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Abstract. One property of networks that has received comparatively
little attention is hierarchy, i.e., the property of having vertices that clus-
ter together in groups, which then join to form groups of groups, and so
forth, up through all levels of organization in the network. Here, we give
a precise definition of hierarchical structure, give a generic model for gen-
erating arbitrary hierarchical structure in a random graph, and describe
a statistically principled way to learn the set of hierarchical features that
most plausibly explain a particular real-world network. By applying this
approach to two example networks, we demonstrate its advantages for
the interpretation of network data, the annotation of graphs with edge,
vertex and community properties, and the generation of generic null
models for further hypothesis testing.

1 Introduction

Networks or graphs provide a useful mathematical representation of a broad
variety of complex systems, from the World Wide Web and the Internet to
social, biochemical, and ecological systems. The last decade has seen a surge of
interest across the sciences in the study of networks, including both empirical
studies of particular networked systems and the development of new techniques
and models for their analysis and interpretation [1, 2].

Within the mathematical sciences, researchers have focused on the statistical
characterization of network structure, and, at times, on producing descriptive gen-
erative mechanisms of simple structures. This approach, in which scientists have
focused on statistical summaries of network structure, such as path lengths [3, 4],
degree distributions [5], and correlation coefficients [6], stands in contrast with,
for example, the work on networks in the social and biological sciences, where the
focus is instead on the properties of individual vertices or groups. More recently,
researchers in both areas have become more interested in the global organization
of networks [7, 8].

One property of real-world networks that has received comparatively little
attention is that of hierarchy, i.e., the observation that networks often have a
fractal-like structure in which vertices cluster together into groups that then join
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to form groups of groups, and so forth, from the lowest levels of organization up
to the level of the entire network. In this paper, we offer a precise definition of the
notion of hierarchy in networks and give a generic model for generating networks
with arbitrary hierarchical structure. We then describe an approach for learning
such models from real network data, based on maximum likelihood methods and
Markov chain Monte Carlo sampling. In addition to inferring global structure
from graph data, our method allows the researcher to annotate a graph with
community structure, edge strength, and vertex affiliation information.

At its heart, our method works by sampling hierarchical structures with prob-
ability proportional to the likelihood with which they produce the input graph.
This allows us to contemplate the ensemble of random graphs that are statisti-
cally similar to the original graph, and, through it, to measure various average
network properties in manner reminiscent of Bayesian model averaging. In par-
ticular, we can

1. search for the maximum likelihood hierarchical model of a particular graph,
which can then be used as a null model for further hypothesis testing,

2. derive a consensus hierarchical structure from the ensemble of sampled mod-
els, where hierarchical features are weighted by their likelihood, and

3. annotate an edge, or the absence of an edge, as “surprising” to the extent
that it occurs with low probability in the ensemble.

To our knowledge, this method is the only one that offers such information about
a network. Moreover, this information can easily be represented in a human-
readable format, providing a compact visualization of important organizational
features of the network, which will be a useful tool for practitioners in generating
new hypotheses about the organization of networks.

2 Hierarchical Structures

The idea of hierarchical structure in networks is not new; sociologists, among
others, have considered the idea since the 1970s. For instance, the method known
as hierarchical clustering groups vertices in networks by aggregating them iter-
atively in a hierarchical fashion [9]. However, it is not clear that the hierarchical
structures produced by these and other popular methods are unbiased, as is also
the case for the hierarchical clustering algorithms of machine learning [10]. That
is, it is not clear to what degree these structures reflect the true structure of
the network, and to what degree they are artifacts of the algorithm itself. This
conflation of intrinsic network properties with features of the algorithms used to
infer them is unfortunate, and we specifically seek to address this problem here.

A hierarchical network, as considered here, is one that divides naturally into
groups and these groups themselves divide into subgroups, and so on until we
reach the level of individual vertices. Such structure is most often represented as
a tree or dendrogram, as shown, for example, in Figure 1. We formalize this notion
precisely in the following way. Let G be a graph with n vertices. A hierarchical
organization of G is a rooted binary tree whose leaves are the graph vertices
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Fig. 1. A small network and one possible hierarchical organization of its nodes, drawn
as a dendrogram

and whose internal (i.e., non-leaf) nodes indicate the hierarchical relationships
among the leaves. We denote such an organization by D = {D1, D2, . . . , Dn−1},
where each Di is an internal node, and every node-pair (u, v) is associated with
a unique Di, their lowest common ancestor in the tree. In this way, D partitions
the edges of G.

3 A Random Graph Model of Hierarchical Organization

We now give a simple model H(D, θ) of the hierarchical organization of a net-
work. Our primary assumption is that the edges of G exist independently but
with a probability that is not identically distributed. One may think of this
model as a variation on the classical Erdős-Rényi random graph, where now
the probability that an edge (u, v) exists is given by a parameter θi associated
with Di, the lowest common ancestor of u, v in D. Figure 2 shows an example
model on seven graph vertices. In this manner, a particular H(D, θ) represents
an ensemble of inhomogeneous random graphs, where the inhomogeneities are
exactly specified by the topological structure of the dendrogram D and the cor-
responding Bernoulli trial parameters θ. Certainly, one could write down a more

Fig. 2. An example hierarchical model H(D, θ), showing a hierarchy among seven
graph nodes and the Bernoulli trial parameter θi (shown as a gray-scale value) for each
group of edges Di
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complicated model of graph hierarchy. The model described here, however, is
a relatively generic one that is sufficiently powerful to enrich considerably our
ability to learn from graph data.

Now we turn to the question of finding the parametrizations of H(D, θ) that
most accurately, or rather most plausibly, represent the structure that we observe
in our real-world graph G. That is, we want to choose D and θ such that a graph
instance drawn from the ensemble of random graphs represented by H(D, θ) will
be statistically similar to G. If we already have a dendrogram D, then we may use
the method of maximum likelihood [11] to estimate the parameters θ that achieve
this goal. Let Ei be the number of edges in G that have lowest common ancestor
i in D, and let Li (Ri) be the number of leaves in the left- (right-) subtree rooted
at i. Then, the maximum likelihood estimator for the corresponding parameter
is θi = Ei/LiRi, the fraction of potential edges between the two subtrees of i
that actually appear in our data G. The posterior probability, or likelihood of
the model given the data, is then given by

LH(D, θ) =
n−1∏

i=1

(θi)
Ei (1 − θi)

LiRi−Ei . (1)

While it is easy to find values of θi by maximum likelihood for each dendrogram,
it is not easy to maximize the resulting likelihood function analytically over the
space of all dendrograms. Instead, therefore, we employ a Markov chain Monte
Carlo (MCMC) method to estimate the posterior distribution by sampling from
the set of dendrograms with probability proportional to their likelihood. We note
that the number of possible dendrograms with n leaves is super-exponential,
growing like (2n − 3)!! ≈

√
2 (2n)n−1e−n where !! denotes the double factorial.

We find, however, that in practice our MCMC process mixes relatively quickly
for networks of up to a few thousand vertices. Finally, to keep our notation
concise, we will use Lμ to denote the likelihood of a particular dendrogram μ,
when calculated as above.

4 Markov Chain Monte Carlo Sampling

Our Monte Carlo method uses the standard Metropolis-Hastings [12] sampling
scheme; we now briefly discuss the ergodicity and detailed balance issues for our
particular application.

Let ν denote the current state of the Markov chain, which is a dendrogram D.
Each internal node i of the dendrogram is associated with three subtrees a, b, and
c, where two are its children and one is its sibling—see Figure 3. As the figure
shows, these subtrees can be in one of the three hierarchical configurations. To
select a candidate state transition ν → μ for our Markov chain, we first choose
an internal node uniformly at random and then choose one of its two alternate
configurations uniformly at random. It is then straightforward to show that the
ergodicity requirement is satisfied.

Detailed balance is ensured by making the standard Metropolis choice of ac-
ceptance probability for our candidate transition: we always accept a transition
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a b c a b c a c b

Fig. 3. Each internal dendrogram node i (circle) has three associated subtrees a, b, and
c (triangles), which together can be in any of three configurations (up to a permutation
of the left-right order of subtrees).

that yields an increase in likelihood or no change, i.e., for which Lμ ≥ Lν ; oth-
erwise, we accept a transition that decreases the likelihood with probability
equal to the ratio of the respective state likelihoods Lμ/Lν = elogLν−logLμ . This
Markov chain then generates dendrograms μ at equilibrium with probabilities
proportional to Lμ.

5 Mixing Time and Point Estimates

With the formal framework of our method established, we now demonstrate its
application to two small, canonical networks: Zachary’s karate club [13], a social
network of n = 34 nodes and m = 78 edges representing friendship ties among
students at a university karate club; and the year 2000 Schedule of NCAA college
(American) football games, where nodes represent college football teams and
edges connect teams if they played during the 2000 season, where n = 115 and
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Fig. 6. The NCAA Schedule 2000 network: (top) an exemplar maximum likelihood den-
drogram with log L = −884.2, parameters θi are shown as gray-scale values, and leaf
shapes denote conference affiliation; and (bottom) the consensus hierarchy sampled at
equilibrium. Leaf shapes are common between the two dendrograms, but position varies.
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m = 613. Both of these networks have found use as standard tests of clustering
algorithms for complex networks [14, 15, 16] and serve as a useful comparative
basis for our methodology.

Figure 4 shows the convergence of the MCMC sampling algorithm to the equi-
librium region of model space for both networks, where we measure the number
of steps normalized by n2. We see that the Markov chain mixes quickly for both
networks, and in practice we find that the method works well on networks with
up to a few thousands of vertices. Improving the mixing time, so as to apply
our method to larger graphs, may be possible by considering state transitions
that more dramatically alter the structure of the dendrogram, but we do not con-
sider them here. Additionally, we find that the equilibrium region contains many
roughly competitive local maxima, suggesting that any particular maximum like-
lihood point estimate of the posterior probability is likely to be an overfit of the
data. However, formulating an appropriate penalty function for a more Bayesian
approach to the calculation of the posterior probability appears tricky given that
it is not clear to how characterize such an overfit. Instead, we here compute av-
erage features of the dendrogram over the equilibrium distribution of models to
infer the most general hierarchical organization of the network. This process is
described in the following section.

To give the reader an idea of the kind of dendrograms our method produces,
we show instances that correspond to local maxima found during equilibrium
sampling for each of our example networks in Figures 5 (top) and 6 (top). For
both networks, we can validate the algorithm’s output using known metadata
for the nodes. During Zachary’s study of the karate network, for instance, the
club split into two groups, centered on the club’s instructor and owner (nodes 1
and 34 respectively), while in the college football schedule teams are divided into
“conferences” of 8–12 teams each, with a majority of games being played within
conferences. Both networks have previously been shown to exhibit strong com-
munity structure [14, 15], and our dendrograms reflect this finding, almost always
placing leaves with a common label in the same subtree. In the case of the karate
club, in particular, the dendrogram bipartitions the network perfectly according
to the known groups. Many other methods for clustering nodes in graphs have
difficulty correctly classifying vertices that lie at the boundary of the clusters;
in contrast, our method has no trouble correctly placing these peripheral nodes.

6 Consensus Hierarchies

Turning now to the dendrogram sampling itself, we consider three specific struc-
tural features, which we average over the set of models explored by the MCMC at
equilibrium. First, we consider the hierarchical relationships themselves, adapt-
ing for the purpose the technique of majority consensus, which is widely used
in the reconstruction of phylogenetic trees [17]. Briefly, this method takes a
collection of trees {T1, T2, . . . , Tk} and derives a majority consensus tree Tmaj
containing only those hierarchical features that have majority weight, where we
somehow assign a weight to each tree in the collection. For our purposes, we
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take the weight of a dendrogram D simply to be its likelihood LD, which pro-
duces an averaging scheme similar to Bayesian model averaging [10]. Once we
have tabulated the majority-weight hierarchical features, we use a reconstruc-
tion technique to produce the consensus dendrogram. Note that Tmaj is always
a tree, but is not necessarily strictly binary.

The results of applying this process to our example networks are shown in
Figures 5 (bottom) and 6 (bottom). For the karate club network, we observe
that the bipartition of the two clusters remains the dominant hierarchical feature
after sampling a large number of models at equilibrium, and that much of the
particular structure low in the dendrogram shown in Figure 5 (top) is eliminated
as distracting. Similarly, we observe some coarsening of the hierarchical structure
in the NCAA network, as the relationships between individual teams are removed
in favor of conference clusterings.

7 Edge and Node Annotations

We can also assign majority-weight properties to nodes and edges. We first de-
scribe the former, where we assign a group affiliation to each node.

Given a vertex, we may ask with what likelihood it is placed in a subtree
composed primarily of other members of its group (with group membership
determined by metadata as in the examples considered here). In a dendrogram D,
we say that a subtree rooted at some node i encompasses a group g if both the
majority of the descendants of i are members of group g and the majority of
members of group g are descendants of i. We then assign every leaf below i the
label of g. We note that there may be some leaves that belong to no group,
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Fig. 7. An annotated version of the karate club network. Line thickness for edges is
proportional to their average probability of existing, sampled at equilibrium. Vertices
have shapes corresponding to their known group associations, and are shaded according
to the sampled weight of their being correctly grouped (see text).
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indices remain the same.

i.e., none of their ancestors simultaneously satisfy both the above requirements,
and vertices of this kind get a special no-group label. Again, by weighting the
group-affiliation vote of each dendrogram by its likelihood, we may measure
exactly the average probability that a node belongs to its native group’s subtree.

Second, we can measure the average probability that an edge exists, by taking
the likelihood-weighted average over the sequence of parameters θi associated
with that edge at equilibrium.

Estimating these vertex and edge characteristics allows us to annotate the net-
work, highlighting the most plausible features, or the most surprising. Figures 7
and 8 show such annotations for the two example networks, where edge thickness
is proportional to average probability, and nodes are shaded proportional to the
sampled weight of their native group affiliation (lightest corresponds to highest
probability).

For the karate network, the dendrogram sampling both confirms our previ-
ous understanding of the network as being composed of two loosely connected
groups, and adds additional information. For instance, node 17 and the pair
{25, 26} are found to be more loosely bound to their respective groups than
other vertices – a feature that is supported by the average hierarchical structure
shown in Figure 5 (bottom). This looseness apparently arises because none of
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these vertices has a direct connection to the central players 1 and 34, and they are
thus connected only secondarily to the cores of their clusters. Also, our method
correctly places vertex 3 in the cluster surrounding 1, a placement with which
many other methods have difficulty.

The NCAA network shows similarly suggestive results, with the majority of
heavily weighted edges falling within conferences. Most nodes are strongly placed
within their native groups, with a few notable exceptions, such as the indepen-
dent colleges, vertices 82, 80, 42, 90, and 36, which belong to none of the major
conferences. These teams are typically placed by our method in the conference
in which they played the most games. Although these annotations illustrate in-
teresting aspects of the NCAA network’s structure, we leave a thorough analysis
of the data for future work.

8 Discussion and Conclusions

As mentioned in the introduction, we are not the first to study hierarchy in net-
works. In addition to persistent interest in the sociology community, a number of
authors in physics have recently discussed aspects of hierarchical structure [14,
18, 19], although generally via indirect or heuristic means. A closely related, and
much studied, concept is that of community structure in networks [14, 15, 16, 20].
In community structure calculations one attempts to find a natural partition of
the network that yields densely connected subgraphs or communities. Many al-
gorithms for detecting community structure iteratively divide (or agglomerate)
groups of vertices to produce a reasonable partition; the sequence of such divi-
sions (or agglomerations) can then be represented as a dendrogram that is often
considered to encode some structure of the graph itself. (Notably, a very recent
exception among these community detection heuristics is a method based on
maximum likelihood and survey propagation [21].)

Unfortunately, while these algorithms often produce reasonable looking den-
drograms, they have the same fundamental problems as traditional hierarchical
clustering algorithms for numeric data [10]. That is, it is not clear to what extent
the derived hierarchical structures depend on the details of the algorithms used
to extract them. It is also unclear how sensitive they are to small perturbations
in the graph, such as the addition or removal of a few edges. Further, these al-
gorithms typically produce only a single dendrogram and provide no estimate of
the form or number of plausible alternative structures.

In contrast to this previous work, our method directly addresses these prob-
lems by explicitly fitting a hierarchical structure to the topology of the graph.
We precisely define a general notion of hierarchical structure that is algorithm-
independent and we use this definition to develop a random graph model of a
hierarchically structured network that we use in a statistical inference context.
By sampling via MCMC the set of dendrogram models that are most likely to
generate the observed data, we estimate the posterior distribution over models
and, through a scheme akin to Bayesian model averaging, infer a set of features
that represent the general organization of the network. This approach provides
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a mathematically principled way to learning about hierarchical organization
in real-world graphs. Compared to the previous methods, our approach yields
considerable advantages, although at the expense of being more computation-
ally intensive. For smaller graphs, however, for which the calculations described
here are tractable, we believe that the insight provided by our methods makes
the extra computational effort very worthwhile. In future work, we will explore
the extension of our methods to larger networks and characterize the errors the
technique can produce.

In closing, we note that the method of dendrogram sampling is quite general
and could, in principle, be used to annotate any number of other graph features
with information gained by model averaging. We believe that the ability to show
which network features are surprising under our model and which are common
is genuinely novel and may lead to a better understanding of the inherently
stochastic processes that generate much of the network data currently being
analyzed by the research community.
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