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Preface

This volume was prepared to share with a larger audience the exciting ideas and
work presented at an ICML 2006 workshop of the same title.

Network models have a long history. Sociologists and statisticians made major
advances in the 1970s and 1980s, culminating in part with a number of substantial
databases and the class of exponential random graph models and related methods
in the early 1990s. Physicists and computer scientists came to this domain consid-
erably later, but they enriched the array of models and approaches and began to
tackle much larger networks and more complex forms of data. Our goal in organiz-
ing the workshop was to encourage a dialog among people coming from different
disciplinary perspectives and with different methods, models, and tools.

Both the workshop and the editing of the proceedings was a truly collabo-
rative effort on behalf of all six editors, but three in particular deserve special
recognition. Anna Goldenberg and Alice Zheng were the driving force behind the
entire enterprise and Edo Airoldi assisted on a number of the more important
arrangements.

The editing process involved two stages. We were assisted in the review of ini-
tial submissions by a ProgramCommittee that including the following individuals:

– David Banks, Duke University
– Peter Dodds, Columbia University
– Lise Getoor, University of Maryland
– Mark Handcock, University of Washington, Seattle
– Peter Hoff,University of Washington, Seattle
– David Jensen, University of Massachusetts, Amherst
– Alan Karr, National Institute of Statistical Sciences
– Jon Kleinberg, Cornell University
– Andrew McCallum, University of Massachusetts, Amherst
– Foster Provost, New York University
– Cosma Shalizi, Carnegie Mellon University
– Padhraic Smyth University of California, Irvine
– Josh Tenenbaum, Massachusetts Institute of Technology
– Stanley Wasserman, Indiana University

Following the workshop, all papers went through a second round of review
and editing (and a few went through a third round).

We are indebted to Caroline Sheedy and Heidi Sestrich, who managed the
preparation of the final LaTeX manuscript and did a final cleaning and editing
of all material. Without their assistance this volume would not exist.

February 2007 Stephen E. Fienberg



Table of Contents

Part I Invited Presentations

Structural Inference of Hierarchies in Networks . . . . . . . . . . . . . . . . . . . . . . 1
Aaron Clauset, Cristopher Moore, and Mark E.J. Newman

Heider vs Simmel: Emergent Features in Dynamic Structures . . . . . . . . . . 14
David Krackhardt and Mark S. Handcock

Joint Group and Topic Discovery from Relations and Text . . . . . . . . . . . . 28
Andrew McCallum, Xuerui Wang, and Natasha Mohanty

Statistical Models for Networks: A Brief Review of Some Recent
Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Stanley Wasserman, Garry Robins, and Douglas Steinley

Part II Other Presentations

Combining Stochastic Block Models and Mixed Membership for
Statistical Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and
Eric P. Xing

Exploratory Study of a New Model for Evolving Networks . . . . . . . . . . . . 75
Anna Goldenberg and Alice Zheng

A Latent Space Model for Rank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Isobel Claire Gormley and Thomas Brendan Murphy

A Simple Model for Complex Networks with Arbitrary Degree
Distribution and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Mark S. Handcock and Martina Morris

Discrete Temporal Models of Social Networks . . . . . . . . . . . . . . . . . . . . . . . . 115
Steve Hanneke and Eric P. Xing

Approximate Kalman Filters for Embedding Author-Word
Co-occurrence Data over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Purnamrita Sarkar, Sajid M. Siddiqi, and Geoffrey J. Gordon

Discovering Functional Communities in Dynamical Networks . . . . . . . . . . 140
Cosma Rohilla Shalizi, Marcelo F. Camperi, and
Kristina Lisa Klinkner



VIII Table of Contents

Empirical Analysis of a Dynamic Social Network Built from PGP
Keyrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Robert H. Warren, Dana Wilkinson, and Mike Warnecke

Part III Extended Abstracts

A Brief Survey of Machine Learning Methods for Classification in
Networked Data and an Application to Suspicion Scoring . . . . . . . . . . . . . 172

Sofus Attila Macskassy and Foster Provost

Age and Geographic Inferences of the LiveJournal Social Network . . . . . . 176
Ian MacKinnon and Robert H. Warren

Inferring Organizational Titles in Online Communication . . . . . . . . . . . . . 179
Galileo Mark S. Namata Jr., Lise Getoor, and Christopher P. Diehl

Learning Approximate MRFs from Large Transactional Data . . . . . . . . . . 182
Chao Wang and Srinivasan Parthasarathy

Part IV Panel Discussion

Panel Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
David M. Blei

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



Structural Inference of Hierarchies in Networks

Aaron Clauset1, Cristopher Moore1,2, and Mark E. J. Newman3

1 Department of Computer Science and
2 Department of Physics and Astronomy,

University of New Mexico, Albuquerque, NM 87131 USA
3 Department of Physics and Center for the Study of Complex Systems,

University of Michigan, Ann Arbor, MI 48109 USA
aaronc@santafe.edu, moore@cs.unm.edu, mejn@umich.edu

Abstract. One property of networks that has received comparatively
little attention is hierarchy, i.e., the property of having vertices that clus-
ter together in groups, which then join to form groups of groups, and so
forth, up through all levels of organization in the network. Here, we give
a precise definition of hierarchical structure, give a generic model for gen-
erating arbitrary hierarchical structure in a random graph, and describe
a statistically principled way to learn the set of hierarchical features that
most plausibly explain a particular real-world network. By applying this
approach to two example networks, we demonstrate its advantages for
the interpretation of network data, the annotation of graphs with edge,
vertex and community properties, and the generation of generic null
models for further hypothesis testing.

1 Introduction

Networks or graphs provide a useful mathematical representation of a broad
variety of complex systems, from the World Wide Web and the Internet to
social, biochemical, and ecological systems. The last decade has seen a surge of
interest across the sciences in the study of networks, including both empirical
studies of particular networked systems and the development of new techniques
and models for their analysis and interpretation [1, 2].

Within the mathematical sciences, researchers have focused on the statistical
characterization of network structure, and, at times, on producing descriptive gen-
erative mechanisms of simple structures. This approach, in which scientists have
focused on statistical summaries of network structure, such as path lengths [3, 4],
degree distributions [5], and correlation coefficients [6], stands in contrast with,
for example, the work on networks in the social and biological sciences, where the
focus is instead on the properties of individual vertices or groups. More recently,
researchers in both areas have become more interested in the global organization
of networks [7, 8].

One property of real-world networks that has received comparatively little
attention is that of hierarchy, i.e., the observation that networks often have a
fractal-like structure in which vertices cluster together into groups that then join

E.M. Airoldi et al. (Eds.): ICML 2006 Ws, LNCS 4503, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Clauset, C. Moore, and M.E.J. Newman

to form groups of groups, and so forth, from the lowest levels of organization up
to the level of the entire network. In this paper, we offer a precise definition of the
notion of hierarchy in networks and give a generic model for generating networks
with arbitrary hierarchical structure. We then describe an approach for learning
such models from real network data, based on maximum likelihood methods and
Markov chain Monte Carlo sampling. In addition to inferring global structure
from graph data, our method allows the researcher to annotate a graph with
community structure, edge strength, and vertex affiliation information.

At its heart, our method works by sampling hierarchical structures with prob-
ability proportional to the likelihood with which they produce the input graph.
This allows us to contemplate the ensemble of random graphs that are statisti-
cally similar to the original graph, and, through it, to measure various average
network properties in manner reminiscent of Bayesian model averaging. In par-
ticular, we can

1. search for the maximum likelihood hierarchical model of a particular graph,
which can then be used as a null model for further hypothesis testing,

2. derive a consensus hierarchical structure from the ensemble of sampled mod-
els, where hierarchical features are weighted by their likelihood, and

3. annotate an edge, or the absence of an edge, as “surprising” to the extent
that it occurs with low probability in the ensemble.

To our knowledge, this method is the only one that offers such information about
a network. Moreover, this information can easily be represented in a human-
readable format, providing a compact visualization of important organizational
features of the network, which will be a useful tool for practitioners in generating
new hypotheses about the organization of networks.

2 Hierarchical Structures

The idea of hierarchical structure in networks is not new; sociologists, among
others, have considered the idea since the 1970s. For instance, the method known
as hierarchical clustering groups vertices in networks by aggregating them iter-
atively in a hierarchical fashion [9]. However, it is not clear that the hierarchical
structures produced by these and other popular methods are unbiased, as is also
the case for the hierarchical clustering algorithms of machine learning [10]. That
is, it is not clear to what degree these structures reflect the true structure of
the network, and to what degree they are artifacts of the algorithm itself. This
conflation of intrinsic network properties with features of the algorithms used to
infer them is unfortunate, and we specifically seek to address this problem here.

A hierarchical network, as considered here, is one that divides naturally into
groups and these groups themselves divide into subgroups, and so on until we
reach the level of individual vertices. Such structure is most often represented as
a tree or dendrogram, as shown, for example, in Figure 1. We formalize this notion
precisely in the following way. Let G be a graph with n vertices. A hierarchical
organization of G is a rooted binary tree whose leaves are the graph vertices
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Fig. 1. A small network and one possible hierarchical organization of its nodes, drawn
as a dendrogram

and whose internal (i.e., non-leaf) nodes indicate the hierarchical relationships
among the leaves. We denote such an organization by D = {D1, D2, . . . , Dn−1},
where each Di is an internal node, and every node-pair (u, v) is associated with
a unique Di, their lowest common ancestor in the tree. In this way, D partitions
the edges of G.

3 A Random Graph Model of Hierarchical Organization

We now give a simple model H(D, θ) of the hierarchical organization of a net-
work. Our primary assumption is that the edges of G exist independently but
with a probability that is not identically distributed. One may think of this
model as a variation on the classical Erdős-Rényi random graph, where now
the probability that an edge (u, v) exists is given by a parameter θi associated
with Di, the lowest common ancestor of u, v in D. Figure 2 shows an example
model on seven graph vertices. In this manner, a particular H(D, θ) represents
an ensemble of inhomogeneous random graphs, where the inhomogeneities are
exactly specified by the topological structure of the dendrogram D and the cor-
responding Bernoulli trial parameters θ. Certainly, one could write down a more

Fig. 2. An example hierarchical model H(D, θ), showing a hierarchy among seven
graph nodes and the Bernoulli trial parameter θi (shown as a gray-scale value) for each
group of edges Di
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complicated model of graph hierarchy. The model described here, however, is
a relatively generic one that is sufficiently powerful to enrich considerably our
ability to learn from graph data.

Now we turn to the question of finding the parametrizations of H(D, θ) that
most accurately, or rather most plausibly, represent the structure that we observe
in our real-world graph G. That is, we want to choose D and θ such that a graph
instance drawn from the ensemble of random graphs represented by H(D, θ) will
be statistically similar to G. If we already have a dendrogram D, then we may use
the method of maximum likelihood [11] to estimate the parameters θ that achieve
this goal. Let Ei be the number of edges in G that have lowest common ancestor
i in D, and let Li (Ri) be the number of leaves in the left- (right-) subtree rooted
at i. Then, the maximum likelihood estimator for the corresponding parameter
is θi = Ei/LiRi, the fraction of potential edges between the two subtrees of i
that actually appear in our data G. The posterior probability, or likelihood of
the model given the data, is then given by

LH(D, θ) =
n−1∏

i=1

(θi)
Ei (1 − θi)

LiRi−Ei . (1)

While it is easy to find values of θi by maximum likelihood for each dendrogram,
it is not easy to maximize the resulting likelihood function analytically over the
space of all dendrograms. Instead, therefore, we employ a Markov chain Monte
Carlo (MCMC) method to estimate the posterior distribution by sampling from
the set of dendrograms with probability proportional to their likelihood. We note
that the number of possible dendrograms with n leaves is super-exponential,
growing like (2n − 3)!! ≈

√
2 (2n)n−1e−n where !! denotes the double factorial.

We find, however, that in practice our MCMC process mixes relatively quickly
for networks of up to a few thousand vertices. Finally, to keep our notation
concise, we will use Lμ to denote the likelihood of a particular dendrogram μ,
when calculated as above.

4 Markov Chain Monte Carlo Sampling

Our Monte Carlo method uses the standard Metropolis-Hastings [12] sampling
scheme; we now briefly discuss the ergodicity and detailed balance issues for our
particular application.

Let ν denote the current state of the Markov chain, which is a dendrogram D.
Each internal node i of the dendrogram is associated with three subtrees a, b, and
c, where two are its children and one is its sibling—see Figure 3. As the figure
shows, these subtrees can be in one of the three hierarchical configurations. To
select a candidate state transition ν → μ for our Markov chain, we first choose
an internal node uniformly at random and then choose one of its two alternate
configurations uniformly at random. It is then straightforward to show that the
ergodicity requirement is satisfied.

Detailed balance is ensured by making the standard Metropolis choice of ac-
ceptance probability for our candidate transition: we always accept a transition
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a b c a b c a c b

Fig. 3. Each internal dendrogram node i (circle) has three associated subtrees a, b, and
c (triangles), which together can be in any of three configurations (up to a permutation
of the left-right order of subtrees).

that yields an increase in likelihood or no change, i.e., for which Lμ ≥ Lν ; oth-
erwise, we accept a transition that decreases the likelihood with probability
equal to the ratio of the respective state likelihoods Lμ/Lν = elogLν−logLμ . This
Markov chain then generates dendrograms μ at equilibrium with probabilities
proportional to Lμ.

5 Mixing Time and Point Estimates

With the formal framework of our method established, we now demonstrate its
application to two small, canonical networks: Zachary’s karate club [13], a social
network of n = 34 nodes and m = 78 edges representing friendship ties among
students at a university karate club; and the year 2000 Schedule of NCAA college
(American) football games, where nodes represent college football teams and
edges connect teams if they played during the 2000 season, where n = 115 and
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Fig. 6. The NCAA Schedule 2000 network: (top) an exemplar maximum likelihood den-
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shapes denote conference affiliation; and (bottom) the consensus hierarchy sampled at
equilibrium. Leaf shapes are common between the two dendrograms, but position varies.
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m = 613. Both of these networks have found use as standard tests of clustering
algorithms for complex networks [14, 15, 16] and serve as a useful comparative
basis for our methodology.

Figure 4 shows the convergence of the MCMC sampling algorithm to the equi-
librium region of model space for both networks, where we measure the number
of steps normalized by n2. We see that the Markov chain mixes quickly for both
networks, and in practice we find that the method works well on networks with
up to a few thousands of vertices. Improving the mixing time, so as to apply
our method to larger graphs, may be possible by considering state transitions
that more dramatically alter the structure of the dendrogram, but we do not con-
sider them here. Additionally, we find that the equilibrium region contains many
roughly competitive local maxima, suggesting that any particular maximum like-
lihood point estimate of the posterior probability is likely to be an overfit of the
data. However, formulating an appropriate penalty function for a more Bayesian
approach to the calculation of the posterior probability appears tricky given that
it is not clear to how characterize such an overfit. Instead, we here compute av-
erage features of the dendrogram over the equilibrium distribution of models to
infer the most general hierarchical organization of the network. This process is
described in the following section.

To give the reader an idea of the kind of dendrograms our method produces,
we show instances that correspond to local maxima found during equilibrium
sampling for each of our example networks in Figures 5 (top) and 6 (top). For
both networks, we can validate the algorithm’s output using known metadata
for the nodes. During Zachary’s study of the karate network, for instance, the
club split into two groups, centered on the club’s instructor and owner (nodes 1
and 34 respectively), while in the college football schedule teams are divided into
“conferences” of 8–12 teams each, with a majority of games being played within
conferences. Both networks have previously been shown to exhibit strong com-
munity structure [14, 15], and our dendrograms reflect this finding, almost always
placing leaves with a common label in the same subtree. In the case of the karate
club, in particular, the dendrogram bipartitions the network perfectly according
to the known groups. Many other methods for clustering nodes in graphs have
difficulty correctly classifying vertices that lie at the boundary of the clusters;
in contrast, our method has no trouble correctly placing these peripheral nodes.

6 Consensus Hierarchies

Turning now to the dendrogram sampling itself, we consider three specific struc-
tural features, which we average over the set of models explored by the MCMC at
equilibrium. First, we consider the hierarchical relationships themselves, adapt-
ing for the purpose the technique of majority consensus, which is widely used
in the reconstruction of phylogenetic trees [17]. Briefly, this method takes a
collection of trees {T1, T2, . . . , Tk} and derives a majority consensus tree Tmaj
containing only those hierarchical features that have majority weight, where we
somehow assign a weight to each tree in the collection. For our purposes, we
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take the weight of a dendrogram D simply to be its likelihood LD, which pro-
duces an averaging scheme similar to Bayesian model averaging [10]. Once we
have tabulated the majority-weight hierarchical features, we use a reconstruc-
tion technique to produce the consensus dendrogram. Note that Tmaj is always
a tree, but is not necessarily strictly binary.

The results of applying this process to our example networks are shown in
Figures 5 (bottom) and 6 (bottom). For the karate club network, we observe
that the bipartition of the two clusters remains the dominant hierarchical feature
after sampling a large number of models at equilibrium, and that much of the
particular structure low in the dendrogram shown in Figure 5 (top) is eliminated
as distracting. Similarly, we observe some coarsening of the hierarchical structure
in the NCAA network, as the relationships between individual teams are removed
in favor of conference clusterings.

7 Edge and Node Annotations

We can also assign majority-weight properties to nodes and edges. We first de-
scribe the former, where we assign a group affiliation to each node.

Given a vertex, we may ask with what likelihood it is placed in a subtree
composed primarily of other members of its group (with group membership
determined by metadata as in the examples considered here). In a dendrogram D,
we say that a subtree rooted at some node i encompasses a group g if both the
majority of the descendants of i are members of group g and the majority of
members of group g are descendants of i. We then assign every leaf below i the
label of g. We note that there may be some leaves that belong to no group,
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proportional to their average probability of existing, sampled at equilibrium. Vertices
have shapes corresponding to their known group associations, and are shaded according
to the sampled weight of their being correctly grouped (see text).
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i.e., none of their ancestors simultaneously satisfy both the above requirements,
and vertices of this kind get a special no-group label. Again, by weighting the
group-affiliation vote of each dendrogram by its likelihood, we may measure
exactly the average probability that a node belongs to its native group’s subtree.

Second, we can measure the average probability that an edge exists, by taking
the likelihood-weighted average over the sequence of parameters θi associated
with that edge at equilibrium.

Estimating these vertex and edge characteristics allows us to annotate the net-
work, highlighting the most plausible features, or the most surprising. Figures 7
and 8 show such annotations for the two example networks, where edge thickness
is proportional to average probability, and nodes are shaded proportional to the
sampled weight of their native group affiliation (lightest corresponds to highest
probability).

For the karate network, the dendrogram sampling both confirms our previ-
ous understanding of the network as being composed of two loosely connected
groups, and adds additional information. For instance, node 17 and the pair
{25, 26} are found to be more loosely bound to their respective groups than
other vertices – a feature that is supported by the average hierarchical structure
shown in Figure 5 (bottom). This looseness apparently arises because none of
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these vertices has a direct connection to the central players 1 and 34, and they are
thus connected only secondarily to the cores of their clusters. Also, our method
correctly places vertex 3 in the cluster surrounding 1, a placement with which
many other methods have difficulty.

The NCAA network shows similarly suggestive results, with the majority of
heavily weighted edges falling within conferences. Most nodes are strongly placed
within their native groups, with a few notable exceptions, such as the indepen-
dent colleges, vertices 82, 80, 42, 90, and 36, which belong to none of the major
conferences. These teams are typically placed by our method in the conference
in which they played the most games. Although these annotations illustrate in-
teresting aspects of the NCAA network’s structure, we leave a thorough analysis
of the data for future work.

8 Discussion and Conclusions

As mentioned in the introduction, we are not the first to study hierarchy in net-
works. In addition to persistent interest in the sociology community, a number of
authors in physics have recently discussed aspects of hierarchical structure [14,
18, 19], although generally via indirect or heuristic means. A closely related, and
much studied, concept is that of community structure in networks [14, 15, 16, 20].
In community structure calculations one attempts to find a natural partition of
the network that yields densely connected subgraphs or communities. Many al-
gorithms for detecting community structure iteratively divide (or agglomerate)
groups of vertices to produce a reasonable partition; the sequence of such divi-
sions (or agglomerations) can then be represented as a dendrogram that is often
considered to encode some structure of the graph itself. (Notably, a very recent
exception among these community detection heuristics is a method based on
maximum likelihood and survey propagation [21].)

Unfortunately, while these algorithms often produce reasonable looking den-
drograms, they have the same fundamental problems as traditional hierarchical
clustering algorithms for numeric data [10]. That is, it is not clear to what extent
the derived hierarchical structures depend on the details of the algorithms used
to extract them. It is also unclear how sensitive they are to small perturbations
in the graph, such as the addition or removal of a few edges. Further, these al-
gorithms typically produce only a single dendrogram and provide no estimate of
the form or number of plausible alternative structures.

In contrast to this previous work, our method directly addresses these prob-
lems by explicitly fitting a hierarchical structure to the topology of the graph.
We precisely define a general notion of hierarchical structure that is algorithm-
independent and we use this definition to develop a random graph model of a
hierarchically structured network that we use in a statistical inference context.
By sampling via MCMC the set of dendrogram models that are most likely to
generate the observed data, we estimate the posterior distribution over models
and, through a scheme akin to Bayesian model averaging, infer a set of features
that represent the general organization of the network. This approach provides
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a mathematically principled way to learning about hierarchical organization
in real-world graphs. Compared to the previous methods, our approach yields
considerable advantages, although at the expense of being more computation-
ally intensive. For smaller graphs, however, for which the calculations described
here are tractable, we believe that the insight provided by our methods makes
the extra computational effort very worthwhile. In future work, we will explore
the extension of our methods to larger networks and characterize the errors the
technique can produce.

In closing, we note that the method of dendrogram sampling is quite general
and could, in principle, be used to annotate any number of other graph features
with information gained by model averaging. We believe that the ability to show
which network features are surprising under our model and which are common
is genuinely novel and may lead to a better understanding of the inherently
stochastic processes that generate much of the network data currently being
analyzed by the research community.
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Abstract. Heider’s balance theory is ubiquitous in the field of social
networks as an explanation for why we so frequently observe symmetry
and transitivity in social relations. We propose that Simmelian tie the-
ory could explain the same phenomena without resorting to motivational
tautologies that characterize psychological explanations. Further, while
both theories predict the same equilibrium state, we argue that they sug-
gest different processes by which this equilibrium is reached. We develop
a dynamic exponential random graph model (ERGM) and apply it to
the classic panel data collected by Newcomb to empirically explore these
two theories. We find strong evidence that Simmelian triads exist and
are stable beyond what would be expected through Heiderian tendencies
in the data.

1 Heider’s Balance Theory

One of the central questions in the field of network analysis is: How do networks
form? A cornerstone to our understanding of this process from a structural point
of view has been Heider’s (1946) theory of balance[1]. According to this theory,
a person is motivated to establish and maintain balance in their relationships.
What constitutes balance has been the subject of some debate (e.g., [2, 3]), but
the core principle has survived and underlies many of our attempts to model
this process of network formation (see, for example, [4]).

Heider’s (1946) original formulation of balance theory was broad, including
people’s attitudes towards objects and ideas, not just towards other people. The
unifying argument was that people felt comfortable if they agreed with others
whom they liked; they felt uncomfortable if they disagreed with others they liked.
Moreover, people felt comfortable if they disagreed with others whom they dis-
liked; and people felt uncomfortable if they agreed with others whom they liked.
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Heider noted we can represent like and agreement as positive sentiments, and
dislike and disagreement as negative sentiments. Considering all combinations of
such sentiments among “entities”, be they people or objects, Heider simplified
the predictions of the theory. “In the case of two entities, a balanced state exists
if the relation between them is [mutually] positive (or [mutually] negative.... In
the case of three entities, a balanced state exists if all three relations [among the
three entities] are positive..., or if two are negative and one positive” (p. 110).

Even in his first paper, Heider noted that in the case where one was considering
“entities” as people, then two special properties of balance emerge: symmetry
and transitivity. In his terminology, positive affect from one person (p) to another
(o) was indicated by “pLo”. As noted above, Heider affirms symmetry is basic
to balance. His claim for transitivity was more qualified but nonetheless explicit:
“Among the many possible cases [of relations among three people, p, o and q]
we shall only consider one. (pLo) + (oLq) + (pLq)... This example shows ... the
psychological transitivity of the L relation [under conditions of balance]” (p. 110).

The other critical tenet in Heider’s original formulation was that balance
predicted dynamics. Heider’s claim was that balance was a state of equilibrium.
Imbalance was a state of disequilibrium that would motivate an individual to
change something (either a relation or an attitude) that would result in a move
toward balance.

It was Cartwright and Harary[5] who first made explicit the connection be-
tween Heider’s cognitive balance theory and mathematical graph theory. They
demonstrated how the principles of balance could be represented by a signed
directed graph. Further, by applying the principles of graph theory, they demon-
strated how an entire digraph could be characterized as balanced or not depend-
ing on the product of the signs of each of its semicycles (or, equivalently, whether
semicycles had an even number of negative ties). This extension became the seed
for a series of papers and books, each building on Heider’s original ideas to study
social network structures.

In a series of papers by Leinhardt, Holland and Davis, two critical extensions
to this work were developed (see [6], for a spirited review). First, there was the
general recognition that most network data, if not actual relations among a set
of individuals, were restricted to measurements of positive ties and not negative
ties. Thus, they began to look at how balance could be re-thought of as a set of
positive-only relations. The concept of transitivity became the dominant theme
in these papers. Imbalance was viewed as represented by intransitive triples in
the data (cases where i→ j and j → k and not i→ k), rather than the number
of negative ties in any semicycle. Balance was viewed as holding if the triple was
transitive (or at least vacuously so).

Second, and equally important, they recognized that structures were hardly
ever perfectly balanced. The question, they argued, is not whether structures
were perfectly balanced but rather whether structures tended toward balance,
beyond what one would expect by random chance given certain basic features
of the graph. They developed a set of distributions and statistical tests for as-
sessing these tendencies and discovered that, indeed, most observed structures
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show very high degrees of transitivity, relative to chance [7, 8], 1981). This work
has remained influential to this day, such that new analyses of balance in any
network routinely look at the degree of transitivity (and reciprocity) as measures
of balance [4, 9].

2 Simmelian Tie Theory

Simmel, writing at the very start of the 20th century, had a different view of
the role of relationships in social settings. He began by noting that the dyad,
the fundamental unit of analysis for anyone studying relationships, including
social networkers, was not the best focus for understanding social behavior.
Indeed, he argued that before making any predictions about how two people
in a relationship might behave, it is important to understand their context.
The context, Simmel continues, is determined by the set of third others who
also engage in various relationships with the two focal parties. In other words,
Simmel argued that the triad, not the dyad, is the fundamental social unit that
needs to be studied.

At the turn of the last century, Simmel provides several theoretical rationales
for proffering the triad as the basic social unit ([10]: p. 118-169). Primary among
these is that the dyad in isolation has a different character, different set of expec-
tations and demands on its participants, than the dyad embedded in a triad. The
presence of a third person changes everything about the dyadic relationship. It
is almost irrelevant, according to Simmel, what defines a relationship (marriage,
friendship, colleague); Simmel (p. 126-127) even goes so far as to say that “inti-
macy [the strength or quality of a relationship] is not based on the content of the
relationship” (emphasis his). Rather, it is based on the structure, the panoply of
demands and social dynamics that impinge on that dyad. And those demands
are best understood by locating the dyad within its larger context, by finding the
groups of people (of at least three persons) that the dyadic members belong to.

Simmel articulates several features that differentiate what he terms the “iso-
lated dyad” from the dyad embedded in a threesome. First, the presence of a
third party changes the nature of the relationship itself. Members of a dyad ex-
perience an “intensification of relation by [the addition of] a third element, or
by a social framework that transcends both members of the dyad” (p. 136).

Similarly, members of a dyad are freer to retain their individuality than mem-
bers of a group. “[A dyad by itself] favors a relatively greater individuality of
its members.... [W]ithin a dyad, there can be no majority which could outvote
the individual.” (p. 137). Groups, on the other hand, develop norms of behavior;
they develop rules of engagement. Individuality is less tolerated in a group, and
conformity is more strongly enforced.

Conflict is more easily managed within a triad than in a dyad. Dyadic con-
flict often escalates out of control. The presence of a third party can ameliorate
any conflict, perhaps through mediation, or perhaps simply through diffuse and
indirect connection. “Discords between two parties which they themselves cannot
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remedy are accommodated by the third or by absorption in a comprehensive
whole” (p. 135).

Perhaps most central to Simmel’s idea about triads is that groups develop an
identity, a “super-individual unit” (p. 126). It is a social unit that is larger in
meaning and scope than any of its individual components. A consequence of this
super-individual identity is that it will outlast its members. That is, people may
leave, they may even die, but the group is presumed to carry on. In a triad, the
emergent “super-individual unit ... confronts the individual, while at the same
time it makes him participate in it” (p. 126). In contrast, dyads by themselves
do not reflect this transition to a larger-than-self unit. The dyad’s existence is
dependent on “the immediacy of interaction” of the two members of the dyad
(p. 126). Once one person withdraws from the relationship, the dyad ceases to
exist. “A dyad... depends on each of its two elements alone — in its death, though
not in its life: for its life, it needs both, but for its death, only one” (p. 124).
Thus, he argues, the presence of a third party creates a qualitatively different
unit of identity, one that is more stable over time, and one that is more difficult
to extricate oneself from.

Finally, Simmel also notes that, while triads are the smallest form of group,
increasing group size does not significantly alter its critical features. “[T]he ad-
dition of a third person [to dyads] completely changes them, but ... the further
expansion to four or more by no means correspondingly modifies the group any
further” (p. 138).

Thus, a triad is substantively different from a dyad. The triad is the small-
est form of a group. But its existence transforms the nature of all its dyadic
constituencies in several important ways. It makes the relationships stronger; it
makes them more stable; it makes them more controlling of the behavior of its
members.

2.1 Simmelian Ties and Simmelian Decomposition

The foregoing line of Simmelian reasoning suggests that knowing the specific
content, nature and strength of a relationship between pairs of people is insuffi-
cient to understand the dynamics that might emerge in a social system. Even at
the dyadic level, it is critical to know whether any particular dyad is embedded
in a group.

To explore the implications of Simmel’s theory, Krackhardt[11] proposed using
graph theoretic cliques [12] to identify groups. He then defined a Simmelian tie
as a tie that was embedded in a clique. Formally, given a directed graph R such
that Ri,j = 1 implies the directed arc i→ j exists in R, then Ri,j is defined as
a Simmelian tie if and only if the following are all true:

Ri,j = 1

Rj,i = 1

∃k | Ri,k = 1 ∧Rk,i = 1 ∧Rj,k = 1 ∧Rk,j = 1
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Gower [13] and more specifically Freeman [14] developed a method of
decomposing networks into two components: asymmetric (or specifically “skew-
symmetric” in their terminology) and symmetric. Freeman showed that by doing
so one could capture more clearly the hierarchy that existed in the network data.
Krackhardt extended Freeman’s idea by proposing that a directed graph of net-
work ties could be decomposed into three mutually exclusive and exhaustive
types: asymmetric, sole-symmetric and Simmelian[11]. These types are defined
on a directed graph R:

Ri,j =

⎧
⎪⎨

⎪⎩

Asymmetric, if Ri,j = 1 ∧Rj,i �= 1;
Sole-Symmetric, if Ri,j = 1 ∧Rj,i = 1 ∧Ri,j is not Simmelian;
Simmelian, if Ri,j meets definitional conditions above

2.2 Evidence for the Strength of Simmelian Ties

Since this definition of Simmelian Tie was proposed, several studies have emerged
testing various elements of Simmel’s theory. Krackhardt [11] re-analyzed the data
collected by Newcomb[15] to determine the stability of Simmelian ties relative
to asymmetric and sole-symmetric ties. Newcomb had collected network data
among a set of 17 college students assigned to live together in a fraternity house.
In exchange for reimbursement for living expenses, each student filled out a
questionnaire each week for 15 consecutive weeks (except for week 9, where the
data were not collected). The network question asked each student to rank order
all the remaining 16 students based on how much he liked the others.

For purposes of his analysis, Krackhardt[11] dichotomized these rankings at
the median: a relatively high ranking of 1-8 was coded as a 1 (the tie exists);
a relatively low ranking of 9-16 was coded as a 0 (the tie does not exist). He
then asked the question, which ties have a higher survival rate: asymmetric ties,
sole-symmetric ties, or Simmelian ties?

To address this question, he plotted the conditional probabilities that a tie
would appear again afterΔ weeks, whereΔ ranged from 1 week to 14 weeks. That
is, given that a tie of a particular type (asymmetric, sole-symmetric, Simmelian)
existed at time t, what is the probability that a tie (of any type) will exist at
time t + Δ?

His results are reproduced in Figure 1. As can be seen in the graph, ties
that were initially embedded in cliques (Simmelian ties) were substantially more
likely to survive over time than either asymmetric or sole-symmetric ties. Sim-
melian ties survived at a rate hovering around .9 for up to 4 weeks, and de-
cay to a rate of near .7 over a 14 week gap. In contrast, both asymmetric ties
and sole-symmetric ties survived at a rate of .8 over 1 week’s time, dropping
quickly to a rate of .7 after 3-4 weeks, and continued down to about .5 after
14 weeks. Clearly, Simmelian contexts provided a substantial survival advantage
for ties.

An interesting aside here was that over a large range of time lags (from about
6 to 12 weeks lag), asymmetric ties were considerably more durable than sole-
symmetric ties. One possible interpretation of this is that reciprocity in ties, one
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Fig. 1. Stability of Tie Types

of the key elements in Heider’s balance theory, led to relative stability only when
such ties were embedded in Simmelian triads.

However, Krackhardt did not provide any inferential tests for his results, a
shortcoming we will return to later.

A second study[16] explored how much information was contained in Sim-
melian ties compared to raw ties (un-decomposed ties). The firm being studied

Fig. 2. Role Analysis Based on Raw Ties
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had 36 employees, 15 of which were involved in a unionization effort. Some of
the people involved were in favor of the union; some were against it. Some were
vocal about their positions; some were quiet. He was able to demonstrate that
the dynamics in the union drive and the subsequent defeat of the union was
explained by observing how several key supporters of the union were “trapped”
in Simmelian ties that kept them from freely expressing their views.

As part of this analysis, Krackhardt examined structurally equivalent role
sets for the 36 employees [17]. He noted how clearly these roles emerged in the
analysis of the Simmelian relations. What he failed to do was compare these
roles to what would have been found had he analyzed the roles uncovered in the
raw data.

We have re-analyzed his data (Figures 2 and 3) to make this comparison.
Figure 2 provides the dendrogram for the role analysis for the raw data, as is
typically done in role analysis in network data. The critical values on the left
(vertical axis) represent correlations indicating how similar the roles are that
people occupy at that particular cutoff level. What is clear from the analysis of
the raw data in this figure is that roles are not coherent. To reach even a modest
.3 correlation, the 36 people had to be divided up into 14 different roles. With an
average of only a little over 2 people in each role, we learn very little about how
role constraints based on the raw data may be playing a part in understanding
the union dynamics here.

Fig. 3. Role Analysis Based on Simmelian Ties
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Figure 3 conducts the same analysis on the Simmelian ties. In contrast to the
dendrogram in Figure 2, the correlations show a much better fit with fewer roles.
Indeed, collapsing the 36 employees into 5 roles (an average of over 7 people per
role) yields an average role similarity correlation of .42, a marked improvement
over what was observed in the role analysis for raw data. A reasonable interpreta-
tion of these results suggests that raw data are noisy, making them difficult to see
systematic patterns of roles and role constraints. Simmelian data appear much
cleaner, crisper, suggesting that they could provide the informational backbone
for structural analysis.

Thus, we have evidence that Simmelian ties are more stable, and that they
provide a stronger, clearer picture of certain structural features in the network.
However, again, these are descriptive measures. There is no stochastic model
here, and hence no statistical framwork within which we can assess the extent
to which these results may be statistical artifacts or perhaps not different from
what we would expect by chance. Moreover, these results tell us little about the
dynamics of the process of network formation.

3 Dynamic Model Comparison of Heider and Simmel

We return to the central question we started with. What are the forces that
seem to help us understand how networks form? We have presented two possible
models, competing in their explanations of network dynamics. Both Heider and
Simmel are similar in that they “predict” that one should observe many cliques
(symmetric and transitive subgraphs). But their motivational underpinnings and
their subtle dynamics are radically different.

Heider’s model is a psychologically based one. People are motivated to right an
imbalance (asymmetric pair or pre-transitive triple) to make it balanced (sym-
metric and transitive). Once balance is reached, people are said to have reached
an equilibrium state and are motivated to maintain that balance. Simmel’s the-
ory, by contrast, rests in a sociological, structural explanation for the existence
of symmetric and transitive triples. Cliques, once formed, become strong and
stable; they resist change. However, there is no inherent motivation to form
cliques. It’s just that, once formed, the ties enter a phase that simultaneously
increases their strength and reduces their propensity to decay over time. Thus,
one could easily predict an equilibrium for each model that would be the same
— dominance of symmetric pairs and transitive triples.

To see which model may better represent the real world, we re-analyzed the
Newcomb data. These data provide an opportunity to not only see where the
equilibrium might be headed but also to uncover what the actual dynamics are
that form the pathway to that equilibrium.

We consider exponential random graph (ERG) models for the network. This
class of models allow complex social structure to be represented in an inter-
pretable and parsimonious manner [18, 19]. The model is a statistical exponen-
tial family for which the sufficient statistics are a set of functions Z(r) of the
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network r. The statistics Z(r) are chosen to capture the hypothesized social
structure of the network [20]. Models take the form:

Pθ(R = r) =
exp (θ·Z (r))∑

s∈R exp (θ·Z (s))
, (1)

where R is the set of all possible networks and θ is our parameter vector. In
this form, it is easy to see that

∑
s∈R exp (θ·Z (s)) normalizes our probabilities

to ensure a valid distribution. Inference for the model parameter θ can be based
on the likelihood function corresponding to the model (1). As the direct com-
putation of the likelihood function is difficult, we approximate it via a MCMC
algorithm [21].

The parameter corresponding to a statistic can be interpreted as the log-
odds of a tie conditional on the other statistics in the model being fixed. It is
also the logarithm of the ratio of the probability of a graph to a graph with
a count one lower of the statistic (and all other statistics the same). Hence a
positive parameter value indicates that the structural feature occurs with greater
frequency than one would expect by chance (all else being fixed). A negative
value indicates that the particular structural feature appears less than one would
expect by chance.

The space of networks R we consider for the Newcomb data are those that
satisfy the definition of Section 2.2. Each student has exactly 8 out-ties. Hence
the density and out-degree distribution of the network are fixed. To capture the
propensity for a network to have Heiderian ties and triads we use two statistics:

Z1(r) = number of symmetric dyads in r (2)

Note that the number of edges in the graph is fixed at 17× 8 = 136 and:

number of edges = Z1 + number of asymmetric dyads (3)

and the total number of dyads is
(17

2

)
= 136 so

number of asymmetric dyads = 136− Z1

number of null dyads =
1
2
Z1

number of symmetric dyads = Z1

Hence Z1 is sufficient to represent the Heiderian dyad census. To represent Hei-
derian triads we incorporate the statistic:

Z2(r) = number of Heiderian (i.e., transitive) triads in r

To capture the propensity for the network to have Simmelian triads we incorpo-
rate the statistic:

Z3(r) = number of Simmelian triads in r,

that is, the number of complete sub-graphs of size three.
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Fig. 4. Simmelian and Heiderian Statistics for the Newcomb Networks over Time. The
number of Heiderian triads to divided by two to keep it on a common scale.

A model with this sample space R controls for density and for individual
out-degree patterns.

Figure 4 plots the three statistics for each of the 14 networks. The number
of Heiderian triads generally increases over time with a larger rise in the initial
weeks. The number of symmetric dyads jumps up, but is not generally increasing
or decreasing. The number of Simmelian triads rapidly increases for the first five
weeks and then is generally flat pattern. These descriptions can be supported
by the confidence intervals for the parameters these statistics represent (not
shown).

Traditional ERGM models use such parameters as static structural features.
In our case, we are concerned about the transition from a state at time t and
the subsequent state at time t+ 1. Thus, we introduce a dynamic variant of the
above model:

Pθ(R(t+1) = r(t+1)|R(t) = r(t)) =
exp

(
θ(t+1)·Z (

r(t+1); r(t)
))

∑
s∈R exp

(
θ(t+1)·Z (

s; r(t)
)) t = 2, . . . , 15,

(4)
where R is still the set of all possible networks with each student having out-
degree four and θ(t+1) is our parameter vector for the t to t + 1 transition.
The network statistics Z

(
r(t+1); r(t)

)
indicate how the network (statistics) at

time t+ 1 depend on the state at time t. This general model is adapted to the
Newcomb data via two additional statistics dynamic statistics:
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Z4(r(t+1); r(t)) = number of pre-Heiderian triads in r(t)that are Heiderian
in r(t+1)

Z5(r(t+1); r(t)) = number of Simmelian triads in r(t)that persist in r(t+1)

The first follows the dynamics of pre-Heiderian (imbalanced) triads from time t
to time t+1. If there is a Heiderian process evolving we expect to see an increased
propensity for the formation of Heiderian triads from their pre-Heiderian states
(all else being equal). The second follows the dynamics of Simmelian (complete
triples) triads from time t to time t+ 1. If there is a Simmelian process evolving
we expect to see persistence of Simmelian triads (all else being equal). Note
that this allows a distinct process of Simmelian formation not controlled by this
parameter. By including these statistics in the model, we can follow the dynamics
in the Newcomb data to see how states transitioned from a non-balanced state
and the stability of Simmelian state once formed.

Fig. 5. The persistence of Simmelian triads and the formation of Heiderian triads for
the Newcomb Networks over Time

Figure 5 plots the two dynamic statistics over the 14 weeks of data. We clearly
see the increase persistence of Simmelian triads over time and the decreasing
formation of Heiderian triads over time. Both these effects are strongest in the
early weeks with a possible increase in the final weeks.

Both the cross-sectional and dynamic models and figures present overall Hei-
derian and Simmelian effects. To understand the interactions we consider the
joint effects through the parameters of a dynamic model. Consider the model (4)
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Fig. 6. The joint effects of the persistence of Simmelian triads, Heiderian dyadic bal-
ance, and the formation of Heiderian triads for the Newcomb networks over time. The
values plotted are the maximum likelihood estimates of the parameters of model (4)
for t = 2, . . . , 15.

with statistics Z1, Z4 and Z5. These measure the overall level of Heiderian dyads
and the dynamics of the two processes. The maximum likelihood estimator of
the parameter θ(t+1) was estimated for t = 2, . . . , 15.

Figure 6 plots the parameters over the 14 weeks of data. It is important
to note that these measure the simultaneous joint effect of the three factors.
Consider the formation of Heiderian triads. We see that is positive for each time
point indicating that Heiderian formation is substantively higher than due to
chance. It is also modestly increasing over time indicating that the propensity
for formation is modestly increasing even in the presence of the other structural
factors. The pattern for the Simmelian persistence is also positive indicating
substantially more persistence of Simmelian triads than expected due to chance
even adjusting for the Heiderian triadic and dyadic effects. This has an early peak
in the fifth week and appear to be increasing in the last weeks. Both these effects
are confirmed by the confidence intervals for the parameters (not shown). Finally,
the overall presence of Heiderian dyads is not significantly different from the
random process. This is confirmed by the confidence intervals for the symmetric
parameter, and also indicated by the point estimates arranged about zero.

All analyses in this section were implemented using the statnet package for
network analysis [22]. This is written in the R language [23] due to its flexibility
and power. statnet provides access to network analysis tools for the fitting, plot-
ting, summarization, goodness-of-fit, and simulation of networks. Both R and the
statnet package are publicly available (See websites in the references for details).
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4 Conclusion

There have been reams of evidence for the frequent occurrence of symmetric and
transitive structures in naturally occurring networks. Most of this work has been
motivated by Heider’s theory of balance. While Simmel’s work is well-known
among sociologists, little attention has been paid to his possible explanation of
the same phenomena.

We have outlined how Simmel’s theory, without resorting to any psychologi-
cal motivations, can be used to predict the same structures as Heider’s theory.
Indeed, one would expect the same states from each model in equilibrium. But,
the dynamics which reach these final states are substantially different. Statisti-
cal evidence from the Newcomb data suggest that Simmel’s description of the
evolution of these structures is a better fit with the data than Heider’s.

The results of the dynamic modeling of the Newcomb data (Figure 6) indicate
that Simmelian structures are important to the dynamics in the Newcomb data
even when Heiderian dynamics and propensity have been accounted for. Thus
the tendency to form Simmelian ties that persist most strongly and significantly
throughout time is not just a by-product of a Heiderian process, but exists above
and beyond that. The results also indicate that the overall level of Heiderian
balance is a product of the dynamic formation of Heiderian triads from pre-
Heiderian triads (above and beyond that naturally induced by the numbers of
pre-Heiderian triads that exist at that point in time).

The results here are not conclusive. The Newcomb data are limited in their
generalizability. But they are suggestive. Perhaps the dynamics that we have
attributed all these years to Heider and balance theory are at least in part
due to a completely different theory, a structural theory more consistent with
Simmel’s interpretation of structural dynamics.
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Abstract. We present a probabilistic generative model of entity re-
lationships and textual attributes; the model simultaneously discovers
groups among the entities and topics among the corresponding text.
Block models of relationship data have been studied in social network
analysis for some time, however here we cluster in multiple modalities
at once. Significantly, joint inference allows the discovery of groups to
be guided by the emerging topics, and vice-versa. We present experi-
mental results on two large data sets: sixteen years of bills put before
the U.S. Senate, comprising their corresponding text and voting records,
and 43 years of similar data from the United Nations. We show that in
comparison with traditional, separate latent-variable models for words or
block structures for votes, our Group-Topic model’s joint inference im-
proves both the groups and topics discovered. Additionally, we present
a non-Markov continouous-time group model to capture shifting group
structure over time.

1 Introduction

Research in the field of social network analysis (SNA) has led to the development
of mathematical models that discover patterns in interaction between entities
[1]. One of the objectives of SNA is to detect salient groups of entities. Group
discovery has many applications, such as understanding the social structure of
organizations [2] or native tribes [3], uncovering criminal organizations [4], and
modeling large-scale social networks in Internet services such as Friendster.com
or LinkedIn.com.

Social scientists have conducted extensive research on group detection, es-
pecially in fields such as anthropology [3] and political science [5,6]. Recently,
statisticians and computer scientists have begun to develop models that specif-
ically discover group memberships [7,8,9,10]. One such model is the stochastic
block structures model [9], which discovers the latent structure, groups or classes
based on pair-wise relation data. A particular relation holds between a pair of en-
tities (people, countries, organizations, etc.) with some probability that depends
only on the class (group) assignments of the entities. The relations between all
the entities can be represented with a directed or undirected graph. The class
assignments can be inferred from a graph of observed relations or link data us-
ing Gibbs sampling [9]. This model is extended in [10] to automatically select
an arbitrary number of groups by using a Chinese Restaurant Process prior.

E.M. Airoldi et al. (Eds.): ICML 2006 Ws, LNCS 4503, pp. 28–44, 2007.
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The aforementioned models discover latent groups only by examining whether
one or more relations exist between a pair of entities. The Group-Topic (GT)
model presented in this paper, on the other hand, considers not only the relations
between objects but also the attributes of the relations (for example, the text
associated with the relations) when assigning group membership.

The GT model can be viewed as an extension of the stochastic block struc-
tures model [9,10] with the key addition that group membership is conditioned
on a latent variable associated with the attributes of the relation. In our exper-
iments, the attributes of relations are words, and the latent variable represents
the topic responsible for generating those words. Unlike previous methods, our
model captures the (language) attributes associated with interactions between
entities, and uses distinctions based on these attributes to better assign group
memberships.

Consider a legislative body and imagine its members forging alliances (forming
groups), and voting accordingly. However, different alliances arise depending on
the topic of the resolution up for a vote. For example, one grouping of the
legislators may arise on the issue of taxation, while a quite different grouping
may occur for votes on foreign trade. Similar patterns of topic-based affiliations
would arise in other types of entities as well, e.g., research paper co-authorship
relations between people and citation relations between papers, with words as
attributes on these relations.

In the GT model, the discovery of groups is guided by the emerging topics, and
the discovery of topics is guided by emerging groups. Both modalities are driven
by the common goal of increasing data likelihood. Consider the voting example
again; resolutions that would have been assigned the same topic in a model using
words alone may be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the entities vote very
similarly on them. Likewise, multiple different divisions of entities into groups
are made possible by conditioning them on the topics.

The importance of modeling the language associated with interactions be-
tween people has recently been demonstrated in the Author-Recipient-Topic
(ART) model [11]. In ART the words in a message between people in a network
are generated conditioned on the author, recipients and a set of topics that de-
scribes the message. The model thus captures both the network structure within
which the people interact as well as the language associated with the interac-
tions. In experiments with Enron and academic email, the ART model is able to
discover role similarity of people better than SNA models that consider network
connectivity alone. However, the ART model does not explicitly capture groups
formed by entities in the network.

The GT model simultaneously clusters entities to groups and clusters words
into topics, unlike models that generate topics solely based on word distributions
such as Latent Dirichlet Allocation [12]. In this way the GT model discovers
salient topics relevant to relationships between entities in the social network—
topics which the models that only examine words are unable to detect. Erosheva
et al. [13] provide a general formulation for mixed membership, of which LDA
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is a special case, and they apply it to soft clustering of papers by topics using
words from the text and references. In work parallel to ours but different from
GT, Airoldi et al. [14] extend the general mixed membership model to also
incorporate stochastic blockmodels of the form arising in the network literature.
Their application is to protein-protein interactions.

We demonstrate the capabilities of the GT model by applying it to two large
sets of voting data: one from US Senate and the other from the General Assembly
of the UN. The model clusters voting entities into coalitions and simultaneously
discovers topics for word attributes describing the relations (bills or resolutions)
between entities. We find that the groups obtained from the GT model are
significantly more cohesive (p-value < .01) than those obtained from the block
structures model. The GT model also discovers new and more salient topics in
both the Senate and UN datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are either split or joined
together as influenced by the voters’ patterns of behavior.

2 Group-Topic Model

The Group-Topic Model is a directed graphical model that clusters entities with
relations between them, as well as attributes of those relations. The relations may
be either directed or undirected and have multiple attributes. In this paper, we
focus on undirected relations and have words as the attributes on relations.

In the generative process for each event (an interaction between entities),
the model first picks the topic t of the event and then generates all the words
describing the event where each word is generated independently according to
a multinomial (discrete) distribution φt, specific to the topic t. To generate the
relational structure of the network, first the group assignment, gst for each entity
s is chosen conditionally from a particular multinomial (discrete) distribution θt

Table 1. Notation used in this paper

SYMBOL DESCRIPTION

git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)
ij entity i and j’s groups behaved same (1)

or differently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b
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w v

Fig. 1. The Group-Topic model

over groups for each topic t. Given the group assignments on an event b, the
matrix V (b) is generated where each cell V (b)

ij represents if the groups of two
entities (i and j) behaved the same or not during the event b, (e.g., voted the
same or not on a bill). Each element of V is sampled from a binomial (Bernoulli)
distribution γ

(b)
gigj . Our notation is summarized in Table 1, and the graphical

model representation of the model is shown in Figure 1.
Without considering the topic of an event, or by treating all events in a corpus

as reflecting a single topic, the simplified model (only the right part of Figure 1)
becomes equivalent to the stochastic block structures model [9]. To match the
block structures model, each event defines a relationship, e.g., whether in the
event two entities’ groups behave the same or not. On the other hand, in our
model a relation may have multiple attributes (which in our experiments are
the words describing the event, generated by a per-topic multinomial (discrete)
distribution).

When we consider the complete model, the dataset is dynamically divided
into T sub-blocks each of which corresponds to a topic. The complete GT model
is as follows,

tb ∼ Uniform(
1
T

)

wit|φt ∼ Multinomial(φt)
φt|η ∼ Dirichlet(η)
git|θt ∼ Multinomial(θt)
θt|α ∼ Dirichlet(α)

V
(b)
ij |γ(b)

gigj
∼ Binomial(γ(b)

gigj
)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes and relations to obtain
topic-wise group memberships. Since inference can not be done exactly on such
complicated probabilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our setting, and thus we
can easily integrate out θ, φ and γ to decrease the uncertainty associated with
them. This simplifies the sampling since we do not need to sample θ, φ and γ
at all, unlike in [9]. In our case we need to compute the conditional distribution
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P (gst|w,V,g−st, t, α, β, η) and P (tb|w,V,g, t−b, α, β, η), where g−st denotes the
group assignments for all entities except entity s in topic t, and t−b represents the
topic assignments for all events except event b. Beginning with the joint proba-
bility of a dataset, and using the chain rule, we can obtain the conditional proba-
bilities conveniently. In our setting, the relationship we are investigating is always
symmetric, so we do not distinguishRij andRji in our derivations (onlyRij(i ≤ j)
remain). Thus

P (gst|V,g−st,w, t, α, β, η)

∝ αgst+ntgst−1∑
G
g=1(αg+ntg)−1

∏B
b=1

(
I(tb = t)

∏G
h=1

∏2
k=1

∏d
(b)
gsthk

x=1

(
βk+m

(b)
gsthk−x

)

∏
∑2

k=1 d
(b)
gsthk

x=1

(
(
∑ 2

k=1(βk+m
(b)
gsthk)−x

)

)
,

where ntg represents how many entities are assigned into group g in topic t, ctv
represents how many tokens of word v are assigned to topic t, m(b)

ghk represents
how many times group g and h vote same (k = 1) and differently (k = 2) on event
b, I(tb = t) is an indicator function, and d(b)

gsthk is the increase in m(b)
gsthk if entity

s were assigned to group gst than without considering s at all (if I(tb = t) = 0,
we ignore the increase in event b). Furthermore,

P (tb|V,g,w, t−b, α, β, η)

∝

⎛

⎜⎝
∏V

v=1
∏e(b)

v
x=1(ηv + ctbv − x)

∏∑ V
v=1 e

(b)
v

x=1

(∑V
v=1(ηv + ctbv) − x

)

⎞

⎟⎠

λ
G∏

g=1

G∏

h=g

∏2
k=1 Γ (βk +m

(b)
ghk)

Γ (
∑2

k=1(βk +m
(b)
ghk))

,

where e(b)v is the number of tokens of word v in event b. Note that m(b)
ghk is not

a constant and changes with the assignment of tb since it influences the group
assignments of all entities that vote on event b. We use a weighting parameter λ
to rescale the likelihoods from different modalities, as is also common in speech
recognition when the acoustic and language models are combined. The GT model
uses information from two different modalities. In general, the likelihood of the
two modalities is not directly comparable, since the number of occurrences of
each type may vary greatly (e.g., there may be far more pairs of voting entities
than word occurrences).

3 Related Work

There has been a surge of interest in models that describe relational data, or
relations between entities viewed as links in a network, including recent work
in group discovery. One such algorithm, presented by Bhattacharya and Getoor
[8], is a bottom-up agglomerative clustering algorithm that partitions links in a
network into clusters by considering the change in likelihood that would occur
if two clusters were merged. Once the links have been grouped, the entities
connected by the links are assigned to groups.

Another model due to Kubica et al. [7] considers both link evidence and at-
tributes on entities to discover groups. The Group Detection Algorithm (GDA)
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uses a Bayesian network to group entities from two datasets, demographic data
describing the entities and link data. Unlike our model, neither of these mod-
els [8,7] consider attributes associated with the links between the entities. The
model presented in [7] considers attributes of an entity rather than attributes of
relations between entities.

The central theme of GT is that it simultaneously clusters entities and at-
tributes on relations (words). There has been prior work in clustering differ-
ent entities simultaneously, such as information theoretic co-clustering [15], and
multi-way distributional clustering using pair-wise interactions [16]. However,
these models do not also cluster attributes based on interactions between enti-
ties in a network.

In our model, group membership defines pair-wise relations between nodes.
The GT model is an enhancement of the stochastic block structures model [9]
and the extended model of Kemp et al. [10] as it takes advantage of information
from different modalities by conditioning group membership on topics. In this
sense, the GT model draws inspiration from the Role-Author-Recipient-Topic
(RART) model [11]. As an extension of ART model, RART clusters together
entities with similar roles. In contrast, the GT model presented here clusters
entities into groups based on their relations to other entities.

Exploring the notion that the behavior of an entity can be explained by its
(hidden) group membership, Jakulin and Buntine [17] develop a discrete PCA
model for discovering groups in the 108 US Senate. A similar model is developed
in [18] that examines group cohesion and voting similarity in the Finnish Parlia-
ment. We apply our GT model also to voting data. However, unlike [17,18], since
our goal is to cluster entities based on the similarity of their voting patterns, we
are only interested in whether a pair of entities voted the same or differently, not
their actual yes/no votes. Two resolutions on the same topic may differ only in
their goal (e.g., increasing vs. decreasing budget), thus the actual votes on one
could be the converse of votes on the other. However, pairs of entities who vote
the same on one resolution would tend to vote same on the other resolution. To
capture this, we model relations as agreement between entities, not the yes/no
vote itself. This kind of ”content-ignorant” feature is similarly found in some
work on web log clustering [19].

There has been a considerable amount of previous work in understanding
voting patterns [20,5,6], including research on voting cohesion of countries in the
EU parliament [5] and partisanship in roll call voting [6]. In these models roll call

Table 2. Average AI for different models for both Senate and UN datasets. The group
cohesion in (joint) GT is significantly better than in (serial) baseline, as well as the
block structures model that does not use text at all.

Datasets Avg. AI for GT Avg. AI for Baseline p-value Block Structures

Senate 0.8294 0.8198 < .01 0.7850

UN 0.8664 0.8548 < .01 0.7934
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data are used to estimate ideal points of a legislator (which refers to a legislator’s
preferred policy in the Euclidean space of possible policies). The models assume
that each vote in the roll call data is independent of the remaining votes, i.e.,
each individual is not connected to anyone else who is voting. However, in reality,
legislation is shaped by the coalitions formed by like-minded legislators. The GT
model attempts to capture this interaction.

4 Experimental Results

We present experiments applying the GT model to the voting records of members
of two legislative bodies: the US Senate and the UN General Assembly. We set
α = 1, β = 5, and η = 1 in all experiments. To make sure of convergence, we run
the Markov chains for 10,000 iterations, (which by inspection are stable after
a few hundred iterations), and use the topic and group assignments in the last
Gibbs sample.

For comparison, we present the results of a baseline method that first uses a
mixture of unigrams to discover topics and associate a topic with each resolu-
tion, and then runs the block structures model [9] separately on the resolutions
assigned to each topic. This baseline approach is similar to the GT model in
that it discovers both groups and topics, and has different group assignments on
different topics. However, whereas the GT model performs joint inference simul-
taneously, the baseline performs inference serially. Note that our baseline is still
more powerful than the block structures models, since it models the topic asso-
ciated with each event, and allows the creation of distinct groupings dependent
on different topics.

In this paper, we are interested in the quality of both the groups and the
topics. In the political science literature, group cohesion is quantified by the
Agreement Index (AI) [17,18], which measures the similarity of votes cast by
members of a group during a particular roll call. The AI for a particular group
on a given roll call i is based on the number of group members that vote Yes(yi),
No(ni) or Abstain(ai) in the roll call i. Higher AI index means better cohesion.

AIi =
max{yi, ni, ai} − yi+ni+ai−max{yi,ni,ai}

2

yi + ni + ai

The block structures model assumes that members of a legislative body have
the same group affiliations irrespective of the topic of the resolution on vote.
However, it is likely that members form their groups based on the topic of the
resolution being voted on. We quantify the extent to which a member s switches
groups with a Group Switch Index (GSI).

GSIs =
T∑

i,j

abs(si − sj)
|G(s, i)| − 1 + |G(s, j)| − 1

where si and sj are bit vectors of the length of the size of the legislative body.
The kth bit of si is set if k is in the same group as s on topic i and similarly
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Table 3. Top words for topics generated with the mixture of unigrams model on the
Senate dataset. The headers are our own summary of the topics.

Economic Education Military Energy
Misc.

federal education government energy
labor school military power

insurance aid foreign water
aid children tax nuclear
tax drug congress gas

business students aid petrol
employee elementary law research

care prevention policy pollution

Table 4. Top words for topics generated with the GT model on the Senate dataset.
The topics are influenced by both the words and votes on the bills.

Economic Education Foreign Social Security
+ Domestic + Medicare

labor education foreign social
insurance school trade security

tax federal chemicals insurance
congress aid tariff medical
income government congress care

minimum tax drugs medicare
wage energy communicable disability

business research diseases assistance

sj corresponds to topic j. G(s, i) is the group of s on topic i which has a size
of |G(s, i)| and G(s, j) is the group of s on topic j. We present entities that
frequently change their group alliance according to the topics of resolutions.

Group cohesion from the GT model is found to be significantly greater than
the baseline group cohesion under a pairwise t-test, as shown in Table 2, which
indicates that the GT’s joint inference is better able to discover cohesive groups.
We find that nearly every document has a higher Agreement Index across groups
using the GT model as compared to the baseline. As expected, stochastic block
structures without text [9] is even worse than our baseline.

4.1 The US Senate Dataset

Our Senate dataset consists of the voting records of Senators in the 101st-
109th US Senate (1989-2005) obtained from the Library of Congress THOMAS
database. During a roll call for a particular bill, a Senator may respond Yea or
Nay to the question that has been put to vote, else the vote will be recorded as
Not Voting. We do not consider Not Voting as a unique vote since most of the
time it is a result of a Senator being absent from the session of the US Senate.



36 A. McCallum, X. Wang, and N. Mohanty

Table 5. Senators in the four groups corresponding to Topic Education + Domestic in
Table 4

Group 1 Group 3 Group 4

73 Republicans Cohen(R-ME) Armstrong(R-CO)
Krueger(D-TX) Danforth(R-MO) Garn(R-UT)

Group 2 Durenberger(R-MN) Humphrey(R-NH)
90 Democrats Hatfield(R-OR) McCain(R-AZ)
Chafee(R-RI) Heinz(R-PA) McClure(R-ID)
Jeffords(I-VT) Kassebaum(R-KS) Roth(R-DE)

Packwood(R-OR) Symms(R-ID)
Specter(R-PA) Wallop(R-WY)
Snowe(R-ME) Brown(R-CO)
Collins(R-ME) DeWine(R-OH)

Thompson(R-TN)
Fitzgerald(R-IL)
Voinovich(R-OH)

Miller(D-GA)
Coleman(R-MN)

Table 6. Senators that switch groups the most across topics for the 101st-109th Senates

Senator Group Switch Index

Shelby(D-AL) 0.6182
Heflin(D-AL) 0.6049

Voinovich(R-OH) 0.6012
Johnston(D-LA) 0.5878

Armstrong(R-CO) 0.5747

The text associated with each resolution is composed of its index terms provided
in the database. There are 3423 resolutions in our experiments (we excluded roll
calls that were not associated with resolutions). Each bill may come up for vote
many times in the U.S. Senate, each time with an attached amendment, and
thus many relations may have the same attributes (index terms). Since there
are far fewer words than pairs of votes, we adjust the text likelihood to the 5th
power (weighting factor 5) in the experiments with this dataset so as to balance
its influence during inference.

We cluster the data into 4 topics and 4 groups (cluster sizes are suggested by
a political science professor) and compare the results of GT with the baseline.
The most likely words for each topic from the traditional mixture of unigrams
model is shown in Table 3, whereas the topics obtained using GT are shown
in Table 4. The GT model collapses the topics Education and Energy together
into Education and Domestic, since the voting patterns on those topics are quite
similar. The new topic Social Security + Medicare did not have strong enough
word coherence to appear in the baseline model, but it has a very distinct voting
pattern, and thus is clearly found by the GT model. Thus GT discovers topics
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Table 7. Top words for topics generated from mixture of unigrams model with the UN
dataset (1990-2003). Only text information is utilized to form the topics, as opposed
to Table 8 where our GT model takes advantage of both text and voting information.

Everything Nuclear Human Rights Security
in Middle East

nuclear rights occupied
weapons human israel

use palestine syria
implementation situation security

countries israel calls

that are salient in that they correlate with people’s behavior and relations, not
simply word co-occurrences.

Examining the group distribution across topics in the GT model, we find
that on the topic Economic the Republicans form a single group whereas the
Democrats split into 3 groups indicating that Democrats have been somewhat
divided on this topic. With regard to Education + Domestic and Social Security
+ Medicare, Democrats are more unified whereas the Republicans split into 3
groups. The group membership of Senators on Education + Domestic issues is
shown in Table 5. We see that the first group of Republicans include a Democratic
Senator from Texas, a state that usually votes Republican. Group 2 (majority
Democrats) includes Sen. Chafee who is known to be pro-environment and is
involved in initiatives to improve education, as well as Sen. Jeffords who left the
Republican Party to become an Independent and has championed legislation to
strengthen education and environmental protection.

Nearly all the Senators in Group 4 (in Table 5) are advocates for education and
many of them have been awarded for their efforts (e.g., Sen. Fitzgerald has been
honored by the NACCP for his active role in Early Care and Education, and Sen.
McCain has been added to the ASEE list as a True Hero in American Educa-
tion). Sen. Armstrong was a member of the Education committee; Sen. Voinovich
and Sen. Symms are strong supporters of early education and vocational edu-
cation, respectively; and Sen. Roth has constantly voted for tax deductions for
education. It is also interesting to see that Sen. Miller (D-GA) appears in a Re-
publican group; although he is in favor of educational reforms, he is a conserva-
tive Democrat and frequently criticizes his own party—even backing Republican
George W. Bush over Democrat John Kerry in the 2004 Presidential election.

Many of the Senators in Group 3 have also focused on education and other do-
mestic issues such as energy, however, they often have a more liberal stance than
those in Group 4, and come from states that are historically less conservative.
Senators Hatfield, Heinz, Snowe, Collins, Cohen and others have constantly pro-
moted pro-environment energy options with a focus on renewable energy, while
Sen. Danforth has presented bills for a more fair distribution of energy resources.
Sen. Kassebaum is known to be uncomfortable with many Republican views on
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Table 8. Top words for topics generated from the GT model with the UN dataset
(1990-2003) as well as the corresponding groups for each topic (column). The countries
listed for each group are ordered by their 2005 GDP (PPP) and only the top 5 countries
are shown in groups that have more than 5 members.

G Nuclear Arsenal Human Rights Nuclear Arms Race
R nuclear rights nuclear
O states human arms
U united palestine prevention
P weapons occupied race
↓ nations israel space

Brazil Brazil UK
Columbia Mexico France

1 Chile Columbia Spain
Peru Chile Monaco

Venezuela Peru East-Timor

USA Nicaragua India
Japan Papua Russia

2 Germany Rwanda Micronesia
UK... Swaziland
Russia Fiji

China USA Japan
India Japan Germany

3 Mexico Germany Italy...
Iran UK... Poland

Pakistan Russia Hungary

Kazakhstan China China
Belarus India Brazil

4 Yugoslavia Indonesia Mexico
Azerbaijan Thailand Indonesia

Cyprus Philippines Iran

Thailand Belarus USA
Philippines Turkmenistan Israel

5 Malaysia Azerbaijan Palau
Nigeria Uruguay
Tunisia Kyrgyzstan

domestic issues such as education, and has voted against voluntary prayer in
school. Thus, both Groups 3 and 4 differ from the Republican core (Group 2)
on domestic issues, and also differ from each other.

The Senators that switch groups the most across topics in the GT model
are shown in Table 6 based on their GSIs. Sen. Shelby(D-AL) votes with the
Republicans on Economic, with the Democrats on Education + Domestic and with
a small group of maverick Republicans on Foreign and Social Security + Medicare.
Both Sen. Shelby and Sen. Heflin are Democrats from a fairly conservative state
(Alabama) and are found to side with the Republicans on many issues.
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4.2 The United Nations Dataset

The second dataset involves the voting record of the UN General Assembly
[21]. We focus first on the resolutions discussed from 1990-2003, which contain
votes of 192 countries on 931 resolutions. If a country is present during the roll
call, it may choose to vote Yes, No or Abstain. Unlike the Senate dataset, a
country’s vote can have one of three possible values instead of two. Because we
parameterize agreement and not the votes themselves, this 3-value setting does
not require any change to our model. In experiments with this dataset, we use
a weighting factor 500 for text (adjusting the likelihood of text by a power of
500 so as to make it comparable with the likelihood of pairs of votes for each
resolution). We cluster this dataset into 3 topics and 5 groups (again, numbers
are suggested by a political science professor).

The most probable words in each topic from the mixture of unigrams model
is shown in Table 7. For example, Everything Nuclear constitutes all resolutions
that have anything to do with the use of nuclear technology, including nuclear
weapons. Comparing these with topics generated from the GT model shown in
Table 8, we see that the GT model splits the discussion about nuclear technol-
ogy into two separate topics, Nuclear Arsenal which is generally about countries
obtaining nuclear weapons and management of nuclear waste, and Nuclear Arms
Race which focuses on the arms race between Russia and the US and preventing
a nuclear arms race in outer space. These two issues had drastically different
voting patterns in the U.N., as can be seen in the contrasting group structure
for those topics in Table 8. The countries in Table 8 are ranked by their GDP in
2005.1 Thus, again the GT model is able to discover salient topics—topics that
reflect the voting patterns and coalitions, not simply word co-occurrence alone.

As seen in Table 8, groups formed in Nuclear Arms Race are unlike the groups
formed in the remaining topics. These groups map well to the global political
situation of that time when, despite the end of the Cold War, there was mutual
distrust between Russia and the US with regard to the continued manufacture
of nuclear weapons. For missions to outer space and nuclear arms, India was a
staunch ally of Russia, while Israel was an ally of the US.

Overlapping Time Intervals. In order to understand changes and trends in
topics and groups over time, we run the GT model on resolutions that were
discussed during overlapping time windows of 15 years, from 1960-2000, each
shifted by a period of 5 years. We consider 3823 unique resolutions in this way.
The topics as well as the group distribution for the most dominant topic during
each time period are shown in Table 9.

Over the years there is a shift in the topics discussed in the UN, which corre-
sponds well to the events and issues in history. During 1960-1975 the resolutions
focused on countries having the right to self-determination, especially countries
in Africa which started to gain their freedom during this time. Although this
1 http://en.wikipedia.org/wiki/List of countries by GDP %28PPP%29. In Table 8,

we omit some countries (represented by ...) in order to incorporate other interesting
but relatively low ranked countries (for example, Russia) in the GDP list.



40 A. McCallum, X. Wang, and N. Mohanty

Table 9. Results for 15-year-span slices of the UN dataset (1960-2000). The top proba-
ble words are listed for all topics, but only the groups corresponding the most dominant
topic are shown (Topic 3). We list the countries for each group ordered by their 2005
GDP (PPP)and only show the top 5 countries in groups that have more than 5 mem-
bers. We do not repeat the results in Table 8 for the most recent window (1990-2003).

Time Group distributions for Topic 3
Period Topic 1 Topic 2 Topic 3 Group 1 Group2 Group3 Group4 Group5

Nuclear Procedure Africa Indep. India USA Argentina USSR Turkey
operative committee calling Indonesia Japan Colombia Poland

60-75 general amendment right Iran UK Chile Hungary
nuclear assembly africa Thailand France Venezuela Bulgaria
power deciding self Philippines Italy Dominican Belarus

Independence Finance Weapons Cuba India Algeria USSR USA
territories budget nuclear Albania Indonesia Iraq Poland Japan

65-80 independence appropriation UN Pakistan Syria Hungary UK
self contribution international Saudi Libya Bulgaria France

colonial income weapons Egypt Afghanistan Belarus Italy
N. Weapons Israel Rights Mexico China USA Brazil India
nuclear israel africa Indonesia Japan Turkey USSR

70-85 international measures territories Iran UK Argentina Poland
UN hebron south Thailand France Colombia Vietnam

human expelling right Philippines Italy Chile Hungary
Rights Israel/Pal. Disarmament Mexico USA Algeria China India
south israel UN Indonesia Japan Vietnam Brazil

75-90 africa arab international Iran UK Iraq Argentina
israel occupied nuclear Thailand France Syria Colombia
rights palestine disarmament Philippines USSR Libya Chile

Disarmament Conflict Pal. Rights USA China Japan Guatemala Malawi
nuclear need rights Israel India UK St Vincent

80-95 US israel palestine Russia France Dominican
disarmament palestine israel Spain Italy
international secretary occupied Hungary Canada

Weapons Rights Israel/Pal. Poland China USA Russia Cameroon
nuclear rights israeli Czech R. India Japan Argentina Congo

85-00 weapons human palestine Hungary Brazil UK Ukraine Ivory C.
use fundamental occupied Bulgaria Mexico France Belarus Liberia

international freedoms disarmament Albania Indonesia Italy Malta

topic continued to be discussed in the subsequent time period, the focus of the
resolutions shifted to the role of the UN in controlling nuclear weapons as the
Cold War conflict gained momentum in the late 70s. While there were few resolu-
tions condemning the racist regime in South Africa between 1965-1980, this was
the topic of many resolutions during 1970-1985—culminating in the UN censure
of South Africa for its discriminatory practices.

Other topics discussed during the 70s and early 80s were Israel’s occupation
of neighboring countries and nuclear issues. The reduction of arms was pri-
marily discussed during 1975-1990, the time period during which the US and
Soviet Union had talks about disarmament. During 1980-1995 the central topic
of discussion was the Israeli-Palestinian conflict; this time period includes the
beginning of the Intifada revolt in Palestine and the Gulf War. This topic con-
tinued to be important in the next time period (1985-2000), but in the most
recent slice (1990-2003, Table 8) it has become a part of a broader topic on
human rights by combining other human rights related resolutions that appear
as a separate topic during 1985-2000. The human rights issue continues to be
the primary topic of discussion during 1990-2003.

Throughout the history of the UN, the US is usually in the same group as
Europe and Japan. However, as we can see in Table 9 during 1985-2000, when
the Israeli-Palestinian conflict was the most dominant topic, US and Israel form
a group of their own separating themselves from Europe. In other topics discussed
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during 1985-2000, US and Israel are found to be in the same group as Europe
and Japan.

Another interesting result of considering the groups formed over the years is
that, except for the last time period (1990-2003), countries in eastern Europe such
as Poland, Hungary, Bulgaria, etc., form a group along with USSR (Russia). How-
ever, in the last time window on most topics they become a part of the group that
consists of the western Europe, Japan and the US. This shift corresponds to the
end of the communist regimes in these countries that were supported by the Soviet
Union. It is also worth mentioning that before 1990, our model assigned East Ger-
many to the same group as other eastern European countries and USSR (Russia),
while it assignedWestGermany to the same groupaswesternEuropean countries.2

5 Groups over Time

In Table 9 in the previous section, we show that group formation changes over
time by simply pre-dividing the dataset into disjoint subsets based on times-
tamps. In this section, by contrast, we investigate the dynamic changes of groups
using a model that explicitly incorporates time—jointly discovering groups and
their continuous time profiles.

Traditional transition-based Markov models have played a major role in mod-
eling various dynamic systems including social networks. For example, recent
work by Sarkar and Moore [22] proposes a latent space model that accounts for
friendships drifting over time. Blei and Lafferty propose dynamic topic models
(DTMs) in which the alignment among topics across time steps is captured by
a Kalman filter [23].

Instead we propose here a new model that does not make the Markov assump-
tion, rather, we treat timestamps as observed random variables, as in [24]. In
comparison to more complex alternatives, the relative simplicity of our model
is a great advantage—not only for the relative ease of understanding and im-
plementing it, but also because this approach can in the future be naturally
applied into other more richly structured models. In our model, which we call
Groups over Time (GOT), group discovery is influenced not only by relational
co-occurrences, but also by temporal information. Rather than modeling a se-
quence of state changes with a Markov assumption on the dynamics, GOT mod-
els (normalized) absolute timestamp values. This allows GOT to see long-range
dependencies in time, and to predict group distributions given a timestamp. It
also helps avoid a Markov model’s risk of inappropriately dividing a group in
two when there is a brief gap in its appearance.

The graphical model representation of our model is shown in Figure 2. For
comparison, the stochastic block structures model is shown in Figure 2(a).
Groups over Time is a generative model of timestamps and the relational struc-
tures of a social network. There are two ways of describing its generative process.
The first, which corresponds to the process used in Gibbs sampling for parameter
estimation (Figure 2(c)), is as follows:
2 This is not shown in Table 9 because they are missing from the 2005 GDP data.
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(a) Multi-relation (b) GOT model, (c) GOT model,
stochastic block structures alternate view for Gibbs sampling

Fig. 2. Three group models: stochastic block structures and two perspectives on GOT

1. DrawG2 binomials φgh from a Dirichlet prior β, one for each group pair (g, h);
2. For each relation r in total R relations, draw a multinomial θr from a Dirich-

let prior α;
(a) For each entity eri of Er entities in relation r, draw a group gri from

multinomial θr and draw a timestamp tri from Beta ψgri . ;
(b) For each entity pair (i, j), draw their agreement vij from binomial φgigj ;

Although, in the above generative process, a timestamp is generated for each
entity, all the timestamps of the entities in a relation are observed as the same,
because there is typically only one timestamp associated with a relation. When
fitting our model from typical data, each training relation’s timestamp is copied
to all the entities appearing in the relation. However, after fitting, if actually run
as a generative model, this process would generate different time stamps for the
entities appearing in the same relation. An alternative generative process de-
scription of GOT, (better suited to generate an unseen relation), is one in which
a single timestamp is associated with each relation, generated by rejection or
importance sampling, from a mixture of per-group Beta distributions over time
with mixtures weight as the per-relation θr over groups. As before, this distribu-
tion over time would be parameterized by the set of timestamp-generating Beta
distributions, one per group. The graphical model for this alternative generative
process is shown in Figure 2(b).

5.1 Dynamic Group Discovery in UN

We apply the Group over Time (GOT) model to the UN data set described in
Section 4.2, and compare it with the stochastic block structures model. Because
of space limitation, we do not show example group distributions from the two mod-
els. However, when we calculate the Agreement Index (AI, defined in Section 4) of
the groups discovered by the two models on the UN data set; we find that the av-
erage AI for the stochastic block structures model is 0.7934, and 0.8169 for GOT.
We conclude that the groups obtained from the GOT model are significantly more
cohesive (p-value < .01) than those obtained from the block structures model.
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Note that the average AI from GOT (0.8169) is also lower than the one from GT
(0.8664) due to the lack of textual attributes.

6 Conclusions

We present the Group-Topic model that jointly discovers latent groups in a
network as well as clusters of attributes (or topics) of events that influence the
interaction between entities in the network. The model extends prior work on
latent group discovery by capturing not only pair-wise relations between entities
but also multiple attributes of the relations (in particular, the model considers
words describing the relations). In this way the GT model obtains more cohesive
groups as well as fresh topics that influence the interaction between groups. The
model could be applied to variables of other data types in addition to voting
data. We are now using the model to analyze the citations in academic papers
to capture the topics of research papers and discover research groups. It would
also apply to a much larger network of entities (people, organizations, etc.) that
frequently appear in newswire articles.

The model can be altered suitably to consider other attributes characterizing
relations between entities in a network. In ongoing work we are extending the
Group-Topic model to capture a richer notion of topic, where the attributes
describing the relations between entities are represented by a mixture of topics.

The Group over Time model provides a simple and novel way to take advan-
tage of the temporal information as continuous observations, in contrast to the
traditional transition-based Markov models. We believe that the simplicity of
this approach is an advantage in certain applications.
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We begin with a graph (or a directed graph), a single set of nodes N , and a set
of lines or arcs L. It is common to use this mathematical concept to represent
a network. We use the notation of [1], especially Chapters 13 and 15. There
are extensions of these ideas to a wide range of networks, including multiple
relations, affiliation relations, valued relations, and social influence and selection
situations (in which information on attributes of the nodes is available), all of
which can be found in the chapters of [2].

The purpose of this short exposition is to discuss the developments in statis-
tical models for networks that have occurred over the past five years, since the
publication of the statistical chapters (8, 9, 10, and 11) of Carrington, Scott,
and Wasserman (which were written in 2002). The statistical modeling of so-
cial networks is advancing quite quickly. The many exciting new developments
include, for instance, longitudinal models for the co-evolution of networks and
behavior [3] and latent space models for social networks [4]. In this chapter, we
do not intend to review all the recent advances but rather limit our scope to a
few developments that we have worked on.

1 Background

Early work on distributions for graphs was quite limiting, forcing researchers to
adopt independence assumptions that were not terribly realistic (see Chapters
13-16 of [1]. It is hard to accept the standard assumption common in much
of the literature, especially in physics, of complete independence and then to
adopt the mis-named and overly simplistic “random graph” distribution (there
are, of course, an infinite number of random graph distributions). The random
graph distribution to the physicists, that is usually referred to as a Bernoulli
graph, assumes no dependencies at all among the random components of a graph.
Equally hard to believe as a true representation of social behavior are the many
conditional uniform distributions and p1, which assumes independent dyads.

The breakthrough in statistical modeling of networks was first exposited by
[5], who termed their model a Markov random graph. Further developments,
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especially commentary on estimation of distribution parameters, were given by
[6]. [7] elaborated upon the model, describing a more general family of distri-
butions. [8, 9] and [10] further developed this family of models, showing how a
Markov parametric assumption gives just one, of many, possible sets of parame-
ters. This family, with its variety and extensions, was named p∗, a label by which
it has come to be known. The parameters (which are determined by the hypoth-
esized dependence structure) reflect structural concerns, which are assumed to
be governing the probabilistic nature of the underlying social and/or behavioral
process.

This pre-2000 early work by the first researchers extended p∗ in a variety of
ways, and laid the foundation for work in this decade on the estimation problems
inherent in the early formulations. This research also was an important forerun-
ner of the new parametric specifications that promise wider usage of the family.
A more thorough history of this family of distributions, including a discussion
of its roots in spatial modeling and statistical physics, can be found in [11]. [12]
offers a review of p∗ circa-2003, while [13] reviews the 2003-2006 period.

The work of [5] did indeed begin a new era for statistical modeling of networks,
although it took ten years for Markov random graphs to be discussed at more
length by network methodologists. We briefly describe the highlights of the past
decade here.

2 Some Notation and a Bit of Background

A network is a set of n actors and a collection of r relations that specify how
these actors are related to one another. As defined by [1] (Chapter 3), a network
can also contain a collection of attribute characteristics, measured on the actors.

We let N = {1, 2, . . . , g} denote the set of actors, and X denote a particular
relation defined on the actors (here, we let r = 1). Specifically,X is a set of ordered
pairs recording the presence or absence of relational ties between pairs of actors.
This binary relation can be represented by a g × g matrix X, with elements

Xij =
{

1 if (i, j) ∈ X ,
0 otherwise.

We will use a variety of graph characteristics and statistics throughout; such
quantities are defined in the early chapters of [1]. We assume throughout that
X and its elements are random variables. Typically, these variables are assumed
to be interdependent, given the interactive nature of the social processes that
generate and sustain a network. Much of the work over the past decade has been
on the explicit hypotheses underlying different types of interpendencies.

In fact, one of the new ideas for network analysis, utilized by the p∗ family of
models is a dependence graph, a device which allows one to consider which ele-
ments of X are independent. [12] discusses such graphs at length. A dependence
graph, which we illustrate in the next section, is also the starting point for the
Hammersley–Clifford Theorem, which posits a very general probability distribu-
tion for network random variables using the postulated dependence graph. The
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exact form of the dependence graph depends on the nature of the substantive
hypotheses about the network under study.

As outlined by [13], a statistical model for a network can be constructed using
this approach through a series of five steps:

– Regard each relational tie as a random variable
– Specify a dependence hypothesis, leading to a dependence graph
– Generate a specific model from the p∗ family from the specified dependence

graph
– Simplify the parameter space through homogeneity or other constraints
– Estimate, assess, and interpret model parameters

We have mentioned the first two of these steps. To discuss the latter three,
we need to introduce p∗ via a dependence graph.

3 Statistical Theory

Any observed single relational network may be regarded as a realization x = [xij ]
of a random two-way binary array X = [Xij ]. The dependence structure for these
random variables is determined by the dependence graph D of the random array
X. D is itself a graph whose nodes are elements of the index set {(i, j); i, j ∈
N , i �= j} for the random variables in X, and whose edges signify pairs of the
random variables that are assumed to be conditionally dependent (given the
values of all other random variables).

More formally, a dependence graph for a univariate network has node set

ND = {(i, j); i, j ∈ N , i �= j}.

The edges of D are given by

ED = {((i, j), (k, l)), where Xij and Xkl are not conditionally independent}.

Consider now a general dependence graph, with an arbitrary edge set. Such a
dependence graph yields a very general probability distribution for a (di)graph,
which we term p∗ and focus on below.

For an observed network, which we consider to be a realization x of a random
array X, we assume the existence of a dependence graph D for the random array
X. The edges of D are crucial here; consider the set of edges, and determine if
there are any complete subgraphs, or cliques found in the dependence graph.
(For a general dependence graph, a subset A of the set of relational ties ND

is complete if every pair of nodes in A (that is, every pair of relational ties) is
linked by an edge of D. A subset comprising a single node is also regarded as
complete.). These cliques specify which subsets of relational ties are all pairwise,
conditionally dependent on each other.

The Hammersley–Clifford theorem (see [12] for a summary) establishes that a
probability model for X depends only on the cliques of the dependence graph D.
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In particular, application of the Hammersley–Clifford theorem yields a charac-
terization of Pr(X = x) in the form of an exponential family of distributions:

Pr(X = x) =
(

1
κ

)
exp(

∑

A⊆ND

λA

∏

(i,j)∈A

xij) (1)

where:

– κ =
∑

x exp{∑A⊆D λA

∏
(i,j)∈A xij} is a normalizing quantity;

– D is the dependence graph for X; the summation is over all subsets A of
nodes of D;

–
∏

(i,j)∈A xij is the sufficient statistic corresponding to the parameter λA; and
– λA = 0 whenever the subgraph induced by the nodes in A is not a clique of

D.

The set of non–zero parameters in this probability distribution for Pr(X = x)
depends on the maximal cliques of the dependence graph (A maximal clique is a
complete subgraph that is not contained in any other complete subgraph). Any
subgraph of a complete subgraph is also complete (but not maximal), so that if
A is a maximal clique of D, then the probability distribution for the (di)graph
will contain non–zero parameters for A and all of its subgraphs. Each clique, and
hence each nonzero parameter in the model, corresponds to a configuration, a
small subgraph of possible network ties. Different dependence assumptions result
in different types of configurations. For instance, [5] showed that configurations
for Markov dependence (described below) were edges, stars of various types
(a single node with arcs going in and/or out), and triangles for nondirected
graphs. The model in effect supposes that the observed network is built up
from combinations of these various configurations, and the parameters express
the presence (or absence) of the configurations in the observed network. For
instance, a strongly positive triangle parameter is evidence for more triangulation
in the network implying that networks with large numbers of triads have larger
probabilities of arising.

All models from this family, which we refer to as p∗, have this form. Some recent
literature refers to these models as ERGMs — exponential random graph mod-
els. It is our course uninformative to refer to these distributions as “exponential
random graphs” — almost any probability distribution for a graph can be made
“exponential”. Further, strictly speaking, the model is not exponential, but in the
statistical sense, an exponential family, which conveys a special meaning in statis-
tical theory (and has important implications for some of the estimation procedures
described below – see [14]. Hence, we much prefer the more informative moniker
p∗, and the label, an exponential family of distributions for random graphs. The
p∗ label (first used by [7] derives from the research on statistical modeling com-
menced by Holland and Leinhardt with their dyadic–independence p1 model.

As for the details: the probability of a particular realization of a random graph
depends on the cliques of the dependence graph, and from that, the sufficient
statistics (arising from the configurations) specified by the hypothesized depen-
dencies. The sufficient statistics are the counts of these configurations arising in
the realization being modeled.
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There are a variety of dependence graphs well-known in the literature. One
very general and simple member of the p∗ family is the Bernoulli graph; another
is Holland and Leinhardt’s p1. The dependence graph first proposed for networks,
for which this distribution was first developed, assumes conditional independence
of Xij and Xkl if and only if {i, j} ∩ {k, l} = ∅. This dependence graph links
any two relational ties involving the same actor(s); thus, any two relational ties
are associated if they involve the same actor(s). Because of the similarity to
the dependence inherent in a Markov spatial process, such a random graph was
labeled “Markov” by [5]. Further discussion can be found in Section 4 of [13].

One can also formulate dependence graphs when data on attribute variables
measured on the nodes is available. If the attribute variables are taken as fixed,
with network ties varying depending on the attributes, then models for social
selection arise [15]. If on the other hand the network is assumed fixed, with the
distribution of attributes dependent on the pattern of network ties, the outcomes
are models for social influence [15].

4 Parameters – New Specifications

Limiting the number of parameters is wise – one can either postulate a simple
dependence graph, or by making assumptions about the parameters. The usual
assumption is homogeneity, in which parameters for isomorphic configurations
of nodes are equated.

Even with homogeneity imposed, models may not be identifiable. Typically,
parameters for higher order configurations (for example, higher order stars or
triads) are set to zero (equivalent to setting higher order interactions to zero in
general linear models).

As mentioned, Markov random graph models were indeed a breakthrough
in moving towards more realistic dependence assumptions. But recently it has
been shown that Markov dependence is often inadequate in handling typical
social network data. Frequently, parameters arising from Markov dependence
assumptions are consistent with either complete or very sparse networks, which
are of course unhelpful in modeling realistic data. Several authors have provided
technical demonstrations of this problem [16, 17, 18, 19, 20, 21]. An intuitive
explanation of the difficulty follows.

Markov random graphs assume that stars and triangles are rather evenly
spread throughout the network. In many observed networks, of course, there
are dense regions (that is, concentrations of many triangles) and some high de-
gree nodes (that is, concentrations of many stars). As a result, for such data,
parameter estimation for Markov random graphs is problematic: there is diffi-
culty in finding “average” parameter values that can adequately capture such
structural heterogeneity (see [19] and [21], for further discussion.) When sensible
parameter estimates cannot be obtained, the model is said to be degenerate, or
nonconvergent.

[21] proposed a method of combining counts of all the Markov star parameters
into the one statistic, with geometrically decreasing weights on the higher order
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star counts so that they did not come to dominate the calculation. The resulting
parameter is termed a geometrically weighted degree parameter, or an alternating
k-star parameter (the term alternating comes from alternating signs in the calcu-
lation of the statistic.) Various versions of this new degree-based parameter have
been proposed (see [14], who shows the linkages between them), but whatever
the precise form of the parameter, it permits greater heterogeneity in the degree
distribution, so that it is more capable of modeling high degree nodes than a
small number of low order Markov star parameters. Such parameters appear to
greatly increase the “fittability” of models.

Perhaps the most important innovation of [21] was the introduction of k-
triangles, configurations with k separate triangles sharing one edge, the base of
the k-triangle. These configurations also introduce a new distribution of graph
features (alongside the degree distribution and the geodesic distribution): the
edge-wise shared partner distribution (see [14, 22]). Counts of the k-triangle con-
figurations are combined into one statistic just as for the case of the geometrically
weighted degree parameter, producing a new statistic and associated parameter
for alternating k-triangles. This parameter models triangulation in the network
but permits more heterogeneity. Alternating k-triangles are much better than
the Markov single triangle parameter in dealing with clumps of triangles that
form the denser regions of the network. The parameter has a simple general
interpretation: a large positive parameter value indicates that there is substan-
tial triangulation in the network, and that this is likely to be expressed in the
formation of denser regions.

[21] also proposed k-paths, configurations identical to k-triangles except that
the edge at the base of the k-triangle is not necessarily present. This configuration
quantifies multiple independent paths between pairs of nodes. Again, [21] com-
bined these configurations into the one parameter, alternating k-paths. There is
an associated distribution across the graph, the dyad-wise shared partner distri-
bution (that is, shared partners based on dyads, not just on edges; see [14, 22].

As the new degree parameter is based on a combination of Markov star config-
urations, it can be derived from Markov dependence. Markov dependence alone,
however, is not sufficient to produce the alternating k-triangle and k-path param-
eters, which require higher order dependence structures [?]. The additional de-
pendence assumption is referred to by [19] as social circuit dependence, where the
presence of two edges in the observed graph creates dependence among two other
possible edges, assuming the four edges constitute a 4-cycle. Social circuit depen-
dence appears complicated but it reflects a simple feature of social interaction. For
example, if John and Mary work together, and if Joanne and Mark work together,
then a working relationship between John and Joanne may increase the chances
of a working relationship between Mary and Mark. But the argument simply does
not work without the existing John/Mary and Joanne/Mark working relation-
ships. In other words, the ties between John and Mary, and Joanne and Mark,
create the dependence between possible John/Joanne and Mary/Mark ties.

This is a special, and rather different, dependence assumption. First, it ex-
plicitly permits the emergence of dependence through existing observations, in
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the sense that the presence of certain ties creates dependencies that otherwise
could not exist. Secondly, this emergent dependence permits the appearance of
higher-order structures (for example, “clumps” of triangles). Thirdly, the neces-
sity of this assumption gives evidence to the importance of emergent processes
in networks. It is a self-organizing quality, apparent in real social networks. Self-
organizing systems imply that the presence or absence of certain ties may lead
to the creation, maintenance, or disappearance of other ties. While the simpler
Markov models can also be interpreted in terms of such self-organizing qualities,
the social circuit dependence enables the appearance of higher order structures
(e.g. dense regions of triangles) that are expressly implied by the model, rather
than a simple chance accumulation of basic Markov configurations. Social net-
works are complex systems that typically cannot be adequately represented with
simplified assumptions.

We note that these new specifications do not resolve all the problems of degen-
eracy and non-convergence. There are other forms of higher order dependence
assumptions that might also be necessary for a particular data set. However,
the new specifications have proven very adequate. [?] shows that the models
containing these new dependence parameters perform dramatically better than
Markov models in terms of convergence, when applied to a number of classic
small-scale network data sets. [?] fits the new specifications to a network of over
1000 nodes and shows how to assess model fit across many graph features.

5 Simulation, Estimation, and Assessment

It is relatively straightforward to simulate p∗ models, and estimate parame-
ters (as mentioned below), using long-established statistical approaches such the
Metropolis algorithm [20] implementation of a Markov chain Monte Carlo. As
first noted by [10], if the model is not degenerate, the algorithm will “burn-in” to
a stationary distribution of graphs reflecting the parameter values in the model.
The length of the burn-in depends on the starting graph for the simulation, the
complexity of the model, and the size of the network. For small networks of
30 nodes, for instance, non-degenerate models can burnin within a few tens of
thousands of iterations, which can be achieved within seconds on a fast enough
computer. It is then possible to sample a number of graphs from this distribution
and look at typical features of them, for instance, the density, the geodesic distri-
bution, the frequencies of various triads, and so on [13]. In other words, although
the model is based on certain configurations, the graphs from the distribution
typically will exhibit certain other features of interest that can be investigated.

These models are especially appealing not only because they are readily sim-
ulated but also because the parameters can be estimated from available data. In
the past, p∗ models were fitted using pseudo-likelihood estimation based on logis-
tic regression procedures ([6]; see [10] for a review). Although pseudo-likelihood
can provide information about the data, especially in terms of identifying major
effects [19], when models are close to degeneracy or when dependency is strong,
the precise pseudo-likelihood parameter estimates are likely to be misleading.
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A more reliable way to fit the models is through Markov chain Monte Carlo
Maximum Likelihood Estimation (MCMCMLE). There are various algorithms
possible to do this (see [22, 20]). While the technical details are complicated, the
underlying conceptual basis is straightforward. MCMCMLE is based on sim-
ulation (hence, the MCMC part of the acronym). A distribution of graphs is
simulated from an initial guess at parameter estimates. A sample from the re-
sulting graph distribution is compared to the observed graph to see how well the
observed graph is reproduced by the modeled configurations. If it is not well-
reproduced the parameter estimates are appropriately adjusted. If the model
is well-behaved, this procedure usually results in increasingly refined parameter
estimates, until finally the procedure stops under some criterion. We do note one
large differences between Markov models and models containing parameters from
the new specifications: the new specifications are more likely to be well-behaved
and result in convergent parameter estimates.

Once estimates have been obtained, the model can be simulated and assessed.
The assessment is accomplished by comparing a statistic calculated from the
observed graph to the distribution of the statistic generated by the model. This
can be seen as a (rather demanding) goodness of fit diagnostic for the model. [?]
shows how this approach can be used to improve models by the addition of extra
effects. It is also an approach that permits judgments about how well competing
models might represent the network.

We note that currently, there are three programs publicly available for the
simulation, estimation, and goodness of fit of p∗ models:

– the StOCNET suite of programs from the University of Groningen
http://stat.gamma.rug.nl/stocnet/ (especially SIENA)

– the statnet program from the University of Washington
http://csde.washington.edu/statnet

– the pnet program from the University of Melbourne
http://www.sna.unimelb.edu.au

6 New Ideas — Network Imputation

One of the most interesting developments in the statistical modeling of networks
centers on an approach to estimate missing nodes and missing links. We refer to
it as network imputation.

To outline these ideas, first suppose a given network X is fit with a particular
statistical model containing a set of network parameters collected in the vector
θ. The likelihood given the data can then be denoted as

L(θ|X = x),

where the dependence of the likelihood on the particular model is suppressed. The
parameters in θ are estimated as discussed earlier, with the associated estimates
denoted by θ̂. The likelihood evaluated at the estimated parameters is
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L(x; θ̂).

In general, for a specific network, a model is adopted and a likelihood cal-
culated. The likelihood is clearly dependent on the set of parameters that are
chosen in the model. And if the observed network changes, so does the likelihood
function. For our purposes, we will view the likelihood as a function not only of
the parameters, but also of the data x.

One of the most difficult problems in network analysis is determining whether
the modeled network X contains the complete set of nodes, Nc, and the complete
set of edges, Ec. So, let us assume that the complete node set is

Nc = No ∪ Nm

and the complete edge set is

Ec = Eo ∪ Em

where No and Eo are the observed set of nodes and edges, respectively, while Nm

and Em are the missing (that is, unobserved) set of nodes and edges, respectively. If
Nm = ∅ (Em = ∅), then all nodes (edges) are observed in x; otherwise, some nodes
(edges) are missing and the goal is to impute the missing nodes and/or edges. For
applications, it is of interest to estimate the components of Nm and Em.

We briefly describe one technique for estimating missing edges for a fixed set
of nodes.

Estimating missing edges

We briefly outline the procedure we have used to estimate missing links. We note
that the distribution of X is based on an approximate multivariate normality
assumption of particular graph statistics. Specifically, we select a number of
graph statistics, which, as we describe in Steinley and Wasserman (2006), are
approximately Gaussian after transformations. We use only these statistics and
assume they are statistically independent (which of course is probably far from
the truth, but we view this work as just a first attempt at this). We then get a
joint probability function and from that, a function that we can maximize (with
respect to one missing link at a time). We assume a link is missing, and we add
the link that maximizes the function.

We of course are assuming that the statistics chosen are the sufficient statistics
for some underlying probability distribution.

The details follow:

1. Posit the distribribution, D, of X
2. Based on D, compute the initial likelihood of X = x using the current

estimates of θ, L(x; θ̂), denoted as L.
3. Set j = 1. Let Lj = L.
4. The total possible number of edges in Ec is

(
g
2

)
. Let the number of observed

edges be O , consequently resulting in the number of unobserved edges as(
g
2

) −O .
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5. For the ith
(
i = 1, . . . ,

(
g
2

) −O
)

unobserved edge in Em (denoted as X(i),

change X(i) = 0 to X(i) = 1, reestimate θ (denoted as θ̂
(i)

), and compute
the associated likelihood L(i)

j .
6. Repeat step 3 for all i ∈ Em.
7. Choose Lj = max

i
L

(i)
j

8. If Lj > L, permanently change X(i) from 0 to 1; set j = j + 1 and L = Lj ;
repeat steps 3–7.

9. If Lj ≤ L stop adding edges to X.

The basic idea is to incrementally “test” each edge that has not been ob-
served to see if the addition of the link to the edge set increases the likeli-
hood of the observed network. Additions of edges continues until the likelihood
of the network can no longer be increased or until the incremental increase is
small.

The procedure described here is the simplest way to look for missing edges
within a network; however, there are many modifications that can made to search
for links. One of the most obvious (and perhaps most worth considering) is the
possibility of adding multiple links at the same time and evaluate the resulting
likelihood. For instance, the likelihood could also be evaluated when all possible
pairs of links are also added to the graph. In fact, it would be possible to add
triplets, quadruplets, etc., up to the logical conclusion of all missing nodes being
added simultaneously and computing the likelihood of the complete graph. This
procedure would be a complete enumeration task, becoming combinatorically
infeasible for networks with any reasonably sized node set.

In addition to adding links, it would also be possible to add nodes to the
network. The proposed algorithm for adding links to a network would become
augmented where a sequential addition of nodes is simultaneously evaluated.
Thus, one could consider the likelihood of the network with g nodes and then
consider the likelihood of a network with g + 1 nodes and its possible links.
Prior to conducting this procedure, the researcher is required to determine the
maximum possible number of nodes that will be added to the observed network.
Finally, it should be recognized that the described procedures for detecting miss-
ing nodes and links can be augmented ad infinitum to adapt to specific network
structures hypothesized by researchers. The only caveat is that additional struc-
tural properties imposed by the researcher can have effects (possibly adverse) on
the final solution.
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Abstract. Data in the form of multiple matrices of relations among ob-
jects of a single type, representable as a collection of unipartite graphs,
arise in a variety of biological settings, with collections of author-recipient
email, and in social networks. Clustering the objects of study or situat-
ing them in a low dimensional space (e.g., a simplex) is only one of
the goals of the analysis of such data; being able to estimate relational
structures among the clusters themselves may be important. In [1], we
introduced the family of stochastic block models of mixed membership
to support such integrated data analyses. Our models combine features
of mixed-membership models and block models for relational data in a
hierarchical Bayesian framework. Here we present a nested variational in-
ference scheme for this class of models, which is necessary to successfully
perform fast approximate posterior inference, and we use the models and
the estimation scheme to examine two data sets. (1) a collection of socio-
metric relations among monks is used to investigate the crisis that took
place in a monastery [2], and (2) data from a school-based longitudinal
study of the health-related behaviors of adolescents. Both data sets have
recently been reanalyzed in [3] using a latent position clustering model
and we compare our analyses with those presented there.

1 Introduction

Relational information arise in a variety of settings, e.g., in scientific literature
papers are connected by citation, in the word wide web the webpages are con-
nected by hyperlinks, and in cellular systems the proteins are often related by
physical protein-protein interactions revealed in yeast-two-hybrid experiments.
These types of relational data violate the assumptions of independence or ex-
changeability of objects adopted in many conventional analyses. In fact, the
relationships themselves between objects are often of interest in addition to the
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object attributes. For example, one may be interested in predicting the citations
of newly written papers or the likely links of a web-page, or in clustering cellular
proteins based on patterns of interactions between them.

In many such applications, clustering the objects of study or projecting them
in a low dimensional space (e.g., a simplex) is only one of the goals of the analysis.
Being able to estimate the relational structures among the clusters themselves
is often as important as object clustering. For example, from observations about
email communications of a study population, one may be not only interested in
identifying groups of people of common characteristics or social states, but also
at the same time exploring how the overall communication volume or pattern
among these groups can reveal the organizational structures of the population.
A popular class of probabilistic models for relational data analysis are based on
the stochastic block model (SBM) formalism for psychometric and sociological
analysis pioneered by Holland and Leinhardt [4], and later extended in various
contexts [5,6,7,8,9]. In machine learning, Markov random networks have been
used for link prediction [10] and the traditional block models have been extended
to include nonparametric Bayesian priors [11,12] and to integrate relations and
text [13]. Typically, these models posit that every node in a study network is
characterized by a unary latent aspect that accounts for its interaction patterns
to peers in the networks; and conditioning on the observed network topology
one can reason about these latent aspects of nodes via posterior inference.

Largely disjoint from the network analysis literature, methodologies for latent
aspect modeling have also been widely investigated in the contexts of different
informational retrieval problems concerning modeling the high-dimensional non-
relational attributes such as text content or genetic-allele profile. In many of
these domains, variants of a mixed membership formalism have been proposed
to capture a more realistic assumption about the observed attributes, that the
observations are resulted from contributions from multiple latent aspects rather
than a unary aspects as assumed in most extant network models such as SBM.
The mixed membership models have emerged as a powerful and popular ana-
lytical tool for analyzing large databases involving text [14], text and references
[15,16], text and images [17], multiple disability measures [18,19], and genetics in-
formation [20,21,22]. These models often employ a simple generative model, such
as a bag-of-words model or a naive Bayes, embedded in a hierarchical Bayesian
framework involving a latent variable structure that combines multiples latents
aspects. This scheme induces dependencies among the objects’ relational behav-
iors in the form of probabilistic constraints over the estimation of what might
otherwise be an extremely large set of parameters.

In modern network analysis tasks described above, it is desirable to also re-
lax the unary-aspect assumption on each node imposed by extant models. We
have proposed a new class of stochastic network models based the principle of
stochastic block models of mixed membership [1], which combines features of the
mixed-membership models [18] and the block models [23,24,25,9] via a hierarchi-
cal Bayesian framework, and offers a flexible machinery to capture rich semantic
aspects of various network data. In this paper, we describe an instantiation of
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this class of model, referred to as admixture of latent blocks (ALB) [26] to rea-
sons to be explained shortly, for analyzing networks of objects with multiple
latent roles (e.g., social activities in case the objects refer to people, or biological
functions in case the objects refer to proteins). As mentioned above, classical
network models such as the stochastic block models only allow each nodes to
bear a single role. Our model alleviates this constraint, and furthermore posits
that each nodes can adopt different roles when interacting with different other
nodes.

Here is an outline of the rest of the paper. In Sections 2 we present the
statistical formulation of the Admixture of Latent Blocks model (ALB). Then, in
Section 3, we describe a variational inference algorithm for latent role inference
and approximate maximum likelihood parameter estimation. In Section 4, we
apply our model to two social networks widely studied in the literature, and we
compare results of our analysis with that from a latent space model recently
developed by Handcock, et al. [3].

2 The Statistical Model

We concern ourselves with modeling data represented as a collection of directed
unipartite graphs. A unipartite graph is a graph whose nodes are of a single
type, e.g., individual human beings in case of a person-to-person communication
network, as opposed to bipartite and multipartite graphs, where the nodes are of
two or multiple types (e.g., genes-to-experiments [14,27] or employees-to-tasks-
to-resources [28]).

Let G = (N,R) denote a graph with edge set R on node set N . We consider
situations where we observe a collection of M unipartite graphs, G = {Gm : r =
1, . . . ,M} defined on a common set of nodes N , of which the presence or absence
of edges between node-pair i and j in graph Gm is denoted by variable Rm(p, q).
For example, in our experiment presented in the sequel, N corresponds a group
of monks in a monestary [2], and {Rm(p, q)} correspond to the relationships
measured among these monks over a period. We observe typically asymmetric
binary relations such as “Do you like X?”, over a sequence of time.

Nodes &
Relations
(observable)

Clusters &
Mappings
(latent) Map π

not 1-to-1

Map B
not a tree

Inference
1:N

Fig. 1. The scientific problem at a glance. The goal of the analysis is to make inference
on two mappings; nodes-to-clusters (via π1:N ) and clusters-to-clusters (via B). The
facts that B does not necessarily encode a tree, and that π1:N is not necessarily one-
to-one distinguish our formulation from typical hierarchical and hard clustering.
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The analysis of such data typically focuses on the following objectives: (1)
identifying clustering of nodes; (2) determining the number of clusters; and (3)
estimating the probability distribution of interactions among actors within and
between clusters. Back to the example of the monestary social network, objective
1 translates to identifying the solid factions among monks, In addition one wants
to determine how many factions are likely to exist in the monastery, and how
the factions relate to one another.

2.1 The Model

Our approach detailed below employs a hierarchical Bayesian formalism that
encodes statistical assumptions underlying a network generative process. This
process generates the observed networks according to the latent distribution
of the hypothetical group-involvement of each monk, as specified by a mixed-
memembership multinomial vector π := [π1, . . . , πK ]′ where πi denote the proba-
bility of a monk belonging to group i; and the probabilities of having
interactions between different groups, as defined by a matrix of Bernoulli rates
B(K×K) = {Bij} where Bij represents the probability of having a link between
a monk from group i and a monk from group j. Each monk is associated with a
unique π, meaning that he can be simultaneously belonging to multiple groups,
and the degree of involvements in different groups is unique for each monk; and
π of different monks independently follow a Dirichlet distribution parameterized
by α.

More generally, for graph m and each node, let indicator vector 1 zm
p→q denote

the group membership of node p when it is to approach with node q; let zm
p←q

denote the group membership of node q when it is approached by node p; let
N := |N | denote the number of nodes in the graph; and letK denote the number
of distinct groups a node can belong to. An admixture of latent blocks (ALB)
model posit that a sequence of M networks can be instantiated according to the
following procedure:

– For each node p = 1, . . . , N :

• πp ∼ Dirichlet
(

α
)

sample a K dimensional mixed membership vector;

– for each network Gm, and each pair of nodes (p, q) ∈ [1, N ] × [1, N ] (denote p as
the initiator and q as the receiver) in Gm:

• zm
p→q ∼ Multinomial

(
πp

)
sample membership indicator for the initiator,

• zm
p←q ∼ Multinomial

(
πq

)
sample membership indicator for the receiver,

• Rm(p, q) ∼ Bernoulli
(

zm �
p→q B zm

p←q

)
sample the value of their interaction.

It is noteworthy that in the above model, the group membership of each node
is context dependent, that is, each nodes can assume different membership when
interacting to or being interacted by different peers. Therefore, each node is
statistically an admixture of group-specific interactions, and we denote the two
sets of latent group indicators corresponding to the m-th observed network by

1 An indicator vector of memberships in one of the K groups is defined as a
K-dimensional vector of which only one element whose index corresponds to the
id of the group to be indicated equals to one, and all other elements equal to zero.



Combining Stochastic Block Models and Mixed Membership 61

{zm
p→q : p, q ∈ N} =: Z→m and {zm

p←q : p, q ∈ N} =: Z←m . Marginalizing out the
latent group indicators, it is easy to show that the probability of observing an
interaction between node p and q across the M networks is σ̄pq = π �p B πq.

Under an ALB model outlined above, the joint probability distribution of the
data, R1:M , and the latent variables (π1:N , Z

→
1:M , Z←1:M ) can be written in the

following factored form:

p(R1:M ,π1:N , Z
→
1:M , Z←1:M |α, B) (1)

=
∏

m

∏

p,q

P (Rm(p, q)|zm
p→q, z

m
p←q, B)P (zm

p→q|πp)P (zm
p←q|πq)

∏

p

p3(πp|α).

To compute the likelihood of the observed networks, one needs to marginalize
out the hidden variables π and Z for all notes, which is intractable for even
for small graphs. In §3, we describe a variational scheme to approximate this
likelihood for parameter estimation.

2.2 Dealing with Sparsity

Most networks in real world are sparse, meaning that most pairs of nodes do not
have edges connecting them. But in many network analyses, observations about
interactions and non-interactions are equally important in terms of their contri-
butions to model fitness. In other words, they would compete for a statistical ex-
planation in terms of estimates for parameters (α, B), and would both influence
the distribution of latent variables such as π1:N . A non desirable consequence
of this, in scenarios where interactions are rare, is that parameter estimation
and posterior inference would explain patterns of non-interaction rather than
patterns of interaction.

In order to be able to calibrate the importance of rare interactions, we intro-
duce the sparsity parameter ρ ∈ [0, 1], which models how often a non-interaction
is due to measurement noise (which is common in certain experimentally derived
networks such as the protein-protein interaction networks) and how often it car-
ries information about the group memberships of the nodes. This leads to a small
extension of the generative process outlined in the last subsection. Specifically,
instead of drawing an edge directly from a Bernoulli with rate zm �

p→qB zm
p←q,

now we sample an interaction with probability σm
pq = (1 − ρ) · zm �

p→qB zm
p←q;

therefore the probability of having no interaction this pair of nodes is 1− σm
pq =

(1 − ρ) · zm �
p→q (1 − B) zm

p←q + ρ. This is equivalent to re-parameterizing the in-
teraction matrix B. During estimation and inference, a large value of ρ would
cause the interactions in the matrix to be weighted more than non-interactions
in determining the estimates of (α, B,π1:N ).

3 Parameter Estimation and Posterior Inference

We use an empirical Bayes framework for estimating the parameters (α, B), and
employ a mean-field approximation scheme [29] for posterior inference of the
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(latent) mixed-membership vectors, π1:N . Model selection can be performed to
determine the plausible value of K—the number of groups of nodes—based on
a strategy described in [30].

In order to estimate (α, B) and infer the posterior distributions of π1:N we
need to be able to evaluate the likelihood, which involves the non-tractable in-
tegral over Z and π1:N in Equation 1. Given the large amount of data available
for most networks, we focus on approximate posterior inference strategies in
the context of variational methods, and we find a tractable lower bound for the
likelihood that can be used as a surrogate for inference purposes. This leads to
approximate MLEs for the hyper-parameters and approximate posterior distri-
butions for the (latent) mixed-membership vectors.

3.1 Lower Bound for the Likelihood

According to the mean-field theory [29,31], one can approximate an intractable
distribution such as the one defined by Equation (1) by a fully factored distri-
bution q(π1:N , Z

→
1:M , Z←1:M ) defined as follows:

q(π1:N , Z
→
1:M , Z←1:M |γ1:N , Φ

→
1:M , Φ←1:M )

=
∏

p

q1(πp|γp)
∏

m

∏

p,q

(
q2(zm

p→q|φm
p→q, 1) q2(zm

p←q |φm
p←q, 1)

)
, (2)

where q1 is a Dirichlet, q2 is a multinomial, andΔ = (γ1:N , Φ
→
1:M , Φ←1:M ) represent

the set of free variational parameters need to be estimated in the approximate
distribution.

Minimizing theKulback-Leibler divergence between this q(π1:N , Z
→
1:M , Z←1:M |Δ)

and the original p(π1:N , Z
→
1:M , Z←1:M defined by Equation (1) leads to the following

approximate lower bound for the likelihood.

LΔ(q, Θ) = Eq

[
log

∏

m

∏

p,q

p1(Rm(p, q)|zm
p→q , z

m
p←q , B)

]

+ Eq

[
log

∏

m

∏

p,q

p2(z
m
p→q|πp, 1)

]
+Eq

[
log

∏

m

∏

p,q

p2(z
m
p←q|πq, 1)

]

+ Eq

[
log

∏

p

p3(πp|α)
]

−Eq

[ ∏

p

q1(πp|γp)
]

− Eq

[
log

∏

m

∏

p,q

q2(z
m
p→q|φm

p→q, 1)
]

−Eq

[
log

∏

m

∏

p,q

q2(z
m
p←q|φm

p←q, 1)
]

.

Working on the single expectations leads to the following expression,

LΔ(q, Θ) =
∑

m

∑

p,q

∑

g,h

φm
p→q,gφm

p←q,h · f
(

Rm(p, q), B(g, h)
)

+
∑

m

∑

p,q

∑

g

φm
p→q,g

[
ψ(γp,g) − ψ(

∑

g

γp,g)
]

+
∑

m

∑

p,q

∑

h

φm
p←q,h

[
ψ(γp,h) − ψ(

∑

h

γp,h)
]
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+
∑

p

log Γ (
∑

k

αk) −
∑

p,k

log Γ (αk) +
∑

p,k

(αk − 1)
[

ψ(γp,k) − ψ(
∑

k

γp,k)
]

−
∑

p

log Γ (
∑

k

γp,k) +
∑

p,k

log Γ (γp,k) −
∑

p,k

(γp,k − 1)
[

ψ(γp,k) − ψ(
∑

k

γp,k)
]

−
∑

m

∑

p,q

∑

g

φm
p→q,g log φm

p→q,g −
∑

m

∑

p,q

∑

h

φm
p←q,h log φm

p←q,h

where

f
(
Rm(p, q), B(g, h)

)
= Rm(p, q) logB(g, h)+

(
1−Rm(p, q)

)
log

(
1−B(g, h)

)
;

m runs over 1, . . . ,M ; p, q run over 1, . . . , N ; g, h, k run over 1, . . . ,K; and ψ(x)
is the derivative of the log-gamma function, d log Γ (x)

dx .

3.2 The Expected Value of the Log of a Dirichlet Random Vector

The computation of the lower bound for the likelihood requires us to evaluate
Eq

[
log πp

]
for p = 1, . . . , N . Recall that the density of an exponential family

distribution with natural parameter θ can be written as

p(x|α) = h(x) · c(α) · exp
{ ∑

k

θk(α) · tk(x)
}

= h(x) · exp
{ ∑

k

θk(α) · tk(x) − log c(α)
}
.

Omitting the node index p for convenience, we can rewrite the density of the
Dirichlet distribution p3 as an exponential family distribution,

p3(π|α) = exp
{ ∑

k

(αk − 1) log(πk) − log
∏

k Γ (αk)
Γ (

∑
k αk)

}
,

with natural parameters θk(α) = (αk−1) and natural sufficient statistics tk(π) =
log(πk). Let c′(θ) = c(α1(θ), . . . , αK(θ)); using a well known property of the
exponential family distributions [32] we find that

Eq

[
log πk

]
= Eθ

[
log tk(x)

]
= ψ

(
αk

) −ψ ( ∑

k

αk

)
,

where ψ(x) is the derivative of the log-gamma function, d log Γ (x)
dx .

3.3 Variational E Step

The approximate lower bound for the likelihood LΔ(q,Θ) can be maximized
using exponential family arguments and coordinate ascent [33].

Isolating terms containing φm
p→q,g and φm

p←q,h we obtain Lφm
p→q,g

(q,Θ) and
Lφm

p→q,g
(q,Θ). The natural parameters gm

p→q and gm
p←q corresponding to the
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natural sufficient statistics log(zm
p→q) and log(zm

p←q) are functions of the other
latent variables and the observations. We find that

gm
p→q,g = log πp,g +

∑

h

zm
p←q,h · f (

Rm(p, q), B(g, h)
)
,

gm
p←q,h = log πq,h +

∑

g

zm
p→q,g · f (

Rm(p, q), B(g, h)
)
,

for all pairs of nodes (p, q) in the m-th network; where g, h = 1, . . . ,K, and

f
(
Rm(p, q), B(g, h)

)
= Rm(p, q) logB(g, h)+

(
1−Rm(p, q)

)
log

(
1−B(g, h)

)
.

This leads to the following updates for the variational parameters (φm
p→q,φ

m
p←q),

for a pair of nodes (p, q) in the m-th network:

φ̂m
p→q,g ∝ e Eq

[
gm

p→q,g

]
(3)

= e Eq

[
log πp,g

]
· e

∑
h φm

p←q,h· Eq

[
f
(
Rm(p,q),B(g,h)

)]

= e Eq

[
log πp,g

]
·
∏

h

(
B(g, h)Rm(p,q)· (

1 −B(g, h)
)1−Rm(p,q)

)φm
p←q,h

φ̂m
p←q,h ∝ e Eq

[
gm

p←q,h

]
(4)

= e Eq

[
log πq,h

]
· e

∑
g φm

p→q,g · Eq

[
f
(
Rm(p,q),B(g,h)

)]

= e Eq

[
log πq,h

]
·
∏

g

(
B(g, h)Rm(p,q)· (

1 −B(g, h)
)1−Rm(p,q)

)φm
p→q,g

for g, h = 1, . . . ,K. These estimates of the parameters underlying the distribu-
tion of the nodes’ group indicators φm

p→q and φm
p←q need be normalized, to make

sure
∑

k φ
m
p→q,k =

∑
k φ

m
p←q,k = 1.

Isolating terms containing γp,k we obtain Lγp,k
(q,Θ). Setting

∂Lγp,k

∂γp,k
equal to

zero and solving for γp,k yields:

γ̂p,k = αk +
∑

m

∑

q

φm
p→q,k +

∑

m

∑

q

φm
p←q,k, (5)

for all nodes p ∈ P and k = 1, . . . ,K.
The t-th iteration of the variational E step is carried out for fixed values of

Θ(t−1) = (α(t−1), B(t−1)), and finds the optimal approximate lower bound for
the likelihood LΔ∗(q,Θ(t−1)).

3.4 Variational M Step

The optimal lower bound LΔ∗(q(t−1), Θ) provides a tractable surrogate for the
likelihood at the t-th iteration of the variational M step. We derive empirical
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Bayes estimates for the hyper-parameters Θ that are based upon it.2 That is, we
maximize LΔ∗(q(t−1), Θ) with respect to Θ, given expected sufficient statistics
computed using LΔ∗(q(t−1), Θ(t−1)).

Isolating terms containing α we obtain Lα(q,Θ). Unfortunately, a closed form
solution for the approximate maximum likelihood estimate of α does not exist
[14]. We can produce a Newton-Raphson method that is linear in time, where
the gradient and Hessian for the bound Lα are

∂Lα

∂αk
= N

(
ψ

( ∑

k

αk

) −ψ(αk)
)

+
∑

p

(
ψ(γp,k) − ψ

( ∑

k

γp,k

))
,

∂Lα

∂αk1αk2

= N

(
I(k1=k2) · ψ′(αk1) − ψ′

( ∑

k

αk

))
.

Isolating terms containing B we obtain LB, whose approximate maximum is

B̂(g, h) =
1
M

∑

m

( ∑
p,q Rm(p, q) · φm

p→qg φ
m
p←qh∑

p,q φ
m
p→qg φ

m
p←qh

)
, (6)

for every index pair (g, h) ∈ [1,K] × [1,K].
In Section 2.2 we introduced an extra parameter, ρ, to control the relative

importance of presence and absence of interactions in likelihood, i.e., the score
that informs inference and estimation. Isolating terms containing ρ we obtain
Lρ. We may then estimate the sparsity parameter ρ by

ρ̂ =
1
M

∑

m

( ∑
p,q

(
1 −Rm(p, q)

) · ( ∑
g,h φ

m
p→qg φ

m
p←qh

)
∑

p,q

∑
g,h φ

m
p→qg φ

m
p←qh

)
. (7)

Alternatively, we can fix ρ prior to the analysis; the density of the interaction
matrix is estimated with d̂ =

∑
m,p,q Rm(p, q)/(N2M), and the sparsity param-

eter is set to ρ̃ = (1 − d̂). This latter estimator attributes all the information
in the non-interactions to the point mass, i.e., to latent sources other than the
block model B or the mixed membership vectors π1:N . It does however provide
a quick recipe to reduce the computational burden during exploratory analyses.3

3.5 Smoothing

In problems where the number of clusters is deemed to be likely large a-priori,
we can smooth the (consequently large number of) cluster-to-cluster relation
probabilities encoded in the block model B by positing that all the elements
B(g, h) of the block model are non-observable samples from a common (prior)
distribution. In the admixture of latent blocks model we posit that p(B|λ) is a
collection non-symmetric beta distributions, with a pair of hyper-parameters λ
common to all elements of B.
2 We could term these estimates pseudo empirical Bayes estimates, since they maxi-

mize an approximate lower bound for the likelihood, LΔ∗ .
3 Note that ρ̃ = ρ̂ in the case of single membership. In fact, that implies φm

p→qg =
φm

p←qh = 1 for some (g, h) pair, for any (p, q) pair.
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3.6 The Nested Variational EM Algorithm

The complete algorithm to perform variational inference in the model is de-
scribed in detail in Figure 2. To achieve fast convergence, we employed a highly
effective nested variational inference scheme based on a non-trivial scheduling of
variational parameters updating. The resulting algorithm is also parallelizable
on a computer cluster.

1. initialize γ0
pk = 2N

K
for all p, k

2. repeat
3. for p = 1 to N
4. for q = 1 to N
5. get variational φt+1

p→q and φt+1
p←q = f

(
R(p, q), γt

p, γt
q, B

t
)

6. partially update γt+1
p , γt+1

q and Bt+1

7. until convergence

1. initialize φ0
p→q,g = φ0

p←q,h = 1
K

for all g, h
2. repeat
3. for g = 1 to K
4. update φs+1

p→q ∝ f1
(

φs
p←q, γp, B

)

5. normalize φs+1
p→q to sum to 1

6. for h = 1 to K
7. update φs+1

p←q ∝ f2
(

φs
p→q, γq, B

)

8. normalize φs+1
p←q to sum to 1

9. until convergence

Fig. 2. Top: The two-layered variational inference for (γ, φp→q,g, φp←q,h) and M = 1.
The inner algorithm consists of Step 5. The function f is described in details in the
bottom panel. The partial updates in Step 6 for γ and B refer to Equation 5 of Section
3.3 and Equation 6 of Section 3.4, respectively. Bottom: Inference for the variational
parameters (φp→q, φp←q) corresponding to the basic observation R(p, q). This nested
algorithm details Step 5 in the top panel. The functions f1 and f2 are the updates for
φp→q,g and φp←q,h described in Equations 3 and 4 of Section 3.3.

In a näıve iteration scheme for variational inference, one would initialize the
variational Dirichlet parameters γ1:N and the variational multinomial parame-
ters (φp→q,φp←q) to non-informative values, and then iterate until convergence
the following two steps: (i) update φp→q and φp←q for all edges (p, q), and (ii)
update γp for all nodes p ∈ N . In such algorithm, at each variational inference
cycle we need to allocate NK + 2N2K scalars. In our experiments [1] the näıve
variational algorithm often failed to converge, or converged after a large number
of iterations. We attribute this behavior to a dependence that our two main
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assumptions (block model and mixed membership) induce between γ1:N and B,
which is not satisfied by the näıve algorithm. Some intuition about why this may
happen follows. From a purely algorithmic perspective, the näıve variational EM
algorithm instantiates a large coordinate ascent algorithm, where the parame-
ters can be semantically divided into coherent blocks. Blocks are processed in a
specific order, and the parameters within each block get all updated each time.4

At every new iteration the näıve algorithm sets all the elements of γt+1
1:N equal

to the same constant. This dampens the likelihood by suddenly breaking the
dependence between the estimates of parameters in γ̂t

1:N and in B̂t that was
being inferred from the data during the previous iteration.

Instead, the nested variational inference algorithm maintains some of this
dependence that is being inferred from the data across the various iterations.
This is achieved mainly through a different scheduling of the parameter updates
in the various blocks. To a minor extent, the dependence is maintained by always
keeping the block of free parameters, (φp→q,φp←q), optimized given the other
variational parameters. Note that these parameters are involved in the updates
of parameters in γ1:N and in B, thus providing us with a channel to maintain
some of the dependence among them, i.e., by keeping them at their optimal value
given the data. Further, the nested algorithm has the advantage that it trades
time for space thus allowing us to deal with large graphs; at each variational
cycle we need to allocate NK + 2K scalars only. The increased running time
is partially offset by the fact that the algorithm can be parallelized and leads
to empirically observed faster convergence rates. This algorithm is also better
than MCMC variations (i.e., blocked and collapsed Gibbs samplers) in terms of
memory requirements and convergence rates.

4 Experiments: Applications to Social Networks

We illustrate our model and algorithm in the context of two examples that
have recently been reanalyzed in [3] using a latent position clustering model and
[34].

4.1 Example 1: Crisis in a Cloister

Sampson [2] surveyed 18 novice monks in a monastery and asked them to rank
the other novices in terms of four sociometric relations: like/dislike, esteem,
personal influence, and alignment with the monastic credo. Sampson’s original
analysis strongly suggested the existence of tight factions among the novices,
and the events that took place during his stay at the monastery supported his
observations. Briefly, novices of one faction left the monastery or were expelled
over religious differences. The factions identified by Sampson provide a credible
gold standard, to which we compare our results.

4 Within a block, the order according to which (scalar) parameters get updated is not
expected to affect convergence.
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Fig. 3. The approximate BIC (left panel) suggests the relations among monks are best
explained by a model with three factions. The faction-to-faction estimated relational
patterns B̂ (right panel) suggest that the Outcasts are an isolated faction, whereas
Young Turks like members of the Loyal Opposition, although the sentiment is not
reciprocated.

We consider Breiger’s collation of Sampson’s data [35]. Briefly, for each of
the four sociometric relations above, only the top three choices of each novice
were recorded as positive relations—the edges in the graph. We use the following
approximation to BIC for model selection:

BIC = 2 · log p(R) ≈ 2 · log p(R|π̂, Ẑ, α̂, B̂) − |α, B| · log |R|,

where |α, B| is the number of hyper-parameters in the model, and |R| is the
number of positive relations observed—following arguments in [3]. The approx-
imate BIC value suggests that the relations among monks in the monastery
studied by Sampson are best explained by a model with three factions, indepen-
dently of the number of hyper-parameters in the ALB model we fit. Hence we
fixed K̂ = 3 in subsequent analyses, which involved ALB models with increasing
degree of complexity. In the left panel of Figure 3 we show the approximate
BIC for a model with a single hyper-parameter, α scalar. In the right panel of
Figure 3 we show the estimated faction-to-faction block model, B̂, corresponds
to a full model (i.e., no constraints on B). This estimate suggests that the Out-
casts are an isolated faction, whereas Young Turks like members of the Loyal
Opposition, although the sentiment is not reciprocated. In Figure 5 we investi-
gate the the posterior means of the mixed membership scores, E[π|R], for the
18 monks in the monastery (α = 0.058 scalar, B := I3). We have a panel for
each monk, and the subscripts associated with the names of the monks spec-
ify the order according to which they left the monastery, e.g., John left first.
The three factions on the X axis are the Outcast, the Young Turks , and the
Loyal Opposition (from left to right); and on the Y axis we measure the de-
gree of membership of monks to factions. From these panels, the centrality of
the role played by John and Greg, first to leave the monastery, as well as the
uncertain affiliations of Romul, and Victor to a minor extent, unequivocally
emerge. The mixed membership vectors, π1:18, provide us with low-dimensional
representations of monks. In Figure 6 we plot them in their natural space, that
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Fig. 4. Original matrix of sociometric relations (left), and estimated relations obtained
by thresholding the posterior expectations πp

′B πq |R (center), and φp
′B φq|R (right)

Fig. 5. The posterior mixed membership scores, π, for the 18 monks in the monastery.
Each panel correspond to a monk; on the Y axis we measure the grade of membership,
corresponding to the Outcast (left bar), to the Young Turks (center bar), and to the
Loyal Opposition (right bar), on the X axis. The subscripts associated with the names
of the monks specify the order according to which they left the monastery.

is, the(3-dimensional) simplex. Dots correspond to monks; the red circles were
obtained by fixing B = I3 and α = 0.01, whereas the blue triangles correspond
to fixing B := I3, but estimating α̂ = 0.058.

4.2 Example 2: Health-Related Behaviors of Adolescents

The National Longitudinal Study of Adolescent Health [36,37] includes question-
naire administered to a sample of students, who were allowed to nominate up
to 10 friends. Following [3], we focus on friendship nominations collected among
71 students in grades 7 to 12 at one school. Two students did not nominate any
friends, so we analyzed the network of (binary, asymmetric) friendship relations
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Fig. 6. Mixed membership vectors, π1:18, plotted in the simplex. Points correspond to
monks; the red circles correspond to an ALB model with (B = I3, α = 0.01), whereas
the blue triangles correspond to an ALB model with (B := I3, α̂ = 0.058).

among the remaining 69 students. The left panel of Figure 8 shows the raw
relations, and we contrast this to the estimated networks in the central and
right panels based on our model estimates using the full model. We proceeded
with the analysis as in the previous study, but we fitted a full model in this
case. Salient features of the analysis are: (i) the posterior mixed membership of
the 69 students—shown in Figure 7; (ii) the correspondence of latent clusters
to student grade levels—shown in Table 1; and (iii) the hyper-parameters were
estimated with an empirical Bayes strategy; we obtained α̂ = 0.0487, ρ̂ = 0.936,
and a practically diagonal matrix that encodes the cluster-to-cluster relations,

B̂ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.3235 0.0 0.0 0.0 0.0 0.0
0.0 0.3614 0.0002 0.0 0.0 0.0
0.0 0.0 0.2607 0.0 0.0 0.0002
0.0 0.0 0.0 0.3751 0.0009 0.0
0.0 0.0 0.0 0.0002 0.3795 0.0
0.0 0.0 0.0 0.0 0.0 0.3719

⎤

⎥⎥⎥⎥⎥⎥⎦
.

4.3 Discussion

There is a tight relationship between ALB and the latent space models in [8,3].
In the latent space models, the latent vectors are drawn from Gaussian distribu-
tions and the interaction data is drawn from a Gaussian with mean πp

′
Iπq. In

ALB, the marginal probability of an interaction takes a similar form, πp
′Bπq,
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Fig. 7. The posterior mixed membership scores, π, for the 69 students in a school. Each
panel correspond to a student; on the Y axis we measure the grade of membership,
corresponding to the six grade levels from 7 to 12, on the X axis.

Fig. 8. Original matrix of friensdhip relations (left), and estimated relations obtained
by thresholding the posterior expectations πp

′B πq |R (center), and φp
′B φq|R (right)

where B is the matrix of probabilities of interactions for each pair of latent fac-
tions. In contrast to the latent space model, the relations can be modeled by an
arbitrary distribution, in our model. With binary relations we can use a collec-
tion of Bernoulli parameters; with continuous relations, we can use a collection of
Gaussian parameters. While more flexible, ALB does not subsume latent space
models; they make different assumptions about the data.
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Table 1. Grade levels versus (highest) expected posterior membership

Clusters
Grade 1 2 3 4 5 6

7 13 1 0 0 0 0
8 0 9 2 0 0 1
9 0 0 16 0 0 0

10 0 0 0 10 0 0
11 0 0 1 0 11 1
12 0 0 0 0 0 4
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Abstract. The study of social networks has gained new importance
with the recent rise of large on-line communities. Most current approaches
focus on deterministic (descriptive) models and are usually restricted to a
preset number of people. Moreover, the dynamic aspect is often treated
as an addendum to the static model. Taking inspiration from real-life
friendship formation patterns, we propose a new generative model of
evolving social networks that allows for birth and death of social links
and addition of new people. Each person has a distribution over social
interaction spheres, which we term “contexts.” We study the robustness
of our model by examining statistical properties of simulated networks
relative to well known properties of real social networks. We discuss the
shortcomings of this model and problems that arise during learning. Sev-
eral extensions are proposed.

1 Introduction

In 1967, the seminal “small world” study [1] brought social networks into the
public consciousness. Since then, researchers have paid close attention to laws
that seem to govern human and business networks. How do links between people
form? Is it enough to look at pairs or should triads of individuals be considered
separately? Many approaches study networks on the scale of links and individuals
to identify key patterns and describe network properties [2].

Data collection used to be an expensive and tedious process prone to sampling
bias. But as more information are becoming available on-line, networks on the
order of tens of thousands of people have become easily accessible. Studies of
large hyper-link networks reveal similar behavior to those of large social nets
(e.g. co-authorships). Thus a new modeling approach has appeared from the
random graphs community[3, 4]. Here the goal is not to model the network on
a link-by-link basis but to address its overall behavior. The new approach is
more generative in nature, though most models are still very simplistic. The
preferential attachment model [3] describes the mechanism of network evolution
with a focus on power-law degree distributions. Once the links are established,
they remain in the network unperturbed. Such simplifying assumptions make
the models feasible for analysis, but fail to capture the complexity of real social
networks.

E.M. Airoldi et al. (Eds.): ICML 2006 Ws, LNCS 4503, pp. 75–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this work, we attempt to address several important issues raised by both
communities. First, we directly model the generative process behind network
dynamics. We focus on the evolution of interpersonal relationships over time,
and explicitly model the birth and gradual decay of social links. Secondly, we
demonstrate that the model generates networks that exhibit properties
commonly observed in many natural topologies.

We motivate our model with an example. Imagine that Andy moves to a new
town. He may find some new collaborators at work, make friends at parties,
or meet fellow gym-goers while exercising. In general, Andy lives in a number
of different spheres of interaction or contexts. As time goes on, he may find
himself repeatedly meeting certain people in different contexts, consequently
developing stronger bonds. Acquaintances he never meets again may quickly
fade away. Andy’s new friends may also introduce him to their friends (a well
known transitive phenomenon called triadic closures in social science [2]).

With this example in mind, we begin with a presentation of our model in
Section 2. Experimental results are discussed in Section 3. We show how to
learn the parameters of our model using Gibbs sampling in Section 4, and give
possible extensions of the model in Section 5. Section 6 contains a brief survey
of related work, and Section 7 discusses the strengths and weaknesses of the
proposed model.

2 The Model

2.1 Notation

DCFM allows the addition of new people into the network at each time step. Let
T denote the total number of time steps and Nt the number of people at time
t. N = NT denotes the final total number of people. Let Mt denote the number
of new people added to the network at time t, so that Nt = Nt−1 +Mt.

Links between people are weighted. Let {W 1, . . . ,WT } be a sequence of weight
matrices, where W t ∈ Z

Nt×Nt
+ represents the pairwise link weights at time t. We

assume that W t is symmetric, though it can be easily generalized to the directed
case.

The intuition behind our model is that friendships are formed in contexts.
There are a fixed number of contexts in the world, K, such as work, gym,
restaurant, grocery store, etc. Each person has a distribution over these con-
texts, which can be interpreted as the average percentage of time that he spends
in each context.

2.2 The Generative Process

At time t, the Nt people in the network each selects his current context Rt
i from

a multinomial distribution with parameter θi, where θi has a Dirichlet prior
distribution:

θi ∼ Dir(α), ∀i = 1 : N, (1)
Rt

i | θi ∼ Mult(θi), ∀t = 1 : T, i = 1 : Nt. (2)
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The number of all possible pairwise meetings at time t is DYADt = {(i, j) |
1 ≤ i ≤ Nt, i < j ≤ Nt} . For each pair of people i and j who are in the same
context at time t (i.e., Rt

i = Rt
j), we sample a Bernoulli random variable F t

ij with
parameter βiβj . If F t

ij = 1, then i and j meets at time t. The parameter βi may
be interpreted as a measurement of friendliness and is a beta-distributed random
variable (making it possible for people to have different levels of friendliness):

βi ∼ Beta(a, b), ∀i = 1 : N, ∀(i, j) ∈ DYADt

F t
ij | Rt

i, R
t
j ∼

{
Ber(βiβj) if Rt

i = Rt
j

I0 o.w.
(3)

where I0 is the indicator function for F t
ij = 0.

In addition, the newcomers at time t have the opportunity to form triadic
closures with existing people. The probability that a newcomer j is introduced
to existing person i is proportional to the weight of the links between i and the
people whom j meets in his context. Let TRIADt = {(i, j) | 1 ≤ i ≤ Nt−1, 1 ≤
j ≤ Mt} denote the pairs of possible triadic closures. For all (i, j) ∈ TRIADt,
we have:

Gt
ij |W t−1, F t

·j , R
t
· ∼

{
Ber(μt

ij) if Ri �= Rj

I0 o.w.,
(4)

where μt
ij :=

∑Nt

�=1W
t−1
i� F t

�j/
∑t−1

�=1W
t−1
i� .

Connection weight updates are Poisson distributed. Our choice of a discrete
distribution allows for sparse weight matrices, which are often observed in the
real world. Pairwise connection weights may drop to zero if the pair have not
interacted for a while (though nothing prevents the connection from reappearing
in the future). If i and j meets (F t

ij = 1 or Gt
ij = 1), then W t

ij has a Poisson
distribution with mean equal to a multiple (γh) of their old connection strength.
γh signifies the rate of weight increase as a result of the “effectiveness” of a
meeting; if γh > 1, then the weight will in general increase. (The weight may
also decrease under the Poisson distribution, a consequence perhaps of unhappy
meetings.) If i and j do not meet, their mean weight will decrease with rate
γ� < 1. Thus

W t
ij |W t−1

ij , F t
ij , G

t
ij , γh, γ�

∼
{

Poi(γh(W t−1
ij + ε)) if F t

ij = 1 or Gt
ij = 1

Poi(γ�W
t−1
ij ) o.w.

(5)

whereW t−1
ij = 0 by default for (i, j) /∈ TRIADt, and ε is a small positive constant

that lifts the Poisson mean away from zero. As W t−1
ij becomes large, γh and γ�

control the increase and decrease rates, and the effect of ε diminishes. γh and γ�

have conjugate gamma priors:

γh ∼ Gamma(ch, dh), (6)
γ� ∼ Gamma(c�, d�). (7)
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Fig. 1. Graphical representation of one time step of the generative model. Rt is a
Nt-dimensional vector indicating each person’s context at time t. F t is a Nt×Nt matrix
indicating pairwise dyadic meetings. Gt is a Nt−1 × Mt matrix that indicate triadic
closure for newcomers at time t. W t is the matrix of observed connection weights at
time t. θ, β, γh, and γ� are parameters of the model (hyperparameters are not shown).

Figure 1 contains a graphical representation of our model. The complete joint
probability is:

P (θ,β, γh, γ�,W
1:T , R1:T , F 1:T , G1:T )

= P (θ)P (β)P (γh)P (γ�)
∏

t

P (Rt|θ)P (F t|Rt,β)×

P (Gt|Rt, F t,W t−1)P (W t|Gt, F t,W t−1) (8)

3 Experiments

We illustrate the behavior of our model under different parameter settings on a
set of established metrics.

3.1 Metrics

Degree distribution. In an undirected graph, the degree of a node is its number
of neighbors. For node i, we define its degree di to be

∑N
j=1 I(Wij>0), and the

average degree of the graph
∑N

i=1 di/N .
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Node degrees in large natural networks often follow a power law distribution
[5], i.e., the number of nodes D with degree n roughly conforms to the function
D(n) = n−ρ for some exponent ρ. The value of ρ may vary from network to
network, but the overall functional form remains the same. Intuitively, this means
that there are many people with a few friends, and very few people with a lot of
friends.

Clustering coefficient. Across different social networks, it has often been ob-
served that subsets of people tend to form fully-connected cliques. This inherent
clustering tendency may be quantified by the clustering coefficient [6]. For the
i-th node, Ci is defined to be the ratio between the number of edges Ei that
actually exist between its di neighbors and the number of edges that would exist
if the neighbors form a clique: Ci = 2Ei

di(di−1) . The clustering coefficient of the
whole network is the average over all nodes: C =

∑
iCi/N .

Average path length. We compute the length of the shortest path sij between
every pair of nodes i and j. If i and j are not connected, then sij = ∞. Let
S := {(i, j) | sij <∞} be the set of connected pairs. The average path length of
the graph is defined to be s̄ :=

∑
(i,j)∈S sij/|S|.

Effective diameter. The diameter of a graph is the maximum of the short-
est path distances between any pair of nodes: max(i,j) sij . If the graph con-
sists of several disconnected clusters, its diameter is defined to be the maximum
over all cluster diameters. Graph diameter can be heavily influenced by out-
liers. A more robust quantity is the effective diameter, commonly defined as
the ninetieth percentile of all shortest paths. Let σ(x) be the empirical quantile
function of shortest path lengths, i.e., σ(x) = argmaxs{s | f(s) < x}, where
f(s) = |{(i, j) : sij < s}|/N2 is the empirical cumulative distribution of sij . The
effective diameter is taken to be σ(.90), linearly interpolated if there is no exact
match for the ninetieth percentile.

3.2 Simulations

We analyze the behavior of the model under different parameter settings using
the four metrics introduced above. [5] and [4] observe a wide range of values
for these metrics in a variety of real social networks. Our model can generate
networks whose clustering coefficient, average path length, and effective diameter
fall within the range of observed values. Here we discuss how different parameter
settings affect the values of these metrics, and provide intuition about why this
is so.

Unless otherwise specified, the number of contexts K is set to 10. The context
preference parameter θi is drawn from a peaked Dirichlet prior, where αk∗ = 5
for a randomly selected k∗, and αk = 1 otherwise. This means that each person
in the network has a slight preference for one context. The friendliness parameter
βi is drawn from a Beta(a, b) distribution, where a = 1 and b varies. The weights
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update rates are γh = 2, γ� = 0.5, and ε = 1. We add one person to the network
at every time step, so that nt = t. All experiments are repeated with 10 trials.

Friendliness. The parameter βi determines the “friendliness” of the i-th per-
son and is drawn from a Beta(a, b) distribution. As b increases from 2 to 10,
average friendliness decreases from 0.33 to 0.09. We wish to test the effect of b
on overall network properties. In order to isolate the effects of friendliness, we fix
the context assignments by setting Rt

i = R1
i for all t > 1. In this setting, people

do not form triadic closures, and connection weights are updated only through
dyadic meetings.

Fig. 2. Effects of the friendliness parameter on a network of 200 people with fixed
contexts. The x-axes represent different values of b in Beta(1, b).

As people become less friendly, one expects a corresponding decrease in av-
erage node degree. This is indeed what we observe in the average degree plot
in Figure 2. Interestingly, the clustering coefficient goes up as friendliness goes
down. This is because low friendliness makes for smaller clusters, and it is easier
for smaller clusters to become densely connected than it is for bigger clusters.
We also observe large variance in average path length and effective diameter at
low friendliness levels. This is due to the fact that most clusters now contain
one to two people. As small clusters become connected by chance, shortest path
lengths varies from trial to trial.

Frequency of Context Switching. In the current model, each person draws a
new context at every time step. However, we can easily imagine a person working
on one project for a while and then switching to the next project. When context
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Fig. 3. Effects of the frequency of context switching on a network of 200 people (b = 8)

switching is infrequent, people may develop stronger (and more) within-context
relations.

We vary the frequency of context switching from 1 to 200 on a 200 node
network. When the frequency is 1, people switch context at every time step;
when the frequency is 200, contexts are fixed once and for all. In Figure 3, there
appears to be a phase transition when context switching occurs every 30 time
steps. This occurs as the consequence of two effects. First, when people switch
contexts too frequently, they do not have the opportunity to meet everybody
in the same context before moving on. Thus they have fewer neighbors and
form smaller clusters on average. (As previously discussed, smaller clusters can
lead to higher clustering coefficients.) Consequently, the average path length and
effective diameter are also slightly long. On the other hand, when people never
switch contexts (right-hand end of the x-axes), the number of neighbors is upper
bounded by the number of people in the context. Clustering coefficient is high
because everybody in the same context knows everybody else, and average path
length and diamter are long because there are few paths to people outside of the
current context.

Degree Distribution. Under different parameter settings, our model may gen-
erate networks with a variety of degree distributions. Lower levels of friendliness
typically lead to more power-law-like degree distributions, while higher levels
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often result in a heavier tail. In Figure 4, we show two degree distribution plots
for different friendliness levels. In the left-hand side plot, the quadratic polyno-
mial is a much better fit than the linear one. This means that, when people are
more friendly, the drop off in the number of people with high node degree is
slower than would be expected under the power law. We do observe the power
law effect at a lower level of friendliness. In the right-hand side plot, the linear
polynomial with coefficient −1.6 gives as good of a fit as a quadratic function.
This coefficient value lies well within the normally observed range for real social
networks [5].

Fig. 4. Log-log plot of the degree distributions of a network with 200 people. βi is
drawn from Beta(1, 3) for the plot on the left, and from Beta(1, 8) for the right hand
side. Solid lines represent a linear fit and dashed lines quadratic fit to the data. Contexts
are drawn every 50 iterations.

Birth and Death of Links. Our proposed model attempts to capture the
dynamics of the birth and death of links. A link is born when the connection
weight becomes non-zero, and the link dies when the weight returns to zero.
Figure 5 shows link birth rates as the proportion of newly established ties to the
number of possible births, and link death rates as the proportion of the number
of deaths to the number of links that exist at that point in time.

At the beginning, there are few existing links. Therefore the birth rate is rel-
atively high. Since one person is added to the network at each time step, the
number of possible connections grows as t(t−1)/2. Thus the birth rate becomes
smaller at larger values of t. We note periodical trends in both births and deaths
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Fig. 5. Birth (top) and death (bottom) of links in a network of 600 people over 600
time steps. Contexts switches occur every 50 iterations, K = 20 and b = 10.

of links. This periodicity coincides with changes in context. At each context
switch, a fresh pool of possible connections becomes available, and weaker links
from previous connections are now more likely to die out.

Weight Distributions. One of the main strengths of our model lies in its abil-
ity to represent weighted links. In real life, friendships are not simply existent or
absent. A strong connection should take longer to dissipate than would a weak
connection. Link weights act as memory in preserving friendships. Old friend-
ships may be rekindled if the pair rotate within similar contexts. We compare
the evolution of simulated weights with email exchange in the well-known Enron
dataset. Figure 6 shows typical weight progressions over time in a simulated net-
work. Figure 7 plots typical patterns of weekly email exchange counts between
Enron employees. Our model is clearly capable of reproducing both long-lasting
and short-range connections. Previously severed links can be renewed, as is the
case for the pair (45, 47).
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Fig. 6. Weight dynamics for 4 different pairs in a network of 600 people over 600 time
steps. Contexts switches occur every 50 iterations and b = 3.

4 Learning Parameters Via Gibbs Sampling

Parameter learning in DCFM is possible via Gibbs sampling. We leave a detailed
investigation of learning results to another paper, but give the Gibbs updates
here for reference. Using . . . as a shorthand for “all other variables in the model,”
we have:

θi | . . . ∼ Dir(α + α′i), (9)

P (βi | . . .) ∝ βAi+a−1
i (1 − βi)b−1

∏

j �=i

(1 − βiβj)Bij , (10)

γh | . . . ∼ Gamma(ch + wh, (vh + 1/dh)−1), (11)
γ� | . . . ∼ Gamma(c� + w�, (v� + 1/d�)−1). (12)

In Equation 9, α′ik :=
∑T

t=1 I(Ri=k) is the total number of times person i is
seen in context k. In Equation 10, Ai := |{(j, t) | Rt

i = Rt
j and F t

ij = 1}|



Exploratory Study of a New Model for Evolving Networks 85

Fig. 7. Weekly email exchange counts for four randomly selected pairs between 136
Enron employees

is the total number of dyadic meetings between i and any other person, and
Bij := |{t | Rt

i = Rt
j and F t

ij = 0}| is the total number of times i has “missed”
an opportunity for a dyadic meeting. Let H := {(i, j, t) | F t

ij = 1 or Gij = 1}
represent the union of the set of dyadic and triadic meetings, and L := {(i, j, t) |
(i, j) ∈ DYADt and F t

ij = 0} the set of missed dyadic meeting opportunities.
wh :=

∑
(i,j,t)∈HW

t
ij is the sum of updated weights after the meetings, and vh :=

∑
(i,j,t)∈H(W t−1

ij + ε) is the sum of the original weights plus a fixed constant.
wl :=

∑
(i,j,t)∈LW

t
ij is the sum of weights after the missed meetings, and vl :=∑

(i,j,t)∈LW
t−1
ij is the sum of original weights. (Here we use zero as the default

value for W t−1
ij if j is not yet present in the network at time t− 1.)

Due to coupling from the pairwise interaction terms βiβj , the posterior prob-
ability distribution of βi cannot be written in a closed form. However, since βi

lies in the range [0, 1], one can perform coarse-scale numerical integration and
sample from interpolated histograms. Alternatively, one can design Metropolis-
Hasting updates for βi, which has the advantage of maintaining a proper Markov
chain.

The variables F t
ij and Gij are conditionally dependent given the observed

weight matrices. If a pairwise connection Wij increases from zero to a positive
value at time t, then i and j must either have a dyadic or a triadic meeting. On
the other hand, dyadic meetings are possible only when i and j are in the same
context, and triadic meetings when they are in different contexts. Hence F t

ij and
Gt

ij may never both be 1. In order to ensure consistency, F t
ij and Gij must be
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updated together. For (i, j) ∈ TRIADt,

P (F t
ij = 1, Gij = 0 | . . .) ∝ I(Rt

i=Rt
j)

(βiβj)Poi(W t
ij ; γhε),

P (F t
ij = 0, Gij = 1 | . . .) ∝ I(Rt

i �=Rt
j)
μijPoi(W t

ij ; γhε),

P (F t
ij = 0, Gij = 0 | . . .) ∝

[
I(Rt

i=Rt
j)

(1 − βiβj) + I(Rt
i �=Rt

j)
(1 − μij)

]
I(W t

ij=0).

(13)

For (i, j) ∈ DYADt\TRIADt,

P (F t
ij = 1 | . . .) ∝ I(Rt

i=Rt
j)

(βiβj)Poi(W t
ij ; γh(W t−1

ij + ε)),

P (F t
ij = 0 | . . .) ∝ (I(Rt

i=Rt
j)

(1 − βiβj) + I(Rt
i �=Rt

j)
)Poi(W t

ij ; γ�W
t−1
ij ).

(14)

There are also consistency constraints for Rt. For example, if F t
ij = F t

jk = 1,
then i, j, and k must all lie within the same context. If Gkl = 1 in addition, then
l must belong to a different context from i, j, and k. The F variables propagate
transitivity constraints, whereas G propagates exclusion constraints.

To update Rt, we first find connected components within F t. Let p denote the
number of components and I the index set for the nodes in the i-th component.
We update each Rt

I as a block. Imagine an auxiliary graph where nodes represent
these connected components and edges represent exclusion constraints specified
by G, i.e., I is connected to J if Gij = 1 for some i ∈ I and j ∈ J . Finding
a consistent setting for Rt is equivalent to finding a feasible K-coloring of the
auxiliary graph, where K is the total number of contexts. We sample Rt

I sequen-
tially according to an arbitrary ordering of the components. Let π(I) denote the
set of components that are updated before I. The posterior probabilities are:

P (Rt
I = k | Rt

π(I), G) ∝
{

0 if GIJ = 1 and Rt
J = k for some J ∈ π(I)∏

i∈I θik otherwise
(15)

These sequential updates correspond to a greedy K-coloring algorithm; they are
approximate Gibbs sampling steps in the sense that they do not condition on
the entire set of connected components.

5 Possible Extensions

5.1 Evolution of Context Preferences

A person’s context distribution is influenced by the social groups to which he
belongs. People who are friends with gym-goers may start to frequent the gym
themselves. Thus it could be desirable to incorporate evolution of the θ parame-
ters (indicating context preference) into our model. We propose to update θ for
each person using the θ parameters of his neighbors, weighted by the connection
strengths:

θt
i = λθt−1

i + (1 − λ)
1∑

j W
t
ij

∑

j

W t
ijθ

t−1
j . (16)
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The larger λ (a person’s independence) is, the less susceptible the person is to
the preference of his friends.

5.2 Long Term Memory

Weighted links capture the effect of short term memory; in our model, a link
established at time t will likely remain at time t+ 1. However, once the weight
becomes zero, renewal of the link becomes is likely as a ‘birth’ of a new link.
To capture long term memory, we could model weights as a continuous gamma
distribution, so that established links always carry small residual weights. The
drawback is that the weight matrices will be dense, and we would need an ad-
ditional thresholding parameter for the ‘death’ of a link. Alternatively, at the
cost of introducing N new parameters, we can make each person ‘remember’ the
strength and duration of his past connections.

6 Related Work

The principles underlying the mechanisms by which relationships evolve are
still not well understood [7]. Current models aim at either describing observed
phenomena or predicting future trends. A common approach is to select a set
of graph based features, such as degree distribution or the number of dyads and
triangles, and create models that mimic observed behavior of the evolution of
these features in real life networks. Works [8, 9, 10] in physics and [11, 12] in
social sciences follow this approach. However, under models of average behavior,
the actual links between any two given people might not have any meaning.
Consequently, these models are often difficult to interpret.

Another approach aims to predict future friends and collaborators based on
the properties of the network seen so far [4, 7]. These models often cannot encode
common network dynamics such as mobility and link modification. Moreover,
these models usually do not take into account triadic closure, a phenomenon of
great importance in social networks [2, 13].

[14] presents an interesting dynamic social network model (with fixed number
of people). This work builds on [15], which introduces latent positions for each
person in order to explain observed links. If two people are close in the latent
space, they are likely to have a connection. [15] estimate latent positions in a
static data set. [14] adds a dynamic component by allowing the latent positions
to be updated based on both their previous positions and on the newly observed
interactions. One can imagine a generative mechanism that governs such per-
turbations of latent positions. In fact, the DCFM model presented in this paper
can be seen as a generative model for the latent mapping function.

7 Discussion

Our focus on generative modeling in this paper is prompted by the need to
provide a plausible explanation for how networks form and evolve. It is flexible
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and can be adapted to alternative theories of the friend evolution process. For
example, in our model, the decision to allow links to decay is made independently
on each pair. However, theory of Simmelian ties [16] suggest that two people who
are no longer friends may nevertheless remain so due to influence from a third
party. This is a plausible alternative to our current model.

Our choice of modeling weighted networks is motivated by the fact that
friednships between people are not binary. Stronger links tend to last longer
periods of time; temporary connections cease to exist once the cause disappears.
However, it is often difficult to obtain real datasets with weighted connections.
We propose to use the number of email, sms and phone call exchanges in preset
time intervals as a proxy to the weight of links between people. This is a very
coarse representation of a relationship weight, since non-communication does not
necessarily imply change in link weight. Hence the DCFM model may predict
smoother connection weights than the observed values.

To show that our model is capable of generating realistic social environments,
we provide simulation results that adhere to observations made on realistic
datasets in [17]. However, there is no groundtruth for the parameters in the
hidden layer. Variables that address context choice and meeting occurrance at
time step t have to be inferred from the previous and currently observed weights
alone. This brings up the question of identifiability. Unfortunately, the complex-
ity of the model makes it difficult to answer this question and we are currently
exploring possible solutions to this problem.

Another interesting question is exchangeability. The earlier a person appears
in the network, the more chances he has to establish connections. People who
have been in the network longer are expected to have more connections and thus
nodes (people) are not exchangeable over time.

The current model does not place any explicit upper bounds on the number of
links a person can establish. It is effectively limited by the number of people in
the same context. Unless a person is very friendly and has uniform distribution,
the number of links is not expected to be high. In realistic networks, we expect
the context preference distribution and friendliness to be skewed, because a per-
son has a limited amount of time and energy to build and maintain relationships.

In conclusion, we provide an exploratory study of a new generative model
for dynamic social networks in this paper. Simulation results demonstrate the
advantages as well as shortcomings of this model. In future work, we hope to
address issues of identifiability and investigate possible extensions of this work.
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Abstract. Rank data consist of ordered lists of objects. A particular
example of these data arises in Irish elections using the proportional
representation by means of a single transferable vote (PR-STV) system,
where voters list candidates in order of preference. A latent space model
is proposed for rank (voting) data, where both voters and candidates are
located in the same D dimensional latent space. The relative proximity
of candidates to a voter determines the probability of a voter giving high
preferences to a candidate. The votes are modelled using a Plackett-Luce
model which allows for the ranked nature of the data to be modelled
directly. Data from the 2002 Irish general election are analyzed using the
proposed model which is fitted in a Bayesian framework. The estimated
candidate positions suggest that the party politics play an important role
in this election. Methods for choosing D, the dimensionality of the latent
space, are discussed and models with D = 1 or D = 2 are proposed for
the 2002 Irish general election data.

1 Introduction

Proportional representation by means of a single transferable vote (PR-STV)
is the electoral system employed in Ireland in both general (governmental) and
presidential elections. In this electoral system, voters are required to rank some
or all of the proposed candidates in order of preference.

A wealth of rank data is available within the context of Irish elections. The
introduction of electronic voting in several constituencies means actual voting
data are now publicly available. The work presented here focuses on the Irish
general election of 2002, where the current government was elected; specifically
the votes from the general election in the constituency of Meath are examined.
Details of this election are outlined in Section 2.

A latent space model (Section 3.1) similar to that of Hoff et al. [1] is proposed
where both voters and candidates are located simultaneously in a D-dimensional
latent space. The location of each candidate is inferred from the votes cast by the
electorate — the Plackett-Luce model for rank data (Section 3.2) is employed to
exploit the information incorporated in the ranked preferences contained in the
votes. In turn, voter locations are determined by their votes, which demonstrate
their support for each of the candidates. This model is fitted within the Bayesian
paradigm; the Metropolis-Hastings algorithm is the primary model fitting tool.

E.M. Airoldi et al. (Eds.): ICML 2006 Ws, LNCS 4503, pp. 90–102, 2007.
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When fitting latent space models issues such as invariant configurations and choice
of dimensionality arise; these are dealt with in Sections 4.2 and 4.3 respectively.

The relative spatial locations of the candidates are suggestive of the types of
relationships that may exist between the candidates, as viewed by the electorate.
As coalition governments often occur in countries that use proportional repre-
sentation election systems, interest lies in examining if candidates from different
political parties are deemed alike. Which political parties are viewed as simi-
lar by the electorate? What characteristics do closely located candidates share?
What mechanisms drive Irish general elections? Such questions will be answered
by examining the relative locations of the candidates.

Configurations of the candidates and electorate from the 2002 general election
in the Meath constituency indicate that party politics drive voter opinions.

We conclude, in Section 6, by proposing possible modifications and extensions
to the model fitted in this study.

2 Irish Elections

Irish elections employ a voting system called proportional representation by
means of a single transferable vote (PR-STV). In the PR-STV system, voters
rank some or all of the candidates in order of preference. During the counting
process first preferences are totalled and candidates are elected or eliminated
from the race depending on a constituency specific quota. Excess votes above
the quota or those belonging to an eliminated candidate are transferred to other
candidates according to the ranked preferences. This process continues until all
seats are filled or until a sufficient number of candidates are left in the race.
A precise description of the electoral system, including the method of counting
votes is given by Sinnott [2]. The transfer of votes during the 2002 general election
in the Meath constituency can be viewed at http://www.oireachtas.ie. Good
introductions to the Irish political system are given in Coakley and Gallagher
[3] and Sinnott [4].

2.1 The 2002 General Election

Dáil Éireann (the Irish House of Parliament) consists of one hundred and sixty six
members who are elected in a general election held at least once every five years.
The members of the Dáil represent forty two constituencies. The most recent gen-
eral election was held on May 17th, 2002. This election saw the introduction of
electronic voting, for the first time, in three constituencies (Dublin North, Dublin
West, and Meath). The remaining thirty nine constituencies used paper ballots.

Five seats in Dáil Éireann were allocated to the constituency of Meath and
fourteen candidates ran for election within the constituency. The fourteen can-
didates represented seven political parties, with the major parties of Fianna
Fáil and Fine Gael each having three candidates. Table 1 provides details of
all the candidates and their political affiliations. The five seats in the Meath
constituency were won by Dempsey, Bruton, Wallace, English and Brady. The
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Table 1. The fourteen candidates who ran for election in the Meath constituency in
2002. The political affiliation of each candidate is given as well as an abbreviation of
their surname and party. Independent candidates are not affiliated to any party. The
candidates shown in boldface were elected.

Candidate Party
Brady, J. (By) Fianna Fáil (FF)
Bruton, J. (Bt) Fine Gael (FG)
Colwell, J. (Cl) Independent (Ind)
Dempsey, N. (Dp) Fianna Fáil (FF)
English, D. (Eg) Fine Gael (FG)
Farrelly, J. (Fr) Fine Gael (FG)
Fitzgerald, B. (Fz) Independent (Ind)
Kelly, T. (Kl) Independent (Ind)
O’Brien, P. (Ob) Independent (Ind)
O’Byrne, F. (Oby) Green Party (GP)
Redmond, M. (Rd) Christian Solidarity (CSP)
Reilly, J. (Rl) Sinn Féin (SF)
Wallace, M. (Wl) Fianna Fáil (FF)
Ward, P. (Wd) Labour (Lab)

electorate in Meath consisted of 108,717 individuals and there were a total of
64,081 valid votes cast. The actual votes cast in the Meath constituency are
analyzed in this work.

The voting data from the Meath constituency is available from the Meath
local authority web page (http://www.meath.ie/election.html). The voting
data from the other constituencies where electronic voting was implemented is
available from (http://www.dublincountyreturningofficer.com).

3 Modeling

A latent space model is combined with a model for rank data to provide a
suitable tool for the modeling of PR-STV data.

3.1 The Latent Space Model

Hoff et al. [1] proposed a model for social networks where the network actors
are located in a latent space and the probability of a connection between two
actors is determined by their proximity. In a similar vein to this work, a model
is proposed for rank data where voters and candidates are located in the same D
dimensional latent space Z ⊆ �D. It is assumed that each of M voters has latent
location zi ∈ Z and each candidate j (j = 1, . . . , N) has latent location ζ

j
∈ Z.

Hence, the N preferences of M voters are described using (N+M)D parameters.
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Let d(zi, ζj
) be the squared Euclidean distance between voter i and candidate j

in the latent space Z, that is

d(zi, ζj
) =

1
D

D∑

d=1

(zid − ζjd)2

for 1 = 1, . . . ,M and j = 1, . . . , N . The squared Euclidean distance is invariant
to rotations and translations. Many other distance measures are available [5] and
possible alternatives are discussed in Section 6.

The distance d(zi, ζj
) (for j = 1 . . . , N) between voter i and the candidates

describes the voter’s electoral opinions. In a similar way the proximity of two can-
didates in the latent space quantitatively describes their relationship as deemed
by the electorate.

By exploiting the information contained in the ranked preferences the latent lo-
cations of each voter and candidate can be inferred. Thus a latent space model is
incorporatedwith a standard rank data model to spatially model Irish voting data.

3.2 The Plackett-Luce Model

In the context of PR-STV voting, the data value xi = (c(i, 1), c(i, 2), . . . , c(i, ni))
denotes voter i’s ballot, where ni is the number of preferences expressed by voter
i and c(i, t) denotes the candidate chosen in tth position by voter i. Under the
PR-STV voting system the number of preferences voter i expresses may vary;
that is 1 ≤ ni ≤ N .

Many rank data models in the literature emerge from the context of predicting
the final ordering of horses in a race (see [6, 7]). The ranking of candidates on
a ballot form may be thought of in a similar manner. Marden [8] details many
of the currently available rank data models. The Plackett-Luce model [6] is one
such model which can be used to model PR-STV data. Mixtures of Plackett-
Luce models have recently been used by Gormley and Murphy [9] to model Irish
college applications data.

In the Plackett-Luce model, a ranking is modeled as a process in which each
voter sequentially selects the next most preferred candidate; such sequential
models are called multi stage models [10]. The model is parameterized by a
‘support’ parameter vector

p
i
= (pi1, pi2, . . . , piN ),

where pij =P{Voter i ranking candidate j first|Available candidates}. The model
assumes that P{Voter i ranking candate j in position t|Available candidates} ∝
pij . Hence, the probability of vote xi = (c(i, 1), c(i, 2), . . . , c(i, ni)) is

P{xi|pi
}

=
ni∏

t=1

P{Voter i ranking candidate c(i, t) in position t|Available candidates}

=
ni∏

t=1

pic(i,t)∑N
s=t pic(i,s)
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where for s > ni the sequence of c(i, s) is any arbitrary ordering of the candidates
not selected by voter i; this ordering does not affect any calculations because
these values only arise in calculations involving

∑N
s=ni+1 pic(i,s) which does not

depend on the ordering.
We assume that probability pij is a decreasing function of the distance be-

tween the voter and the candidate in the latent space. It is assumed that these
probabilities take the form

pij =
exp{−d(zi, ζj

)}
∑N

j′=1 exp{−d(zi, ζj′
)}

for i = 1, . . . ,M and j = 1, . . . , N . Thus, the probability of vote xi is determined
by the location of the voter and candidates in the latent space.

4 Model Fitting

The Plackett-Luce model combined with a latent space model allows for the
ranked nature of the PR-STV data to be spatially modeled. The parameters
of this model and their related uncertainty are estimated within a Bayesian
framework.

Prior densities for voter locations, pv(zi), and for candidate locations, pc(ζj
)

are assumed to be Normal and independent where zid ∼ N(0, 32) and ζjd ∼
N(0, 32) for d = 1, . . . , D. The prior parameters were selected so that the prior
was concentrated on a region around the origin without being overly informative.
Thus the joint density P{X, z, ζ} of the votes cast, the voter locations and the
candidate locations is

M∏

i=1

pv(zi)

⎡

⎣
ni∏

t=1

exp{−d(zi, ζc(i,t)
)}

∑N
s=t exp{−d(zi, ζc(i,s)

)}

⎤

⎦

⎡

⎣
N∏

j=1

pc(ζj
)

⎤

⎦ .

The location of each voter and each candidate in the latent space are to be
estimated — samples from the posterior distribution P{z, ζ|X} are generated
using a Metropolis-Hastings algorithm. A random walk proposal density where
each location was perturbed using normally distributed noise was employed —
good acceptance rates (detailed in Section 5) were achieved in the estimation of
both voter and candidate locations using this proposal.

4.1 Estimation of Voter and Candidate Latent Locations

The location of each voter zi and each candidate ζ
j

within a D dimensional
latent space is to be estimated. A random walk Metropolis-Hastings algorithm
is used to sample from the joint density P{z, ζ|X}.

Estimates of zi are generated from the posterior distribution via the following
algorithm:
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1. Generate a value ε from the symmetric proposal density N(0, σ2
v) and form

the proposal point z∗id = zid + ε for d = 1, . . . , D.
2. Compute the acceptance probability α(z∗i , zi) as follows

α(z∗i , zi) = min
{

P (z∗, ζ|X)
P (z, ζ|X)

, 1
}

where independence of voter locations and a symmetric random walk pro-
posal distribution are assumed.

3. Generate a value u ∼ Uniform(0, 1).
4. If u ≤ α(z∗i , zi) then define zi = z∗i , otherwise define zi = zi.

Similar methodology applies in the case of estimating candidate locations:

1. Generate a value ε ∼ N(0, σ2
c ) and let ζ∗jd = ζjd + ε for d = 1, . . . , D.

2. Compute the acceptance probability α(ζ∗
j
, ζ

j
) as follows

α(ζ∗
j
, ζ

j
) = min

{
P{z, ζ∗|X}
P{z, ζ|X} , 1

}
.

where independence of candidates locations and symmetric random walk
proposal are assumed.

3. Generate a value u ∼ Uniform(0, 1).
4. If u ≤ α(ζ∗

j
, ζ

j
) then define ζ

j
= ζ∗

j
, otherwise define ζ

j
= ζ

j
.

The algorithm sequentially estimates the voter locations and then the candi-
date locations until sufficient mixing of the Markov chain is achieved. Locations
estimated subsequent to a burn-in period are considered when calculating final
estimates.

4.2 Invariant Configurations

The measure of distance between voter and candidate locations in the latent
space is quantified by the squared Euclidean distance. This distance is invari-
ant to rotations and translations. As a result the model is not fully identifiable
because the locations are only identified up to rotation and translation. Pro-
crustean methods are used to eradicate this problem.

Procrustean methods [11] match one configuration of points to another as well
as possible in a least squares sense. Transformations such as dilation, rotation
and translation are used to create the match. In this context only translations
and rotations are applicable without altering the likelihood of the data due to
the definition of the probabilities pij .

Assume CR = (zR, ζR) is a reference configuration of the voter and candidate
locations which is centered around the origin. To match the estimated config-
uration Ĉ to the reference configuration CR, Ĉ is first translated so that it is also
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centered around the origin. Ĉ is then rotated to provide the best match with
CR in a least squares sense.

To obtain Q, the optimal orthogonal rotation matrix, the sum

S =
M+N∑

i=1

D∑

d=1

(cRid − ĉid)2

=
M∑

i=1

D∑

d=1

(zR
id − ẑid)2 +

N∑

j=1

D∑

d=1

(ζR
jd − ζ̂jd)2

= trace
{
CRCR′ + ĈĈ′ − 2CRĈ′

}

is minimized. The newly rotated configuration is denoted ĈQ. Thus (1) becomes

S = trace
{
CRCR′ + ĈĈ′ − 2CRQ′Ĉ′

}

and theminimizationproblembecomes the constrainedmaximizationof 2CRQ′Ĉ′.
It follows thatQ = V U ′ whereUΣV ′ is the singular value decomposition ofCR′Ĉ.
Thus by centering each estimated configuration around the origin and rotating the
configuration using the rotation matrix Q the estimated configuration Ĉ is best
matched with the reference configuration CR.

Samples of the configuration (z, ζ) are generated using the Metropolis-
Hastings algorithm (Section 4.1). Initial iterations of the algorithm are con-
strained to only accept uphill moves (ie. moves when α(z∗i , zi)≥1 and α(ζ∗

i
, ζ

i
) ≥

1 which guarantees that the posterior density increases or stays constant on each
iteration) to achieve an estimate of the maximum a posteriori (MAP) configu-
ration of candidate and voter locations. This MAP configuration is henceforth
employed as CR, the reference configuration, to which each subsequently esti-
mated configuration Ĉ is matched. CR is not assumed to be the correct configu-
ration but is merely used as a standard to which others are matched. Locations
estimated during the uphill only runs of the Metropolis-Hastings algorithm are
not considered when calculating final estimates.

4.3 Dimensionality

The dimensionality D of the latent space is a further variable which requires
estimation. Several techniques have been discussed in the literature (eg. [12]) as
potential methods of selecting the optimal dimensionality of a space. Selecting
the optimal D can been viewed as a model selection process between models
with different dimensions.

The deviance information criterion (DIC) [13] is a measure of model com-
plexity defined as a Bayesian measure of accuracy (or deviance) penalized by an
additional complexity term. The complexity term is labeled the ‘effective number
of parameters’ and is the difference between the posterior mean of the deviance
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and the deviance at the posterior mean of the estimates of the model parameters.
Spiegelhalter et al. [13] tentatively suggest that combining the Bayesian deviance
and the complexity term forms a criterion which may be used for comparing
models.

Pritchard et al. [14] suggest a model selection criterion based on an approx-
imation of the posterior distribution P{D|X}. It is computationally similar to
the DIC but penalizes the mean of the Bayesian deviance by a quarter of it’s
variance as opposed to the effective number of parameters.

A practical alternative to these two criteria is to apply principal components
analysis [5] to the resulting configurations for each choice of dimension D. The
principal components analysis (PCA) rotates the configuration of candidate loca-
tions so that the variance of the locations is concentrated in a subset of the dimen-
sions: the first principal component dimension has maximal variance, the second
has maximal variance subject to being orthogonal to the first dimension, etc.

PCA is applied to the configuration of candidates only as the predominant
interest lies in the interpretation of the relative locations of the candidates. The
variances of the resulting principal components are examined and the optimal
number of dimensions D is selected to be the number of dimensions after which
the addition of another dimension was not deemed to be beneficial; a threshold of
10% was used to determine if the addition of an extra dimension was worthwhile.

5 Results

A latent space model for rank data was applied to the set of votes from the
Meath constituency in the 2002 Irish general election.

5.1 The 2002 General Election: Meath Constituency

Five seats in Dáil Éireann were available for election in the Meath constituency
in the 2002 general election. A latent space model, incorporating the Plackett-
Luce model for rank data, was fitted to the 64, 081 electronic votes over the
range of dimensions D = 1, 2 and 3. The random walk proposal densities were
fixed to be

N(0, σ2
v) = N(0, 32)

N(0, σ2
c ) = N(0, 0.0052).

The DIC and Pritchard et al’s criterion were computed (Table 2) to determine
the appropriate dimension for the latent space but DIC suggestedD = 3 whereas
Prtichard et al’s criterion suggested D = 1. Airoldi et al. [12] provide a detailed
review of model choice in Bayesian models and emphasize its importance, in
particular the problems with fitting overly complex models.

As a result of the conflict between the results using DIC and Pritchard’s
criterion and the concern about fitting overly complex models, we also used a
principal components analysis of the candidate locations to select D. Table 3
shows the variation captured by each principal component when different di-
mensions of latent space model were fitted to the data. Both dimensions D = 1



98 I.C. Gormley and T.B. Murphy

Table 2. The DIC values and Pritchard et al.’s criterion values for latent space models
of dimension D = 1, 2 and 3 fitted to the Meath data. Small values of both criteria
indicate the best fitting model. DIC indicated three dimensions as the optimal model
where Pritchard et al.’s criterion suggested one. Thus PCA (see Table 3) was employed
as the method of selecting the optimal D.

Dimension DIC Pritchard et al.
1 1216797 1209812
2 1118221 3080834
3 1071723 7113250

Table 3. The proportion of variance explained by each principal component computed
for configurations of the candidates in the Meath constituency, for a range of dimen-
sions. Principal components analysis was applied to the average candidate configuration
only, as the main interest of this study lies in the relative locations of the candidates.

Variances
Dimension σ2

1 σ2
2 σ2

3

1 1 - -
2 0.81 0.19 -
3 0.70 0.23 0.07

and D = 2 appear to summarize the data well. When a three dimensional model
was fitted the additional principal component only accounted for 7% of the vari-
ance of the data. Hence, we decided that the addition of an extra dimension to
the model was not worthwhile because the candidate locations are concentrated
around a two-dimensional plane within the three dimensional latent space.

Both the one dimensional and two dimensional configurations are analyzed to
examine relationships between the electoral candidates.

5.2 One Dimensional Results

Figure 1 illustrates the one dimensional configuration of the fourteen candidates.
Each candidate is represented by a two letter abbreviation of their surname and
political party as detailed in Table 1. The results suggest that party politics plays
an important role in the electorate’s view of the candidates. The Fianna Fáil can-
didates (Brady, Dempsey and Wallace) are located on the far left of the single
dimension with the Fine Gael candidates (Bruton, English and Farrelly) located
on the far right. Fianna Fáil and Fine Gael are the two largest (and rival) Irish
political parties. The other candidates lie between the two poles created by the
Fianna Fáil and Fine Gael candidates but are closer to Fine Gael. Interestingly
Ward, who is a Labour Party candidate, is located closest to the Fine Gael can-
didates — Fine Gael and Labour have a history of forming coalition governments
(most recently from 1994–1997). Also of note are the narrow interval estimates
for the estimated candidate positions (mean ±2 standard deviations are shown).
This suggests low uncertainty in the candidate locations in one dimension.
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Dimension 1

0.0 0.2 0.4 0.6 0.8 1.0

Dp (FF)

Wl (FF)

By (FF)
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Ob (Ind)

Oby (GP)

Wd (Lab)

Fr (FG)

Eg (FG)

Bt (FG)

Fig. 1. The one dimensional configuration of the candidate means, averaged over a
Metropolis-Hastings algorithm, and their associated uncertainty (indicated by ±2 stan-
dard deviation intervals). Each of the fourteen candidates as detailed in Table 1 are
denoted by a two letter abbreviation of their surname and political party.

5.3 Two Dimensional Results

Good acceptance rates of 35% and 33% were achieved for the voter and candi-
date positions respectively when a two dimensional model was fitted. Figure 2
illustrates the final average position of each of the fourteen candidates in the
Meath constituency. Each candidate is denoted by the abbreviations detailed in
Table 1. Party politics are again suggested as the mechanism which drives this
election. The first dimension (horizontal) separates candidates by their political
ideals — the estimated positions suggest a clear divide between Fianna Fáil and
the other parties in this dimension. The second (vertical) dimension illustrates
the presence of an ideological cleavage (left to right wing) of the candidates. For
example, the Christian Solidarity Party espouse right wing conservative values
and their candidate Redmond (Rd) is located highest in this dimension.

The plot also includes ellipses which show approximate 95% posterior set
estimates of each candidate location to represent the uncertainty in the esti-
mated locations. The uncertainty associated with all candidate locations is low.
Furthermore, there is considerable overlap between candidates from the same
party.



100 I.C. Gormley and T.B. Murphy

0.6 0.8 1.0 1.2 1.4

4.
6

4.
7

4.
8

4.
9

5.
0

5.
1

PC 1

P
C

 2 By

Bt

Cl

Dp

Eg
Fr

Fz

KlOb

Oby

Rd

Rl

Wl Wd(FF)

(FG)

(Ind)

(FF)

(FG)

(FG)

(Ind)

(Ind)(Ind)

(GP)

(CSP)

(SF)

(FF) (Lab)

Fig. 2. The two dimensional configuration of the candidate means with their associ-
ated uncertainty. The candidate initials indicate their posterior mean positions and
the ellipses are approximate 95% posterior sets which indicate the uncertainty in the
candidate positions. The position of each candidate and the ellipses are estimated by
8500 Metropolis-Hastings iterations (post burn-in), thinned after every 10th iteration.

6 Conclusions and Extensions

A latent space model, incorporating a Plackett-Luce model, provides good
methodology for statistically modeling PR-STV rank data. The latent space
aspect of the model gives an interpretable framework for the results of model
fitting and the Plackett-Luce model works well in modeling PR-STV data.

The latent configurations suggest that party politics drive general elections
in Ireland. Other factors such as the level of a candidate’s public profile may
also be influential but some of these factors would be confounded with party
membership, when it comes to an interpretation of the model’s estimates.

The Plackett-Luce model is in fact a special case of Benter’s model [7] which
is another potential rank data model. Under Benter’s model the probability of
vote i is:

P{xi|pi
, α} =

ni∏

t=1

(
pαt

ic(i,t)∑N
s=tp

αt

ic(i,s)

)
1 ≥ αt ≥ 0

where αt accounts for changing randomness at each choice level. The parame-
ter p

i
has the same interpretation as the Plackett-Luce support parameter. The

αt values ‘dampen’ the lower choice level probabilities to capture the random-
ness associated with lower choices. Gormley and Murphy [15] use a mixture of
Benter’s models to model data from the 1997 Irish presidential election and the



A Latent Space Model for Rank Data 101

2002 Dublin West general election data. Results of that analysis also show party
politics take an important role in the 2002 general election.

When defining the latent space, squared Euclidean distance was implemented
as a measure of ‘distance’ between two members of the space. This distance
worked well in the sense that the latent positions found using this distance
measure are easily interpreted. Hoff [16] made use of the inner product as a
latent space distance measure and such a method could be implemented in this
context.

Principal components analysis selected the optimal dimension of the latent
space — the method worked well but is somewhat ad-hoc. Raftery et al. [17]
introduced the AICM (Akaike Information Criterion Monte (Carlo)) and BICM
(Bayesian Information Criterion Monte (Carlo)) which are derived through the
estimation of the harmonic mean estimator. The AICM and BICM are easily
calculated from the posterior output of Monte Carlo simulations and therefore
could easily be implemented as a method of estimating D. Reversible jump
Metropolis-Hastings with delayed rejection is another possible but complicated
method of selecting D.

In terms of the Bayesian tools used to fit the model, the random walk proposal
worked well in practice but a more sophisticated proposal could be implemented.
Also, a basic prior structure was used for the candidate and voter locations, yet a
more structured prior on the voters could be employed — for example, a mixture
of normals as was used in a social networks context by Handcock et al. [18] may
provide a more suitable prior.
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Abstract. We present a stochastic model for networks with arbitrary
degree distributions and average clustering coefficient. Many descriptions
of networks are based solely on their computed degree distribution and
clustering coefficient. We propose a statistical model based on these char-
acterizations. This model generalizes models based solely on the degree
distribution and is within the curved exponential family class. We present
alternative parameterizations of the model. Each parameterization of the
model is interpretable and tunable. We present a simple Markov Chain
Monte Carlo (MCMC) algorithm to generate networks with the specified
characteristics. We provide an algorithm based on MCMC to infer the
network properties from network data and develop statistical inference
for the model. The model is generalizable to include mixing based on
attributes and other complex social structure. An application is made to
modeling a protein to protein interaction network.

1 Introduction

In this paper we consider models for relational data, and specifically networks.
We have in mind social networks where the nodes represent individuals and the
edges represent some form of social contact or partnership. However, the for-
mulation is general and can be used to represent other forms of networks. We
assume that the network is a realization of a stochastic process characterized
by random mixing between individuals conditional on the individual activity
levels (i.e., the nodal degrees) and clustering [1, 2]. One popular class are those
that exhibit power-law behavior, often loosely referred to as “scale-free” distri-
butions. We also consider models for the network degree distributions in which
the variance can greatly exceed the mean.

In Section 2 we develop the general form of the model and models for the
degree distribution. In Section 3 we give an simple algorithm for the generation
of random networks from the model. In Section 4 we provide an algorithm for
approximating the likelihood function for the model as a basis for inference. In
Section 5 we apply the model to a protein-protein interaction network. Finally, in
Section 6, we discuss generalizations of the model for more complex structures.
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2 Models for Social Networks

2.1 Exponential Family Models

Let the random matrix X represent the adjacency matrix of an unvalued net-
work on n individuals. We assume that the diagonal elements of X are 0 – that
self-partnerships are disallowed. Suppose that X denotes the set of all possible
networks on the given n individuals. The multivariate distribution of X can be
parameterized in the form:

Pη,X (X = x) =
exp [η · Z(x)]
c(η,X )

x ∈ X (1)

where η ∈ Υ ⊆ IRq is the model parameter and Z:X → IRq are statistics based
on the adjacency matrix [3, 4]. There is an extensive literature on descriptive
statistics for networks [5, 6]. These statistics are often crafted to capture features
of the network (e.g., centrality, mutuality and betweenness) of primary substan-
tive interest to the researcher. In many situations the researcher has specified
a set of statistics based on substantive theoretical considerations. The above
model then has the property of maximizing the entropy within the family of all
distributions with given expectation of Z(X) [7]. Paired with the flexibility of
the choice of Z this property does provide some justification for the model (1)
that will vary from application to application.

The denominator c(η,X ) is the normalizing function that ensures the distri-
bution sums to one: c(η,X ) =

∑
y∈X

exp [η · Z(y)]. This factor varies with both η

and the support X and is the primary barrier to simulation and inference under
this modeling scheme.

The most commonly used class of random network models exhibit Markov
dependence in the sense of [3]. For these models, dyads that do not share an
individual are conditionally independent; this is an idea analogous to the nearest
neighbor concept in spatial statistics. Typically a homogeneity condition is also
added: all isomorphic networks have the same probability under the model. It
is shown in [3] that the class of homogeneous Markov undirected networks is
exactly those having the degree parameterization:

dk(x) =
the proportion of nodes with

degree exactly k k = 0, . . . , n− 1

NΔ(x) =
1
6

∑

i,j,k

xijxjkxkl,

where dk(x) counts the proportion of individuals with degree k and NΔ(x) is
a count of the complete triads. Throughout we consider undirected networks,
although the situation for directed networks is very similar. This model can
be reexpressed in the notation of model (1) by setting Zk(x) = dk(x), k =
1, . . . , n − 1, Zn = NΔ(x), q = n, η ∈ Υ = IRn. This parameterization has the
advantage that it is directly interpretable in terms of concurrency of partnerships
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(i.e. dm(x) for m > 0 is the proportion of individuals with exactly m concurrent
partners).

A popular variant of the statistic NΔ(x) is the clustering coefficient
defined as

C(x) =
3NΔ(x)
N3(x)

where N3(x) is the number of connected triples of nodes (i.e., 2−stars [3]). This
describes the proportion of complete triads in the networks out of a total number
of possible triads.

In the remainder of this paper we focus on the following novel model

log [Pθ(X = x)] = η(φ) · d(x) + νC(x) − log c(φ, ν,X ), (2)

where x ∈ X , θ = (φ, ν), Θ ⊂ IRn, d(x) = {d1(x), . . . , dn−1(x)}. The parameters
φ and ν represent the network degree distribution and clustering, respectively.
Specifically, the ratio of the probability of a given network to a network with
the same degree distribution and correlation coefficient 1% less is 0.01× exp(ν).
Alternatively, consider the conditional probability of a partnership existing given
the rest of the network. If the formation of the partnership increases the corre-
lation coefficient by α% (relative to the same network without the partnership)
then the log-odds of the partnership existing is αν%. The degree distribution
parameters have similar interpretations: ηk(φ) is the ratio of the log-probability
of a given network to a network with the same clustering coefficient and one less
node of degree k and one more isolate. An important property of the model is
the variational independence of the parameters [7].

This model is a curved exponential family if Θ is a smooth curve in Υ = IRn

[8, 9]. Any degree distribution can be specified by n − 1 or less independent
parameters. Typically the number of parameters is small. As we shall see, this
is true for the models considered below.

If ν = 0 the model corresponds to random networks with arbitrary degree dis-
tributions, as considered by many researchers [10]. If ηk(φ) = φk, k = 1, . . . , n−1
the value of φ is interpretable as the log-probability of a given network to a net-
work with one less partnership and the same clustering coefficient [8]. If both
ν = 0 and ηk(φ) = φk, k = 1, . . . , n− 1 it is the classical random network model
of Rényi and Erdós[11].

The model (1) has a generative interpretation, which we illustrate with model
(2). Consider a dynamic process for the network {X(t): t ≥ 0} developing
according to the local rules

logit
[
P (Xij(t) = 1|Xij(t−)=xij)

]
=η(φ) · [d(x+

ij) − d(x−ij)
]
+ν

[
C(x+

ij) − C(x−ij)
]

where x+
ij is the network with a partnership between i and j and the rest of

the network equal to xij . x
−
ij is similar with no partnership between i and j.

Based on the theory of continuous-time Markov Chains, the equilibrium distri-
bution is model (2). Ties are formed (or broken) based on their propensity to
change the network characteristics. This also provides another interpretation of
the parameters φ and ν and their joint effects.
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An alternative parameterization that is usually more interpretable is: (φ, ρ)
where the mapping is:

ρ = Eφ,ρ [C(X)] =
∑

y∈X
C(y) exp [η(φ) · d(y) + νC(y)] ≥ 0 (3)

Thus ρ is the mean clustering coefficient over networks in X . Thus models with
higher ρ have higher clustering coefficients on average. Note that models with
ρ = 0 will not have any complete triads. The range of ρ is a subset of [0, 1] and
depends on the other parameters and X .

The two parameterizations represent the same model class [9]. Translating
between equivalent parameters is achieved using the MCMC algorithm given in
Section 3 [9, 8].

2.2 Models for Degree Distributions

Let Pθ(K = k) be the probability mass function ofK, the number of partnerships
that a randomly chosen node in the network has. Based on the model (2)

Pθ(K = k) = Eθ [dk(X)] k = 0, . . . , n− 1

Clearly for a given network of size n nodes, the distribution of K has finite range
with upper bound n− 1. In some cases this distribution is approximated by an
idealized distribution with infinite range. Let K∗ be the degree of a node in a
(possibly hypothetical) infinite population of nodes. Then K can be thought of
as the degree of the node restricted to nodes in the network. In cases where this
conceptualization is used we will consider the case

Pθ(K = k) = P (K∗ = k|K∗ < n) k = 0, . . . , n− 1,

While the model (2) has arbitrary degree distribution, of particular interest are
the various “scale-free,” preferential attachment and power-law models popular
in the physics literature (see, e.g., [12]). These models assume that all networks
with the same degree distribution are equally likely. We say P (K∗ = k) has
power-law behavior with scaling exponent φ > 1 if there exist constants c1, c2,
and M such that 0 < c1 ≤ P (K∗ = k)kφ ≤ c2 <∞ for k > M .

We focus on a stochastic mechanisms for the formation of the social networks
that is a variation on a preferential attachment process, such as those advocated
by several recent authors [13, 14]. The limiting distributions of this mechanism
can be characterized by long tails.

2.3 Simple Preferential Attachment Models

A mechanism that has been suggested for the formation of power-law social net-
works is preferential attachment [15, 16, 2]. This and related stochastic processes
have a long history in applied statistics [17, 18, 19]. Consider a population of r
people in in which (1) there is a constant probability p that the r + 1st part-
nership in the population will be initiated from a randomly chosen person to a
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previously sexually inactive person, and (2) otherwise the probability that the
r+1st partnership will be to a person with exactly k partners is proportional to
kf(k|r), where f(k|r) is the frequency of nodes with exactly k connections out
of the r total links in the population. The limiting distribution of this process is
known as the Waring distribution [19]. The Yule distribution discussed by [17]
and used by [20] to model degree distributions is a special case of the Waring
distribution with p = (φ2 − 2)/(φ2 − 1).

The probability mass function (PMF) of the Waring distribution [21] is:

P (K∗ = k) =
(φ2 − 1)Γ (φ2 + φ1)

Γ (φ1 + 1)
· Γ (k + φ1)
Γ (k + φ1 + φ2)

, (4)

φ1 > −1, φ2 > 2,

where Γ (·) is the Gamma function and the mixing parameter φ1 is related to p
via:

p =
φ2 − 2

φ2 + φ1 − 1
. (5)

The Waring distribution has power-law behavior with scaling exponent φ2.
The mean and variance of the Waring distribution are:

E(K∗) =
1
p
, V(K∗) =

(1 − p) (φ2 − 1)
p2 (φ2 − 3)

, φ2 > 3.

Thus, the expected value of the Waring distribution is simply the inverse of
the probability of forming a partnership to an individual lacking existing part-
nerships. Both the Waring and the Yule distributions have been re-discovered,
apparently without awareness of their historical antecedents, by [22] and [23]
respectively in the context of modeling growth of the Internet.

3 Generating Random Networks with Specified Structure

Markov Chain Monte Carlo (MCMC) algorithms for generating from the model
(1) have a long history and been well studied (see [24] for a review). The basic
idea is to generate a Markov chain whose stationary distribution is given by
equation (1). The simplest Markov chain proceeds by choosing (by some method,
either stochastic or deterministic) a dyad (i, j) and then deciding whether to set
Xij = 1 or Xij = 0 at the next step of the chain. One way to do this is using
Gibbs sampling, whereby the new value of Xij is sampled from the conditional
distribution of Xij conditional on the rest of the network. Denote “the rest of
the network” by Xc

ij . Then Xij |Xc
ij = xc

ij has a Bernoulli distribution, with odds
given by

P (Xij = 1|Xc
ij = xc

ij)
P (Xij = 0|Xc

ij = xc
ij)

= exp{η·Δ(Z(x))ij},

where Δ(Z(x))ij denotes the difference between Z(x) when xij is set to 1 and
Z(x) when xij is set to 0. A simple variant to the Gibbs sampler (which is an
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instance of a Metropolis-Hastings algorithm) is a pure Metropolis algorithm in
which the proposal is always to change the value of xij . This proposal is accepted
with probability min{1, π}, where

π =
P (Xij = 1 − xij |Xc

ij = xc
ij)

P (Xij = xij |Xc
ij = xc

ij)
(6)

=

{
exp {η·Δ(Z(x))ij} if xij = 0;
exp {−η·Δ(Z(x))ij} if xij = 1.

The vector Δ(Z(x))ij used by these MCMC schemes is often much easier to
calculate directly than as the difference of two separate values of Z(x). For
instance, if one of the components of the Z(x) vector is the total number of
partnerships in the network, then the corresponding component of Δ(Z(x))ij is
always equal to 1.

The Metropolis scheme is usually preferred over the Gibbs scheme because it
results in a greater probability of changing the value of xij , a property thought
to produce better-mixing chains. However, it is well known that these simple
MCMC schemes often fail for various reasons to produce well-mixed chains
[25, 26, 27]. More sophisticated MCMC schemes have been developed and are a
topic of ongoing research [8].

A variant of this algorithm proceeds in two steps:

1. Generate dk
i.i.d.∼ Pθ(K = k), k = 0, 1, . . . , n− 1.

2. Generate a random network conditional on this degree distribution:

Pν(X = x|dk(X) = dk) =
exp [νC(x)]
c(ν, dk,X )

x ∈ X (dk)

where X (dk) = {x ∈ X :dk(x) = dk}.
The first generates individual degrees from an arbitrary distribution, and the
second generates networks condition on those degrees. Note that the structure
of the exponential family in (1) ensure that the samples are from the correct
distribution [7]. The first step can be simulated easily as we know Pθ(K = k).
Note that not all degree sequences will be consistent with a network of size n. For
example, sequences with an odd total number of partnerships are not realizable.
However we can construct a compatible sequence {dk}n−1

k=0 via a simple rejection
algorithm. The second step is also straightforward: we can conditionally simulate
values using a MCMC holding the degree distribution fixed by using a Metropolis
proposal consistent with this restriction. It is convenient for this algorithm to
have a starting network with the given degree distribution. This network is easy
to construct by a finite algorithm (as it need not be be a draw from a random
distribution) or using sequential importance sampling. An important property
of this the second step is the independence of the distribution from φ. It is a
simple parameter distribution depending only on ν [7].

As an application of this algorithm, consider a network model for n = 50 nodes.
We choose a degree distribution which is Yule with scaling exponent φ2 = 3. This
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Fig. 1. An example network generated from model (2) with n = 50 and degree dis-
tribution draw from the Yule model (equation 4) with scaling exponent φ2 = 3. The
random network is drawn from the model with mean clustering coefficient ρ = 3%. The
network has clustering coefficient C(x) = 2%.

Fig. 2. An example network generated from model (2) with n = 50 and degree dis-
tribution draw from the Yule model (equation 4) with scaling exponent φ2 = 3. The
random network is drawn from the model with mean clustering coefficient ρ = 15%.
The network has clustering coefficient C(x) = 18%.

corresponds to a “scale-free” degree model. If ν = 0 the network is random with
the given degree distribution. This corresponds to a mean clustering coefficient
ρ = 3%. A realization of this model is given in Fig. 1. The clustering coefficient
for this network is 2%. Fig. 2 is a realization from the model with mean clustering
coefficient ρ = 15% (corresponding to a clustering parameter of ν = 0.46.) The
centralization of the clustering is apparent relative to the network in Fig. 1.

As an second application we generate a network model for n = 1000 nodes
with the same degree distribution (φ2 = 3). A realization of this model is given in
Fig. 3. The clustering coefficient for this network is 2%. Fig. 4 is a realization from
the model with mean clustering coefficient chosen to be ρ = 15% (corresponding
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Fig. 3. A random network from the model with n = 1000 and the same Yule degree
distribution with φ2 = 3. The largest component is visualized. The network is drawn
from the model with mean clustering coefficient ρ = 3%. The realized network has
clustering coefficient C(x) = 1%.

Fig. 4. A random network from the model with n = 1000 and the same Yule degree
distribution with φ2 = 3.. The largest component is visualized. The network is drawn
from the model with mean clustering coefficient ρ = 15%. The realized network has
clustering coefficient C(x) = 14%.

to a clustering parameter of ν = 27.) The elongated nature of the resulting
network is apparent as is the centralization of the clustering.

4 Statistical Inference for Network Models

As we have specified the full joint distribution of the network through (1), we
choose to conduct inference within the likelihood framework [28, 24]. For econ-
omy of notation, in this section, we use φ to represent either η in (1) or the
curved exponential family form (φ, ν) in (2). Differentiating the loglikelihood
function:

(φ;x) ≡ log [Pη(X = x)] = η(φ) · Z(x) − log [c(φ,X )] (7)
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shows that the maximum likelihood estimate φ̂ satisfies

∇(φ̂) = ∇η(φ̂) ·
[
Z(xobs) − E η(φ̂) Z(X)

]
, (8)

where ∇η(φ) is the p × q matrix of partial derivatives of η with respect to φ
and Z(xobs) is the observed network statistic. We may search for a solution to
equation (8) using an iterative technique such as Newton-Raphson; however, the
exponential family form of the model makes the Fisher information matrix

I(φ) = ∇η(φ)· [Covη(φ) Z(X)
]∇η(φ) (9)

easier to calculate than the Hessian matrix of second derivatives required for
Newton-Raphson. For more about equations (8) and (9), see [8] The method of
Fisher scoring is an iterative method analogous to Newton-Raphson except that
the negative Fisher information is used in place of the Hessian matrix.

Direct calculation of the log-likelihood by enumerating X is infeasible for
all but the smallest networks. As an alternative, we approximate the likelihood
equations (8) by replacing the expectations by (weighted) averages over a sample
of networks generated from a known distribution. This procedure is described in
[24]. To generate the sample we use the MCMC algorithm of Section 3.

5 Application to a Protein-Protein Interaction Network

As an application of these methods, we fit the model to a biological network of
protein-protein interactions found in cells. By interact is meant that two amino
acid chains were experimentally identified to bind to each other. The network
is for E. Coli and is drawn from the “Database of Interacting Proteins (DIP)”
[29]. The DIP database lists protein pairs that are known to interact with each
other. The dataset we use is Ecoli20050403. We have chosen E. Coli as it is well
studied and this will minimize the number of false-negative interactions (that is,
two proteins that interact but are not in the database). For simplicity we focus
on proteins that interact with themselves and have at least one other interaction.
We do not represent the self-interactions as part of the network. This results in
a network in Figure 5 with 108 proteins and 94 interactions.

We consider the model (2) with a clustering coefficient term and the degree
distribution model by a preferential attachment process (the Yule distribution
with scaling exponent φ). We choose the Yule as it represents the simple version
of preferential attachment that is common in the literature. The estimates are
given in Table 1. They are derived using the algorithm in Section 4.

The estimate of the preferential attachment scaling decay rate of about three
suggests that the network is close to the so-called “scale-free” range (that is,
φ ≤ 3). We note that the standard errors are based on the curvature of the
estimated log-likelihood and approximations to the sampling distribution based
on asymptotic arguments require non-standard justifications. In this case the
standard approximation to the sampling distribution can be shown to be valid
using a parametric bootstrap. The standard error of the scaling rate indicates
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Fig. 5. A protein - protein interaction network for E. Coli. The nodes represent proteins
and the partnerships indicate that the two proteins are known to interact with each other.

Table 1. MCMC maximum likelihood parameter estimates for the protein-protein
interaction network

Parameter est. s.e.

Scaling decay rate (φ) 3.034 0.3108
Correlation Coefficient (ν) 1.176 0.1457

some uncertainty in the determination of the rate. However the parameter of the
correlation coefficient is very positive. This indicates strong clustering (given
the degree sequence) and hence so-called “small world” behavior in the net-
work. Thus, this model provides a statistical valid means to test for small-world
characteristics of a network using the statistics commonly used to characterize
small-world networks.

Finally, we can test if the network is generated by this preferential attachment
model. If preferential attachment among proteins generated this network then
the parameter ν of the clustering coefficient will be zero. However we see that
the estimate is positive. We can test this more rigorously by comparing the log-
likelihood values for the maximum likelihood fit in Table 1 to the model where
ν is constrained to be zero. The change in the log-likelihood is 52.3, so that the
change in deviance is 104.6. This indicates that deviation from the preferential
attachment model is statistically significant, as can be verified by a parametric
bootstrap of the change in deviance.

6 Discussion

We have presented a simple stochastic model for random networks that has
arbitrary degree distribution and average clustering coefficient. The clustering
component of the model is directly interpretable via the clustering coefficient
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of the realizations from the model. The model places positive probability over
the set of possible networks. Conditional on the degree sequence, the clustering
coefficient covers the full range of values possible. The distribution over this
range is tuned as a monotone function of the clustering parameter.

The model form (1) is very general, and can incorporate general social struc-
ture [3, 30, 9, 8]. For example, in disease epidemiology, the two-sex random
network epidemic model is a commonly used to represent the contact structure
of pathogens transmitted by intimate contact [31]. This model is the model (2)
with ρ = 0 and X is restricted to heterosexual networks. However, this model
contains a major weakness which ultimately limits its utility. Specifically, it as-
sumes random mixing conditional on degree. The model (2) is a simple extension
of that allows tunable correlation coefficient. More generally, (1) can be used to
include nodal attributes and other structural characteristics. Such models have
proven to be valuable in epidemiology [32, 33].
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Abstract. We propose a family of statistical models for social network
evolution over time, which represents an extension of Exponential Ran-
dom Graph Models (ERGMs). Many of the methods for ERGMs are
readily adapted for these models, including MCMC maximum likelihood
estimation algorithms. We discuss models of this type and give exam-
ples, as well as a demonstration of their use for hypothesis testing and
classification.

1 Introduction

The field of social network analysis is concerned with populations of actors,
interconnected by a set of relations (e.g., friendship, communication, etc.). These
relationships can be concisely described by directed graphs, with one vertex for
each actor and an edge for each relation between a pair of actors. This network
representation of a population can provide insight into organizational structures,
social behavior patterns, emergence of global structure from local dynamics, and
a variety of other social phenomena.

There has been increasing demand for flexible statistical models of social
networks, for the purposes of scientific exploration and as a basis for practical
analysis and data mining tools. The subject of modeling a static social network
has been investigated in some depth. In particular, there is a rich (and growing)
body of literature on the Exponential Random Graph Models (ERGM) [1, 2, 3, 4].
Specifically, if N is some representation of a social network, and N is the set
of all possible networks in this representation, then the probability distribution
function for any ERGM can be written in the following general form.

P(N) =
1

Z(θ)
exp

{
θ′u(N)

}
.

Here, θ ∈ R
k, and u : N → R

k. Z(θ) is a normalization constant, which is typ-
ically intractable to compute. The u function represents the sufficient statistics
for the model, and, in a graphical modeling interpretation, can be regarded as
a vector of clique potentials. The representation for N can vary widely, possi-
bly including multiple relation types, valued or binary relations, symmetric or
asymmetric relations, and actor and relation attributes. The most widely stud-
ied models of this form are for single-relation social networks, in which case N is
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generally taken to be the weight matrix A for the network (sometimes referred
to as a sociomatrix ), where Aij is the strength of directed relation between the
ith actor and jth actor.

Often one is interested in modeling the evolution of a network over multiple
sequential observations. For example, one may wish to model the evolution of
coauthorship networks in a specific community from year to year, trends in the
evolution of the World Wide Web, or a process by which simple local relationship
dynamics give rise to global structure. In the following sections, we propose a
model family that is capable of modeling network evolution, while maintaining
the flexibility of ERGMs. Furthermore, these models build upon ERGMs, so that
existing methods developed for ERGMs over the past two decades are readily
adapted to apply to the temporal models as well.

2 Discrete Temporal Models

We begin with the simplest case of the proposed models, before turning to the
fully general derivation. One way to simplify a statistical model for social net-
works is to make a Markov assumption on the network from one time step to the
next. Specifically, if At is the weight matrix representation of a single-relation
social network at time t, then we can assume At is independent of A1, . . . , At−2

given At−1. Put another way, a sequence of network observations A1, . . . , At has
the property that

P(A2, A3, . . . , At|A1) = P(At|At−1)P(At−1|At−2) · · · P(A2|A1).

With this assumption in mind, we can now set about deciding what the form of
the conditional PDF P(At|At−1) should be. Given our Markov assumption, one
natural way to generalize ERGMs for evolving networks is to assume At|At−1

admits an ERGM representation. That is, we can specify a function Ψ : Rn×n ×
Rn×n → R

k and parameter vector θ ∈ R
k, such that the conditional PDF has

the following form.

P(At|At−1, θ) =
1

Z(θ, At−1)
exp

{
θ′Ψ (At, At−1)

}
(1)

2.1 An Example

To illustrate the expressivity of this framework, we present the following simple
example model. For simplicity, assume the weight matrix is binary (i.e., an adja-
cency matrix). Define the following statistics, which represent density, stability,
reciprocity, and transitivity, respectively.

ΨD(At, At−1) =
1

(n−1)

∑

ij

At
ij

ΨS(At, At−1) =
1

(n−1)

∑

ij

[
At

ijA
t−1
ij +(1−At

ij)(1−At−1
ij )

]
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ΨR(At, At−1) = n

[
∑

ij

At
jiA

t−1
ij

] / [
∑

ij

At−1
ij

]

ΨT (At, At−1) = n

⎡

⎣
∑

ijk

At
ikAt−1

ij At−1
jk

⎤

⎦
/ ⎡

⎣
∑

ijk

At−1
ij At−1

jk

⎤

⎦

The statistics are each scaled to a constant range (in this case [0, n]) to enhance
interpretability of the model parameters. The conditional probability mass func-
tion (1) is governed by four parameters: θD controls the density, or the number
of ties in the network as a whole; θS controls the stability, or the tendency of
a link that does (or does not) exist at time t − 1 to continue existing (or not
existing) at time t; θR controls the reciprocity, or the tendency of a link from i
to j to result in a link from j to i at the next time step; and θT controls the
transitivity, or the tendency of a tie from i to j and from j to k to result in a tie
from i to k at the next time step. The transition probability for this temporal
network model can then be written as follows.

P(At|At−1, θ) =
1

Z(θ, At−1)
exp

⎧
⎨

⎩
∑

j∈{D,S,R,T}
θjΨj(At, At−1)

⎫
⎬

⎭

2.2 General Models

We can generalize the form of (1) by replacing A1, A2, . . . , AT with general
networks N1, N2, . . . , NT ∈ N , which may include multiple relations, actor at-
tributes, etc. Furthermore, we generalize the Markov assumption to allow any
K-order dependencies, so that the previous discussion was for K = 1. In this
case, the function Ψ is also generalized by Ψ : N K+1 → R

k. The fully general
model can therefore be written as

P(NK+1, NK+2, . . . , NT |N1, . . . , NK , θ) =
T∏

t=K+1

P(N t|N t−K , . . . , N t−1, θ),

where

P(N t|N t−K, ..., N t−1, θ)=
1

Z(θ, N t−K, ..., N t−1)
exp

{
θ′Ψ (N t, N t−1, ..., N t−K)

}
.

Note that specifying the joint distribution requires one to specify a distribu-
tion over the first K networks. This can generally be accomplished fairly natu-
rally using an ERGM for N1 and exponential family conditional distributions for
N i|N1 . . . N i−1 for i ∈ {2, . . . , K}. For simplicity of presentation, we avoid these
details in subsequent sections by assuming the distribution over these initial K
networks is functionally independent of the parameter θ.
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3 Estimation

The estimation task for models of the above form is to use the sequence of ob-
served networks, N1, N2, . . . , NT , to find an estimator θ̂ that is close to the
actual parameter values θ in some sensible metric. As with ERGMs, the in-
tractability of the normalizing constant Z often makes explicit solution of max-
imum likelihood estimation difficult. However, general techniques for MCMC
sampling to enable approximate maximum likelihood estimation for ERGMs
have been studied in some depth and have proven successful for a variety of
models [3]. By a slight modification of these algorithms, we can apply the same
general techniques as follows.

Let

L(θ; N1, N2, . . . , NT ) = log P(NK+1, NK+2, . . . , NT |N1, . . . , NK , θ), (2)

M(t, θ) = Eθ

[
Ψ(Nt, N t−1, . . . , N t−K)|N t−1, . . . , N t−K

]
,

C(t, θ) = Eθ

[
Ψ(Nt, N t−1, . . . , N t−K)Ψ(Nt, N t−1, . . . , N t−K)′|N t−1, . . . , N t−K

]
.

where expectations are taken over the random variable Nt, the network at time
t. Note that

∇L(θ; N1, . . . , NT ) =
T∑

t=K+1

(
Ψ(N t, N t−1, . . . , N t−K) − M(t, θ)

)

and

∇2L(θ; N1, . . . , NT ) =
T∑

t=K+1

(M(t, θ)M(t, θ)′ − C(t, θ)) .

The expectations can be approximated by Gibbs sampling from the conditional
distributions [3], so that we can perform an unconstrained optimization proce-
dure akin to Newton’s method: approximate the expectations, update parameter
values in the direction that increases (2), repeat until convergence. A related al-
gorithm is described by [5] for general exponential families, and variations are
given by [3] that are tailored for ERG models. The following is a simple version
of such an estimation algorithm.

1. Randomly initialize θ(1)

2. For i = 1 up until convergence
3. For t = K + 1, K + 2, . . . , T
4. Sample N̂ t,1

(i) , . . . , N̂ t,B
(i) ∼ P(Nt|N t−K , . . . , N t−1, θ(i))

5. μ̂t
(i) = 1

B

∑B
b=1 Ψ (N̂ t,b

(i) , N
t−1, . . . , N t−K)

6. Ĉt
(i) = 1

B

∑B
b=1 Ψ (N̂ t,b

(i) , N
t−1, . . . , N t−K)Ψ (N̂ t,b

(i) , N
t−1, . . . , N t−K)′

7. Ĥ(i) =
∑T

t=K+1[μ̂
t
(i)μ̂

t′
(i) − Ĉt

(i)]

8. θ(i+1) ← θ(i) − Ĥ−1
(i)

∑T
t=K+1

[
Ψ (N t, N t−1, . . . , N t−K) − μ̂t

(i)

]



Discrete Temporal Models of Social Networks 119

5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

T

E
uc

lid
ea

n 
D

is
ta

nc
e 

fr
om

 T
ru

e 
θ

Approx MLE
MLE

Fig. 1. Convergence of estimation algorithm on simulated data, measured in Euclidean
distance of the estimated values from the true parameter values. The approximate MLE
from the sampling-based algorithm is almost identical to the MLE obtained by direct
optimization.

The choice of B can affect the convergence of this algorithm. Generally, larger
B values will give more accurate updates, and thus fewer iterations needed until
convergence. However, in the early stages of the algorithm, precise updates might
not be necessary if the likelihood function is sufficiently smooth, so that a B that
grows larger only when more precision is needed may be appropriate. If computa-
tional resources are limited, it is possible (though less certain) that the algorithm
might still converge even for small B values (see [6] for an alternative approach to
sampling-based MLE, which seems to remain effective for small B values).

To examine the convergence rate empirically, we display in Figure 1 the con-
vergence of this algorithm on data generated from the example model given
in Section 2.1. The simulated data is generated by sampling from the example
model with randomly generated θ, and the loss is plotted in terms of Euclidean
distance of the estimator from the true parameters. To generate the initial N1

network, we sample from the pmf 1
Z(θ) exp{θ′Ψ (N1, N1)}. The number of actors

n is 100. The parameters are initialized uniformly in the range [0, 10), except
for θD, which is initialized to −5θS − 5θR − 5θT . This tends to generate net-
works with reasonable densities. The results in Figure 1 represent averages over
10 random initial configurations of the parameters and data. In the estimation
algorithm used, B = 100, but increases to 1000 when the Euclidean distance
between parameter estimates from the previous two iterations is less than 1.
Convergence is defined as the Euclidean distance between θ(i+1) and θ(i) being
within 0.1. Since this particular model is simple enough for exact calculation
of the likelihood and derivatives thereof (see below), we also compare against
Newton’s method with exact updates (rather than sampling-based). We can
use this to determine how much of the loss is due to the approximations being
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performed, and how much of it is intrinsic to the estimation problem. The param-
eters returned by the sampling-based approximation are usually almost identical
to the MLE obtained by Newton’s method, and this behavior manifests itself in
Figure 1 by the losses being visually indistinguishable.

4 Hypothesis Testing

As an example of how models of this type might be used in practice, we present
a simple hypothesis testing application. Here we see the generality of this frame-
work pay off, as we can use models of this type to represent a broad range of scien-
tific hypotheses. The general approach to hypothesis testing in this framework is
first to write down potential functions representing transitions one expects to be
of some significance in a given population, next to write down potential functions
representing the usual “background” processes (to serve as a null hypothesis),
and third to plug these potentials into the model, calculate a test statistic, and
compute a p-value.

The data involved in this example come from the United States 108th Senate,
having n = 100 actors. Every time a proposal is made in the Senate, be it a bill,
amendment, resolution, etc., a single Senator serves as the proposal’s sponsor
and there may possibly be several cosponsors. Given records of all proposals
voted on in the full Senate, we create a sliding window of 100 consecutive pro-
posals. For a particular placement of the window, we define a binary directed
relation existing between two Senators if and only if one of them is a sponsor
and the other a cosponsor for the same proposal within that window (where
the direction is toward the sponsor). The data is then taken as evenly spaced
snapshots of this sliding window, A1 being the adjacency matrix for the first 100
proposals, A2 for proposal 31 through 130, and so on shifting the window by
30 proposals each time. In total, there are 14 observed networks in this series,
corresponding to the first 490 proposals addressed in the 108th Senate.

In this study, we propose to test the hypothesis that intraparty reciprocity is
inherently stronger than interparty reciprocity. To formalize this, we use a model
similar to the example given previously. The main difference is the addition of
party membership indicator variables. Let Pij = 1 if the ith and jth actors are
in the same political party, and 0 otherwise, and let P̄ij = 1 − Pij . Define the
following potential functions, representing stability, intraparty density, interparty
density,1 overall reciprocity, intraparty reciprocity, and interparty reciprocity.

ΨS(At, At−1) =
1

(n−1)

∑

ij

[
At

ijA
t−1
ij +(1−At

ij)(1−At−1
ij )

]

ΨWD(At, At−1) =
1

(n−1)

∑

ij

At
ijPij

1 We split density to intra- and inter-party terms so as to factor out the effects on
reciprocity of having higher intraparty density.
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ΨBD(At, At−1) =
1

(n−1)

∑

ij

At
ij P̄ij

ΨR(At, At−1) =n

[
∑

ij

At
jiA

t−1
ij

] / [
∑

ij

At−1
ij

]

ΨWR(At, At−1) =n

[
∑

ij

At
jiA

t−1
ij Pij

] / [
∑

ij

At−1
ij Pij

]

ΨBR(At, At−1) =n

[
∑

ij

At
jiA

t−1
ij P̄ij

] / [
∑

ij

At−1
ij P̄ij

]

The null hypothesis supposes that the reciprocity observed in this data is the
result of an overall tendency toward reciprocity amongst the Senators, regardless
of party. The alternative hypothesis supposes that there is a stronger tendency
toward reciprocity among Senators within the same party than among Senators
from different parties. Formally, the transition probability for the null hypothesis
can be written as

P0(At|At−1, θ(0)) =
1

Z0(θ(0), At−1)
exp

⎧
⎨

⎩
∑

j∈{S,WD,BD,R}
θ
(0)
j Ψj(At, At−1)

⎫
⎬

⎭ ,

while the transition probability for the alternative hypothesis can be written as

P1(At|At−1, θ(1)) =
1

Z1(θ(1), At−1)
exp

⎧
⎨

⎩
∑

j∈{S,WD,BD,WR,BR}
θ
(1)
j Ψj(At, At−1)

⎫
⎬

⎭ .

For our test statistic, we use the likelihood ratio. To compute this, we compute
the maximum likelihood estimators for each of these models, and take the ratio
of the likelihoods. For the null hypothesis, the MLE is

(θ̂(0)
S = 336.2, θ̂

(0)
WD = −58.0, θ̂

(0)
BD = −95.0, θ̂

(0)
R = 4.7)

with likelihood value of e−9094.46. For the alternative hypothesis, the MLE is

(θ̂(1)
S = 336.0, θ̂

(1)
WD = −58.8, θ̂

(1)
BD = −94.3, θ̂

(1)
WR = 4.2, θ̂

(1)
BR = 0.03)

with likelihood value of e−9088.96. The likelihood ratio statistic (null likelihood
over alternative likelihood) is therefore about 0.0041. Because the null hypothesis
is composite, determining the p-value of this result is a bit more tricky, since
we must determine the probability of observing a likelihood ratio at least this
extreme under the null hypothesis for the parameter values θ(0) that maximize
this probability. That is,

p-value = sup
θ(0)

P0

⎧
⎨

⎩
sup

θ̂
(0) P0(A1, . . . , A14|θ̂(0)

)

sup
θ̂
(1) P1(A1, . . . , A14|θ̂(1)

)
≤ 0.0041

∣∣∣∣∣θ
(0)

⎫
⎬

⎭ .
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In general this seems not to be tractable to analytic solution, so we employ a ge-
netic algorithm to perform the unconstrained optimization, and approximate the
probability for each parameter vector by sampling. That is, for each parameter
vector θ(0) (for the null hypothesis) in the GA’s population on each iteration, we
sample a large set of sequences from the joint distribution. For each sequence,
we compute the MLE under the null hypothesis and the MLE under the alter-
native hypothesis, and then calculate the likelihood ratio and compare it to the
observed ratio. We calculate the empirical frequency with which the likelihood
ratio is at most 0.0041 in the set of sampled sequences for each vector θ(0), and
use this as the objective function value in the genetic algorithm. Mutations con-
sist of adding Gaussian noise (with variance decreasing on each iteration), and
recombination is performed as usual. Full details of the algorithm are omitted for
brevity (see [7] for an introduction to GAs). The resulting approximate p-value
we obtain by this optimization procedure is 0.024.

This model is nice in that we can compute the likelihoods and derivatives
thereof analytically. In fact, it is representative of an interesting subfamily of
models, in which the distributions of edges at time t are independent of each
other given the network at time t−1. In models of this form, we can compute like-
lihoods and perform Newton-Raphson optimization directly, without the need of
sampling-based approximations. However, in general this might not be the case.
For situations in which one cannot tractably compute the likelihoods, an alter-
native possibility is to use bounds on the likelihoods. Specifically, one can obtain
an upper bound on the likelihood ratio statistic by dividing an upper bound on
the null likelihood by a lower bound on the alternative likelihood. When com-
puting the p-value, one can use a lower bound on the ratio by dividing a lower
bound on the null likelihood by an upper bound on the alternative likelihood.
See [8, 9] for examples of how such bounds on the likelihood can be tractably
attained, even for intractable models.

In practice, the problem of formulating an appropriate model to encode one’s
hypothesis is ill-posed. One general approach which seems intuitively appealing is
to write down the types of motifs or patterns one expects to find in the data, and
then specify various other patterns which one believes those motifs could likely
transition to (or would likely not transition to) under the alternative hypothesis.
For example, perhaps one believes that densely connected regions of the network
will tend to become more dense and clique-like over time, so that one might want
to write down a potential representing the transition of, say, k-cliques to more
densely connected structures.

5 Classification

One can additionally consider using these temporal models for classification.
Specifically, consider a transductive learning problem in which each actor has
a static class label, but the learning algorithm is only allowed to observe the
labels of some random subset of the population. The question is then how to use
the known label information, in conjunction with observations of the network
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evolving over time, to accurately infer the labels of the remaining actors whose
labels are unknown.

As an example of this type of application, consider the alternative hypothesis
model from the previous section (model 1), in which each Senator has a class
label (party affiliation). We can slightly modify the model so that the party
labels are no longer constant, but random variables drawn independently from
a known multinomial distribution. Assume we know the party affiliations of a
randomly chosen 50 Senators. This leaves 50 Senators with unknown affiliations.
If we knew the parameters θ, we could predict these 50 labels by sampling from
the posterior distribution and taking the mode for each label. However, since both
the parameters and the 50 labels are unknown, this is not possible. Instead, we
can perform Expectation Maximization to jointly infer the maximum likelihood
estimator θ̂ for θ and the posterior mode given θ̂.

Specifically, let us assume the two class labels are Democrat and Republican,
and we model these labels as independent Bernoulli(0.5) random variables. The
distribution on the network sequence given that all 100 labels are fully observed
is the same as given in the previous section. Since one can compute likelihoods in
this model, sampling from the posterior distribution of labels given the network
sequence is straightforward using Gibbs sampling. We can therefore employ a
combination of MCEM and Generalized EM algorithms (call it MCGEM) [10]
with this model to infer the party labels as follows. In each iteration of the al-
gorithm, we sample from the posterior distribution of the unknown class labels
under the current parameter estimates given the observed networks and known
labels, approximate the expectation of the gradient and Hessian of the log like-
lihood using the samples, and then perform a single Newton-Raphson update
using these approximations.

We run this algorithm on the 108th Senate data from the previous section. We
randomly select 50 Senators whose labels are observable, and take the remaining
Senators as having unknown labels. As mentioned above, we assume all Senators
are either Democrat or Republican; Senator Jeffords, the only independent Sen-
ator, is considered a Democrat in this model. We run the MCGEM algorithm
described above to infer the maximum likelihood estimator θ̂ for θ, and then
sample from the posterior distribution over the 50 unknown labels under that
maximum likelihood distribution, and take the sample mode for each label to
make a prediction.

The predictions of this algorithm are correct on 70% of the 50 Senators with
unknown labels. Additionally, it is interesting to note that the parameter val-
ues the algorithm outputs (θ̂S = 336.0, θ̂WD = −59.7, θ̂BD = −96.0, θ̂WR =
3.8, θ̂BR = 0.28) are very close (Euclidean distance 2.0) to the maximum like-
lihood estimator obtained in the previous section (where all class labels were
known). Compare the above accuracy score with a baseline predictor that al-
ways predicts Democrat, which would get 52% correct for this train/test split,
indicating that this statistical model of network evolution provides at least
a somewhat reasonable learning bias. However, there is clearly room for im-
provement in the model specification, and it is not clear whether modeling the
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Table 1. Summary of classification results

Method Accuracy

Baseline 52%

Temporal Model 70%

SGT 90%

evolution of the graph is actually of any benefit for this particular example. For
example, after collapsing this sequence of networks into a single weighted graph
with edge weights equal to the sum of edge weights over all graphs in the se-
quence, running Thorsten Joachims’ Spectral Graph Transducer algorithm [11]
gives a 90% prediction accuracy on the Senators with unknown labels. These
results are summarized in Table 1. Further investigation is needed into what
types of problems can benefit from explicitly modeling the network evolution,
and what types of models are most appropriate for basing a learning bias on.

6 Open Problems and Future Work

If we think of this type of model as describing a process giving rise to the networks
one observes in reality, then one can think of a single network observation as
a snapshot of this Markov chain at that time point. Traditionally one would
model a network at a single time point using an ERGM. It therefore seems
natural to investigate the formal relation between these Markov chain models
and ERGMs. Specifically, any Markov chain of the form described here has a
stationary distribution which can be characterized by an ERGM. Can one give a
general analytic derivation of this stationary ERGM for any Markov chain of the
form described here? To our knowledge, this remains an open problem. One can
also ask the reverse question of whether, given any ERGM, one can describe an
interesting set of Markov chains having it as a stationary distribution. Answering
this would not only be of theoretical interest, but would potentially also lead to
practical techniques for sampling from an ERGM distribution by formulating a
more tractable Markov chain giving rise to it. Indeed, one can ask these same
questions about general Markov chains (not just networks) having transition
probabilities in an exponential family, the stationary distributions of which can
be described by exponential families.

Moving forward, we hope to move beyond these ERG-inspired models to-
ward models that incorporate latent variables, which may also evolve over time
with the network. For example, it may often be the case that the phenomena
represented in data can most easily be described by imagining the existence of
unobserved groups or factions, which form, dissolve, merge and split as time pro-
gresses. The flexibility of the ERG models and the above temporal extensions
allows a social scientist to “plug in” his or her knowledge into the formulation
of the model, while still providing general-purpose estimation algorithms to find
the right trade-offs between competing and complementary factors in the model.
We would like to retain this flexibility in formulating a general family of models



Discrete Temporal Models of Social Networks 125

that include evolving latent variables in the representation, so that the researcher
can “plug in” his or her hypotheses about latent group dynamics, evolution of
unobservable actor attributes, or a range of other possible phenomena into the
model representation. At the same time, we would like to preserve the ability
to provide a “black box” inference algorithm to determine the parameter and
variable values of interest to the researcher, as can be done with ERG models
and their temporal extensions.
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Abstract. We address the problem of embedding entities into Euclidean
space over time based on co-occurrence data. We extend the CODE
model of [1] to a dynamic setting. This leads to a non-standard factored
state space model with real-valued hidden parent nodes and discrete
observation nodes. We investigate the use of variational approximations
applied to the observation model that allow us to formulate the entire
dynamic model as a Kalman filter. Applying this model to temporal
co-occurrence data yields posterior distributions of entity coordinates in
Euclidean space that are updated over time. Initial results on per-year
co-occurrences of authors and words in the NIPS corpus and on synthetic
data, including videos of dynamic embeddings, seem to indicate that the
model results in embeddings of co-occurrence data that are meaningful
both temporally and contextually.

1 Introduction

Embedding discrete entities into Euclidean space is an important area of research
for obtaining interpretable representations of relationships between objects. This
is very useful for visualization, clustering and exploratory data analysis. Recent
work [1] proposes a novel technique for embedding heterogeneous entities such
as author-names and paper keywords into a single Euclidean space based on
their co-occurrence counts. When applied to the NIPS corpus, the resulting
clusters of keywords and authors reflect real-life relationships between different
research areas and researchers in those respective areas. However, it would be
interesting to see how these relationships evolve over time, an aspect which these
techniques do not address. Recent work has examined the dynamic behavior of
social networks [2], but only with homogeneous entities, and with point estimates
of the embedding coordinates. The problem we are interested in differs in two
ways: first, embedding time-series co-occurrence data from two kinds of entities
(essentially weighted link data from a bipartite graph) in a dynamic model could
be useful for temporal data visualization, link prediction and group detection in
such networks. Examples of such bipartite data are author-word co-occurrences
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in conference proceedings over time, actor-director collaborations throughout
their careers, and so on. Second, modelling a distribution over the coordinates of
these embeddings instead of point estimates (as in [2]) would tell us about the
correlation and uncertainty in the entities’ coordinates. In this paper, we explore
one possible approach to achieve both these goals.

The layout of the rest of this paper is as follows. We discuss some related
work, in particular the model of [1] which we utilize. We then extend this model
to the dynamic case, describing how our dynamic model can be used for poste-
rior estimation using a Kalman filter after some approximations. The resulting
model keeps track of the belief state over all author and word coordinates in the
latent space based on the approximated co-occurrence observation model and
a zero-mean Gaussian transition model. We give derivations and intuition for
the operation of this dynamic model, as well as results on the NIPS corpus of
author-word co-occurrence data and on synthetic data.

2 Related Work

The problem of embedding discrete entities into euclidean space is well-studied.
Principal Components Analysis (PCA) is a standard technique based on eigen-
decomposition of the counts matrix [3]. Multi-Dimensional Scaling (MDS) [4] is
another technique. However, these techniques are not suitable for temporal data
if one wishes to enforce smoothness constraints on embeddings over time.

[5] introduced a model similar to MDS in which entities are associated with
locations in p-dimensional space, and links are more likely if the entities are close
in latent space. However their work does not take the sequential aspect of the
data into account. Also, the distribution over latent positions are obtained by
sampling, which becomes intractable for large networks. Their work also assumes
binary link data.

The most closely related work is the CODE model of [1], which gives a tech-
nique for embedding heterogenous entities (such as authors and keywords) based
on co-occurence data for the static case. We briefly introduce their model here,
and our notation is similar to theirs.

The basic model of CODE is a conditional model p(w|a), where w denotes
the words and a denotes the authors. Let φi and ψj denote the hidden variables
representing the coordinates of author ai and word wj in the latent space respec-
tively. By Φt(A), Ψt(W ) we represent the states related to all author and word
positions at timestep t. The conditional probability of seeing word wj given an
author ai is related (inversely) to the distance dij = |φi − ψj | of author i and
word j in the latent space, as well as the marginal counts of each individual
entity, p̄(ai) and p̄(wj). For latent coordinates in a d dimensional space,

p(wj |ai) = p̄(wj)
Z(ai)

e−|φi−ψj|2

Z(ai) =
∑

wj
p̄(wj)e−|φi−ψj |2

|φi − ψj |2 =
∑d

k=1(φ
k
i − ψk

j )2
(1)
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Fig. 1. Shaded nodes indicate hidden random variables. (A) The graphical model re-
lating author/keyword positions to co-occurrence counts at a single timestep. (B) The
corresponding factored state-space model for temporal inference.

The hidden coordinates Φt(A), Ψt(W ) are learned by maximizing the likelihood
objective function using conjugate gradient or other such techniques.

3 The Single-Timestep Model

The original conditional model was chosen by considering p(w|a)
p̄(w) to be inversely

proportional to the exponentiated squared distance between the latent embed-
dings φ(a) and ψ(w). Similarly, our model of the joint is motivated by considering
the initial ratio to be p(w,a)

p̄(w)p̄(a) instead, and deriving the resultant p(w, a) . The
reason for dividing by the empirical marginals is to normalize the joint by the
overall frequencies of the individual entities in the joint. This represents the sin-
gle timestep graphical model shown in Figure 1(A). The resultant p(w, a) is as
follows:

p(ai, wj |φi, ψj) = 1
Z p̄(ai)p̄(wj)e−|φi−ψj |2

Z =
∑

ai

∑
wj

p̄(ai)p̄(wj)e−|φi−ψj |2 (2)

4 Dynamic Embedding of Co-occurrence Data Through
Time

We consider the unknown coordinates of authors and words to be hidden vari-
ables in a latent space. Our goal is now to estimate these continuous hidden
variables given discrete co-occurrence observations. As shown above, we model
the joint posterior probability of author and word coordinates (given the obser-
vations) based on the distances between those coordinates. To make the prob-
lem tractable, we aim to derive a Gaussian distribution that is somehow close
to our observation model, which would allow us to use Kalman Filters, which
are described below. The natural approach which we follow is to minimize the
KL-divergence of a Gaussian distribution (as an approximation to the obser-
vation model) and the normalized likelihood of our model. However, this turns
out to be difficult since the KL-divergence has no closed-form solution, mainly
due to the non-standard log(Z) term (where Z is defined in equation (2). We
investigate two methods for making this expression tractable and obtaining a
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Gaussian that approximates the observation model. We will see how the approx-
imated model, together with a Gaussian transition model for the coordinates,
can be formulated as a standard dynamic model.

4.1 The State-Space Model

For our state-space model in the dynamic setting, we choose a factored state
space model as shown in Figure 1(B), similar to a factorial HMM [6] or switching
state space model [7]. It is a natural choice over the full joint model because we
consider the hidden coordinates of authors and words to be decoupled Markov
chains conditionally coupled given their co-occurrence. This model closely re-
sembles the factorial HMM model yet is distinct because of the hidden variables
being real-valued. Exact filtering and smoothing are very difficult in this model
because the prior belief state is not conjugate to the discrete observation density
for typical belief distribution choices like the Normal distribution. Instead, we
would like to approximate this exact model in order to formulate it as a Kalman
Filter.

4.2 Kalman Filters

A Kalman filter [8] is a linear chain graphical model with a backbone of hidden
real-valued states emitting a real-valued observation at every timestep. Both the
observation and transition models are assumed to be Gaussian. It is commonly
used in tracking the states of complex systems or locations of moving objects
such as robots or missiles. Filtering and smoothing are tractable in this model
because of the conjugacy of the Gaussian distribution to itself, which enables
the belief state to remain Normally distributed at each timestep after the three
standard steps of conditioning (factoring in a new observation to the current be-
lief state), prediction (propogating the belief through the transition model) and
rollup (marginalizing to obtain the new belief state). These steps are described
in more detail below.

4.3 Kalman Filter Formulation for Dynamic Embedding

In a standard Kalman Filter, all three steps mentioned above have closed form
solutions, i.e.:

Conditioning: P (Φt, Ψt|C1:t−1, Ct = ct)
∝ P (Ct = ct|Φt, Ψt)P (Φt, Ψt|C1:t−1)

Prediction and Rollup: P (Φt+1, Ψt+1|C1:t)
=

∫
Φt

∫
Ψt

P (Φt+1, Ψt+1|Φt, Ψt)P (Φt, Ψt|C1:t)∂Φt∂Ψt

(3)

These are the Kalman filter updates in our model. Lets see what happens for
our model in the conditioning step. The observation model is:

log p(Ct|Φt, Ψt)
= −

∑
ai

∑
wj

p̄(ai, wj)|φt,i − ψt,j |2 − log Z
(4)
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However, this is not a Gaussian kernel, so we do not have a closed form update
equation available. Now we look at approximations to project this family of
density functions to a Gaussian, in order to overcome this problem.

4.4 Approximate Conditioning Step

A simple approach: Jensen’s Inequality. One natural approach is to apply
Jensen’s inequality to approximate the difficult portion of the likelihood (i.e. the
log Z term), which happens to be concave. However as we shall see, this approx-
imation causes us to lose much of the information encoded in the normalization
constant, and will not be used in our final model. The log normalizing function
of our joint model is

logZ = log(
∑

ai

∑

wj

p̄(ai)p̄(wj)e−||φt,i−ψt,j ||2) (5)

Using Jensen’s inequality,

logZ ≥ −
∑

ai

∑

wj

p̄(ai)p̄(wj)||φt,i − ψt,j ||2 (6)

This gives us a lower bound on the KL divergence between an approximate
Gaussian distribution p and our distribution q. We denote p(ai) by pi and p(wj)
by pj. We also denote by χ the random variables < Φ, Ψ >. Maximizing the
KL divergence (details in the Appendix) gives us the parameters for the closest
Gaussian approximation to our observation model with mean zero and covariance
Σ given by the following equation.

Σ−1 = 2Λ̂ (7)

Where Λ̂ is defined as follows:

Λ̂ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
j c̃ijI2×2 j = i, 1 ≤ i ≤ 2A − 1∑
i c̃ijI2×2 i = j, 2A + 1 ≤ j ≤ 2(A + W ) − 1

−2c̃ijI2×2 i �= j, 1 ≤ i ≤ 2A − 1,
2A + 1 ≤ j ≤ 2(A + W ) − 1

02×2 otherwise

(8)

In the above equation c̃ij = p̄ij − p̄ip̄j . Note that there is no correlation between
the x and y coordinates in this model. It is clear that the numerator of our
observation model doesn’t give rise to any such correlation.

However the log-normalization constant gives rise to such correlation, which is
clear from figure 2. Unfortunately this approximation removes the correlations
between the x, y coordinates as we can see from equation 8. Having uncorrelated
x and y coordinates implies that higher-dimensional embeddings are not bene-
ficial, and that we may as well be embedding to a line. In practice, this model
often leaves us with such an embedding even when the space is two-dimensional,
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Fig. 2. A plot of the log normalizing constant log(e(−(x−a)2−(y−b)2)+e(−(x−c)2−(y−d)2))
for two given coordinates a, b and c, d. Two things are apparent: the correlation of x
and y coordinates , and the presence of multiple optima in this function. We desire an
approximation that preserves the x − y correlation.

since we are optimizing over the two dimensions independently. Also the mean of
the observation model is zero. Also this method is effectively minimizing a lower
bound on the KL divergence, which is not necessarily beneficial. We therefore
look for a better model.

A more sophisticated approach: Taylor approximation of a variational
upper bound. Now we try and come up with a model which preserves the
correlations between the axes. We look at a variational upper bound on the log
normalizing constant [9].

log Z ≤ λ
∑

ij

pipje
−(φi−ψj)T (φi−ψj) − 1 − log λ

Minimizing this upper bound effectively minimizes an upper bound on the
KL-divergence. However, direct minimization of this bound is difficult because
of the term inside the expectation, and because the expression is not convex.
Instead, we take a second order Taylor approximation of the e−(φi−ψj)T (φi−ψj)

values around ξi, ξj . A Taylor approximation of a function g(x) is given by,

g(x) = g(0) + xT [
∂g

∂x1
,

∂g

∂x2
]ξi,ξj +

1
2
xT H(ξi, ξj)x

Where H(ξi, ξj) is the Hessian of the function evaluated at ξi, ξj .
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Now we have a Gaussian approximation to our observation model, which
has canonical parameters Λ, η. These parameters , as derived in the appendix,
are functions of the Jacobian and Hessian matrix of the taylor approximation,
evaluated at ξi, ξj . We shall describe how we choose these parameters later in
this section.

In (3), we multiply two Gaussians i.e. prior p(Φt, Ψt|C1:t−1) with canonical
parameters (ηt|t−1, Λt|t−1) and the approximate observation distribution with
η, Λ. The notation ηt|t−1 denotes the value of a parameter at time t conditioned
on observations from timesteps 1 . . . t − 1. The resulting Gaussian p(Φt, Ψt|C1:t)
is distributed with ηt|t, Λt|t, where

ηt|t = ηt|t−1 + η

Λt|t = Λt|t−1 + Λ

We compute the moment parameters μt|t, Σt|t from the canonical parameters.
And we get the ηt|t−1, Λt|t−1 from the previous time-step of the Kalman Filter.

When applying the Taylor expansion, we set the ξ values to the μt|t−1 learnt
from the previous timestep. We found this to be most effective, and this also makes
sense since given the former time-steps’ data we are most likely to be around the
conditional means predicted from the former time-steps. Because of the noncon-
vex structure of the log-normalizer, which is due to the presence of saddle points
(Figure 2), the resulting Λ can become non-positive definite and have negative
eigenvalues. To project to the closest possible positive definite matrix, we set the
negative eigenvalues to zero (plus a small positive constant). Together these ap-
proximations succeed in giving us a tractable expressionwhile not losing the highly
informative inter-coordinate interactions (e.g. x-y correlation in two dimensions)
that the simple Jensen’s inequality approach would discard.

4.5 Prediction and Rollup Step

Our transition model is very simple, just a zero-mean symmetric increase in
uncertainty:

(Φt+1, Ψt+1) = (Φt, Ψt) + N(0, Σtransition)

Here Σtransition is a diagonal noise term denoting the spread of uncertainty along
both axes, which must be fixed beforehand. The prediction and rollup steps give
the following result:

(Φt+1, Ψt+1) ∼ N(μt+1|t, Σt+1|t)

where μt+1|t = μt|t and Σt+1|t = Σt|t + Σtransition.

4.6 Computational Issues

Note that we model all author-word interactions with a single large Kalman
filter, where the authors and words relate through the covariance matrix. This
introduces complexity issues since the size of the covariance matrix is propor-
tional to the number of authors and words. However some sparseness properties
of the covariance matrix can be exploited for faster computation.
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Fig. 3. Dynamic embedding of synthetic data vs. static embedding. A, B are two groups
of authors and X, Y are two groups of words. The 140-timestep data smoothly varies
from strong A-X and B-Y links to strong A-Y and B-X links. The entities are initialized
randomly (not shown). A. t = 20, strong A-X and B-Y links. B. t = 70, Intermediate
configuration, noisy uniform links. C. Strong A-Y and B-X links. D. A static embedding
of the aggregate co-occurrence matrix, which is effectively a noisy uniform matrix,
resulting in entities mixing with each other.

5 Experiments

We divide the results section in three parts. We present some snapshots from
our algorithm on embeddings of a synthetic datasets with pre-specified dynamic
structure. We then present snapshots and closeups of embeddings of author-word
co-occurrence data from the NIPS corpus over thirteen years. We also show
how the distance in our embedding between author-word pairs in the corpus
evolve over time. In all cases, Σtransition is currently set heuristically to give
a smoothly varying embedding that is still responsive to new data. We finish
our experimental section with a comparison with PCA [3], a well-studied static
embedding technique.

5.1 Modeling Trends over Time

We wish to inspect the performance of dynamic embedding in cases where the
underlying model is known. To do this, we generate noisy co-occurrence matrices
of 3 words and 3 authors over 140 timesteps. The matrices have some amount
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Fig. 4. (A). t = 13 Dynamic embedding of NIPS data (final timestep, 1999). (B),(C).
Close-ups of (roughly) the top two rectangles in (A). The first Both contain authors
and keyword groups that are interrelated (e.g. (B) contains entities related to kernels,
(C) contains reinforcement-learning-related terms and authots. (D). PCA embedding
of aggregate counts matrix of NIPS data, that averages out any sequential patterns.

of random sparseness in every timestep, to be more realistic. We divide the
authors in two groups, namely A, B and the words in two groups X, Y . We
vary the co-occurrences between these groups smoothly such that in the first
20 steps, authors A have high co-occurrence counts with X , and B with Y ,
whereas the A-Y and B-X counts are very low. After t = 20, this pattern starts
becoming less sharp, blending to a completely uniform matrix with noise at
t = 70. From then until t = 120, the authors and words “switch” i.e. A-Y
and B-X counts begin to dominate. From t = 120 to 140, the data continues
to reflect strong A-Y and B-X co-occurrences. A movie with this and other
dynamic embeddings is available at http://www.cs.cmu.edu/∼psarkar/icml06/.
Figure 3(A,B,C) shows three snapshots from a dynamic embedding of this data
sequence, which clearly reflect the underlying dynamic structure at different
timesteps. In contrast, Figure 3(D) shows a static embedding of the aggregate
summed counts matrix, which happens to be approximately uniform and thus
not indicative of any interesting structure in the data.
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5.2 The NIPS Corpus

In this section we shall look at word-author co-occurrence data over thirteen years
from the NIPS proceedings of 1986-1999. We implemented the dynamic Kalman
filter models on a subset of the NIPS dataset. The NIPS data corpus1 contains
co-occurrence count data for 13, 649 words and 2, 037 authors appearing together
in papers from 1986 to 1999. We partitioned this data into yearly raw count ma-
trices using additional information in the dataset, and picked a set of well-known
authors and meaningful keywords. The experiments shown here are carried out on
small subsets of authors and words in order to get easily interpretable 2-D plots
for this paper, however the algorithm scales well to larger sets.

Qualitative Analysis. The resulting embedding has some very interesting
properties. The words on different parts of it define different areas of machine
learning. We also find the corresponding authors in those areas. For exam-
ple in figure 4(A) we have presented the embedding of 40 authors and 428
words. These are the overall most popular authors, and the words they tend
to use.

We can divide the area in the figure in four clear areas, within the rectangles.
The top right region magnified in Figure 4(C) has words like reinforcement,
agent, actor, policy which clearly are words from the field of reinforcement
learning. We also have authors such as Singh, Dayan and Barto in the same area.
Dayan is known to have worked on acquisition and trading which are also
words in this region. However the very neighboring region on the left belongs
to words like kernel, regularization, error and bound. We see some overlap
with that region via the entities support and Vapnik. Also one of the other
two interesting regions consists of authors Jordan, Hinton, Gharamani Zemel,
Tresp. The lowest rectangular region is filled with words and authors like image,
segmentation, motion, movement. Notably we find that author Viola is placed
very close to these words and words like document, retrieval,facial. Also
we have author Murray co-placed with words voltage, circuit, chip, analog,
synapse. These are strongly supported by the co-occurrence data and anecdotal
evidence.

Quantitative Analysis. A single embedding does not tell us whether our algo-
rithm models dynamic structure. To investigate this aspect, in Figure 5 we plot
the average distance per timestep between three word-author pairs of interest,
along with the empirical probability of that pair per timestep, to see whether the
distances correlate to the probabilities. As we can see in the bottom panels of
Figures 5, (Jordan,variational) and (Smola,kernel) have high empirical prob-
abilities in the later timesteps, corresponding to drops in the distance between
these entities’ coordinates. In contrast, (Waibel,speech) co-occurs mostly in the
first half of the data set, and so we see the distance between the author-word
embeddings shrinking initially then gradually increasing over time.

1 http://www.cs.toronto.edu/ ∼ roweis/data.html
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Fig. 5. Average distance between author-word pairs over time (above), along with
corresponding empirical probabilities (below). A. Jordan and variational. B. Smola and
kernel C. Waibel and speech. The graphs on the bottom reflect empirical p(author |
word) from the NIPS data which varies inversely over time with the average author-
word distance in the embedding shown in the top row, demonstrating the responsiveness
of the embeddings to the underlying data.

5.3 Comparison with PCA

An embedding of the aggregate data with PCA is shown in Figure 4(D). The
embedding reflects relationships in the overall data very well, as seen in the three
rectangles highlighted. For example, one of them has entities like Scholkopf,
Smola, kernel and pca, and the others also have consistent sets of authors and
the keywords they are known to use. However the data fails to capture dynamic
trends in the data that our model successfully reflects. For example, Waibel
and speech do not co-occur at all in the latter timesteps of the dataset, as is
clear from the lower panel of Figure 5(C). However, since the aggregate counts
matrix embedded by static PCA averages out all sequential structure, Waibel
and speech are still relatively close in the PCA embedding.

6 Conclusion and Future Work

We have proposed and demonstrated a model for Euclidean embedding of co-
occurrence data over time by formulating the problem as a factored state space
model, and used an approximation to yield a tractable Kalman filter formu-
lation. The resulting model gives us an estimate of the posterior distribution
over the coordinates of the entities in latent space. The previous work we are
extending addresses this problem only for the single-timestep case, giving only
point estimates for the coordinates. Experimental results show that our model
yields interpretable visual results and reflects dynamic trends in the data. For
future work we will implement smoothing in the dynamic model to see if it offers
improved results over filtering. We will also obtain quantitative results for the
model on problems such as link prediction in social networks and classification
in word-document embedding.
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Appendix

In this section we give a detailed description of the derivations.

Derivation of Section 4.4

We compute the KL projection of our observation model (p) to the closest
Gaussian family (q).

D(p, q) =
∫

p ln p −
∫

p ln q
= −H(p) +

∫
(
∑

ij pij(φi − ψj)T (φi − ψj))dp + Ep(ln Z)

= −(A + W ) − ln((2π)2(A+W )|Σ|)
2

+Ep(
∑

ij pij(φi − ψj)T (φi − ψj)) + Ep(ln Z)

(9)

Using equations 5 and 6 we get a lower bound on equation 9.

D(p, q) ≥ −(A + W ) − ln((2π)2(A+W )|Σ|)
2

+Ep(
∑

ij(pij − pipj)(φi − ψj)T (φi − ψj))

≥ −(A + W ) − ln((2π)2(A+W )|Σ|)
2 + Ep(χT Λ̂χ)
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We get the expression in equation 8 by parameter matching. Differentiating
the above equation w.r.t Σ gives us the parameters for the closest Gaussian we
project our distribution into.

Derivation of Section 4.4

Now we derive the approximate observation model using Taylor expansion of the
exponentiated distance term of the normalization constant, i.e. e−(φi−ψj)T (φi−ψj)

around parameters ξi, ξj . We define the gradient (∇) and Hessian (H) for our
function. The gradient is defined as follows:

∇1(ξi, ξj) = (
∂g

∂φi
)ξi,ξj = −2e−(ξi−ξj)T (ξi−ξj)(φi − ψj)

∇2(ξi, ξj) = (
∂g

∂ψj
)ξi,ξj = −∇1(ξi, ξj)

H =

(
∂2g

∂ΦT
t ∂ΦT

t

∂2g
∂ΨT

t ∂Φt

∂2g
∂ΦT

t ∂Ψt

∂2g
∂ΨT

t ∂ΨT
t

)

ξi,ξj

=
(

H11 H12
H21 H22

)

The second order approximation of e−(φi−ψj)T (φi−ψj) gives

1 + φT
i ∇1 + ψT

j ∇2 + 1
2 [ΦT

t ΨT
t ]H(ξi, ξj)[ΦtΨt]

= 1 + 1
2 [φT

i H11φi + ψT
j H21φi + φT

i H12ψj + ψT
j H22ψj ]

(10)

Where H(ξi, ξj) is H evaluated at ξi, ξj . For our purpose these values evaluate
to the following:

H11 = 2e−(ξi−ξj)T (ξi−ξj)(2(ξi − ξj)(ξi − ξj)T − I)
H12 = −H11
H21 = −HT

11
H22 = H22

(11)

We also define the following symmetric matrix η and Λ for making the derivations
simple. Also here η is 2(A+W ) a dimensional vector and Λ is a 2(A+W ), 2(A+
W ) dimensional symmetric matrix. By i we denote author i and by j we index
word j.

ηi = pi

∑
j pj∇1(ξi, ξj)

ηj = pj

∑
i pi∇2(ξi, ξj)

(12)

Λii = pi

∑
j pjH11(ξi, ξj)

Λjj = pj

∑
i piH22(ξi, ξj)

Λij = pipjH12(ξi, ξj)
(13)
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Now using equations (10), (13) and (11) the expectation of the log normalizing
constant under the new distribution becomes:

Ep(
∑

ij pipje
−(φi−ψj)T (φi−ψj))

= c + Ep[
∑

i φT
i ηi +

∑
j ψT

j ηj ]+
1
2Ep[

∑
i φT

i Λiiφi + 2
∑

ij φT
i Λijψi +

∑
j φT

j Λjjφj ]
= c + Ep[χT η] + 1

2Ep[χT Λχ]
= c + μT η + 1

2Tr((μμT + Σ)Λ)

All terms independent of μ, Σ are combined in the constant term c. Hence the
approximation of D(p, q) comes out to be,

D(p, q) ≈ C − 1
2 ln|Σ| + tr((μμT + Σ))Λ̃) + λμT η+

λ
2 Tr((μμT + Σ)Λ)

A derivative w.r.t Σ and μ yields

Λ = Σ−1 = 2(Λ̃ + λ
2 Λ)

η = −λη

which are the required parameters for the Gaussian approximation of the obser-
vation model used in the Kalman filter.
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Abstract. Many networks are important because they are substrates
for dynamical systems, and their pattern of functional connectivity can
itself be dynamic — they can functionally reorganize, even if their un-
derlying anatomical structure remains fixed. However, the recent rapid
progress in discovering the community structure of networks has over-
whelmingly focused on that constant anatomical connectivity. In this
paper, we lay out the problem of discovering functional communities,
and describe an approach to doing so. This method combines recent
work on measuring information sharing across stochastic networks with
an existing and successful community-discovery algorithm for weighted
networks. We illustrate it with an application to a large biophysical
model of the transition from beta to gamma rhythms in the
hippocampus.

1 Introduction

The community discovery problem for networks is that of splitting a graph,
representing a group of interacting processes or entities, into sub-graphs (com-
munities) which are somehow modular, so that the nodes belonging to a given
sub-graph interact with the other members more strongly than they do with
the rest of the network. As the word “community” indicates, the problem has
its roots in the study of social structure and cohesion [1,2,3], but is related to
both general issues of clustering in statistical data mining [4] and to the systems-
analysis problem of decomposing large systems into weakly-coupled sub-systems
[5,6,7].

The work of Newman and Girvan [8] has inspired a great deal of research on
statistical-mechanical approaches to community detection in complex networks.
(For a recent partial review, see [9].) To date, however, this tradition has implic-
itly assumed that the network is defined by persistent, if not static, connections
between nodes, whether through concrete physical channels (e.g., electrical power
grids, nerve fibers in the brain), or through enduring, settled patterns of inter-
action (e.g., friendship and collaboration networks). However, networks can also
be defined through coordinated behavior, and the associated sharing of dynami-
cal information; neuroscience distinguishes these as, respectively, “anatomical”
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and “functional” connectivity [10,11]. The two sorts of connectivity do not map
neatly onto each other, and it would be odd if functional modules always lined
up with anatomical ones. Indeed, the same system could have many different sets
of functional communities in different dynamical regimes. For an extreme case,
consider globally-coupled map lattices [12], where the “anatomical” network is
fully connected, so there is only a single (trivial) community. Nonetheless, in
some dynamical regimes they spontaneously develop many functional communi-
ties, i.e., groups of nodes which are internally coherent but with low inter-group
coordination [14].

Coupled map lattices are mathematical models, but the distinction between
anatomical and functional communities is not merely a conceptual possibility.
Observation of neuronal networks in vivo show that it is fairly common for, e.g.,
central pattern generators to change their functional organization considerably,
depending on which pattern they are generating, while maintaining a constant
anatomy [15]. Similarly, neuropsychological evidence has long suggested that
there is no one-to-one mapping between higher cognitive functions and special-
ized cortical modules, but rather that the latter participate in multiple functions
and vice versa, re-organizing depending on the task situation [16]. Details of
this picture, of specialized anatomical regions supporting multiple patterns of
functional connectivity, have more recently been filled in by brain imaging stud-
ies [11]. Similar principles are thought to govern the immune response, cellular
signaling, and other forms of biological information processing [17]. Thus, in an-
alyzing these biological networks, it would be highly desirable to have a way of
detecting functional communities, rather than just anatomical ones. Similarly,
while much of the work on social network organization concerns itself with the
persistent ties which are analogous to anatomy, it seems very likely [18,19] that
these communities cut in complicated ways across the functional ones defined by
behavioral coordination [20,21] or information flow [22]. This is perhaps partic-
ularly true of modern societies, which are thought, on several grounds [23,24,19]
to be more flexibly organized than traditional ones.

In this paper, we propose a two-part method to discover functional communi-
ties in network dynamical systems. Section 2.1 describes the first part, which is
to calculate, across the whole of the network, an appropriate measure of behav-
ioral coordination or information sharing; we argue that informational coherence,
introduced in our prior work [25], provides such a measure. Section 2.2 describes
the other half of our method, using our measure of coordination in place of a
traditional adjacency matrix in a suitable community-discovery algorithm. Here
we employ the Potts model procedure proposed by Reichardt and Bornholdt
[26,27]. Section 2.3 summarizes the method and clarifies the meaning of the
functional communities it finds. Section 3 applies our method to a detailed bio-
physical model of collective oscillations in the hippocampus [28], where it allows
us to detect the functional re-organization accompanying the transition from
gamma to beta rhythms. Finally, Sect. 5 discusses the limitations of our method
and its relations to other approaches (Sect. 5.1) and some issues for future work
(Sect. 5.2).
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2 Discovering Behavioral Communities

There are two parts to our method for finding functional communities. We first
calculate a measure of the behavioral coordination between all pairs of nodes in
the network: here, the informational coherence introduced in [25]. We then feed
the resulting matrix into a suitable community-discovery algorithm, in place of
the usual representation of a network by its adjacency matrix. Here, we have
used the Reichardt-Bornholdt algorithm [26], owing to its Hamiltonian form, its
ability to handle weighted networks, and its close connection to modularity.

2.1 Informational Coherence

We introduced informational coherence in [25] to measure the degree to which
the behavior of two systems is coordinated, i.e., how much dynamically-relevant
information they share. Because of its centrality to our method, we briefly reca-
pitulate the argument of that paper.

The starting point is the strong notion of “state” employed in physics and
dynamical systems theory: the state of the system is a variable which determines
the distribution of all present and future observables. In inferential terms, the
state is a minimal sufficient statistic for predicting future observations [29], and
can be formally constructed as measure-valued process giving the distribution
of future events conditional on the history of the process. As a consequence, the
state always evolves according to a homogeneous Markov process [30,29].

In a dynamical network, each node i has an associated time-series of obser-
vations Xi(t). This is in turn generated by a Markovian state process, Si(t),
which forms its optimal nonlinear predictor. For any two nodes i and j, the
informational coherence is

ICij ≡ I[Si;Sj ]
minH [Si], H [Sj ]

(1)

where I[Si;Sj ] is the mutual information shared by Si and Sj , and H [Si] is
the self-information (Shannon entropy) of Si. Since I[Si;Sj ] ≤ minH [Si], H [Sj ],
this is a symmetric quantity, normalized to lie between 0 and 1 inclusive. The
construction of the predictive states ensures that Si(t) encapsulates all informa-
tion in the past of Xi(t) which is relevant to its future, so a positive value for
I[Si;Sj ] means that Sj(t) contains information about the future of Xi(t). That
is, a positive value of I[Si;Sj ] is equivalent to the sharing of dynamically rele-
vant information between the nodes, manifesting itself as coordinated behavior
on the part of nodes i and j.

Clearly, a crucial step in calculating informational coherence is going from
the observational time series Xi(t) to the predictive state series Si(t). In certain
cases with completely specified probability models, this can be done analyti-
cally [29,31]. In general, however, we are forced to reconstruct the appropriate
state-space structure from the time series itself. State reconstruction for deter-
ministic systems is based on the Takens embedding theorem, and is now routine
[32]. However, biological and social systems are hardly ever deterministic at
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experimentally-accessible levels of resolution, so we need a stochastic state re-
construction algorithm. Several exist; we use the CSSR algorithm introduced in
[33], since, so far as we know, it is currently the only stochastic state reconstruc-
tion algorithm which has been proved statistically consistent (for conditionally
stationary discrete sequences). We briefly describe CSSR in Appendix A.

Informational coherence is not, of course, the only possible way of measuring
behavioral coordination, or functional connectivity. However, it has a number
of advantages over rival measures [25]. Unlike measures of strict synchroniza-
tion, which insist on units doing exactly the same thing at exactly the same
time, it accommodates phase lags, phase locking, chaotic synchronization, etc.,
in a straightforward and uniform manner. Unlike cross-covariance, or the re-
lated spectral coherence, it easily handles nonlinear dependencies, and does not
require the choice of a particular lag (or frequency, for spectral coherence), be-
cause the predictive states summarize the entire relevant portion of the history.
Generalized synchrony measures [34] can handle nonlinear relationships among
states, but inappropriately assume determinism. Finally, mutual information
among the observables, I[Xi;Xj ], can handle nonlinear, stochastic dependen-
cies, but suffers, especially in neural systems, because what we really want to
detect are coordinated patterns of behavior, rather than coordinated instanta-
neous actions. Because each predictive state corresponds to a unique statistical
pattern of behavior, mutual information among these states is the most natural
way to capture functional connectivity.

2.2 The Reichardt-Bornholdt Community Discovery Algorithm

The Reichardt-Bornholdt [26,27] community discovery algorithm finds groups of
nodes that are densely coupled to one another, but only weakly coupled to the
rest of the network, by establishing a (fictitious) spin system on the network,
with a Hamiltonian with precisely the desired properties, and then minimizing
the Hamiltonian through simulated annealing. More concretely, every node i is
assigned a “spin” σi, which is a discrete variable taking an integer value from 1 to
a user-defined q. A “community” or “module” will consist of all the nodes with a
common spin value. The spin Hamiltonian combines a ferromagnetic term, which
favors linked nodes taking the same spin (i.e., being in the same community), and
an anti-ferromagnetic term, which favors non-linked nodes taking different spins
(i.e., being in different community). Both interactions are of the Potts model
type, i.e., they are invariant under permutations of the integers labeling the
clusters. After some algebraic manipulation [27], one arrives at the Hamiltonian

H(σ) = −
∑

i�=j

(Aij − γpij)δ(σi, σj) (2)

where Aij is the adjacency matrix, δ(·, ·) is the Kronecker delta function, pij is a
matrix of non-negative constants giving the relative weights of different possible
links, and γ gives the relative contribution of link absence to link presence.
The choice of pij is actually fairly unconstrained, but previous experience with
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community discovery suggests that very good results are obtained by optimizing
the Newman modularity Q [35]

Q(σ) =
1

2M

∑

i,j

(
Aij − kikj

2M

)
δ(σi, σj) (3)

where ki is the degree of node i, and M =
∑

i ki the total number of links.
Essentially, Newman’s Q counts the number of edges within communities, minus
the number which would be expected in a randomized graph where each node
preserved its actual degree [9], and σi were IID uniform. Setting pij = kikj/2M
and γ = 1, we see that H(σ) and −Q(σ) differ only by a term (the diagonal
part of the sum for Q) which does not depend on the assignment of nodes to
communities. Thus, minimizing H(σ) is the same as maximizing the modularity.
Varying γ, in this scheme, effectively controls the trade-off between having many
small communities and a few large ones [27], and makes it possible to discover
a hierarchical community structure, which will be the subject of future work.

While this procedure was originally developed for the case where Aij is a
0-1 adjacency matrix, it also works perfectly well when links take on (positive)
real-valued strengths. In particular, using Aij = ICij , we can still maximize
the modularity, taking the “degree” of node i to be ki =

∑
j ICij [27]. The

interpretation of the modularity is now the difference between the strength of
intra-community links, and a randomized model where each node shares its link
strength indifferently with members of its own and other communities.

2.3 Summary of the Method

Let us briefly summarize the method for discovering functional communities. We
begin with a network, consisting of N nodes. For each node, we have a discrete-
value, discrete-time (“symbolic”) time series, {xi(t)}, recorded simultaneously
over all nodes. The CSSR algorithm is applied to each node’s series separately,
producing a set of predictive states for that node, and a time series of those
states, {si(t)}. We then calculate the complete set of pairwise informational
coherence values, {ICij}, using Eq. 1. This matrix is fed into the Reichardt-
Bornholdt procedure, with Aij = ICij , which finds an assignment of spins to
nodes, {σi}, minimizing the Hamiltonian 2. The functional communities of the
dynamical network consist of groups of nodes with common spin values. Within
each community, the average pairwise coherence of the nodes is strictly greater
than would be expected from a randomizing null model (as described in the
previous paragraph). Furthermore, between any two communities, the average
pairwise coherence of their nodes is strictly less than expected from randomiza-
tion [27].

3 Test on a Model System of Known Structure: Collective
Oscillations in the Hippocampus

We use simulated data as a test case, to validate the general idea of our method,
because it allows us to work with a substantial network where we nonetheless
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have a strong idea of what appropriate results should be. Because of our ultimate
concern with the functional re-organization of the brain, we employed a large,
biophysically-detailed neuronal network model, with over 1000 simulated neurons.

The model, taken from [28], was originally designed to study episodes of
gamma (30–80Hz) and beta (12–30Hz) oscillations in the mammalian nervous
system, which often occur successively with a spontaneous transition between
them. More concretely, the rhythms studied were those displayed by in vitro
hippocampal (CA1) slice preparations and by in vivo neocortical EEGs.

The model contains two neuron populations: excitatory (AMPA) pyramidal
neurons and inhibitory (GABAA) interneurons, defined by conductance-based
Hodgkin-Huxley-style equations. Simulations were carried out in a network of
1000 pyramidal cells and 300 interneurons. Each cell was modeled as a one-
compartment neuron with all-to-all coupling, endowed with the basic sodium
and potassium spiking currents, an external applied current, and some Gaussian
input noise. The anatomical, synaptic connections were organized into blocks,
as shown in Fig. 2.

The first 10 seconds of the simulation correspond to the gamma rhythm,
in which only a group of neurons is made to spike via a linearly increasing
applied current. The beta rhythm (subsequent 10 seconds) is obtained by ac-
tivating pyramidal-pyramidal recurrent connections (potentiated by Hebbian
preprocessing as a result of synchrony during the gamma rhythm) and a slow
outward after-hyper-polarization (AHP) current (the M-current), suppressed
during gamma due to the metabotropic activation used in the generation of the
rhythm. During the beta rhythm, pyramidal cells, silent during gamma rhythm,
fire on a subset of interneurons cycles (Fig. 1).

4 Results on the Model

A simple heat-map display of the informational coherence (Fig. 3) shows little
structure among the active neurons in either regime. However, visual inspec-
tion of the rastergrams (Fig. 1) leads us to suspect the presence of two very
large functional communities: one, centered on the inhibitory interneurons and
the excitatory pyramidal neurons most tightly coupled to them, and another of
the more peripheral excitatory neurons. During the switch from the gamma to
the beta rhythm, we expect these groups to re-organize.

These expectations are abundantly fulfilled (Fig. 4). We identified commu-
nities by running the Reichardt-Bornholdt algorithm with the maximum num-
ber of communities (spin states) set to 25, the modularity Hamiltonian, and
γ = 1. (Results were basically unchanged at 40 or 100 spin values.) In both
regimes, there are two overwhelmingly large communities, containing almost all
of the neurons which actually fired, and a handful of single-neuron communi-
ties. The significant change, visible in the figure, is in the organization of these
communities.

During the gamma rhythm, the 300 interneurons form the core of the larger of
these two communities, which also contains 199 pyramidal neurons. Another 430
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a

b

Fig. 1. Rastergrams of neuronal spike-times in the network. Excitatory, pyramidal
neurons (numbers 1 to 1000) are green, inhibitory interneurons (numbers 1001 to 1300)
are red. During the first 10 seconds (a), the current connections among the pyramidal
cells are suppressed and a gamma rhythm emerges (left). At t = 10s, those connections
become active, leading to a beta rhythm (b, right).
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a b

Fig. 2. Schematic depiction of the anatomical network. Here nodes represent popu-
lations of cells: excitatory pyramidal neurons (triangles labeled E) or inhibitory in-
terneurons (large circle labeled I). Excitatory connections terminate in bars, inhibitory
connections in filled circles. During the gamma rhythm (a), the pyramidal neurons
are coupled to each other only indirectly, via the interneurons, and dynamical effects
separate the pyramidal population into participating (EP) and suppressed (ES) sub-
populations. During the beta rhythm (b), direct connections among the EP neurons,
built up, but not activated, by Hebbian learning under the gamma rhythm are turned
on, and the connection from the ES neurons to the interneurons are weakened by the
same Hebbian process (dashed line).

pyramidal neurons belong to a second community. A final 5 pyramidal cells are in
single-neuron communities; the rest do not fire at all. A hierarchical analysis (not
shown) has the two large communities merging into a single super-community.
The regular alternation of the two communities among the pyramidal neurons,
evident in Fig. 4a, is due to the fact that the external current driving the pyra-
midal neurons is not spatially uniform.

With the switch to the beta rhythm, the communities grow and re-organize.
The community centered on the interneurons expands, to 733 neurons, largely
by incorporating many low-index pyramidal neurons which had formerly been
silent, and are now somewhat erratically synchronized, into its periphery. In-
terestingly, many of the latter are only weakly coherent with any one interneu-
ron (as can be seen by comparing Figs. 3b and 4b). What is decisive is rather
their stronger over-all pattern of coordination with the interneurons, shown by
sharing a common (approximate) firing period, which is half that of the high-
index pyramidal cells (Fig. 1b). Similarly, the other large community, consist-
ing exclusively of pyramidal neurons, also grows (to 518 members), again by
expanding into the low-index part of the network; there is also considerable
exchange of high-index pyramidal cells between the two communities. Finally,
nine low-index neurons, which fire only sporadically, belong in clusters of one or
two cells.
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a

b

Fig. 3. Heat-maps of coordination across neurons in the network, measured by in-
formational coherence. Colors run from red (no coordination) through yellow to pale
cream (maximum).
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a

b

Fig. 4. Division of the network into functional communities. Black points denote pairs
of nodes which are both members of a given community. During the gamma rhythm
(a) the interneurons (numbered 1001 to 1300) form the core of a single community,
along with some of the active pyramidal neurons; because of the spatially modulated
input received by the latter, however, some of them belong to another community. Dur-
ing beta rhythm (b), the communities re-organize, and in particular formerly inactive
pyramidal neurons are recruited into the community centered on the interneurons, as
suggested by the rastergrams.
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5 Discussion and Conclusion

5.1 Limitations and Related Approaches

Our method is distinguished from earlier work on functional connectivity pri-
marily by our strong notion of functional community or module, and secon-
darily by our measure of functional connectivity. Previous approaches to
functional connectivity (reviewed in [10,11]) have either have no concept of func-
tional cluster, or use simple agglomerative clustering [4]; their clusters are just
groups of nodes with pairwise-similar behavior. We avoid agglomerative clus-
tering for the same reason it is no longer used to find anatomical communities:
it is insensitive to the global pattern of connectivity, and fails to divide the
network into coherent components. Recall (Sect. 2.3) that every functional com-
munity we find has more intra-cluster information sharing than is expected by
chance, and less inter-cluster information sharing. This is a plausible formaliza-
tion of the intuitive notion of “module”, but agglomeration will not, generally,
deliver it.

As for using informational coherence to measure functional connectivity, we
discussed its advantages over other measures in Sect. 2.1 above, and at more
length in [25]. Previous work on functional connectivity has mostly used surface
features to gauge connectivity, such as mutual information between observables.
(Some of the literature on clustering general time series, e.g. [36,37,38], uses
hidden Markov models to extract latent features, but in a mixture-model frame-
work very different from our approach.) The strength of informational coherence
is that it is a domain-neutral measure of nonlinear, stochastic coordination; its
weakness is that it requires us to know the temporal sequence of predictive states
of all nodes in the network.

Needing to know the predictive states of each node is the major limitation
of our method. For some mathematical models, these states are analytically
calculable, but in most cases they must be learned from discrete-value, discrete-
time (“symbolic”) time series. Those series must be fairly long; exactly how
long is an on-going topic of investigation,1 but, empirically, good results are
rare with less than a few thousand time steps. Similarly, reliable estimates
of the mutual information and informational coherence also require long time
series.

Predictive states can be mathematically defined for continuous-value, contin-
uous-time systems [30], but all current algorithms for discovering them, not just
CSSR, require symbolic time series. (Devising a state-reconstruction procedure
for continuous systems is another topic of ongoing research.) Spike trains, like
e-mail networks [22], are naturally discrete, so this is not an issue for them, but
in most other cases we need to find a good symbolic partition first, which is non-
trivial [39]. The need for long symbolic time series may be especially difficult to
meet with social networks.

1 CSSR converges on the true predictive states (see the appendix), but the rate of
convergence is not yet known.
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5.2 Directions for Future Work

Our results on the model of hippocampal rhythms, described in the previous sec-
tion, are quite promising: our algorithm discovers functional communities whose
organization and properties make sense, given the underlying micro-dynamics of
the model. This suggests that it is worthwhile to apply the method to systems
where we lack good background knowledge of the functional modules. With-
out pre-judging the results of those investigations, however, we would like to
highlight some issues for future work.

1. Our method needs the full matrix of informational coherences, which is an
O(N2) computation for a network of size N . If we are interested in the organiza-
tion of only part of the network, can we avoid this by defining a local community
structure, as was done for anatomical connectivity by [40]? Alternatively, if we
know the anatomical connectivity, can we restrict ourselves to calculating the in-
formational coherence between nodes which are anatomically tied? Doing so with
our model system led to basically the same results (not shown), which is promis-
ing; but in many real-world systems the anatomical network is itself uncertain.

2. The modularity Hamiltonian of Sect. 2.2 measures how much information
each node shares with other members of its community on a pairwise basis. How-
ever, some of this information could be redundant across pairs. It might be better,
then, to replace the sum over pairs with a higher-order coherence. The necessary
higher-order mutual informations are easily defined [10,41,42], but the number of
measurements needed to estimate them from data grows exponentially with the
number of nodes. However, it may be possible to approximate them using the same
Chow-Liu bounds employed by [25] to estimate the global coherence.

3. It would be good if our algorithm did not simply report a community
structure, but also assessed the likelihood of the same degree of modularity
arising through chance, i.e., a significance level. For anatomical communities,
Guimera et al. [43] exploit the spin-system analogy to show that random graph
processes without community structure will nonetheless often produce networks
with non-zero modularity, and (in effect) calculate the sampling distribution of
Newman’s Q using both Erdös-Rényi and scale-free networks as null models.
(See however [44] for corrections to their calculations.) To do something like
this with our algorithm, we would need a null model of functional communities.
The natural null model of functional connectivity is simply for the dynamics at
all nodes to be independent, and (because the states are Markovian) it is easy
to simulate from this null model and then bootstrap p-values. We do not yet,
however, have a class of dynamical models where there nodes share information,
but do so in a completely distributed, a-modular way.

4. A variant of the predictive-state analysis that underlies informational co-
herence is able to identify coherent structures produced by spatiotemporal dy-
namics [45]. Moreover, these techniques can be adapted to network dynamics,
if the anatomical connections are known. This raises numerous questions. Are
functional communities also coherent structures? Are coherent structures in
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networks [46] necessarily functional communities? Can the higher-order interac-
tions of coherent structures in regular spatial systems be ported to networks, and,
if so, could functional re-organization be described as a dynamical process at
this level?

5.3 Conclusion

Network dynamical systems have both anatomical connections, due to persis-
tent physical couplings, and functional ones, due to coordinated behavior. These
are related, but logically distinct. There are now many methods for using a
network’s anatomical connectivity to decompose it into highly modular com-
munities, and some understanding of these methods’ statistical and statistical-
mechanical properties. The parallel problem, of using the pattern of functional
connectivity to find functional communities, has scarcely been explored. It is
in many ways a harder problem, because measuring functional connectivity is
harder, and because the community organization is itself variable, and this vari-
ation is often more interesting than the value at any one time.

In this paper, we have introduced a method of discovering functional modules
in stochastic dynamical networks. We use informational coherence to measure
functional connectivity, and combine this with a modification of the Potts-model
community-detection procedure. Our method gives good results on a biophysi-
cal model of hippocampal rhythms. It divides the network into two functional
communities, one of them based on the inhibitory interneurons, the other con-
sisting exclusively of excitatory pyramidal cells. The two communities change in
relative size and re-organize during the switch from gamma to beta rhythm, in
ways which make sense in light of the underlying model dynamics. While there
are theoretical issues to explore, our success on a non-trivial simulated network
leads us to hope that we have found a general method for discovering functional
communities in dynamic networks.
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A The CSSR Algorithm

This appendix briefly describes the CSSR algorithm we use to reconstruct the
effective internal states of each node in the network. For details, see [33]; for an
open-source C++ implementation, see http://bactra.org/CSSR/. For recent
applications of the algorithm to problems in crystallography, anomaly detection
and natural language processing, see [47,48,49,50,51].

We wish to predict a dynamical system or stochastic process {Xt}. By Xt
s

we will denote the whole trajectory of the process from time s to time t, inclu-
sive, by X+

t the whole “past” or “history” of the process through time t, and
by X+

t its “future”, its trajectory at times strictly greater than t. The “state”
of {Xt} at time t is a variable, St, which fixes the distribution of all present
or future observations, i.e., the distribution of X+(t) [29,31]. As such, the state
is a minimal sufficient statistic for predicting the future of the process. Suffi-
ciency is equivalent to the requirement that I[X+

t ;X−t ] = I[X+
t ;St], where I[·; ·]

is the mutual information [52]. In general, St = ε(X−t ), for some measurable
functional ε(·) of the whole past history of the process up to and including time
t. If {Xt} is Markovian, then ε is a function only of Xt, but in general the state
will incorporate some history or memory effects. Each state, i.e., possible value
of ε, corresponds to a predictive distribution over future events, and equally
to an equivalence class of histories, all of which lead to that conditional distri-
bution over future events. State-reconstruction algorithms use sample paths of
the process to find approximations ε̂ to the true minimal sufficient statistic ε,
and ideally the approximations converge, at least in probability. The CSSR al-
gorithm [33] does so, for discrete-valued, discrete-time, conditionally-stationary
processes.
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CSSR is based on the following result about predictive sufficiency
[29, pp. 842–843]. Suppose that ε is next-step sufficient, i.e., I[Xt+1;X−t ] =
I[Xt+1; ε(X−t )], and that it can be updated recursively: for some measurable
function T , ε(X−t+1) = T (ε(X−t , Xt+1). Then ε is predictively sufficient for the
whole future of the process — intuitively, the recursive updating lets us chain
together accurate next-step predictions to go as far into the future as we like.
CSSR approximates ε by treating it as a partition, or set of equivalence classes,
over histories, and finding the coarsest partition which meets both of the condi-
tions of this theorem. Computationally, CSSR represents states as sets of suffixes,
so a history belongs to a state (equivalence class) if it terminates in one of the
suffixes in that state’s representation. That is, a history, x−t , will belong to the
class C, x−t ∈ C, if xt

t−|c|+1 = c, for some suffix c assigned to C, where |c| is the
length of the suffix.2

In the first stage, CSSR tries to find a partition of histories which is sufficient
for next-step prediction. It begins with the trivial partition, in which all histories
belong to the same equivalence class, defined by the null suffix (corresponding to
an IID process), and then successively tests whether longer and longer suffices
give rise to the same conditional distribution for the next observation which dif-
fer significantly from the class to which they currently belong. That is, for each
class C, suffix c in that class, and possible observable value a, it tests whether
Pr

(
Xt+1|X−t ∈ C

)
differs from Pr

(
Xt+1|Xt

t−|c|+1 = c,Xt−|c| = a
)
. (We use

standard tests for discrepancy between sampled distributions.) If an extended,
child suffix (ac) does not match its current classes, the parent suffix (c) is deleted
from its class (C), and CSSR checks whether the child matches any existing class;
if so it is re-assigned to the closest one, and the partition is modified accord-
ingly. Only if a suffix’s conditional distribution (Pr

(
Xt+1|Xt

t−l = ac
)
) differs

significantly from all existing classes does it get its own new cell in the partition.
The result of this stage is a partition of histories (i.e., a statistic) which is close

to being next-step sufficient, the sense of “close” depending on the significance
test. In the second stage, CSSR iteratively refines this partition until it can be
recursively updated. This can always be done, though it is potentially the most
time-consuming part of the algorithm.3 The output of CSSR, then, is a set of
states which make good next-step predictions and can be updated recursively,
and a statistic ε̂ mapping histories to these states.

If the true number of predictive states is finite, and some mild technical as-
sumptions hold [33], a large deviations argument shows that Pr (ε̂ �= ε) → 0
as the sample size n → ∞. That is, CSSR will converge on the minimal suffi-
cient statistic for the data-generating process, even though it lacks an explicit
minimization step. Furthermore, once the right statistic has been discovered, the
expected L1 (total variation) distance between the actual predictive distribution,

2 The algorithm ensures that there are never overlapping suffixes in distinct states.
3 In terms of automata theory, recursive updating corresponds to being a “deter-

ministic” automaton, and non-deterministic automata always have deterministic
equivalents.
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Pr
(
X+

t |ε(X−t )
)

and that forecast by the reconstructed states, Pr
(
X−t |ε̂(X−t )

)
,

goes to zero with rate O(n−1/2), which is the same rate as for IID data. The
time complexity of the algorithm is at worst O(n) + O(k2L+1), where k is the
number of discrete values possible forXt, and L is the maximum length of suffices
considered in the reconstruction. Empirically, average-case time complexity is
much better than this.
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Abstract. Social networks are the focus of a large body of research. A
number of popular email encryption tools make use of online directories
to store public key information. These can be used to build a social net-
work of people connected by email relationships. Since these directories
contain creation and expiration time-stamps, the corresponding network
can be built and analysed dynamically. At any given point, a snapshot
of the current state of the model can be observed and traditional metrics
evaluated and compared with the state of the model at other times.

We show that, with this described data set, simple traditional pre-
dictive measures do vary with time. Moreover, singular events pertinent
to the participants in the social network (such as conferences) can be
correlated with or implied by significant changes in these measures. This
provides evidence that the dynamic behaviour of social networks should
not be ignored, either when analysing a real model or when attempting
to generate a synthetic model.

1 Introduction

One of the elements of public key cryptography systems such as Pretty Good
PrivacyTM and GNU Privacy Guard is the need to guarantee the validity and
authenticity of public keys. As a solution, key servers dispense key trust in-
formation uploaded by key owners in the form of keys signatures. The trust
information is inserted into the system based on each users belief that the key
that they are signing is the one belonging to the intended user. These key servers
are a significant source of historical information as the public keys contain both
identity and trust relationships. The common practice of limiting the lifetime
of keys and of signatures based on calendar time ensures that stale information
can be identified. This allows one to view sets of key-rings within key servers as
social networks.

Using the time-stamped data it is possible to trace the entry and departure
of persons within the systems as well as the relationships connecting them. At
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each time it is possible to compute a number of metrics and statistics on the
new relationship or on the social network graph as a whole at that point.

We show that these metrics change over the lifetime of the network and that
some of the more distinct changes are highly correlated with events relevant
to the actors in the network. There was, for example, a distinct increase in
the average previous-shortest distance between two newly-connected actors in a
Debian mailing list immediately after a Linux conference.

This implies that static metrics are insufficient for analysing and describing
the behaviour in this network, and provides general evidence that care must be
taken when using only static metrics in analysing other such networks. Such met-
rics should be recomputed continuously and the temporal differences accounted
for. Additionally, these results could be of benefit in modelling “realistic” syn-
thetic social networks.

Further, we demonstrate that this network could, at any given time step, con-
sist of many disconnected components, on the order of the number of nodes in
the network. This indicates that care should be taken when using algorithms or
techniques which require the assumption that the network is connected, espe-
cially since in a dynamically built network components could easily be merging
and splitting over time.

The remainder of the paper is organised as follows. We start with a brief
summary of graphs and social networks as well as a review of PGPTM. Then,
we describe in detail the two data sets that we focus on, one relatively small
(extracted from the Debian developers key server) and one much larger
(extracted from the U Alberta key server), as well as report some basic statis-
tics on them. Dynamic networks were built up from those data sets so we next
describe and report the various metrics and statistics measured throughout the
life of these network graphs.

2 Background

2.1 Graphs and Social Networks

Graph theory is old and well-studied, with a plethora of concepts and algorithms.
For an introduction to graphs and graph algorithms see, for example, [1]. See [2]
for a more comprehensive reference.

Formally, a graph is a pair G = {V, E} where V is a set of nodes and E
is a set of edges which in turn are pairs of nodes (i.e. E = {e = (h, t) : h ∈
V and t ∈ V }). Note that in our definition of a graph (sometimes referred to
as an undirected graph) the order of the two points associated with an edge
is unimportant1. Two edges are said to be joined if they share the same node
between them (i.e. ei = (n1, n2), ej = (n2, n3)). A path between two nodes is a
collection of consecutively joined edges that connect those two nodes. There are a
variety of well known algorithms for determining the shortest path from one node
1 Contrasted with a digraph or directed graph, in which an edge is an ordered pair of

nodes. The graphs constructed in this document are all undirected.
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to another. Finally, a connected component is a subset of a graph where every
pair of nodes in that subset are connected by some path. If a graph is composed
of only one connected component then the graph is said to be connected.

The idea of social networks is simple—to model social and sociological data
using graphs. For a good introduction to social network analysis see [3] or the
more recent [4].

Interest in social networks has been around since at least the 1950’s. Modelling
collections of social actors as nodes in a graph and their relationships as edges
provided a paradigm that has since been utilised in a variety of different areas,
from studying the neural pathways of bacteria to analysing power grids [5]. In
1967 Milgram [6] formalised the “small world” property that has been found in
many social networks. Given any two nodes in a small world, it is highly probable
that those nodes are connected by a relatively short path. More recently, Watts’
book [7] on the small worlds phenomenon seems to have sparked even more
research in the area.

Initially, interest in social networks and small worlds was primarily focused on
using the graph paradigm to model and analyse data. More recently, researchers
have started looking at various methods of generating synthetic social networks
on which a variety of algorithms can be tested. Typically, social networks that
have the small world property are desired.

Interest in this small worlds property has translated into interest in a variety of
different methods for evaluating a new relationship. Just before an edge is added
to the network, the shortest path between the two nodes associated with an edge
can be recorded. Presumably, if this previous shortest path is, on average, very
low then the network will have the small worlds property (see for example [8]).
This leads to a useful tool in analysing social networks, as this metric is often
easy to measure. Indeed there are a host of different measures that are associated
with such new relationships, all of which are based in some way or another on
the concept of measuring the path or paths that exist between two nodes before
an edge relating them is added (see for example [9] for a summary of some of
these measures).

One thing to note is that some of these measures, as well as other social net-
work algorithms, may require that the network be connected, either to guarantee
a performance bound or, in some cases, to work at all.

2.2 PGPTM

Pretty Good Privacy (PGPTM) and variants (such as GNU Privacy Guard,
GPG) are programs for encrypting and signing e-mail. They can be used to
encrypt entire e-mail messages but more often are used to sign an e-mail as a
way of guaranteeing that the e-mail is actually a product of the person who
signed it.

PGPTM uses the RSA (Rivest Shamir Adleman) public and private key crypto-
system. Public key methods work by generating separate encryption (public) and
decryption (private) keys in such a way that decryption of a message with the
public key is nearly impossible. This allows mass distribution of the public key
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without concern. Anyone can encrypt messages but only someone with the private
key can decrypt them.

PGPTM can also be used to apply a digital signature to a message without
encrypting it. This is normally used in public postings to allow others to confirm
that the message actually came from a particular person. Once a digital signature
is created, it is almost impossible for anyone to modify either the message or the
signature without the modification being detected by PGPTM.

In order to verify the signature of an e-mail, the public key is needed. Without
key servers, people would have to distribute and find these keys themselves.
To facilitate this process, key servers store the (public) PGPTM keys and key
certificates. Anyone looking for a public PGPTM key can search for and retrieve
it from the key servers (The key servers synchronise with each other—if someone
adds a key to a key server it is distributed to all key servers).

Initially, a person must actively “sign” the key of another person (indicating
that they trust that that key belongs to that person). However, once a person
has signed someone’s key, that key now becomes trusted by the first person. In
this way it is possible to verify the validity of a particular key. A key is only
trusted if it is signed.

These chains of signatures build up like a web, called the web of trust. This
web-like structure is no accident. It is important to have as many disjoint paths
as possible to reduce the chance that someone can fake a confirmation chain
with a wrong signature.

Everyone who uses PGPTM (or its variants) has a key-ring of (mostly) valid
public keys. Additionally, a trust value can be assigned to each public key indi-
cating how much a person believes in the authenticity of the key. The validity
of a key can be determined by thresholding this trust value. Almost all of this
data can be mined from public key servers.

3 The Data

GPG and PGPTM key networks have a number of elements that make them
interesting data sources for our purposes; several key analyses have been done in
the past on trust relationships within key-rings with an eye at establishing the
authenticity of keys and the reliability of the key signing process (e.g., [10]). We
pursue here a different approach in that we are not interested in the keys them-
selves as much as the relationships which they imply between the individuals
within the key-ring universe.

The distinction is important in that different individuals may have multiple
keys for multiple roles which have not been linked for historical or operational
reasons. Hence, while historically the social distance within a group of individuals
was calculated with respect to key signatures with authenticity as an objective,
we only wish to establish a reasonable expectation that a relationship does exist.
We make an implicit assumption that the process used by people to determine
key trust is directly linked to the strength of the relationship between the two
people and not on a particular relationship between two specific keys.
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The keys contain a free form identifier string that is set by the key owner. By
a loose convention, this is usually composed of the email address (”John Doe
<johndoe@somewhere.com>”) of the key owner along with a brief longhand
description (”Work place software distribution key”).

The keys were then pre-processed to resolve individuals to their public keys,
even if an owner-to-owner signature between them was missing. To do this the
email labelling data was merged using an m-to-n merge: keys having multiple
email addresses were matched with keys labelled with those same email ad-
dresses. This ensured that we could obtain an unique identifier for each person
within the database.

Signatures between keys were assumed to indicate some form of friendship
between individuals. This assumption can be challenged in that key signatures
are granted on an opportunistic basis that may not be completely based on
friendship, as much as social access. This may explain with some individuals in
key networks have a disproportionate ’friend’ network that is not reciprocated.
While a metric for the level of trust accorded to each key was available, we chose
not to make use of it in this research.

Using the time-stamps we then tracked the evolution of the social network
from the addition of the first node to the end of the data collection period.
There are four possible changes that can occur in the network:

1. Node (person) addition (key creation)
2. Node (person) removal (key expiry/revocation)
3. Edge (relationship) addition (signature creation)
4. Edge (relationship) removal (signature expiry/revocation)

We thus labelled the identifying and friendship data with time-stamps. This
was done to prevent stale social information from flooding our analysis network.
Individuals and relationships were temporally removed from the dataset where
their underlying keys and signatures where cryptographically revoked or expired.
Because in the vast majority of cases no expiration date had been set for the
keys, we applied a timeout period of one year after the last sign of activity (key
creation or signing) from the user.

We extracted data from the following two key servers and created social net-
work databases from them. The key rings were:

The Debian key-ring: The developers key-ring for the Debian distribution
project was used as a small data set, using data captured as of July 5th,
2004. The key-ring as used by the GPG engine is about 10MB large.

The U Alberta key server key-ring: The key-ring of the U Alberta key server
was used as a large data set, using data captured as of May 27th, 2005. The
key-ring as used by the GPG engine is about 4GB large.

The Debian key-ring has about 1465 unique individuals within it, on average
an individual has 1.6 keys. The U Alberta key server key-ring has about 830,000
unique individuals in it, each with an average of 2.38 keys. We hypothesise that
this increase over the Debian data set is a result of the longitude of the key
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server data set. Within the Debian key-ring, there are about 17,912 keys which
sign Debian maintainer’s keys but are not part of the key-ring.

Furthermore, the email address enabled us to perform linking to other data
sources. In the case of the Debian server, we were able to link the debian-devel
and debian-project mailing list used by debian developers and extracted the
social network information from it for comparison to the GPG key network. We
matched email addresses to the individuals already linked to the GPG network
and added new entries for people that were not.

4 General Network Properties

Figure 1 shows the growth of the number of individuals (nodes) and relationships
(edges) in the social network incrementally built upusing theDebian key-ring data.

Figure 2 shows the same growth for the social network created from the U
Alberta key server data. We found that the large world of the U Alberta key
server key-ring behaves in a manner similar to the bow-tie structure observed
with the world wide web [11]. This bow-tie is composed of a core “knot” of
relationships in the middle. This core is referred to by a large number of persons
that are not in turn referred to (the left part of the bow-tie). The core also refers
to a large number of people who do not refer back to the core (the right part of
the bow-tie). Finally, there are a large number of “smaller worlds” unconnected
to the rest of the key-ring (the lint).

A measure of the overall connectivity was computed for both data sets over
time by picking a random individual and attempting to find a path to another
random individual within the data set. By computing the number of successful
paths between each pair, the overall connectivity for each key set was tracked.

Interestingly, as the size of the world grows, the likelihood that people will
be in different connected components increases. The connectivity of the system
within the key-ring was measured by tracking the number of times a path could
be found from point A to point B. Overall the connectivity of the graph begins
at 25% and drops to 3% when all individuals are within the world.
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Fig. 1. Population and relationships within the Debian key-ring over time
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Fig. 2. Population and relationships within the U Alberta key server over time

The Debian key-ring has a well-curated database and it’s interconnectivity
tends to converge to about .33 (i.e., about 1/3 of the time, a path can be found
to another individual within the key server). In contrast, the overall connectivity
of the U Alberta key server keeps lowering itself to about .01 with the passing of
time. We hypothesise that this is a direct result of the intended purpose of both
data sets. The Debian key-ring is cleaned and maintained to support the Debian
development process whereas the U Alberta key server is used as a database
which is not trimmed. Old, obsolete or broken keys therefore accumulate and
pollute the key server whereas extra and/or useless information is pruned from
the Debian key-ring. A large part of the problem comes from the widespread util-
isation of keys with no expiration information and which remain for an excessive
amount of time.

Figure 1 shows a comparison of the number of nodes and the number of
connections in the Debian network over time. Note that the number of connected
components increases in the same manner as the number of nodes. This provides
evidence that in certain social networks, the number of connected components
continuously vary over time. With such networks, caution is required not only
with the assumption that the underlying graph is connected but also with the
assumption that there are a constant number of connected components.

As previously mentioned, we also made use of two main Debian mailing lists
to compare against the GPG social network. Out of the 17,305 individuals that
posted to the mailing list, only 806 were part of the GPG social network. There
exist many explanations for this difference, which may include the curation pro-
cess that occurs with the Debian keyring and one-time posts to the mailing
list.

Figure 3 compares the average network distances for both GPG and email
data-sets. Interestingly, the email data-set rapidly converges to an average dis-
tance of slightly less than 3. We found this consistence surprising as we expected
a higher amount of one-off postings and individuals within the mailing lists and
thus a higher variation in the metrics. By inspecting the mailing lists we dis-
covered that a number of the mailing lists contain a number of long running
discussions between 2 or 3 individuals within the mailing lists. This explains
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Fig. 3. Comparison of the distance in both mail and keyring social networks
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Fig. 4. Comparison of the connectivity in both mail and keyring social networks

the stability of the average social distance metric, however we are unsure of the
reasons for the differences in the connectivity metrics between the GPG and
mailing lists net that is plotted in Figure 4.

By inspecting the graph, it becomes obvious that the mailing lists lead the
GPG key network temporally. This is what we expected intuitively as posting to
a mailing list requires less preparation than creating a GPG key. Furthermore,
the peak in mailing list connectivity also coincides with a number of Debian and
Linux conferences already mentioned. We thus propose that the GPG network
is a restricted subset of the mailing list network that lags behind because of its
formalised structure.

5 Relationship Properties

For the Debian data set, the relationships follow a power law curve; on average
each entity within the key-set would signal a relationship with about 3.8 other
people (see Figure 5 for the degree distribution taken at an arbitrary time-step).
Similarly, for the key-ring data set the relationships also follow a power-law curve
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Fig. 5. Degree distribution in the Debian data set 4211 days from start

but the average number of relationships has decreased to 1.93. We believe that
the number of single individuals accounts for this difference.

There are 15,939 relationships between individuals declared within the Debian
key-ring. Out of these, 5,515 are symmetric in nature in that the relationship
is reciprocated by the signee. The rest are one-way key signatures where an
individual signs another key without any acknowledging signature. One possible
reason for this behaviour is the use of automated email key signing methods. A
review of the relationships did not, however, yield any obvious indicators of this.

These asymmetric relationships are analysed by Feld and Elmore [12] who
suggested that they are present because of logistical difficulties in interacting
with other persons or because individuals may select individuals which their
peers consider popular but whom they themselves do not know personally. This
may have some significance for managing cryptographic and trust networks, as
it indicates that trust may be asymmetrical.

Within the U Alberta key server data set there are 118,960 distinct rela-
tionships declared, of which 69,193 are asymmetric. There are more than twice
as many (2.8 times) directed relationships as there are symmetric relationships.
Anecdotal evidence seems to support the proposal made by Feld and Elmore [12]
that these specific asymmetric relationships are the result of social popularity
and not actual acquaintance or social relationships. The most connected node
within the key server data set is Phillip Zimmerman, the original author of the
PGPTM package. It is interesting that a 33% rule seems to be in effect—about
33% of all the relationships are asymmetric; this appears to be consistent with
the results obtained from blogging data [13, 14].

Earlier, we argued that a popular metric for analysing social networks is the
shortest path length between nodes in the network. Figure 6 demonstrates how
the average shortest path length changes over time in both data sets.
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Fig. 6. Social distance change over time in both data sets

A typical use for this metric is for predicting which two nodes will be connected
next in the development of the social network. When a new edge is added we are
interested in the length of the previous shortest path between those two nodes
(obviously after the addition of the new edge the length of the new shortest path
will be one). If one can build a distribution over such lengths, it can be used to
estimate the probabilities (for all possible pairs of nodes which are not already
connected) that a particular edge will be added.

Figure 7 shows a kernel density function displaying over time the average
shortest path between two nodes in the Debian data set before a relationship is
added connecting them (the x-axis is time and the y axis is shortest path between
nodes). In other words, at a time where there is a peak, when a new relationship
is added between two nodes, the average shortest path between them is longer
than when there is a valley. To put it another way, the peaks correspond to times
when the people (nodes) in the network reach out farther in the graph for new
relationships. Note that because we used a normalised kernel density function to
display this data, y-axis has been rescaled. However, this representation clearly
demonstrates the relative differences in the data over time.

Note the large peak in 1999 and the periodic peaks roughly every year there-
after. We hypothesise that these peaks are explained by a number of Linux-based
conferences—that contacts made while organising and attending the conference
translated into key signatures. The conferences are as follows:

– Linux Expo 1995-1999, started 1995-06-26
– Linux World Expo, started 1999-08-09
– Linux Kongress 1994-2004, started 1995-05-01
– Linux Con Au 1999-2004, started 1999-07-09
– Linux Tag 1998-2004, started 1998-05-28
– Ottawa Linux Symposium 1999-2004, started 1999-07-22

The first edition of each conference is plotted in Figure 7 as a vertical black line
and labelled. Subsequent editions are plotted as vertical grey lines. Clearly, the
largest peak corresponds to the first edition of three of the conferences (Linux
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Fig. 7. Average shortest paths

Con Au, Ottawa Linux Symposium and Linux World Expo). Also, note that
there is a high degree of correlation between the remaining conference dates and
the peaks in the kernel density function.

This has important implications for both analysis and synthesis of social net-
works. If we gathered data from an existing hypothesised social network we could
easily create such a graph of shortest paths over time. If there were distinct peaks
in such a graph, it is reasonable to hypothesise that they correspond to events rel-
evant to the social actors composing the network. This provides an useful research
tool which narrows down a set of time periods within which researchers can search
for such events. For example, there are some peaks in Figure 7 that do not corre-
spond to the Linux conferences listed previously. This could be indicative of some
other event of importance (similar to the conferences) to the Debian community.
If one has some reason to believe that such an event exists these peaks could be
useful in narrowing down the time-frame where the event could be found.

Alternately, if we wish to generate a “realistic” but synthetic social network
modelling people’s relationships through e-mail, we now have evidence that when
determining which edges to add next as we build the graph, we should vary
the probabilities of a possible edge over time to reflect the above behaviour.
Perhaps by randomly generating times corresponding to important events where
the probability of adding an edge between two more distant nodes should briefly
spike as they do in Figure 7.

In the Debian data set the probability that a relationship joined two previously
unconnected components of the graph is about 0.33. Figure 8 shows a kernel
density function displaying this probability over time.
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Fig. 8. Average number of edges that connect previously unconnected components

This behaviour in social networks can reasonably be interpreted in some sense
as two separate groups making contact for the first time. This has important
ramifications in such applications as the study of the spread of forest fires, or
disease vectors.

Note that again there is some correlation between the largest mode in Figure 8
and the Linux conferences listed previously (the conferences are again plotted
as vertical lines). More evidence that properties associated with social networks
can vary significantly over time and thus should be tracked in a dynamic fashion.

Finally, an element of the GPG dataset that we found especially interesting is
the insight into the privacy behaviour of individuals that it provides. As stated
earlier, signatures between keys are required to ensure key authenticity and thus
people tend to acquire signatures on an opportunistic basis for their own key.

As noted by Borisov et al. [15], this mechanism has privacy implications, in-
deed we have used it in this paper to acquire individuals’ partial social networks.
To an extent this constitutes a weakness of the system as it reveals a great deal
of information to outside observers.

In the generic case, the individual makes use of his relationships to acquire
signatures to solidify the authenticity of the public that he distributes. This
ensures that a ’trusted’ signature path exists between the sender’s own key and
the recipient’s key, as the cost of exposing the social path between both persons.

An alternative, used to prevent information from being revealed, is to only
sign ones own keys as they expire or get compromised. Provided that an alternate
means of securing the distribution of the public key, this effectively prevents the
release of social information to the key server.
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A final solution used is the total dis-use of the signature mechanism by the
user. While in a minority, these users tend to provide limited, cryptic labelling
of their key to prevent the attribution of their messages.

6 Conclusion

We demonstrated how to build a social network using publicly available data
from PGPTM key servers—data which is ideal for the straightforward creation
of a highly dynamic network. Next, we showed that two common small world re-
lated social network parameters, number of connected components and previous
shortest path before a relationship, can change significantly over the life time of
the network. Finally, we provided evidence that these changes can be related to
events of interest to the actors in the social network (in the case of our data sets,
the events were Linux conferences). This indicates that such dynamic analysis
of these parameters could be useful in analysing other social networks as well as
possibly providing better algorithms for generating synthetic networks.

There are two obvious directions for future work. The first is to see whether
other social networks exhibit the behaviours shown in this paper. It is unlikely
that the network of e-mail relationships is unique in this respect, but testing
in other domains should be performed. The second is to use knowledge about
the dynamic parameters to try and generate synthetic social nets and to see if
these social nets are more “realistic” than those generated by static parameters.
Specifically, we hypothesise that varying these parameters in a periodic manner
will lead to an increase in the robustness of a generated network to disruption.

References

[1] Wilson, R.J.: Introduction to graph theory. John Wiley & Sons, Inc. (1986)

[2] Gross, J.L., Yellen, J., eds.: Handbook of graph theory. Discrete mathematics
and its applications. CRC press (2004)

[3] Wasserman, S., Faust, K.: Social network analysis: methods and applications.
Cambridge university press (1994)

[4] Carrington, P.J., Scott, J., Wasserman, S., eds.: Models and methods in social
network analysis. Cambridge university press (2005)

[5] Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature
393 (1998) 440–442

[6] Milgram, S.: The small world problem. Psycology Today (1) (1967) 61–67

[7] Watts, D.: Small Worlds: The Dynamics of Networks between Order and Ran-
domness. Princeton University Press (1999)

[8] Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In:
Proceedings of the 32nd ACM Symposium on Theory of Computing. (2000)

[9] Hannerman, R.A.: Introduction to Social Network Methods. Department of So-
ciology, University of California (2001)

[10] Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE
Symposium on Security and Privacy. (1996) 164–173



Empirical Analysis of a Dynamic Social Network Built from PGP Keyrings 171

[11] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A.: Graph structure in the web: Experiments and models. In: 9th World
Wide Web Conference. (2000)

[12] Feld, S.L., Elmore, R.: Patterns of sociometric choices: Transitivity reconsidered.
Social Psychology Quarterly 45(2) (1982) 77–85

[13] MacKinnon, I., Warren, R.H.: Age and geographic analysis of the livejournal social
network. Technical Report CS-2006-12, School of Computer Science, University
of Waterloo (2006)

[14] Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: Structure and evolution of
blogspace. Commun. ACM 47(12) (2004) 35–39

[15] Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not
to use pgp. In: Workshop on Privacy in the Electronic Society. (2004)



A Brief Survey of Machine Learning Methods for

Classification in Networked Data and an
Application to Suspicion Scoring

Sofus Attila Macskassy1 and Foster Provost2

1 Fetch Technologies,
2041 Rosecrans Ave, Suite 245, El Segundo, CA 90245

sofmac@fetch.com
2 New York University,

Stern School of Business, 44 W. 4th Street, New York, NY 10012
fprovost@stern.nyu.edu

Abstract. This paper surveys work from the field of machine learning
on the problem of within-network learning and inference. To give mo-
tivation and context to the rest of the survey, we start by presenting
some (published) applications of within-network inference. After a brief
formulation of this problem and a discussion of probabilistic inference
in arbitrary networks, we survey machine learning work applied to net-
worked data, along with some important predecessors—mostly from the
statistics and pattern recognition literature. We then describe an appli-
cation of within-network inference in the domain of suspicion scoring in
social networks. We close the paper with pointers to toolkits and bench-
mark data sets used in machine learning research on classification in
network data. We hope that such a survey will be a useful resource to
workshop participants, and perhaps will be complemented by others.

1 Introduction

This paper briefly surveys work from the field of machine learning, summarizes
work in a trio of research papers [1,2,3]. This extended abstract consists of the
abstracts for those papers in which we concentrate on methods published in the
machine learning literature, as well as methods from other fields that have had
considerable impact on the machine learning literature.

Networked data are the special case of relational data where entities are inter-
connected, such as web-pages or research papers (connected through citations).
We focus on within-network inference, for which training entities are connected
directly to entities whose classifications (labels) are to be estimated. This is in
contrast to across-network inference: learning from one network and applying
the learned models to a separate, presumably similar network [4,5]. For within-
network inference, networked data have several unique characteristics that both
complicate and provide leverage to learning and inference.
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Although the network may contain disconnected components, generally there
is not a clean separation between the entities for which class membership is
known and the entities for which estimations of class membership are to be
made. The data are patently not i.i.d., which introduces bias to learning and in-
ference procedures [6]. The usual careful separation of data into training and test
sets is difficult, and more importantly, thinking in terms of separating training
and test sets obscures an important facet of the data. Entities with known clas-
sifications can serve two roles. They act first as training data and subsequently
as background knowledge during inference. Relatedly, within-network inference
allows models to use specific node identifiers to aid inference [7].

Network data generally allow collective inference, meaning that various inter-
related values can be inferred simultaneously. For example, inference in Markov
random fields [8] uses estimates of a node’s neighbor’s labels to influence the esti-
mation of the nodes labels—and vice versa. Within-network inference
complicates such procedures by pinning certain values, but again also offers
opportunities such as the application of network-flow algorithms to inference.
More generally, network data allow the use of the features of a node’s neighbors,
although that must be done with care to avoid greatly increasing estimation
variance (and thereby error) [9].

2 Network Learning

Abstract from [1]:
This paper presents NetKit, a modular toolkit for classification in networked
data, and a case-study of its application to networked data used in prior ma-
chine learning research. We consider within-network classification: entities whose
classes are to be estimated are linked to entities for which the class is known.
NetKit is based on a node-centric framework in which classifiers comprise a lo-
cal classifier, a relational classifier, and a collective inference procedure. Various
existing node-centric relational learning algorithms can be instantiated with ap-
propriate choices for these components, and new combinations of components
realize new algorithms. The case study focuses on univariate network classi-
fication, for which the only information used is the structure of class linkage
in the network (i.e., only links and some class labels). To our knowledge, no
work previously has evaluated systematically the power of class-linkage alone
for classification in machine learning benchmark data sets. The results demon-
strate that very simple network-classification models perform quite well—well
enough that they should be used regularly as baseline classifiers for studies of
learning with networked data. The simplest method (which performs remarkably
well) highlights the close correspondence between several existing methods intro-
duced for different purposes—i.e., Gaussian-field classifiers, Hopfield networks,
and relational-neighbor classifiers. The results also show that a small number of
component combinations excel. In particular, there are two sets of techniques
that are preferable in different situations, namely when few versus many labels
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are known initially. We also demonstrate that link selection plays an important
role similar to traditional feature selection.

3 Suspicion Scoring

Abstract from [2]:
We describe a guilt-by-association system that can be used to rank entities by
their suspiciousness. We demonstrate the algorithm on a suite of data sets gen-
erated by a terrorist-world simulator developed under a DoD program. The data
sets consist of thousands of people and some known links between them. We
show that the system ranks truly mali-cious individuals highly, even if only rela-
tively few are known to be malicious ex ante. When used as a tool for identifying
promising data-gathering opportunities, the sys-tem focuses on gathering more
information about the most suspicious people and thereby increases the den-
sity of link-age in appropriate parts of the network. We assess per-formance
under conditions of noisy prior knowledge (score quality varies by data set un-
der moderate noise), and whether augmenting the network with prior scores
based on profiling information improves the scoring (it doesn’t). Although the
level of performance reported here would not support direct action on all data
sets, it does recommend the consideration of network-scoring techniques as a
new source of evidence in decision making. For example, the system can op-
erate on networks far larger and more com-plex than could be processed by a
human analyst.

Abstract from [3]:
We describe a guilt-by-association system that can be used to rank networked
entities by their suspiciousness. We demonstrate the algorithm on a suite of
data sets generated by a terrorist-world simulator developed to support a DoD
program. Each data set consists of thousands of entities and some known links
between them. The system ranks truly malicious entities highly, even if only
relatively few are known to be malicious ex ante. When used as a tool for iden-
tifying promising data-gathering opportunities, the system focuses on gathering
more information about the most suspicious entities and thereby increases the
density of linkage in appropriate parts of the network. We assess performance
under conditions of noisy prior knowledge of maliciousness. Although the levels
of performance reported here would not support direct action on all data sets,
the results do recommend the consideration of network-scoring techniques as a
new source of evidence for decision making. For example, the system can op-
erate on networks far larger and more complex than could be processed by a
human analyst. This is a follow-up study to a prior paper; although there is a
considerable amount of overlap, here we focus on more data sets and improve
the evaluation by identifying entities with high scores simply as an artifact of
the data acquisition process.
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Abstract. Online social networks are often a by-product of blogging
and other online media sites on the Internet. Services such as LiveJour-
nal allow their users to specify who their “friends” are, and thus a social
network is formed. Some users choose not to disclose personal informa-
tion which their friends list. This paper will explore the relationship
between users with the intent of being able to make a prediction of a
users age and country of residence based on the information given by
their friends on this social network.

1 Introduction

We review the preliminary results of our analysis of a partial LiveJournal data
set. The findings here represent the first stages of a larger project to analyze the
people and relationships that bind them online. We consider the linking between
the global location of users in LiveJournal with countries of their friends. We also
intend to look at the relationship between the age of a user and the age of their
friends. The obvious application of knowing how strong this bond is would be
to infer demographic information based on data we know about their friends[1].

2 Data Collection

Initial user discoverywas accomplished by polling the LiveJournal “Latest Posts”1

feed for the first week of September 2005. Of users discovered, using only those
who identified themselves to be from the top 8 countries as a start, a breadth-first
search was performed by crawling the users information page on LiveJournal. For
each user crawled, any demographic data volunteered by the user was recorded.
This process was performed at small intervals over the course of September to
December 2005. In total, information from 4,138,834 LiveJournal users were col-
lected. A subset of 2,317,517 users entered our sample, who had self-reported to
be from one of the top 8 nations. Table 1 shows the number of users from each of
the top 8 countries. As identified by [2], there are 2 limiting factors when dealing
with self-reported data: Many users do not report their location or age or report
erroneous or false data.
1 http://www.livejournal.com/stats/latest-rss.bml
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3 Is Age a Factor in Relationships?

We gathered age data for all of the users within the data set (effective Dec. 31,
2005) and calculated the average age of the friends for each individual user. We
also gathered the standard deviation for each group of friends and clustered the
information according to users age. We attempted a linear regression classifier
based on the normal age mean of the immediate social circle, divided by the
user’s age. We randomly split the data in two equal sets and calculated the
mean age of their social network. Using the first set, we calculated the average
slope of the user age versus the mean social network age, which is 0.992. We
then used the second set to benchmark the precision of the classifier at different
prediction interval.

Table 2 represents the different precisions obtained within certain confidence
intervals. Through experimentation with linear regressions and other classifica-
tions methods, we have concluded that there does exist a relationship between
the age of a person and their peer group.

4 Inferring User Location

We considered a lookup table of probabilities, where we can lookup what per-
centage of a users friends are from a country, X , and see what the probability
is that a user is also from country X . For example, if we know that 30% of a
user’s friends are Canadian, what is the probability that the user is Canadian
himself? Given our new subset of information, we iterate through all the users
and for each country and divide the number of friends that user has from that
country by their total number of friends.

From this, we can generate Fig 1, which establishes a general trend in re-
gards to the relationship between people with these percentage of friends from
a country, and the probability they are also from that country. Interestingly, we
see that Americans and Russians have a radically different curve from the rest.
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Table 1. Top 8 countries of origin re-
ported by users on LiveJournal

Country Count

United States 2990918
Russian Federation 252258
Canada 233839
United Kingdom 191650
Australia 89729
Philippines 31230
Germany 29224
Ukraine 28478

Table 2. Predict user’s age based on
the mean friend age

Age Range(+/-) Precision

6 months 0.29
8 months 0.39
1 year 0.49
1 1/2 years 0.62
2 years 0.71
2 1/2 years 0.76
3 years 0.80
3 1/2 years 0.83
4 years 0.86
5 years 0.98

This indicates that many people who are not American or Russian, have a large
number of American or Russian friends. We found that the more friends a user
has, the less accurate our ability to predict their country is. This result seems to
indicate that as a user gets more friends, they get more and more from outside
their home country.

5 Future Work

We plan to extend the age and location models presented here to not only find
falsely reported location and age information, but also correct it. Also, we wish
to see if results are similar on other online social networks.
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1 Introduction

There is increasing interest in the storage, retrieval, and analysis of email com-
munications. One active area of research focuses on the inference of properties
of the underlying social network giving rise to the email communications[1,2].
Email communication between individuals implies some type of relationship,
whether it is formal, such as a manager-employee relationship, or informal, such
as friendship relationships. Understanding the nature of these observed relation-
ships can be problematic given there is a shared context among the individuals
that isn’t necessarily communicated. This provides a challenge for analysts that
wish to explore and understand email archives for legal or historical research.

In this abstract, we focus on a specific subproblem of identifying the hierarchy
of a social network in an email archive. In particular, we focus on and define the
problem of inferring a formal reflection of an organizational hierarchy, the formal
title of an individual, within the underlying social network. We present a new
dataset, to use in conjunction with the original Enron dataset, for studying the
formal organizational structure underlying an email archive. We also provide
preliminary results from the classification of individuals to broad titles in the
organization, relying only on simple traffic statistics.

2 Enron Hierarchy Dataset

One major impediment to research in hierarchy inference from email archives is
the lack of a publicly available dataset providing email traffic from a structured
organization along with documentation of that structure. Therefore, we present
a dataset1 for use with the Enron email dataset[3], with a particular focus on
identifying the identities and titles of the individuals from whose accounts the
Enron email dataset was generated. Using various forms of the dataset[4,5,6],
along with documents related to the Enron trial, we identified the individuals
whose accounts compose the Enron dataset, as well as the email addresses, titles
and company groups for 124 of them. We also provide a mapping to six broad
titles from similar titles i.e.: VP (Vice President) for VP of Finance.
1 Available from http://www.cs.umd.edu/projects/linqs.
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3 Problem

In order to identify the underlying social network hierarchy, we focus on a formal
representation of this hierarchy, the formal titles of individuals. Specifically, we
focus on the problem of mapping the set of actors (people who send/receive
emails in an email collection) to a set of formal titles within the organization.

In our experiments, we classify the 124 individuals in our extended dataset
to six broad titles using various classifiers[7] processing simple statistics derived
from the relevant traffic. We use three types of traffic statistics: undirected (#
of emails sent and received), directed(# of emails sent, # of emails received)
and aggregate (# of emails sent/received to labeled individuals of a given broad
title). The goal is to identify which set of statistics yields the best performance.

Fig. 1 shows a summary of the results from different classifiers using our
various traffic models. Given the class distribution of the six target broad ti-
tles has an average random classifier performance of 20% accuracy, the results
are promising. In general, our classifiers outperformed the random baseline by
a statistically significant margin. Using our undirected model, we received an
accuracy of 53.2%, over twice as well as random. We note that although the
undirected model lacks traffic direction information, it performed comparably
with the directed model. The same is true in variations where we only used one
direction of the traffic. This implies that we may be able to classify individuals
without having all their email communications. Finally, we note that when we
use our aggregate model with the other two models, we are able to reach an
accuracy of over 62%.

It is also interesting to examine the confusion matrix, in Fig. 2, to see where
the misclassifications are occurring. Of note is the correlation between the mis-
classifications of individuals to titles. The misclassification of a title seems to
occur mainly with titles close to the correct title in the hierarchy. For example,
DIR is mainly misclassified with its immediate superior, VP, and subordinate,
MGR. Similarly, ASSOC is most misclassified as MGR. This trend is consistent
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among all the titles. This implies that our approach using traffic statistics might
be able to reconstruct levels in the overall hierarchy.

4 Conclusion

Identifying the hierarchy of the underlying social network is an important prob-
lem which aids in the exploration and understanding of organizational email
archives. We investigate a component of this larger problem, mapping individu-
als to their formal titles in the organization, using only simple traffic statistics
and present preliminary experimental results. In future work, we would like to
make greater use of commonly used social network analysis measures such as
centrality and equivalence in our classifiers, as well as use the content of the
email messages. We are also interested in trying to classify other relationships,
such as friendships or direct report relationships. Finally, we are interested in
the temporal aspects of the hierarchy, specifically being able to detect how and
when the organizational structure changes in an archive.
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1 Introduction

In this abstract we address the problem of learning approximate Markov Ran-
dom Fields (MRF) from large transactional data. Examples of such data include
market basket data, co-authorship networked data, etc. Such data can be repre-
sented by a binary data matrix, with an entry (i, j) takes a value of one (zero)
if the item j is (not) in the basket i. “Large” means that there can be many
rows or columns in the data matrix. To model such data effectively in order
to answer queries about the data efficiently, we consider the use of probabilis-
tic models. In this abstract, we consider employing frequent itemsets to learn
approximate global MRFs on large transactional data. We conduct an empiri-
cal study on real datasets to show the efficiency and effectiveness of our model
on solving the query selectivity estimation problem, that is to approximately
compute the marginal probability of sets of items (see [1] for the experimental
results). Translated into the social network domain, this is the problem of com-
puting the likelihood of seeing a particular combination of grocery items in the
market basket domain, or the probability of a group of professors coauthoring
a paper in a co-authorship network, etc. This marginal probability computation
is also useful for anomalous link detection [2] in social network analysis. A link
in a social network corresponds to a pair of items. The links whose associated
marginal probabilities are significantly low can be thought of as anomalous.

2 Background

Let I be a set of items, i1, i2, . . ., id. A subset of I is called an itemset. The
size of an itemset is the number of items it contains. An itemset of size k is a
k-itemset. Translated into the social network domain, an item corresponds to
an actor and an itemset corresponds to a group of actors in a network. Take
market basket data as an example, items here correspond to grocery items, and
itemsets correspond to the contents of individual baskets. A transactional dataset
is a collection of itemsets, D = {t1, t2, . . . , tn}, where ti ⊆ I. For any itemset α,

� This work is supported by DOE Award No. DE-FG02-04ER25611 and NSF CA-
REER Grant IIS-0347662. We refer the reader to a longer version of this paper [1]
for experimental results and complete proofs and discussions.
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we write the transactions that contain α as Dα = {ti|α ⊆ ti and ti ∈ D}. Each
item is modeled as a random variable.

Definition 1. (Frequent itemset): For a transactional dataset D, an itemset α
is frequent if |Dα| ≥ σ, where |Dα| is called the support of α in D, and σ is a
user-specified non-negative threshold.

Using Frequent Itemsets to Learn an MRF: The idea of using frequent
itemsets to learn an MRF was first proposed by Pavlov et al. [3]. A k-itemset and
its support represents a k-way statistic and can be viewed as a constraint on the
true underlying distribution that generates the data. Given a set of itemset con-
straints, a Maximum Entropy (ME) distribution satisfying all these constraints
is selected as the estimate for the true underlying distribution. This ME distri-
bution is essentially equivalent to an MRF. A simple iterative scaling algorithm
can be used to learn an MRF from a set of itemsets and efficient inference is cru-
cial to the running time of the learning algorithm. We call those models learned
through exact inference procedures exact models. The junction tree algorithm
is a commonly-used exact inference engine for probabilistic models. The time
complexity of the algorithm is exponential in the treewidth of the underlying
model. For real-world models, it is quite common that the treewidth will be well
above 20, making learning exact models intractable. As a result, we have to re-
sort to learning approximate models. Pavlov et al. [3] did not solve the problem
of learning MRFs on large transactional data. The MRFs they generate target
specifically the query variables and are therefore quite lightweight. In another
related work, Goldenberg and Moore [4] proposed to use frequent itemsets to
learn Bayesian networks over all variables.

3 Learning Approximate MRFs

Let us first consider an extreme case in which the whole graphical model consists
of a set of disjoint non-correlated components. Then the joint distribution can
be obtained in a straightforward fashion: Given an undirected graphical model G
subdivided into disjoint components C1, C2, . . ., Cn (not necessarily connected
components), the probability distribution associated with G is given by: p(X) =
∏n

i=1 p(XCi
).

3.1 Clustering Variables Based on Graph Partitioning

The basic idea of our proposed divide-and-conquer style approach comes directly
from the above observation. Specifically, the variables are clustered into groups
according to their correlation strengths. We call such a group a variable-cluster.
Then a local MRF is inferred on each variable-cluster. In the end we aggregate
all the local models to obtain a global model. k-MinCut [5] can serve our purpose
of clustering variables. Each graph partition corresponds to a variable-cluster.
Intuitively, we want to maximize correlations among variables within variable-
clusters, and minimize correlations among variables across variable-clusters. To
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accomplish this we ensure that the weight of edges reflect the strength of correla-
tions between variables. To this end, we propose a cumulative weighting scheme
as follows: for each itemset of size ≥ 2 , we add its support to the weight of all
related edges, whose two vertices are contained by the itemset.

3.2 Interaction Importance and Treewidth Based Variable-Cluster
Augmentation

The variable-clusters produced by the k-MinCut partitioning scheme are disjoint.
Intuitively, there can be correlation information that is lost during the partition-
ing. To compensate for this loss, we propose an interaction importance based
variable-cluster augmenting scheme. The idea is that we allow each variable-
cluster to grow outward. More specifically, it attracts and absorbs most impor-
tant interactions (edges) incident to its vertices from outside to itself. As a result,
some extra variables are pulled into the variable-cluster. We control the augmen-
tation through the number of extra vertices pulled into the cluster (called growth
factor). One can use the same growth factor for all variable-clusters to preserve
their balance.

As an optimization, we account for the model complexity during the aug-
mentation. We keep augmenting a partition until its complexity reaches a user-
specified threshold. More specifically, we keep track of the growth of the
treewidth during the augmentation. 1-hop neighboring vertices are first con-
sidered for the augmentation, followed by 2-hop neighboring vertices and so on.
Meanwhile, we still follow the interaction importance criteria. The resultant aug-
mented partitions are likely to become unbalanced in terms of their size. The
partitions with a small treewidth will grow more significantly than those with a
large treewidth. However, these partitions are balanced in terms of their com-
plexity. A benefit is that more interactions across partitions will be accounted
for in a computationally controllable manner, leading to a more accurate global
model.

3.3 Approximate Global MRFs and a Greedy Inference Algorithm

For each augmented variable-cluster, we collect all of its related itemsets and
use the iterative scaling algorithm to learn an exact local model. Two local
models are correlated to each other if they share variables. The collection of
all local models forms a global model of the original data. How do we make
inferences on this model efficiently? If all query variables are subsumed by a
single local MRF, we just need to calculate the marginal probability within
that model. If they span multiple local models, we use a greedy decomposition
scheme. First, we pick the local model that has the largest intersection with the
current query (i.e., covers most query variables). Then we pick the next local
model that covers most uncovered query variables. This covering process will
be repeated until we cover all query variables. Simultaneously, all intersections
between the above local models and the query are recorded. In the end, we derive
an overlapped decomposition of the query and we use Lemma 1 to compute its
marginal probability.
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Lemma 1. Given an undirected graphical model G subdivided into n overlapped
components, if there exists an enumeration of these n components, i.e., C1,
C2, . . ., Cn, s.t., for any 2 ≤ i ≤ n, the separating set, s(Ci,∪i−1

j=1Cj) ⊆ (Ci ∩
(∪i−1

j=1Cj)), then the probability distribution associated with G is given by: p(X) =
∏n

i=1 p(XCi
)

∏n
i=2 p(XCi

∩(∪i−1
j=1XCj

))
.

The greedy inference scheme is a heuristic, since it is possible to have cyclic
dependencies among the decomposed pieces. Also, our global model is not strictly
globally consistent in that there can exist inconsistencies across the local models.

4 Conclusion

In this abstract, we have described a new approach to learning approximate
MRFs on large transactional data. Our proposed approach has been shown to
be very effective and efficient in solving the selectivity estimation problem. In
the future, we would like to exploit the learned models on various social network
analysis tasks, such as link prediction and anomalous link detection.
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David M. Blei

Princeton University
Princeton, NJ 08544, USA
blei@cs.princeton.edu

In this volume, we have seen several compelling reasons for the statistical analysis
of network data.

1. Find statistical regularities in an observed set of relationships between ob-
jects. For example, what kinds of patterns are there in the friendships be-
tween co-workers?

2. Understand and make predictions about the specific behavior of certain ac-
tors in a domain. For example, who is Jane likely to be friends with given
the friendships we know about?

3. Make predictions about a new actor, having observed other actors and their
relationships. For example, when someone new moves to town, what can we
predict about his or her relationships to others?

4. Use network data to make predictions about an actor-specific variable. For
example, can we predict the functions of a set of proteins given only the
protein-protein interaction data?

All of the analysis techniques proposed here are model-based: one defines an
underlying joint probability distribution on graphs and considers the observed
relationship data under that distribution. Loosely—and this will be a point of
discussion among the panelists—the models can be divided into those that are
“descriptive” or “discriminative” and those that are “generative.”

A descriptive graph model is one where the number of nodes in the observed
graph or graphs is held fixed and the joint distribution is defined over the edges
of that fixed set. The influential exponential random graph model is a general
formulation of a descriptive graph model [1,2]. In this framework, the distribution
of the entire graph structure is an exponential family with sufficient statistics
that are aggregates of the entire graph, e.g., the number of triangles.

In a generative graph model, there is a clear probabilistic mechanism for
expanding the graph to new nodes and new edges. The paper by Goldenberg
and Zheng is a full generative graph model: the joint distribution is built around
the notion of new actors and new connections between existing actors. There is
still a joint distribution over the observed graphs. However, the probability of
a new node is well-defined and the probability of a new edge can be computed
without recalibrating the distribution.

There is ample room for middle ground between these categories. Several
papers define hierarchical models based on the latent space approach [3]. These
models are generative in the sense that new edges are conditionally independent
of the others and have a well-defined probabilistic generative process. But they
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Flight AA #11 − Crashed into WTC North

Flight UA #175 − Crashed into WTC South

Flight UA #93 − Crashed in Pennsylvania

Flight AA #77 − Crashed into Pentagon

Others

Fig. 1. 9-11 Hijacker/Terrorist Network. Source: [4].

are somehow not “as generative” as Goldenberg and Zheng’s model, where the
evolution of the social network is part of the fabric of the generative process.

This distinction was only one of the issues addressed in the workshop that
accompanied this volume. As in any kind of data analysis, the tools required
depend on the job at hand. We saw work on modeling sequential observations
from social networks, modeling multiple data types such as citations and text,
fitting graphs organized into hierarchies, and developing new statistics for the
exponential random graph model.

Many of these tools were presented for the first time at the workshop. In this
panel discussion, we have asked some of our distinguished participants to reflect
on the contents and offer a comparative perspective.

Stephen E. Fienberg
Carnegie Mellon University
Pittsburgh, PA 15213, USA
fienberg@stat.cmu.edu

The papers at this workshop when taken together capture many fascinating as-
pects of network modeling. Prodded by some earlier discussion, I thought it would
be useful to begin by reminding us about the two different kinds of graphical rep-
resentations of the traditional n×p data array for n individuals or units by p vari-
ables. Graphical models [5] are used to represent relationships among the variables
in terms of independence relationships. Graphical representations for networks
are used to represent relationships among the units, and it is precisely because
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we don’t have conditional independences in the usual dyadic models that things
are somewhat complex. Our goal in this workshop has been to both focus on the
latter kind of network models and to show how to link them in different ways to
probabilistic/statistical models for the variables, either through representations
of covariate information (see the paper here by Handcock) or or via mixed mem-
bership models (see the papers here by Airoldi et al. and by McCallum et al.).

As others have already noted, we have seen two different types of network
models—generative (or what Shalizi et al. call agent-based in their paper) and
descriptive. In the latter, which includes the class of p∗ models described here
by Wasserman et al., we identify motifs such as triads or stars and then build
models that use them as primary data summaries, e.g., sufficient statistics. When
we focus on the evolution of networks we can often be blending the two types
of models although they can still be purely descriptive, c.f. the paper here by
Henneke and Xing. An interesting question we have raised is whether the latent
space models of [3] are descriptive or generative. At one level they appear to be
descriptive but they are quite similar in other ways to the mixed membership
stochastic block models in the papers by Airoldi et al. and by McCallum et al.,
which are generative in nature see also [6] and the discussion that follows it.

One issue on which we have not dwelled but which is implicit in the discus-
sions of the distinction between the models is the nature of the data at hand.
When we ask what are the data and where do they come from we are really
asking a generative question which frames the nature of the models we should
be considering. Consider the reported “network” demonstrating the links among
the 9/11 hijackers that the press and administration officials are so fond of de-
scribing. Figure 1 shows perhaps the most carefully constructed version of it due
to [4] What types of linkages do the edges in the graph represent, i.e., to what
variables do they correspond? Was the graph constructed to assure that there are
paths linking the hijackers to one another? The network picture shows linkages
to others beyond the 9/11 hijackers with Arabic names. Are these individuals to
be considered hijacker accomplices or confederates? What about others to who
linkages could have been made beyond the horizon of observability from each
other? After all, many hijackers on the same flight were more than 2 steps away
from each other. Finally, real linkages in a terrorist network are dynamic but
Figure 1 represents data collapsed over time.

Let me end by summarizing what I see as three major statistical modeling
challenges in the analysis of network data. These relate to both the quality and
the ease of inference:

Computability. Can we do computations exactly for large networks, e.g., by
full MCMC methods, or do we need to resort to approximations such as those
involved in the variational approximation such as in the paper by Airoldi et al.?

Asymptotics. The is no standard asymptotics for networks, e.g., as n goes to
infinity, which can be used to assess goodness of fit of models. Thus we may have
serious problems with variance estimates for parameters and with confidence or
posterior interval estimates. The problem here is the inherent dependence of
network data.
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Embeddibility. Do our data represent the entire network or are they based on
only a subnetwork or subgraph, as in Figure 1? When the data come from a
subgraph we need to worry about boundary effects and the the attendant bias
they bring to parameter estimates. The one result I know in this area is due
to [7] for scale-free models in which they show the extent and nature of the bias.
My suspicion is that there are similar issues for most of the models discussed at
this workshop and we need to explore the consequences of these.

Andrew McCallum
University of Massachusetts

Amherst, MA 01003
mccallum@cs.umass.edu

Task-Focussed Social Network Analysis

I am a relative newcomer to social network analysis. Although I have been
doing some research in SNA for the past few years, most of my research over
the past decade has been in natural language processing. With this “outsider’s
perspective,” I’d like to offer a couple of thoughts about possible fruitful future
directions for SNA.

First, I encourage work in discriminatively-trained social network models.
Many of the recently-proposed models in my local sub-area of SNA are gener-

ative directed graphical models. These include various mixed-membership “topic
models” and related models, such as author-topic [8], author-recipient-topic [9],
role-author-recipient-topic [10], group-topic [11], infinite-relational [12], entity-
topic [13], relational mixed membership [14], and community-user-topic [15].
Other generative models are mentioned by the other panelists.

Although research NLP was dominated by generative models (such as hidden
Markov models and probabilistic context free grammars) for decades, the past
five years have seen a much stronger emphasis on “discriminative” conditional-
probability-trained models, such as logistic regression, maximum entropy models
and conditional random fields. Here model parameters are estimated by max-
imizing the conditional probability of some output variables given some input
context. Because the model is not responsible for generating the input context,
we need not be concerned about violated independence assumptions among the
input variables, and we are free to use rich, expressive sets of overlapping in-
put features. In NLP, the move from generative models to discriminative models
typically yields significant gains in accuracy.

Like in natural language, social network data sets are often rich in context,
multiple modalities, and other non-independent variables that would benefit
from a discriminative approach. We have begun research toward “conditionally-
trained topic models” with our work on multi-conditional learning, and in par-
ticular multi-conditional mixture models [16].

Second, in a related point, I encourage emphasis on particular tasks.
Much past work in SNA approaches the problem as a scientist—we observe

some natural phenomenon, and attempt to build models that capture them.
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These include foundational work in descriptive graph properties, generative mod-
els of graphs, etc. It is also interesting (and sometimes more useful) to approach
a domain as an engineer—asking “What is the real task we are trying to solve?”
“What is the use-case?” “What is the decision problem?”

There are, of course, many important use-cases for social network analysis:
deciding who to promote, finding an expert, selecting the right actions to improve
(or harm) an organization, identifying likely illicit behavior, selecting the best
collaborator, finding new music I’m likely to enjoy, predicting which team will
get the job done best.

Scientifically descriptive models may have something to say about these tasks,
but discriminative SNA models could focus on tuning their parameters for best
accuracy on these particular tasks. As interest in SNA expands, I predict that
there will be more research on models designed to address particular tasks.

Cosma Rohilla Shalizi
Carnegie Mellon University
Pittsburgh, PA 15213, USA

cshalizi@cmu.edu

Looking back over the papers presented at this workshop, I am struck by two
cross-cutting contrasts, which I want to explore a little here. The first contrast is
between models of phenomena and models of mechanisms, which doesn’t quite,
I think, map on to Prof. Fienberg’s contrast between descriptive and generative
models. The other contrast is between small networks which we know in rich
contextual depth, and big networks where our knowledge is shallow and impov-
erished. Before elaborating on our divisions, however, I would like to say a few
words about what we all seem to have in common. As the token representative
of statistical physics on the panel, I will be deliberately provocative and say that
what unites us is a devotion to the ideals of statistical mechanics.

Of course, of the participants at the workshop, only Dr. Clauset and myself
were even arguably statistical physicists — and really he’s a computer scien-
tist and I’m a statistician. But the goal of statistical mechanics is to explain
large-scale, macroscopic phenomena as the aggregated result of small-scale, mi-
croscopic behavior, as the result of interactions among individuals in contexts
which themselves result from small-scale interactions among individuals. Global
patterns should derive from local interactions. And this, I think, is something
we would all be comfortable endorsing. Certainly when I heard Prof. Krackhardt
explain that social networks matter because they show the contextual determi-
nants of behavior, or when I saw Prof. Handcock check his ERGMs by seeing
whether they could go from homophily and transitivity (local interactions) to
the distribution of geodesic distances (a global pattern), my inner statistical
mechanic felt right at home.1 So, I’d claim that we’re united by wanting to
understand context and interaction, and how these lead to global patterns.

1 To be sure, an inner economist, or an inner evolutionary biologist, would also have
felt at home.
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The first contrast, then, concerns how we do this. Once we have commit-
ted ourselves to generating the macroscopic patterns, we still need to decide
whether we do this by modeling the mechanisms of action and interaction, and
hope we get them right, or by modeling the consequences of interactions, and
hope the details don’t matter. The former leads to mechanistic models, the latter
to what physicists call “phenomenological” ones. Take, for example, homophily.
The model presented by Goldenberg and Zheng, for instance, is a mechanistic
model, with a fairly detailed representation of the process by which people come
to form social bonds, one consequence of which is homophily.2 We also had phe-
nomenological models of homophily, including both the ERGMs of Handcock
and Morris, and the dynamic latent space model of Sarkar, Siddiqi and Gordon.
Random walks in social space are obviously unrealistic, but may well be a good
first approximation to reality; the ERGMs are simply silent about the dynamical
processes by which networks form3. I want to have that a mechanistic under-
standing of the systems I study, so I find phenomenological models, as such,
less than fully satisfying. But I recognize that there are very good reasons to
use them, not the least of which is that they are much easier to get right. If
Handcock and Morris want to measure the strength of homophily relative to
transitivity, their problem is comparatively straightforward: estimate some pa-
rameters — with sufficient statistics, no less. If Goldenberg and Zheng want
to make the same measurement for their model, the inferential problems are
much more complicated, because their model includes mechanisms and not just
phenomena.

The contrast between mechanistic and phenomenological models, then, seems
to run through almost all the contributions here. But there is no reason we
cannot have both sorts of models, or why we should think they contradict each
other. In fact, I think this contrast is potentially productive of new research,
since there should be ways of systematically deriving phenomenological models
from mechanistic ones, and conversely of using well-estimated phenomenological
models to constrain guesses about mechanisms.

I turn now to the second contrast, which is not between models of networks,
but the networks themselves, or at least our representations of them. In small
networks, like the karate club, or even the Colorado Springs sex-and-drugs net-
work, we have, if not necessarily “thick descriptions” in the ethnographic sense,
at any rate deep ones. We know a reasonable amount about each of the nodes,
and sometimes (as in the karate club) can tell a story about each of the edges.
We have, in other words, a lot of context, which is what we want. But, precisely
because there is some much detail, it can be difficult, at a qualitative level, to
distinguish an analytical narrative from a mere just-so story. If we then turn
to quantitative models (which, as mathematical scientists, we’re inclined to do

2 In fact, they have what people in complex systems would call an “agent-based
model”. So far as I know, they are the only people to combine such a model with
proper inference.

3 The interesting paper by Hanneke and Xing adds dynamical detail to ERGMs, but
makes no mechanistic commitments.
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anyway), the small size of the network severely limits our ability to discriminate
among models; the maximum attainable power is low.

Of course, we are no longer limited to small networks like the karate club;
some of the graphs we saw presented at the workshop, like the PGP keyring
network, had several million nodes, making them about five orders of magnitude
larger than the karate club. This is exciting in its own right, because hitherto
we have had almost no information about the fine-grained social organization of
large populations. And certainly we no longer have much difficulty statistically
distinguishing the predictions of different models! Dealing with this volume of
strongly-dependent data does raise interesting technical problems; for instance,
it’s not obvious that models developed on small- and medium- sized networks
can scale up, either computationally or descriptively, to such large networks. But
beyond those technical problems, there is what seems like an intrinsic difficulty,
which is that our knowledge of these large networks is shallow. It is simply not
possible to have richly detailed information on all of the nodes, never mind all
of the edges. When we look at any network with a few hundred thousand nodes,
we are always going to be ignoring a huge amount of context about the nodes
and their interactions. This isn’t just a problem for social networks, but would
also apply to, say, gene-regulatory networks.

So, opening up the divide between small networks and large, we find it contains
a dilemma. Either we can possess the rich contextual detail we are interested in,
or we can have enough data to severely test our models. Perhaps some clever
methodology can cut a path through this dilemma; I myself don’t see how.

Mark S. Handcock
Department of Statistics
University of Washington

Seattle, WA 98195-4322 USA
handcock@stat.washington.edu

The development of exponential family random graph models (ERGM) for
networks has been limited by three interrelated factors: the complexity of realistic
models, dearth of informative simulation studies, and a poor understanding of
the properties of inferential methods.

The ERGM framework has connections to a broad array of literatures in
many fields, and I emphasize its links to spatial statistics, statistical exponential
families, log-linear models, and statistical physics.

Historically, exploration of the properties of these models has been limited
by three factors. First, the complexity of realistic models has limited the insight
that can be obtained using analytical methods. Second, statistical methods for
stochastic simulation from general random graph models have only recently been
become available [17,18,19]. Because of this, the properties of general models
have not been explored in depth though simulation studies. Third, the properties
of statistical methods for estimating model parameters based on observed net-
works have been poorly understood. The models and parameter values rele-
vant to real networks is therefore largely unknown. Significant progress is now
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being made in each of these areas. However, despite their elegance and pedigree,
the ERGM framework have yet to prove their value in addressing real scientific
questions of interest. They have the tendency to produce degenerate behavior
as a result of their maximum entropy properties [20]. This hinders simple model
specification. The papers presented at the workshop illustrated many alternative
approaches that may prove more fruitful.

The discussion of “generative” verses “descriptive” models was dialectic in
nature. The exponential random graph models can be clearly be interpreted as
descriptive. However, if we take the term generative to mean the ability to simu-
late network structures with given structural properties, they are also generative.
If by generative is meant dynamic changing edges and structures then the pa-
per of Steve Hanneke and Eric Xing illustrated how this can be achieved within
the ERGM framework. If a probabilistic mechanism for adding additional nodes
temporally is an regarded as an essential characteristic of a generative model
then the published work on ERGM models does not meet this criterion. Note,
however, that this is well within the capabilities of exponential family models.
The model of Goldenberg and Zheng has a more directly generative mechanism
and may be preferred for this reason.

The latent space framework invented by [3], and expanded by others at the
workshop was originally descriptive in nature. However, variants of it can have
a generative flavor (e.g., hierarchically adding a Gaussian mixture model for the
positions).

As noted in the discussion, there are many challenges facing statistical net-
work modeling. I believe the more traditional ones: inference from sampled data
rather than a census, the development of statistical testing procedures, and their
associated computational issues, will be overcome. The fundamental challenge is
adapting the choice of models to the scientific objectives. Network phenomena
are complex and the models must choose the specific features to be represented
well while being ambivalent about the others.

Let me end by noting the success of this workshop in bringing together statis-
tical network modeling researchers from distinct disciplines and scientific frame-
works. The disciplines have much to communicate to each other especially where
their scientific goals overlap. In the few cases were such researchers are brought
together to speak, there has been little cross-disciplinary listening going on.
This workshop was able to overcome that barrier so that researchers with back-
grounds in SNA, physics, computer science or statistics were listened to. This
success owes much to the principal organizers.
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Statistical Network Analysis: Models, Issues, and New Directions
A Workshop at the 23rd International Conference on Machine

Learning (ICML 2006)
Thursday, June 29, 2006, Pittsburgh PA, USA

Schedule: (ALL SESSIONS IN RANGOS 3, UC 2nd FLOOR)

9:00-10:30 – Morning Session I

– Invited talk: Heider vs Simmel: Comparing Generative Models of Network
Formation, David Krackhardt (Carnegie Mellon University)

– A latent Space Model for rank data , Isobel C. Gomley and Thomas B.
Murphy (Trinity College Dublin)

– Exploratory study of a new model for evolving networks, Anna Goldenberg
and Alice Zheng (Carnegie Mellon University)

11:00-12:30 – Morning Session II

– Invited talk: Latent variable models of social networks and text, Andrew
McCallum (University of Massachusetts, Amherst)

– Approximate kalman filters for embedding author-word co-occurrence data
over time, Purnamrita Sarkar, Sajid M. Siddiqi and Geoffrey J. Gordon
(Carnegie Mellon University)

– Analysis of a dynamic social network built from PGP keyrings, Robert War-
ren, Dana Wilkinson (University of Waterloo) and Mike Warnecke (PSW
Applied Research Inc.)

12:30-14:00 – Lunch and Poster Session –
Joint with SRL and SOS Workshops

– Stochastic block models of mixed membership: General formulation and
”nested” variational inference, Edoardo M. Airoldi (Carnegie Mellon
University), David M. Blei (Princeton University), Stephen E. Fienberg and
Eric P. Xing (Carnegie Mellon University)

– Exploratory study of a new model for evolving networks, Anna Goldenberg
and Alice Zheng (Carnegie Mellon University)

– A latent Space Model for rank data, Isobel C. Gomley and Thomas B. Mur-
phy (Trinity College Dublin)

– Information marginalization on subgraphs, Jiayuan Huang, (University of
Waterloo), Tingshao Zhu, Russel Greiner, Dale Schuurmans (University of
Alberta) and Dengyong Zhou (NEC Laboratories America)

– Predicting protein-protein interactions using relational features, Louis Li-
camele and Lise Getoor (University of Maryland, College Park)
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– Age and geographic inferences of the LiveJournal social network, Ian MacK-
innon and Robert Warren (University of Waterloo)

– A brief survey of machine learning methods for classification in networked
data and an application to suspicion scoring, Sofus A. Macskassy (Fetch
Technologies Inc.) and Foster Provost (New York University)

– Inferring formal titles in organizational email archives, Galileo M.S. Namata
Jr, Lise Getoor (University of Maryland, College Park) and Christopher P.
Diehl (John Hopkins Applied Physics Laboratory)

– Approximate kalman filters for embedding author-word co-occurrence data
over time, Purnamrita Sarkar, Sajid M. Siddiqi and Geoffrey J. Gordon
(Carnegie Mellon University)

– Discovering functional communities in dynamical networks, Cosma R. Shalizi
(Carnegie Mellon University) and Marcelo F. Camperi (University of San
Francisco, San Francisco)

– Learning approximate MRFs from large transaction data, Chao Wang and
Srinivasan Parthasarathy (Ohio State University)

– Entity relationship labeling in affiliation networks, Bin Zhao, Prithviraj Sen
and Lise Getoor (University of Maryland, College Park)

14:00-15:30 – Afternoon Session I

– Invited talk: A review of statistical models for networks, Stanley Wasserman
(Indiana University)

– Discrete temporal models of social networks, Steve Hanneke and Eric Xing
(Carnegie Mellon University)

– A simple model for complex networks with arbitrary degree distribution and
clustering, Mark S. Handcock and Martina Morris (University of Washing-
ton, Seattle)

16:00-16:30 – Afternoon Session II

– Strutural inference of hierarchies in networks, Aaron Clauset, Cristopher
Moore (University of New Mexico, Albuquerque) and Mark Newman (Uni-
versity of Michigan, Ann Arbor)

16:30-18:00 – Closing Session

– Invited panel discussion
Stephen Fienberg, Chair (Carnegie Mellon University)
David Blei (Princeton University),
David Krackhardt (Carnegie Mellon University),
Andrew McCallum (University of Massachusetts, Amherst),
Cosma Shalizi (Carnegie Mellon University),
Stanley Wasserman (Indiana University)

– Closing remarks
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