
Generating Petri Net State Spaces

Karsten Wolf

Universität Rostock, Institut für Informatik,
18051 Rostock, Germany

karsten.wolf@informatik.uni-rostock.de

Abstract. Most specific characteristics of (Place/Transition) Petri nets
can be traced back to a few basic features including the monotonicity of
the enabling condition, the linearity of the firing rule, and the locality of
both. These features enable “Petri net” analysis techniques such as the
invariant calculus, the coverability graph technique, approaches based on
unfolding, or structural (such as siphon/trap based) analysis. In addition,
most verification techniques developed outside the realm of Petri nets can
be applied to Petri nets as well.

In this paper, we want to demonstrate that the basic features of Petri
nets do not only lead to additional analysis techniques, but as well to
improved implementations of formalism-independent techniques. As an
example, we discuss the explicit generation of a state space. We underline
our arguments with some experience from the implementation and use
of the Petri net based state space tool LoLA.

1 Introduction

Most formalisms for dynamic systems let the system state evolve through read-
ing and writing variables. In contrast, a Petri net marking evolves through the
consumption and production of resources (tokens). This fundamental difference
has two immediate consequences. First, it leads to a monotonous enabling con-
dition. This means that a transition enabled in some state is as well enabled in a
state that carries additional tokens. Second, it leads to the linearity of the firing
rule. This means that the effect of a transition can be described as the addition
of an integer vector to a marking vector.

The Petri net formalism has another fundamental property that it shares with
only some other formalisms: locality. This means that every transition depends
on and changes only few components of a state. In Petri nets, these components
(places) are explicitly visible through the arc (flow) relation.

Many specific Petri net analysis techniques can be directly traced back to
some of these characteristic features of Petri nets. For instance, the coverability
graph generation [KM69,Fin90] is closely related to monotonicity and linearity.
The invariant calculus [LS74,GL83,Jen81] clearly exploits linearity of the firing
rule. For structural analysis such as Commoner’s Theorem [Com72] or other
methods based on siphons and traps, monotonicity and locality may be held
responsible. Petri net reduction [Ber86] is based on the locality principle. Analysis

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 29–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 K. Wolf

based on unfoldings [McM92,Esp92] (or partial ordered runs) involves the locality
principle as well. This list could be continued.

On the other hand, there are several verification techniques that do not depend
on a particular modeling language. An example for this class of techniques is state
space based analysis, and—build on top of it—model checking [CE81,QS81]. The
availability of specific techniques like the ones mentioned above has long been
observed as a particular advantage of Petri nets as a modeling language. Be-
yond this insight, we want to discuss the implementation of a Petri net based
state space generator (LoLA [Sch00c]) in order to show that the basic features
of Petri nets mentioned in the beginning of this section can be used for an effi-
cient implementation of—otherwise formalism-independent—explicit state space
generation.

We start with a short introduction to the tool LoLA and give, in Sec. 3 a brief
overview on some case studies conducted with this tool. In Sec. 4, we consider
the implementation of fundamental ingredients of a state space generator such
as firing a transition or checking for enabledness. Finally, in Sec. 5, we informally
discuss a few Petri net specific issues of state space reduction techniques.

2 The State Space Generation Tool LoLA

The LoLA project started in 1998. Its original purpose was to demonstrate the
performance of state space reduction techniques developed by the author. Most
initial design decisions were driven by prior experience with the state space
component of the tool INA [RS98].

LoLA can read place/transition nets as well as high-level nets. High-level nets
are immediately unfolded into place/transition nets So, LoLA is indeed a place-
transition net tool while the high-level input can be seen as a shorthand notation
for place/transition nets.

LoLA generates a state space always for the purpose of verifying a particular
property. It implements the in-the-fly principle, that is, it stops state space
generation as soon as the property being verified is determined. The properties
that can be verified include

– Reachability of a given state or a state that satisfies a given state predicate;
– Boundedness of the net or a given place;
– Quasiliveness of a given transition;
– Existence of deadlocks;
– Reversibility of the net;
– Existence of home state;
– Liveness of a state predicate;
– Validity of a CTL formula;
– Validity of the LTL formulas Fφ, GFφ, and FGφ, for a given state predicate

φ.

LoLA can build a state space in depth-first or breadth-first order, or it can
just generate random firing sequences for an incomplete investigation of the state

Generating Petri Net State Spaces 31

space. While depth-first search is available for the verification of all properties
listed above, the other search methods are restricted to reachability, deadlocks
and quasiliveness.

The following reduction techniques are available in LoLA:

– Partial order reduction (the stubborn set method);
– The symmetry reduction;
– The coverability graph generation;
– The sweep-line method;
– Methods involving the Petri net invariant calculus;
– a simplified version of bit hashing

The techniques are employed only if, and in a version that, preserves the
property under investigation. If applicable, reduction techniques can be applied
in combination.

Using LoLA amounts to executing the following steps.

1. Edit a particular file userconfig.H in the source code distribution for se-
lecting the class of property to be verified (e.g., “boundedness of a place” or
“model check a CTL formula”) and the reduction techniques to be applied.

2. Translate the source code into an executable file lola.
3. Call lola with a file containing the net under investigation, and a file spec-

ifying the particular instance of the property (e.g., the name of the place to
be checked for boundedness, or the particular CTL formula to be verified).

4. LoLA can return a witness state or path, an ASCII description of the gen-
erated state space, and some other useful information.

Instead of a stand alone use of LoLA, it is also possible to rely on one of the
tools that have integrated LoLA, e.g.,

– CPN-AMI [KPA99],
– The Model Checking Kit [SSE03]
– The Petri net Kernel [KW01]

3 Some Applications of LoLA

As LoLA can be downloaded freely, we do not have a complete overview on
its applications. In this section, we report on a few case studies conducted by
ourselves, and studies we happen to know about.

Validating a Petri Net Semantics for BPEL [HSS05]
WS-BPEL (also called BPEL or BPEL4WS, [Cur+03]) is an XML-based lan-
guage for the specification of web services. Due to an industrial standardization
process involving several big companies, the language contains a lot of non-
orthogonal features. It was thus adequate to give a formal semantics to BPEL

32 K. Wolf

in order to reason about consistency and unambiguity of the textual specification.
Several formal semantics have been proposed in various formalisms, among them
two which are based on Petri nets. One of the Petri net semantics has been
reported in [HSS05]. It translates every language construct of BPEL into a Petri
net fragment. The fragments are glued together along the syntactical structure
of a BPEL specification. As the fragments interact in a nontrivial way, it was
necessary to validate the semantics. The validation was done by translating
several BPEL specifications into Petri nets and letting LoLA verify a number of
crucial properties concerning the resulting nets.

The most successful setting in the application of LoLA was the combination of
partial order reduction (stubborn sets) with the sweep-line method. Partial order
reduction performed well as BPEL activities can be executed concurrently (avail-
ability of a significant number of concurrent activities is essential for the partial
order reduction). Furthermore, the control flow of a BPEL specification follows a
pattern of progress towards a fixed terminal configuration. Such progress can be
exploited using the sweep-line method. LoLA detects the direction of progress
automatically (this issue is further discussed in Sec. 5).

It turned out that LoLA was able to solve verification tasks for services with
up to 40 BPEL activities while it ran out of memory for a service with little
more than 100 activities. The nets that could be successfully verified consisted
of about 100 to 400 places and 250 to 1.000 transitions. Reduced state spaces
had up to 500.000 states. With the capability of handling BPEL specifications
with 40 or 50 activities, LoLA is well in the region of practical relevance. So,
LoLA has become part of a tool chain for web services that is developed within
the Tools4BPEL project [T4B07]. There, ideas exist to tackle larger processes
through further tuning the translation from BPEL to Petri nets, and through
abstraction techniques to be applied prior to state space verification.

The main lesson learned of this application was that partial order reduction in
combination with the sweep-line method is a powerful combination of reduction
techniques in the area of services.

Detecting Hazards in a GALS Circuit [SRK05]
GALS stands for globally asynchronous, locally synchronous circuits. A GALS
design consists of a number of components. Each component has its own clock
signal and works like a synchronous circuit. Communication between compo-
nents is organized in an asynchronous fashion. This way, designers try to save
the advantages of a synchronous design (tool support, clearly understood set-
ting) while they tackle the major drawbacks (speed limitation and high energy
consumption due to long distance clock signal paths, energy consumption in idle
parts of the circuit).

In collaboration with the Institute of Semiconductor Physics in Frankfurt/-
Oder, we investigated a GALS circuit for coding and decoding data of the 802.11
wireless LAN protocol. In particular, we translated a so-called GALS wrapper
gate by gate into a place/transition net. A GALS wrapper is the part of a GALS
design that encapsulates a component, manages incoming data, and pauses the

Generating Petri Net State Spaces 33

clock of the component during periods where no data are pending. Consequently,
a wrapper as such is an asynchronous circuit. It consists of five components: an
input port maintaining incoming data, an output port managing outgoing data,
a timeout generator, a pausable clock, and a clock control. All in all, there are 28
gates (logical gates, flip-flops, muller-C-elements, counters, and mutex elements).

We were interested in the detection of hazards in the wrapper. A hazard is a
situation where, due to concurrently arriving input signals, it is not clear whether
the corresponding output signal is able to fully change its value (after arrival of
the first signal) before switching back to the original value. Such an incomplete
signal switch may cause undefined signal values which are then potentially prop-
agated through the whole circuit. The Petri net model was built such that the
occurrence of a hazard in a particular gate corresponds to a particular reachable
marking in the Petri net model of the gate.

LoLA was applied for solving the various reachability queries. Again, a com-
bination of partial order reduction with the sweep-line method turned out to be
most successful. Nevertheless, LoLA was not able to solve all of the reachability
queries on the original model (having 286 places and 466 transitions). In a sec-
ond approach, the model was replaced by a series of models each modeling one
of the parts of the wrapper in detail while containing abstract versions of the
others. The abstraction was based on the assumption that no hazards occur in
the abstracted part. LoLA was then able to solve all reachability queries. The
largest state space had little more than 10.000 nodes.

We detected eight hazards and reported them to the people in Frankfurt. For
each hazard, we could derive a scenario for its occurrence from the witness paths
available in LoLA. Six of the scenarios could be ruled out through knowledge
about timing constraints. The remaining two hazards were considered as really
dangerous situations. Using LoLA again, a re-design of the wrapper was verified
as being hazard-free.

The approach of modeling one part of the investigated system in detail while
abstracting the others was the main lesson learned out of this application

Garavel’s Challenge
Back in 2003, Hubert Garavel posted a challenge to the Petri Net Mailing List.
The mail contained a place/transition net with 485 places and 776 transitions
that allegedly stemmed from a LOTOS specification. Garavel was interested in
quasi-liveness of all transitions of the net.

Apart from LoLA, the two symbolic state space tools SMART (by G. Chiardo
and R. Siminiceanu) and Versify (by O. Roig), and the tool TINA (by B.
Berthomieu and F. Vernadat) which used the covering step graph technique
responded to the challenge. The symbolic tools were able to calculate the exact
number of reachable states of the system which was in the area of 1022.

The LoLA approach to the challenge was to generate not just one (reduced)
state space but 776 of them, one for the verification of quasi-liveness of a partic-
ular transition. This way, partial order reduction could be applied very success-
fully. 774 of the queries could be solved this way while two queries ran out of

34 K. Wolf

memory. For these transitions, we applied then the LoLA feature of generating
random firing sequences. In fact, the sequences are not totally random. Instead,
the probability of selecting a transition for firing is weighted according to a
heuristics which is closely related to the stubborn set method. This heuristics
is quite successful in attracting a firing sequence towards a state satisfying the
investigated property. At least, it worked for the two problematic transitions in
the challenge and we were able to report, for each transition, a path witnessing
its quasi-liveness.

This challenge showed that LoLA can be competitive even to symbolic state
space tools. A major reason for success was the division of the original verification
problem into a large number of simpler verification tasks.

Exploring Biochemical Networks [Tal07]
In a biochemical network, a place represents a substance, tokens in a place repre-
sent presence of the substance. A transition models a known chemical reaction.
A transition sequence that finally marks a place represents a chain of possible
reactions that potentially generates the corresponding substance.

People at SRI use LoLA for exploring reaction paths. According to [Tal07],
they “use LoLA because it is very fast in finding paths”.

The examples show that LoLA can be applied in various areas. It is able to
cope with models of practically relevant systems. The performance of LoLA is
due to at least four reasons:

– LoLA features a broad range of state-of-the-art state space reduction tech-
niques most of which can be applied in combination;

– LoLA offers specialized reduction techniques for every property listed in the
previous section;

– LoLA uses the formalism of place/transition nets which can be handled much
easier than a high-level net formalism;

– The core procedures in LoLA exploit the basic characteristics of Petri nets
as mentioned in the introduction.

4 Core Procedures in a State Space Generator

In this section, we demonstrate how the basic characteristics of Petri nets can
be taken care of in the implementation of a state space generator. A state space
generator is basically an implementation of a search through the state graph,
typically a depth-first search. The elementary steps of a depth-first search include
the following steps, each discussed in a dedicated subsection. When discussing
complexity, we assume the investigated system to be distributed. Formally, we
assume that there is a fixed value k such that every transition has, indepen-
dently of the size of the net, at most k pre- and post-places. Several realistic
distributed systems satisfy such a requirement for a reasonably small k, for even
more systems there are only few transitions violating the assumption.

Generating Petri Net State Spaces 35

Firing a Transition
By firing a transition, we proceed from one state to a successor state. In a Petri net,
the occurrence of a transition t changes the marking of at most card(•t)+card(t•)
places. According to the assumption made above, this number is smaller than 2k.
By maintaining, for each transition, an array of pre- and post-places, it is indeed
possible to implement the occurrence of a transition in time O(1). The ability to
easily implement the firing process in constant time can be contributed to local-
ity. In fact, other formalisms exhibiting locality have the same opportunity (like
the model checking tool SPIN [Hol91] using the guarded command style language
PROMELA. In contrast, the input language of the model checker SMV [McM02]
does not support explicitly a notation of locality, and it would require a lot of ex-
pensive analysis for an explicit model checker to retrieve information on locality
from SMV input. Note that SMV is not an explicit model checker, so this consid-
eration does not concern SMV as such.

Checking Enabledness
The enabling status of a transition can change only due to the occurrence of a
transition t. So, except, for an initial enabledness check on the initial marking,
the check for enabledness can be reduced to the transitions in •t ∪ t•. This
approach is again feasible for all formalisms exhibiting locality. For Petri nets,
however, the check for enabledness can be further refined due to the monotonicity
of the enabling condition. If t′ is enabled before having fired t, and t is only
adding tokens to places in •t′, it is clear that t′ is still enabled after having
fired t. Likewise, a previously disabled t′ remains disabled if t only removes
tokens from •t′. This way, the number of enabledness checks after a transition
occurrence can be significantly reduced. In LoLA, we maintain two separate
lists of transitions for each t: those that can potentially be enabled by t (must
be checked if they have been disabled before), and those that can be potentially
disabled by t (must be checked if they have been enabled before). Through an
additional treatment of all enabled transitions as a doubly linked list (with the
opportunity to delete and insert an element at any position), it is possible to
retrieve a list of enabled transitions in a time linear to the number of enabled
transitions (which is typically an order of magnitude smaller than the overall
number of transitions).

Returning to a Previously Seen Marking
In depth-first search, we typically have a stack of visited but not fully explored
markings. This stack actually forms a path in the state space, that is, the im-
mediate successor of marking m on the stack is reachable from m through firing
a single transition. After having fully explored marking m on top of the stack,
we proceed with its immediate predecessor m′ on this stack. As Petri nets enjoy
the linearity of the firing rule, there is a strikingly simple solution to this task:
just fire the transition backwards that transformed m′ to m. This way, it takes
constant effort to get back to m′.

36 K. Wolf

For assessing the value of this implementation, let us discuss potential al-
ternatives. Of course, it would be possible to maintain a stack that holds full
markings. Then returning to a previous marking amounts to redirecting a single
pointer. But in depth-first exploration, the search stack typically holds a sub-
stantial number of visited states, so this approach would pay space for time.
In state space verification, space is, however, the by far more limited resource.
Another solution suggests to maintain, for each stack element, a pointer into the
repository of visited markings. This data structure is, in principle, maintained
in any explicit state space verification, so this solution would not waste memory
at the first glance. For saving memory, it is, however, highly recommendable
to deposit visited markings in a compressed form [WL93]. Thus, calculations
on a marking in this compressed form require nontrivial run time. Finally, this
solution prohibits approaches of storing only some reachable markings in the
repository (see Sec. 5 for a discussion on such a method).

Maintaining the Visited Markings
According to the proposal to organize backtracking in the search by through
firing transitions backwards, there are only two operations which need to be
performed for on the set of visited markings. One operation is to search whether
a newly encountered marking has been seen before, the other is to insert that
marking if it has not. All other operations, including the evaluation of state
predicates, computing the enabled transitions, computing successor and prede-
cessor markings etc. can be performed on a single uncompressed variable, call
it CurrentMarking (in the case of LoLA: an array of integers). For searching
CurrentMarking and inserting it in the depository, we can look up and insert
its compressed version.

In consequence, it is at no stage of the search necessary to uncompress a
marking! This fact can be exploited for compressions where the uncompression
is hard to realize. In LoLA, we have implemented such a technique [Sch03] that
is based on place invariants (thus, a benefit from the linearity of the firing rule).
Using a place invariant I, we can express the number of tokens of one place
p in supp(I) in terms of the others. We can thus exempt the value of p from
being stored in any marking. Given n linearly independent place invariants, the
number of values to be stored can be reduced by n. The number n typically
ranges between 20% and 60% of the overall number of places, so the reduction
is substantial. It does not only safe space but time as well. This is due to the
fact that a look up in the depository is now performed on a smaller vector.

Compressing a marking according to this technique is rather easy: we just
need to throw away places marked a “dependent” in a preprocessing stage. Un-
compressing would require an evaluation of the justifying place invariant. In
particular, it would be necessary to keep the invariant permanently in storage!
In LoLA, we do not need to keep them. Concerning space, the additional costs of
the approach, beyond preprocessing, amount to one bit (“dependent”) for each
place. Even in preprocessing, it is not necessary to fully compute the invari-
ants. As explained in [Sch03], the information about mutual dependency can be

Generating Petri Net State Spaces 37

deduced from an upper triangle form of the net incidence matrix, an interme-
diate stage of the calculation. This, way, invariant based preprocessing requires
less than a second of run time even for a net with 5.000 places and 4.000 transi-
tions. In that particular system, we would have 2.000 linearly independent place
invariants (each being a vector of length 5.000!).

Breadth-First Search
While depth-first search is the dominating technique for state space exploration,
breadth-first search can be used for some purposes as well, for instance for the
calculation of a shortest path to some state. In breadth-first search, subsequently
considered states are not connected by a transition occurrence. Nevertheless,
it is possible to preserve some of the advantages of the backtracking through
firing transitions. In LoLA, we mimic breadth-first search by a depth-first search
with an incrementally increased depth restriction. That is, we proceed to the
next marking to be considered by stepping back a few markings (through firing
some transitions backwards) and then firing some other transitions forward. The
average number of transitions to be fired is reasonably small as the number of
states tends to grow exponentially with increased depth. This is true even for
reduced state spaces, as some of the most powerful reduction techniques require
the use of depth-first search.

5 Reduction Techniques

In this section, we discuss a few state space reduction techniques and show that
the basic characteristics of Petri nets lead to specific solutions.

Partial Order Reduction
Roughly spoken, the purpose of partial order reduction is to suppress as many
as possible interleaved firings of concurrently enabled transitions. This goal is
achieved by considering, in each marking, only a subset of the enabled transi-
tions. This subset is computed such that a given property or class of properties
is preserved in the reduced state space.

It is well-known that locality is the major pre-requisite of the stubborn set
method [Val88] and other methods of partial order reduction [Pel93, GW91,
GKPP95]. Furthermore, linearity of the firing rule turns out to be quite benefi-
cial. The reason is that partial order reduction is, among others, concerned with
permutations of firing sequences. It is typically desired that a firing sequence
reaches the same marking as the permuted sequence. Due to the linearity of
the firing rule, this property comes free for Petri nets. For other formalisms, it
needs to be enforced, as can be seen in [Val91]. This way, other formalisms have
additional limitations in the application of partial order reduction.

For partial order reduction, there is another source of efficiency that is worth
being mentioned. It is not related to the formalism of Petri nets itself, but with

38 K. Wolf

the tradition of Petri net research. In the area of Petri nets, people have studied
a broad range of singular properties such as boundedness, liveness, reversibility,
reachability, deadlock freedom, etc. Following this tradition, it was apparent
to support each of these properties with a dedicated version of partial order
reduction [Sch99,Sch00d,KV00,KSV06]. In contrast, it is the tradition of model
checking to support a rich language or two (such as the temporal logics CTL
[Eme90] or LTL [MP92]). According this line of research, people came up with
reduction techniques that support the whole language [Pel93, GKPP95]. It is
evident, that a dedicated reduction technique for property X can lead to a
better reduction than a generic technique for a specification language can can
express X . We believe that this observation is crucial for the competitivity of
LoLA in various areas.

The Symmetry Method
Symmetrically structured systems exhibit a symmetric behavior. Exploiting sym-
metry means to suppress consideration of a state if a symmetric state has been
considered before.

Most approaches search for symmetric structures in data types of the spec-
ification. The most popular data type in this respect is the so-called scaler
set [DDHC92] where variables can be compared for equality, used as indices in
arrays and order-independent loops, while there are no constants of that type.
In [CDFH90], a rather sophisticated detection of symmetric structure in data
types is described.

Due to the locality of Petri nets, place/transition nets have a rather fine
grained graphical representation. This feature enables another approach to find-
ing symmetries in the structure: we can compute the graph automorphisms of
the Petri net graph [Sta91, Sch00a, Sch00b, Jun04]. There is a polynomial size
generating set of the automorphism group of a graph, and it can be computed
in reasonable time (though not always in polynomial time). The generating set
is sufficient for an approximated calculation of a canonical representative of a
marking [Sch00b], a method for detecting previously seen symmetric states dur-
ing state space calculation. The graph automorphism based approach to sym-
metry is a unique feature of LoLA and INA [RS98] (both implemented by the
author of this article).

The main advantage of the graph automorphism approach is that it can rec-
ognize arbitrary symmetry groups while the data type approach is restricted to
a couple of standard symmetries.

The Sweep-Line Method
The sweep-line method assumes that there is a notion of progress in the system
evolution. That is, assigning a progress value to each state, successor markings
tend to have larger progress values than their predecessors. This observation
can be exploited by traversing the search space in order of increasing progress
values, and to remove visited markings from the depository which have smaller

Generating Petri Net State Spaces 39

progress value than the currently considered markings. For reason of correctness,
markings which are reached through a transition that decreases the progress
value, are stored permanently, and their successors are encountered.

The original method [Mai03,CKM01,KM02] assumes that the progress mea-
sure is given manually. However, exploiting the linearity of the Petri net firing
rule, it is possible to compute a progress measure automatically. The measure
being calculated assigns some arbitrary progress value, say 0, to the initial state.
Then, each transition t gets an offset o(t) such that, if t fired in m leads to m′, the
progress value of m′ is just the progress value of m plus o(t). For correctness, it
is important that different firing sequences from the initial marking to a marking
m all yield the same progress value for m. This can, however, been taken care of
by studying linear dependencies between transition vectors. In LoLA, we com-
pute the measure by assigning an arbitrary offset, say 1, to each transition in a
maximum size linearly independent set U of transitions. For the remaining tran-
sitions (which are linear combinations of U) the offset is then determined by the
correctness requirement stated above. All applications of the sweep-line method
reported in this article have been conducted with an automatically computed
progress measure.

Cycle Coverage
The depository of visited markings is the crucial date structure in a state space
verification. In explicit methods, the size of the depository grows with the number
of visited states. The number of states to be stored can, however, be reduced in a
trade that sells time for space. By simply exempting states from being stored, we
obviously safe space but lose time as, in a revisit to a forgotten state, its successors
are computed once again. For an implementation of this idea, it is, as for instance
observed in [LLPY97], important to store at least one marking of each cycle in the
state graph. This condition actually ensure termination of the approach.

Thanks to linearity in the Petri net firing rule, it is fairly easy to characterize
a set of states such that every cycle in the state graph is covered. We know
that every firing sequence that reproduces the start marking forms a transition
invariant. Thus, choosing a set of transitions U such that the support of every
transition invariant contains an element from U , it is evident that every cycle in
the state graph contains at least one marking where a transition in U is enabled.
This approach has been described in [Sch03].

Combination of Reduction Techniques
Most techniques mentioned above can be applied in combination. The combined
application typically leads to additional reduction like in the case of joint applica-
tion of partial order reduction with the symmetry method. For some reduction
techniques, we experienced that their joint application with another technique
is actually a pre-requisite for a substantial reduction as such. For instance, the
sweep-line method only leads to marginal reduction for Petri nets with a lot of
cycles [Sch04]. Also, the cycle coverage reduction does not perform well on such
systems [Sch03]. Both methods can, however, lead to substantial (additional!) re-
duction when they are applied to a stubborn set reduced state space. This is due to

40 K. Wolf

a particular effect of partial order reduction. If a system consists of several, mostly
concurrently evolving, cyclic components, then the almost arbitrary interleaving
of transitions in these components closes a cycle in almost every reachable state.
This causes a tremendous number of regress transitions in the sweep-line method
(and thus a huge number of states to be stored permanently) and a huge number
of states to be stored with the cycle coverage reduction. Partial order reduction
decouples the arbitrary interleaving of concurrent components. A partial order re-
duced state space contains only a fraction of the cycles of the original state space,
and the remaining cycles tend to be significantly larger.

6 Conclusion

Petri nets as a formalism for modeling systems enjoy specific properties including
locality, linearity and monotonicity. These properties lead to specific verification
techniques such as the coverability graph, the invariant calculus, siphon/trapbased
analyses, or the unfolding approach. In this article we demonstrated, that the spe-
cific properties of Petri nets are as well beneficial for the implementation of tech-
niques which are otherwise applicable in other formalisms as well. Our discussion
covered explicit state space verification as such, but also a number of state space
reduction techniques all of which can be applied to several modeling languages.

All mentioned methods have been implemented in the tool LoLA. LoLA is
able to solve problems that have practical relevance. We hold three reasons
responsible for the performance of LoLA:

– A consistent exploitation of the basis characteristics of Petri nets,
– A broad variety of reduction techniques which can be applied in many com-

binations, and
– The availability of dedicated reduction techniques for frequently used singu-

lar properties.

In this light, it is fair to say that LoLA is a Petri net state space tool.

References

[Ber86] Berthelot, G.: Checking properties of nets using transformations. Advances
in Petri Nets, pp. 19–40 (1986)

[CDFH90] Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well–formed
colored nets and their symbolic reachability graph. In: Proc. ICATPN, pp.
378–410 (1990)

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronisation
skeletons using brnaching tim temporal logic. In: Logics of Programs.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

[CKM01] Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for
state space exploration. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and
TACAS 2001. LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)

[Com72] Commoner, F.: Deadlocks in Petri nets. Technical report, Applied Data
Research Inc. Wakefield, Massachussetts (1972)

Generating Petri Net State Spaces 41

[Cur+03] Curbera, F., et al.: Business process execution language for web services,
version 1.1. Technical report, BEA, IBM, Microsoft (2003)

[DDHC92] Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a
hardware design aid. In: Proc. IEEE Int. Conf. Computer Design: VLSI
in Computers and Processors, pp. 522–525 (1992)

[Eme90] Emerson, E.A.: Handbook of Theoretical Computer Science. Chapter 16.
Elsevier, Amsterdam (1990)

[Esp92] Esparza, J.: Model checking using net unfoldings. Technical Report 14/92,
Universität Hildesheim (1992)

[Fin90] Finkel, A.: A minimal coverability graph for Petri nets. In: Proc. ICATPN,
pp. 1–21 (1990)

[GKPP95] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach
to branching time logic model checking. In: Symp. on the Theory of Com-
puting and Systems, IEEE, pp. 130–140 (1995)

[GL83] Genrich, H., Lautenbach, K.: S–invariance in Pr/T–nets. Informatik–
Fachberichte 66, 98–111 (1983)

[GW91] Godefroid, P., Wolper, P.: A partial approach to model checking. In: IEEE
Symp. on Logic in Computer Science, pp. 406–415 (1991)

[Hol91] Holzmann, G.: Design an Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs (1991)

[HSS05] Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In:
Proc. BPM, LNCS 3649, pp. 220–235 (2005)

[Jen81] Jensen, K.: Coloured Petri nets and the invariant method. Theoretical
Computer Science 14, 317–336 (1981)

[Jun04] Junttila, T.: New canonical representative marking algorithms for
place/transition nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 258–277. Springer, Heidelberg (2004)

[KM69] Karp, R.M., Miller, R.E.: Parallel programm schemata. Journ. Computer
and System Sciences 4, 147–195 (1969)

[KM02] Kristensen, L.M., Mailund, T.: A generalized sweep-line method for safety
properties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 549–567. Springer, Heidelberg (2002)

[KPA99] Kordon, F., Paviot-Adet, E.: Using CPN-AMI to validate a sfae channel
protocol. Tool presentation at ICATPN (1999)

[KSV06] Kristensen, L., Schmidt, K., Valmari, A.: Question-guided stubborn set
methods for state properties. Formal Methods in System Design 29(3),
215–251 (2006)

[KV00] Krisensen, L.M., Valmari, A.: Improved question-guided stubborn set
methods for state properties. In: Proc. ICATPN, pp. 282–302 (2000)

[KW01] Kindler, E., Weber, M.: The Petri net kernel - an infrastructure for building
petri net tools. STTT 3 (4), 486–497 (2001)

[LLPY97] Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of
real-time systems: compact data structure and state-space reduction. In:
Proc. IEEE Real-Time Systems Symp., pp. 14–24 (1997)

[LS74] Lautenbach, K., Schmidt, H.A.: Use of Petri nets for proving correctness
of concurrent process systems. IFIP Congress, pp. 187-191 (1974)

[McM02] McMillan, K.: The SMV homepage.
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/

[Mai03] Mailund, T.: Sweeping the State Space - a sweep-line state space explo-
ration method. PhD thesis, University of Aarhus (2003)

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

42 K. Wolf

[MP92] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems, vol. 1: Specification. Springer, Heidelberg (1992)

[McM92] McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the
verification of asynchronious circuits. In: Probst, D.K., von Bochmann, G.
(eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

[Pel93] Peled, D.: All from one, one for all: on model–checking using representi-
tives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423.
Springer, Heidelberg (1993)

[QS81] Quielle, J.P., Sifakis, J.: Specification and verification of concurrent sys-
tems in CESAR. In: International Symposium on Programming. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1981)

[RS98] Roch, S., Starke, P.: INA Integrierter Netz Analysator Version 2.1. Tech-
nical Report 102, Humboldt–Universität zu Berlin (1998)

[Sch99] Schmidt, K.: Stubborn set for standard properties. In: Donatelli, S., Kleijn,
J.H.C.M. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Hei-
delberg (1999)

[Sch00a] Schmidt, K.: How to calculate symmetries of Petri nets. Acta Informat-
ica 36, 545–590 (2000)

[Sch00b] Schmidt, K.: Integrating low level symmetries into reachability analysis.
In: Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000.
LNCS, vol. 1785, pp. 315–331. Springer, Heidelberg (2000)

[Sch00c] Schmidt, K.: LoLA – a low level analyzer. In: Nielsen, M., Simpson, D.
(eds.) ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg
(2000)

[Sch00d] Schmidt, K.: Stubborn set for modelchecking the EF/AG fragment of CTL.
Fundamenta Informaticae 43 (1-4), 331–341 (2000)

[Sch03] Schmidt, K.: Using Petri net invariants in state space construction. In:
Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS,
vol. 2619, pp. 473–488. Springer, Heidelberg (2003)

[Sch04] Schmidt, K.: Automated generation of a progress measure for the sweep-
line method. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 192–204. Springer, Heidelberg (2004)

[SSE03] Schröter, C., Schwoon, S., Esparza, J.: The Model-Checking Kit. In: van
der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp.
463–472. Springer, Heidelberg (2003)

[SRK05] Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper:
A case study. In: Proc. ACSD, pp. 234–243 (2005)

[Sta91] Starke, P.: Reachability analysis of Petri nets using symmetries. J. Syst.
Anal. Model. Simul. 8, 294–303 (1991)

[Tal07] Talcott, C.: Personal communication. Dagstuhl Seminar (February 2007)
[T4B07] Reisig, W., et al.: The homepage of the project Tools4BPEL http://www2.

informatik.hu-berlin.de/top/forschung/projekte/tools4bpel/
[Val88] Valmari, A.: Error detection by reduced reachability graph generation. In:

ICATPN (1988)
[Val91] Valmari, A.: Stubborn sets for reduced state space generation. In: Ad-

vances in Petri Nets 1990. LNCS, vol. 483, pp. 491–511. Springer, Heidel-
berg (1991)

[WL93] Wolper, P., Leroy, D.: Reliable hashing without collision detection. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer,
Heidelberg (1993)

http://www2.informatik.hu-berlin.de/top/forschung/projekte/tools4bpel/
http://www2.informatik.hu-berlin.de/top/forschung/projekte/tools4bpel/

	Introduction
	The State Space Generation Tool LoLA
	Some Applications of LoLA
	Core Procedures in a State Space Generator
	Reduction Techniques
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

