for prototypes is bigger than for cases. This is because prototypes contain
some additional information: The intersection of advisable therapies for their
cases (cases only contain additional specific therapy suggestions), observed
frequencies of contraindications of their cases, etc.

Strategy B: Deleting Cases with Additional Attributes

Our aim with strategy B was to keep in the case base those cases that have
a higher chance to be adaptable. These are cases with few contraindications.
We therefore adapted a strategy opposite to strategy A, namely deleting cases
with additional information (contraindications) to their prototype. As many
cases are deleted, we set the threshold parameter “number of cases” to the
value two. Here, we varied the second parameter “relative frequency,” which
determines the frequency with which contraindications have to be observed
among the cases to be incorporated into a prototype.

The difference between the results for the two settings for strategy B is
rather small (Table 10.6). With a smaller relative frequency (second setting)
more contraindications are incorporated into the prototypes. So, fewer stored
cases have additional contraindications in comparison to their prototypes and
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consequently fewer cases are deleted. Furthermore, fewer prototypes are gene-
rated, because the prototypes cover more cases. The memory size is nearly
the same and the number of retrieved adaptable cases is exactly the same for
both settings.

In comparison to strategy A, it is noticeable that about the same number
of prototypes have been generated, but much more cases have been deleted.
Though those cases which have a bigger chance to be adaptable remain in
the case base, the number of retrieved adaptable cases slightly increases in
comparison to the first setting of strategy A, but the number is not as high
as in the other settings of strategy A.

So, the strategy of keeping those cases that are easily adaptable results in
such a small case base that only few adaptable cases can be retrieved.

Strategy C: All Cases Remain in the Case Base

For strategy C no cases are deleted at all. We have evaluated the same thresh-
old parameter settings as for strategy A. It can be seen that many more adapt-
able cases can be retrieved in comparison to the corresponding settings of
strategy C, while the memory requirement increases only slightly (Table 10.7).

Since two cases are sufficient to generate a prototype in the first setting,
many prototypes are created and the memory requirement increases corre-
spondingly. It is a little surprising that fewer adaptable cases are retrieved,
but this is because a hierarchy with three levels of prototypes has been gen-
erated, and since the prototypes are treated as cases, the right prototype on
each level has to be determined to be the most similar case.

Really surprising is the big increase of retrieved adaptable cases in the
third setting. There are two possible explanations. Firstly, as the number
of generated prototypes decreases, the prototype hierarchy is simpler and
it is easier to find the appropriate case. Secondly, and probably the main
reason, the number of cases which are necessary to generate a prototype is
higher (= 4), so that more cases are considered when a generated prototype
is filled, and consequently fewer contraindications are incorporated into the
prototype. This means the prototypes themselves become more adaptable.

Table 10.7. Test results for strategy C

1. Setting
number of
cases = 2

2. Setting
number of
cases = 3

3. Setting
number of
cases = 4

4. Setting
number of
cases = 4

memory size in Mbytes in Mbytes in Mbytes in Mbytes
after 75 cases 2.439 2.426 2.421 2.419
number of prototypes 19 10 8 7
number of stored cases 75 75 75 75
number of deleted cases 0 0 0 0
number of adaptations 29 32 52 51
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However, when the number of generated prototypes decreases, there are fewer
cases available to be used for adaptation (fourth setting).

Summary of the Evaluation Results for the Prototype Strategies

Keeping all cases in the case base increases the memory requirement, but
increases the number of retrieved adaptable cases dramatically. Considering
the number of retrieved adaptable cases, strategy A provides results that are
nearly as good as for strategy C, but the achieved reduction is rather small.
Keeping more adaptable cases (strategy B) results in a small case base, but
only few adaptable cases can be found.

Too many prototypes should be avoided, because a complex hierarchy
results in difficulties in finding the desired case. This means the threshold
parameter “number of cases” should not be set too low.

The most preferable setting is the third one of strategy C. If the mem-
ory limitations become a real problem, strategies that delete redundant cases
should be considered. Every stored case increases the memory requirement of
our system by approximately 1.7 KB. This might lead to performance prob-
lems for much bigger case bases, keeping in mind that our test set of 75 cases
covers just one out of a set of more than 80 medical areas.

The best settings, whether all cases are retained (strategy C) or cases
without additional information (strategy A) are deleted, are those where the
threshold parameter “number of cases” is set sufficiently high. It leads to more
retrieved adaptable cases.

10.5 ISOR

ISOR is a CBR system for long-term therapy support in the endocrine domain
[35]. It performs typical therapeutic tasks, such as computing initial therapies,
initial dose recommendations, and dose updates. Apart from these tasks ISOR
deals especially with situations where therapies become ineffective. Causes for
inefficacy have to be found and better therapy recommendations should be
computed. In addition to the typical CBR knowledge, namely former already
solved cases, ISOR uses further knowledge forms, especially medical histories
of query patients themselves and prototypical cases (prototypes).

ISOR uses prototypes in two ways, namely in form of guidelines for dose
calculations and as generalised solutions for therapy inefficacy.

10.5.1 Computing Initial Doses: Guidelines as Prototypes

For hypothyroidism only one drug exists, namely Levothyroxine. The problem
is to calculate effective initial doses (Fig. 10.11). Firstly, a couple of prototypes
exist. These are recommendations that have been defined by expert commis-
sions [36]. Though we are not sure whether they are officially accepted, we call
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Fig. 10.11. Determination of an initial Levothyroxine dose

them guidelines. The assignment of a patient to a fitting guideline is obvious
because of the way the guidelines have been defined. With the help of these
guidelines a range for good doses can be calculated.

To compute a dose with best expected impact, we retrieve similar cases
whose initial doses are within the calculated ranges. Since cases are described
by few attributes and since our case base is rather small, we use Tversky’s
sequential measure of dissimilarity [20]. On the basis of those retrieved cases
that had best therapy results an average initial therapy is calculated. Best
therapy results can be determined by values of a blood test after two weeks of
treatment with the initial dose. The opposite idea to consider cases with bad
therapy results does not work here, because bad results can also be caused by
various other reasons.

10.5.2 Generalised Solutions for Therapy Inefficacy

When long-term therapies become inefficient, ISOR searches for reasons and
attempts to find better therapies. Solutions are reasons for inefficacy. Gen-
eral solutions like “irregular intake” or “changes of hormonal situation” are
used as prototypes on a first level. On a second level these prototypes are
more specific. All prototypes are described by three main attributes (problem
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code, diagnosis, and therapy) and some additional attributes like age, sex,
prescribed drug etc. All prototypes have been defined by medical experts.

At first the retrieval searches among the prototypes on the top level and
checks which solution might be probable for the query patient. Subsequently
prototypes on lower level are considered and finally the single cases, which
belong to the retrieved prototype.

10.6 Summary: The Role of Prototypes

The presented systems have one thing in common that distinguishes them
from most CBR systems: They use prototypes as a form of knowledge repre-
sentation that fills the gap between specific cases and general rules. The main
purpose of such generalised knowledge is to structure the case base, to guide
the retrieval process, and sometimes to decrease the amount of storage by
erasing redundant cases.

In domains with rather weak domain theories another advantage of case-
oriented techniques is their ability to learn from cases. Only gathering new
cases may improve the system’s ability to find suitable similar cases for current
problems, but it does not elicit the intrinsic knowledge of the stored cases. To
learn the knowledge contained in cases a generalisation process is necessary. In
our early warning system concerning the kidney function, apart from guiding
the retrieval and structuring the case base prototypes mainly serve to learn
typical course pattern, because just the relevant kidney parameters are known
but no knowledge about their temporal course behaviour exists.

For diagnosis of dysmophic syndromes prototypes correspond directly to
the physician’s sense of prototypes. As comparisons with single cases are un-
able to identify typical features, in this application the use of prototypes is
not only sensible, but even necessary.

In ISOR, the prototypes for dose calculation are guidelines and the pro-
totypes for therapy inefficacy are similar to those for diagnosis of dysmorphic
syndromes. The main difference is that in ISOR all prototypes are defined by
medical experts.

Summarising our experiences we would like to make quite clear that the
role of prototypes depends on the application and the task. For medical di-
agnoses they even seem to be necessary because of their correspondence to
medical prototypes which guide the physicians diagnoses. In domains with
very poor domain theories they may help to learn general knowledge.
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Summary. This chapter introduces a novel image-segmentation scheme based on
case-based reasoning. Image segmentation is aimed at dividing an image into a num-
ber of different regions in such a way that each region is homogeneous with respect
to a given property, but the union of any two adjacent regions is not. To reach
this goal, a number of different approaches have been suggested in the literature,
among which we consider here watershed-based segmentation. The basic idea of this
segmentation scheme is to identify in the gray-level image a suitable set of seeds
from which to perform a growing process. The growing process groups to each seed
all pixels that are closer to that seed more than to any other seed, provided that a
certain homogeneity condition is satisfied. Since any segmentation method includes
some parameters, whose values depend on the image characteristics, CBR can be
profitably used to improve the performance of the adopted segmentation method
and to ensure that good segmentation results are obtained even if the segmentation
method is applied to images with different characteristics. In practice, CBR will
select from a case-base the cases having image characteristics similar to those of the
current input image, and will apply to the current image the segmentation parame-
ters associated to the most similar case. Image characteristics will be computed in
terms of mean features on the whole image, and a proper similarity measure will be
used to select in the case-base the most similar case.

11.1 Introduction

Image segmentation is a process of dividing an image into a number of different
regions such that each region is homogeneous with respect to a given property,
but the union of any two adjacent regions is not. This process has received
much attention in the literature, being a necessary preliminary step for any
image analysis task, and a number of surveys of different approaches have
been published (see, e.g., [1–7]).

Image thresholding is a well-known technique for image segmentation.
Because of its wide applicability to many areas of digital image process-
ing, a large number of thresholding methods have been proposed over the
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years (see, e.g., [8–17]). Image thresholding has low-computational complexity,
which makes it an attractive method, but does not take into account spatial
information and is mostly suitable for images where the gray-levels consti-
tute well-defined peaks, separated by not too broad and flat valleys. Actually,
some of the limitations of this approach can be overcome by combining rule-
based methods with learning methods, such as case-based reasoning (CBR)
(see e.g., [18]). Based on a rule set, the histogram of the gray-levels is properly
smoothed and the right number of peaks can be selected more easily and in
a reliable manner. CBR ensures the incremental learning of the rule set with
the proper parameters.

Another common approach to image segmentation is based on feature
space clustering, which has sometimes been regarded as the multidimensional
extension of the concept of thresholding. Clustering schemes using different
kinds of features (multispectral information, mean/variation of gray-level, tex-
ture, color) have been suggested (see, e.g., [19–29]). This approach can be suc-
cessfully used if each perceived region of the image constitutes an individual
cluster in the feature space. This requires a careful selection of the proper
features, which depends on image domain.

Segmentation can also be accomplished by using region-based methods, or
edge-detection-based methods, or methods based on a combination of those
two approaches (see, e.g., [30–43]). Region-based methods imply the selection
of suitable seeds from which to perform a growing process. In general, region
merging and region splitting are accomplished to obtain a meaningful number
of homogeneous regions. Seed selection and homogeneity criterion play a crit-
ical role for the quality of the obtained results. Edge-detection-based methods
follow the way in which human observers perceive objects, as they take into
account the difference in contrast between adjacent regions. Edge detection
does not work well if the image is not well contrasted, or in the presence of
ill-defined or too many edges.

Watershed-based segmentation (see, e.g., [44]) exploits both region-based
and edge-detection-based methods. The basic idea of watershed-based seg-
mentation is to identify in the gray-level image a suitable set of seeds from
which to perform a growing process. If the main feature taken into account
is gray-level distribution, the seeds are mostly detected as the sets of pixels
with locally minimal gray-level (called regional minima). The growing process
groups to each seed all pixels that are closer to that seed more than to any
other seed, provided that a certain homogeneity in gray-level is satisfied. Thus,
watershed-based segmentation limits the drawbacks of region-based and edge-
detection-based methods. In fact, the seeds from which to perform region
growing are generally detected in the gradient image of the input gray-level
image, where the edges are enhanced. In turn, the problem generally affecting
segmentation by edge detection, i.e., that the edges seldom constitute closed
curves surrounding the regions of interest, is overcome since the regions are
determined by the growing process. Since in this chapter we are dealing with
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watershed-based segmentation, we postpone a more detailed description of it
to Sect. 11.4.

Finally, we point out that the literature on segmentation is quite large
and includes other approaches besides the ones that we have briefly discussed
above. For example, almost all the above approaches can benefit if some fuzzi-
ness is taken into account. When this is done, segmentation is referred to as
fuzzy segmentation (see, e.g., [45–49]).

To overcome the drawbacks of the algorithms mentioned above, learn-
ing methods are applied to image segmentation. These learning methods are
applied to learn the mapping between image features and semantically mean-
ingful parts, to learn the parameters of the segmentation algorithm or to learn
the mapping between rank performance of the segmentation algorithm and
the image features.

There are statistical learning methods, machine learning methods, neural-
net-based learning methods, and learning methods using a combination of
different techniques. The main drawbacks of these methods are (1) the need
of a sufficiently large training set and (2) the need of training again the whole
model, when new data come in. Therefore, it seems to be useful to use CBR for
a flexible image segmentation system, since CBR can be used as a reasoning
approach as well as an incremental knowledge-acquisition approach. A CBR
framework has, indeed, been successfully used for the high-level unit of an
image interpretation system [50–52] and has shown to outperform with respect
to other approaches.

This chapter proposes a novel image-segmentation scheme based on CBR.
The watershed transformation is used for image segmentation and CBR is used
to select the segmentation parameters according to the characteristics of the
current image. CBR should ensure that we obtain good segmentation results,
independently of the images to which we apply to our segmentation algorithm.
We assume that images having similar image characteristics will show simi-
larly good segmentation results when the same segmentation parameters are
used. Therefore, CBR will select cases having similar image characteristics
from a case base and apply to the current case the segmentation parameters
associated to the most similar case. In Sect. 11.2 we describe related work
on CBR image processing and interpretation. Then, we describe in Sect. 11.3
the general framework for case-based image segmentation. Section 11.4 des-
cribes our approach for CBR image segmentation. It explains in Sect. 11.4.1,
the watershed algorithm and in Sect. 11.4.2 the merging strategy for reducing
the oversegmentation that occurs when applying the watershed transforma-
tion. Section 11.4.3 describes the introduction of a similarity-based control
scheme for oversegmentation reduction that makes the control process more
flexible. The case description and its evaluation are given in Sect. 11.4.4. The
similarity determination between the current case and the cases in the case
base is described in Sect. 11.4.5. Sections 11.4.6 and 11.4.7 give some starting
ideas for the automatic evaluation of the segmentation results, and for case
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generalization and similarity learning, respectively. Final remarks are given in
Sect. 11.5. Section 11.6 concludes the work.

11.2 Related Work

Several systems have been developed that apply CBR for image retrieval and
interpretation at the symbolic level. Usually, the images are not processed and
the symbolic terms are user-specified. Early examples are [53] for retrieval of
radiological images, [54] for the detection of coronary heart disease and [55]
for the diagnosis of breast cancer in histopathology.

In [50], Grimnes and Aamodt presented a system that integrates CBR into
a task-oriented model-based system for interpreting abdominal CT images. A
CBR unit is used, where each case is an individual image segment. These cases
are associated with labels that, in turn, are used as indices for a case base
consisting of organs. The case base of organs is used by another CBR unit
for organ interpretation. The system is based on a propose-critique-modify
learning cycle.

A completely different application ofCBR to image processingwas described
in [56] by Ficet-Cauchard et al. CBR was applied for the development of the
image processing steps of formerly not solved image processing problems, by
using experiences and plan adaptation. In [51], Jarmulak presented a system
employing a tree-based retrieval strategy for ultrasonic B-scans that are one-
dimensional signals. In [57], Micarelli et al. applied CBR to scene recognition.

In [58], Perner used CBR for segmentation of brain CT images, involv-
ing more complex case representations, reasoning and learning strategies, and
data mining techniques for pattern recognition. In [59], Perner proposed a
system that uses CBR at three different levels. At the low-level stage, image
segmentation was optimized by taking into account different image-acquisition
conditions and image quality. At the intermediate-level stage, the case repre-
sentation to be used by the high-level unit was extracted. At the high-level
stage, image interpretation was dynamically adapted. The system worked on
different case representations, such as graph representation for high-level im-
age description, and raw image matrix for low-level image representation.
Therefore, the system used two different CBR strategies for reasoning and
learning: reasoning used structural similarity and learning used digital image
distance. Different learning strategies in a hierarchy of structural cases were
presented by Perner [52, 60]. In [61], Perner compares CBR and dissimilarity
classification methods, which has become important in pattern recognition.
The application of case-based image interpretation to health monitoring and
biotechnology is described in [62]. Learning case representations and improv-
ing system performance by controlling the similarity measure is described
in [63]. Recent research has focused on mining raw information into more
general cases, [64], and making object recognition more robust against model
variation [65].
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Learning in pattern recognition for image segmentation can be distin-
guished into three different tasks:

1. Learning the mapping function from the image features to the labels for
the regions in the image [19–29]

2. Learning the mapping function from the image quality to the rank per-
formance of an algorithm [66]

3. Learning the mapping function from image features to segmentation pa-
rameters [58]

The above learning tasks are classification tasks having different aims. In the
first task, the image is partitioned into small regions that are described by
image features. Generally, these regions are labeled by the operator, either
manually or interactively, based on an image analysis algorithm. The task is
to learn a classifier that can map the image features of the regions to the
labels.

Tasks 2 and 3 are control tasks solved by classification. The basic idea
is that there is a strong correlation between image characteristics, such as
contrast, noise and illumination, and the performance of the algorithms that
are applied to the image. Applying the same segmentation algorithm to images
sharing the same characteristics is expected to produce results with the same
performance.

11.3 The General Framework of a Case-Based Image
Segmentation Approach

The segmentation problem can be seen as a classification problem for which
we have to learn the best classifier. Depending on the segmentation task, the
output of the classifier can be the labels for the image regions, the segmen-
tation algorithm selected as the most adequate, or the parameters for the
selected segmentation algorithm. In any case, the final result is a segmented
image. The learning of the classifier should be done on a sufficiently large test
data set, which should represent the entire domain well enough in order to
be able to build up a general model for the segmentation problem. However,
often it is not possible to obtain a sufficiently large data set and, therefore, the
segmentation model does not fit the entire data set and needs to be adjusted
to process new data. We note that a general model does not guarantee the
best segmentation for each image; rather, it guarantees an average best fit
over the entire set of images.

Another aspect of the problem is related to the changes in image quality
caused by variations in environmental conditions, image devices, etc. Thus, the
segmentation performance needs to be adapted to changes in image quality.
All this suggests to use CBR as a basic methodology for image segmentation,
since CBR can be seen as a method for problem solving as well as a method to
capture new experiences. It can be seen as a learning and knowledge discovery
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Fig. 11.1. Scheme of case-based image segmentation

approach. The CBR process consists of six phases: extracting the case descrip-
tion, indexing, retrieval, learning, adaptation, and application of the solution.

The CBR process for image segmentation is shown in Fig. 11.1. The actual
image characteristics are described by mean features computed on the whole
image. These features are used for indexing the case base and for retrieval
of a set of cases close to the current problem, based on a proper similarity
measure.

To adjust the segmentation parameters, indexing should find out images
sharing the same segmentation parameters. Among the cases close to the
current problem, the closest one is selected and its associated solution is given
as control input to the image segmentation unit. The image segmentation unit
takes the current image and processes it according to the current control state.
Finally, the output is the segmented image.

A case consists of a description of the image characteristics and the
solution. The description of the image characteristics can take into account
nonimage and image information. Based on image description, we can reduce
our complex solution space to a subspace of relevant cases, where variation in
image quality among the cases is limited.

The solution of a case can be one of the outputs of the classifiers described
above. Suppose that our aim is to control the parameters of the segmentation
unit, then the solution is the set of parameters applicable for the segmentation
of the current image. The solution is given as input to the segmentation unit
and the current image is processed by the segmentation unit, based on the
selected parameters.

If we want to control the selection of the best algorithm in a set of possible
algorithms, then the solution given to the image segmentation unit would be
the selected algorithm. If we want to label the regions, then the output would
be the labeled regions.
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After the image has been processed, the segmentation result is evaluated.
This means that the segmentation quality is judged either by an expert or
automatically. Depending on the obtained evaluation, the knowledge contain-
ers (case description, similarity solution) are modified to ensure a better seg-
mentation result by processing again the same image. This task is done by
the case base maintenance unit.

The case base maintenance unit is shown in Fig. 11.2. Differently from
a conventional segmentation process, CBR also includes the evaluation of
the segmentation result and takes it as a feedback to improve the system
performance semi- or automatically. Usually this is an open problem in many
segmentation applications.

When the evaluation of the segmentation result is done manually, the
expert compares the original image with the labeled image on display. If the
expert detects significant differences in the two images, the result is tagged as
incorrect and the case base management will start. The proposed method is
close to the critique-modify framework described in [50].

The evaluation procedure can also be done automatically. However, there
is no general procedure available and evaluation can be done automatically
only in a domain-dependent fashion.

Case-based maintenance is done for several purposes (1) to enter a new
case, when no similar cases are available in the case base, (2) to update an
existing case by case refinement, and (3) to obtain case generalization.

Once an incorrect result is observed for an input image either by the
user or by the automatic evaluation procedure, the case is tagged as a bad
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case. In a successive step, the best segmentation parameters for that image
are determined and the attributes, necessary for similarity determination, are
computed from the image. Both the segmentation parameters and the at-
tributes calculated from the image are stored into the case base as a new case.
In addition to that, nonimage information is extracted from the file header or
from any other associated source of information and is stored together with
the other information in the case base. If the case base is organized hierarchi-
cally, the new case has to be stored at the position in the hierarchy suggested
by its similarity-relation to the other cases in the case base.

During storage, case generalization is done to ensure that the case base
does not become unnecessarily too large. Cases that are similar to each other
are grouped together in a case class and, for this case class, a prototype
is computed by averaging the values of the attributes. Case generalization
ensures that a case is applicable to a wider range of segmentation problems.

It can also happen that several cases are quite similar to each other and,
therefore, they get retrieved for a new problem at the same time. Then, learn-
ing the similarity by updating the local weights associated to each attribute
should be done.

11.4 Our Approach for Case-Based Image Segmentation

We take a case-based approach for image segmentation that controls the para-
meters of a given segmentation algorithm. Such an approach has been pro-
posed for the first time by Perner [58] with reference to on an histogram-based
segmentation algorithm. Here, we consider a watershed-based image segmen-
tation algorithm (WTS) and control by CBR the merging process after the
watershed transformation has been applied to the image. This is a crucial step
when using WTS.

To our knowledge, watershed-based segmentation was introduced in [67].
Since then, a number of papers have been published dealing with the use of
watershed transformation for different applications (see, e.g., [68–81]), or im-
proving the basic algorithm and suggesting solutions to the main problems
affecting the watershed partition (see, e.g., [82–110]). In fact, the watershed
partition may result to be characterized by a number of regions which is either
too large (oversegmentation) or too small (undersegmentation) with respect
to the expected result. Oversegmentation mainly occurs because even objects
that, in a continuous image, a human observer would classify as homogeneous
(e.g., with respect to texture or gray-level distribution), in the digital image
consist of a large number of homogeneous parts, and each of these parts con-
stitutes a region of the partition. Undersegmentation is not equally frequent.
It mostly occurs when the input gray-level image has low contrast. In the
following, we will focus on oversegmentation reduction.

In the next sections we will describe the watershed transformation and our
method to reduce oversegmentation in the watershed partitioned image.
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11.4.1 Watershed Transformation

The landscape paradigm can be conveniently used to give an easily understand-
able explanation on how the watershed transformation works. A gray-level
bidimensional image I can be interpreted as the top surface of a three-
dimensional binary landscape, which can be obtained by considering, for each
pixel of I with planar coordinates (x,y), the relative gray-value as representing
the third coordinate z, that is the height in the landscape in position (x,y).
In this landscape, the bottom of each valley (called pit) corresponds to a con-
nected set of pixels of I characterized by locally minimal gray-level, while the
top of each hill (called peak) corresponds to a connected set of pixels of I
characterized by locally maximal gray-level.

If the pits of the valleys are pierced and the landscape is slowly immersed
into water, the landscape will be flooded and its valleys will be transformed
into lakes. Of course, the first valleys that will be transformed into lakes are
those with the lowest pits, since these are reached first by the increasing level
of water. When the level of water of a lake reaches the edge separating the
catchment basin of that lake from an adjacent catchment basin, the water of
that lake would overflow into the adjacent basin. To prevent this, a dam is
built wherever water of certain lakes could overflow into adjacent catchment
basins. This is done until the level of water reaches the highest peak(s) of
the landscape. At this stage of the process, the top surface of the flooded
landscape coincides with the desired watershed partition. The top lines of the
built dams constitute the closed watershed lines, each of which surrounding a
catchment basin. In this way, a tessellation of the input image into regions is
achieved, where each region corresponds to a catchment basin.

To implement the watershed transformation, the sets of pixels character-
ized by locally minimal value (seeds) should be identified in the gray-level
image. Actually, the seeds are identified in the gradient image of the gray-
level image, which is computed, for example, by means of the Sobel operator.
In this way the seeds are identified in an image that effectively accounts for
the homogeneity criterion, since it enhances the edges in the zones with higher
variations of gray-value [82]. From the seeds, an iterated growing process is
started, which can be accomplished in two different ways, known as watershed
by topographical distances and watershed by immersion. Both strategies are
deeply discussed in [98].

From an operative point of view, we point out that since the catchment
basins must be separated from each other by a leak-proof set of watershed
lines, the catchment basins must be 4-connected (8-connected) if watershed
lines are defined as sets of 8-connected (4-connected) pixels. In fact, if the same
connectedness type is used for both the catchment basins and the watershed
lines, topological paradoxa would be originated. Namely, a closed watershed
line would not separate the surrounded catchment basin from the adjacent
ones. The regions of the obtained partition can be individually identified by
assigning to each catchment basin a distinct label. A unique value is in turn
assigned to all the watershed lines.
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Fig. 11.3. A gray-level image, left, the gradient image, middle, and the watershed
partition, right

In Fig. 11.3, a gray-level image, the corresponding gradient image, and the
watershed partition into 3,237 regions, obtained by using all seeds detected in
the gradient image, are shown from left to right. The watershed lines (in black)
are superimposed onto a lighter version of the input image only for better
visualization of the lines. This input image is used as a running example in
the following. It can be observed that the image is noticeably oversegmented.
Oversegmentation is due to the large number of detected seeds, which exceeds
the number of perceived regions.

To reduce oversegmentation, a careful selection of the seeds to be used for
region growing is necessary: Only seeds corresponding to significant regions
should be used. In principle, seed selection can be achieved by using a filter to
remove irrelevant minima. However, a priori knowledge on the class of images
is necessary to design the proper filter.

A more general method, introduced in [110], is based on the iterated com-
putation of the watershed transform coupled with the use of two techniques,
called flooding and digging, which can be employed to cause disappearance
in the gradient image of those seeds that are recognized as corresponding to
nonsignificant regions. Only significant basins should be preserved in the final
watershed partition (i.e., their seeds should be regarded as relevant) and non-
significant basins should be removed by aggregating them to significant ones
(i.e., their seeds should be regarded as irrelevant). The whole process (i.e.,
flooding, digging, and watershed transformation) is iterated until all basins
result to be significant. Of course, the definition of significant region is crucial
to obtain a meaningful partition.

11.4.2 Oversegmentation Reduction Based on Region Significance
(Control Parameters)

In [110], the significance of a catchment basin was defined by taking into
account the portion of the landscape where the basin is placed, i.e., it was
evaluated with respect to the adjacent basins. Let us consider the basin X
and let Y be one of the basins adjacent to X. The pixel p at the minimal height
along the ridge separating X from Y is called the relative local overflow of X
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with respect to Y and is denoted by LOXY . The local overflow pixel is the
one where the dam separating X from Y should start to be built, to prevent
overflow from X to Y . Once the local overflow pixels have been identified
in correspondence with all the basins adjacent to X, the pixel among them
with the smallest value is called the overflow of X and is denoted by OX , see
Fig. 11.4.

For a basin X we can consider both absolute and relative features. Rela-
tive features take into account X and any of its adjacent basins. Absolute
features take into account X and all the adjacent basins. The absolute (rela-
tive) features that can be used to characterize X can be obtained in terms of
measurements performed on the set of pixels of X having gray-values less than
the (relative local) overflow. This set of pixels is the lake formed when the
water reaches the (relative local) overflow pixel and is denoted by (LXY ) LX .
In the following, we use Z to denote X or XY, depending on whether we are
interested in relative or absolute attributes of the lake created in X when
the water reaches the relative local overflow or the overflow. Moreover, let
us denote by RX the gray-level of the pit of the basin X. With reference to
Fig. 11.5 we can define for X:

– The depth of LZ

Depth [X,OZ ] = max
p∈LZ

{OZ − p} = OZ − RX (11.1)

– The volume of LZ

Volume [X,OZ ] =
∑

p∈LZ

(OZ − p) (11.2)

– The surface of LZ , as the number of pixels in the lake LZ .
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The significance of X can be based on all or some of the above measure-
ments. A basin X is significant if the measurements regarding its (absolute
or relative) attributes, taken individually or in combination, have values not
smaller than given thresholds.

In [110], relative features were regarded as preferable to define the sig-
nificance of X, since in this way it was possible to select, among all basins
adjacent to X, the ones more adequate to absorb X, if X was not significant.
Moreover, a relative similarity parameter SAXY was also introduced, as the
absolute value of the difference in altitude between the pits of X and the
adjacent basin Y :

SAXY = |RX − RY | (11.3)

The similarity between X and Y increases when SAXY decreases.
The relative depth DXY and the similarity parameter SAXY were, then,

used to evaluate the relative significance of X with respect to Y . Precisely, a
basin X was termed significant with respect to Y if the following holds.

SAXY > At OR DXY > Dt (11.4)

where At and Dt are threshold values, computed automatically by using sta-
tistics on the initial watershed partition of the gray-level image.

By taking into account that X can be adjacent to more than one region,
three cases are possible for the classification of X:

– X is significant with respect to each adjacent region Y . Then, X is termed
strongly significant (and the corresponding seed is relevant).

– X is not significant with respect to every adjacent region Y . Then, X is
termed nonsignificant. (The corresponding seed is irrelevant and X has to
be absorbed by the adjacent regions.)

– X is significant in correspondence of some adjacent regions only. Then,
X is termed partially significant. (The seed is irrelevant and X has to be
merged, but only with proper regions, selected among those with respect
to which X is nonsignificant.)

Two different techniques were adopted to remove the irrelevant seeds, dep-
ending on whether X is nonsignificant or is partially significant. When X
was nonsignificant, flooding was accomplished by setting all pixels of X with
gray-level lower than the value q of the overflow pixel, to value q. In this way,
when watershed transformation was newly applied, X resulted as merged
to the adjacent regions with relative local overflow equal to the overflow q.
In turn, when X was partially significant, digging was performed to open a
canal connecting the pit of X with the pit of each basin Y with respect to
which X was not significant. The canal between X and any such a basin
Y was identified as the minimal length path linking the pits of X and Y ,
and passing through the local overflow pixel common to X and Y . The gray-
level of all the pixels in the path was set to the lower value between those of the
pits of X and Y . When the watershed transformation was newly applied, only
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the pit of the basins Y were detected as seeds and the desired merging was
obtained. The watershed lines of X, which were already detected as separating
X from regions W with respect to which X was significant, were not altered.

When flooding and digging were performed by using the thresholds At
and Dt, the gradient image resulted to be modified with respect to the ini-
tial gradient image. In fact, a certain number of pixels had their gray-values
increased by flooding, while other pixels had their gray-values decreased by
digging. This modification of the gradient image caused a smaller number
of seeds to be detected and, accordingly, a smaller number of regions to
be identified by the growing process. Thus, a new watershed partition, less
fragmented than the original one, was achieved. In general, flooding, dig-
ging, and watershed transformation had to be applied for a number of times.
In fact, the regions of the new watershed partition were not necessarily all
significant with respect to the threshold At and Dt. When, after k appli-
cations of flooding, digging, and watershed transformation, all the obtained
regions were strongly significant with respect to the threshold At and Dt,
the obtained kth watershed partition was possibly still oversegmented. Then,
new values for the two thresholds At and Dt were computed on the kth wa-
tershed partition. Of course, if the newly computed threshold values were
smaller than or equal to the previous ones, no merging would have been pos-
sible and the kth watershed partition would have been the final one. Oth-
erwise, if at least one of the new two thresholds was larger than the old
ones, the whole process was repeated. To guarantee that the process termi-
nates, the maximum number of repetitions of the whole process was fixed to
five. In general, the process terminated after at most three repetitions of the
process.

The values At and Dt of the two thresholds involved in the significance
criterion were computed in [110] by taking into account the initial water-
shed transform of the gradient image. Let M be the number of sets each of
which including all basins characterized by pits having the same height h, with
h = 1, 2, . . . M , in the initial watershed partition. For the ith set, the maximal
values of the depth and the similarity parameter (max-depthi and max-simi)
were computed. Then, the two thresholds At and Dt were assigned, respec-
tively, the minimum of max-depthi and the minimum of max-simi, computed
for i = 1, 2, . . . , M . The same criterion was used also to compute the new val-
ues of the thresholds, by using the watershed partition resulting when region
merging was no longer possible with the initial thresholds.

The complete scheme of the segmentation algorithm [110] is given in
Fig. 11.6. More details can be found in [110].

In Fig. 11.7, the watershed partition of the running example is given to
show the performance of flooding and digging to reduce over-segmentation
With respect to the initially detected 3,237 basins, only 82 basins are found in
the final image. As in Fig. 11.3, the watershed lines (in black) are superimposed
onto a lighter version of the input image only for better visualization of the
lines.
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Fig. 11.6. The segmentation algorithm introduced in [110]

Fig. 11.7. The original image, watershed partition, left, over-segmentation reduc-
tion by using algorithm [110], right
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11.4.3 From Crisp Rules to Similarity

The algorithm in [110] is based on a crisp rule to decide when to do the
merging process:

if SAXY > At OR DXY > Dt, then X is significant (11.5)

This crisp rule based on an OR condition has been applied to all images
regardless of the actual image characteristics.

To improve the performance of the segmentation algorithm [110], we
should not use a crisp test to decide about merging. In fact, according to
rule (11.5) it is enough that one of the two measures overcomes the relative
threshold, in order a region be classified as significant with respect to an ad-
jacent region. We think that better results could be achieved if we require
that both measures SAXY and DXY are taken into account, possibly giving
different weights to their contributions. We also think that the weights should
be determined by analyzing the image characteristics.

We introduce a similarity-based control scheme that gives us the freedom
to weight the influence of the two different parameters SAXY and DXY .

The suggested scheme takes into account the relative measure of the actual
value of SAXY with respect to the threshold At and weights this value by
a factor a. The same is done for DXY and Dt, whose ratio is weighted by a
factor b. Depending on image characteristics, we weight the influence of region
similarity and of depth by means of the two weights a and b, and introduce a
threshold T as in the following rule:

if
1
2
(a · SAXY

At
+ b · DXY

Dt
) ≥ T, then X is significant (11.6)

If at least one of the values SAXY /At and DXY /Dt is larger than 1, then rule
(11.5) would classify the region X as significant with respect to the adjacent
region Y . If a = b = 1 and the threshold T is set to 0.5, rule (11.6) would also
classify X as significant with respect to Y . If both SAXY /At and DXY /Dt
have value larger than 1, then the threshold T in rule (11.6) can be set to 1
to classify X as by rule (11.5).

Table 11.1 shows some combinations of values for a, b, and T and the
relative interpretations.

Different combinations of a, b, and T were used to segment the running
example. The obtained segmentation results were judged, based on a compar-
ison between the relative numbers and positions of the obtained regions and
the number and positions of the regions in a manually segmented image.

Table 11.2 shows some results obtained by using the new similarity-based
algorithm on the running example. The best segmentation result obtained
by the new algorithm is shown in Fig. 11.8 right, where the watershed lines
(in black) are superimposed onto a lighter version of the input image only
for better visualization of the lines. This result was obtained by selecting
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Table 11.1. Some combinations of a, b, and T , and relative interpretation

a b T Interpretation

1.5 0.5 1 Region similarity is weighted more than depth
1 1 0.5 Region similarity and depth are equally

weighted
0.75 1.25 0.7 Depth is weighted more than region similarity
0.75 1.25 1.35 Region similarity is weighted less than depth,

and SAXY and DXY are quite larger than the
relative thresholds At and Dt

1 1 0.95 Region similarity and depth are equally
weighted, and SAXY and DXY can be smaller
than the relative thresholds At and Dt

Table 11.2. Selections of a, b, and T for the running example

a b T # regions Evaluation

1 1 0.9 45 Undersegmented: the dome results to be
merged with the sky

1 1 0.8 56 Undersegmented: the dome results to be
merged with the sky

1 1 0.7 62 Undersegmented: part of the church to the
left is merged to the sky

1 1 0.6 76 A good result with small oversegmentation
1 1 0.5 89 Quite good, even if includes a few small

nonmeaningful regions
0.75 1.25 1.3 32 Extremely undersegmented
0.75 1.25 0.9 47 Undersegmented: the dome results to be

merged with the sky
0.75 1.25 0.8 56 A very good result. The best one
0.75 1.25 0.7 64 A very good result with small

oversegmentation
0.75 1.25 0.6 78 A very good result with small

oversegmentation
1.5 0.5 1. 29 Extremely undersegmented
1.5 0.5 0.9 30 Extremely undersegmented
1.5 0.5 0.5 75 Over and undersegmented: the dome is

merged to the sky and nonmeaningful regions
are detected

1.5 0.5 0.4 80 Over and undersegmented: the dome is
merged to the sky and nonmeaningful regions
are detected

1.5 0.5 0.3 83 A very good result with small
oversegmentation

1.5 0.5 0.2 104 Oversegmented
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Fig. 11.8. Watershed partition, left, oversegmentation reduction by the algorithm
[110], middle, and segmentation by the new algorithm, right

a = 0.75, b = 1.25, and T = 0.8, i.e., by weighting more DXY than SAXY .
Only 56 regions are detected and oversegmentation is really very limited. We
note that this result is significantly better than the segmentation obtained by
the algorithm [110] resulting in 82 regions.

Rather good results are also obtained by the new algorithm when still
selecting a = 0.75 and b = 1.25, but by using different values for T . As
expected, the number of regions decreases when the value of T increases.
Undersegmented results are obtained for T ranging from 1.3 to 0.9, and slightly
oversegmented results are obtained for T smaller than 0.8.

Reasonably good results are also obtained with different selections of the
weights. For example, for a = 1, b = 1, the value T = 0.6 produces a result
that is only slightly oversegmented. For a = 1.5, b = 0.5, the value T = 0.3
also produces a slightly oversegmented result.

We tested the new algorithm on different images and noted that there
are cases in which both the algorithm in [110] and the new algorithm show
a similar behavior. This happens when the values of the parameters are a =
1, b = 1, and T = 0.5, i.e., when similarity and depth have the same influence
and, due to the value chosen for the threshold, it is enough that at least one of
the two measures overcomes the threshold to classify a region as significant.
In all the other cases, the similarity-based algorithm behaves better, or even
produces for the first time a reasonable result. For illustrative purpose, some
examples are shown in the Appendix. Original images taken from our case
base, the watershed partitions, the segmented images by using the algorithm
[110] and the segmentation results obtained by using the new algorithm are
given. The numbers of regions corresponding to the segmented images and, for
the new algorithm, the values of a, b, and T selected for each image, are also
indicated to help the reader to appreciate the differences among the results
of the three algorithms, since it may result difficult to clearly distinguish the
watershed lines superimposed on the input images.

Of course, an objective and automatic evaluation procedure to compare
the achieved results with those expected by the user is desirable.
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11.4.4 Case Description

A case generally consists of nonimage information, the parameters describing
the image characteristics, and the solution (i.e., the values of the segmentation
parameters). The segmentation parameters are, in our case, the weights a and
b and the threshold T .

Nonimage Information

Nonimage information includes different issues, depending on the application.
For example, in case of motion analysis [111], nonimage information includes
the camera position, the relative movement of the camera, and the object
category. For brain/liquor determination in CT-images [58], nonimage infor-
mation includes patient-specific parameters (like age and sex), slice thickness,
and the number of slices. Nonimage information is recorded in the header of
the CT image file, so that it can be automatically accessed. Young patients
have smaller liquor areas than elderly patients, and the CT images accord-
ingly show different image characteristics. The anatomical structures (and
hence again the image characteristics) also differ between women and men.
The number of slices may vary from patient to patient because of this bio-
logical diversity, and so may the starting position of the slices. Therefore, the
numerical values are mapped onto three intervals: bottom, middle, and top
slices. These intervals correspond to the segments of the head with different
characteristics. The intervals can easily be computed by dividing the number
of slices by three. The remaining uncertainty in position can be ignored.

In this chapter we tried to solve an open problem since we are not dealing
with images from one specific domain, as it was, for example, in the CT image
analysis [58]. We are actually dealing with different kinds of images such as
those coming from biological applications, landscape images, and face images.
A straightforward approach to separate our case base might be by the type
of images. However, this information is not generally annotated to the images
and, hence, has to be given manually. We point out that in case of image
databases having annotated text information [112] associated to the images,
we would be able to access this information directly from the database.

In the next sections we study how far we would come to determine image
similarity, only based on low-level image features.

Image Information

Image information should describe the characteristics of an image in terms
of contrast, noise, and illumination. It should reflect the idea that images,
classified as similar by the above features, should be segmented equally well by
applying the segmentation algorithm, which produces the best segmentation
for any of them. In other words, it should reflect the link between the behavior
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of the segmentation algorithm and the image characteristics. Therefore the
question is: What is the right description of the image characteristics?

A straightforward description of an image is in terms of statistical features.
The selected statistical features should be computed and used to cluster vari-
ous images into groups of similar images. For each group, the relative features,
stored as image description into the case base, could then be used to check
image similarity, when an input image is presented to the system.

Another approach to determine image similarity could be based on a direct
comparison of the images, see e.g., [113, 114]. Finally, an image may also be
characterized by its texture, so that texture features might be useful to provide
a description and for checking similarity among images.

An Example of Case Description

In this work, we consider statistical features, texture features, and a combi-
nation of both. This choice is motivated by the fact that the gradient images
that are the input to the watershed-based segmentation algorithm differ in
contrast, steepness of the edges, and number of edges per area.

The statistical measures are mean, variance, skewness, kurtosis, variation
coefficient, energy, entropy, and centroid [115] (see Table 11.3).

The texture features are energy, correlation, homogeneity, contrast, en-
tropy, computed from the cooccurrence matrix [116] (see Table 11.4).

We give three case descriptions by using (1) statistical gray-level features,
(2) texture features, and (3) a combination of statistical and texture features.

Clustering based on the normalized city-block metric (see Sect. 11.4.5) and
the average linkage method [117] were applied to a small data set, including
images from different domains, to see how well the three case descriptions sep-
arate different cases and form groups of similar cases. The results are show in

Table 11.3. Statistical gray-level features

Feature

name

Calculation Feature

name

Calculation

Mean ḡ =
∑

g

g · H(g) Variance δ
2
g =
∑

g

(g − ḡ)2H(g)

Skewness gs = 1
δ3
g

∑
g

(g − ḡ)3H(g) Kurtosis gk = 1
δ4
g

∑
g

(g − ḡ)4H(g) − 3

Variation

Coefficient

v = δ
ḡ Entropy gE = −

∑
g

H(g) log2H(g)

Centroid x x̄ =

∑
x

∑
y

xf(x,y)∑
x

∑
y

f(x,y)
=

∑
x

∑
y

xf(x,y)

ḡS Centroid y ȳ =

∑
x

∑
y

yf(x,y)∑
x

∑
y

f(x,y)
=

∑
x

∑
y

yf(x,y)

ḡS

First-order

histogram

H(g) =
N(g)

S g is the intensity value

N(g) is the number of pixels of intensity value g in the image

S is the overall number of pixels
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Table 11.4. Texture features

Feature name Formula

Energy E =
n∑

i=0

n∑
j=0

cij · cij

Correlation C =

n∑
i=0

n∑
j=0

(i−ux)·(j−uy)·cij

sx·sx

Local homogeneity H =
n∑

i=0

n∑
j=0

1
1+(i−j)·(i−j)

· cij

Contrast Con =
n∑

i=0

n∑
j=0

(i − j) · (i − j) · cij

with n = 2 · ldGray − 1, cij-Entry of Cooccurrence matrix

ux =
n∑

i=0

n∑
j=0

i · cij , uy =
n∑

i=0

n∑
j=0

j · cij

s2
x =

n∑
i=0

n∑
j=0

(i − ux)2 · cij , s2
y =

n∑
i=0

n∑
j=0

(i − uy)2 · cij

Fig. 11.9. Dendrogram for CBR based on statistical features

Fig. 11.9 for the statistical gray-level features, in Fig. 11.10 for the texture fea-
tures, and in Fig. 11.11 for the combined feature set. Our expectation was that
images, for which we got the best segmentation by using the same values of
the parameters, would cluster into groups of similar images. By following this
idea, we have to cut the dendrogram in Fig. 11.9 by the cophenetic-similarity
value equal to seven. In this way, the first aggregation, where images (im-
age Bio-1 and image Flora-1) having different similarity measures meet, does
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Fig. 11.10. Dendrogram for CBR based on texture features

Fig. 11.11. Dendrogram for CBR based on texture and statistical features

not form a group. For the texture features in Fig. 11.10, we have to cut the
dendrogram by the cophenetic-similarity value equal to six, to avoid merging
of the images Bio-1 and Bio-2. For the combined feature set in Fig. 11.11,
the cut-off will be by the cophenetic-similarity value equal to seven, to avoid
that images Building-1 and Bird-2 form a cluster. In all three approaches,
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the biological images Bio-3-1, Bio-3-2, Bio-3-3, and Bio-3-4 form a cluster.
The other images get more or less separate into groups with one case member
only, regardless if they share the same segmentation parameters. The largest
number of clusters is achieved in case of the combined feature set.

The results show that we can distinguish the images based on the proposed
low-level image features and, thus, we are able to assign the best segmentation
parameters to an input image with specific image characteristics.

From the retrieval point of view, it would be good to have only a few
clusters with as many as possible case members sharing the same segmen-
tation parameters. In fact, this would reduce the retrieval and similarity-
determination time. In contrast, it is also possible to form groups having
cases that do not share the same segmentation parameters, as long as it can
support fast retrieval.

The hierarchy of case groups is used to single out cases that are not related
to the current case. If the final node of the retrieval hierarchy is used, then
searching the most similar case is accomplished within the associated group
of cases, which should include the cases with the same image characteristics
and the best segmentation parameters. The three dendrograms show that the
similarity between all the cases is sensitive enough to achieve this task.

11.4.5 Similarity Determination

Similarity consists of two parts: nonimage similarity, SimN , and image simi-
larity, SimI . The final similarity is computed by:

Sim =
1
2
(SimN + SimI) (11.7)

In this work, we decided to weigh equally nonimage and image similarity so
that they have the same influence on the final similarity. Only when both
similarities have high values, the final similarity will be high.

Similarity Measure for Nonimage Information

The Tversky’s similarity measure [118] is used for nonimage information. The
similarity between a case Ci in the case base and a new case B presented to
the system is computed as:

SIMN = S(Ci,B) =
|Ai|

α |Ai| + β |Di| + χ |Ei| (11.8)

α = 1, and β = χ = 0.5

where Ai are the features common to both Ci and B, Di are the features that
belong to Ci but not to B, and Ei are the features that belong to B but not
to Ci.
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Similarity Measure for Image Information

We compute the image dissimilarity between two images A and B in the
database of images as the complement to 1 of the distance distAB between A
and B. The distance between A and B is computed as follows:

distAB =
1
k

K∑
i=1

wi

∣∣∣∣ CiA − Cimin

Cimax − Cimin
− CiB − Cimin

Cimax − Cimin

∣∣∣∣ (11.9)

where CiA and CiB are the values of the ith feature of A and B, respectively,
Cimin and Cimax are the minimum and maximum value, respectively, of the
ith feature of all images in the database, and wi is the weight for the ith
feature with w1 +w2 + . . .+wi + . . .+wk = 1. In our case, we assign the same
value to all weights.

11.4.6 Automatic Evaluation of the Segmentation Results

The similarity measure developed in [113] can be used for two purposes (1)
for image retrieval, based on the image matrix and (2) for the evaluation of
the segmentation results.

In this study, we use this measure for the evaluation of the segmentation
results. In fact, we are interested in investigating if, by using this measure, we
can achieve an objective criterion to compare not only qualitatively different
segmentation outcomes. Thus, we use this similarity measure to compare the
quality of the obtained segmentation result to the expected result (e.g., the
segmentation manually drawn by an expert). We call this image the gold
standard.

The algorithm computes the similarity between two image matrixes (see
Fig. 11.12). According to the specified distance function, the proximity matrix
is calculated, for one pixel at position r,s in image A, to the pixel at the same
position in image B and to the surrounding pixels within a predefined window.
Then, the minimum distance between the compared pixels is computed. The
same process is done for the pixel at position r,s in image B. Afterward, the
average of the two minimal values is calculated. This process is repeated until
all the pixels of both images have been processed. The final dissimilarity for
the whole image is calculated from the average minimal pixel distance. The use
of an appropriate window size should make this measure invariant to scaling,
rotation, and translation.

We used the above similarity measure to evaluate our segmentation result
for the running example. The gold standard was in case A the binarized gra-
dient image of the original image and in case B the manually labeled image.
Table 11.5 shows the similarity-values obtained when comparing the original
image to the standard watershed-based image segmentation and to the out-
come of the algorithm in [110]. The highest dissimilarity was found for the
pair-wise computation original-to-standard watershed.
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Input: imageA and image B
grey-level matrix

determination of the window size

Begin with first pixel:r =s= 1

search minimum:
fpi(a,B) = dpi (ars ,WB)

search minimum:
fpi(b,A) = dpi (brs ,WA)

computation of proximity matrix d(ars ,WB) and d(brs ,WA )
based on fpp = dcity

fii= 1/2 (dpi (ars ,WB ) + dpi (brs ,WA ))

r = N?

s =N ?

ye s

no

no

Output: D(A,B)
yes

r = r + 1

s = s+1 

Sum =
r,s

f
ii

2 (r, s)∑

D(A,B) =
1
N2 Sum

Fig. 11.12. Flowchart of the algorithm [113] for computing the similarity measure

Table 11.5. Evaluation of the segmentation results for the running example, based
on the similarity measure in [113], for the partitions obtained by standard watershed
and by the algorithm in [110]

Original-to-
original

Original-to-
watershed
segmentation

Original-to-
segmentation by
algorithm [110]

Case A 0 0.04656367 0.00808133
Case B 0 0.045201939 0.005551775

Table 11.6 shows the similarity-values obtained when comparing the out-
put of the new algorithm to the original image, in correspondence with dif-
ferent values for the parameters a, b, and T . Based on the similarity-value
we should be able to select the best segmentation parameters for the current
input image. If this will work, it would also allow us to adjust the segmentation
parameters by an automatic optimization procedure where the optimization
function is the similarity-value.

The results in Table 11.6 show the best similarity value for the parameter
combination a = 0.75, b = 1.25, and T = 0.8. This result confirms our
evaluation of the performance, done by visual observation of the results.
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Table 11.6. Evaluation of the different segmentation results for the running exam-
ple, based on the similarity measure in [113], for the new algorithm

Segmentation
Results

Parameters
a = 1, b = 1,

Parameters
a = 1, b = 1,

Parameters
a = 1, b = 1,

T = 0.9 T = 0.7 T = 0.65

Case A 0.009195196 0.008050811 0.00805929
Case B 0.006305389 0.005838306 0.00555007

Segmentation
Results

Parameters
a = 0.75, b = 1.25,T = 0.8

Parameters
a = 1.5, b = 0.5,
T = 0.2

Case A 0.008032165 0.008313606
Case B 0.005482262 0.006072278

Furthermore the similarity values in Table 11.6 show that values converge
to a local minimum when the best possible segmentation is achieved for the
chosen parameter combination. It should be possible to guide a search strategy
for the automatic selection of the best segmentation-parameter combination.

It is interesting to note that we obtain the same results for the manually
labeled image and the binarized gradient image.

11.4.7 Case Generalization and Similarity Learning

The aim of case generalization is to form groups of cases that can be repre-
sented by a group representative. This representative should be applicable to
a wider range of images for segmentation. Then the cases belonging to the
same group have to share the same solution.

Another aim of case generalization is to group cases in a way that it is
efficient for retrieval. In this case, it is not necessary that all case members
share the same solution.

A possible way to achieve case generalization is by case clustering. In
Sect. 11.4.4, we used a conventional hierarchical clustering program, which
did not produce many case generalizations on the current set of cases. Only
the images Bio-3-1, Bio-3-2, Bio-3-3, and Bio-3-4 can actually be grouped
together in a single case class. For this case class, a more general case can be
calculated, which would be the mean over all the cases in the group. The other
cases remain as individual cases in the case base. Wider generalization will be
possible only after more cases will have been inserted into the case base.

In conventional hierarchical clustering, the computed similarity-values are
the cophenetic similarities, whose meaning is limited compared to that of
absolute similarities. The dendrograms that we have shown are implicit rep-
resentations of the hierarchy and are computed over the whole case base. In an
offline phase, the explicit representation of the hierarchy has to be computed.



344 M. Frucci et al.

If a new case member is inserted in the case base, then clustering has to be
done again on the whole case base.

A better way to deal with case generalization and build a higher-order
construct (the relation among the clusters) is to do conceptual clustering [119].
During conceptual clustering, the concept hierarchy is built incrementally and,
at the same time, the concept description is calculated and explicitly repre-
sented in the node of the hierarchy. The similarities are absolute similarities
and other measures that describe the concept can be calculated as well.

The image-based similarity measure was described in Sect. 11.4.5. The
measure is done by using the city-block metric with equal weights for each
attribute. Learning the similarity can be done by learning the weights of the
attributes [120]. The weights of each feature wi are increased by a constant
value δ, so that wi = wi ± δ. If the new weights produce an improvement of
the retrieval accuracy, then the weights will be updated accordingly; other-
wise, the weights will remain unchanged. After all weights have been tested,
the constant δ will be divided by 2 and the weight updating procedure is rep-
eated. The process terminates if the difference between the retrieval accuracy
of two interactions is less than a predefined threshold.

11.5 Final Remarks

We have shown our approach for watershed-segmentation based on CBR. It is
well known that the watershed transformation produces oversegmented ima-
ges. Oversegmentation can be reduced by applying a merging process, which
implies the use of several control criteria, based on characteristics extracted
from the initial watershed-segmented image. The control scheme is usually
expressed by rules, in the absence of a better theoretical understanding of the
control mechanism. The similarity-based control scheme gives a more flexible
way to handle the control criteria, depending on the image characteristics and
allows understanding the behavioral mechanism by learning the parameters
of the controller. Currently, the control scheme of our method is global. The
same control scheme is applied to the entire image. We think that a local
control scheme could be developed that uses image characteristics of local
areas of the image, to control merging in those areas.

The best segmentation-parameter combination should automatically be
determined based on a suitable parameter optimization methods [121]. We
could show that the similarity measure presented in Sect. 11.4.6 is not only
able to detect the best possible segmentation results but can also guide the
iterative parameter tuning procedure [122] for the selection of the best para-
meter combination.

Learning the similarity between the cases, i.e., the weights in formula (11.9)
in our case, seems to be a necessary task to face, in order to achieve the aim
that images sharing the same image characteristics should have the same image
segmentation parameters. These research activities are left for further work.
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11.6 Conclusions

The CBR process can be applied to solve all aspects of images segmentation,
from choosing the appropriate image segmentation method/parameters for the
actual image up to the evaluation of the results, and to provide feedback to
the system for performance improvement. Therefore, the model construction
aspect for image segmentation can be handled very efficiently based on CBR.
CBR is an incremental knowledge-acquisition method as well as a reasoning
method. New situations can be captured in an efficient way and the behavior
of the segmentation algorithm can be efficiently studied. New situations can
be made available for reasoning as soon as they have been captured by the
system. This allows the construction of a model for image segmentation that
is applicable to wide range of images. We have described how CBR can be
applied to watershed-based image segmentation by controlling the merging
process. The case image description used for indexing and the similarity mea-
sure have been described. The results show that we are able to achieve better
results for some groups of images.

More research has to be done on the definition of the proper image descrip-
tion. Image description based on statistical features might properly cover the
information about image quality, but this is possibly not enough for watershed-
based image segmentation. The introduction of texture features is a promising
step in this direction and needs to be further investigated. Moreover, there
might be other features, besides statistical and texture features, that could
result as more appropriate.

In the future, we plan to investigate more extensively the automatic evalua-
tion of the segmentation results, so as to better judge the quality of the results.
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11.7 Appendix

bio-1 764 286 (a=1.5,b=0.5,T=1) 54 

bird-1 1519 93 (a=0.75,b=1.25,T=0.8) 72 

bio-2 1078 200 (a=1,b=1,T=0.95) 126 

face-1 12418 714 (a=1,b=1,T=0.5) 718 

Fig. 11.13. Images bio-1, bird-1, bio-2 and face-1. For each test image, the original
image, its watershed partition, the segmentation by using algorithm [110], and the
segmentation obtained with the new algorithm are shown from left to right. For
visualization purposes, the watershed lines are superimposed on images where the
gray-levels have been complemented to 255.
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Summary. Similarity-based image retrieval, which has become an important area
of computer vision, is a part of the case-based reasoning scenario. In similarity-based
retrieval, a query image is provided and similar images from a database are retrieved,
usually in order of similarity. In this chapter, we discuss the use of similarity-based
retrieval for biomedical data. In particular, we describe three different applications
that retrieve various types of image and signal data using similarity functions,
including brain data (fMRI images and single-unit recording signals), mouse eye
data (slit lens images), and skull data (CT scans). We define the similarity mea-
sures used in these applications and then discuss a unified query framework for
multimedia data in general.

12.1 Introduction

Similarity-based image retrieval is part of the case-based reasoning scenario.
It allows for the retrieval of images from a database that are similar in some
way to a given query image. It has been used in case-based reasoning sys-
tems for both image segmentation and image interpretation. Whereas case-
based reasoning focuses on incremental learning of prototypical case classes
and index structures and on case mining, computer vision has been studying
similarity measures, image indexing, and image features.

Similarity-based retrieval has become an important area of computer vis-
ion research. It has reached a state of maturity in which it is starting to be
used in real commercial and medical applications. In the commercial domain,
similarity measures are being used to organize both personal and institutional
databases and to retrieve visually similar images for advertising and market-
ing. In the medical domain, similarity-based retrieval is used by physicians
who want to compare imaging studies from a new patient to those from a
database of prior patients to help them determine the diagnosis and potential
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treatment options. Furthermore, research scientists in the biomedical domain
are starting to use similarity measures to organize and retrieve data from
large-scale experiments involving multiple types of image and signal data. We
have collaborated with three different biomedical research groups who needed
similarity-based classification and retrieval systems to aid in their scientific
research. In this chapter, we discuss each of these applications, describe the
retrieval systems we have developed for them, and suggest the need for a uni-
fied query formulation for a general multimedia information retrieval system
for biomedical applications.

Section 12.2 provides an account of previous work on content-based
retrieval systems. Section 12.3 describes a brain data retrieval system that
retrieves neuronal signals and fMRI data from a database of patients who
have had surgery for epileptic tumor resection. Section 12.4 describes a skull
retrieval system that retrieves skull images from a database of CT images.
Section 12.5 describes a mouse eye retrieval system that retrieves images in
order to study the cataract development in the eyes. Section 12.6 describes
our current work in developing a unified query framework for multimedia bio-
medical data retrieval. Finally, Sect. 12.7 provides a summary of this chapter.

12.2 Related Work

Content-based image retrieval (CBIR) has been a heavily studied area of
computer vision for the past 10 years including both general [48,49] and med-
ical [31] retrieval systems. The majority of these systems retrieve according
to the “query by example” paradigm; that is, the user provides or selects a
query image and chooses a distance measure (or combination of such mea-
sures) that will be used to compare the query image to the images stored
in the database. The system retrieves those database images that are judged
“similar to” the query image by the distance measure. Usually the retrieved
images are returned in order of similarity to the query, and the user has the
capability to browse through them in this order. Much of the research work in
this area has related to the design of distance measures for accurate retrieval
in various application domains. A smaller amount of work has considered the
efficiency of retrieval systems, and some indexing methodologies have been
developed [3, 6, 8, 9, 46, 47] as well as incremental learning methods for the
index structure and the prototypical representation of case classes [17,36].

In recent years image databases have gone from theory to reality. There
are commercial systems, such as IBM’s QBIC [14] and Virage’s image search
engine [4] and research systems including PhotoBook [34], Chabot [32],
ImageRover [44], VisualSEEk [50], WebSEEk [51], MARS [28], and our own
FIDS [6]. The most common features used for retrieval in these systems are
color histograms, texture measures, and simple shape measures. They do not
recognize specific objects and are not intended for biological applications.
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Region-based systems such as Blobword [7], NETRA [24], and the composite
region template (CRT) system [52] perform segmentation based on color-
texture properties to identify regions of interest, which can be used in spatial-
relationship queries. Some systems employ relevance feedback where the
system refines its concept of the user’s query according to the user’s feed-
back [29,33,40]. Both regions of interest and relevance feedback are useful in
a biological multimedia database system.

There have been a number of systems developed for medical image retrieval
[1,2,13,20,30,31,37,46,56,57] as well as for case-based reasoning [15,18,25,35].
Most of these systems were developed for a particular type of retrieval and did
not attempt to work with multiple data types. Kelly and Cannon [19] used a
global texture signature to characterize images of diseased lungs and a signa-
ture distance function to compare them. Chu and Cardenas [12] developed the
KMeD (knowledge-based multimedia medical distributed database) system.
This large and ambitious project allows querying of medical multimedia data
by both image and alphanumeric content and allows for the modeling of both
spatial and temporal content of medical objects. Liu et al. [23] have worked
on retrieval of brain images with abnormalities, while Perner [35] worked on
retrieval of CT brain images based on the image characteristics as well as on
patient data for the automatic determination of degenerative brain diseases.
Tagare et al. [38,54,55] have studied content-based medical image retrieval for
a number of years. Their current research is on high-dimensional indexing in
medical image databases applied to cervical and lumbar spine X-ray images,
where retrievals are based on shape features. Tang et al. developed a system
for histological image retrieval [56], while Zheng et al. designed a system for
pathology image retrieval [57]. Shyu et al. [46] developed a structure called the
statistical k-d tree to allow for rapid searches in content-based retrieval. More
recently they have developed a real time protein structure retrieval system
with a multidimensional index [9, 47].

12.3 Brain Data Retrieval for the Study of Language
Sites in the Brain

During surgery for epileptic tumor resection, a technique called cortical stim-
ulation mapping (CSM) is used to avoid areas on the cortical surface that
are essential for language. The technique involves bringing the patient to an
awakened state during surgery and presenting text, pictorial, or audio cues
of a familiar object for the patient to name. During this process an electrical
current is applied to selected cortical surface sites, marked by placing small
numbered tags on the surface. The electrical current results in a short-term
localized disruption of neural function. If this stimulation results in a naming
error, then the cortical surface site at which it occurs is marked as essential
for language function and is avoided during surgery.
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In addition to their clinical use, the CSM language sites are a valuable
source of data for understanding language organization in the brain, since
their location is highly variable from one patient to the next. Studies have
shown that the distribution of sites is correlated with such factors as sex and
verbal IQ. The hope is that further insight into language organization can
be obtained by correlating these sites, not only with additional demographic
data, but also with anatomical features and other measures of language such
as functional magnetic resonance imaging (fMRI) and single unit recording
(SUR) of individual neurons.

12.3.1 Experimental Procedure

Prior to surgery, each patient undergoes an fMRI scan while being shown the
same stimuli as in the later surgical CSM studies (text, audio, pictures). Fol-
lowing each stimulus the scanner generates a time series of three-dimensional
volumetric data, where each voxel represents the time course of cerebral
blood flow at that voxel. Subsequent statistical processing generates additional
three-dimensional volumes, in which each voxel represents the probability that
a statistically significant change in blood flow occurred between a stimulus and
corresponding control. SUR studies are performed during surgery. As in the
CSM studies the locations of the electrodes are marked by numbered tags
associated with cortical surface sites. The same stimuli are presented as for
fMRI and CSM, but in this case the electrodes record the firing patterns of
individual neurons in response to the stimuli. Later processing looks for signif-
icant changes in firing rates between stimuli and controls, as well as changes
in the firing patterns.

In order to correlate these diverse data sources for a patient, they are reg-
istered to a three-dimensional model of the patient’s brain, using a structural
MRI image volume acquired at the same time as the fMRI volumes. Popu-
lation data are correlated by warping individual patient brain anatomy to a
common “canonical” brain, in the process carrying along the registered func-
tional data. All of the data are stored in several databases that are beginning
to be used to help understand the relationships among various factors related
to language.

12.3.2 Preprocessing and Feature Extraction

Both the signal data and fMRI data are preprocessed before they can be used
in our retrieval system. The raw neuron spike data often contains spikes from
two or more separate neurons. This signal data goes through a process called
spike sorting in which the multiple neuron signals are separated. We have
developed a template-extracting method to discriminate the neuron spikes
using a rotated principal component analysis algorithm [10]. The raw fMRI
data is also noisy. We have developed a method for dynamically detecting the
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Fig. 12.1. Data structure

activations (areas of high-blood flow) using a maximal overlap wavelet trans-
form to extract hemodynamic responses with minimum shape distortion and
a dynamic time-warping algorithm to classify the different types of dynamic
waveforms [11].

Figure 12.1 shows the multimedia data that must be stored and retrieved
for this application. In addition to standard textual patient information there
is SUR data and fMRI data for each patient. The SUR data includes, for each
stimulated electron, its ID, the stimuli shown to the patient, the firing pat-
tern in the time and frequency domains, and several numeric statistics that we
compute. The fMRI data also has stimuli and statistics and includes the four-
dimensional activation data (three-dimensional image over time). The activa-
tion level at each voxel over time is the important characteristic of this data.

12.3.3 Similarity-Based Retrieval

Retrieval of signals is based on prior matching of the raw signal data to eight
signal templates. The templates come from application of a rotated principal
component analysis method [10]. They are shown in Fig. 12.2 for the time
domain only. A query signal is decomposed and the two best-matching tem-
plates are returned. From these, all signals in the database that match these
two templates can be examined.
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Fig. 12.2. Eight templates in the temporal domain

Figure 12.3 illustrates the results of a query for retrieving firing patterns.
The top box shows the patient, microelectrode, and trial protocol information,
and the second box gives the firing rate. The third box shows the best and
second best template matches to the temporal firing pattern, and the fourth
box shows the best and second best template matches to the frequency firing
pattern. Users can extend the query by asking for similar results to those
retrieved by selecting one of the two options at the bottom of the screen (a)
similar firing patterns from a SUR or (b) related fMRI results if they exist.

Figure 12.4 shows the results of a query to display both firing patterns from
neurons and the related hemodynamic response from the fMRI image. The top
box gives patient information, the closest two activated brain areas in the UW
parcellation scheme, and the Brodman area in which the results lie, and the
second box gives the average firing rate. The third box shows best template
matches to the temporal and frequency firing patterns. The bottom box shows
the hemodynamic response that occurred in the most highly activated voxel
on the brain surface.
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Fig. 12.3. Firing pattern retrieval

Figure 12.5 shows the results of an fMRI activation query. The top box
shows the fMRI number, the MNI coordinates of the point with highest activa-
tion, and the closest two activated brain areas in the UW parcellaton scheme.
The images show the highly activated areas in red.

The query system was custom built for this application. There are three
main routes that a query can take (1) query by patient information, (2) query
by trial protocols, and (3) query by firing patterns and/or fMRI activations.
The third route is content based, while the other two are text based. The
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Fig. 12.4. FMRI retrieval

system allows the user to extend the basic query and move between the dif-
ferent query types as needed. A number of different queries have been used
to illustrate the system, as summarized below:

1. Query by patient information with SUR characteristics
2. Query by patient information with fMRI characteristics
3. Query by trial protocols of SUR data
4. Query by trial protocols of fMRI data
5. Query by common trial protocols of SUR and fMRI data
6. Query by firing patterns of SUR data
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Fig. 12.5. Firing pattern and hemodynamic responses retrieval

7. Query by fMRI activations
8. Query by common features in both SUR and fMRI data

The prototype query system was developed for the scientists studying this
particular application. It will become part of a more general system we are
developing under National Science Foundation support.
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12.4 Skull Data Retrieval for Studying the Effects
of Craniosynostosis

Researchers at the Pediatric Imaging Research Laboratory of the Children’s
Hospital and Regional Medical Center in Seattle study craniofacial disorders
in children. In particular, they develop new computational techniques to rep-
resent, quantify, and analyze variants of biological morphology from imag-
ing sources such as stereo cameras, CT scans and MRI scans. The focus of
the research is the introduction of principled algorithms to reveal genotype–
phenotype disease associations. Current projects include the development of
quantitative descriptors of syndromic and non syndromic craniosynostotic
head shape to (a) investigate genotype–phenotype correlations, (b) predict
neurobehavioral and surgical outcomes, and (c) develop a shape-based infor-
mation retrieval system for craniofacial information.

Craniosynostosis is the pathological condition of premature fusion of one
or more calvarial (skull) sutures or fibrous skull joints in childhood, affecting
1 in 2,500 individuals. Normally, an infant is born with open sutures, allowing
for the development and expansion of the brain. However, in children with
craniosynostosis, one or more of these sutures close prematurely. The early
closure of these sutures results in abnormalities in calvarial shapes due to the
combination of restriction of osseous growth perpendicular to the fused suture
and compensatory growth in unfused calvarial bone plates. Different types
of craniosynostosis are classified according to the calvarial suture(s) involved
with fusion detected in three-dimensional computed tomography (CT) images.

Isolated craniosynostosis, or single-suture synostosis, includes isolated fus-
ion of the sagittal, metopic, and left or right unicoronal or lambdoid sutures
(Fig. 12.6). The incidence of an isolated suture fusion is about 1 in 2,000 live
births [45]. Sagittal synostosis is the most common form of isolated suture syn-
ostosis with an incidence of approximately 1 in 5,000, accounting for 40–60%
of single-suture synostosis [21]. Early closure of the sagittal suture results in
scaphocephaly, denoting a long narrow skull often associated with prominent
ridges along the prematurely ossified sagittal suture (Fig. 12.6a). Unilateral
coronal synostosis is the next most common sutural fusion, with incidence
rates of about 1 in 11,000 [21]. It is manifest at birth as an asymmetrically
skewed head with retrusion of the forehead and brow on the same side as
the fused suture and with compensatory bulging of the forehead on the side
opposite the fused suture (Fig. 12.6b). Metopic synostosis is less common and
affects 1 in 15,000 individuals [21]. The premature fusion of the metopic suture
produces trigonocephaly, denoting a triangular shaped head with prominent
frontal crest (Fig. 12.6c). The degree of skull shape deformity and changes in
frontal and occipital bulging and biparietal narrowing can vary significantly
between individuals even in the same disease class. In most cases of single-
suture synostoses, a single surgery, i.e., cranioplasty, is required to release the
fused suture and reshape the deformed calvaria. This surgery is preferentially
performed within the first year to capitalize on the malleability of the infant’s
skull and to minimize secondary facial deformation [26,27].
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Fig. 12.6. Lateral, frontal, and top views of (a) a patient with sagittal synostosis,
(b) a patient affected with unicoronal synostosis, and (c) a patient affected with
metopic synostosis

Whether or not different calvarial shapes directly affect the severity of the
cases, neuropsychological development, complications during cranioplasty, and
postsurgical long-term outcomes for cases of single-suture synostoses remain
largely unknown. In addition, the assessment of surgical “success” has been
subjective, and no standardized method has been established for the post-
surgery evaluation. However, surgeons and craniofacial experts often use cases
of similar skull shapes from their past experience as guidelines in the prepa-
ration and evaluation of the reconstruction of the skull. This “case-based”
study of reasoning makes it possible to reuse prototype images and diagnoses
of previously resolved cases to assess the possible surgical complications and
the postsurgery outcomes of the new cases. Therefore, the case-based clini-
cal decision support technique produces a need to retrieve similar images of
shapes in patients with single-suture synostosis objectively and reproducibly.
In addition, medical images, especially the diagnostic images, are produced
in ever-increasing quantities. Searching through a large collection of digital
images by keyword indexing, or simply by browsing, may be time-consuming
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and may not satisfy physicians’ needs for retrieving cases of similar shapes.
Therefore, it is critical to design a shape-based image retrieval system to not
only ease the management of clinical data but to aid the radiologists and
surgeons in the decision making analysis of the reconstruction of the skull.

In order to design an image-based clinical decision support system for sur-
geons and craniofacial experts, it is critical to first develop shape descriptors
that will enable objective and reproducible detection and quantification of
similarities and differences in the three-dimensional skull shapes. We have
developed several different quantitative shape descriptors for our retrieval
system.

12.4.1 Shape Descriptors

Our shape descriptors were computed from CT image slices obtained with
skull imaging. To standardize our computations, we used a calibrated lateral
view of a three-dimensional reconstruction of the skull to select three CT
planar slices defined by internal brain landmarks (Fig. 12.7) These planes are
parallel to the skull base plane, which is determined by connecting the frontal
nasal suture anteriorly and the opisthion posteriorly. The A, F, and M planes
we use are shown in Fig. 12.7. The A-plane is at the top of the lateral ventricle,
the F-plane is at the Foramina of Muntro, and the M-plane is at the level of the
maximal dimension of the fourth ventrical. Oriented outlines were extracted
from the CT image at each of these planes.

We have developed four different quantitative shape descriptors, three of
which are numeric [41–43] and one of which is symbolic [22]. The numeric
shape descriptors range from a single number per planar slice to a large mat-
rix of numbers. The symbolic shape descriptor (SSD) is a vector of probabil-
ities obtained from a bag-of-words approach to shape description. The shape
descriptors we have developed to characterize skull morphology in craniosyn-
ostosis are summarized below.

Fig. 12.7. All shape descriptors are constructed using the CT image slices extracted
from skull imaging. These bone slides are defined by selecting the base plane on
the three-dimensional image and finding internal anatomical landmarks on cerebral
ventricles
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Fig. 12.8. The scaphocephaly severity index is computed as the head width to
length ratio β/α as measured on a CT plane extracted from skull shape imaging

1. Scaphocephaly severity index (SSI). SSI is similar to the cephalic index
used as the current clinical standard to measure the variation in head
shapes in patients with isolated craniosynostosis. However, instead of mea-
suring the ratio of the head width to the length by the measurer’s subjec-
tive judgment, SSI takes the ratio, β/α, computed at an outline extracted
from CT image slices from skull imaging (Fig. 12.8) [43]. The SSI assumes
that a skull shape can be approximated as an ellipse that has eccentricity

e =

√
1 − β2

α2
(12.1)

Note that if e = 0, β/α = 1 and the outline shape would be a perfect
circle. An eccentricity value close to 1 would suggest a very narrow outline
shape. To increase the sensitivity of the shape description using SSI, users
can combine the SSI measurements from multiple outlines extracted from
skull images to represent the three-dimensional data. Depending on the
performance evaluation metric, either individual or combined SSI values
can be used as shape descriptors. This measurement is very simple and
efficient to compute, but it disregards a broad range of shape variations
that may be of importance in capturing skull morphology.

2. Cranial spectrum (CS). CS is a Fourier-based shape representation that
describes a skull shape with the magnitude of the Fourier series coeffi-
cients of a periodic function [42]. The planes extracted from CT images
are oriented outlines that have directions defined by their corresponding
tangent (T) vectors (Fig. 12.9b). An oriented outline can be represented
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Fig. 12.9. (a) Bone CT slice at the level of the A-plane; (b) oriented outline
counter clockwise direction; (c) same outline represented in polar coordinates (ρ, θ);
and (d) 21 components of the corresponding cranial spectrum. Key: α (maximum
outline length), T (tangent vector), N (normal vector), and (CM) center of mass

Fig. 12.10. (a) Oriented contour represented as a sequence of N evenly spaced
points. (b) Cranial image. (c) Top view and normalized distance scale

as a periodic function by using polar coordinates with the center of mass
as the origin of the coordinate system (Fig. 12.9c). This periodic function
is then decomposed into a weighted sum of basis outlines by Fourier se-
ries. The coefficients from this decomposition then constitute the resulting
shape descriptor. This representation encompasses shape information that
cannot be captured by the SSI ratios. It is also closely related to traditional
DFT-based descriptors [39]. The aim of Fourier analysis as applied here
is to decompose an outline shape into a weighted sum of basis outlines,
where each basis stratifies particular geometric features of a shape.

3. Cranial image (CI). The CI descriptor is a matrix representation of pair-
wise normalized square distances computed for all the vertices of an
oriented outline that has been discretized into N evenly spaced ver-
tices [41]. Let D be a symmetric matrix with elements Dij = dij/α, for
i, j = 1 · · · , N , where dij is the Euclidean distance between vertices i
and j, α is the maximum length of the contour (Fig. 12.10), and N is an
arbitrary number defined by the user. Since the outline is oriented, the
vertices can be sequentially ordered up to the selection of the first vertex.
As a consequence, the matrix D is defined up to a periodic shift along the
main diagonal. The definition of CI can be extended to incorporate an ar-
bitrary number of oriented outlines by computing inter and intra-oriented
outline distances for each of the vertices of all of the outlines representing
a skull.
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Fig. 12.11. Construction of the SSD representation of an extracted skull outline.
1 = cranial image representation, 2 = k-means clustering, 3 = cooccurrence matrix
construction, 4 = PLSA analysis

4. Symbolic shape descriptor (SSD). The SSD algorithm was developed to
model morphological variations that characterize different synostotic skull
shapes [22]. It uses a bag of words (BOW) approach to capture the local
shape variations. Even though this BOW approach has the advantage
of producing a simple data representation, it creates a high-dimensional
feature space and subsequently hinders efficient statistical analysis and
image retrieval. In order to overcome these challenges, we use probabilistic
latent semantic analysis (PLSA) to capture the cooccurrence information
and relationship between elements in the BOW in order to reduce the
high-computational complexity from the BOW representation.
The construction of the SSDs from skull imaging involves several steps, as
illustrated in Fig. 12.11. In brief, the cranial image distance matrices are
computed for all skull outlines in the training set. K-means clustering of
the rows of the distance matrices are applied and yields a set of clusters
of the outline points. A symbolic cluster label is assigned to each outline
vertex. A cooccurrence matrix is then computed for all training data using
the strings of symbols constructed from the cluster labels of the vertices.
Finally, PLSA is employed to reduce the dimension of the cooccurrence
matrix and to construct the SSD.
The input of the SSD algorithm is a set of skull shapes S = {S1, · · · , SM}.
Each skull shape is represented by L oriented outlines, and each outline
is discretized into N evenly spaced vertices. For the sake of simplicity and
without loss of generality, we assume that L = 1. The feature generation
algorithm is as follows:
(a) For each shape Sj in S and each vertex vi of Sj , compute the vector

of distances from all other vertices of Sj to vi. This vector is the same
as the ith row of the cranial image matrix descriptor (Fig. 12.10).

(b) Cluster all vectors in S by the k-means clustering algorithm with
user-selected k and assign each cluster a symbolic label. Each vertex
receives the label of its cluster.

(c) Compute a BOW representation of the skull outlines in S. More specif-
ically, the symbols associated with the vertices of an oriented outline
are used to construct strings of symbols or words. The string size is
fixed at some integer 1 ≤ W ≤ N and is specified by the user. For
instance, when W = 3, each word contains a string of three symbols.
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Fig. 12.12. Symbolic labels are assigned to the vertices of the oriented outlines after
applying k-means clustering to their numeric attributes. Local geometric aspects are
represented by forming strings of these symbols. Oriented outlines of (a) sagittal,
(b) metopic, and (c) normal head shapes, computed at the level of the A-plane

A BOW representation for the outline in Fig. 12.12a is the unordered
set s={′CAA′,′AAB′,′ABB′,′BBC′,′BCD′, ′CDB′,′DBC ′,′BCA′}.
These strings represent the local geometric properties in the skull
shapes.

(d) Compute a M × V cooccurrence matrix of counts n(si, wj), denoting
the number of times the word wj occurs in the BOW si associated
with the skull outline Si in the training sets.

(e) Apply PLSA to the cooccurrence matrix S [16]. PLSA is a latent
variable model which associates an unobserved class variable zk ∈
z1, . . . , zP with each observation, an observation being the occurrence
of a string of symbols from a particular BOW sj . PLSA was origi-
nally applied to document retrieval for which a particular object is a
document and the string of symbols is a word in that document.

(f) Use the class-conditional probabilities P (s|z) estimated in the pre-
vious step to construct the SSDs for the outlines in S. More specif-
ically, for each outline Si in S, form its corresponding SSD as the
P -dimensional vector [P (si|z1), · · · , P (si|zP )].

12.4.2 Shape-Based Retrieval

We have implemented a prototype system for shape-based image retrieval
of skull CT imaging for craniofacial medicine. The system of database ima-
ges supports retrieval based on their shape similarity to a query image. The
shapes are represented by either numeric or symbolic features extracted using
the four shape descriptors described above. A cosine similarity measure is
incorporated for the retrieval of similar cases. The proposed system can help
physicians and craniofacial experts with such tasks as diagnosis, intervention,
and neurodevelopmental prediction.

The user is given a graphical user interface to the retrieval system. All the
feature extraction and computation, feature classification, and feature vector



12 Similarity-Based Retrieval for Biomedical Applications 371

Fig. 12.13. An example of the system retrieving database images using the cranial
spectrum representation on all three planar slices

comparison functions are done in the background. The queries to the image
data can be specified using a query image to retrieve images that share similar
features in the system. Figure 12.13 shows the system retrieving database
images that are most similar to a query image using the cranial spectrum
representation on all three planar slices. Figure 12.14 shows an example of
the system retrieving database images that are most similar to a query image
using the SSD on all three planar slices. The system is currently undergoing
a rigorous evaluation that compares the results it retrieves to those selected
by a craniofacial expert.

12.5 Mouse Eye Image Retrieval for the Study
of Cataract Development

Researchers in the Eye Lab at the University of Washington are studying
cataract formation in the eye, using mice as the subjects of their experiments.
The mice are of several different strains with different genetic factors includ-
ing a control group of normal mice. The eyes of the mice are photographed at
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Fig. 12.14. An example of the system retrieving database images using the SSD
representation on the M-plane

regular intervals using a slit-lens technique. Thus each mouse has associated
subject data and genotype that need to be correlated with the progression of
opacification observed in a sequence of slit lamp images. A current study will
relate genotype (the mutation in a particular strain of mouse) to phenotype
(the presentation of the opacity with respect to pattern and intensity of light
scattering) using these images. The experiment involves eight different muta-
tions in two different strains that are imaged approximately once per week.
The number of images is enormous. Organizing the images through classifi-
cation and clustering procedures as well as through the particular mice they
came from is essential for the success of the project.

The set of cataract classes used in our work contains three classes
(1) WT, which stands for wild type and has no laboratory-induced cataract,
(2) secreted protein acidic and rich in cysteine (SPARC) knockout (a matri-
cellular protein), and (3) the synaptic cleft (SC1) knockout. A knockout means
the gene coding for a specific protein has been truncated or replaced so that the
functional protein is no longer expressed. Figure 12.15 shows typical images
for each class.
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Fig. 12.15. Classes of our study: wild type (WT), synaptic cleft 1 protein knockout
(SC1) [53], and secreted acydic rich cysteine (SPARC) knockout [5]

Fig. 12.16. The shape of the eye in an image varies depending on both the mouse
and the angle of incidence of the slit-lamp ray with the surface of the eye. In addition
to the shape, the mean intensity of the image varies due to the illumination variations
not associated with the type of cataract

The original high-resolution images are resized to 300 by 300 pixel versions.
Some of the properties of the images in the datasets are:

– The eyes in the images are approximately the same size and are approxi-
mately centered at the same location in each image.

– The illumination during the image capture process varies among the dif-
ferent experiments (Fig. 12.16).

– There are artifacts caused by the illumination that are independent from
the cataracts (Fig. 12.17).
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Fig. 12.17. Some artifacts caused by the camera are marked by yellow ellipses

– The pattern in the center of the eye is directly related to the cataract in
the lens.

– A ring pattern can be observed in the WT class. Depending on the
cataract, partial or total occlusion of this ring pattern is observed.

– Because of the way the images are taken, the ring pattern is not circular but
elliptical. This makes the task of detecting rings more difficult (Fig. 12.16).

– The images contain, besides the eye, adjacent parts of the mouse such as
eyelashes, which are not of interest.

The occlusion or cloudiness of the lens caused by the presence of cer-
tain cataracts changes the perception of the cell layers in the lens. Therefore,
the pattern of the lens rings such as the relative colors between two rings
will change, making this an important feature in the characterization of the
cataract class.

The angle of incidence of the slit-lamp light on the cornea is a reason for
the elliptical shape of the ring pattern shown in the medical image. In order
to encapsulate the largest amount of information, images with ring patterns
as close to a circle as possible are preferred. However, not all the given images
have this property, since they are selected manually and the image of the
mouse lens may only approximate a sphere. Fitting circular arcs to the rings
in the images will not necessarily give a good approximation.

The numerous noise factors in the image make this problem nontriv-
ial. Because the conditions in which the image is taken are not completely
controlled, we cannot assume constant illumination or even constant shape
(Fig. 12.17).
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12.5.1 Feature Extraction

We have developed three different features that can discriminates between the
different known classes. The features are (1) ring pattern, (2) intensity profile,
and (3) histogram features. The features we have developed are summarized
below.

Ring Pattern

Rings, or elliptical layers of cells, are present in both the normal and catarac-
tous lens, unless the lens cells are disrupted. Visualization of the layers of
lens cells depends on the magnification and contrast. In the normal lens, the
contrast between adjacent cells or layers of cells is small (observation of the
layers of cells in a normal lens requires high magnification in a microscope).
The contrast increases when an increase in opacity occurs in some layers and
not in adjacent layers. The increased contrast allows the rings to be observed
at the magnification of the slit lamp. The pattern of rings can be correlated
with the formation of cataracts. The proposed approach in identifying and
quantifying these characteristics of the rings consists of a five-step process:

1. Ring enhancement.
2. Isolation of an elliptical sector of the lens.
3. Transformation of the elliptical sector into a rectangular image containing

only pixels corresponding to the lens.
4. Compression of the rectangular image representation into a one-dimensional

array of mean intensities.
5. Extraction of feature vector values from the one-dimensional array pro-

duced in the previous step.

First the ring pattern is enhanced by a local histogram equalization trans-
form as shown in Fig. 12.18. Once the rings have been enhanced, the para-
meters of the ring pattern have to be extracted. Let the coordinates of the
center of the eye be (cx, cy). We will consider the region that corresponds to

Fig. 12.18. The original image (a), the original image after a histogram equaliza-
tion (b), and the original image after a local equalization (c)
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Fig. 12.19. The region inside an elliptical sector is mapped to a rectangular sector
using the Rect(x, y) = (cx + a, y) transformation

the elliptical sector centered at (cx, cy) and between the angles α and −α,
where 0 < α < π

2 .
A ring is modeled as an elliptical arc with axes of length a and b parallel

to the x and y axes, respectively, and centered at (cx, cy). Every point (x, y)
that lies in this elliptical arc is mapped to a point on a vertical line by the
transformation Rect(x, y) = (cx + a, y) as shown in Fig. 12.19.

The Rect transformation is applied to every ellipse centered at (cx, cy)
with a fixed c = a

b and 0 < a < w − cx, where w and h are the width
and height of the image, respectively, to form a rectangular version of the
elliptical-form eye. The resulting image of the Rect mapping is cropped to
remove the cornea and the area outside the lens. The elliptical-to-rectangular
transformation has three degrees of freedom: cx, cy, and c. The value of cy is
restricted to h

2 , working with two degrees of freedom for each image.
The Rect transformation converts the elliptical rings into vertical lines for

easier and more accurate analysis. For a given center (cx, cy) and length–width
ratio c, it produces a vector M(cx, c) of the mean intensities for each of the
columns in Rect(cx, cy) as shown in Fig. 12.20.

The (cx, cy) and c that produce the best-fitting ellipse are used to generate
the mean vector M that is analyzed to provide a feature vector of numeric
attributes that can be used for pattern recognition. The vector we use contains
the following ring attributes:
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Fig. 12.20. An iterative process selects a center point, isolates an elliptical sec-
tor of the lens and maps it to a rectangular version. The variance at each column
of the rectangular mapping is computed, and the case where the sum of the col-
umn variances is the lowest is selected as the best ellipse sector isolation; its center
corresponds to the best center of the lens

– Number, maximum, minimum, mean, and variance of maxima of the
function

– Number, maximum, minimum, mean, and variance of minima of the
function

– Maximum, minimum, mean, and variance of the distance between pairs of
consecutive maxima

– Maximum, minimum, mean, and variance of the distance between pairs of
consecutive minima

– Maximum, minimum, mean, and variance of the difference between each
pair of consecutive maxima and a minima

– Number of consecutive pairs of maxima and minima (regions formed by
peaks and valleys)

These attributes capture several characteristics of the rings: Globally, the
attributes include the number of rings and the distribution of their properties
such as mean intensity, width, and others; locally, the attributes describe the
width and opacity of each ring and provide a comparison of these character-
istics with the characteristics of other rings in the same image.

Intensity Profile

In order to capture the level of cloudiness of the lens, the intensity profile of
the row of pixels in the middle of the image is also considered. Due to the
different opacities in each layer of cells of the lens, a characteristic distribution
of intensities exists for each class. With this information, a plot of intensity
vs column (with the row being constant) is created. Call this function I(x),
where the domain is the columns in the image, and the range is {0, 255}
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Fig. 12.21. The white line in the left image (a) indicates the row of pixels that
is considered for the intensity profile feature. The image in the middle (b) shows a
polynomial fit of degree 5 on the intensity profile. The image on the right (c) shows
a polynomial fit on the output of the Fast Fourier Transform of the intensity profile

Fig. 12.22. Western quadrant of the lens

representing the possible values for intensity. One way of quantifying I(x) is
to fit a polynomial to it and use the values of its coefficients as features.

However, the large number of peaks and valleys creates too much noise
to produce an accurate fit as shown in Fig. 12.21b. Instead, a Fast Fourier
Transform FourierI(x) as observed in Fig. 12.21c is applied. A polynomial
of degree 5 is fit to this function, resulting in a complex function. The 12
coefficients of this polynomial (six real and six imaginary) are concatenated
to form a feature vector.

Histogram of Western Quadrant of the Lens

The difference in opacity, particularly in the western quadrant (as shown
in Fig. 12.22) of the lens layers is characteristic for each cataract class. A
histogram of the western quadrant of the lens is created and is fitted to a
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one-dimensional Gaussian using Maximum Likelihood. The variance of the
Gaussian is included in the feature vector. Because of the variations in illu-
mination caused by external sources in the image, only the variance, which is
related to the distribution of intensities, and not the mean, which is directly as-
sociated with the change in external illuminations, is considered. Figure 12.23
shows the histogram of the images corresponding to each of the three classes.

Segmented Least Squares Fitting on the Intensity Profile

While the intensity profile feature can characterize some classes, the function
is assumed to be continuous. Therefore, noncontinuous fluctuations are app-
roximated as smooth curves. Some classes such as SPARC and WT have
similar polynomial fits but differ in the number of noncontinuous changes
(Fig. 12.24). To encapsulate the amount of “continuity,” we fit a piecewise
linear function on I(x). The standard least squares linear fitting algorithm fits
a line to a set of n two-dimensional points P = {(x1, y1), (x2, y2), ..., (xn, yn)}.
The line with the minimum error is y = ax + b, where

a =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)
n
∑

i x2
i − (

∑
i xi)2

b =
∑

i yi − a
∑

i xi

n

The error of the fit is:

Error(L,P ) =
n∑

i=1

(y − i − axi − b)2

The objective of the segmented least squares approximation is to find
the partition of consecutive points that minimizes the error of the fit, which
corresponds to the sum of the errors for each linear segment used in the fit
with an additional cost C for each segment used.

Efit =
∑
pi∈P

Error(li, pi) + C

where pi is a set of consecutive points in I(x), li is the least squares linear fit
on this set, and C is the cost for each extra segment. We used values of C on
the order of 500.

After fitting this piecewise linear function to I(x), we only consider the
left side of the eye for this feature extraction. This is done by considering the
segments up to the middle of the image and discarding the first segments that
have a very small value for their slope and intersection at the origin. These
segments correspond to the dark section of the image, not a part of the mouse
lens. The features extracted are:
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Type: SC1

Type: SPARC

Type: WT

Fig. 12.23. The histogram of the western quadrant of the eye in three different
classes. The variance of pixel intensities is smaller in SPARC type images and larger
in SC1 type images, while the WT type images tend to have a variance value in
between



12 Similarity-Based Retrieval for Biomedical Applications 381

Type: SPARC

Type: WT

Fig. 12.24. The noncontinuous changes in the intensity profile are not well en-
capsulated when fitting the intensity profile to a continuous function. The graph on
the top is the intensity profile for the SPARC type lens on the top right; the bottom
graph corresponds to the intensity profile for the WT type, shown on the bottom
right. The noncontinuous fluctuations of intensities in the image are observed as
sharp edges in the intensity profile that are characteristic in SPARC images, while
their presence is not as prominent in the WT class

– Number of segments
– Means of the slope and the intersection at the origin (a, b) of each of the

segments
– Variances of the slope and the intersection at the origin (a, b) of each of

the segments



382 L.G. Shapiro et al.

Fig. 12.25. An example of the system retrieving database images that are similar
to the query image from class SPARC

12.5.2 Similarity-Based Retrieval

We have implemented a prototype system for eye image retrieval. The sys-
tem retrieves eye images based on the similarity of their rings and intensities.
The features are represented by a 44 dimension feature vector. A Euclid-
ean distance measure is used to calculate the distance between each pair of
images.

The user is presented with a graphical user interface of the retrieval system.
Feature extraction and classification are done in the background. Figure 12.25
shows the system retrieving database images that are most similar to the query
image. This system will allow the scientists doing the basic research to test
their theories of genotype–phenotype relationships.

12.6 A Unified Query Framework for Multimedia Data

We wish to develop a unified query framework for multimedia biomedical
data. The unified query framework must allow the specification of queries on
alphanumeric data, text data, and multiple kinds of image and signal data.
Our query framework will be an extended SQL that can handle probabilis-
tic queries through similarity measures, which compare a query object to a
database object of the same or comparable type and return a value between
0 (no match) and 1 (perfect match), which can be loosely interpreted as a
probability.
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A query will have three integral parts, which are common to all data-
base systems and can be expressed in SQL or other query languages (1) the
query specifications, (2) the result specifications, and (3) the matching require-
ments. The query specifications will include the objects that are provided to
the query. These can include many different data types, such as text, numeric,
date, matrix, table, signal, two-dimensional image, three-dimensional image,
three-dimensional mesh, and three-dimensional image over time (video). The
result specifications will include the objects that are to be returned by the
query, which can include the same variety of data types. The matching require-
ments will specify constraints (predicates) on the returned objects, including
both hard constraints that must be satisfied and soft constraints whose sat-
isfaction is probabilistic in nature and involves the execution of similarity
measures. For soft constraints, the data will be retrieved in ranked order, acc-
ording to the probability of a match. The main focus of our work is on these
similarity measures and probabilistic retrievals.

12.7 Summary

We have described three separate content-based retrieval systems for biomed-
ical applications. The first retrieves neuronal signals and fMRI data from a
database of patients who have undergone epileptic tumor resection. The sec-
ond retrieves skull images from a database of CT images from patients with
both normal and abnormal craniofacial structure. The third retrieves slit-lens
mouse eye images from a database of images from normal and DNA-modified
mice. All three use very specialized image and signal features in their sim-
ilarity measures. Our goal in our future work is to develop a set of feature
extractors that can be used to construct useful similarity measures as part of
a unified system for multimedia biomedical data retrieval.
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Summary. Image processing is an important focus area within case-based reason-
ing. CBR systems have been developed both to support image-centric functionality
such as segmentation, as well as domain-specific imagery applications. In particu-
lar, case-based medical applications employ significant imagery elements to support
tasks such as diagnosis and treatment planning. Whereas previous surveys have
focused either on imagery or on medicine, this chapter takes a look specifically at
their conjunction, providing a novel perspective and overview of the main issues and
research work in case-based reasoning involving medical imagery.

13.1 Introduction

Image processing has long been an area of significant interest for case-based
reasoning researchers. Research efforts have investigated CBR as applied to
diverse imagery tasks including: ultrasonic interpretation [59], submarine clas-
sification [4, 19], face recognition [49], architectural support [14], remotely
sensed data [71], weather prediction [36], protein crystallization [39], satel-
lite imagery [37], and video retrieval [11]. Further, case-based reasoning has
been applied in sketch-based retrieval of architectural data [15, 27], as well
as for prediction in spatial GIS applications [33, 34, 40–42]. In addition to
domain-specific applications, case-based approaches have also been applied
to more general image-centric functionality, such as segmentation [55] and
recognition [46].

In particular, though, the medical domain has been strongly coupled with
image processing in case-based reasoning, for example in radiology [44] and
computer tomography [26, 56]. While the two areas of image processing and
medical applications have both been identified as primary topics in CBR res-
earch [35,62], the crossover between the two has not typically been addressed
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as a whole. This chapter looks specifically at medical imagery applications in
case-based reasoning. Several very good surveys have been published, some
quite recently, on integrating imagery with case-based reasoning [24,56,61,62],
as well as on case-based reasoning in medicine [10, 35, 50, 65]. Our goal is to
examine the conjunction of the two areas in light of ongoing developments
in medical information systems, in order to provide a novel perspective and
overview of the main issues and research work on medical imagery in case-
based reasoning. This chapter begins with an overview of image storage and
retrieval in general, as well as for medical applications in particular in Sec-
tions 13.2 and 13.3. Section 13.4 goes on to introduce the notion of “Media
CBR” and related issues for cases that incorporate media elements to vary-
ing degrees. Finally, Section 13.5 provides a survey of case-based reasoning
work for medical imagery, setting the systems in the context of a comparative
framework.

13.2 Image Storage and Retrieval

Image retrieval systems are typically characterized by one of two main app-
roaches, they either support keyword-based annotation and indexing (query-
by-text) or a content-based approach where the retrieval of images is on the
basis of features automatically extracted from the images themselves (query-
by-example). Each of the two approaches can be practically applied to different
image domains, however, it is recognized that neither of these approaches are
fully adequate for answering the complete range of user search questions [48].
Both approaches must contend with the so-called sensory gap [70], which
describes the loss between the actual structure in the world and the represen-
tation in a digital image. More precisely, the sensory gap deals with issues of
resolution.

The keyword-based approach is a human-centric approach that depends
on images being accompanied by textual descriptions, which typically incurs a
significant knowledge engineering effort. The indexes for such large image col-
lections are time consuming to create and maintain, particularly since entries
are not grounded in how the collections are being used (which exacerbates
indexing subjectivity). Also, keyword indexing for images only provides hit-
or-miss type searching as the range of successful queries is limited to the
interpretation of the indexer.

Content-based approaches are computer-centric and focus on the auto-
matic extraction of low-level visual features such as colors and shapes from
imagery. Substantial research efforts within the computer vision community
have been focused on retrieving specific images from a large database by
querying the properties of these images [13, 28, 45, 51, 63]. Some notable
prototypes for intelligent image retrieval have been developed, including
[12,17,18,21,54,66]. Most of these efforts address the problem in the context
of general-use applications, where the images stored in the database display
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substantial differences in their low-level properties, such as: color (histogram
matching), texture (image coarseness and contrast matching), and composi-
tion (dividing an image into homogeneous color/texture regions and analyzing
the relative positions of those regions). Content-based approaches must add-
ress the so-called semantic gap [70]. General semantic layers are insufficient to
model the full complexity of medical knowledge, and the semantic gap refers
to transformation from an image to a representation by features. More specif-
ically, the semantic gap deals with the problem of information loss in such
transformations.

Addressing the semantic gap is a difficult problem. Baseline approaches
may employ combinations of low-level features, such as may be represented
in the MPEG-7 standard. In general, however, it requires significant effort in
knowledge representation and knowledge acquisition through feature extrac-
tion, and classification. Research in semantic-inference [58,60] tries to address
this problem by enabling incremental development of fully automatic image
retrieval systems, beginning with human-defined and automatically extracted
features and progressing to more specific and refined extraction procedures
for domain problems.

In our own research [52,53], we identify an additional task-based approach
to image analysis and retrieval that leverages an associative context, grounded
by domain tasks. Images that are grouped for a common purpose may be
considered to have a tacit relationship, even though the image contents or
annotations themselves would not indicate such.

13.3 Imagery in Medical Application Context

The medical domain, in particular, incorporates a broad range of imagery
applications to support laboratory technicians, physicians, or patients in a
variety of tasks, such as diagnosis or treatment planning. In order to motivate
our survey of medical imagery in CBR, we first take a look at some of the
issues in how imagery is applied in the medical application domain.

Medical diagnosis and decision making involves interplay between vast
numbers of medical knowledge resources [2,3,69,73]. This can range from imp-
licit knowledge held by healthcare workers to experiential and data-induced
knowledge. Systems that can simultaneously access and combine relevant inf-
ormation from these various knowledge resources are crucial to the diagnostic
process and subsequently the efficient treatment of patients. From a decision
support viewpoint, healthcare workers need complete, contextually relevant
information that is consistent with the patient’s current medical state and
that is appropriately presented at the correct level of abstraction.

For many years, the medical industry has managed imagery in the context
of “picture archiving and communication systems” (PACS) [8,47,64,68]. More
recently, episodic records of patient interactions are coming to reside in “elec-
tronic health records” (EHRs) [16, 31, 32], which incorporate the traditional



392 D.C. Wilson and D. O’Sullivan

PACS information. The Healthcare Information and Management Systems
Society has defined EHR [31]:

The EHR is a longitudinal electronic record of patient health informa-
tion generated by one or more encounters in any care delivery setting.
Included in this information are patient demographics, progress notes,
problems, medications, vital signs, past medical history, immuniza-
tions, laboratory data, and radiology reports. The EHR automates
and streamlines the clinician’s workflow. The EHR has the ability
to generate a complete record of a clinical patient encounter, as well
as supporting other care-related activities directly or indirectly via
interface—including evidence-based decision support, quality manage-
ment, and outcomes reporting.

The medical community has recognized the need for both context-based
and content-based image retrieval, and a good overview from that perspective
can be found in [48]. Moreover, the medical community has recognized the
value in capturing and linking tacit knowledge to explicit knowledge [6,20,67],
supporting the development of task-based approaches.

For integrated medical systems to achieve significant success, it is necessary
to provide a level of standardization for image diagnosis and retrieval. There is
significant ongoing work in developing standardized vocabularies and medical
ontologies for representation. In particular, for medical imagery, it is necessary
to have a vocabulary that makes the meaning and the visual appearance of
image features clear and universally understood among medical practitioners.
The BI-RADS Atlas [1] provides a leading example in standardized classifica-
tion for radiological image diagnosis in mammographic studies.

13.4 Media CBR and Imagery Cases

The different medical contexts for imagery help to define different roles that
imagery can play as part of case structures in a CBR system. The range of
image contribution to a case will depend on the domain task, and it can range
from being the sole/primary source of case knowledge to being a contributing
part of a larger whole. Many CBR medical applications have incorporated
nonimage context, such as image metadata or patient characteristics, and
nonimage context has been recognized as part of case representation for indi-
vidual images [61]. The widespread deployment of EHR type systems argues
for the incorporation of such imagery as a significant part of overall patient
media structures. Here we provide a more general account of how imagery
can play a role in case composition, by looking at the role of media in cases.
We present a view of media case composition directly applicable to imagery,
which extends a characterization originally developed by the authors in the
context of textual case-based reasoning [72].
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One aspect of CBR imagery research focuses on transforming or augment-
ing knowledge-poor images [56, 61] in order to generate (hybrid-) structured
representations that can be used by more traditional knowledge-based CBR
methods. Such support for imagery CBR is especially important when the raw
case information is composed entirely of image data. However, there are many
situations in which image information plays an important, but ancillary role
in case composition and reasoning. For example, a medical diagnosis may be
made primarily based on demographic information and nonimage laboratory
analysis (e.g., blood testing), but an X-ray may still provide useful support
for that diagnosis.

Thus, techniques from content-based image retrieval, which have been used
to support image-as-case CBR, can be applied in situations where image inf-
ormation represents only a small, but useful part of the overall reasoning
context. This has led us to view media CBR along a continuum from “media-
light,” where media information offers limited reasoning support but does not
require sophisticated processing, to “media-heavy,” where media information
is the focus of reasoning but requires much more specialized treatment. For
media-light contexts, we suggest that relatively simple and general content-
based techniques can be used to provide a local measure of similarity which,
although relatively weak in itself, is strong enough to enhance reasoning within
a larger knowledge-based context. Such measures provide standard similarity
metrics, such as nearest neighbor methods, with support for “media features,”
providing they are used with appropriate contextual support from other case
content.

13.4.1 Defining Media CBR

We propose a working definition of media CBR that will allow us to make finer
distinctions about media in cases. While the definition itself is very simple, it
requires making some subtle distinctions.

First, the definition is made in terms of raw case context, that is, the un-
modified media component(s) that will in some (often significantly modified or
augmented) form be used for reasoning. These represent the raw experiences
that a media-enabled CBR system works with. For example, the definition
would be applied to medical imagery prior to going through a specialized fea-
ture extraction/indexing process (manual or automatic) to support retrieval.
If we did not make this distinction, some media-focused CBR systems might
not be considered media systems at all, since their reasoning processes use
only the extracted knowledge-structure counterparts as a proxy for the actual
media.

Second, we presume that there is a sound reason for having the media
as part of the experiential context: Either the media itself is an end (as in
retrieving a particular image) or the media represents useful knowledge that,
if possible to do so, is either difficult or impractical to fully encode across the
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semantic gap. Thus we presume that there is some value in the media itself,
and that it is not simply a poor representational choice.

With these conditions in mind, we define media CBR:

Media CBR is CBR that will make use of media to enable or to
enhance its reasoning process.

13.4.2 Semistructured Cases

In making finer distinctions about media CBR, it is important to understand
the roles that media can play in case composition. Some media CBR sys-
tems work with cases that correspond in their entirety to a media unit such
as an image or audio segment. However, a case may also contain both raw
media and knowledge-rich components. For example, in a diagnosis situation,
the physician may represent structured demographic information about the
patient (e.g., age, gender) while incorporating radiological imagery that illus-
trates aspects of the medical condition. Here, the media and knowledge-based
components together make up the raw case experience. Thus our definition of
media CBR does not presume that the media involved in reasoning comprises
the whole of a case, in order to allow for such “semistructured” cases.

Semistructured cases are simple or complex cases that are composed in part
of well-defined, knowledge-rich (having a rigorous semantic interpretation in
the system context) structured features, as well as of ill-defined, knowledge-
poor unstructured features such as raw imagery. We view this distinction on
the knowledge-level, instead of the representation or implementation levels, so
the fact that an image may be represented as color properties for measuring
similarity does not change our view of the knowledge it affords as an image.
We recognize the semantic gap as part of the similarity measure, but presume
that the media itself is available upon retrieval.

A raw media-case, then, can be viewed as a case with a single “media”
feature that contains the entire representation of the media element. This
enables us to view case composition as a continuum of case types from fully
media (single media component) to semistructured (some media and some
knowledge-rich components) to fully structured (complete set of knowledge-
rich components).

13.4.3 Media-Heavy/Light CBR

Given our working definition of media CBR and a view of semistructured
cases, we make the following finer-grained distinctions. In media CBR, when
the importance of media (in the raw experiential context) as a basis for reason-
ing exceeds the importance of the available knowledge-rich reasoning context,
it is considered media-heavy CBR (MH-CBR). When the importance of me-
dia as a basis for reasoning is overshadowed by the available knowledge-rich
reasoning context, it is considered media-light CBR (ML-CBR). There is a
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continuum between media-light and media-heavy CBR from the standpoint
of an individual media component. When little additional case context is avail-
able, it is very important to make distinctions based on the media component
in question, which will require greater discrimination power. As additional
case context becomes available, it is less important to make fine distinctions
based on the particular feature in question.

13.4.4 Media CBR and Semistructured Cases

In order to round out our discussion of media CBR, we consider some of the
issues involved in working with semistructured cases.

The degree of media of a CBR system is closely related both to the type
of case structuring and to the composition and media processing power of the
system’s indexing/similarity metric. For purposes of indexing and retrieval,
media CBR systems can follow two related routes to varying degrees. First,
cases can be transformed from more raw media to more structured repre-
sentations, enabling the use of traditional knowledge-based methods. Second,
similarity metrics can be made more complicated, perhaps involving multiple
stages.

There is a complementary relationship in moving between the extremes
of case composition. A great deal of media CBR can be viewed as enabling
existing knowledge-based CBR methods by transforming full-media, fully un-
structured image-cases into more structured, knowledge-rich cases. From our
point of view, the complementary goal is also important; that is, enabling
the augmentation of fully structured, knowledge-rich cases with fully media,
knowledge-poor information by extending the functionality of standard simi-
larity metrics to deal with media components.

The idea of moving from a single-featured media-case to a set of more
knowledge-based features is compelling. We can view the process of trans-
forming a media case into a more structured case as happening in two possible
ways. First, media can be transformed into or augmented with knowledge-rich
features, either manually or automatically. Second, larger media components
could be transformed into multiple smaller components, each containing a
portion of the original and providing a more narrowly defined contextual inter-
pretation of the media therein. For example, an image may be segmented into
regions of interest or a video may be segmented into scenes. Both help to fill-
in otherwise empty contextual portions of case knowledge and can strengthen
reasoning. The former enables more powerful reasoning, but the latter may
require less processing.

This gives rise to two interesting and related issues. The first is whether it
would be possible for a set of many contextualized media features to perform
as well as some knowledge-rich representations. This question recalls the rel-
ative roles of deep and surface features in analogical reminding (e.g., [23,30]).
A related issue is whether it is possible to reduce the amount of effort required
to transform a case or to apply a complex similarity measure by judging when
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Fig. 13.1. Media case development

enough new contextual knowledge has been gained to make reasoning practi-
cable, and discontinuing the knowledge-building effort at that point.

Figure 13.1 provides a general view of a multiple-media case, incorporating
imagery, text (or markup), audio, and video. It illustrates two aspects of media
feature processing (1) segmentation of raw media features according to media-
specific knowledge and (2) semantic mapping of media features according
to application domain knowledge. Given the background context in image
processing and medical imagery, as well as our development of media CBR
notions, we turn our attention to a survey of medical imagery research in
case-based reasoning.

13.5 Case-Based Medical Imagery Applications

We survey eight approaches involving medical imagery in case-based reason-
ing. Tables 13.1–13.3 provide a framework summary of the systems in terms
of primary system and metric characteristics. The systems are categorized
according to a number of common image features as well as know techniques
for image analysis, manipulation, and retrieval. Table 13.1 outlines each CBR
image system we describe in the course of the chapter, the number of cases
employed by the specified application (if available) and a brief representation
of how each case is represented by the particular system. Table 13.2 outlines
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Table 13.1. CBR medical image systems, cases, and case representation

Author and year Cases Case representation

Alexandrini et al, 2003 n/a Case can consist of papers, printed films,
clinical patient information such as anamne-
sis, ‘1qdiagnosis, prescriptions in written text
form, patient data, images, waveforms, and
structured reports stored DICOM format, and
SNOMED terms

Balaa et al., 2003 130 140 attributes
Berger, 1992 n/a 25 features: polygons which define the geome-

try of tissue in the cross section for the case
Grimnes and Aamodt,
1996

n/a Two Layers: 1st layer: case is description of
a segment possibly together with tentative
pathologic/anatomical hypothesis as well as
any previously rejected hypotheses with jus-
tifications.
Second layer: case is set of segments with diag-
nostic segment hypotheses together with prob-
lem description not pertaining to single seg-
ments only, as well as any previously rejected
segment hypotheses with justifications

Galushka et al., 2005 n/a 18 RGB and 18 textural features extracted
from each region of interest to form cases in
two separate case bases

Golobardes et al., 2002 216 18 features representing microclacifications
Haddad et al., 1997 100 Each image consists of six planes; each plane

is divided into 12 segments. For each segment,
a value of relative thallium activity obtained
by polar map analysis

Jurisica and Glasgow,
2003

n/a 11 features

Lobozek et al., 1998 35 A case is described as a collection of macro-
scopic areas, each of them associated to a col-
lection of histologic areas. Each type of area is
defined by a set of about ten-specific features

Perner et al., 1999 n/a Image and nonimage features
Perner et al., 2003 n/a Four features: color, shape, contour, object
Wilson et al., 2006 1,000 Clinical data and medical image annotations
Yearwood and Pham,
2000

n/a A case is made up of relevant clinical data
along with 11 attributes for each vertebrate
line of alignment. Also six values correspond-
ing to the intervertebral spacings and five cur-
vature values are included

whether the specified application performs case adaption and/or retrieval,
the type of media CBR implemented by the system, and the image segmenta-
tion and interpretation capabilities of the systems. Table 13.3 illustrates the
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Table 13.2. Case adaption, retrieval, media CBR type, image segmentation, and
interpretation

Author Case Case Media Image Image
year adaption retrieval CBR segment interpret

Alexandrini et al., 2003 No Yes Light No No
Balaa et al., 2003 No Yes Light No No
Berger, 1992 Yes Yes Light No Yes
Grimnes and Aamodt, 1996 Yes Yes Light Yes Yes
Galushka et al., 2005 Yes Yes Heavy Yes Yes
Golobardes et al., 2002 No Yes Heavy Yes Yes
Haddad et al., 1997 Yes Yes Heavy Yes Yes
Jurisica and Glasgow, 2003 No Yes Heavy Yes Yes
Lobozek et al., 1998 No Yes Light No No
Perner et al., 1999 No Yes Heavy Yes Yes
Perner et al., 2003 No No Light No Yes
Wilson et al., 2006 No Yes Light No No
Yearwood and Pham, 2000 No Yes Light No No

Table 13.3. Pattern recognition, content-based features, explicit, and implicit image
features

Author Pattern Impl Expl
year recog Color Shape Edge Texture feat feat

Alexandrini et al., 2003 No No No No No No Yes
Balaa et al., 2003 Yes No No No No No Yes
Berger, 1992 No No Yes No No Yes Yes
Grimnes and Aamodt, 1996 No No No No No Yes Yes
Galushka et al., 2005 No Yes No No Yes Yes No
Golobardes et al., 2002 No No No No No Yes No
Haddad et al., 1997 No No No No No Yes No
Jurisica and Glasgow, 2003 No No Yes Yes No Yes Yes
Lobozek et al., 1998 No No No No No No Yes
Perner et al., 1999 No Yes No No No Yes Yes
Perner et al., 2003 No Yes Yes No No Yes No
Wilson et al., 2006 No No No No No No Yes
Yearwood and Pham, 2000 No No No Yes No Yes Yes

pattern recognition and content-based retrieval capabilities of each system in
terms of image similarity matching performed using color, shapes, edge det-
ection, and textural analysis. Finally the table outlines whether images are
compared and retrieved using implicit and/or explicit features.

13.5.1 FM-Ultranet

FM-Ultranet [7] is used in the domain of ultrasonography and aims to detect
malformations and abnormalities of fetus through ultrasonographical exami-
nations. Ultrasonographists decide whether a fetal abnormality is a dangerous
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malformation and if a pregnancy should be terminated or if the abnormality
is just a particularity without importance. To come to this decision, an ultra-
sonographist may use several different knowledge sources, medical literature,
expert professional, and tacit knowledge and/or the advice and second opin-
ion of a colleague expert. FM-Ultranet attempts to automatically relate these
knowledge sources using CBR to represent and leverage medical literature and
expert tacit knowledge and by providing a mechanism to electronically link
and network ultrasonography clinicians.

The case base consists of 130 cases which are arranged in a hierarchical
and object oriented structure. Each case is composed of about 140 attributes.
These 140 attributes are organized in 39 concepts and subconcepts to rep-
resent characteristics in a medical sense. Most of the attributes store knowl-
edge about the anatomical structure of the fetus, like the urinary tract and
the morphology of the head, thorax, or rachis. The case representation also
includes clinical data of the mother (medical history), ultrasound imaging,
bibliographic references, outcome of the pregnancy, the status of the child at
birth, the result of the autopsy, and the international classification of diseases
code.

According to the authors, ultrasound scans interpretation and diagnosis
can largely be improved through comparison of past existing similar cases
and with guidance of an expert. Therefore a CBR approach is employed for
the task. The FM-Ultranet tool collects the clinical data at the ultrasono-
grapher’s workplace. Data collection is done easily from a single page that
offers all relevant entries for a sane fetus. In the case of an abnormal value the
related detailed descriptions are provided. Instead of creating a report manu-
ally, the examiner annotates picture information where necessary to the filled
attributes and then generates his case documentation report with a single
click.

This tool is built on top of the CBR works engine, which is used to retri-
eve the most similar past cases from a reference case base as well as from
the ultrasonographist’s local case base. Case data is utilized to support the
decision process, i.e., the ultrasonographist can compare the found cases with
his present examination. No adaptation of cases is performed.

The system retrieves similar cases/images by calculating similarity between
attributes in the concepts. This is calculated mathematically or compared
through a look up table, depending on the attribute type. No content-based
image processing is performed by the application. Multimedia support is also
provided by making the database available for consultation by other ultra-
sonographists and offering the possibility to submit cases to experts for ad-
vice. Finally a report of system findings is generated when the detection CBR
process is completed.

The system was evaluated during a 3 months trial by 11 medical doctors
and three experts, in hospitals in Nmes in France and Lige in Belgium. The
application aimed to help ultrasonographists to improve their diagnostic skills
by providing comparison with existing clinical cases, exploitation of their own
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past experience, and a means to contact external experts. With a unanimous
“yes” answer to the question on usefulness and with 45% of the testing popu-
lation having acquired new knowledge, the FM-Ultranet system was deemed
to have met ultrasonographers needs.

13.5.2 Roentgen

Roentgen [9] is an application of case-based planning in the radiation therapy
domain for thorax cancer. In radiation therapy, beams of radiation high-energy
photons or particles are directed at cancerous tissue in the patient’s body.
Since many vital tissues are highly sensitive to radiation extreme care must
be used when deciding how to position the radiation beams, what energies to
use, and what the beam cross sections should be. Radiation therapy plans are
developed by a dosimetrist, an oncology specialist. The dosimetrist uses past
planning experience to develop a plan for a patient once the physician has
determined what region of the body is to be treated and the amount of dose
to be delivered. The physician decides what plan to use based on the work of
the dosimetrist.

Roentgen employs an archive of past therapy cases to suggest therapy
plans for new patients. It processes the images from the previous cases using
content-based image techniques. The image processing is based on implicit
geometric image features. Each case/image in the system contains polygons
which define the outline of each tissue in the anatomical cross section for
the case. For each of the important tissues – target, spinal cord, lungs, body
outline – there is a corresponding list of coordinates which defines a poly-
gon representing the tissue. Furthermore, a list of features which capture the
essential geometric information which characterizes a patient with respect to
the physics of radiation therapy is stored. For thorax cancer patients therefore
the application computes the following geometric features for the lungs, spinal
cord, and body outline:

Area: The area of the polygon. For the body outline, this is the absolute area
and for other tissues it is the area as a proportion of the total body area.

Eccentricity : This feature parallels the subjective perception of how “elon-
gated” the corresponding tissue is.

Orientation: This feature is associated with the subjective perception of the
direction in which a tissue points.

Rho: The distance from the target centroid to the centroid of the polygon of
the tissue.

Theta: The angle formed by the vector from the target centroid to the tissue
centroid with the positive X-axis.

Just the first three parameters are computed for the target. All five parameters
are computed for the other tissues. In addition, two other parameters are com-
puted which are concerned with the geometry of the body outline. They are:
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Apx : The posterior to anterior extent of the body outline in centimeters.
Rlrx : The relative right to left extent of the body outline as a proportion of

the anterior to posterior extent.

Roentgen is integrated into the therapy design task. When designing a
new therapy plan the dosimetrist can search using Roentgen for an initial
plan suggestion. Each entry for a therapy plan contains information describ-
ing the geometry (polygons which define the outline of each tissue in the
cross section for the case) and dose requirements of the particular plan.
Since the dose distribution produced by a plan is determined by the patient’s
internal geometry, a good match should resemble the new patient geomet-
rically. In addition, the doses delivered to important tissues in the patient
by the retrieved plan should meet the dose constraints for the new patient.
Roentgen addresses these two requirements by calculating a matching score
which is the product of a geometry subscore and a dose requirement sub-
score. The retrieval and recommendation of new plans is therefore calculated
using both implicit image features (geometry) and explicit patient features
(dosage).

Roentgen supports case-based therapy planning in following ways. Firstly
it retrieves the case which best matches the geometry and treatment con-
straints of the new patient from a knowledge base of previous cases. It adapts
this plan by tailoring it to the specific details of the current patient. The eff-
ect of applying the plan to the current patient is evaluated and if detrimental
effects are discovered the plan can be repaired to avoid faults in treatment
processes. This final plan is then recommended by the system to the human
planner. Roentgen solves problems in a domain dominated by spatial reason-
ing by applying theories of constraint satisfaction.

13.5.3 Image Creek

This work attempts the task of medical image understanding, in particu-
lar computer tomography (CT) imagery. Cases in the ImageCREEK appli-
cation [26] combine lower level segment identification with a higher level
interpretation and understanding of the image as a whole. In order to do
this radiologist knowledge in the form of high-level interpretation of image
content is captured and combined with low-level structure analysis. Therefore
cases consist of both image and nonimage attributes.

The ImageCreek architecture is designed and implemented within the
Creek system for knowledge-intensive case-based problem solving and learn-
ing. Cases, as well as general domain knowledge and information are captured
in the frame-based representation language CreekL, where a knowledge model
represented in CreekL is viewed as a dense semantic network. The case-based
method of Creek relies heavily on an extensive body of general domain knowl-
edge in its problem understanding, similarity assessment, case adaptation, and



402 D.C. Wilson and D. O’Sullivan

learning. The underlying case-based interpreter in Creek contains a three-step
process of (1) activating relevant parts of the semantic network, (2) explaining
derived consequences and new information, and (3) focusing toward a conclu-
sion that conforms to the task goal. This “activate-explain-focus” cycle, is
a general mechanism that has been specialized for each of the four major
reasoning tasks of the CBR cycle (retrieve, reuse, revise, retain).

Using the case-based activate-explain-focus cycle a novel architecture for
medical image understanding was proposed. The architecture incorporated
information about how radiologists diagnose patients as well the mechanics
of current image processing algorithms. Therefore a two-layered architecture,
corresponding to two case bases storing these two different kinds of experi-
ence and supporting two different kinds of solutions was developed. One layer
lays on top of the other and both employ a “propose-verify-critique-modify”
framework. Specifically the two layers of the application compose the Segment
ImageCreek and the Wholistic ImageCreek layers. These two layers operate
as follows:

The Segment ImageCreek layer works with image segments (i.e., subsets
of the image sharing some similarity) in isolation. In the case base, a case
is a description of a segment possibly together with a tentative patho-
logic/anatomical hypothesis as well as any previously rejected hypotheses
with justifications. A segment hypothesis is such a description and some of
the hypotheses may be pathological labels; others may be normal anatomical
labels and some may neither be pathological nor anatomical due to imaging
or therapeutic artifacts. In this layer only one segment description at a time
is examined and a segment hypothesis is suggested for each single segment.

The Wholistic ImageCreek layer works with the entire image in question.
An overall image interpretation is achieved using different segments with suit-
able segment hypotheses that fit in with each other and with the general
problem description context. In the case base, a case is a set of segments
with diagnostic segment hypotheses together with the problem description
not pertaining to single segments only, as well as any previously rejected seg-
ment hypotheses with justifications. In this layer the idea is to look at the
broader aspects and the totality of the all the segment hypotheses in light of
the problem description context and the findings not pertaining to a particular
segment only.

Image interpretation is performed using both implicit and explicit image
features. Implicit features used are image segments which are acquired using
the publicly available Khoros image processing environment, for segmenting
images from CT scanners. A segment, in this context, refers to an area of the
image corresponding to an anatomical object or a significant part of one, for
example an area picturing a liver. Explicit features used in the ImageCreek
application correspond to the high-level interpretation of image content pro-
vided by radiographers.



13 Medical Imagery in Case-Based Reasoning 403

13.5.4 SCINA

Haddad et al. [29] developed the SCINA application to perform Myocardial
perfusion scintigraphy, a noninvasive diagnostic method for the evaluation of
patients with suspected or proven coronary artery disease (CAD). The SCINA
application interprets medical images using implicit image features extracted
by image segmentation.

A case library was compiled of 100 patients who underwent both stress
perfusion scintigraphy and coronary angiography to document or exclude the
presence of significant CAD. The study group was obtained by a retrospective
search in databases of our clinic and included 77 men and 23 women with a
mean age of 59. Each patient scintigraphic image consists of six planes; with
each plane divided into 12 segments. For each segment, a value of the relative
thallium activity obtained by polar map analysis is determined. This process-
ing is performed using OSIRIS software and polar map data were extracted
from the six short axis and saved as 2 x 6, 4 x 6, 6 x 6, and 6 x 12 matrices
of integer numbers. Therefore, a case in the case library consists of the fol-
lowing features: name, sex, and age of the patient, 12, 24, 36, or 72 integer
values obtained by polar map analysis of the scintigraphic image one binary
value representing the result of the visual analysis of the coronary angiography
(1 or 0 for the presence/absence of CAD).

SCINA uses case-based reasoning for image interpretation by deriving an
assessment concerning the presence of CAD from scintigraphic image data.
The full case-based cycle of retrieve, reuse, revise, and retain is implemented.
The retrieval, which is performed by nearest neighbor match, considers the
integer values obtained by polar map analysis. Those values from segments
of planes placed in the middle are weighted high, those from the edges are
weighted low. In order to define the similarity metric, two observers indepen-
dently processed scintigraphic images of ten patients using OSIRIS software.
Respective polar map data were compared and three different intervals were
used as tolerance ranges: + 1 standard deviation (SD), + 2 standard devi-
ations, and + 2.5 standard deviations of the difference in segmental tracer
uptake. Numeric values for the difference between the current case and the
case in the library that are within the tolerance range were considered a com-
plete or partial match depending on the similarity metric.

Two different adaptation strategies were implemented and tested. The first
adaptation strategy was developed based on a mapping between the main
coronary vessels and the polar map according to a schematic model of the
coronary circulation. If a segmental activity value on the polar map of the
target case was significantly lower than the corresponding value of the most
similar case, the score of the respective vessel was increased to indicate more
severe CAD in this vascular territory and vice versa. Thus, the model of the
coronary anatomy together with scintigraphic data from the current case and
the case library were used to adapt the output of the CBR application.
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For the second adaptation strategy, the binary number reflecting the
presence or absence of CAD of the five retrieved cases with the highest simi-
larity scores were used to derive an assessment concerning the presence of
CAD in the current patient. This adaptation algorithm uses the differences
in the input domain between retrieved cases and the current case to calcu-
late a data point in the output domain that corresponds to the angiographic
evidence of CAD.

SCINA is implemented in the CBR programming shell ESTEEM. The final
prototype of SCINA reported the sensitivity and specificity for detection of
coronary heart disease at 98% and 70%, respectively, suggesting the diagnostic
accuracy is feasible for clinical use.

13.5.5 TA3IV F

Jurisica and Glasgow [38] describe the application of automated image analy-
sis to evaluate morphology and developmental features of oocytes and embryos
in the domain of in vitro fertilization (IVF). An important aspect of this res-
earch is in its focus on a domain where processing only symbolic information
is not sufficient and where one representation formalism is not adequate to
satisfy diverse users and tasks.

In the application a case is composed of 11 features extracted from the
medical images. The features are represented by numeric attributes. The aim
of the work is to combine image analysis techniques with case-based reasoning
to provide an application that can: serve as a feature extraction technique,
serve as an indexing approach and serve as an image analysis tool. Case ret-
rieval of IVF images is implemented by the application.

The system uses implicit image features for image processing. This is
performed using computer-based morphometry to precisely and objectively
identify developmental features of oocytes and embryos. In order to perform
morphological analysis of oocyte and embryo images the authors chose to
use deformable models, which are model-based techniques for image analysis.
They are used in medical image analysis for image segmentation, matching and
deriving image object size, shape, and location. In this system the available
models are recognized images and the task of deformable models is proper im-
age alignment recognition. For example, the system has a repository of models
of embryos with different quality. Then the task is to align the new embryo
with existing models.

Deformable models are also used to perform automated image-feature
extraction from the images of the embryos. This information can be used
to classify the quality of the embryo and analyze its morphology, which in
turn can be used in conjunction with other clinical attributes during decision
making. Finally deformable models are applied to identifying dynamic prop-
erties of images. Namely, sequences (or groups) of models may be compared
to another group to identify dynamic or evolving images (e.g., development
of an embryo over a period of time).
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Image preprocessing isolates the region of interest (ROI) in the image
and attempts to standardize images with regards to lighting and size. The
image processing system is divided into the analysis and retrieval modules.
The analysis module is used to extract features from the raw image to create
a case. This is performed by evaluating the morphology and developmental
features of oocytes and embryos (including cell number, fragmentation, cel-
lular appearance, zona thickness, etc.). The retrieval module uses variable
context retrieval. Each case is assumed to have only one attribute, which is
a two-dimensional array of values. Contexts are represented by two arrays
indicating a maximum and a minimum. Thus, the domain of a context is a
continuous range of values. Post-processing then implements the classification
strategy.

13.5.6 BIOGEFA Airborne Fungi

Perner et al. [57] have developed a case-based system for the detection and
identification of airborne fungi using an image acquisition and interpretation
system. The images used originate from microscope enhanced pictures. Cases
in the case base are image descriptions which are automatically extracted
from the images themselves. Each case consists of the solution which is the
type of fungi spores and the features describing the visual properties of the
object. The features are color, shape, special properties inside the objects
such as structure inside, size, and appearance of the cell contour. The image
processing therefore makes use of implicit image features.

The fungal strains have a high-biological variability, i.e., dissimilarity bet-
ween the features of individual fungi is quite extensive. A strain cannot be
generalized to a few cases because of this variability. Therefore a case-based
reasoning approach for the image interpretation rather than a generalized
approach is undertaken. Similarity between an actual case and cases in case
base is determined using Euclidean distance. The initial case base is a flat
case base. An index structure is incrementally learnt as soon as new cases
are input into the case base using a decision tree. The reasoning system also
allows for the learning of a more compact case description.

13.5.7 Image Segmentation System

Perner [56] proposes a system that uses CBR to optimize image segmenta-
tion at the low-level unit according to changing image acquisition conditions
and image quality. The system has been used to detect degenerative brain
disease in particular Alzheimer disease in CT images of a patient and was
implemented at the Radiology Department at the University of Halle.

Cases are comprised of image features as well as nonimage information
about the image acquisition and the patient. Image information is described
by statistical measures of the gray level like: mean, variance, skewness,
kurtosis, variation coefficient, energy, entropy, and centroid. For CT-images,
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nonimage information consists of patient-specific parameters, slice thickness,
and scanning sequence. This information is contained in the header of the CT
image file.

The case-based reasoning unit for image segmentation consists of a case
base, in which formerly processed cases are stored by their original images,
their nonimage and their image segmentation parameters. The task is now to
find the best segmentation for the current image by looking up the case base
for similar cases, CBR is used to select the segmentation parameter according
to the current image characteristics. This is done using both implicit image
features (segmentation calculated using gray-level histograms) and explicit
nonimage features (patient data).

In an offline phase, the best segmentation parameters for the image are
determined and the attributes, which are necessary for similarity determi-
nation, are calculated from the image. The similarity measures for the image
and nonimage information are combined to calculate an overall similarity mea-
sure. Both, the segmentation parameters and the attributes calculated from
the image, are stored into the case base as new case. During storage, case gen-
eralization will be done to ensure that the case base will not become too large.

The result of the segmentation process is observed by the user. The original
image can be compared with the labeled image on display. If the user detects
deviations of the marked areas in the segmented image from the objects area
in the original image, which should be labeled then the result will be evaluated
as a bad result and case base management will start. This will also be done
if no similar case is available in the case base. The evaluation procedure can
also be done automatically. However, the drawback is that there is no general
procedure available, so it must be developed in a domain dependent fashion.
Therefore, an automatic evaluation procedure would constrain the usage of
the system.

13.5.8 CyclopsDistMedDB

Alexandrini et al. [5] argue that CBR technology has proven its usefulness in
supporting reasoning for medical domains, and they advocate a research focus
on the integration of such “CBR-modules” into systems supporting medical
processes and healthcare organizations’ workflow. In this way, CBR-modules
can be accessed at the place where diagnosis is performed and in the time when
it is performed. In the proposed application, a case can be represented by a
number of heterogeneous components including, papers, printed films, clini-
cal patient information such as anamnesis, diagnosis, prescriptions in written
text form, patient data, images, waveform. This information for each case is
converted to a structured report in a DICOM format and assigned a number
of SNOMED terms that accurately describe its content. This application in-
tegrates medical image data into a case with other patient information and
retrieves image data using only explicit patient information and not by using
any image processing techniques.
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The CBR component being developed by the authors will be integrated in
an existing transparent gateway for distributed healthcare information access
to enable the collaboration of several health care organizations. The authors
have previously developed a number of computer-based medical systems which
are used in hospitals and clinics in Germany and Brazil. Each of these sys-
tems are connected using CyclopsDistMedDB, a transparent gateway for dis-
tributed data access in DICOM format. CyclopsDistMedDB is Client/Server
based and is installed on every computer within the partner hospitals, so
during every process step (registration of the patient, anamnesis, diagnosis,
etc.) all information stored for a patient can be accessed and specialized tools
can be triggered. CyclopsDistMedDB supports collaboration between several
healthcare organizations by allowing users to send DICOM images or DICOM
structured reports via e-mail. The CBR component described in this article
is an attempt to extend these collaboration possibilities by allowing access to
shared database from several incorporated healthcare organizations.

The CBR approach used by the authors is used for case storage and
retrieval. The authors envisage the retrieval component being used in the fol-
lowing way: A physician wants to find all relevant information for a patient,
e.g., he or she uses a DICOM structured report of a current patient’s case as
query and can retrieve suitable old reports in text form, relevant passages from
medical text books, and DICOM structured reports of other similar cases. This
helps to shorten examination time, because the physician can access all rele-
vant information using their computer. Furthermore the approach lends itself
to the storage and preservation of information, for example information from
old medical texts can be retrieved and can be converted to a new pattern like a
DICOM structured report. The system also has additional benefits for new or
inexperienced health professionals as they can use the database to find similar
cases to compare with patients they are currently diagnosing. The application
also provides a shared database of knowledge that can be accessed by experts
looking for solutions in the case of difficult or unusual cases.

13.5.9 IDEM

The IDEM system [43] is a Web-based application for querying and browsing
histopathology images by exploring a collection of illustrated medical cases.
In the histopathology domain physicians usually write a description of a case
in natural language terms in a standardized report. By analyzing reports, a
case representation strategy was developed. A case is described as a collection
of macroscopic areas, each of them associated to a collection of histologic
areas where each histologic area can contain several histologic areas as well
as cytological descriptions. Each type of area is defined by approximately
ten features. As well as defining each case in terms of semantic information
from the reports, the cases are also defined in terms of a tree structure by
translating data from the physician reports. Each node of a tree corresponds
to the description of an important macroscopic or histologic area, according
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to the diagnostic conclusion. Therefore in this research only explicit image
features are used to perform similarity matching and no image processing
based on implicit features is performed.

A similarity metric was constructed where cases are compared using their
composite features both in terms of their semantic and structural character-
istics. Semantic characteristics are given by the set of features extracted from
physician reports. Structural characteristics correspond to the tree structure
of the cases. A global similarity is calculated as the arithmetic mean of both
characteristics. CBR retrieval is implemented to be used both in a query-
ing and browsing module, as follows. No case adaptation occurs within the
application.

Querying with CBR. Target documents are retrieved using the similarity
metric. The query functionality aims at retrieving the images and diagnosis
attached to a case of the base that are most similar to a new case. The new case
has the same format than the cases in the base. The system output consists
of two main parts corresponding to the description of the most relevant case
and to the justification of its relevancy

Browsing with CBR. The CBR approach allows an expert proximity bet-
ween cases to be defined and justified. A browsing path is created in the case
base by creating hypertext links between the nearest cases using the outline
tree structure. As a result of the tree structure the similarity measure can
provide a quantification of the browsing process. The user can always know
to what extent the case he/she watches is close to the previous one through
the similarity links.

13.5.10 CaB-CS

Golobardes et al. [25] are concerned with computer aided diagnosis of breast
cancer using mammographic images. Diagnosis is performed using micro-
calcifications from the mammographic images. Cases in the application are
represented by 18 microclacification features which appear on mammographic
images. Some of these features include the area, perimeter, and compactness of
the microclacification. The image processing method uses only these implicit
features.

The diagnostic procedure can be broken down into four main steps. These
are (1) digitizing the mammographic image, (2) processing the image, (3)
performing microcalcification identification and feature extraction, and finally
(4) using machine learning techniques to diagnose the processed mammogram
automatically.

The first step is straightforward and the radiological mammographic
image is digitized. In steps two and three the microcalcifications are analyzed
and characterized through the extraction of features and visibility descrip-
tors. This is performed by means of different image processing techniques
such as gray-level image analysis, signal processing algorithms, or morpho-
logical methods. The images are then segmented and the digitization and
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segmentation processes transform the original gray-level image into a binary
image, where the background tissue is removed and clustered microcalcifica-
tions appear. Finally, in the fourth step (the focus of the article), machine
learning techniques are applied to diagnose the images where images can be
diagnosed as malign, benign, or unclassified.

The two machine learning techniques used in the work are case-based
reasoning and genetic algorithms. Firstly, both algorithms are compared to
results obtained by human experts and statistical models. Secondly the algo-
rithms are compared to six other well-known machine learning techniques.

The case-based classified system CaB-CS is used in this research. In this
system the reuse phase of the CBR cycle is simplified as it classifies a new case
using the same class of the most similar retrieved one. In CaB-CS, the notion
of similarity between two cases is computed using different similarity mea-
sures. In the research outlined in this chapter a number of different similarity
functions are used for diagnosis. The different similarity functions used can
be classified in two groups: functions based on distance metrics and functions
based on spheres.

For functions based on distance metrics the authors utilized Minkowski’s
metric and Clark’s distance similarity metrics. For functions based on spheres
the authors used the Proximity Sphere and the MinMax Sphere which com-
pute the similarity between two cases using local similarity measures. They
also used the Mean Sphere which computes similarity using a global similarity
measure.

An evaluation of the application consists of two main phases. Firstly, the
case-based reasoning and genetic algorithm approaches are compared with
previous results obtained by human experts and statistical models. Secondly
the results achieved by the case-based reasoning and genetic algorithms are
compared with six classifier schemes provided by different machine learning
theories. These classifiers are instance-base learning (IB1 and IBk with k=3),
statistical modeling, Naive Bayes, tree induction (C4.5), rule learning (PART),
and support vector machines (SVM). The algorithms were compared in terms
of classification accuracy, sensitivity, and specificity.

In the first phase of the evaluation, results demonstrated that the accu-
racy achieved by case-based reasoning and genetic algorithms overcome the
accuracy obtained by the human experts and the statistical model. The high-
est accuracy achieved was 77.14 and was calculated by a case-based classifier
using Clark’s distance metric. However, human experts and the statistical
model showed better sensitivity and specificity than those calculated by the
case-based and genetic algorithms. This is as a result of human experts not
classifying uncertain examples.

In the second phase of the evaluation the average accuracy rate across the
case-based and genetic algorithm approaches as well as the six other machine
learning techniques tended to be very similar. This was also the case for
sensitivity and specificity scores with all of the algorithms tending to be more
specific than sensitive.
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13.5.11 Telemedicine for Cooperative Medical Diagnosis

Yearwood and Pham [74] are concerned with the domain of telemedicine
(specifically teleradiology) and providing medical services to people living in
remote areas with a lack of medical specialists. They identify a number of
obstacles to implementing applications in the domain of teleradiology. Firstly
expensive equipment is required to collect images digitally rather than on film.
Secondly there are problems associated with the storage of large amounts of
digital data produced by the different medical imaging techniques. Thirdly
preserving the integrity and diagnostic quality of images sent over networks
and transmission lines is a difficult task and finally it is also necessary to have
appropriate equipment at the other end to present a diagnostic quality display
of images.

To solve some of these issues the authors have developed a case-based
environment that allows physicians to exchange ideas and to collaborate and
cooperate in diagnosis with centrally located medical specialists. Specifically
the remote database allows access to medical images, retrieval of relevant
medical cases to support diagnosis, and communication among participants
through telepointers and image annotation by free-hand drawing. In this
article the author describe research performed using images that depict cervi-
cal spine injuries.

A case in the case base is represented by relevant patient clinical data
along with 11 extracted features. Six distance values corresponding to the
intervertebral spacings and five curvature values are also stored.

Feature extraction can be carried out on clients for the purpose of real-
time collaboration and discussion. Features are extracted using content-based
image techniques including edge detection, corner identification, and contour
following. For the particular problem of cervical spine trauma a fixed set of
features is extracted and the cases in the case base all contain these features.
The features extracted are those identified by radiologists to confirm the nor-
mality of the spine and to identify any deviation from normal, including lines
of alignment, bony contours, craniocervical junction, disc spaces, facet joint
spaces, vertebral spacing, and prevertebral soft tissues. In total a case is made
up of relevant clinical data along with 11 extracted features. Six distance val-
ues corresponding to the intervertebral spacings and five curvature values are
also stored.

The authors presented their case-based component of the application in the
design phase. It was envisaged that the already developed feature extraction
application would integrate with a hospital PACs system as well as a case-
based reasoner. The application would use case query language (CQL) which
is the query language of the CBR works shell, to query for a target case. This
language would permit querying on individual features or queries based on a
combination of features in a similarity measure.



13 Medical Imagery in Case-Based Reasoning 411

13.5.12 Tissue Classification

Galushka et al. [22] propose a case-based monitoring system for leg ulcers.
In the article they concentrate on the first stage of the monitoring process
which is that of tissue classification. The wound healing process is assessed by
examining the base of wounds, which consists of many different tissue types
such as granulation, slough, necrotic, and epithelial tissues. Muscle, tendon,
or haematoma may also be present. The color of the wound bed gives an indi-
cation of these tissue types and thus the particular phase of healing. In order
to automatically monitor the wound healing process, it is important to assess
different tissue types continuously, and compare the process on consecutive
visits. Therefore the importance of color to tissue classification is obvious but
the researchers also felt that texture may also have an important part to
play and classification based on this feature was also examined. Cases in the
case base were represented in terms of color and textural feature and image
analysis was based only on these implicit image features.

The extraction of color features from the imagery was performed using
RGB histograms. The extraction consisted of two steps. Firstly in the signal
processing step the histogram was smoothed by a low-pass filter to remove
high-frequency fluctuations. In the second step the three highest peaks in
the histogram are detected which correspond to the highest intensity level
elements contained in a ROI in the image.

In extracting textural features three features were used: angular second-
moment feature, contrast feature, and correlation feature. The angular second-
moment feature is a measure of the homogeneity of an image (or ROI). The
contrast is a measure of the contrast or amount of local variation present in an
image. The correlation is a measure of gray-tone linear dependencies within
the image.

Using a CBR methodology, the classification procedure consists of three
steps: feature extraction, retrieval, and adaptation. Each image is split into
regions of cells by applying a grid structure during a pre-processing step.
Each cell element is 10x10 pixels in size and equates to a ROI. 18 RGB and
18 textural features are extracted from each ROI to form cases in two separate
case bases (one based on RGB features, the other on textural features). The
ten closest cases, which correspond to the regions of interest with the most
similar feature values, are selected from the case base during the retrieval
process. Retrieval is carried out by k nearest neighbor algorithm (k = 10) and
the majority class was used to classify the target ROI.

In an evaluation, classification using RGB features produced both very
high-average accuracies, whereas using textural features produced much lower
accuracy values. The results indicate that RGB features are better used in
multiclass tissue classification, while textural feature are less effective for this
type of classification. This is significant as textural features had previously
proven useful in wound image segmentation; however it is less accurate in
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this application due to the small size of the ROI’s (10x10 pixels). The results
also show that the CBR approach to tissue classification has advantages over
other classifiers reported in the literature, such as logistic regression, ANN,
and SVM.

13.5.13 MEDIC

O’Sullivan et al [52,53] have developed a clinical decision support system that
integrates patient medical imagery with other patient data within an EHR
system. Cases in the application are therefore represented by textual patient
data such as demographics, clinical information, and laboratory test results
as well as any medical imagery and associated medical image annotations.
No image processing using implicit features is performed; rather images are
retrieved using explicit image data in the form of patient information and
image annotations.

The authors state that medical diagnosis and decision making involves
interplay between vast numbers of medical knowledge resources. This ranges
from explicit patient information to implicit knowledge held by caregivers
to experiential and data-induced knowledge. However many decision support
systems fail to capture and take advantage of these complementary knowledge
sources. The authors state that CBR provides excellent methods and opportu-
nities for combining and representing different types of medical knowledge and
patient data in such applications. This is because one of the intuitively attrac-
tive features of CBR in medicine is that the concepts of patient and disease
lend themselves naturally to a case representation. Also medical practitioners
logically approach diagnosis from a case-based standpoint (i.e., previous
patient interactions are as strong a factor as individual symptoms in making
a diagnosis).

The application allows doctors to wirelessly input, query, and compare
electronic patient records including associated medical imagery on any mobile
or desktop device. The type of functionality provided includes a user inter-
face that allows caregivers to input patient information in a straightforward
manner and dedicated multimedia annotation tools for medical imagery that
support communication and collaboration between different caregivers as well
as management of medical image resources. All important patient informa-
tion including medical images and annotations, endoscopies, and physician
dictations are integrated into encapsulated cases in a multimedia case base
of patient profiles. This knowledge base is used to facilitate decision sup-
port for all healthcare personnel as similar patient cases can be quickly and
easily retrieved for comparison of patient information. As well as capturing
and recording all patient information, the application attempts to leverage
insights from a caregiver’s decisions and rationale as they diagnose and treat
patients. As a caregiver interacts with a patient profile during a diagnosis
the system records their actions. This enables the capture of human exper-
tise and proficiency in diagnosing and treating the particular illness which
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in turn allows us to understand why relevant information was accessed and
investigated. Once this expert domain knowledge is captured, it is combined
with relevant patient medical data and stored in the case base of encapsulated
patient cases. This information can then be used to filter, retrieve, and display
the most relevant similar patient case histories from huge medical repositories
for comparison of diagnoses and treatment procedures with newly presenting
patients.

The application attempts to overcome difficulties associated with the sem-
antic gap in image retrieval by uniting information about underlying visual
data with more high-level concepts provided by healthcare professionals as
they interact with medical imagery. For example, capturing a measure of
human expertise and proficiency involved in making a diagnosis from an X-ray
gives an insight into why relevant information was selected (e.g., the high-
lighting a particular body organ) and also how it was employed in the context
of the diagnosis (e.g., inferred from added annotations). This is implemented
using a set of image annotation tools. The tools can accept and integrate with
a number of common medical image formats (e.g., DICOM, X-ray) and allow
caregivers to formulate aspects of their task in diagnosing patients. Annota-
tion information is collected implicitly to shield caregivers from the burden of
explicit knowledge engineering. From their perspective, the image interaction
tools support them in carrying out their task (e.g., producing a report on the
current patient) by making it easier for them to select and highlight relevant
features, to store insights and to summarize aspects of their work. However
from a system perspective the tools monitor and record the clinician’s actions
and ultimately capture contextual diagnostic knowledge to improve the abil-
ity of the application to recommend other profiles for comparing diagnostic
information and treatment procedure.

Case retrieval within the system is taking place in the context of an overall
workflow. Some of the most important steps in this workflow (which may or
may not be relevant to all patients) are: entering preliminary patient details,
recording results of initial examinations, inputting symptoms, uploading and
annotating medical imagery, recording diagnoses, and recommending treat-
ments. Each of these steps is stored as a textual feature within a patent case
and each case is indexed along each of these constituent features. Using these
textual indices textual queries imputed by a caregiver about current patients
are matched against previous patient contexts. The retrieval system employs
indexes in separate spaces across constituent segments of the patient profile.
When a caregiver enters a query, the parameters and any weights specified
by caregivers are combined and compared to local features from other pre-
vious patient profiles in the case base. A weighted average is used to com-
pute similarity between the current patient and other patients in the central
database.
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13.6 Conclusion

In case-based reasoning research, image processing and the medical domain
are strongly coupled. While the two areas of image processing and medical
applications have both been identified as primary topics in CBR research,
this crossover has not typically been addressed as a whole. We have examined
the conjunction of the two areas in light of ongoing developments in medical
information systems, in order to provide a novel perspective and overview of
the main issues and research work on medical imagery in case-based reasoning.
We expect that this survey will provide case-based reasoning researchers with
a good reference point and perspective for new medical imagery developments.
Medical informatics in general, and imagery in particular, is an increasingly
important application domain, and we look forward to significant advances
from the case-based reasoning community.
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Instance-Based Relevance Feedback in Image
Retrieval Using Dissimilarity Spaces

G. Giacinto and F. Roli

Department of Electrical and Electronic Engineering – University of Cagliari, Italy

Summary. High-retrieval precision in content-based image retrieval can be attai-
ned by adopting relevance feedback mechanisms. The user marks all the retrieved
images as being either relevant or not, then the search engine exploits this relevance
feedback to adapt the search to better meet user’s needs. The main difficulties in
exploiting relevance information are (a) the gap between user perception of similarity
and the similarity computed in the feature space used for the representation of
image content and (b) the availability of few training data (users typically label a
few dozen of images. At present, SVM are extensively used to learn from relevance
feedback due to their capability of effectively tackling the above difficulties. As the
performances of SVM depend on the tuning of a number of parameters, in this
chapter a different approach to relevance feedback is proposed. First, images are
represented in the dissimilarity space made up of the dissimilarities from the set of
relevant images. Then a relevance score is computed in terms of the distance from the
nearest nonrelevant image, and the distance from the nearest relevant one. Images
are ranked according to this score and the top k images are displayed. Reported
results show that the performances of the proposed approach are comparable to the
highest performances that can be attained by SVM by suitably tuning the learning
parameters.

14.1 Introduction

Search engines are becoming increasingly popular as far as the amount of
information available in digital form makes it nearly impossible to users to
browse inside predefined categories, as each category may include thousands
of items. On the other hand, search engines employ techniques from the arti-
ficial intelligence domain that allows retrieving data not only according to
the associated metadata used to describe them, but also in term of their
content [16]. To this end, a suitable model of the content is needed. While
search engines for textual documents have reached a good level of maturity
(e.g., the search engine employed by Google), search engines for images are
still far to be accepted by the average user. The main reason is that images
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convey a vast amount of information (images have been used as the first mean
of communication among humans) [33]. Thus every description of an image
is inherently subjective and partial, and search for images based on keywords
may fits users’ needs only partially. This fact explains why researchers are
investigating techniques to retrieve images from databases where the search is
based on image content. This research topic is usually referred to as content-
based image retrieval (CBIR) and it is currently attracting many researchers
from different fields [16,33].

As it is very difficult to capture the complex semantics of an image, the
vast majority of CBIR techniques relies on the representation of images by
low-level features, e.g., color, texture, shape, etc., [8,16,33]. As a consequence,
content-based queries are typically expressed by visual examples in order to
retrieve from the database all images that are “similar” to the examples. It
is easy to see that the effectiveness of CBIR techniques strongly depends on
the choice of the set of visual features, and on the choice of the “metric” used
to model the user’s perception of image similarity. A number of metrics have
been proposed in the literature to adequately measure (dis)similarities in a
given feature space [16,30,33].

However, no matter how suitable for the task at hand the features and the
similarity metric have been designed, the set of retrieved images often fits the
user’s needs only partly. It is easy to see that different users may categorize
images according to different semantic criteria [3, 41]. Thus, if we allow dif-
ferent users to mark the images retrieved with a given query as relevant or
nonrelevant, different subsets of images will be marked as relevant. Accord-
ingly, the need for mechanisms to adapt the CBIR system response based on
some feedback from the user is widely recognized [16,33,41].

This issue has been studied thoroughly in the text retrieval field, where
the relevance feedback concept has been introduced [29]. However, as far as
effective document models have been devised, relevance feedback became less
attractive so that they are rarely used in the text retrieval field. On the other
hand, relevance feedback has been recognized to be necessary in CBIR due
to the inherent subjectivity in measuring the degree of relevance of an image
with respect to a given query.

A number of relevance feedback techniques have been proposed in the lit-
erature to date [41]. Early works on relevance feedback have been formulated
in terms of the optimization of one or more CBIR components, e.g., the for-
mulation of a new query and/or the modification of the similarity metric to
take into account the relevance of each feature to the user query [15, 25, 28].
Other CBIR systems employ parametric similarity metrics whose parameters
are computed from relevance feedback [31,32].

More recently, relevance feedback has been formulated in terms of a clas-
sification problem [37–40]. This formulation requires a careful design, as the
number of training samples is typically small (the user is asked to mark as
being relevant or not a number of images in the order of few dozens), while the
number of features used to represent image content can be large. In addition,
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the problem can be either formulated as a two-class problem (relevant vs.
nonrelevant), or as a (1 + x)-class problem. This second formulation, a.k.a.
“biased learning,” takes into account that the total number of classes in the
image database in unknown, but the user is only interested in one class [40].
Two learning techniques are widely used in this context: support vector ma-
chines (SVM), and discriminant analysis (DA).

SVM are quite popular in the pattern recognition field as they can handle
the above two issues (i.e., small training sets and high dimensionality), and the
reported results are quite good if compared to other techniques. However, it
should be noted that the choice of the most appropriate SVM parameters for
the problem at hand is far from being trivial. Different values of the learning
parameters as well as different choices of the kernel may lead to different
performances. This aspect is almost neglected in research papers, but it needs
to be tackled in order to use SVM in an operational environment.

Discriminant analysis on the other hand has been formulated in a “biased”
environment in account of the lack of knowledge on the number of classes.
Reported results are quite good even if, as for SVM, a number of learning
parameters must be set appropriately in order to get valuable results.

In this chapter, we present a relevance feedback mechanism based on the
representation of the images in the database in terms of their (dis)similarities
from a representation set. The use of the dissimilarity representation of objects
has been recently studied in the pattern recognition field where it provided
alternative solutions to a number of pattern recognition problems [10,22,23].
In particular, it is suited in cases when it is difficult to provide a good feature
representation of data, while it can be easier to provide a set of dissimilarities
from a set of representative objects. It has also been shown that the dissim-
ilarity representation of data can be viewed as an application of case-based
reasoning [26].

As the low-level feature representation of images does not always allow
for capturing the user concept of similarity, the dissimilarity representation
may represent an approach to exploit relevance feedback [5, 12, 20]. It has
been shown that the dissimilarity representation of images allows bridging
the gap between low-level (feature) representation of images and the user’s
perception of similarity, as low-level features are used an intermediate step
between images and relevance feedback computation.

In order to exploit the benefit of the dissimilarity representation of images,
we compute a relevance score for each image of the database in terms of
the kth distance from the set of relevant images, and the kth distance from
the set of nonrelevant images retrieved so far. For this reason we called this
approach “instance based” as, for each image of the database, its relevance
score depends on the distance from one relevant image, and the distance from
one nonrelevant image.

This chapter is organized as follows. In Sect. 14.2, a brief review of the
related works on relevance feedback is presented. In Sect. 14.3, the dissimi-
larity representation of images in the context of CBIR systems is proposed.
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The proposed relevance feedback mechanism based on the nearest neighbor
paradigm is described in Sect. 14.4. Experimental results on an image data set
are reported in Sect. 14.5. Reported results show that the performances of the
proposed method can be compared to other relevance feedback mechanisms
described in the literature. Conclusions are drawn in Sect. 14.6.

14.2 Relevance Feedback for CBIR

It is well known that information retrieval system performances can be imp-
roved by user interaction mechanisms. This issue has been studied thoroughly
in the text retrieval field, where the relevance feedback concept has been intro-
duced [29]. Techniques developed for text retrieval should be suitably adapted
to CBIR, on account of differences in both feature number and meaning, and
in similarity measures [17,27,28].

Basically, relevance feedback strategies are motivated by the observation
that the user is unaware of the distribution of images in the feature space, nor
of the feature space itself, nor of the similarity metric. Therefore, relevance
feedback techniques proposed in the literature involve the optimization of
one or more CBIR components, e.g., the formulation of a new query and/or
the modification of the similarity metric to take into account the relevance of
each feature to the user query.

Query reformulation is motivated by the observation that the image used
to query the database may be placed in a region of the feature space that is
“far” from the one containing images that are relevant to the user. A query
shifting technique for CBIR based on the well-known Rocchio formula, devel-
oped in the text retrieval field has been proposed in [27].

Relevance feedback is used in many CBIR systems to optimize a para-
metric similarity metric. A linear combination of different similarity metrics,
each suited for a particular feature set, has been proposed in [32]. Relevance
feedback information is then used to modify the weights of the combination
to reflect different feature relevance. Santini and Jain also proposed a parame-
terized similarity measure updated according to feedback from the user [31].
Rather than modifying the similarity metric, Frederix et al. proposed a trans-
formation of the feature space by a logistic regression model so that relevant
images represented in the new feature space exhibit higher similarity val-
ues [11]. A probabilistic feature relevance scheme has been proposed in [25],
where a weighted Euclidean distance is used. Theoretical frameworks involving
both the computation of a new query and the optimization of the parameters
of similarity metric have been also proposed [15,28].

A different perspective has been followed in [6] where relevance feedback
technique based on the Bayesian decision theory was first proposed. The prob-
ability of all images in the database of being relevant is estimated, and images
are presented to the user according to the estimated probability. Bayesian deci-
sion theory also inspired a query shifting approach aimed at computing a new
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query whose k-nearest neighbors belongs to the relevant region of the feature
space [13].

More recently, relevance feedback has been formulated in terms of a clas-
sification problem [37–40]. The problem has been either formulated as a two-
class problem (relevant vs. nonrelevant), or as a (1 + x)-class problem. This
second formulation, a.k.a. “biased learning,” takes into account that the total
number of classes in the image database in unknown, but the user is only
interested in one class [40]. Two learning techniques are widely used in this
context: SVM, and discriminant analysis (DA). Reported results showed that
these approaches allow for attaining better results than those provided by
early relevance feedback approaches. A number of papers proposed different
approaches based on the above paradigms. Advanced techniques as well as an
extended overview of the two techniques can be found in [35] and [34].

The use of the dissimilarity representation for relevance feedback in CBIR
has been first proposed in [12]. Other researchers independently proposed
different approaches based on the dissimilarity representation of data where
SVM are used as the final classification tool [5, 20]. Reported results showed
that this representation of images allows bridging the gap between low-level
(feature) representation of images and the user’s perception of similarity.

14.3 Dissimilarity Representation of Images

Dissimilarity representation of data has been proposed in the pattern recog-
nition field as an alternative approach in representing data w.r.t. the feature
representation of data [23]. Instead of representing patterns in terms of a fea-
ture vector, patterns are represented by a vector of (dis)similarities from a
set of representative data. This approach is well suited for those applications
where it is difficult to provide a suitable representation of patterns in terms
of a feature vector. On the other hand, a set of dissimilarities may be more
easily available as it is argued that the notion of proximity between patterns
is more fundamental than that of features [23].

The dissimilarity representation of data is defined w.r.t. a “representa-
tion set”

R = {p1, p2, . . . , pn}

made up of n objects that are used as a reference for all other objects of
interest. An object x can be represented in terms of dissimilarities as a vector

[d(x, p1), d(x, p2), . . . , d(x, pn)]

where d(·, ·) is a distance measure between pair of objects. This distance may
be computed using some intermediate feature representation of patterns.
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14.3.1 Dissimilarity Evaluation and Prototype Selection

The process usually employed by humans in assigning a class label to an object
involves the use of some measure of “similarity” between objects. An object
is thus assigned a label according to the class label of the most “similar”
patterns whose label is known. Such measures of similarity may depend or
not from some quantitative measure made on the objects. These measures
are usually called “features.” It is easy to see that the definition is, suitable
features should depend on the notion of similarity between the objects belo-
nging to the domain of interest. However, as in many applications it is hard
to easily extract a set of effective features, it is common to extract a large
number of candidate features, and then select the more significant subset for
the task at hand. For this selection process to be effective the number of
labeled prototypes should be large w.r.t. the number of extracted features.
Unfortunately in many application domains the use of a large number of fea-
tures is accompanied by a relatively small number of labeled prototypes. As
a consequence, there are a number of difficulties in solving the pattern recog-
nition problem by a statistical formulation. The dissimilarity representation
of data aims at coming back to the roots of pattern recognition and machine
learning, by emphasizing the role of similarity between patterns w.r.t. the
feature representation of patterns [23, 26]. This focus on dissimilarity repre-
sentation however does not exclude the use of feature spaces where patterns
can be represented. On the other hand, it focus on formulating the problem in
terms of dissimilarity between patterns, regardless the way such dissimilarities
are computed [23]. Thus, dissimilarities between patterns may be computed
using some feature spaces, but the problem itself is not formulated in some
feature spaces, but in the dissimilarity space.

In the field of image retrieval for large image databases, usually a large
number of low-level features are extracted as the semantic content of images
typically exhibit a high variability (they are usually referred to “broad dom-
ain” database). In addition, as different users typically have different goals,
the extraction of suitable features is not an easy task. To this end research in
the field of CBIR focused on defining suitable techniques for manipulating the
feature space (feature selection, feature weighting, feature space transforma-
tions, etc.). On the other hand, the use of a dissimilarity space may represent
an alternative solution, as the low-level feature spaces can be used to com-
pute similarities, which are then used to build a new space. Some researchers
recently proposed to use a “manipulation space,” i.e., a space where the dis-
similarity between images are visualized in a 2D space [20]. In this way, the
user may provide the feedback to the system by marking those images that
are relevant to the query. However, it is worth noting that while in the feature
space relevant images may be represented as “distant” points, in the dissimi-
larity space these points should be represented as“close” to each other. This
effect can be explained by observing that two similar images should exhibit
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similar distances from some of the prototypes of the representative set. Thus
the images are close each other in the dissimilarity space.

From the above discussion it is clear that a key role is played by the
selection of the prototypes used to build the representative set [20, 23, 24].
It has been shown that in a number of pattern recognition applications the
selection of prototypes can be performed randomly. On the other hand, a
number of selection techniques can also be used for prototype selection. In
the field of image retrieval, prototypes can be selected by browsing the image
collection [20]. First images are clustered according to some criteria, and then
one representative for each cluster are showed to the user. The user then
selects the images that are more relevant to the query, and they are used as
prototypes to build the dissimilarity space. Prototypes may also be chosen
by employing the well-known editing techniques proposed both to speed-up
nearest neighbor and case-based techniques, and to increase their performance
by eliminating noisy or redundant cases [7,18]. However, as the use of nearest
neighbor and case-based techniques for relevance feedback in image retrieval
is still at an early stage, such techniques are worth to be considered for further
improvements.

In conclusion, it can be said that typically dissimilarities are computed in
some feature spaces, while prototypes may be chosen in a number of ways. The
key concept in the dissimilarity representation is that two similar objects are
close to each other in the dissimilarity space as they typically exhibit similar
distance from at least some of the prototypes used to build the dissimilarity
space.

The use of “manipulation spaces,” where objects are displayed in a 2D
space, may help in devising user-defined dissimilarities. The user may use this
kind of visualization for “moving” relevant images close to each other. Then
this visual movement should be transformed in quantitative dissimilarities to
be used for further processing. These kinds of tools are currently at an early
stage. For example, in [19] one of such tools have been proposed. In this case,
the movement of images is used to compute weights for a weighted distance
metric in some low-level feature space.

Thus, in the image retrieval field, the use of some low-level feature space is
recognized as a useful tool for representing image content. However these fea-
tures cannot be used directly to measure the similarity between images, but
some processing is needed in order to bridge the gap between the low-level
representation and the user perception of similarity. The dissimilarity repre-
sentation is one approach that allows bridging the gap. This representation
may also allow for using some user-defined similarity measure that does not
depend on low-level feature space. However, the definition of such a measure
is not an easy task, and it is argued that such a definition cannot be used as
an alternative to low-level image representation, but as an additional measure
to better estimate similarity between images.
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14.3.2 The Proposed Dissimilarity Representation of Images
for Relevance Feedback

In the proposed relevance feedback mechanism for image retrieval, we define
the set R as the set made up of all the relevant images that the user has
marked during the relevance feedback iterations. Thus the dimensionality of
data strictly depends on the number of relevant images retrieved so far. In
addition, the image representation depends on the user concept of similarity.

Let us consider an image database whose images I are represented in a
d-dimensional low-level feature space, e.g., color, texture, etc. Let us assume
that a dissimilarity metric d(Ij , Ik) has been defined in such a feature space.
In the following, we will neither make any assumption about the feature space,
nor about the similarity metric employed. If R is the set of relevant images
the user has marked during the first k relevance feedback iterations, and n
is the size of R, the proposed dissimilarity representation Idiss of an image I
from the database is the following:

Idiss = [d(I, Ir,1), d(I, Ir,2), . . . , d(I, Ir,n)] (14.1)

where Ir represents an image belonging to R. It is worth noting that (14.1) is
also used to represent the relevant images I1, I2, . . . , INr. This representa-
tion allows using the Euclidean distance measure to compute the dissimilarity
between pairs of images [23].

The proposed dissimilarity representation strictly depends on the set of
images that the user has marked to be relevant. Thus it can be argued that
using this representation, an image Idiss will be as much as relevant as it is
near to the relevant images and, at the same time, far from the nonrelevant
ones.

In the following all the proposed formulas refer to the dissimilarity repre-
sentation of images. Thus, for the sake of clarity, we will omit the subscript
“diss.”

14.4 Instance-Based Relevance Estimation

The proposed mechanism has been inspired by classification techniques based
on the “nearest case,” which are used in pattern recognition and machine
learning for classification and outlier detection [1,2,4,9,36]. The present section
illustrates the rationale behind the use of the nearest case paradigm, and
provides the details of the techniques that we propose to measure the relevance
of images.

Nearest neighbor techniques, as used in statistical pattern recognition,
case-based reasoning, or instance-based learning, are effective in all applica-
tions where it is difficult to produce a high-level generalization of a “class”
of objects. Relevance learning in content base image retrieval may well fit
into this definition, as it is difficult to provide a general model that can be
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adapted to represent different concepts of similarity. In addition, the number
of available cases may be too small to estimate the optimal set of parameters
for such a general model. On the other hand, it can be more effective to use
each “relevant” image as well as each “nonrelevant” image, as “cases” or “in-
stances” against which the images of the database should be compared [14].
Consequently, we assume that an image is as much as relevant as much as its
dissimilarity from the nearest relevant image is small. Analogously, an image
is as much as nonrelevant as much as its dissimilarity from the nearest non-
relevant image is small. As this assumption may not hold in a feature space
representation, images are represented in terms of dissimilarities, as illustrated
in Sect.14.3.

14.4.1 Relevance Score Computation

The degree of relevance can be computed as follows. Let us recall that the
nearest neighbor (NN) classifier is derived from the local estimation of densi-
ties in the neighborhood of the test pattern [9]. Such a local density can be
written as [36]

pNN (I) =
1/N

V (‖I − NN (I)‖) (14.2)

where N is the number of training patterns, I the test image, and NN denotes
the nearest neighbor of I. Thus we can compute the local density of relevant
images in I as

pr
NN (I) =

1/N

V (‖I − NNr (I)‖) (14.3)

where NNr is the nearest relevant image of I. Analogously the local density
of nonrelevant images can be computed as

pnr
NN (I) =

1/N

V (‖I − NNnr (I)‖) (14.4)

where NNnr is the nearest nonrelevant image of I.
These densities can be used to estimate the degree of relevance of an

image as

relevance(I) = P (relevant|I) =
pr

NN

pr
NN + pnr

NN

=
‖I − NNnr (I)‖

‖I − NNr (I)‖ + ‖I − NNnr (I)‖ (14.5)

The relevance score computed according to (14.5) is then used to rank the
images and the first k are presented to the user. It is worth noting that this
relevance score can be thought of as an estimation of the posterior in I, as
it is computed from an estimation of densities. However, as the estimation of
densities cannot be deemed reliable as they are based on a very small training
set, we will refer to this measure of relevance as a “relevance score.”
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14.4.2 Stabilization of the Relevance Score

The proposed score suffers from two problems. First of all, let us consider
the training set size. Typically the number of images presented to the user
by the retrieval system is in the order of few dozens (e.g., 20 images). When
the user marks the first set of images retrieved by the system in response
to the query, typically very few of them are relevant, the remaining being
nonrelevant. It is easy to see that in these cases the density of relevant images
computed according to (14.2) is small almost elsewhere, so that the proposed
score output large values for those images far from the nonrelevant images
(i.e., for those images where the density of nonrelevant images is small too).

To solve this problem, we propose to use the distance of I from a modified
query vector computed according to [13]. This modified query vector is aimed
at moving the search toward regions of the original feature space where it is
more likely to find relevant images. We call this new query vector as “Bayesian
query shifting” (BQS) as its formulations is derived from the Bayes decision
theory:

QBQS = mR +
σ

‖mR − mN‖
(

1 − kR − kN

max (kR, kN )

)
(mR − mN ) (14.6)

where mR and mN are the mean vectors of relevant and nonrelevant images,
respectively, σ is the standard deviation of the images belonging to the neigh-
borhood of the original query, and kR and kN are the number of relevant and
nonrelevant images, respectively. The new query QBQS lies on the line con-
necting the two means, in the mR−mN direction, the magnitude of the shift
depending on the proportion of relevant and nonrelevant images retrieved. It
is easy to see that the larger the number of nonrelevant images retrieved, the
larger the magnitude of the shift. For more details about this technique, the
reader is referred to [13]. It has been shown that this new query vectors allows
attaining good performances in terms of retrieval precision, especially when
the number of relevant images is small.

Let us denote with dBQS the distance of image I from QBQS

dBQS(I) = ‖I − QBQS‖ (14.7)

In order to combine this distance with the relevance score, we need to
transform the distance into a score in [0,1]. We used a Gaussian model and
denoted the resulting score as locality(I):

locality(I) =
1 − e

1−dBQS(I)
/

max
I

dBQS(I)

1 − e
(14.8)

In order to compute the stabilized score, let r and n be the number of rel-
evant and nonrelevant images retrieved after the latter iteration, respectively.
The stabilized score can be computed as follows:
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relevance(I)stab =
(

n/k

1 + n/k

)
· locality(I) +

(
1

n/k + 1

)
· relevance(I)

(14.9)
The weights of the combination are both equal to 1/2 when no relevant

image is retrieved in the latter iteration, while the weights of locality(I) dec-
reases as the number of relevant images increases. The weights of locality(I)
goes to zero when all the retrieved images are relevant.

The second problem in nearest neighbor density estimation is related to
the reliability of the estimation with small sample size. It is worth recalling
that the previous issue was related to the cases when the number of relevant
images is small, while in this paragraph we are addressing the issue of small
training set size, i.e., the fact that the number of retrieved images is small.
In these cases the use of the first nearest neighbor can hardly be considered
a reliable estimation of the local density. In particular this problem is more
severe near the boundary between relevant and nonrelevant images. To solve
this problem, we propose to use the kth distance instead of the distance from
the first nearest neighbor in (14.3)–(14.5) [4, 36].

14.5 Experimental Results

In order to test the proposed method and compare it with other methods
described in the literature we used a subset of the Corel data set (Fig. 14.1).
This data set is currently used for assessing and comparing relevance feedback
techniques.

The data set extracted from the Corel collection is available at the
KDD-UCI repository (http://kdd.ics.uci.edu/databases/CorelFeatures/Corel-
Features.data.html). We used a subset made up of 19,511 images, manually

Fig. 14.1. Some examples of the images contained in the Corel data set
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subdivided into 42 semantic classes. For each image, the four sets of features
available at the Web site have been considered, i.e., Color Histogram (32 fea-
tures), Color Histogram Layout (32 features), Color Moments (nine features),
and Cooccurrence Texture, (16 features). More details on the feature extrac-
tion process can be found in [21]. In particular, the similarity between pairs
of images is computed according to the Manhattan distance for the first two
sets of features, while the Euclidean distance is used for the latter two sets of
features. A linear normalization procedure has been performed, so that each
feature takes values in the range between 0 and 1.

500 images have been randomly extracted and used as query. The top 20
nearest neighbors of each query are returned. Relevance feedback is performed
by marking images belonging to the same class of the query as relevant, and all
other images in the top 20 as nonrelevant. This experimental set up affords an
objective comparison among different methods and is currently used by many
researchers. Performances are computed in terms of the retrieval precision, i.e.,
the average percentage of relevant images among the top 20 images retrieved
by the systems.

The proposed relevance feedback technique has been implemented by con-
sidering the second-NN distance. In particular, we report results attained
by the relevance score computed according to (14.5), and the ones attained
by the stabilized relevance score computed according to (14.9). Thus it is pos-
sible to compare the behavior of the “pure” instance-based technique (14.5)
with the instance-based technique combined with the locality term (14.9).

For the sake of comparison, retrieval performances obtained with three
methods recently described in the literature, are also reported, namely the
BQS and SVM. The BQS technique has been illustrated in Sect. 14.4 as it
is also used in the present chapter in combination with the instance-based
rule. The SVM have been trained using the sets of relevant and nonrelevant
images as a training set of a two-class classification problem, and images
have been ranked according to the SVM output. As SVM training requires
choosing the kernel and the learning parameters, we used two commonly used
kernels, namely the linear and the Gaussian kernel. In particular, for the
SVM with Gaussian kernel, reported results are the best ones attaining with
different values of the learning parameters, while in the case of linear kernel
no parameter optimization is required.

Figures 14.2–14.5 show the results attained with the four sets of features
of the Corel data set. The retrieval performances attained after the query
image is presented to the system are quite low, thus showing that the chosen
feature sets are not suited for the task at hand. In addition, different sets of
features provided different results, thus confirming that the choice of the set
of features is a key aspect of CBIR systems.

It is easy to see that each of the considered relevance feedback techniques
allow improving the retrieval precision. The only exception is the linear SVM,
which is not suited for the Color Histogram and Color Histogram Layout sets
of features. In fact the retrieval performances not only does not improve with
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Fig. 14.2. Average percentage precision for the Color Histogram feature set. Eight
relevance feedback iterations were performed

Fig. 14.3. Average percentage precision for the Color Histogram Layout feature
set. Eight relevance feedback iterations were performed

respect to the first retrieval, but also they get worse. On the other hand, linear
SVM provided performance improvements on the other two sets of features.

The proposed instance-based technique in the dissimilarity space combined
with BQS, provided performances higher than those provided by the SVM
with Gaussian kernel. This superiority is more evident in Figs. 14.3–14.5. It is
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Fig. 14.4. Average percentage precision for the Color Moments feature set. Eight
relevance feedback iterations were performed

Fig. 14.5. Average percentage precision for the Cooccurrence texture feature set.
Eight relevance feedback iterations were performed

worth recalling that the reported performances of the SVM with Gaussian
kernel are the best one attained with different parameter values. On the other
hand, the proposed mechanism does not require setting any parameter. Thus
the proposed technique allows attaining good performances without requiring
parameter tunings.

If we analyze the results, we see that the precision decreases in the first
iteration when the “pure” second-NN technique, and the linear SVM are used.
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This effect is motivated by the fact the in the first iteration very few relevant
images are usually retrieved. As a result SVM and second-NN assign high
scores to images that are different form the nonrelevant images. As the prob-
lem is not a two-class problem but a (1 + x) problem, thus it follows that an
image that is different from some nonrelevant images is not necessarily a rel-
evant image. If the iterations following the first are considered, the precision
attained by the second-NN technique increases in all of the four considered
sets of features. In the case of the linear SVM, the precision increases only in
two out of the four sets of features, namely Color Moments and Cooccurrence
texture.

On the other hand, the performances of BQS allows attaining high per-
formance increases in the first iteration, while the increase is modest in the
following iterations. This behavior may be due to the locality of BQS that
does not allow exploring new regions of the feature space.

Gaussian SVM and the stabilized second-NN (second-NN & BQS) provide
the highest performances. In all the considered feature sets the precision of the
stabilized second-NN is always higher than the one provided by the Gaussian
SVM. The only exceptions are the iterations from 2 to 5 in the Color His-
togram Layout feature set, and the iterations 2 and 3 in the Color Moments
feature set where the performances of the Gaussian SVM are slightly higher
than those provided by the stabilized second-NN.

However, it is worth recalling that reported results for the Gaussian SVM
are related to the best one attained in a number of trials. In a number of
experiments with different values of the learning parameters, the performances
of the Gaussian SVM after the first relevance feedback iteration were usually
smaller than those attained in the first retrieval (i.e., the k nearest neighbors
of the query). As the estimation of the optimal or suboptimal parameters for
the Gaussian SVM in relevance feedback is beyond the state of the art, it can
be concluded that the proposed mechanism is a robust technique in different
image representation contexts.

14.6 Conclusions

The dissimilarity representation of data is receiving increasing attention in
a number of applications. Recent research in relevance feedback for CBIR
proposed some techniques based on this representation of data. This repre-
sentation allows for avoiding the direct use of low-level feature spaces that
may not be suited to the user’s needs.

The dissimilarity representation proposed in this chapter use the set of rele-
vant images retrieved so far as the representation set. Then, images are ranked
according to a relevance score computed by a combination of two terms,
namely a relevance term based on the distances from the second relevant
neighbor and the second nonrelevant neighbor, and a locality term computed



434 G. Giacinto and F. Roli

in terms of a shifted query in the original feature space. These two terms plays
the role of an exploration term and exploitation term, respectively.

Reported results on four feature sets of the Corel image database showed
the superiority of the proposed method with respect to state-of-the-art rel-
evance feedback techniques. In particular it has been pointed out that the
proposed technique does not require any parameter setting, while other rel-
evance feedback techniques require a long phase for tuning the parameters.
Thus it can be concluded that the proposed relevance feedback mechanism is
a robust tool that allows attaining good performances in a number of different
image representations.

As far as the computational complexity of the proposed technique is con-
cerned, a large number of distances are to be computed. Nevertheless, the
response time between two consecutive feedbacks is far below the classic limit
of 1.0s for the user’s flow of thought to stay uninterrupted. Thus, despite the
computational complexity of the algorithm, the response time on a typical
PC configuration can be considered acceptable for a large database. However,
the response time of the implemented algorithm could be further improved
by using some editing techniques for decreasing the number of distances to be
evaluated.
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