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Abstract. We present KLMLean 2.0, a theorem prover for propositional
KLM logics of nonmonotonic reasoning. KLMLean 2.0 implements some
analytic tableaux calculi for these logics recently introduced. KLMLean
2.0 is inspired by the “lean” methodology, it is implemented in SICStus
Prolog and it also contains a graphical interface written in Java1.

1 Introduction

In the early 90s Kraus, Lehmann and Magidor (from now on KLM) proposed a
formalization of nonmonotonic reasoning that has become a point of reference
[1,2]. According to KLM framework, a defeasible knowledge base is represented
by a (finite) set of nonmonotonic conditionals of the form A |∼ B, whose reading
is normally (or typically) the A’s are B’s. The operator “|∼” is nonmonotonic,
in the sense that A |∼ B does not imply A ∧ C |∼ B. For instance, a knowl-
edge base K may contain football lover |∼ bet , football player |∼ football lover ,
football player |∼ ¬bet , whose meaning is that people loving football typically
bet on the result of a match, football players typically love football but they
typically do not bet (especially on matches they are going to play...). If |∼
were interpreted as classical implication, one would get football player |∼ ⊥, i.e.
typically there are not football players, thereby obtaining a trivial knowledge
base. In KLM framework, the set of adopted inference rules defines some fun-
damental types of inference systems, namely, from the strongest to the weak-
est: Rational (R), Preferential (P), Loop-Cumulative (CL), and Cumulative
(C) logic. In all these systems one can infer new assertions without incurring
the trivializing conclusions of classical logic: in the above example, in none of
the systems can one infer football player |∼ bet . In cumulative logics (both C
and CL) one can infer football lover ∧ football player |∼ ¬bet , giving preference
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to more specific information; in Preferential logic P one can also infer that
football lover |∼ ¬football player ; in the rational case R, if one further knows
that ¬(football lover |∼ rich), that is to say it is not the case that football lovers
are typically rich persons, one can also infer that football lover ∧ ¬rich |∼ bet .

In [3,4,5] analytic tableaux procedures T ST for propositional KLM logics are
introduced. In this work we describe an implementation of T ST in SICStus
Prolog called KLMLean 2.0: it is inspired by the “lean” methodology [6], and
it also contains a graphical interface written in Java. For the rational logic R,
KLMLean 2.0 implements the labelled calculus T RT introduced in [5], and offers
two different versions: 1. a simple version, where Prolog constants are used to
represent T RT’s labels; 2. a more efficient one, where labels are represented by
Prolog variables, inspired by the free-variable tableau presented in [7]. To the
best of our knowledge, KLMLean 2.0 is the first theorem prover for KLM logics.

2 KLM Logics and Their Tableau Calculi

We consider a propositional language L defined from a set of propositional vari-
ables ATM , the boolean connectives and the conditional operator |∼. We use
A, B, C, ... to denote propositional formulas, whereas F, G, ... are used to denote
all formulas (including conditionals). The formulas of L are defined as follows:
if A is a propositional formula, A ∈ L; if A and B are propositional formulas,
A |∼ B ∈ L; if F is a boolean combination of formulas of L, F ∈ L.

In general, the semantics of KLM logics is defined by considering possible
world (or possible states) structures with a preference relation w < w′ among
worlds (or states), whose meaning is that w is preferred to w′. A |∼ B holds in a
model M if B holds in all minimal worlds (states) where A holds. This definition
makes sense provided minimal worlds for A exist whenever there are A-worlds
(A-states): this is ensured by the smoothness condition defined below. We recall
the semantics of KLM logics [1,2] from the strongest R to the weakest C. A
rational model is a triple M = 〈W , <, V 〉, where W is a non-empty set of items
called worlds, < is an irreflexive, transitive and modular2 relation on W , and V is
a valuation function V : W �−→ 2ATM . The truth conditions for a formula F are
as follows: - if F is a boolean combination of formulas, M, w |= F is defined as
for propositional logic; - let A be a propositional formula; we define Min<(A) =
{w ∈ W | M, w |= A and ∀w′, w′ < w implies M, w′ 
|= A}; - M, w |= A |∼ B
if for all w′, if w′ ∈ Min<(A) then M, w′ |= B. We also define the smoothness
condition on the preference relation: if M, w |= A, then w ∈ Min<(A) or ∃w′ ∈
Min<(A) s.t. w′ < w. Validity and satisfiability of a formula are defined as usual.
A preferential model is defined as the rational model, with the only difference
that the preference relation < is no longer assumed to be modular. Models for
(loop-)cumulative logics also comprise states. A (loop-)cumulative model is a
tuple M = 〈S, W , l, <, V 〉, where S is a set of states and l : S �→ 2W is a
function that labels every state with a nonempty set of worlds; < is defined on
S, it satisfies the smoothness condition and it is irreflexive and transitive in CL,
2 A relation < is modular if, for each u, v, w, if u < v, then either w < v or u < w.
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Fig. 1. Tableau systems T ST. To save space, we omit the standard rules for boolean
connectives. For T CLT and T CT the axiom (AX) is as in T PT.

whereas it is only irreflexive in C. A propositional formula holds in a state s if
it holds in all the worlds w ∈ l(s); a conditional A |∼ B holds in a model if B
holds in all minimal states where A holds.

In Figure 1 we present the tableaux calculi T ST for KLM logics, where S
stands for {R, P, CL, C}. The basic idea is simply to interpret the preference
relation as an accessibility relation. The calculi for R and P implement a sort of
run-time translation into (extensions of) Gödel-Löb modal logic of provability G.
This is motivated by the fact that we assume the smoothness condition, which
ensures that minimal A-worlds exist whenever there are A-worlds, by preventing
infinitely descending chains of worlds. This condition therefore corresponds to
the finite-chain condition on the accessibility relation (as in modal logic G). This
approach is extended to the cases of CL and C by using a second modality L
which takes care of states. The rules of the calculi manipulate sets of formulas
Γ . We write Γ, F as a shorthand for Γ ∪ {F}. Moreover, given Γ we define the
following sets: Γ � = {�¬A | �¬A ∈ Γ}; Γ �↓

= {¬A | �¬A ∈ Γ}; Γ |∼± =
{A |∼ B | A |∼ B ∈ Γ} ∪ {¬(A |∼ B) | ¬(A |∼ B) ∈ Γ}; Γ L↓

= {A | LA ∈ Γ}.
As mentioned, the calculus for rational logic R makes use of labelled formulas,
where the labels are drawn from a denumerable set A; there are two kinds of
formulas: 1. world formulas, denoted by x : F , where x ∈ A and F ∈ L; 2.
relation formulas, denoted by x < y, where x, y ∈ A, representing the preference
relation. We define Γ M

x→y = {y : ¬A, y : �¬A | x : �¬A ∈ Γ}.
The calculi T ST are sound and complete wrt the semantics, i.e. given a set of

formulas Γ of L, it is unsatisfiable if and only if there is a closed tableau in T ST

having Γ as a root [3,4,5]. The calculi T ST do not guarantee termination. In
order to ensure termination, we have to control the application of the (|∼+) rule,
which can otherwise be applied without any control since it copies its principal
formula A |∼ B in all its conclusions. In [3,4,5], it is shown that it is useless to
apply (|∼+) more than once in the same world, therefore the calculi T ST keep
track of positive conditionals already considered in a world by moving them
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in an additional set Σ in the conclusions of (|∼+), and restrict the application
of this rule to unused conditionals only. The dynamic rules (|∼−) and (�−),
whose conclusions represent a different world wrt the corresponding premise, re-
introduce formulas from Σ in order to allow further applications of (|∼+) in the
other worlds. This machinery is standard. Concerning the labelled calculus T RT,
the same mechanism is applied by equipping each positive conditional with the
list L of worlds-labels in which (|∼+) has already been applied, and restricting
its application by using worlds not belonging to L. In [3,4,5] it is shown that no
other machinery is needed to ensure termination, except for T CT, which needs
a further standard loop-checking machinery.

3 Design of KLMLean 2.0

We describe an implementation of T ST calculi in SICStus Prolog. The pro-
gram, called KLMLean 2.0, is inspired by the “lean” methodology [6] (even if
it does not fit its style in a rigorous manner): the Prolog program consists in a
set of clauses, each one representing a tableau rule or axiom; the proof search
is provided for free by the mere depth-first search mechanism of Prolog, with-
out any additional ad hoc mechanism. KLMLean 2.0 can be downloaded at
http://www.di.unito.it/∼pozzato/klmlean 2.0.

Let us first describe the implementation of non-labelled calculi for P, CL,
and C. We represent each node of a proof tree (i.e. set of formulas) by a Prolog
list. The tableaux calculi are implemented by the predicate

prove(Gamma,Sigma,Tree).

which succeeds if and only if the set of formulas Γ , represented by the list Gamma,
is unsatisfiable. Sigma is the list representing the set Σ of used conditionals, and
it is used in order to control the application of the (|∼+) rule, as described in
the previous section. When prove succeeds, Tree contains a representation of a
closed tableau. For instance, to prove that A |∼ B ∧ C, ¬(A |∼ C) is unsatisfiable
in P, one queries KLMLean 2.0 with the following goal: prove([a => (b and

c), neg (a => c)],[ ],Tree). The string “=>” is used to represent the condi-
tional operator |∼, “and” is used to denote ∧, and so on. Each clause of prove
implements one axiom or rule of the tableaux calculi; for example, the clauses
implementing (AX) and (|∼−) are as follows:

prove(Gamma, ,tree(...)):-member(F,Gamma),member(neg F,Gamma),!.
prove(Gamma,Sigma,tree(. . . )):-select(neg (A => B),Gamma,NewGamma),

conditionals(NewGamma,Cond),append(Cond,Sigma,DefGamma),
prove([neg B|[box neg A|[A|DefGamma]]],[],. . . ).

The clause for (AX) is applied when a formula F and its negation ¬F belong
to Γ . Notice that F is a formula of the language L, even complex; KLMLean
2.0 extends (AX) to a generic formula F in order to increase its performances,
without losing the soundness of the calculi. The clause for (|∼−) is applied when a
formula ¬(A |∼ B) belongs to Γ . The predicate select removes ¬(A |∼ B) from
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Gamma, then the auxiliary predicate conditionals is invoked to compute the set
Γ |∼± on the resulting list NewGamma; finally, the predicate prove is recursively
invoked on the only conclusion of the rule. Notice that, since (|∼−) is a dynamic
rule, the conditionals belonging to Σ move to Γ in the conclusion (execution of
append), in order to allow further applications of (|∼+). To search for a derivation
of a set of formulas Γ , KLMLean 2.0 proceeds as follows: first of all, if Γ is an
instance of (AX), the goal will succeed immediately by using the clauses for
the axioms. If it is not, then the first applicable rule will be chosen, e.g. if
Gamma contains a formula neg(neg F), then the clause for (¬) rule will be used,
invoking prove on its unique conclusion. KLMLean 2.0 proceeds in a similar way
for the other rules. The ordering of the clauses is such that the boolean rules
are applied before the other ones. In the case of cumulative logic C, KLMLean
2.0 implements a loop-checking machinery by equipping the prove predicate
with an additional argument, called Analyzed, representing the list of sets of
formulas already considered in the current branch. Clauses implementing T CT

are invoked only if the current set of formulas has not yet been considered, i.e.
if it does not belong to Analyzed.

The theorem prover for rational logic R implements labelled tableau calculi
T RT. It makes use of Prolog constants to represent labels: world formulas x :
A are represented by a Prolog list [x,a], and relation formulas x < y are
represented by a list [x,<,y]. As for the other systems, each clause of the
predicate prove implements a tableau rule or axiom. As an example, here is the
clause implementing the rule (<), capturing the modularity of the preference
relation:

prove(Gamma,Labels,Cond,tree(. . . )):-
member([X,<,Y],Gamma),member(Z,Labels),X\=Z, Y\=Z,
\+member([X,<,Z],Gamma),\+member([Z,<,Y],Gamma),!,
gammaM(Gamma,Y,Z,ResLeft),gammaM(Gamma,Z,X,ResRight),
append(ResLeft,Gamma,LeftConcl),append(ResRight,Gamma,RightConcl),
prove([[Z,<,Y]|LeftConcl],Labels,Cond,. . . ),!,
prove([[X,<,Z]|RightConcl],Labels,Cond,. . . ).

The predicate gammaM(Gamma,X,Y,...) computes the set Γ M
x→y defined in the

previous section. In this system, Cond is used in order to control the application
of the (|∼+) rule: it is a list whose elements have the form [x,a => b], repre-
senting that (|∼+) has been applied to A |∼ B in the current branch by using the
label x. In order to increase its performances, KLMLean for R adopts a heuris-
tic approach (not very “lean”) to implement the crucial (|∼+) rule: the predicate
prove chooses the “best” positive conditional to which apply the rule, and the
“best” label to use. Roughly speaking, an application of (|∼+) is considered to
be better than another one if it leads to an immediate closure of more conclu-
sions. Even if (|∼+) is invertible, choosing the right label in the application of
(|∼+) is highly critical for the performances of the thorem prover. To postpone
this choice as much as possible, for the logic R we have defined a more efficient
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version of the prover, inspired by the free-variable tableaux introduced in [7].
It makes use of Prolog variables to represent all the labels that can be used in
a single application of the (|∼+) rule. This version represents labels by integers
starting from 1; by using integers we can easily express constraints on the range
of the variable-labels. To this regard, the library clpfd is used to manage free-
variables domains. In order to prove Γ, u : A |∼ B, KLMLean 2.0 will call prove
on the following conclusions: Γ, u : A |∼ B, Y : ¬A; Γ, u : A |∼ B, Y : ¬�¬A;
Γ, u : A |∼ B, Y : B, where Y is a Prolog variable. Y will then be instanti-
ated by Prolog’s pattern matching to close a branch with an axiom. Predicate
Y in 1..Max is used to define the domain of Y , where Max is the maximal in-
teger occurring in the branch (i.e. the last label introduced). The list Cond here
contains elements of the form [a => b,Used], where Used is the list of free vari-
ables already introduced to apply (|∼+) in the current branch. In order to ensure
termination, the clause implementing (|∼+) is applied only if |Used|< Max; the
predicate all different([Y|Used]) is then invoked to ensure that all variables
used to apply (|∼+) on the same conditional will assume different values. On
the unsatisfiable set ¬(A ∨ D |∼ F ∨ ¬C ∨ ¬B ∨ A), (A ∧ B) ∨ (C ∧ D) |∼ E ∧ F,¬(P |∼

E ∧F ),¬((A∧B)∨ (C∧D) |∼ G), the free-variables version succeeds in less than 2 ms,
whereas the “standard” version requires 1.9 s. The performances of KLMLean
2.0 are promising. We have tested the implementation for R over 300 sets of
formulas: it terminates its computation in 236 cases in less than 2.5 s (204 in
less than 100 ms). The results for R and for the other KLM logics are reported
in Table 1:

Table 1. Some statistics for KLMLean 2.0

KLM logic 1 ms 10 ms 100 ms 1 s 2.5 s
R (improved version) 176 178 204 223 236

P 166 164 185 206 211
CL 119 118 136 150 159
C 76 77 92 110 123

In future research we intend to increase the performances of KLMLean 2.0 by
experimenting standard refinements and heuristics.
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